

Transitions and Trees

An Introduction to Structural Operational Semantics

Structural operational semantics is a simple, yet powerful mathematical theory for describing the
behaviour of programs in an implementation-independent manner. This book provides a
self-contained introduction to structural operational semantics, featuring semantic definitions using
big-step and small-step semantics of many standard programming language constructs, including
control structures, structured declarations and objects, parameter mechanisms and procedural
abstraction, concurrency, non-determinism and the features of functional programming languages.
Along the way, the text introduces and applies the relevant proof techniques, including forms of
induction and notions of semantic equivalence (including bisimilarity).

Thoroughly class-tested, this book has evolved from lecture notes used by the author over a
10-year period at Aalborg University to teach undergraduate and graduate students. The result is a
thorough introduction that makes the subject clear to students and computing professionals without
sacrificing its rigour. No experience with any specific programming language is required.

hans hüttel is Associate Professor in the Department of Computer Science at Aalborg
University, Denmark.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511840449
https://www.cambridge.org/core

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511840449
https://www.cambridge.org/core

Transitions and Trees
An Introduction to Structural Operational Semantics

HANS HÜTTEL
Aalborg University, Denmark

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511840449
https://www.cambridge.org/core

cambridge university press
Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore,

São Paulo, Delhi, Dubai, Tokyo

Cambridge University Press
The Edinburgh Building, Cambridge CB2 8RU, UK

Published in the United States of America by Cambridge University Press, New York

www.cambridge.org
Information on this title: www.cambridge.org/9780521197465

C© H. Hüttel 2010

This publication is in copyright. Subject to statutory exception
and to the provisions of relevant collective licensing agreements,
no reproduction of any part may take place without the written

permission of Cambridge University Press.

First published 2010

Printed in the United Kingdom at the University Press, Cambridge

A catalogue record for this publication is available from the British Library

ISBN 978-0-521-19746-5 Hardback
ISBN 978-0-521-14709-5 Paperback

Additional resources for this publication at www.operationalsemantics.net

Cambridge University Press has no responsibility for the persistence or
accuracy of URLs for external or third-party internet websites referred to

in this publication, and does not guarantee that any content on such
websites is, or will remain, accurate or appropriate.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511840449
https://www.cambridge.org/core

Contents

Preface page ix
About the illustrations xiii
List of illustrations xiv
List of tables xv

PART I BACKGROUND 1

1 A question of semantics 3
1.1 Semantics is the study of meaning 3
1.2 Examples from the history of programming languages 4
1.3 Different approaches to program semantics 6
1.4 Applications of program semantics 10

2 Mathematical preliminaries 16
2.1 Mathematical induction 16
2.2 Logical notation 17
2.3 Sets 19
2.4 Operations on sets 20
2.5 Relations 21
2.6 Functions 22

PART II FIRST EXAMPLES 25

3 The basic principles 27
3.1 Abstract syntax 27
3.2 Transition systems 30
3.3 Big-step vs. small-step semantics 31
3.4 Operational semantics of arithmetic expressions 31

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511840449
https://www.cambridge.org/core

vi Contents

3.5 Proving properties 38
3.6 A semantics of Boolean expressions 39
3.7 The elements of an operational semantics 40

4 Basic imperative statements 43
4.1 Program states 43
4.2 A big-step semantics of statements 45
4.3 A small-step semantics of statements in Bims 53
4.4 Equivalence of the two semantics 55
4.5 Two important proof techniques 60

PART III LANGUAGE CONSTRUCTS 63

5 Control structures 65
5.1 Some general assumptions 65
5.2 Loop constructs 66
5.3 Semantic equivalence 70
5.4 Abnormal termination 72
5.5 Nondeterminism 73
5.6 Concurrency 76

6 Blocks and procedures (1) 79
6.1 Abstract syntax of Bip 79
6.2 The environment–store model 80
6.3 Arithmetic and Boolean expressions 83
6.4 Declarations 84
6.5 Statements 85
6.6 Scope rules 86

7 Parameters 94
7.1 The language Bump 94
7.2 Call-by-reference 96
7.3 On recursive and non-recursive procedure calls 97
7.4 Call-by-value 99
7.5 Call-by-name 100
7.6 A comparison of parameter mechanisms 110

8 Concurrent communicating processes 113
8.1 Channel-based communication – Cab 113
8.2 Global and local behaviour 114
8.3 Synchronous communication in Cab 115
8.4 Other communication models 119

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511840449
https://www.cambridge.org/core

Contents vii

8.5 Bisimulation equivalence 122
8.6 Channels as data – the π-calculus 123

9 Structured declarations 134
9.1 Records 134
9.2 The language Bur 135
9.3 The class-based language Coat 142

10 Blocks and procedures (2) 154
10.1 Run-time stacks 154
10.2 Declarations 155
10.3 Statements 155

11 Concurrent object-oriented languages 161
11.1 The language Cola 161
11.2 A small-step semantics of concurrent behaviour 163
11.3 Transition systems 163

12 Functional programming languages 171
12.1 What is a functional programming language? 171
12.2 Historical background 173
12.3 The λ-calculus 174
12.4 Flan – a simple functional language 177
12.5 Further reading 181

PART IV RELATED TOPICS 183

13 Typed programming languages 185
13.1 Type systems 185
13.2 Typed Bump 187
13.3 Typed Flan 198
13.4 Type polymorphism and type inference 209

14 An introduction to denotational semantics 211
14.1 Background 211
14.2 λ-Notation 212
14.3 Basic ideas 214
14.4 Denotational semantics of statements 216
14.5 Further reading 220

15 Recursive definitions 222
15.1 A first example 222
15.2 A recursive definition specifies a fixed-point 224
15.3 The fixed-point theorem 225

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511840449
https://www.cambridge.org/core

viii Contents

15.4 How to apply the fixed-point theorem 231
15.5 Examples of cpos 232
15.6 Examples of continuous functions 236
15.7 Examples of computations of fixed-points 240
15.8 An equivalence result 241
15.9 Other applications 246
15.10 Further reading 248

Appendix A A big-step semantics of Bip 249

Appendix B Implementing semantic definitions in SML 257
References 264
Index 269

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511840449
https://www.cambridge.org/core

Preface

About this book

This is a book about structural operational semantics; more precisely it
is a book that describes how this approach to semantics can be used to
describe common programming language constructs and to reason about
the behaviour of programs.

The text grew out of the lecture notes that I have used over a period of
more than 10 years in the course Syntax and semantics which is taught to
all students following the various degree programmes in computer science at
Aalborg University. What began as a 10-page set of notes in Danish is now
a textbook in English.

The book also includes chapters on related material, namely short in-
troductions to type systems, denotational semantics and the mathematics
necessary to understand recursive definitions.

Related work

This work was inspired by lecture notes by Plotkin (1981) (also written in
Denmark), where this approach to programming language semantics was
first presented.

The topic of structural operational semantics also appears in later books,
three of which I will mention here.

Reynolds’ book (Reynolds, 1999) is an excellent text that covers some of
the same topics as this book but uses denotational and axiomatic semantics
as well as structural operational semantics.

The book by Winskel (1993) is another very good textbook that covers
many of the same topics as Reynolds’ book.

Finally, I should mention Nielson and Nielson (2007), which introduces

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511840449.001
https://www.cambridge.org/core

x Preface

and relates denotational, axiomatic and structural operational semantics
and then gives an introduction to how these can be used in connection with
static program analysis.

The book that you are now reading differs from the ones just mentioned in
three important ways. First, the main topic is exclusively that of structural
operational semantics. Second, both Reynolds and Winskel introduce do-
main theory early on; this book aims at developing the theory of structural
operational semantics and making use of it with mathematical prerequisites
of a more modest nature. Third, unlike the book by the Nielsons, the focus
here is not that of program analysis. Instead, it is on how operational seman-
tics can be used to describe common features of programming languages.

What you need to know in advance

This text is not intended as an introduction to programming; if you are a
reader expecting this to be the case, you will probably be disappointed! The
ideal reader should already have some experience with programming in a
high-level imperative programming language such as C, Java or Pascal.

Programming language semantics is a mathematical theory. Therefore,
the reader should also have some mathematical maturity. In particular, you
should be familiar with basic notions of discrete mathematics – sets, func-
tions and graphs and the proof techniques of proof by induction and proof
by contradiction. Chapter 2 gives a short overview of some of this material.
There are several good textbooks that you can consult as a supplement; one
that I would recommend in particular is Velleman’s book (Velleman, 2006).

Ways through the book

The book falls into four parts. The first two parts must be covered in any
course for which this book is the main text, since the contents of these first
four chapters are necessary to understand the material in the rest of the
book. After that, there are the following dependences:

• Chapter 7 and Chapter 9 are independent of each other but both extend
the language introduced in Chapter 6,

• Chapter 8 assumes knowledge of the parallel operator introduced in Chap-
ter 5,

• Chapter 10 on small-step semantics for procedures and blocks also assumes
knowledge of Chapter 6,

• Chapter 11 assumes knowledge of Chapters 8 and 10 and finally

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511840449.001
https://www.cambridge.org/core

Preface xi

• Chapter 15 assumes knowledge of the contents of Chapter 14.

Problems and thoughts

To learn a mathematical subject, one should of course read the text carefully
but also learn to apply the content. For this reason, there are quite a few
problems scattered throughout the text. As a rule of thumb, a problem will
appear at the point in the text where it becomes relevant. I have chosen
this approach since I would like you, the reader, to focus on the connection
between the problem and the context in which it appears. You can read
most of the text without solving the problems but I encourage you to solve
as many of them as possible. In some places, I have put problems that are
important for understanding the text and they are then marked as such.

I have also introduced mini-problems which I call A moment’s thought.
Here, the idea is to make you think carefully about what you have just read.
Do not read the text without finding the answers to these mini-problems.

Related resources

The book has its own website, http://www.operationalsemantics.net,
which has more information, including hints to the mini-problems. The web-
site also holds information about the Danish-language version of the book,
Pilen ved træets rod, including how to obtain a copy of it.

Acknowledgements

This book grew out of the years I have spent teaching, so, first, I would like
to thank the students who have lived with the various incarnations of this
text over the years and have made many useful comments that have helped
improve and shape its content and form.

Second, I want to thank the people who have inspired me to reflect on
the task of teaching mathematical subjects and teaching in general over the
years: Jens Friis Jørgensen, Steffen Lauritzen, Finn Verner Jensen, Anette
Kolmos, Helle Alrø and Ole Skovsmose.

Third, I would like thank all those who helped me make this book a reality.
My thanks go to the people and organizations who have kindly allowed me
to use the pictures in Chapter 1 and to David Tranah from Cambridge
University Press for his encouragement.

A number of colleagues read parts of the manuscript and provided me
with lots of important feedback. Special thanks are due to Denis Bertelsen,

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511840449.001
https://www.cambridge.org/core

xii Preface

Morten Dahl, Ulrich Fahrenberg, Morten Kühnrich, Michael Pedersen, Willard
Rafnsson and last, but by no means least, Gordon Plotkin.

On an entirely personal level, there are others who also deserve thanks.
Over the years, I have come to know many inspiring people through my
extracurricular activities in human rights activism and music and, most
recently, through the extended family of sisters and brothers that I now
have. I am very grateful for knowing you all.

Finally, and most importantly, I want to thank my wife Maria and our
daughter Nadia for being in my life. This book is dedicated to you.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511840449.001
https://www.cambridge.org/core

About the illustrations

• The picture of Alfred Tarski on p. 4 is by George M. Bergman and used
courtesy of Wikimedia Commons under the GNU Free Documentation
License.

• The picture of Dana Scott on p. 7 is used courtesy of Dana Scott.
• The picture of Christopher Strachey on p. 7 is used courtesy of Martin

Campbell-Kelly.
• The picture of Gordon Plotkin on p. 8 is used courtesy of Gordon Plotkin.
• The picture of Robin Milner on p. 9 is used courtesy of Robin Milner.
• The picture of Tony Hoare on p. 9 is used courtesy of Tony Hoare.
• The picture of Joseph Goguen on p. 10 is used courtesy of Healfdene

Goguen.
• The pictures of Ariane 5 on p. 12 are used courtesy of the ESA/CNES

and are c©AFP/Patrick Hertzog, 1996.
• The picture of the Mars Climate Orbiter on p. 14 is used courtesy of

NASA.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511840449
https://www.cambridge.org/core

Illustrations

1.1 Alfred Tarski 4
1.2 An ALGOL 60 procedure. What is its intended behaviour? 5
1.3 Dana Scott (left) and Christopher Strachey (right) 7
1.4 Gordon Plotkin 8
1.5 Robin Milner 9
1.6 Tony Hoare 9
1.7 Joseph Goguen 10
1.8 The start and end of the maiden voyage of the Ariane 5 12
1.9 The Mars Climate Orbiter 14
3.1 A very small transition system 31
3.2 Derivation tree for a big-step transition for (2+3)*(4+9) → 65 35
3.3 Comparison between the derivation trees for the individual steps

of a small-step transition sequence and that of a big-step tran-
sition 41

6.1 Example of a variable environment and a store 82
6.2 An example Bip statement whose behaviour is dependent on

the choice of scope rules 88
7.1 A Bump statement with recursive calls 98
7.2 Exploiting call-by-name for computing the sum

∑10
i=1 i2 104

7.3 A Bump statement showing where name clashes could occur as
a result of an incorrectly defined substitution 108

9.1 A program with nested record declarations 135
9.2 A Coat program example 144
13.1 A type system is an overapproximation of safety 198
15.1 Part of the Hasse diagram for (N,≤) 226
15.2 A Hasse diagram for (P({1, 2, 3}),⊆) 233

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511840449
https://www.cambridge.org/core

Tables

3.1 Abstract syntax of Bims 29
3.2 Big-step transition rules for Aexp 33
3.3 Small-step transition rules for Aexp 37
3.4 Big-step transition rules for Bexp 40
4.1 Big-step transition rules for Aexp 45
4.2 Big-step transition rules for Bexp 46
4.3 Big-step transition rules for Stm 47
4.4 Small-step transition rules for Stm 53
5.1 Big-step transition rules for repeat-loops 67
5.2 Big-step transition rules for for-loops 72
5.3 Big-step transition rules for the or-statement 74
5.4 Small-step transition rules for the or-statement 75
5.5 Small-step semantics of the par-statement 77
5.6 An attempt at big-step transition rules for the par-statement 77
6.1 Big-step operational semantics of Aexp using the environment–

store model 83
6.2 Big-step semantics of variable declarations 84
6.3 Big-step transition rules for Bip statements (except procedure

calls) 87
6.4 Transition rules for procedure declarations (assuming fully dy-

namic scope rules) 89
6.5 Transition rule for procedure calls (assuming fully dynamic scope

rules) 89
6.6 Transition rules for procedure declarations assuming mixed scope

rules (dynamic for variables, static for procedures) 90
6.7 Transition rules for procedure calls assuming mixed scope rules

(dynamic for variables, static for procedures) 91
6.8 Transition rules for procedure declarations assuming fully static

scope rules 92

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511840449
https://www.cambridge.org/core

xvi Tables

6.9 Transition rules for procedure calls assuming fully static scope
rules 93

7.1 Rules for declaring procedures with a single parameter assuming
static scope rules 96

7.2 Transition rule for calling a call-by-reference procedure 97
7.3 Revised transition rule for procedure calls that allow recursive

calls 99
7.4 Transition rules for procedure calls using call-by-value 101
7.5 Transition rules for declaration of call-by-name procedures as-

suming fully static scope rules 105
7.6 Transition rules for procedure calls using call-by-name 105
7.7 Substitution in statements 111
8.1 Transition rules defining local transitions 116
8.2 Rules defining the capability semantics 117
8.3 Synchronous communication: transition rules for the global level 118
8.4 Asynchronous communication: communication capabilities 120
8.5 Asynchronous communication: the global level 121
8.6 The structural congruence rules 128
8.7 Rules of the reduction semantics of the π-calculus 130
8.8 Rules of the labelled semantics of the π-calculus 132
9.1 Transition rules for generalized variables 137
9.2 Transition rules for arithmetic expressions 138
9.3 Transition rules for variable declarations 139
9.4 Transition rules for procedure declarations 139
9.5 Transition rules for generalized procedure names 140
9.6 Transition rules for record declarations 140
9.7 Transition rules for statements in Bur 141
9.8 The semantics of class declarations 146
9.9 The semantics of variable declarations 147
9.10 The semantics of method declarations 147
9.11 The semantics of object declarations 148
9.12 The semantics of object sequences 149
9.13 The semantics of object expressions 150
9.14 Evaluating extended variables (in the semantics of arithmetic

expressions) 150
9.15 Important transition rules for statements 151
9.16 Transition rule for programs 152
10.1 Transition rules for statements other than procedure calls 157
10.2 Transition rules for procedure calls assuming static scope rules 159
10.3 Transition rule for procedure calls assuming dynamic scope rules 160
11.1 Transition rules for the local transition system 165
11.2 Transition rules of the labelled transition systems 166
11.3 Transition rules for the global level (1) – initialization 167

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511840449
https://www.cambridge.org/core

Tables xvii

11.4 Transition rules for the global level (2) – the connection between
global and local behaviour 168

11.5 Transition rules for the global level (3) – rendezvous 169
12.1 Big-step semantics for Flan 179
12.2 Some of the small-step semantics of Flan 180
13.1 Big-step operational semantics of Exp (arithmetic part) 188
13.2 Big-step transition rules for Bump statements (except procedure

calls) 189
13.3 Type rules for Bump expressions 191
13.4 Type rules for variable and procedure declarations in Bump 191
13.5 Type rules for Bump statements 192
13.6 The error predicate for variable declarations 194
13.7 The error predicate for statements 195
13.8 Type rules for Flan 200
13.9 The small-step semantics of Flan 201
13.10 The type rule for letrec 209
A.1 Big-step operational semantics of Aexp 252
A.2 Big-step transition rules for →b 253
A.3 Big-step semantics of variable declarations 254
A.4 Transition rules for procedure declarations assuming fully static

scope rules 254
A.5 Big-step transition rules for Bip statements 256

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511840449
https://www.cambridge.org/core

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511840449
https://www.cambridge.org/core

PART I

BACKGROUND

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511840449
https://www.cambridge.org/core

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511840449
https://www.cambridge.org/core

1

A question of semantics

The goal of this chapter is to give the reader a glimpse of the applications
and problem areas that have motivated and to this day continue to inspire
research in the important area of computer science known as programming
language semantics.

1.1 Semantics is the study of meaning

Programming language semantics is the study of mathematical models of
and methods for describing and reasoning about the behaviour of programs.

The word semantics has Greek roots1 and was first used in linguistics.
Here, one distinguishes among syntax, the study of the structure of lan-
guages, semantics, the study of meaning, and pragmatics, the study of the
use of language.

In computer science we make a similar distinction between syntax and se-
mantics. The languages that we are interested in are programming languages
in a very general sense. The ‘meaning’ of a program is its behaviour, and
for this reason programming language semantics is the part of programming
language theory devoted to the study of program behaviour.

Programming language semantics is concerned only with purely internal
aspects of program behaviour, namely what happens within a running pro-
gram. Program semantics does not claim to be able to address other aspects
of program behaviour – e.g. whether or not a program is user-friendly or
useful.

In this book, when we speak of semantics, we think of formal semantics,

1 The Greek word (transliterated) is semantikós, meaning ‘significant’. The English word
‘semantics’ is a singular form, as are ‘physics’, ‘mathematics’ and other words that have
similar Greek roots.

4 A question of semantics

Figure 1.1 Alfred Tarski

understood as an approach to semantics that relies on precise mathematical
definitions.

Formal semantics arose in the early twentieth century in the context of
mathematical logic. An early goal of mathematical logic was to provide a
precise mathematical description of the language of mathematics, including
the notion of truth. An important contributor in this area was the logician
Alfred Tarski (Figure 1.1) (Tarski, 1935).

Many of the first insights and a lot of the fundamental terminology used in
programming language semantics can be traced back to the work of Tarski.
For instance, the important notion of compositionality – that the meaning
of a composite language term should be defined using the meanings of its
immediate constituents – is due to him. So is the insight that we need to
use another language, a metalanguage, to define the semantics of our target
language.

1.2 Examples from the history of programming languages

The area of programming language semantics came into existence in the
late 1960s. It was born of the many problems that programming language
designers and implementors encountered when trying to describe various
constructs in both new and existing programming language.

The general conclusion that emerged was that an informal semantics,
however precise it may seem, is not sufficient when it comes to defining the
behaviour of programs.

1.2 Examples from the history of programming languages 5

1.2.1 ALGOL 60

The programming language ALGOL 60 was first documented in a paper from
1960 (Backus and Naur, 1960), now often referred to simply as ‘the ALGOL
60 report’. ALGOL 60 was in many ways a landmark in the evolution of
programming languages.

Firstly, the language was the result of very careful work by a committee
of prominent researchers, including John Backus, who was the creator of
FORTRAN, John McCarthy, the creator of Lisp, and Peter Naur, who be-
came the first Danish professor of computer science. Later in their careers,
Backus, McCarthy and Naur all received the ACM Turing Award for their
work on programming languages.

Secondly, ALGOL 60 inspired a great many subsequent languages, among
them Pascal and Modula.

Thirdly, ALGOL 60 was the first programming language whose syntax was
defined formally. The notation used was a variant of context-free grammars,
later known as Backus–Naur Normal Form (BNF).

However, as far as the semantics of ALGOL 60 is concerned, Backus and
his colleages had to rely on very detailed descriptions in English, since there
were as yet no general mathematical theories of program behaviour. It turned
out to be the case that even a group of outstanding researchers (who for
the most part were mathematicians) could not avoid being imprecise, when
they did not have access to a formalized mathematical theory of program
behaviour. In 1963 the ALGOL 60 committee therefore released a revised
version of the ALGOL 60 report (Backus and Naur, 1963) in which they
tried to resolve the ambiguities and correct the mistakes that had been
found since the publication of the original ALGOL 60 report.

However, this was by no means the end of the story. In 1967, Donald E.
Knuth published a paper (Knuth, 1967) in which he pointed out a number
of problems that still existed in ALGOL 60.

One such problem had to do with global variables in procedures. Figure 1.2
illustrates the nature of the problem. The procedure awkward is a procedure
returning an integer value.

integer procedure awkward
begin comment x is a global variable
x := x+1
awkward := 3

end awkward

Figure 1.2 An ALGOL 60 procedure. What is its intended behaviour?

6 A question of semantics

The procedure awkward manipulates the value of a global variable and
therefore has a side effect. However, the ALGOL 60 report does not explain
whether or not side effects are allowed in procedures. Because of this, there
is also no explanation of how arithmetic expressions should be evaluated if
they contain side effects.

Let us consider a global variable x whose value is 5 and assume that we
now want to find the value of the expression x+awkward. Should we evaluate
x before or after we evaluate awkward? If we evaluate x first, the value of
the expression will be 8; should we evaluate x after having called awkward,
we get the value 9!

One consequence of Knuth’s paper was that the ALGOL 60 committee
went back to the drawing board to remove the ambiguities. The main reason
why it took so long to discover these problems was that the language de-
signers had no precise, mathematical criterion for checking whether or not
all aspects of the language had been defined.

1.2.2 Pascal

Pascal, a descendant of the Algol family, was created by Niklaus Wirth and
first documented in a book written with Kathleen Jensen (Jensen and Wirth,
1975). Ever since then, Pascal has been a common introductory language in
computer science degree programmes around the world.

Even though great care was taken in the exposition of the language fea-
tures, Pascal also suffers from the problems associated with an informal
semantics. In particular, there are problems with explaining scoping rules –
in fact, the scoping rules are barely explained in the book. There is mention
of global variables; however, nowhere in the text is it explained what a global
variable is, let alone what its scope should be. Nor are there any rules that
specify that a variable must be declared before it is used!

All existing implementations of Pascal assume this (except for pointer
variables), but the declaration-before-use convention is not part of the orig-
inal definition of the language.

1.3 Different approaches to program semantics

The development of a mathematical theory of program semantics has been
motivated by examples such as the ones given above. There are several ways
of providing such a mathematical theory, and they turn out to be related.

1.3 Different approaches to program semantics 7

Figure 1.3 Dana Scott (left) and Christopher Strachey (right)

Denotational semantics was the first mathematical account of program be-
haviour; it arose in the late 1960s (Strachey, 1966, 1967; Scott and Strachey,
1971) and was pioneered by Dana Scott and Christopher Strachey (Figure
1.3), who at the time were both working at Oxford University.

In denotational semantics, the behaviour of a program is described by
defining a function that assigns meaning to every construct in the language.
The meaning of a language construct is called its denotation. Typically, for
an imperative program, the denotation will be a state transformation, which
is a function that describes how the final values of the variables in a program
are found from their initial values.

Structural operational semantics – the main topic of this book – came into
existence around 1980 and is due to Gordon Plotkin (Figure 1.4), who gave
the first account of his ideas in a set of lecture notes written during his
sabbatical at Århus University in 1980 (Plotkin, 1981). An important early
contribution is that of Robin Milner (Figure 1.5), who used Plotkin’s ap-
proach to give a labelled semantics to the process calculus CCS (Calculus
of Communication Systems) (Milner, 1980). Plotkin (2004) gives a detailed
account of the origins and early history of the area.

In structural operational semantics one specifies the behaviour of a pro-
gram by defining a transition system whose transition relation describes
the evaluation steps of a program. One of the underlying motivations for
this approach was that it is possible to give a simple account of concurrent
programs; previous attempts to give a semantic description of even simple

8 A question of semantics

Figure 1.4 Gordon Plotkin

parallel programming languages had used denotational semantics and had
turned out to be quite complicated.

A central insight of this approach, and one to which we shall return re-
peatedly throughout this book, is that one can describe the evaluation steps
of a syntactic entity (such as a program) in a structural fashion, that is, by
means of an inductive definition based on the abstract syntax.

Axiomatic semantics is due to Tony Hoare (Hoare, 1969; Apt, 1981) (Figure
1.6) and, like denotational semantics, it is a product of the late 1960s. Here
one describes a language construct by means of mathematical logic. More
precisely, one defines a set of rules that describe the assertions that must
hold before and after the language construct has been executed.

Algebraic semantics is related to denotational semantics and describes the
behaviour of a program using universal algebra (Guessarian, 1981; Goguen
and Malcolm, 1996). The members of the research collective behind the OBJ
specification language, with Joseph Goguen (Figure 1.7) as a prominent con-
tributor, have been important figures in the development of this approach.

These four approaches to programming language semantics are not rivals.
Rather, they complement each other. Some approaches are more suitable
than others in certain situations. For instance, it is much easier to describe

1.3 Different approaches to program semantics 9

Figure 1.5 Robin Milner

Figure 1.6 Tony Hoare

parallel and nondeterministic program behaviour using structural opera-
tional semantics than by means of denotational semantics.

There are many precise mathematical results relating the four approaches.
In this book we give an example of such a result in Chapter 15, where we

10 A question of semantics

Figure 1.7 Joseph Goguen

show that the structural operational semantics and the denotational seman-
tics of the Bims language are equivalent in a very precise sense.

1.4 Applications of program semantics

The area of program semantics has turned out to be extremely useful in
situations where it is important to give a precise description of the behaviour
of a program. Here are some prominent examples.

1.4.1 Standards for implementation

The formal semantics of a programming language is not meant as an al-
ternative to the informal descriptions of programming constructs found in
introductory programming textbooks. A formal semantics serves a very dif-
ferent purpose, namely to act as a yardstick that any implementation must
conform to.

The examples mentioned in Section 1.2 all helped make computer scien-
tists aware of the fact that only a precise semantic definition can provide
an exhaustive and implementation-independent account of all aspects of a
programming language. Such an account is particularly necessary if one is
a ‘superuser’ of the language whose task is to implement an interpreter
or a compiler or, in general, to create a language-dependent programming

1.4 Applications of program semantics 11

environment. A prominent example of a formal semantic definition is the
operational semantics of Standard ML (Milner et al., 1997), due to Robin
Milner, Robert Harper, David MacQueen and Mads Tofte. Later, a lot of
effort went into providing a suitable formal semantics of Java and C#; there
are now denotational as well as operational semantics of Java (Alves-Foss,
1999) and C# (Börger et al., 2005).

1.4.2 Generating interpreters and compilers

A precise definition of the semantics of a programming language will specify
how a program in the language is to be executed. As a consequence, it is a
natural step to construct a compiler/interpreter generator which, when given
a definition of the semantics of some language L, will generate a compiler
(or interpreter) for L.

Such compiler/interpreter generators have existed for many years. The
first such systems were based on denotational semantics (Mosses, 1976; Paul-
son, 1982); later systems have also used variants of structural operational
semantics (Pettersson, 1999; Diehl, 2000; Chalub and Braga, 2007). In gen-
eral, the idea is not to replace standard compiler implementations as such
but to provide a tool for the language developer.

In Appendix B of this book we give a number of small examples that
describe how one can create an interpreter directly from a structural oper-
ational semantics.

1.4.3 Verification and debugging – lessons learned

Many software systems today are safety-critical in the sense that an execu-
tion error may have very unpleasant and wide-ranging consequences. One
would of course like to be able to predict such events to prevent them from
ever occurring.

In the natural sciences the use of mathematical models allows scientists
and engineers to predict many events with great precision. Engineers use
the mathematically based theories from physics to design bridges in such a
way that these do not collapse and meteorologists use mathematical models
of the atmosphere to make weather forecasts.

Similarly, we would like to use mathematically based theories to reason in
a precise manner about the behaviour of programs. Programming language
semantics makes this possible.

The following examples demonstrate what can happen if safety-critical
software is not subjected to analyses of this kind.

12 A question of semantics

Ariane 5

The launch of the Ariane 5 rocket is a notorious example of the consequences
of a software bug.

The Ariane 5 is a booster rocket developed by the European Space Agency
(ESA). It took the ESA 10 years to develop Ariane 5 and the budget was
more than 6 million Euros. The aim was to create a booster rocket capable
of placing a payload of up to 6 tonnes in geostationary orbit (ESA, 2001).

On 4 June 1996 the very first Ariane 5 was launched – see Figure 1.8.
The ESA had high expectations for the new rocket, so it carried a payload
of four expensive satellites.

Figure 1.8 shows the launch but also shows what happened 39 seconds
after lift-off: the rocket exploded, and the entire payload was destroyed.
There was no insurance covering the loss of the four satellites.

The cause of the explosion was a bug in the onboard control software. The
program was meant to keep track of a number of flight data, and among them
was the horizontal velocity of the rocket. For this, some parts of the program
used 16 bits. This part of the software was legacy software that had been
used for the predecessor to the Ariane 5, the Ariane 4. However, the Ariane
5 is a much more powerful rocket capable of reaching a much higher velocity.
For this reason, another part of the control software represented the vertical
velocity as a 64-bit number (Board, 1996).

The consequences of this design flaw are heartbreakingly obvious: when-
ever the program tries to store a 64-bit number as a 16-bit number, a run-
time error will be the result. If the program were run on a desktop computer,

Figure 1.8 The start and end of the maiden voyage of the Ariane 5

1.4 Applications of program semantics 13

the only consequence would be that the run-time environment would report
a run-time error, whereupon the program would terminate abnormally. (A
type system that could distinguish between the two number representations
might have been helpful in preventing this error from ever occurring at run-
time.)

However, this was a piece of software intended for an onboard computer
on a booster rocket. Not surprisingly, the ESA had taken precautions: if
the main computer of the rocket failed, another, identical computer would
take over. Unfortunately, this other computer was running exactly the same
program!

Even worse, the part of the control software that contained the bug was
not even necessary during liftoff. The purpose of this part of the program
was simply to ensure that it would be easy to resume the countdown if
something unexpected happened.

The Mars Climate Orbiter

Another software bug involving a spacecraft could also have been prevented
if the software had been analysed systematically.

The software was used for the Mars Climate Orbiter, an unmanned space
probe that was supposed to go into orbit around Mars and take pictures of
the weather phenomena on the Red Planet. Figure 1.9 shows what NASA
had intended.

The launch itself was a success! The Mars Climate Orbiter reached Mars
in September 1999 and the computer on board would now use the onboard
engine to place the probe in a stable, low-altitude orbit.

Things turned out differently. NASA lost radio contact with the Orbiter
and on 23 September 1999 NASA reported that the probe had gone missing
and that they would stop looking for it.

We had planned to approach the planet at an altitude of about 150 kilometers
(93 miles). We thought we were doing that, but upon review of the last six to
eight hours of data leading up to arrival, we saw indications that the actual ap-
proach altitude had been much lower. It appears that the actual altitude was about
60 kilometers (37 miles). We are still trying to figure out why that happened.
(Jet Propulsion Laboratories, 1999)

In November 1999 NASA found out what had happened (NASA, 1999),
and the explanation was frighteningly simple: some parts of the onboard
software used English miles (part of the Imperial system of units, almost
only used in the United States nowadays) for representing the altitude of
the vessel, while other parts of the software used kilometres (part of the
system of SI units, used in almost every other country in the world today,

14 A question of semantics

Figure 1.9 The Mars Climate Orbiter

including the United Kingdom). A type system that could have represented
this distinction between units of measurement might very well have been
useful here.

Nowadays, NASA devotes a lot of attention to developing ways of finding
and preventing software bugs, and these techniques are based on program-
ming language semantics.

Software verification methods and tools

Fortunately, in both of the above cases, no human lives were lost, but the
consequences were extremely costly. A common moral of the two stories is
that one must perform a systematic and thorough analysis of the behaviour
of safety-critical software if one is to prevent the loss of life and/or expensive
equipment.

Since the early 1990s a lot of attention has been devoted to creating
methods and software tools that can analyse and debug software. These
methods and tools are all based on the theory of programming language
semantics.

Among the best-known such tools are SPIN (Holzmann, 1990), developed
at Bell Labs by members of the team behind Unix, PVS (Owre et al., 1992),
developed at the Stanford Research institute, FDR (Roscoe, 1995), devel-
oped by the company Inmos together with researchers at Oxford University,

1.4 Applications of program semantics 15

and UPPAAL (Bengtsson et al., 1995), developed at the universities in Up-
psala and Aalborg.

1.4.4 The principles of programming languages

An important goal of this book is to show how one may give a systematic
account of the principles of programming languages using structural opera-
tional semantics.

All the programming languages considered in the rest of this book are
simple toy languages meant to illustrate specific aspects. Actual program-
ming languages contain a plethora of aspects, all of which are important;
however, if we were to introduce all these aspects at the same time, the
presentation would become overly complicated and would not be helpful to
the reader.

The study of the theory of programming languages provides a systematic
and, it is hoped, elegant account of the many phenomena found in the realm
of programming languages. For instance, it is through the study of program-
ming language semantics that we are able to see how seemingly unrelated
phenomena such as pointers, reference parameters and references in object-
oriented languages can be described within the same simple framework. This
deeper understanding of underlying principles can help language designers
create better programming languages and better interpreters and compilers
for these.

2

Mathematical preliminaries

This chapter is intended as a short introduction to the mathematical con-
cepts used in the rest of the book. Readers with previous knowledge of set
theory and mathematical induction should also have a look at this chapter
to familiarize themselves with the notation that will be used in the rest of
the book.

2.1 Mathematical induction

In computer science we very often prove theorems by the method of mathe-
matical induction. This simple proof technique is extremely useful when we
want to prove theorems of the form

For every natural number k ≥ c we have that . . .

The underlying idea of mathematical induction is to show that the theorem
holds for the case where k = c and is preserved as we count upwards. The
strategy is then the following.

1. The base case shows that the theorem is true for the least case, i.e. the
one where k = c.

2. The induction step shows that, if we assume that the theorem holds for
an arbitrary k where k ≥ c, then it also holds for k + 1.

Here is a small example of how to use this proof technique.

Theorem 2.1 For every natural number k ≥ 1, the sum S(k) defined by

S(k) = 1 + · · · + k =
k∑

i=1

i

satisfies that S(k) = k(k + 1)/2.

2.2 Logical notation 17

Proof This is a statement of the form ‘for every natural number k’, so we
proceed by induction on k.

Base case – k = 1: We have that
∑k

i=1 i = 1 and that 1(1 + 1)/2 = 1, so
the result holds for the base case.

Induction step – assume for k, show for k + 1: Here we have as our
induction hypothesis that S(k) = k(k + 1)/2. We must now show
that S(k + 1) = (k + 1)(k + 2)/2. The sum S(k + 1) can be written
as

S(k + 1) = 1 + · · · + k + (k + 1) =

S(k)︷ ︸︸ ︷
1 + · · · + k +(k + 1).

Now note that the first k terms of this sum add up to S(k). By virtue
of our induction hypothesis we have that S(k) = k(k + 1)/2, so

S(k + 1) =
k(k + 1)

2
+ (k + 1).

But then, finding a common denominator, we have

S(k + 1) =
k(k + 1)

2
+

2(k + 1)
2

=
(k + 1)(k + 2)

2
,

which is what we were supposed to show.

Sometimes it is convenient to use a variant of mathematical induction
called the strong principle of induction. To prove that a claim

For every natural number k ≥ c we have that . . .

holds for all k, we do the following.

1. In the base case, we prove the claim for k = c.
2. In the step, we assume that the claim holds for all k′ ≤ k and prove the

claim for k + 1.

2.2 Logical notation

In the rest of the book we use standard logical notation, albeit in a fairly
informal way, that is, we do not fix a particular logic within which we must
make our statements.

18 Mathematical preliminaries

2.2.1 Boolean connectives

Sometimes we use the Boolean connectives ∧ (and), ∨ (or) and ¬ (not).
The most important thing to remember is that the logical ‘or’ ∨ requires at
least one of the logical statements that it connects to be true, if the entire
statement is to be true. Thus,

2 + 2 = 4 ∨ 3 + 1 = 4

is true, and so is

2 + 2 = 5 ∨ 2 + 2 = 4,

but

2 + 2 = 5 ∨ 2 + 2 = 3

is not.

2.2.2 Quantifiers

We often use the two quantifiers known from predicate logic.

• The universal quantifier ∀ is used to mean ‘for all’. We can then write for
instance

∀x.2x = x + x,

whose intended meaning is that for all numbers x, 2x is equal to x + x.

• The existential quantifier ∃ is used to mean ‘there exists’. We can use
existential quantifiers to write for instance

∃y.y > 0,

whose intended meaning is that there exists a number y which is strictly
greater than 0.

We can also mix quantifiers, and this allows us to write for instance

∀x.∃y.y + y = x. (2.1)

A moment’s thought 2.2 What is the intended meaning of (2.1)?

2.3 Sets 19

2.3 Sets

A set is an arbitrary collection. One may speak of e.g. the set of all integers,
the set of all computer science students or the set of African countries. The
members of a set are called its elements. In a set every element occurs exactly
once.

A set can be described by listing its elements within curly brackets. If x

is an element of the set A we write x ∈ A. If x is not a member of the set
A, we write x �∈ A.

Example 2.3 {1, 2, 42} is a set whose elements are the integers 1, 2 and
42. {a, b, 47, Sweden} is a set whose elements are the letters a and b, the
integer 47 and the country Sweden. We have that 1 ∈ {1, 2, 42} but also
that 3 �∈ {1, 2, 42}.

Often one defines a set by defining the universe that its elements should
come from and the condition that the elements must satisfy. This is called
set abstraction.

Example 2.4 Let N be the set of natural numbers. The set abstraction
{n ∈ N | ∃i ∈ N.n = i2} denotes the set of perfect squares.

A moment’s thought 2.5 What do we also call the following set?

{n ∈ N | ∀i ∈ N : if n �= i, i > 1 and n > 1 then n/i �∈ N}.

When we use quantifiers, we sometimes restrict our quantification by
quantifying over a set, so we can write e.g.

∀x ∈ N.x + x ≥ x. (2.2)

A moment’s thought 2.6 What is the intended meaning of (2.2)?

In the remainder of this book we shall almost always write sets in bold-
face and starting with an Uppercase letter. Elements of sets will never
be written in boldface and with a few exceptions in lowercase only. Thus
EnvV will denote a set whereas envV is an element of a set.

Sets can be compared. The notation A ⊆ B says that every element of
the set A also belongs to the set B (A is said to be a subset of B). More
formally: A ⊆ B if, for every x, whenever x ∈ A then also x ∈ B.

Two sets A and B are equal if they contain the same elements, that is,
x ∈ A if and only if x ∈ B. Consequently, A = B if and only if A ⊆ B and
A ⊆ B.

20 Mathematical preliminaries

2.4 Operations on sets

There are some common ways of building new sets from old – these are
known as set operations.

2.4.1 Union

Let A and B be arbitrary sets. The set A∪B is defined as the set containing
exactly the elements that are found in either A or B, or both:

A ∪ B = {x | x ∈ A or x ∈ B}.

A ∪ B is called the union of A and B.

Example 2.7 Let A = {1, 2} and B = {2, 3}. Then A ∪ B = {1, 2, 3}.

A moment’s thought 2.8 Let A be a finite set with m elements and B
be a finite set with n elements. How many elements are there at most in the
union A ∪ B ?

2.4.2 Intersection

Let A and B be sets. The set A∩B is defined as the set containing exactly
the elements that are found in both A and B:

A ∩ B = {x | x ∈ A and x ∈ B}.

A ∩ B is called the intersection of A and B.

Example 2.9 Let A = {1, 2} and B = {2, 3}. Then A ∩ B = {2}.

A moment’s thought 2.10 Let A be a finite set with m elements and
B be a finite set with n elements. How many elements are there at most in
the intersection A ∩ B?

2.4.3 Power set

Let A be a set. Then P(A) is the set which is the collection of all subsets of
A:

P(A) = {C | C ⊆ A}.

P(A) is called the power set of A. Sometimes one sees another notation
used for the power set, namely 2A. In this book we shall stick to P(A).

Example 2.11 Let A = {1, 2}. Then P(A) = {∅, {1}, {2}, {1, 2}}.

2.5 Relations 21

A moment’s thought 2.12 Let A be a finite set with m elements. Ex-
actly how many elements will P(A) have?

2.4.4 Cartesian product

Let A and B be sets. Then A×B denotes the set of ordered pairs whose first
coordinate is an element of A and whose second coordinate is an element of
B:

A × B = {(a, b) | a ∈ A, b ∈ B}.

A × B is called the Cartesian product of A and B.

Example 2.13 Let A = {1, 2} and B = {2, 3}. Then

A × B = {(1, 2), (1, 3), (2, 2), (2, 3)}.

One can define Cartesian products of arbitrarily many sets. Let A1, . . . , Ak

be a family of k sets. Then A1 × · · · ×Ak is the set of all k-tuples whose ith
coordinate belongs to Ai:

A1 × · · · × Ak = {(a1, . . . , ak) | ai ∈ Ai for 1 ≤ i ≤ k}.

If the sets used to form the product are the same set, we write

k times︷ ︸︸ ︷
A × · · · × A

as Ak .

A moment’s thought 2.14 Let A be a finite set with m elements and let
B be a finite set with n elements. How many elements are there in A×B?

2.5 Relations

A relation is a set of tuples all taken from the same Cartesian product. Let
A1, . . . , Ak be a family of sets. Then a k-ary relation between A1, . . . , Ak is
any subset of A1 × · · · ×Ak . If k = 2, we call the relation a binary relation.

Some relations are well known and use infix notation, so that we write
e.g. 2 < 3 and not (2, 3) ∈ <.

We now generalize this notation to arbitrary binary relations: if we have
a binary relation R and (a, b) ∈ R we will write aRb instead.

Example 2.15 Let A = {1, 2} and B = {2, 3}. Then R = {(1, 2), (2, 2)}
is a binary relation between A and B. Here 1R2 and 2R2 but it is not the
case that 1R3.

22 Mathematical preliminaries

We are often interested in a special kind of relation. An equivalence relation
is any relation that shares certain properties with equality (=).

Definition 2.16 Let R be a binary relation over the set A, i.e. R ⊆ A×A.
R is said to be an equivalence relation over A if

• R is reflexive, i.e. xRx whenever x ∈ A
• R is symmetric, i.e. xRy implies yRx whenever x, y ∈ A
• R is transitive, i.e. if xRy and yRz then also xRz, whenever x, y, z ∈ A

A moment’s thought 2.17 Let A be the set of people. Let p1 and p2 be
arbitrary persons and say that p1 �� p2 if p1 and p2 have the same parents.
Show that �� is an equivalence relation.

A moment’s thought 2.18 Let A be the set of people. Let p1 and p2 be
arbitrary persons and say that p1 ≡ p2 if p1 and p2 have at least one parent
in common. Is ≡ an equivalence relation?

2.6 Functions

A function f is a special kind of binary relation. Let A and B be sets. Then
a function from A to B is a binary relation between A and B that for every
element a ∈ A assigns a unique element b ∈ B.

If f is a function from A to B we often simply write f : A → B. We
sometimes say that f has type A → B.

If f : A → B, we call A the domain of f and call B the range or codomain
of f . We often write dom(f) and ran(f) to denote the domain and the range
of f , respectively.

If f : A → B and f assigns the element y to the element x, we write
f(x) = y. Here x is called the argument of the function. Sometimes we leave
out the parentheses and simply write fx = y.

We often define a function by giving an assignment of values to arguments.

Example 2.19 The relation t defined by the assignment t(1) = 2, t(2) = 3
and t(7) = 2 is a function having dom(t) = {1, 2, 7} and ran(t) = {2, 3}.

Example 2.20 The relation t defined by the assignment t(1) = 7, t(1) = 8
and t(2) = 7 is not a function, since it does not give us a unique value
for every argument; in particular, two distinct values are assigned to the
argument 1.

A moment’s thought 2.21 Let the relation t be defined by the assign-
ment t(1) = 1, t(2) = 1, t(3) = 1. Is t a function from {1, 2, 3} to {1, 2, 3}?

2.6 Functions 23

2.6.1 Partial and total functions

In program semantics we often consider function-like objects that satisfy
the uniqueness condition for functions but may not assign a value to every
argument.

A partial function from A to B is a binary relation f such that for every
argument a there is at most one value b such that f(a) = b. We again call
A the domain of f and B the range of f . We write that f : A ⇀ B.

Note that the condition given above implies that some arguments may not
yield a value. If a partial function in fact yields a value for every argument
in its domain, we call it a total function.

Example 2.22 Consider the relation given by the assignment f(1) = 2,
f(2) = 3 and f(4) = 2. f is then a partial function from {1, 2, 3, 4} to
{1, 2, 3, 4} since it satisfies the uniqueness condition for values but f(3) is
not defined.

A moment’s thought 2.23 Find a partial function which is not total
and whose domain is the set of real numbers.

A moment’s thought 2.24 Are total functions partial?

2.6.2 Defining functions

One often defines a function f by providing an expression that defines how
f(x) is found, given argument x.

Example 2.25 The function f where dom(f) = N and ran(f) = N defined
by f(x) = x + 1 maps every natural number to its immediate successor.

2.6.3 Function spaces

Let A and B be sets. Then A → B denotes the set of functions from A to
B:

A → B = {f | f : A → B}.

We call this set the function space from A to B. Consequently, we might as
well write f ∈ A → B instead of f : A → B.

Example 2.26 Assume that A = {1, 2} and B = {2, 3}. Then we have

24 Mathematical preliminaries

that A → B = {f1, f2, f3, f4}, where

f1(1) = 2, f1(2) = 2;

f2(1) = 3, f2(2) = 3;

f3(1) = 3, f3(2) = 2;

f4(1) = 2, f4(2) = 3.

A moment’s thought 2.27 Let A = {a, b, c} and B = {x, y, z}. Find
A → B.

A moment’s thought 2.28 Let A be a finite set with m elements and let
B be a finite set with n elements. How many elements are there in A → B?

We can also define partial function spaces – if A and B are sets, then
A ⇀ B denotes the set of partial functions from A to B:

A ⇀ B = {f | f : A ⇀ B}.

A moment’s thought 2.29 As before, let A = {a, b, c} and B = {x, y, z}.
Find A ⇀ B.

PART II

FIRST EXAMPLES

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511840449
https://www.cambridge.org/core

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511840449
https://www.cambridge.org/core

3

The basic principles

In this chapter we encounter our first examples of structural operational se-
mantics, namely big-step and small-step semantics of arithmetic and Boolean
expressions. These examples are on a small scale, but they still manage to
introduce the principles that we shall be using throughout the remainder of
the book.

A structural operational semantics is syntax-directed, and for this reason
we first introduce the notion of abstract syntax. We use abstract syntax in
this chapter to introduce the language Bims, which forms the core of almost
all of the tiny programming languages considered in this book.

The rest of the chapter is devoted to introducing the basics of structural
operational semantics. A central concept is that of a transition system. Tran-
sition systems are defined using transition rules.

The final section of the chapter briefly explores how we may now formulate
and prove properties of a structural operational semantics. We shall return
to this topic in later chapters.

3.1 Abstract syntax

In order to describe the behaviour of programs we must first present an
account of the structure of programs, that is, their syntax. In program se-
mantics we are not interested in syntax analysis – that is part of the theory
of parsing. Instead, we are interested in a notion of abstract syntax that will
allow us to describe the essential structure of a program. In other words,
abstract syntax is not concerned with operator precedence etc.

The abstract syntax of a programming language is defined as follows.

• We assume a collection of syntactic categories.
• For each syntactic category we give a finite set of formation rules that

28 The basic principles

define how the inhabitants of the category can be built. These formation
rules are given as context-free production rules.

3.1.1 The language Bims and its abstract syntax

Most of the rest of this book considers extensions of a tiny language called
Bims.1 Bims uses statements, arithmetic expressions, Boolean expressions,
variables and numerals.

Each of these fundamental entities of Bims is represented by a syntactic
category as given in Table 3.1 . To represent an arbitrary element of a
syntactic category we use metavariables. In Table 3.1 S is the metavariable
for statements, b the metavariable for Boolean expressions etc. We speak of
metavariables to make explicit that e.g. x denotes an arbitrary variable as
opposed to actual variables such as y or z. To avoid confusion, we often use
indices to distinguish occurrences of variables – b1, b2 etc.

We define the structure of the members of a syntactic category by means
of a set of formation rules. These, too, can be found in Table 3.1. The
formation rules are production rules in the style of Backus-Naur Form.

Note that we do not provide formation rules for Num and Var; we shall
assume that elements of Num are numerals written using decimal notation
and that elements of Var are strings of letters from the Latin alphabet.
However, we also need a notation that will let us talk about the entities
that numerals denote, namely numbers. For this reason we shall underline
numerals in the remainder of this chapter. Thus 10 is a numeral written
in decimal notation, whereas 10 is the number ten (corresponding to the
number of toes that many people have).

In the formation rule for Aexp

a ::= n | x | a1+a2 | a1*a2 | a1-a2 | (a1)

we have several right-hand sides. An arithmetic expression a can be e.g. a
numeral n, a variable x or a sum expression a1+a2. In this rule, the right-
hand side n is called a simple element of the syntactic category, whereas the
right-hand side a1+a2 is called a composite element , as it is built from smaller
entities. We call a1 and a2 the immediate constituents of a1+a2. Note that
we use the indices on metavariables in formation rules only in order to be
able to distinguish between distinct occurrences of the same metavariable.

A moment’s thought 3.1 (Important) What are the immediate

1 Basic imperative statements.

3.1 Abstract syntax 29

Syntactic categories

n ∈ Num – Numerals
x ∈ Var – Variables
a ∈ Aexp – Arithmetic expressions
b ∈ Bexp – Boolean expressions
S ∈ Stm – Statements

Formation rules

S ::= x:=a | skip | S1 ;S2 | if b then S1 else S2 |
while b do S

b ::= a1 = a2 | a1 < a2 | ¬b1 | b1 ∧ b2 | (b1)

a ::= n | x | a1+a2 | a1*a2 | a1-a2 | (a1)

Table 3.1 Abstract syntax of Bims

constituents of the following arithmetic expression?

(3+4)*(14+9).

Why are they not 3, 4, 14 and 9?

Note that, since we distinguish between numbers and numerals, we write *
to indicate that this multiplication symbol is a syntactic constructor that can
be used to form a composite arithmetic expression and does not represent
multiplication of numbers.

If a function has a syntactic category as its domain, we use fat brackets
to enclose its argument. For instance, in Chapter 14 we shall introduce a
function S which as its argument takes an arbitrary member of Stm. We
then write S[[while b do S]] to indicate an application of S.

Bims is a very small programming language, but it is well known that all
computable functions can be represented in a language which has only the
features found in Bims (Jacopini and Böhm, 1966). Bims is therefore said
to be Turing-complete.2

2 After the British mathematician Alan Mathison Turing (1912–1954), one of the founders of
computability theory. Turing defined the universal model of computation now known as the
Turing machine.

30 The basic principles

3.1.2 Some useful conventions

We introduce some conventions that make it a little easier to write expres-
sions and statements in Bims.

• In Boolean expressions we shall use the inequality sign �=, so that we can
write a1 �= a2. This should be read as a shorthand for ¬(a1 = a2).

• In arithmetic expressions we assume the normal operator precedences for
∗, + and − such that e.g. x + y ∗ z should be read as x + (y ∗ z).

• In statements we assume that the semicolon operator is left-associative.
So S1; S2; S3 is to be read as S1; (S2; S3), the statement whose immediate
constituents are S1 and S2; S3.

3.2 Transition systems

A structural operational semantics defines a transition system.
A transition system is a particular kind of directed graph. The vertices

of the graph are called configurations. They correspond to snapshots of
the program and its current state. The edges are called transitions. They
correspond to steps of the program. Some configurations have no transitions
leading away from them; a configuration of this kind is called a terminal
configuration.

A transition is a pair (γ, γ′) where (γ, γ′) represents that we can reach the
configuration γ′ from the configuration γ in one step. In other words, the
set of transitions forms a binary relation over the set of configurations and
we therefore speak of the transition relation.

We get the following definition.

Definition 3.2 A transition system is a triple (Γ,→, T) where Γ is a set
of configurations, → is the transition relation, which is a subset of Γ × Γ,
and T ⊆ Γ is a set of terminal configurations.

Example 3.3 Consider the transition system of Figure 3.1 on page 31.
Here the components of the transition system are given by

Γ = {γ1, γ2, γ3, γ4}
→ = {(γ1, γ2), (γ1, γ4), (γ2, γ3)}
T = {γ3, γ4}

It is sometimes possible to define a transition system as a picture similar
to that of Figure 3.1. However, this is only feasible for transition systems
with finitely many configurations. In a typical semantic description of a

3.4 Operational semantics of arithmetic expressions 31

γ1

�

�

�

γ2

γ3γ4

Figure 3.1 A very small transition system

programming language there will be a configuration for every possible inter-
mediate state of every possible program and a transition for every possible
program step. In the following section we shall therefore introduce a system-
atic approach to defining transition systems that describe the behaviour of
programming language constructs. This approach makes use of the structure
of constructs in the language and therefore gives rise to the name structural
operational semantics.

3.3 Big-step vs. small-step semantics

There are two kinds of operational semantics, which describe computations
in different ways. In a big-step semantics a single transition γ → γ′ describes
the entire computation that starts in configuration γ, and γ′ is always a
terminal configuration. In a small-step semantics a single transition γ → γ′

describes a single step of a larger computation, and γ′ need not be a terminal
configuration.

In this book we shall consider both kinds of semantics, since both have
their justifications and advantages. In some cases, a big-step semantics has
the advantage of being easier to formulate. In other cases, notably in the
case of languages that involve notions of parallelism, a small-step semantics
is the most natural option.

3.4 Operational semantics of arithmetic expressions

Our first examples of structural operational semantics deal with arithmetic
expressions, that is, the syntactic category Aexp.

32 The basic principles

In this chapter we make the simplifying assumption that arithmetic ex-
pressions do not contain variables, that is, that they can be built using the
formation rules

a ::= n | a1+a2 | a1*a2 | a1-a2 | (a1)

In the next chapter we show how to incorporate variables.

3.4.1 A big-step semantics of Aexp

Our first structural operational semantics will be a big-step semantics. In our
transition system every transition will correspond to the entire evaluation
of an arithmetic expression.

Transitions are therefore of the form a → v, where a ∈ Aexp and v ∈ Z.
Here is a first example. Consider the expression (2+3)*(4+9). To evaluate

this expression, we must first evaluate the immediate constituents (2+3) and
(4+9) and then multiply these intermediate results.

Since we think of a → v as ‘expression a evaluates to the value v’, we can
write

If a1 → v1 and a2 → v2 then a1+a2 → v where v = v1 + v2.

We usually write this in the following way:

a1 → v1 a2 → v2

a1+a2 → v
where v = v1 + v2. (3.1)

The rule (3.1) is our first example of a transition rule. The claim a1+a2 →
v is called the conclusion of the rule, and the claims a1 → v1 and a2 → v2

are called the premises of the rule. The condition that v = v1 + v2 is called
a side condition.

We can now formulate similar transition rules for multiplication expres-
sions, for bracketed expressions and for numerals.

The rules are found in Table 3.2.
In the rule [numbss] for numerals, we assume the existence of a semantic

function N : Num → Z that for every numeral gives us the number that is
its value, so e.g. N [[3]] = 3 and N [[−42]] = −42. Notice that the rule has no
premise. A rule of this kind is called an axiom.

Together, these rules provide us with a definition of the possible transi-
tions, and the collection of rules therefore defines the transition relation →:
it is the case that a evaluates to the value v exactly in the case where it is

3.4 Operational semantics of arithmetic expressions 33

[plusbss]
a1 → v1 a2 → v2

a1+a2 → v
where v = v1 + v2

[minusbss]
a1 → v1 a2 → v2

a1-a2 → v
where v = v1 − v2

[multbss]
a1 → v1 a2 → v2

a1*a2 → v
where v = v1 · v2

[parentbss]
a1 → v1

(a1) → v1

[numbss] n → v if N [[n]] = v

Table 3.2 Big-step transition rules for Aexp

possible to prove the claim a → v by starting from the axioms and using
the transition rules until we reach the conclusion a → v.

Defining a structural operational semantics

We now have a big-step semantics of Aexp given by the transition system
(Γ,→, T) where the set of configurations Γ = Aexp∪Z, where the transition
relation → is defined by the rules of Table 3.2 and the set of terminal
configurations is T = Z.

This is our first example of a structural operational semantics, and all the
examples that we give later on will follow the same pattern. A structural
operational semantics assumes that we have given an abstract syntax and
then defines a transition system (Γ,→, T) as follows.

• First, determine the format that transitions are supposed to have. All
transitions in our transition system must adhere to this format.

• Next, we define the set Γ of configurations and define the subset T ⊆ Γ
of terminal configurations.

• Finally, we define the transition relation → by a set of transition rules. A
transition exists if and only if it can be proved from the axioms using the
transition rules.

Note that our transition rules in Table 3.2 are syntax-directed in the sense
that for every formation rule in our syntactic category we have a number of
transition rules for it. We always make this requirement.

34 The basic principles

How to build a derivation tree

We can use the rules of Table 3.2 to conclude that there is a transition
(2+3)*(4+9) → 65. We do this by using the transition rules to prove its
existence. First, we know by the rule [numbss] that 2 → 2 and that 3 → 3.
From the rule [plusbss] we therefore conclude that 2+3 → 5. By the rule
[parentbss] we have that (2+3) → 5. Similarly we know from the rule
[numbss] that 4 → 4 and that 9 → 9 and thence, using the rule [plusbss],
we get the transition 4+9 → 13. Then, by applying [parentbss] this gives
us that (4+9) → 13. Finally, by using [multbss] we obtain the desired
transition (2+3)*(4+9) → 65.

The above proof of the existence of a transition is normally presented in
the form of a derivation tree such as that of Figure 3.2.

Definition 3.4 (Derivation tree) Assume given a finite set R of transition
rules and let A ⊆ R be the set of axioms. A derivation tree is a finite
node-labelled tree whose nodes are labelled by transitions as follows.

1. All leaves are labelled by members of A

2. A node labelled by C has descendants labelled P1, . . . , Pn if there exists
a transition rule in R of the form

P1, . . . , Pn

C
.

Derivation trees are normally constructed using a top-down procedure
starting from the root, since one is usually interested in determining the
result of a transition – in this case, the result of evaluating an arithmetic
expression.

As an example, assume that we want to find the result of evaluating
(2+3)*(4+9). This is the same as asking whether there is a transition
(2+3)*(4+9) → v for some value v. This in turn is equivalent to asking
whether there is a derivation tree whose root is labelled (2+3)*(4+9) → v.

Can such a tree exist? If it exists, we must have used the rule [multbss]
at the end of the construction to conclude

(2+3) → v1 (4+9) → v2

(2+3)*(4+9) → v
where v = v1 · v2

for some v1 and some v2. We must now find v1 and v2 and therefore need to
construct derivation trees for (2+3) → v1 and (4+9) → v2, where v = v1 ·v2.

If there is a tree whose root is labelled (2+3) → v1, as a final step of its
construction we must have used the rule [parentbss] with premise 2+3 → v1

such that

3.4 Operational semantics of arithmetic expressions 35

.

(2+3)*(4+9) → 65

(2+3) → 5 (4+9) → 13

2+3 → 5 4+9 → 13

2 → 2 3 → 3 4 → 4 9 → 9

Figure 3.2 Derivation tree for a big-step transition for (2+3)*(4+9) → 65

2+3 → v1

(2+3) → v1
.

How can we then find a transition 2+3 → v1? This can be concluded only
by using [plusbss]:

2 → v11 3 → v12

2+3 → v1
where v1 = v11+v12.

But from [numbss] we immediately get that 2 → 2 and also that 3 → 3, so
v11 = 2 and v12 = 3.

All we need to do now is to construct a derivation tree for (4+9) → v2,
and this construction is completely similar. The final derivation tree is found
in Figure 3.2.

To summarize, the underlying idea of the construction of a derivation tree
is to apply the following recursive strategy.

1. Find a transition rule whose syntactic construct in the conclusion matches
that of the transition and whose side conditions are true.

2. Construct derivation trees for all premises of the rule, if any such premises
exist. If no premises exist (that is, we are looking at an axiom), terminate
this branch.

3. If more than one transition rule can match the transition, then try the
recursive procedure for all such rules until one succeeds.

Notice that it becomes very important that the rules are structural. In
particular, we would like the rules to be compositional . A rule is composi-
tional if the premises of the rule make use only of syntactic entities that are
immediate constituents of the syntactic construct found in the conclusion.

36 The basic principles

Example 3.5 The rule

a2+a1 → v

a1+a2 → v

is not compositional and it would be of no use whatsoever if we tried to
apply it.

A moment’s thought 3.6 Why would the above rule be useless?

Problem 3.7 Consider the big-step semantics of Aexp. Is there a transi-
tion (4+3)*8 → v? If there is, find it by recursively constructing a derivation
tree and determine v in this way.

Problem 3.8 Is there a transition (3+12)*(4*(5*8)) → v? If there is,
find it by recursively constructing a derivation tree and determine v in this
way.

A moment’s thought 3.9 We do not want transitions such as 7 → 7.
What have we done to ensure that such transitions are ruled out?

3.4.2 A small-step semantics of Aexp

There is another way of defining a structural operational semantics of arith-
metic expressions. In this approach a transition represents a single step of
the computation. The resulting semantics is therefore called a small-step
semantics.

Transitions are now either of the form a ⇒ v or of the form a ⇒ a′, where
a ⇒ a′ should be understood as ‘in one step, a evaluates to the intermediate
result a′’. a′ is here called an intermediate configuration, and v again denotes
a terminal configuration.

The presentation becomes a little easier if we can let values appear directly
in our intermediate results. We do this by extending the formation rules for
Aexp such that values become elements of Aexp:

a ::= n | a1+a2 | a1*a2 | a1-a2 | (a1) | v.

Our small-step semantics defines the transition system where Γ = Aexp∪
Z, where ⇒ is defined by the rules in Table 3.3 and where T = Z.

The difference from the big-step semantics can be illustrated by an exam-
ple. For instance we now have the transition

(3+12)*(4*(5*8)) ⇒ (3+12)*(4*(5*8)) (3.2)

3.4 Operational semantics of arithmetic expressions 37

[plus-1sss]
a1 ⇒ a′

1

a1+a2 ⇒ a′
1+a2

[plus-2sss]
a2 ⇒ a′

2

a1+a2 ⇒ a1+a′
2

[plus-3sss] v1+v2 ⇒ v where v = v1 + v2

[mult-1sss]
a1 ⇒ a′

1

a1*a2 ⇒ a′
1*a2

[mult-2sss]
a2 ⇒ a′

2

a1*a2 ⇒ a1*a′
2

[mult-3sss] v1*v2 ⇒ v where v = v1 · v2

[sub-1sss]
a1 ⇒ a′

1

a1-a2 ⇒ a′
1-a2

[sub-2sss]
a2 ⇒ a′

2

a1-a2 ⇒ a1-a′
2

[sub-3sss] v1-v2 ⇒ v where v = v1 − v2

[parent-1sss]
a1 ⇒ a′

1

(a1) ⇒ (a′
1)

[parent-2sss] (v) ⇒ v

[numsss] n ⇒ v if N [[n]] = v

Table 3.3 Small-step transition rules for Aexp

and a following transition

(3+12)*(4*(5*8)) ⇒ (3+12)*(4*(5*8)) (3.3)

and the transition

(3+12)*(4*(5*8)) ⇒ (15)*(4*(5*8)). (3.4)

Problem 3.10 Build derivation trees for the transitions (3.2), (3.3) and
(3.4).

All in all, this gives us the transition sequence

(3+12)*(4*(5*8)) ⇒ (3+12)*(4*(5*8))

⇒ (3+12)*(4*(5*8))

⇒ (15)*(4*(5*8)).

38 The basic principles

If one is not interested in all the intermediate configurations, one writes

(3+12)*(4*(5*8)) ⇒3 (15)*(4*(5*8))

where ⇒3 should be read as ‘evaluates in 3 steps to’. We now make this
precise by defining the relation γ ⇒k γ′ inductively on k.

If k = 0, nothing much can happen, so γ = γ′. If k = n + 1, γ ⇒n+1 γ′

implies that we in one step reach a new configuration γ′′ and from there in
n transition steps reach γ′. This leads to the following formal definition.

Definition 3.11 Let (Γ,⇒, T) be a transition system. The k-step transi-
tion closure ⇒k is defined inductively by

γ ⇒0 γ for all γ

γ ⇒k+1 γ′ if for some γ′′ : γ ⇒ γ′′ and γ′′ ⇒k γ′.

We write γ ⇒∗ γ′ if for some k we have that γ ⇒k γ′.

Problem 3.12 Find a v such that (2+3)*(4+9) ⇒∗ v. Remember to
construct the derivation trees for the individual transitions.

3.5 Proving properties

Because our approach is structural, we can use proof techniques based on
mathematical induction to prove properties of a structural operational se-
mantics.

3.5.1 Determinacy

We would like our big-step semantics of Table 3.2 to be deterministic, that
is,

if a → v1 and a → v2 then v1 = v2, (3.5)

for then we would know that evaluation of an arithmetic expression would
always produce a unique value.

To prove this, we must show that the claim (3.5) holds for all transitions.
Since a transition exists if and only if it is the root of some derivation tree,
our claim can be shown if we can show that the property (3.5) holds for all
roots of derivation trees. Since derivation trees are built using the transition
rules, this in turn is equivalent to showing that the property holds for all
axioms and is preserved by all other transition rules.

This is in fact just normal mathematical induction on the natural number
h, where h is the height of the derivation tree of a transition. The base case

3.6 A semantics of Boolean expressions 39

h = 0 corresponds to the case where a transition is concluded directly from
an axiom, and the inductive step corresponds to the case where a transition
was concluded by a rule with a premise.

The proof technique hinted at here is therefore called transition induction.
We shall return to it in Chapter 5.

Theorem 3.13 The big-step semantics of Table 3.2 is deterministic.

We would also like our small-step semantics of Table 3.3 to be determin-
istic. That is, we want it to be the case that if a ⇒ a1 and a ⇒ a2 then
a1 = a2. However, this is not the case. Consider for example the transitions
2+3 ⇒ 2+3 and 2+3 ⇒ 2+3.

Problem 3.14 Suggest an alternative small-step semantics for Aexp that
is deterministic.

On the other hand, we can show that our small-step semantics is ‘eventu-
ally deterministic’ in the sense that the eventual value found by an evaluation
is unique:

Theorem 3.15 For the transition system (Aexp ∪ Z,⇒, Z) where ⇒ is
defined by the rules in Table 3.3 we have for all a ∈ Aexp that if a ⇒∗ v1

and a ⇒∗ v2 then v1 = v2.

The above theorem tells us that a property holds for all transition se-
quences. One can prove properties of this kind by induction in the length of
transition sequences. This is therefore also an application of normal mathe-
matical induction and is another proof technique that we return to later.

3.6 A semantics of Boolean expressions

Let us complete the picture by presenting an operational semantics of Bexp.
Boolean expressions evaluate to a truth value, that is, either tt or ff .

We consider a big-step semantics given by the transition system
(Bexp ∪ {tt, ff},→b, {tt, ff}), where →b is defined by the rules in Table 3.4.

When we evaluate a Boolean expression, we will need to evaluate the
arithmetic expressions that may occur in it. Consequently, the semantics
of Bexp refers to the semantics of Aexp; many of the rules refer to the
evaluation of arithmetic expressions. To be able to tell transition relations
apart, we let →a denote the transition relation for Aexp defined in Table
3.2.

40 The basic principles

[equals-1bss]
a1 →a v1 a2 →a v2

a1 = a2 →b tt
if v1 = v2

[equals-2bss]
a1 →a v1 a2 →a v2

a1 = a2 →b ff
if v1 �= v2

[greaterthan-1bss]
a1 →a v1 a2 →a v2

a1 < a2 →b tt
if v1 < v2

[greaterthan-2bss]
a1 →a v1 a2 →a v2

a1 < a2 →b ff
if v1 �< v2

[not-1bss]
b →b tt

¬b →b ff

[not-2bss]
b →b ff

¬b →b tt

[parenth-bbss]
b1 →b v

(b1) →b v

[and-1bss]
b1 →b tt b2 →b tt

b1 ∧ b2 →b tt

[and-2bss]
bi →b ff

b1 ∧ b2 →b ff
i ∈ {1, 2}

Table 3.4 Big-step transition rules for Bexp

The rules reflect our intuitive understanding. For instance, rules [not-1bss]
and [not-2bss] tell us that if b evaluates to tt, then ¬b must evaluate to ff

– and conversely. The rules [and-1bss] and [and-2bss] tell us that b1 ∧ b2

evaluates to tt exactly when both b1 and b2 evaluate to tt.

Problem 3.16 Suggest a small-step semantics of Bexp.

3.7 The elements of an operational semantics

In this chapter we have seen the first examples of structural operational
semantics. They include a big-step semantics and a small-step semantics for
arithmetic expressions.

An operational semantics describes computations in the form of a tran-
sition system. The transition relation → is normally defined by a set of

3.7 The elements of an operational semantics 41

⇒

...
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
............... ...

...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...............

γ′⇒⇒γ1 γ2γ

...
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...............

(a) Small-step transition sequence

..
...........

...........
...........

...........
...........

...........
...........

...........
...........

...........
...........

...........
...........

...........
...........

...........
...........

...........
...........

...........
...........

...........
...........

...........
...........

...........
...........

...........
...........

...........
...........

...........
...........

...........
...........

...........
..

γ γ′−→
(b) Big-step transition

Figure 3.3 Comparison between the derivation trees for the individual steps
of a small-step transition sequence and that of a big-step transition

transition rules. A transition γ → γ′ exists exactly when it is possible to
find it from the transition rules by constructing a derivation tree.

The difference between a big-step semantics and a small-step semantics
lies in the amount of information contained in a single transition. In a big-
step semantics a single transition describes the entire computation leading
from start configuration γ to terminal configuration γ′. In a small-step se-
mantics, we capture the computation leading from start configuration γ to
terminal configuration γ′ by a transition sequence.

In both cases, we prove the existence of a single transition by construction
a derivation tree for it.

Figure 3.3 shows the difference.
In the chapter that follows, we shall see an operational semantics of state-

ments in Bims – or rather, there will be both a big-step and a small-step
semantics, and as it turns out, they are equivalent in a very precise sense.

To summarize, a structural operational semantics consists of the following.

• A definition of the abstract syntax of the languages with

42 The basic principles

– a listing of the syntactic categories used in the language
– for each syntactic category, a set of formation rules.

• Definitions of additional sets and auxiliary functions, if needed.
• Definitions of all transition systems. For each transition system (Γ,→, T)

there must be

– a definition of the set of configurations Γ and the set of terminal con-
figurations T

– a set of syntax-directed transition rules defining the transition relation
→.

Appendix A contains a complete definition of the language Bip, which is
an extension of Bims with blocks and procedures.

In the rest of the book, beginning with the treatment of extensions of
Bims in Chapter 5, we often extend the syntax of Bims in a very simple
way that does not influence the constructs known already. In these cases we
often describe only the new features.

4

Basic imperative statements

In this chapter we present a big-step semantics and a small-step semantics
of statements in Bims. In the big-step semantics, a transition represents
the execution of an entire statement, while in the small-step semantics a
transition will represent a single execution step.

Statements may modify the values of program variables, and for this rea-
son we introduce a simple model of program states.

After the presentation of the two operational semantics we explore their
properties. In particular, we formulate two results which together show that
the semantics agree in the expected way – namely that the state change
represented by a big-step transition corresponds to the state change of a
corresponding transition sequence in the small-step semantics. The proof
techniques that we shall use to prove this correspondence result are forms
of mathematical induction.

4.1 Program states

In our abstract syntax of Bims the formation rules for Aexp tell us that
arithmetic expressions may contain variables:

a ::= n | x | a1+a2 | a1*a2 | a1-a2 | (a1);

and the formation rules for Stm tell us that statements may modify vari-
ables:

S ::= x := a | skip | S1; S2 | if b then S1 else S2 |
while b do S.

Consequently, we need to be able to describe how variables are bound to
values. We do this by introducing the notion of a state which records the
values of the variables that occur.

44 Basic imperative statements

Definition 4.1 (State) A state is a partial function1 s : Var ⇀ Z.

In other words, a state tells us the values of variables, so if sx = v this
means that variable x has value v. (Recall that sx is the application of
function s to the argument x.)

In Chapter 6 we shall introduce a more advanced notion of program state
that will allow us to describe concepts such as references and procedures.
For now, we view variables as bound directly to their values.

A moment’s thought 4.2 Why should we think of states as partial and
not total functions?

Definition 4.3 The set of states is called States and is defined by

States = Var ⇀ Z.

We often represent a state by listing its contents. Consider for instance
the state s ∈ States given by sx = 2, sy = 5 and sz = 9. This state can be
represented by the list

[x �→ 2,y �→ 5, z �→ 9].

Definition 4.4 (Update of state) Let s be a state. The updated state
s[x �→ v] (‘s where x is now bound to v ’) is the state s′ given by

s′y =
{

sy if y �= x

v if y = x.
(4.1)

We are going return to this update notation in other, similar settings in
the chapters that follow.

4.1.1 A new big-step operational semantics of Aexp

Now that we have introduced a notion of state we can present a big-step
semantics of all of Aexp. This semantics is given by the transition system
(Aexp ∪ Z,→a, Z). Here transitions are of the form

s � a →a v

and should be read as ‘in state s the expression a evaluates to the value v’.
Table 4.1 contains the new transition rules defining →a. The key axiom is
[varbss], since this is where we look up the value of a variable, and for this
we need the state.
1 See Section 2.6 for the definition of a partial function.

4.2 A big-step semantics of statements 45

[plusbss]
s � a1 →a v1 s � a2 →a v2

s � a1+a2 →a v
where v = v1 + v2

[minusbss]
s � a1 →a v1 s � a2 →a v2

s � a1-a2 →a v
where v = v1 − v2

[multbss]
s � a1 →a v1 s � a2 →a v2

s � a1*a2 →a v
where v = v1 · v2

[parentbss]
s � a1 →a v1

s � (a1) →a v1

[numbss] s � n →a v if N [[n]] = v

[varbss] s � x →a v if sx = v

Table 4.1 Big-step transition rules for Aexp

4.1.2 A new big-step operational semantics of Bexp

Similarly, we can now give a big-step semantics of all of Bexp, that is,
including Boolean expressions that contain variables.

Here we define the transition system (Bexp ∪ {tt, ff},→b, {tt, ff}) where
transitions are of the form s � b →b v, where v is tt or ff . The transition
relation →b is defined by the rules in Table 4.2.

4.2 A big-step semantics of statements

We can now present a big-step semantics of statements in Bims.

4.2.1 The transition system for Stm

Since a statement can now change the value of a variable, a transition must
represent a potential state change. The transitions of the big-step semantics
therefore have the form

〈S, s〉 → s′

and must be interpreted as follows: if we execute statement S in state s we
get the final state s′. Configurations are therefore either initial configurations
〈S, s〉 where S ∈ Stm, s ∈ States or terminal configurations s where s ∈
States.

46 Basic imperative statements

[equal-1bss]
s � a1 →a v1 s � a2 →a v2

s � a1 = a2 →b tt
if v1 = v2

[equal-2bss]
s � a1 →a v1 s � a2 →a v2

s � a1 = a2 →b ff
if v1 �= v2

[greatherthan-1bss]
s � a1 →a v1 s � a2 →a v2

s � a1 < a2 →b tt
if v1 < v2

[greaterthan-2bss]
s � a1 →a v1 s � a2 →a v2

s � a1 < a2 →b ff
if v1 �< v2

[not-1bss]
s � b →b tt

s � ¬b →b ff

[not-2bss]
s � b →b ff

s � ¬b →b tt

[parent-bbss]
s � b1 →b v

s � (b1) →b v

[and-1bss]
s � b1 →b tt s � b2 →b tt

s � b1 ∧ b2 →b tt

[and-2bss]
s � bi →b ff

s � b1 ∧ b2 →b ff
i ∈ {1, 2}

Table 4.2 Big-step transition rules for Bexp

To summarize, our transition system is (Γ,→, T) where

Γ = (Stm × States) ∪ States,

T = States

and → is defined by the rules in Table 4.3.
It is now time for an informal explanation of each of the transition rules.
The axiom [assbss] tells us that in the start state s the assignment state-

ment x := a will result in a new, modified state s[x �→ v] where v is the
result of evaluating a in state s.

[skipbss], too, is an axiom. This axiom tells us that the skip statement
cannnot modify the state.

Strictly speaking the rule [assbss] is what logicians call an axiom schema,
that is, a collection of axiom instances of the same form. For [assbss] de-

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511840449.005
https://www.cambridge.org/core

4.2 A big-step semantics of statements 47

[assbss] 〈x := a, s〉 → s[x �→ v] where s � a →a v

[skipbss] 〈skip, s〉 → s

[compbss]
〈S1 , s〉 → s′′ 〈S2 , s

′′〉 → s′

〈S1 ;S2 , s〉 → s′

[if-truebss]
〈S1 , s〉 → s′

〈if b then S1 else S2 , s〉 → s′
if s � b →b tt

[if-falsebss]
〈S2 , s〉 → s′

〈if b then S1 else S2 , s〉 → s′
if s � b →b ff

[while-truebss]
〈S, s〉 → s′′ 〈while b do S, s′′〉 → s′

〈while b do S, s〉 → s′
if s � b →b tt

[while-falsebss] 〈while b do S, s〉 → s if s � b →b ff

Table 4.3 Big-step transition rules for Stm

scribes that for every assignment statement a certain state change will occur.
For instance we have from [assbss] that 〈x := 7, s〉 → s[x → 7]. In fact, all
the axioms and transition rules that we shall consider are schemata in this
sense.

The rule [compbss] describes the effect of the sequential composition of
S1 and S2 when executed in start state s. First we execute S1 in start state
s. This results in a new state s′′, which is the start state when control is
passed on to the statement S2. The result of executing S2 in state s′′ gives
us the state s′, which is the result of the entire composite statement.

The rule [if-falsebss] expresses the following: in state s we must eval-
uate the Boolean condition b. If b evaluates to ff , the effect of evaluating
if b then S1 else S2 is the effect of executing S2 in state s. Similarly, the
rule [if-truebss] expresses that we must evaluate the Boolean condition
b in state s and that the effect of executing the statement is then that of
executing S1 in start state s.

Likewise, there are two rules describing the effect of a while-statement.
The rule [while-falsebss] expresses that if the condition b evaluates to ff

in state s, then while b do S gives us the final state s – we never enter the
loop.

48 Basic imperative statements

All rules found in Table 4.3 are structural, since they are syntax-directed.
Moreover, every rule that we have described so far is compositional in the
sense of page 35, that is, the transitions in the premise make use only of the
immediate constituents of the piece of syntax mentioned in the conclusion.
In other words, with rules of this kind, we can find the state change of a
composite statement by finding the state changes made by the immediate
constituents of the statement.

However, the rule [while-truebss] fails to be compositional. This is due
to the fact that the premise has an occurrence of while b do S. The reason
for this is that our semantic description of the execution of a while-loop is
recursive by nature – we execute the loop by first evaluating the condition.
If b evaluates to true, we execute the loop body and then re-enter the loop.

4.2.2 On building derivation trees

The big-step transition rules describe the intended behaviour of an arbitrary
Bims statement, and in fact the derivation tree of a transition 〈S, s〉 → s′

contains all information concerning the execution of the statement S in start
state s.

A large example

We shall now go through a large example which is meant to illustrate the
construction of a derivation tree for a transition. As always, it is a good idea
to have pencil and paper ready when reading the text.

We consider the statement

S = i:=6; while i �= 0 do (x:= x + i;i := i-2)

and let s be the state given by sx = 5. Is there a transition 〈S, s〉 → s′? If
so, what is s′? By constructing a derivation tree we can find s′. Along the
way we discover all the intermediate states of the computation, as we shall
now see.

We have defined the transition relation → as exactly those transitions that
can be concluded from the transition rules by starting from the axioms. So
if there is a transition 〈S, s〉 → s′, this by definition tells us that there must
be a derivation tree whose root is labelled by the transition

〈i:=6; while i �= 0 do (x:= x + i;i := i-2), s〉 → s′.

We shall now construct this derivation using the top-down recursive strategy
outlined previously.

Since our transition rules are syntax-directed, the root transition must

4.2 A big-step semantics of statements 49

have been concluded using the rule [compbss], because the statement S is
a sequential composition.

〈i:=6, s〉 → s′′ 〈while i �= 0 do (x:= x + i;i := i-2), s′′〉 → s′

〈i :=6; while i �= 0 do (x:= x + i;i := i-2), s〉 → s′
,

where s′′ is a new intermediate state to be found. How can we have arrived
at the following transitions?

〈i:=6, s〉 → s′′, (4.2)

〈while i �= 0 do (x:= x + i;i := i-2), s′′〉 → s′. (4.3)

Again by definition there must be two derivation trees whose roots are la-
belled by these transitions.

From the big-step semantics for Aexp we see that there is a transition
s � 6 →a 6, and the axiom [assbss] therefore tells us that

〈i :=6, s〉 → s[i �→ 6].

So s′′ = s[i �→ 6]. We are now a little closer to finding the state s′. Since
our transition rules are syntax-directed, (4.3) must have been concluded
using either [while-truebss] or [while-falsebss]. So here we must ex-
amine the side conditions of the two rules. From the big-step semantics of
Bexp we see that s′′ � i �= 0 →b tt and therefore the rule must have been
[while-truebss]:

〈x:= x + i; i := i-2, s′′〉 → s(3)

〈while i �= 0 do (x:= x + i; i := i-2), s(3)〉 → s′

〈while i �= 0 do (x:= x + i;i := i-2), s′′〉 → s′
,

where s(3) is another intermediate state to be found. We have now reduced
our problem to that of finding derivation trees for the transitions

〈x:= x + i; i := i-2, s′′〉 → s(3) (4.4)

and

〈while i �= 0 do (x:= x + i; i := i-2), s(3)〉 → s′. (4.5)

The transition (4.4) must have been concluded using [compbss]:

〈x:= x + i, s′′〉 → s(4) 〈i := i-2, s(4)〉 → s(3)

〈x:= x + i; i := i-2, s′′〉 → s(3) ,

where s(4) is yet another intermediate state to be found. But the big-step

50 Basic imperative statements

semantics for Aexp allows us to find the right-hand side of the first assign-
ment statement – we get that s′′ � x + i →a 11 (check that this is indeed
the case!). So using the axiom [assbss] we then get that

〈x:= x + i, s′′〉 → s′′[x �→ 11]

and from this we now see that s(4) = s′′[x �→ 11] = s[i �→ 6, x �→ 11]. Using
our new knowledge of s(4), we get from [assbss] and the big-step semantics
of Aexp, which tells us that s(4) � i-2 →a 4, that

〈i := i-2, s(4)〉 → s(4)[i �→ 4]

and consequently that s(3) = s(4)[i �→ 4] = s[i �→ 4, x �→ 11].
We now look at the transition (4.5); this transition must have been con-

cluded using [while-truebss] or [while-falsebss]. Here the big-step se-
mantics of Bexp tells us that s(3) � i �= 0 →b tt and therefore we know that
we must have applied [while-truebss]:

〈x:= x + i; i := i-2, s(3)〉 → s(5)

〈while i �= 0 do (x:= x + i; i := i-2), s(5)〉 → s′

〈while i �= 0 do (x:= x + i;i := i-2), s(3)〉 → s′
.

So now we must determine how the transitions

〈x:= x + i; i := i-2, s(3)〉 → s(5) (4.6)

and

〈while i �= 0 do (x := x + i; i:= i-2), s(5)〉 → s′, (4.7)

were concluded. First, we consider (4.6). This transition must have been
concluded using [compbss]:

〈x:= x + i, s(3)〉 → s(6) 〈i := i-2, s(6)〉 → s(5)

〈x:= x + i; i := i-2, s(3)〉 → s(5) ,

where s(6) is a new intermediate state to be found. The two premises must
both have been concluded using [assbss] and the big-step semantics of
Aexp, so we first get that

〈x:= x + i, s(3)〉 → s(3)[x �→ 15],

from which we see that s(6) = s(3)[x �→ 15] and next discover that

〈i := i-2, s(6)〉 → s(6)[i �→ 2].

We get s(5) = s(6)[i �→ 2] = s(3)[x �→ 15, i �→ 2] = s[x �→ 15, i �→ 2]. Here we
used our knowledge of s(3).

4.2 A big-step semantics of statements 51

Next, we consider (4.7). This transition must have been concluded using
[while-truebss] or [while-falsebss]. Here the big-step semantics of Bexp
tells us that s(5) � i �= 0 →b tt, so again we must be dealing with an
application of [while-truebss]:

〈x:= x + i; i := i-2, s(5)〉 → s(7)

〈while i �= 0 do (x:= x + i; i := i-2), s(7)〉 → s′

〈while i �= 0 do (x:= x + i;i := i-2), s(5)〉 → s′
.

This time we have to find derivation trees for the transitions

〈x:= x + i; i := i-2, s(5)〉 → s(7) (4.8)

and

〈while i �= 0 do (x:= x + i; i := i-2), s(7)〉 → s′. (4.9)

As before, we first consider (4.8). In this case, too, we are looking at a
transition that must have been concluded using [compbss]. Here we have
that

〈x:= x+i, s(5)〉 → s(8) 〈i:= i-2, s(8)〉 → s(7)

〈x:= x+i; i:= i-2, s(5)〉 → s(7) ,

where s(8) is an intermediate state. From [assbss] and the big-step semantics
of Aexp, which tells us that s(5) � x+i →a 17, we see that

〈x:= x+i, s(5)〉 → s(5)[x �→ 17]

and from this, since we can now conclude that s(8) � i-2 →a 0, we see that

〈i:= i-2, s(8)〉 → s(8)[i �→ 0]

and hence s(7) = s(5)[x �→ 17, i �→ 0]. Now consider the transition (4.9). Since
here s(7) � i �= 0 →b ff , the transition (4.9) must have been concluded using
[while-falsebss]. This lets us conclude that

〈while i �= 0 do (x:= x + i; i := i-2), s(7)〉 → s(7).

In other words, s′ = s(7) and therefore s′ = s(5)[x �→ 17, i �→ 0] = s[x �→
17, i �→ 0]. This concludes the construction of the derivation tree and we
thus have the transition

〈S, s〉 → s[x �→ 17, i �→ 0].

Problem 4.5 (Important!) Draw the derivation tree that we have just
constructed. Where do the states appear?

52 Basic imperative statements

The example just given illustrates some important points.
First, note that the construction of a derivation tree can be done using

a straightforward algorithm – we inspect the structure of S and then con-
sider all the rules whose conclusion contains a statement having the same
structure as S. The choice between the rules is made by checking the side
condition. To do this, we need to evaluate the side conditions of each can-
didate rule.

Next, note that in the construction of the derivation tree for 〈S, s〉 → s′

we do not know s′ initially. However, eventually we discover what s′ is. In
some cases, as for instance in the above example, we introduce transitions
with intermediate states that we then need to find. This is then done by
finding the derivation trees for the new goals. This, in turn, will introduce
more intermediate states,

The construction of a derivation tree is easily implemented, and the re-
sulting algorithm can therefore be thought of as an interpreter.

Problem 4.6 (Important!) Let the state s be given by sx = 3 and sy = 4.
Construct a derivation tree for the transition 〈S, s〉 → s′ where S = x :=
y; y := 3; x := x + 3, finding s′. Do not bother with derivation trees for any
Aexp-transitions s � a →a v that may be involved.

Problem 4.7 (Important!) Let S = i := 1; while (¬x = 0) do (i :=
i * x; x := x-1). Construct a derivation tree for the transition 〈S, s〉 → s′

where sx = 3, finding s′.

Termination in the big-step semantics

Given our big-step semantics, we can now define the formal counterparts of
two informal notions used by programmers.

We say that the execution of statement S terminates from start state s if
there exists a state s′ such that 〈S, s〉 → s′. Moreover, we say that S loops
forever on s if there does not exist a state s′ such that 〈S, s〉 → s′.

We say that S always terminates if S terminates for all s ∈ States and
that S always loops forever if S loops forever for all s ∈ States.

Problem 4.8 (Important!) Let S = while 0=0 do skip. Show that S

always loops forever. Hint: Let s be an arbitrary state and show by induction
that for all n ≥ 0 it is the case that 〈S, s〉 → s′ has no derivation tree of
height n.

4.3 A small-step semantics of statements in Bims 53

[asssss] 〈x := a, s〉 ⇒ s[x �→ v] where s � a →a v

[skipsss] 〈skip, s〉 ⇒ s

[comp-1sss]
〈S1 , s〉 ⇒ 〈S′

1 , s
′〉

〈S1 ;S2 , s〉 ⇒ 〈S′
1 ;S2 , s′〉

[comp-2sss]
〈S1 , s〉 ⇒ s′

〈S1 ;S2 , s〉 ⇒ 〈S2 , s′〉

[if-truesss] 〈if b then S1 else S2 , s〉 ⇒ 〈S1 , s〉
where s � b →b tt

[if-falsesss] 〈if b then S1 else S2 , s〉 ⇒ 〈S2 , s〉
where s � b →b ff

[whilesss] 〈while b do S, s〉 ⇒
〈if b then (S; while b do S) else skip, s〉

Table 4.4 Small-step transition rules for Stm

4.3 A small-step semantics of statements in Bims

We shall now consider a very different operational semantics of Bims,
namely a small-step semantics. Here, a transition will describe a single exe-
cution step.

There are now two kinds of transitions: 〈S, s〉 ⇒ s′ and 〈S, s〉 ⇒ 〈S′, s′〉.
The first kind of transition will represent termination in a single step,
whereas the second kind of transition expresses that we will, by executing
a single step of statement S, reach the intermediate configuration 〈S′, s′〉
where we still have to execute S′ and the variables have the values described
by state s′.

We define the transition system (Γ,⇒, T) where

Γ = (Stm × States) ∪ States,

T = States

and ⇒ is defined by the transition rules of Table 4.4.
The difference between the small-step semantics and the big-step seman-

tics becomes very obvious in the transition rules for a sequential compo-
sition S1; S2. [comp-1sss] says the following: if the result of executing the

54 Basic imperative statements

first step of 〈S1, s〉 is 〈S′
1, s

′〉, then the resulting configuration is 〈S′
1; S2, s

′〉.
[comp-2sss] describes what happens when S1 runs to completion within a
single step – control is then transferred to S2 in state s′.

The axioms [if-truesss] and [if-falsesss] show that the first step of
executing a conditional statement consists in testing its Boolean condition.

The [whilesss]-rule describes that we execute a while-loop by first un-
folding it to a conditional statement. The test of the loop condition happens
as the first step of the new conditional statement.

Note that derivation trees for transitions in our small-step semantics are
very low.

Problem 4.9 Find all transitions (if there are any) in the transition se-
quence starting from 〈S, s〉, where

S = if x > 3 then (x := 3+x; y := 4) else skip

and state s is given by sx = 4. You should construct a derivation tree for
each transition in the sequence.

Termination in the small-step semantics

In Problem 4.8 we saw that the statement while 0=0 do skip always loops
forever, that is, does not give rise to a transition in the big-step semantics.
In our small-step semantics nontermination shows up in a different way: for
any state s our statement will lead to an infinite transition sequence.

〈while 0=0 do skip, s〉 ⇒3 〈while 0=0 do skip, s〉 . . . (4.10)

Problem 4.10 (Important!) Show, by constructing derivation trees for
each transition in the sequence, that we do indeed get the transition sequence
postulated in (4.10).

Consequently, in our small-step semantics we shall say that S terminates
from start state s if there exists a state s′ such that 〈S, s〉 ⇒∗ s′. Likewise we
say that S loops forever on s if there exists an infinite transition sequence

〈S, s〉 ⇒ 〈S1, s1〉 · · ·

and that S always loops forever if S loops forever for every start state.
Conversely, S always terminates if S terminates from every start state.

Our example hints at a connection between the big-step semantics and the
small-step semantics, namely that nontermination in the big-step semantics
coincides with nontermination in the small-step semantics. In fact, in the
following section we show an even stronger result, namely that our two
semantics are equivalent.

4.4 Equivalence of the two semantics 55

4.4 Equivalence of the two semantics

In this section we shall formulate and prove a collection of theorems that
together establish a precise correspondence between our big-step and our
small-step semantics for Bims.

At the same time our proofs will demonstrate the power of two important
inductive proof techniques.

Our first result says that our small-step semantics for Bims is at least as
strong as our big-step semantics. Put differently, our small-step semantics
can simulate our big-step semantics.

Theorem 4.11 Let S ∈ Stm and s ∈ States. If 〈S, s〉 → s′ then 〈S, s〉 ⇒∗

s′.

Before we can prove this theorem, we need the following lemma about our
small-step semantics.

Lemma 4.12 Let S1, S2 ∈ Stm and s ∈ States. If 〈S1, s〉 ⇒∗ s′ then we
have that 〈S1; S2, s〉 ⇒∗ 〈S2, s

′〉.

Proof If 〈S1, s〉 ⇒∗ s′ we know that there exists a k such that 〈S1, s〉 ⇒k s′.
We therefore show that for all k ∈ N we have that if 〈S1, s〉 ⇒k s′ then
〈S1; S2, s〉 ⇒k 〈S2, s

′〉. The proof proceeds by induction on k. This proof
strategy is known as induction on the length of transition sequences.

k = 0: Since there are no transition sequences of length 0, our lemma holds
vacuously.

Assume for k, show for k + 1: We now consider an arbitrary transition
sequence 〈S1, s〉 ⇒k+1 s′ and must show that we then have
〈S1; S2, s〉 ⇒k+1 〈S2, s

′〉. Our transition sequence 〈S1, s〉 ⇒k+1 s′ can
be written out as 〈S1, s〉 ⇒ 〈S′

1, s
′′〉 ⇒k s′ for some statement S′

1
and some state s′′. By virtue of our induction hypothesis we have
that 〈S′

1; S2, s
′′〉 ⇒k 〈S2, s

′〉. By applying [comp-1sss] with premise
〈S1, s〉 ⇒ 〈S′

1, s
′′〉 we get that 〈S1; S2, s〉 ⇒ 〈S′

1; S2, s
′′〉. As a conse-

quence we obtain the transition sequence

〈S1; S2, s〉 ⇒ 〈S′
1; S2, s

′′〉 ⇒k 〈S2, s
′〉

whose length is k + 1 as requested.

We can now prove our theorem.

Proof of Theorem 4.11 We must show that the claim of the theorem is
true for all transitions in our big-step semantics. Since a transition exists
if and only if it has a derivation tree, we must prove that our claim holds

56 Basic imperative statements

for all roots of derivation trees. This is then tantamount to showing that
the claim holds for all simple derivation trees, that is, those built directly
from axioms and is preserved whenever we apply a transition rule. This is
the proof principle known as transition induction; it is in fact equivalent to
induction on k, where k is the height of our derivation tree.

The proof now proceeds by considering each transition rule.

[assbss] Assume that 〈S, s〉 → s′ was concluded directly from the axiom
[assbss]. Then we must have that S is x := a, that s � a →a v for
some value v and that 〈S, s〉 → s[x �→ v]. But then the small-step
rule [asssss] tells us that 〈S, s〉 ⇒ s[x �→ v].

[skipbss] Assume that 〈S, s〉 → s′ was concluded directly from the axiom
[skipbss]. Then we must have that S is skip and that 〈S, s〉 → s.
From the rule [skipsss] we now see that 〈S, s〉 ⇒ s.

[compbss] Assume that 〈S1; S2, s〉 → s′′ was concluded using the rule

〈S1, s〉 → s′ 〈S2, s
′〉 → s′′

〈S1; S2, s〉 → s′′
.

By virtue of our induction hypothesis, the claim of the theorem holds
for the premises of the rule. That is,

〈S1, s〉 ⇒∗ s′ and 〈S2, s
′〉 ⇒∗ s′′.

By applying Lemma 4.12 we get that

〈S1; S2, s〉 ⇒∗ 〈S2, s
′〉

and consequently we have that 〈S1; S2, s〉 ⇒∗ s′′.
[if-falsebss] Assume that 〈if b then S1 else S2 , s〉 → s′ was concluded

using the rule

〈S1, s〉 → s′

〈if b then S1 else S2 , s〉 → s′
,

where s � b →b ff . The rule [if-falsesss] tells us that

〈if b then S1 else S2 , s〉 ⇒ 〈S2, s〉.

By virtue of our induction hypothesis, the claim holds for the premise
of the rule, so we must have that 〈S2, s〉 ⇒∗ s′, and we now get the
transition sequence 〈if b then S1 else S2 , s〉 ⇒∗ s′.

[if-truebss] Similar to the previous case.

4.4 Equivalence of the two semantics 57

[while-truebss] Assume that 〈while b do S, s〉 → s′ was concluded using
the rule

〈S, s〉 → s′′ 〈while b do S, s′′〉 → s′

〈while b do S, s〉 → s′
,

where s � b →b tt. By virtue of our induction hypothesis, the claim
of the theorem holds for the premises of the rule, so we get that

〈S, s〉 ⇒∗ s′′ and 〈while b do S, s′′〉 ⇒∗ s′

and again we can apply Lemma 4.12, this time giving us

〈S; while b do S, s〉 ⇒∗ s′.

But because s � b →b tt we can use the rules [if-truesss] and
[whilesss] to extend this to the transition sequence

〈while b do S, s〉 ⇒∗ 〈if b then (S; while b do S) else skip, s〉
⇒ 〈S; while b do S, s〉
⇒∗ s′.

[while-falsebss] Assume that 〈while b do S, s〉 → s was concluded be-
cause s � b →b ff . But then from [whilesss] and [if-falsksss] we
get the transition sequence

〈while b do S, s〉 ⇒∗ 〈if b then (S; while b do S) else skip, s〉
⇒ 〈skip, s〉
⇒ s.

Our second result tells us that our big-step semantics for Bims is able to
describe all terminating transition sequences in our small-step semantics.

Theorem 4.13 Let S ∈ Stm and s ∈ States. If 〈S, s〉 ⇒∗ s′ then 〈S, s〉 →
s′.

Again we need a lemma.

Lemma 4.14 For all S1, S2 ∈ Stm, s, s′′ ∈ States we have that if
〈S1; S2〉 ⇒k s′′ then there exist s′ ∈ States and k1, k2 such that 〈S1, s〉 ⇒k1 s′

and 〈S2, s
′〉 ⇒k2 s′′ with k = k1 + k2

A moment’s thought 4.15 Think about the statement made in the
above lemma. What does it tell us from the point of view of programming
intuition?

58 Basic imperative statements

Proof of Lemma 4.14 Induction on the length of the transition sequence
〈S1; S2, s〉 ⇒k s′′, that is, induction on k.

k = 0: There are no transition sequences of length 0, so the claim of the
lemma holds vacuously in this case.

Assume for n, show for n + 1: Assume that 〈S1; S2, s〉 ⇒n+1 s′′. Then
there exists a configuration γ such that 〈S1; S2, s〉 ⇒ γ ⇒n s′′. The
transition 〈S1; S2, s〉 ⇒ γ must have been concluded using either
[comp-1sss] or [comp-2sss], that is, either it can be of the form
〈S1; S2, s〉 ⇒ 〈S′

1; S2, s
′′′〉, with γ = 〈S′

1; S2, s
′′′〉, or it can be of the

form 〈S1; S2, s〉 ⇒ 〈S2, s
′′′〉 with γ = 〈S2, s

′′′〉.
In the first case we would use the rule [comp-1sss]:

〈S1, s〉 ⇒ 〈S′
1, s

′′′〉
〈S1; S2, s〉 ⇒ 〈S′

1; S2, s′′′〉
;

and in this case we have that 〈S′
1; S2, s

′′′〉 ⇒n s′′. The induction
hypothesis now gives us that there exist k11, k21 and a state s′ such
that n = k11 + k21 and 〈S′

1, s
′′′〉 ⇒k11 s′ and 〈S2, s

′〉 ⇒k21 s′′. But
since 〈S1, s〉 ⇒ 〈S′

1, s
′′′〉 we get that 〈S1, s〉 ⇒k11 +1 s′. Now we can

choose s′ = s′ and k1 = k11 + 1, k2 = k22.
For the other case we used the rule [comp-2sss]:

〈S1, s〉 ⇒ s′′′

〈S1; S2, s〉 ⇒ 〈S2, s′′′〉
.

But this means that 〈S2, s
′′′〉 ⇒n s′′ and here we can choose s′ = s′′′

and k1 = 1, k2 = n.

Proof of Theorem 4.13 Again we are dealing with a claim of the type ‘for
all finite transition sequences it is the case that . . . ’, so we must prove that for
all natural numbers k we have that 〈S, s〉 ⇒k s′ implies 〈S, s〉 → s′. In other
words, we are again using induction on the length of transition sequences.
This time we shall use the strong principle of induction: we assume that our
claim holds for all k′ ≤ k and show the claim for k + 1.

k = 0: There are no transition sequences of length 0, so the claim of the
lemma holds vacuously in this case.

Assume for k′ ≤ k, show for k + 1: We are now considering a transition
sequence of length k + 1

〈S, s〉 ⇒k+1 s′, (4.11)

4.4 Equivalence of the two semantics 59

which is in fact of the form 〈S, s〉 ⇒ 〈S′, s′′〉 ⇒k s′. The rest of the
proof depends on the exact nature of the transition 〈S, s〉 ⇒ 〈S′, s′′〉,
and here in particular on the transition rule used to conclude this
initial transition.

We show only two cases here.
The first case is that 〈S, s〉 ⇒ 〈S′, s′′〉 could have been concluded

using [comp-2sss]. But then we have that S = S1; S2 and S′ =
S2. By applying Lemma 4.14 to the transition sequence (4.11) we
conclude that there exist natural numbers k1, k2 and a state s′′′ such
that k + 1 = k1 + k2 and

〈S1, s〉 ⇒k1 s′′ and 〈S2, s
′′〉 ⇒k2 s′.

We can now apply the induction hypothesis, and it gives us that

〈S1, s〉 → s′′ and 〈S2, s
′′〉 → s′.

All that remains now is for us to use [compbss].
The second case that we consider is the one where 〈S, s〉 ⇒ 〈S′, s′′〉

was concluded using the rule [whilesss]. The transition sequence
(4.11) then looks as follows:

〈while b do S, s〉 ⇒ 〈if b then (S; while b do S) else skip, s〉
⇒k s′′.

We can now apply the induction hypothesis to the last part of the
transition sequence, since it is of length k. Here we get

〈if b then (S; while b do S) else skip, s〉 → s′′.

The further analysis depends on the value of b. First consider the
case where s � b →b ff . In the small-step semantics [if-falsesss]
says that

〈if b then (S; while b do S) else skip, s〉 ⇒ 〈skip, s〉.

In the big-step semantics we get from [if-falsebss] that

〈skip, s〉 → s′′

〈if b then (S; while b do S) else skip, s〉 → s′′

and [skipbss] now tells us that in fact s′′ = s. So here we have that
if 〈while b do S, s〉 ⇒ s′′ then 〈while b do S, s〉 → s′′.

60 Basic imperative statements

Next, consider the case s � b →b tt. In the small-step semantics we
get from [if-truesss] that

〈if b then (S; while b do S) else skip, s〉
⇒ 〈(S; while b do S), s〉

and the transition sequence

〈(S; while b do S), s〉 ⇒(k−1) s′′.

By virtue of our induction hypothesis we now know that there exists
a big-step transition

〈(S; while b do S), s〉 → s′′.

The derivation tree of this transition must have been concluded using
[compbss], so we have that

〈S, s〉 → s′′′ and 〈while b do S, s′′′〉 → s′′

and since we are assuming that s � b →b tt, the rule [while-truebss]
tells us that

〈while b do S, s〉 → s′′

as desired.

4.5 Two important proof techniques

In this chapter we have encountered two important proof techniques often
used in structural operational semantics. They are as follows.

Transition induction We use this technique, if we want to prove a claim
of the form ‘For all transitions P holds’, where P is some property.
We then proceed as follows.

• For each axiom show that P holds.
• For each transition rule show that P is preserved by the rule, that

is, show that if we assume that P holds for all premises in the rule,
then P will also hold for its conclusion.

As we saw earlier, this is in fact induction on k, where k is the height
of our derivation tree.

4.5 Two important proof techniques 61

Induction on the length of transition sequences We use this techni-
que for a small-step semantics, if we want to prove a claim of the
form ‘For all transition sequences P holds’. This, too, is an induction
in the normal sense, in that we show the claim ‘For all k it is the case
that P holds for every transition sequence of length k’ by induction
on k.

Problem 4.16 Prove the remaining cases of Theorem 4.13.

A moment’s thought 4.17 Why is induction on the length of transi-
tion sequences not a very useful proof technique for properties of a big-step
semantics?

Problem 4.18 Prove, using a suitable proof technique, that the big-step
semantics of statements is deterministic, that is, that for any statement S

and state s we have that if 〈S, s〉s′ and 〈S, s〉s′′ then s′ = s′′. (You may
assume that the big-step semantics of arithmetic and Boolean expressions
are deterministic.)

Problem 4.19 Describe what it means for a small-step semantics to be
deterministic. Then prove, using a suitable proof technique, that the small-
step semantics of statements is deterministic.

The equivalence results that we have shown in this chapter are reassur-
ing; our big-step semantics and our small-step semantics are in agreement
in a very precise sense. This allows us to choose freely between the two se-
mantics whenever we want to reason about Bims. However, one must not
forget that these are results that are particular to the semantics presented
in this chapter. We are not dealing with a result which states that every
big-step semantics will be equivalent to every small-step semantics for the
same language. Such a result cannot be true.

Problem 4.20 Define a ‘pathological’ big-step semantics for Bims with
the property that it is not equivalent to the small-step semantics for Bims
presented in this chapter.

Rather, our result should be thought of as a goal that has been reached:
we have given two descriptions of the behaviour of Bims statements which
agree in a well-defined sense. In general, this is a reasonable requirement of
a language-design effort.

PART III

LANGUAGE CONSTRUCTS

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511840449
https://www.cambridge.org/core

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511840449
https://www.cambridge.org/core

5

Control structures

In this chapter we investigate some additional control structures in the set-
ting of Bims.

First, we consider two well-known loop constructs, namely repeat-loops
and for-loops, and their big-step semantics. Then we have a look at nonde-
terminism and concurrency. Here it turns out that the difference between
big-step and small-step semantics becomes all-important.

In the case of nondeterminism, a big-step semantics captures so-called
angelic nondeterminism and a small-step semantics captures demonic non-
determinism.

In the case of concurrency, we have little choice: a big-step semantics will
be of no use.

Another difference between the two styles of operational semantics be-
comes clear when we consider nonterminating computations. These can be
described directly in a small-step semantics but not in a big-step semantics.

An important concept that we use throughout this chapter is that of
semantic equivalence, which provides a formal mathematical understanding
of the informal notion of ‘having the same behaviour’.

5.1 Some general assumptions

The control structures considered in the following are all extensions of the
syntactic category Stm of statements in Bims. In each case, the new big-
step semantics assumes a transition system (Γ,→, T) where

Γ = (Stm × States) ∪ States,

T = States

and → is defined by the transition rules of Table 4.3 together with new rules
for the control structure that has been added.

66 Control structures

Similarly, in our small-step semantics we consider a transition system
(Γ,⇒, T) where

Γ = (Stm × States) ∪ States,

T = States

and ⇒ is defined by the transition rules of Table 4.4 together with new rules
for the control structure that has been added.

5.2 Loop constructs

In this section we shall describe the semantics of two well-known loop con-
structs found in imperative programming languages: repeat-loops and for-
loops.

5.2.1 Repeat-loops

First, we consider an extension of Bims with repeat-loops. We add the
following to our formation rules for Stm:

S ::= · · · | repeat S until b.

The informal semantics of repeat S until b is straightforward: the loop
body S is executed, and only then is the condition b checked. If b evaluates
to true, we leave the loop. If b evaluates to false, the loop is executed again.

We can capture this informal description by the big-step transition rules
of Table 5.1. Notice the side conditions, s′ � b →b tt in [repeat-truebss]
and s′ � b →b ff in [repeat-falsebss]. The presence of the state s′ resulting
from the execution of S captures the intuition that we check the condition
b after the execution of the body of the loop.

Problem 5.1 Build a derivation tree – and thereby find the final state s′

– for the transition

〈repeat y:=y*x; x:=x-1 until x=1, s〉 → s′,

where the initial state s is given by sx = 4, sy = 1.

Strictly speaking, repeat-loops are not needed. Readers with some pro-
gramming experience will probably notice that one might just as well write
S; while ¬b do S instead of repeat S until b. In fact, the following theorem
holds.

Theorem 5.2 For all s ∈ States we have 〈repeat S until b, s〉 → s′ if
and only if 〈S; while ¬b do S, s〉 → s′.

5.2 Loop constructs 67

[repeat-truebss]
〈S, s〉 → s′

〈repeat S until b, s〉 → s′

if s′ � b →b tt

[repeat-falsebss]
〈S, s〉 → s′ 〈repeat S until b, s′〉 → s′′

〈repeat S until b, s〉 → s′′

if s′ � b →b ff

Table 5.1 Big-step transition rules for repeat-loops

Proof To prove this, we must prove each of the two implications separately.
In both cases we shall use transition induction. Here, this is most easily
thought of as induction on the height of the derivation tree.

Only if: We show that, if we have a transition 〈repeat S until b, s〉 → s′,
then we can also find a transition 〈S; while ¬b do S, s〉 → s′. Let n

be the height of the derivation tree for 〈repeat S until b, s〉 → s′.
We now proceed by induction on n.

n = 0: The only derivation trees of height 0 are the ones that can
be obtained by an application of one of the axioms [assbss],
[skipbss] or [while-falsebss]. None of these are derivation
trees for the transition

〈repeat S until b, s〉 → s′.

Consequently, the claim holds vacuously in this case.
Assume for n′ ≤ n, show for n + 1: Now assume that the tran-

sition 〈repeat S until b, s〉 → s′ has a derivation tree of
height n+1. The only rules that can be used to complete this
derivation tree are [repeat-truebss] and [repeat-falsebss].
First consider [repeat-truebss]. Here we have

〈S, s〉 → s′

〈repeat S until b, s〉 → s′
where s′ � b →b tt.

From this we get that s′ � ¬b →b ff , and by applying the
rule [while-falsebss] we now get that

〈while ¬b do S, s′〉 → s′.

68 Control structures

Then, by applying [compbss] we obtain

〈S; while ¬b do S, s〉 → s′.

Next, consider [repeat-falsebss]. Here we have

〈S, s〉 → s′ 〈repeat S until b, s′〉 → s′′

〈repeat S until b, s〉 → s′′
where s′ � b →b ff.

From this we get s′ � ¬b →b tt. The derivation tree for

〈repeat S until b, s′〉 → s′′

has height n. By virtue of our induction hypothesis we there-
fore get that

〈S; while ¬b do S, s′〉 → s′′.

The derivation tree for this transition must have been con-
cluded by a final application of [compbss], so in the premises
of this rule occurrence we must have had the transitions

〈S, s′〉 → s′′′ 〈while ¬b do S, s′′′〉 → s′′.

Since s′ � ¬b →b tt, we can now use these two transitions as
premises of [while-truebss] and get

〈while ¬b do S, s′〉 → s′′.

This transition and 〈S, s〉 → s′ can be used as premises of
[compbss], and we obtain

〈S; while ¬b do S, s〉 → s′′

as desired.

If: Here, we show that, if we have a transition 〈S; while ¬b do S, s〉 → s′,
then there is a transition 〈repeat S until b, s〉 → s′. Let n be the
height of the derivation tree for 〈S; while ¬b do S, s〉 → s′. The
proof now proceeds by induction on n.

n = 0: The only derivation trees of height 0 are those found by
an application of one of the axioms [assbss], [skipbss] or
[while-falsebss]. However, none of these give us deriva-
tion trees for the transition 〈S; while ¬b do S, s〉 → s′. Con-
sequently, this case is vacuously true.

5.2 Loop constructs 69

Assume for n′ ≤ n, show for n + 1: Now we assume that
〈S; while ¬b do S, s〉 → s′ has a derivation tree of height n+
1. The only rule that can be used to conclude the construc-
tion of this derivation tree is [compbss]. Then we have

〈S, s〉 → s′′ 〈while ¬b do S, s′′〉 → s′

〈S; while ¬b do S, s〉 → s′
.

The rest of the proof depends on the truth value of b. First,
assume that s′′ � b →b ff . Then we have that s′′ � ¬b →b tt

and therefore the transition 〈while ¬b do S, s′′〉 → s′ must
be concluded by an application of [while-truebss], and we
must have

〈S, s′′〉 → s′′′ 〈while ¬b do S, s′′′〉 → s′

〈while ¬b do S, s′′〉 → s′
.

By applying the rule [compbss] with premises 〈S, s′′〉 → s′′′

and 〈while ¬b do S, s′′′〉 → s′ we obtain

〈S; while ¬b do S, s′′〉 → s′.

But since the derivation tree for this transition has height n,
by virtue of our induction hypothesis we have the transition

〈repeat S until b, s′′〉 → s′.

We already know that 〈S, s〉 → s′′ and have found that
〈repeat S until b, s′′〉 → s′ when assuming s′′ � b →b ff . As
a consequence, we can apply [repeat-falsebss] and get that
〈repeat S until b, s〉 → s′.
The other case is that of s′′ � b →b tt. Here, we must have
concluded the transition 〈while ¬b do S, s′′〉 → s′ using the
rule [while-falsebss], so here s′ = s′′. This means that we
can apply [repeat-truebss] to the premise 〈S, s〉 → s′, and
we get

〈repeat S until b, s〉 → s′

as desired.

A moment’s thought 5.3 In the above proof we sometimes used a par-
ticular fact, namely that s � b →b ff if and only if s � ¬b →b tt. How do we
know that this is the case?

70 Control structures

5.3 Semantic equivalence

Theorem 5.2 is an example of a result about semantic equivalence of state-
ments. Often one is interested in proving that two programs have the same
behaviour, and this is where the notion of semantic equivalence becomes
important. Here are some situations where the need will arise.

• We have two different implementations of the same underlying algorithm,
written in the same programming language. If the two implementations
have the same behaviour, we have more reason to believe that the algo-
rithm has been correctly implemented.

• We have an old version of a program and a new, optimized version of
the program. Here, too, we want the two programs to have the same
behaviour.

• We have a program written in some high-level language and a machine-
code version obtained by compiling our high-level program. If our compiler
is correct, these two programs must have the same behaviour.

Semantic equivalence is a formal version of the notion of ‘same behaviour’.
Intuitively, two statements have the same behaviour according to a big-step
semantics if they always result in the same final state when they are run
from the same initial state. This is captured by the following definition.

Definition 5.4 (Big-step semantic equivalence) Let (Γ,→, T) be the tran-
sition system for our big-step semantics of Bims. We say that S1 and S2

are semantically equivalent in the big-step semantics, written S1 ∼bss S2, if
for all s ∈ States we have

〈S1, s〉 → s′ if and only if 〈S2, s〉 → s′.

In the following chapters, we will sometimes refer to other notions of
semantic equivalence. In Section 8.5 we introduce the important notion of
bisimulation equivalence.

Theorem 5.2 tells us that repeat S until b ∼bss S; while ¬b do S. The
rest of this chapter will provide some more examples of statements that are
semantically equivalent as well as some that are not.

As the name implies, semantic equivalence is an equivalence relation.

Theorem 5.5 ∼bss is an equivalence relation over Stm.

Proof We must show that our relation ∼bss satisfies the three conditions
of Definition 2.16.

• It is obvious that for every statement S and for every state s we have that
〈S, s〉 → s′ if and only if 〈S, s〉 → s′. This proves that ∼bss is reflexive.

5.3 Semantic equivalence 71

• Next, assume that S1 ∼bss S2. By definition, this means that for every
state s we have that 〈S1, s〉 → s′ if and only if 〈S2, s〉 → s′. This imme-
diately tells us that 〈S2, s〉 → s′ if and only if 〈S1, s〉 → s′, that is, that
S2 ∼bss S1. This proves that ∼bss is symmetric.

• Finally, assume that S1 ∼bss S2 and that S2 ∼bss S3. We then have
for every state s that 〈S1, s〉 → s′ if and only if 〈S2, s〉 → s′ and that
〈S2, s〉 → s′ if and only if 〈S3, s〉 → s′. Again it is easy to see that this
implies that 〈S1, s〉 → s′ if and only if 〈S3, s〉 → s′, that is, that S1 ∼bss S3.
This proves that ∼bss is transitive.

One can also define a notion of semantic equivalence for a small-step
semantics. The intuition is as before, namely that two statements have the
same behaviour if they yield the same final state when given the same initial
state. Here, though, we have to consider terminating transition sequences,
that is, sequences of the form 〈S, s〉 ⇒∗ s′.

Definition 5.6 (Small-step semantic equivalence) Let (Γ,⇒, T) be the
transition system given by the small-step semantics for Bims. We say that
S1 and S2 are semantically equivalent in the small-step semantics, written
S1 ∼sss S2, if for all s ∈ States we have

〈S1, s〉 ⇒∗ s′ if and only if 〈S2, s〉 ⇒∗ s′.

Problem 5.7 Prove that ∼sss is an equivalence relation.

Problem 5.8 Give a small-step semantics of repeat-loops and show that
in your semantics we have that repeat S until b ∼sss S; while ¬b do S.

Problem 5.9 Some programming languages have a general loop construct
loop S1; exit on b; S2 end whose intended meaning is as follows. First
execute S1, then check the truth value of b. If b evaluates to true, then leave
the loop. If b evaluates to false, then execute S2 and execute the loop again.
Give a big-step semantics for this loop construct. Suggest some reasonable
results about semantic equivalence that relate our new loop construct to the
repeat-construct and to the while-construct.

5.3.1 For-loops

Unlike repeat- and while-loops, for-loops provide a notion of bounded iter-
ation. Our abstract syntax adds the formation rule below to those for Stm:

S ::= · · · | for x := n1 to n2 do S.

72 Control structures

[for-1bss]
〈S, s[x �→ v1]〉 → s′′ 〈for x := n′

1 to n2 do S, s′′〉 → s′

〈for x := n1 to n2 do S, s〉 → s′

if v1 ≤ v2 where v1 = N [[n1]], v2 = N [[n2]]
and n′

1 = N−1(v1 + 1)

[for-2bss] 〈for x := n1 to n2 do S, s〉 → s[x �→ v1]

if v1 > v2 where v1 = N [[n1]], v2 = N [[n2]]

Table 5.2 Big-step transition rules for for-loops

The intuition behind this loop construct is that the initial value of x is set
to v1, the value of numeral n1. If v1 ≤ v2, where v2 is the value of n2, we
execute the loop body S and increment the value of x by 1. We continue in
this way until v1 > v2. Immediately after the for-loop has terminated, the
variable x has the value v2 + 1.

In our big-step semantics we make use of the function N : Num → Z

that returns the number corresponding to a numeral, and of its inverse,
N−1 : Z → Num, that returns the numeral corresponding to a given num-
ber.

We could of course also give a small-step semantics of for-loops, extending
our small-step semantics of Bims.

Problem 5.10 Do this; give small-step transition rules for for-loops.

Problem 5.11 One can imagine a more general version of for-loops with
the syntax for x := a1 to a2 do S. Think about what a loop construct of
this form should do and define big-step and small-step transition rules for
this version.

Problem 5.12 In the previous problem, one could choose either to eval-
uate the bounds of the for-loop prior to the execution of the loop or to
evaluate the bounds following each traversal of the loop body. Give big-step
semantics for both of these options.

5.4 Abnormal termination

Sometimes one may wish to describe that a program terminates unsuccess-
fully. We can capture this by introducing a new statement, abort, whose
intended behaviour is that, given an initial state, no final state is returned.

5.5 Nondeterminism 73

Our formation rules for Stm are now extended to

S ::= · · · | abort.

With our extension we can then write the following (assuming an extension
of Bims which allows integer division):

if ¬(x=0) then x := 1/x else abort.

Intuitively, there will be no transitions from a configuration of the form
〈abort, s〉. This is very easy to capture both in our big-step and in our
small-step semantics, since we know by definition that a transition exists
if and only if it can be concluded using the transition rules. Consequently,
there are no transition rules for abort.

Given this, it is clear that it cannot be the case that abort ∼bss skip or
that abort ∼sss skip.

A moment’s thought 5.13 Why not?

We have already seen other examples of statements that have no transi-
tions in our big-step semantics of Bims. An example is while 0=0 do skip.
From this we conclude that while 0=0 do skip ∼bss abort. Thus, our
big-step semantics does not distinguish between abnormal termination and
infinite loops. In our small-step semantics the same equivalence holds, that
is, while 0=0 do skip ∼sss abort.

A moment’s thought 5.14 Why does this hold?

On the other hand, the two sources of nontermination are captured differ-
ently in the small-step semantics. while 0=0 do skip gives rise to an infinite
transition sequence starting from s, while the only transition sequence from
〈abort, s〉 is one of length 0, namely 〈abort, s〉 ⇒0 〈abort, s〉.

This means that if we use a different notion of semantic equivalence, where
individual transitions of one statement must be matched by individual tran-
sitions by the other statement, we can distinguish between abnormal termi-
nation and infinite loops. Notions of bisimulation equivalence (see Section
8.5) will allow us to do this.

5.5 Nondeterminism

Another extension is that of nondeterminism. Here, nondeterminism should
be thought of as the ability to choose freely between different branches of
execution. If a branch is not chosen, then it simply disappears. In Bims we

74 Control structures

[or-1bss]
〈S1 , s〉 → s′

〈S1 or S2 , s〉 → s′

[or-2bss]
〈S2 , s〉 → s′

〈S1 or S2 , s〉 → s′

Table 5.3 Big-step transition rules for the or-statement

can introduce nondeterminism as an or-statement:

S ::= · · · | S1 or S2.

S1 or S2 should then be read as ‘the program can choose to execute
either S1 or S2’. This is known as bounded nondeterminism, as the number
of potential choices within a single transition step is bounded.

Nondeterminism is a language construct not usually found in program-
ming languages, since it is difficult to implement. For how does one im-
plement a truly free choice? In actual implementations bounded nondeter-
minism can be implemented as ‘flipping a coin’ using a random-number
generator. On the other hand, nondeterminism is useful in specifications of
algorithms, and in some formalisms for parallel computation such as CSP
(Hoare, 1988) and CCS (Milner, 1989) it is a central feature.

Giving an operational semantics of nondeterminism is straightforward.
Table 5.3 contains big-step transition rules for the or-statement.

The rules of Table 5.3 capture the intution that the effect of executing
S1 or S2 will be either the effect of executing S1 or that of executing S2.

Example 5.15 We have the transitions

〈x:= 1 or (x:=2; x:= x+3), s〉 → s[x �→ 1]

and

〈x:= 1 or (x:=2; x:= x+3), s〉 → s[x �→ 5].

We can also give a small-step semantics of nondeterminism. Here the idea
is that the first step of executing S1 or S2 consists in choosing between S1

and S2. The rules are shown in Table 5.4.

Example 5.16 According to our small-step semantics we get the transition
sequences

〈x:= 1 or (x:=2; x:= x+3), s〉 ⇒∗ s[x �→ 1]

5.5 Nondeterminism 75

[or-1sss] 〈S1 or S2 , s〉 ⇒ 〈S1 , s〉

[or-2sss] 〈S1 or S2 , s〉 ⇒ 〈S2 , s〉

Table 5.4 Small-step transition rules for the or-statement

and

〈x:= 1 or (x:=2; x:= x+3), s〉 ⇒∗ s[x �→ 5].

The two semantics provide different accounts of nondeterminism. Con-
sider the statement (x := 1) or while (0=0) do skip. Since there is no
transition 〈while (0=0) do skip, s〉 → s′ for any s, s′ ∈ States, the only
rule applicable is [or-1bss] and we therefore have the transition

〈(x := 1) or while (0=0) do skip, s〉 → s[x �→ 1].

Our big-step semantics can therefore be said to suppress infinite loops, that
is, unfortunate choices do not result in a transition. This is called angelic
nondeterminism.

The small-step semantics does not suppress infinite loops. Here we have
two transition sequences. One is

〈(x := 1) or while (0=0) do skip, s〉 ⇒ 〈x := 1, s〉 ⇒ s[x �→ 1].

The other is the infinite sequence

〈(x := 1) or while (0=0) do skip, s〉 ⇒ 〈while (0=0) do skip, s〉 ⇒ · · · .

Thus, unfortunate choices also give rise to transitions in our small-step se-
mantics. This is called demonic nondeterminism.

So a very real question is: What do we want to describe in our semantics?
In some programming languages and under some circumstances infinite loops
may be very desirable. For instance one may think of an operating system
as a computation that should never terminate.

If one wants to reason about the properties of nonterminating computa-
tions, this then implies that one must be able to describe the existence of
such computations.

Problem 5.17 Introduce the statement morph(x) into Bims. This state-
ment leads to a version of unbounded nondeterminism; upon completion, the
value of the variable x will be an arbitrary integer. Give a big-step and a
small-step semantics of the morph statement. Is the statement a necessary
addition, if we already have the or-statement available in Bims?

76 Control structures

5.6 Concurrency

As our final example we shall have a brief look at non-communicating paral-
lelism – as opposed to the kind of channel-based concurrency that is found in
e.g. CSP (Hoare, 1988) and CCS (Milner, 1989) and is the focus of Chapter
8. In Bims we can introduce the par-statement as follows:

S ::= · · · | S1 par S2.

The intended meaning of S1 par S2 is that S1 and S2 are executed in
parallel.

By this we mean that the executions of the two statements are interleaved.
This means that the statement

x:=1 par (x:=2; x:= x+3)

may give us three distinct values of x, namely 1, 4 and 5. If we first execute
the statement x:=1, we eventually get that the value of x is 5. If, on the
other hand, we execute x:= 2, then x:=1 and finally x:= x+3, we get 4.

A moment’s thought 5.18 How can we get 1 as the final value of x?

We can capture this by the small-step transition rules of Table 5.5. The
rules [par-1sss] and [par-2sss] cover the case where the parallel component
on the left, S1, makes a step. If the component terminates in one step, it
disappears. The rules [par-3sss] and [par-4sss] are analogous, applying to
the component on the right.

Example 5.19 We can use the rules of Table 5.5 to find the transition
sequences

〈x:= 1 par (x:=2; x:= x+3), s〉 ⇒ 〈(x:=2; x:= x+3), s[x �→ 1]〉
⇒ 〈x:= x+3, s[x �→ 2]〉
⇒ s[x �→ 5]

and

〈x:= 1 par (x:=2; x:= x+3), s〉 ⇒ 〈x:= 1 par (x:= x+3), s[x �→ 2]〉
⇒ 〈x:= x+3, s[x �→ 1]〉
⇒ s[x �→ 4]

and

〈x:= 1 par (x:=2; x:= x+3), s〉 ⇒ 〈x:= 1 par (x:= x+3), s[x �→ 2]〉
⇒ 〈x:= 1, s[x �→ 5]〉
⇒ s[x �→ 1].

5.6 Concurrency 77

[par-1sss]
〈S1 , s〉 ⇒ 〈S′

1 , s
′〉

〈S1 par S2 , s〉 ⇒ 〈S′
1 par S2 , s′〉

[par-2sss]
〈S1 , s〉 ⇒ s′

〈S1 par S2 , s〉 ⇒ 〈S2 , s′〉

[par-3sss]
〈S2 , s〉 ⇒ 〈S′

2 , s
′〉

〈S1 par S2 , s〉 ⇒ 〈S1 par S′
2 , s

′〉

[par-4sss]
〈S2 , s〉 ⇒ s′

〈S1 par S2 , s〉 ⇒ 〈S1 , s′〉

Table 5.5 Small-step semantics of the par-statement

[par-1bss]
〈S1 , s〉 → s′ 〈S2 , s

′〉 → s′′

〈S1 par S2 , s〉 → s′′

[par-2bss]
〈S2 , s〉 → s′ 〈S1 , s

′〉 → s′′

〈S1 par S2 , s〉 → s′′

Table 5.6 An attempt at big-step transition rules for the par-statement

What would a big-step semantics of the parallel operator look like? One
attempt is to use the transition rules of Table 5.6.

However, something is missing here! There is now no way to describe the
interleaving of individual steps. The rules of Table 5.6 tell us that either
we first execute all of S1 before executing S2 or vice versa. This is due to
the fact that the atomic steps of a big-step semantics correspond to the
execution of an entire statement. In other words, a big-step semantics will
be of no use if we want to describe parallel computations.

Problem 5.20 Consider the new statement atomic S end whose intuitive
meaning is that S is to be executed indivisibly, that is, that the execution of
S is not allowed to be interleaved with the execution of any other command.

78 Control structures

For instance the command

(x:= 1) par atomic (x:=2; x:= x+3) end

can now only give rise to either 1 or 5 as the final value of x. Provide the
atomic-statement with a small-step semantics without invoking the big-step
semantics of Bims and without referring to the transitive closure ⇒∗ in your
new rules. Hint: Try to capture a definition of ⇒∗ in your new rules.

Of course our understanding of parallel computation as mere interleaving
has its limitations, since it simply states that we reduce parallel computation
to nondeterminism. If we had both par and or in Bims, we would have that

x:= 1 par (x:=2; x:= x+3) ∼sss

(x:=1;x:=2;x:=x+3)

or (x:=2;x:=1;x:=x+3)

or (x:=2;x:=x+3;x:=1).

Note, however, that we cannot always explain away parallel compositions in
this way. To see this, consider e.g. the command

(while b1 do S1) par (while b2 do S2).

A moment’s thought 5.21 Use the ideas hinted at above to try to find
a statement with or-constructs but no par-constructs that is semantically
equivalent to

(while (0 = 0) do x := x + 4) par (while (17 = 17) do y := y + 3).

What do you observe?

Problem 5.22 Suggest an alternative small-step semantics of the par-
statement that will allow parallel components to make simultaneous steps.
Discuss how updates of shared variables should be dealt with.

6

Blocks and procedures (1)

In this chapter we look at Bip,1 an extension of Bims with blocks and
procedures, and define a big-step semantics of the language. The semantics
will depend on our choice of scope rules, and for this reason we need to
introduce a more refined notion of program states. We therefore introduce
the environment–store model and the notion of procedure environment. In
Chapter 10 we shall describe how to give a small-step semantics of Bip.

6.1 Abstract syntax of Bip

The syntactic categories of Bims are also found in Bip; however, we now
introduce three additional categories:

• Pnames – the category of procedure names
• DecV – the category of variable declarations
• DecP – the category of procedure declarations

We denote elements of Pnames by p, q . . ., elements of DecV by DV and
elements of DecP by DP . The formation rules of Aexp and Bexp are as in
Bims. The formation rules of Stm, DecV and DecP are as given below.
Here ε denotes both the empty variable declaration and the empty procedure
declaration2.

S ::= x := a | skip | S1; S2 | if b then S1 else S2 |
while b do S | begin DV DP S end | call p

DV ::= var x := a; DV | ε

DP ::= proc p is S; DP | ε

1 Bims incorporating procedures.
2 In what follows, the actual meaning of ε will always be clear from the context.

80 Blocks and procedures (1)

There are thus two new statements in Bip.

• A block is of the form begin DV DP S end. A block is a statement with
declarations of local variables, DV , declarations of local procedures, DP ,
and a body, S.

• A procedure call , call p, invokes a procedure named p.

The intention is that variables and procedures declared in a block should
be available only within the block itself. Notice that all variables are assigned
an initial value, namely the value of an arithmetic expression a, when de-
clared.

The meaning of a procedure call will depend on the scope rules, that
is, which variables and procedures are known during the execution of the
procedure.

In this chapter, procedures will have no parameters, as parameter passing
is not the focus of the development here. We treat parameter passing in
Chapter 7.

6.2 The environment–store model

We now introduce a more refined description of a program state. The idea
originally arose in the work of Scott and Strachey on denotational semantics
(Strachey, 1966, 1967; Scott, 2000).

In Chapter 4 we presented a first model of variable bindings, the simple
state model where a state s is a partial function s : Var ⇀ Z. However, this
model does not describe that variables are actually bound to storage cells
in the computer memory. For this reason, the simple state model will be
inadequate when we need to give a concise description of phenomena such
as side effects or program constructs such as references.

The environment–store model describes how variables are actually bound
during a program execution: each variable is bound to a storage cell, and
the content of a storage cell is the value of the variable.

Thus, in the environment–store model a program state describes to which
storage locations variables are bound and which values are found in the
individual cells.

• The variable environment is a function that for each variable tells us to
which storage location it is bound. In other words, a variable environment
corresponds to a symbol table.

• The store is a function that for each storage location tells us which value
is found at the location. In other words, a store corresponds to a complete
description of the contents of the memory.

6.2 The environment–store model 81

In the environment–store model, storage cells are called locations. The set
of locations is called Loc. We let l denote an arbitrary element of Loc. In
the following we always assume that Loc = N, that is, that locations are
natural numbers.

Since we would like to describe that new locations may be allocated to
new variables, we introduce a special pointer, next, which is bound to the
next available location.

Summing up, we obtain the following definition.

Definition 6.1 The set of variable environments is the set of partial func-
tions from variables to locations:

EnvV = Var ∪ {next} ⇀ Loc.

We let envV denote an arbitrary member of EnvV.

A moment’s thought 6.2 Why should variable environments be partial
functions?

Moreover, we shall assume the existence of a function

new : Loc → Loc

that for every location returns its successor (no matter whether this succes-
sor location is available or not).

Since we are assuming that Loc = N, we can define new by

new l = l + 1.

In our model, values are integers, so we have the following definition.

Definition 6.3 The set of stores is the set of partial functions from loca-
tions to values:

Sto = Loc ⇀ Z.

We let sto denote an arbitrary element of Sto.

We again introduce a notation for updating environments and stores. For
environments, we write envV [x �→ l] to denote the environment env′V given
by

env′V y =
{

envV y if y �= x

l if y = x.
(6.1)

A moment’s thought 6.4 Define the update notation sto[l �→ v] for
stores.

82 Blocks and procedures (1)

�

�

�
������������

�

�

x

y

z
{next}

Var ∪ {next} Loc Z

l1

l2

l3

1964

8

envV sto

Figure 6.1 Example of a variable environment and a store

Example 6.5 Figure 6.1 shows an example of a variable environment and
a store. We here have three variables, x, y and z. envV is the function
described by the arrows between Var∪ {next} and Loc. From these arrows
we see the following: x is bound to the location l1. The variables y and z are
both bound to the location l2 – so if one of these two variables is updated,
so is the other one. The next free location is l3. No other variables are bound
to any location.

sto is the function described by the arrows between Loc and Z. This
function tells us that the content of location l1 is 8 and that the content of
l2 is 1964. The contents of all other locations are undefined.

A moment’s thought 6.6 What is the value of the variable x in Example
6.5? What is the value of z ?

It is straightforward to relate the environment–store model to the simple
state model from Chapter 4. This was the model where a state is a function
s : Var ⇀ Z.

Here, every pair (envV , sto) gives rise to a state given by the function
composition sto ◦ envV ; the value v of the variable x can be found as v =
sto(envV x).

So far, we have defined only a model of variable bindings. We will also
need a notion of procedure environments that will allow us to describe the
binding of procedures. However, the model of procedure bindings will depend
on the scope rules that we chose, so the definition of procedure environments
is postponed to Section 6.6.

6.3 Arithmetic and Boolean expressions 83

6.3 Arithmetic and Boolean expressions

The semantics of statements and declarations both depend on the semantics
of arithmetic expressions, and arithmetic expressions may contain variables.
So, since we have a new model of variable bindings, we need to redefine our
semantics of arithmetic and Boolean expressions.

In what follows, we shall define a big-step semantics of arithmetic expres-
sions. Our transition system for arithmetic expressions is (Aexp ∪ Z,→a, Z),
where →a is defined by the rules of Table 6.1. All transitions are of the form
envV , sto � a →a v and must be read as ‘given the variables known by envV

and the storage content of sto the arithmetic expression a evaluates to the
value v’.

The essential difference from the semantics of Aexp given in Chapter 4
lies in the rule [var-bipbss], since we now find the value of a variable by
first finding its location and then determining the content of the location.

A moment’s thought 6.7 We shall also need a new semantics of Boolean
expressions. Why?

Problem 6.8 Give a new big-step semantics of Boolean expressions under
the environment–store model that makes use of the new semantics of Aexp.

[plus-bipbss]
envV , sto � a1 →a v1 envV , sto � a2 →a v2

envV , sto � a1+a2 →a v

where v = v1 + v2

[minus-bipbss]
envV , sto � a1 →a v1 envV , sto � a2 →a v2

envV , sto � a1-a2 →a v

where v = v1 − v2

[mult-bipbss]
envV , sto � a1 →a v1 envV , sto � a2 →a v2

envV , sto � a1*a2 →a v

where v = v1 · v2

[parent-bipbss]
envV , sto � a1 →a v1

envV , sto � (a1) →a v1

[num-bipbss] envV , sto � n →a v if N [[n]] = v

[var-bipbss] envV , sto � x →a v if envV x = l and sto l = v

Table 6.1 Big-step operational semantics of Aexp using the
environment–store model

84 Blocks and procedures (1)

6.4 Declarations

The execution of a block begin DV DP S end starts with the declaration
of variables in DV and procedures in DP before S can be executed. So we
need to define an operational semantics of DecV and DecP.

6.4.1 Declaring variables

Any non-empty variable declaration will modify the variable environment,
since new variables will be bound to new locations. However, a variable dec-
laration will also modify the store, since the new locations will be initialized
to contain the initial values of the new variables.

The transition relation describing variable declarations, →DV , defines a
big-step semantics. This is reasonable, since we know that the allocation of
new address space for newly declared variables is an indivisible operation –
a compiler will allocate addresses to all program variables in one go.

Our semantics of variable declarations is given by the transition system
(ΓDV ,→DV , TDV) whose configurations are defined by

ΓDV = (DecV × EnvV × Sto) ∪ (EnvV × Sto),

TDV = EnvV × Sto.

Transitions here have the format 〈DV , envV , sto〉 →DV (env′V , sto′). The
rules defining the transition relation →DV are given in Table 6.2.

We now explain the rules defining →DV . The rule [var-decl-bipbss] ex-
presses that we perform the variable declaration var x := a; DV relative
to envV and sto by first finding the value v of the expression a. Then we
update the variable bindings found in envV by binding x to l, where l is

[var-declbss]
〈DV , envv′′, sto[l �→ v]〉 →DV (env′V , sto′)

〈var x := a;DV , envV , sto〉 →DV (env′V , sto′)

where envV , sto � a →a v
and l = envV next
and envv′′ = envV [x �→ l][next �→ new l]

[empty-varbss] 〈ε, envV , sto〉 →DV (envV , sto)

Table 6.2 Big-step semantics of variable declarations

6.5 Statements 85

the next available location, and bind the next-pointer to the location follow-
ing l. This location is determined by an application of the new-function to
next. Finally, sto gets updated by letting the location l contain the value v.
The rule [empty-varbss] expresses that the empty declaration will change
neither the variable environment nor the store.

6.4.2 Procedure declarations

A procedure declaration updates our procedure environment. A procedure
environment holds information about the bindings of procedure names. As
in the case of variable declaration, declarations should be thought of as
indivisible operations, so again we give a big-step semantics.

Our semantics is given by the transition system (ΓDP ,→DP , TDP) whose
configurations are defined by

ΓDP = (DecP × EnvP) ∪ EnvP,

TDP = EnvP.

Transitions are of the form envV � 〈DP , envP 〉 →DP env′P ; we need to
assume this format, since some kinds of scope rules will require us to retrieve
information about the variable bindings that were known when a procedure
was declared. In these cases the result of a procedure declaration will depend
on the variable environment known.

We defer the transition rules defining →DP to Section 6.6, since they
depend upon our definition of procedure environments, and this definition
turns out to depend on the scope rules that we choose.

6.5 Statements

We can now present a big-step semantics of all statements in our language
apart from procedure calls. The semantics of procedure calls depends on our
choice of scope rules and will be presented in Section 6.6.

The effect of a statement is that the store may change. This is the case,
since a statement may modify the values of variables involved through as-
signments. On the other hand, a statement should not modify the variable
environment.

A moment’s thought 6.9 Why should a statement not modify the vari-
able environment?

So here we define the transition system ((Stm × Sto) ∪ Sto,→,Sto).

86 Blocks and procedures (1)

Transitions are of the form

envV , envP � 〈S, sto〉 → sto′

and should be interpreted as follows: ‘given the variable bindings envV and
the procedure bindings envP , the execution of statement S will modify the
store sto to the new store sto′’. The rules for all statements (except procedure
calls) are shown in Table 6.3

Let us now explain the intended meaning of the transition rules.
The rule [ass-bipbss] captures how variables are updated in the environ-

ment-store model: we execute x := a by evaluating a to obtain its value v and
then, by a lookup in the variable environment, find the location associated
with x. Finally, we update the contents of l to v.

The rule [block-bipbss] describes the execution of a block. Notice how
the premises invoke several other transition relations. The first premise,
〈DV , envV , sto〉 →DV (env′V , sto′′), captures that we perform the variable
declarations of DV and thereby update our variable environment and our
store. The second premise, env′V � 〈DP , envP 〉 →DP env′P , describes that we
perform the procedure declarations in DP and thereby update our procedure
environment. The third and final premise, env′V , env′P � 〈S, sto′′〉 → sto′,
describes the execution of the block body S given the new bindings.

A moment’s thought 6.10 How does the rule [block-bipbss] capture
that the bindings provided by the locally declared variables and procedures
are truly local, that is, are known only within the block body S?

6.6 Scope rules

The environment–store model provides us with a nice way of explaining the
different kinds of scope rules.

In Bip, the scope rules tell us which bindings are in effect during the exe-
cution of a procedure call. There are two kinds of scope rules. Dynamic scope
rules employ the bindings known when the procedure is called, whereas static
scope rules employ the bindings known when the procedure was declared.
Most programming languages today use some variation of static scope rules,
but a few (such as Emacs Lisp and some other dialects of Lisp) stick to
dynamic scope rules.

Different scope rules give rise to different interpretations of the same piece
of code. Consider the example statement of Figure 6.2.

If we assume fully dynamic scope rules, that is, dynamic scope rules for
both variables and procedures, this implies that during the execution of

6.6 Scope rules 87

[ass-bipbss] envV , envP � 〈x := a, sto〉 → sto[l �→ v]

where envV , sto � a →a v and envV x = l

[skip-bipbss] envV , envP � 〈skip, sto〉 → sto

[comp-bipbss]
envV , envP � 〈S1 , sto〉 → sto′′

envV , envP � 〈S2 , sto
′′〉 → sto′

envV , envP � 〈S1 ;S2 , sto〉 → sto′

[if-true-bipbss]
envV , envP � 〈S1 , sto〉 → sto′

envV , envP � 〈if b then S1 else S2 , sto〉 → sto′

if envV , sto � b →b tt

[if-false-bipbss]
envV , envP � 〈S2 , sto〉 → sto′

envV , envP � 〈if b then S1 else S2 , sto〉 → sto′

if envV , sto � b →b ff

[while-true-bipbss]
envV , envP � 〈S, sto〉 → sto′′

envV , envP � 〈while b do S, sto′′〉 → sto′

envV , envP � 〈while b do S, sto〉 → sto′

if envV , sto � b →b tt

[while-false-bipbss] envV , envP � 〈while b do S, sto〉 → sto

if envV , sto � b →b ff

[block-bipbss]

〈DV , envV , sto〉 →DV (env′V , sto′′)

env′
V � 〈DP , envP 〉 →DP env′

P

env′
V , env′

P � 〈S, sto′′〉 → sto′

envV , envP � 〈begin DV DP S end, sto〉 → sto′

Table 6.3 Big-step transition rules for Bip statements (except procedure
calls)

88 Blocks and procedures (1)

begin

var x:= 0;
var y:= 42

proc p is x:= x+3;
proc q is call p;

begin

var x:= 9;
proc p is x:= x+1;

call q;
y:=x

end

end

Figure 6.2 An example Bip statement whose behaviour is dependent on
the choice of scope rules

procedure q we know the variables and procedures that were known then q
was called. The variable y therefore ends up having the value 10.

If we assume dynamic scope rules for variables and static scope rules for
procedures, then during the execution of q we know the variables that exist
when q was called but the procedures that were known when q was declared.
Here, the final value of y will be 12.

If we assume fully static scope rules, that is, static scope rules for both
variables and procedures, this means that during the execution of q we know
only the variables and procedures that were known when q was declared.
Here, the final value of y becomes 9.

A moment’s thought 6.11 What is the final value of y if we assume the
other version of mixed scope rules, i.e. static scope rules for variables but
dynamic scope rules for procedures?

A moment’s thought 6.12 What are the advantages and disadvantages
of static and dynamic scope rules, respectively? Why do you think most
programming languages today have static scope rules?

In the remainder of this section we describe how the operational semantics
of Bip will change according to different choices of scope rules. The only

6.6 Scope rules 89

visible differences lie in the rules for declaration and call of procedures and
consequently also involve different definitions of procedure environments.

6.6.1 Fully dynamic scope rules

When we assume fully dynamic scope rules, only the bindings known at
the time of invocation matter. So when a procedure is declared, we need to
remember only the body of the procedure. Consequently, the definition of
the set of possible procedure environments EnvP is given by

EnvP = Pnames ⇀ Stm. (6.2)

The transition rules for procedure declaration are given in Table 6.4.

[proc-bipbss]
envV � 〈DP , envP [p �→ S]〉 →DP env′

P

envV � 〈proc p is S ;DP , envP 〉 →DP env′
P

[proc-empty-bipbss] envV � 〈ε, envP 〉 →DP envP

Table 6.4 Transition rules for procedure declarations (assuming fully
dynamic scope rules)

When we call a procedure p, we execute the body of p using the cur-
rent bindings. We retrieve the body of p by looking it up in our procedure
environment. The rule for call p is therefore that of Table 6.5.

[call-dyn-dynbss]
envV , envP � 〈S, sto〉 → sto′

envV , envP � 〈call p, sto〉 → sto′

where envP p = S

Table 6.5 Transition rule for procedure calls (assuming fully dynamic scope
rules)

Problem 6.13 Apply the big-step semantics to the statement of Figure 6.2
and thereby conclude that the rules of Tables 6.4 and 6.5 yield the expected
result.

90 Blocks and procedures (1)

6.6.2 Mixed scope rules

One can of course imagine a mix of dynamic and static scope rules. In this
section we consider the case where we have dynamic scope rules for variables
and static scope rules for procedures. Here we must perform the call of a
procedure p using the variable bindings known at call time and the procedure
bindings known when p was declared.

EnvP = Pnames ⇀ Stm × EnvP (6.3)

The transition rules for →DP describe how procedure environments are cre-
ated from procedure declarations and can be found in Table 6.6.

[proc-bipbss]
envV � 〈DP , envP [p �→ (S, envP)]〉 →DP env′

P

envV � 〈 proc p is S ;DP , envP 〉 →DP env′
P

[proc-empty-bipbss] envV � 〈ε, envP 〉 →DP envP

Table 6.6 Transition rules for procedure declarations assuming mixed scope
rules (dynamic for variables, static for procedures)

We now describe the behaviour of a procedure call. Since we assume dy-
namic scope rules for variables, we must execute the body of a procedure
named p using the variable bindings known at call time but with the proce-
dure bindings that were in effect when p was declared. The body of p and
the bindings that were in effect at the time of declaration can be found by a
lookup in the procedure environment. The rule for call p is shown in Table
6.7.

Please notice that the body S of procedure p may contain occurrences
of call p. However, during the execution of S we can make use only of
the procedure bindings env′P that were in effect immediately before p was
declared. Consequently, procedure calls cannot be recursive.

In Section 7.3 we will consider recursive procedure calls and show how
they can be expressed within our setting.

Problem 6.14 Apply the big-step transition rules for statements to the
statement of Figure 6.2 and thereby show that the rules of Table 6.6 and
6.7 yield the expected result.

6.6 Scope rules 91

[call-dyn-statbss]
envV , env′

P � 〈S, sto〉 → sto′

envV , envP � 〈call p, sto〉 → sto′

where envP p = (S, env′P)

Table 6.7 Transition rules for procedure calls assuming mixed scope rules
(dynamic for variables, static for procedures)

On recursively defined sets

The definition (6.3) defining the set EnvP of procedure environments is
a recursive definition, since EnvP is defined in terms of itself. It is not
immediately obvious that such definitions make sense. Is there even a set
EnvP that will satisfy this defining equation? For some defining equations
this appears to be impossible. To see this, we need to look at a little bit of
set theory.

In set theory, the cardinality of a set denotes the size of the set. A set B is
said to have strictly greater cardinality than some other set A if there exists
a bijection between A and a proper subset of B but no bijection between A

and B exists. If A and B are finite sets, this is the case when B has more
elements than A.

Now consider the following equation defining a set D:

D = D ⇀ D. (6.4)

By using the proof technique called diagonalization (see e.g. Sipser (2005)
one can show that, for any choice of D, the set D ⇀ D will have strictly
greater cardinality than the set D, and this is of course a contradiction. A
treatment of equations such as (6.4) will therefore require a new interpreta-
tion of equality, sets and function spaces.

The resulting mathematical theory originated from insights by Dana Scott
(Scott, 1976) and is called domain theory . Domain theory is highly interest-
ing but also beyond the scope of this book. See e.g. Gierz et al. (2003) and
Amadio and Curien (1998)

Fortunately, the definition in (6.3) is not problematic, since EnvP appears
only on the right-hand side of ⇀ and since we consider only procedure
environments with finite support, that is, ones that are partial functions
that are defined only for finitely many argument values.

We shall return to recursive definitions in Chapter 15.

92 Blocks and procedures (1)

6.6.3 Fully static scope rules

When we use fully static scope rules, the execution of a procedure call call p

can use only the variable bindings and procedure bindings known when p

was declared.
This then implies that these bindings must be remembered by the proce-

dure environment, and so the set EnvP is defined by

EnvP = Pnames ⇀ Stm × EnvV × EnvP. (6.5)

Again we notice that EnvP is recursively defined.
The transition rules for →DP , the transition relation for procedure decla-

rations, are given in Table 6.8.

[proc-bipbss]
envV � 〈DP , envP [p �→ (S, envV , envP)]〉 →DP env′

P

envV � 〈proc p is S ;DP , envP 〉 →DP env′
P

[proc-empty-bipbss] envV � 〈ε, envP 〉 →DP envP

Table 6.8 Transition rules for procedure declarations assuming fully static
scope rules

When we use fully static scope rules we must then, when calling proce-
dure p, execute the body S of p using the variable bindings and procedure
declarations known when p was declared. However, another important mod-
ification is needed. The next pointer must now point to the next location
which is free at the time of invocation; otherwise, if there are procedure dec-
larations inside S, we run the risk of overwriting the contents of locations
used by global variables that were declared later than p.

A moment’s thought 6.15 Give a simple example that shows why we
need to modify next in this way.

The body of p and the bindings known at the time p was declared can once
again be found by a lookup in the procedure environment. The transition
rule for call p is given in Table 6.9.

Problem 6.16 Apply the big-step semantics to the statement of Figure
6.2 and thereby show that the rules of Tables 6.8 and 6.9 yield the expected
result.

Problem 6.17 There is another possible choice of mixed scope rules which

6.6 Scope rules 93

[call-stat-statbss]
env′

V [next �→ l], env′
P � 〈S, sto〉 → sto′

envV , envP � 〈call p, sto〉 → sto′

where envP p = (S, env′V , env′
P)

and l = envV next

Table 6.9 Transition rules for procedure calls assuming fully static scope
rules

we have not considered. Give a big-step semantics for a version of Bip with
static scope rules for variables and dynamic scope rules for procedures.

Problem 6.18 Extend Bip with references (pointers). Describe the ex-
tended abstract syntax and a suitable big-step semantics.

7

Parameters

In this chapter we turn our attention to parameter passing. We add pro-
cedures with a single parameter to Bip and and show how to modify the
big-step semantics of the previous chapter to handle three kinds of param-
eter passing: call-by-reference, call-by-value and call-by-name. The common
underlying programming language will be called Bump.1

We also consider another phenomenon that we might just as well have con-
sidered in the previous chapter, but which typically arises when parameter
passing is used, namely recursive procedures.

7.1 The language Bump

The language Bump is a small extension of Bip; the only difference is
that procedures always have one parameter. We consider three variations of
Bump with slight modifications of the syntax depending on our choice of
parameter mechanism.

7.1.1 Syntax of Bump

Let us here start with the version of Bump that we shall consider in the
next section, namely the one where we consider call-by-reference.

S ::= x := a | skip | S1; S2 | if b then S1 else S2 |
while b do S | begin DV DP S end | call p(y)

DV ::= var x := a; DV | ε

DP ::= proc p(var x) is S; DP | ε

1 Bip using monadic parameters.

7.1 The language Bump 95

The only differences among the three versions of Bump are found in the
syntax of procedure declarations DP and procedure calls.

The terminology is the same, irrespective of our choice of parameter mech-
anism: in a procedure declaration proc p(var x) is S we say that x is the
formal parameter and in the procedure call call p(y) we say that y is the ac-
tual parameter . A parameter mechanism describes the association between
the formal and the actual parameter.

7.1.2 Basic assumptions about our semantics

Throughout, we shall assume the environment-store model which describes
a program state as a pair of two mappings: a variable environment envV

taken from the set

EnvV = Var ∪ {next} ⇀ Loc

and a store sto taken from the set

Sto = Loc ⇀ Z.

In order not to complicate matters too much, we consider only procedures
that have one parameter. It is completely straightforward to generalize the
account given in this chapter to procedures with multiple parameters.

When we declare a procedure, we need to remember the name of the
formal parameter in order to make this association. Therefore, our procedure
environments should be defined as follows:

EnvP = Pnames ⇀ Stm × Var × EnvV × EnvP.

Here, the Var component represents the formal parameter.
Given this new definition of the set of procedure environments we also

need to modify our semantics of procedure declarations.
The transition rules for →DP that describe how declarations build proce-

dure environments can be found in Table 7.1.
It is important to note that our definition of EnvP is completely indepen-

dent of our choice of parameter mechanism and reflects only our choice of
scope rules and that the name of the formal parameter must be remembered.

Our big-step semantics will be an extension of the version of the Bip
big-step semantics having fully static scope rules. The rules for procedure
declarations will be changed; this change is uniform and applies to all three
parameter mechanisms.

For statements, the semantics of procedure calls is dependent on our

96 Parameters

[procbss]
envV � 〈DP , envP [p �→ (S, x, envV , envP)]〉 →DP env′

P

envV � 〈proc p(var x) is S ;DP , envP 〉 →DP env′
P

[proc-emptybss] envV � 〈ε, envP 〉 →DP envP

Table 7.1 Rules for declaring procedures with a single parameter assuming
static scope rules

choice of parameter mechanism. For each of the three choices that we con-
sider in this chapter, we show how to modify the rule for procedure calls,
[call-stat-statbss]. All other transition rules are left unchanged.

Our transition systems for statements will be of the form (Γ,→, T) where

Γ = (Stm × Sto) ∪ Sto,

T = Sto.

7.2 Call-by-reference

The call-by-reference parameter mechanism is known from several program-
ming languages, including Pascal, C, C++, and C# – but not Java, which
uses call-by-value.

The underlying idea of call-by-reference is that the formal parameter is a
reference to the address of the actual parameter. This then implies that the
actual parameter must be a variable.

Consider as an example the procedure declaration

proc var x is x := x+1

and the subsequent call call p(y). When the call has been completed, the
value of y will have been incremented by 1. This means that the formal
parameter x denotes a variable which has the same address as y. In the
setting of the environment-store model, this then implies that x and y must
be bound to the same location.

The call-by-reference parameter mechanism therefore associates the for-
mal parameter with the location of the actual parameter.

The new big-step semantics of statements is different from that of Bip
only insofar as a single rule is concerned, namely the call rule [call-rbss].
(But recall that the semantics of procedure declarations is also redefined as
described in the previous section.)

7.3 On recursive and non-recursive procedure calls 97

[call-rbss]
env′V [x �→ l][next �→ l′], env′

P � 〈S, sto〉 → sto′

envV , envP � 〈call p(y), sto〉 → sto′

where envP p = (S, x, env′
V , env′

P),
and l = envV y
and l′ = envV next

Table 7.2 Transition rule for calling a call-by-reference procedure

The new call rule is shown in Table 7.2. It describes the following. We
first perform a lookup in envP under p; in this way, we find the procedure
body S, the environments env′V and env′P known at declaration time and the
formal parameter x. Then we retrieve the location of the actual parameter
y by a lookup in envV . Finally, we execute the body S in the declaration
time environment env′V – but we must remember to update it such that x

is now associated with l, which is the location of y, and such that the next
free location is the next free location of envV .

7.3 On recursive and non-recursive procedure calls

The transition rule of Table 7.2 does not allow p to call itself recursively.
For any occurrence of call p within the body p will refer to some other
procedure called p. Remember that the procedure body S is being executed
in the procedure environment env′P , which knows only the procedures that
were known immediately prior to the declaration of p.

Consider the example statement of Figure 7.1. Here the procedure named
f contains a procedure call call f(z). If we tried to use [call-rbss] to
find a transition in this case, we would run into problems, since the side
condition requires that the name f must be known in env′P – which is not
the case.

Problem 7.1 (Important) Let S1 denote the statement found in Figure 7.1
and let envV and envP be empty environments; i.e. for all x ∈ Var we have
that envV x = undef and for all p ∈ Pnames we have that envP p = undef.
Try to build a derivation tree for the transition

envV , envP � 〈S1, sto〉 → sto′.

Proceed only as far as the part of the construction that reaches the first call
of f within the body of f.

98 Parameters

begin

var y:= 0;
var x:=1

proc f(var x) is

begin
var z:= x-1;
y:= y*x;

if x > 1 then
call f(z)

else
skip

end

y:=4;
call f(y);
z:= y

end

Figure 7.1 A Bump statement with recursive calls

Fortunately, the solution is simple: we add a binding for p to env′P such
that p is associated with the information needed to call the correct version
of p. This is captured in [call-r-recbss] in Table 7.3.

Problem 7.2 (Important) Again consider the statement found in Figure
7.1 and let envV and envP be empty environments but now assume that
the transition rule for procedure calls is [call-r-recbss]. Try to build a
derivation tree for the transition

envV , envP � 〈S1, sto〉 → sto′.

Again, proceed as far as the part of the construction that reaches the first
call of f within the body of f.

Here it is important to note that because we insist on static scope rules for
procedures we need to modify the rule for procedure calls. If we had chosen
dynamic scope rules for procedures, no modification would be necessary. All
calls of p within the body of p would automatically become recursive calls.

A moment’s thought 7.3 Why are calls of p within the body of p always
recursive when we assume dynamic scope rules for procedures?

7.4 Call-by-value 99

[call-r-recbss]
env′

V [x �→ l][next �→ l′], env′′
P � 〈S, sto〉 → sto′

envV , envP � 〈call p(y), sto〉 → sto′

where envP p = (S, x, env′V , env′
P), envV y = l

and l′ = envV next
and env′′

P = envP [p �→ (S, x, env′V , env′
P)]

Table 7.3 Revised transition rule for procedure calls that allow recursive
calls

7.4 Call-by-value

Another well-known parameter mechanism is call-by-value. Here, the syntax
of Bump becomes

S ::= x := a | skip | S1; S2 | if b then S1 else S2 |
while b do S | begin DV DP S end | call p(a)

DV ::= var x := a; DV | ε

DP ::= proc p(x) is S; DP | ε

The actual parameter is now an arithmetic expression a. The formal param-
eter x is then considered a local variable in the body of the procedure, and
in a procedure call call p(a), the initial value of x is the value of the actual
parameter a.

Consider as an example the procedure proc p(x) is x := x + 1 and the
subsequent call call p(y + 2). Here, we must first find the value of y + 2;
this value then becomes the initial value of x in the execution of the body
of p.

The semantics of procedure declarations is identical to that used for call-
by-reference. Again, the only change to the total semantics is that the rule
for procedure call is modified.

Table 7.4 contains both versions of the rule – one for which no calls of
p can be recursive and another, for which all calls of p within p become
recursive.

The side conditions are common to both rules. From a lookup in envP we
discover that p is bound to (S, x, env′V , env′P). First, we must evaluate the
actual parameter a to obtain the value v. Next, we find the next available
location, l. This location will then be assigned to the formal parameter x.
In the location l we now place the value v. Please notice that since we here

100 Parameters

update next, we do not need to further modify next in the way that was
necessary for the versions of the call rule that we have considered earlier.
Finally, we can execute the procedure body S using the bindings known at
declaration time.

Problem 7.4 The transition rules in Table 7.4 express that we consider
the formal parameter as a local variable. It is therefore possible to assign new
values to the formal parameter within the body of the procedure. How can
we change our model of program states to give a semantics to the version of
call-by-value where there the formal parameter is considered an immutable
local constant? What would the resulting operational semantics look like?
Hint: First find out how to introduce declared constants into the Bump
language.

Problem 7.5 The parameter mechanism call-by-value-result lies between
call-by-value and call-by-reference. Here, a new location is allocated to the
formal parameter (as is the case for call-by-value) and the content of the
cell is initialized to hold the value of the actual parameter. However, upon
completion of the procedure call, the location of the actual parameter is then
updated to hold the final value found in the location of the formal parameter
(as is the case for call-by-reference). Describe a transition rule for procedure
calls for this parameter mechanism. Hint: First, you will need to agree on
the syntax. What can the actual parameter be?

Problem 7.6 In Bip procedures are not mutually recursive (why not?)
Modify the big-step semantics of Bip such that mutual recursion becomes
possible. Illustrate your idea with a suitable example. Hint: It is a good idea
to define an extension of the environment update notation that allows you
to express that the bindings of several procedures can be updated simulta-
neously.

7.5 Call-by-name

The ALGOL 60 language (see also Section 1.2.1) has a lot to answer for. It
was a clear improvement over FORTRAN, which was the dominant program-
ming language at the time. Moreover, ALGOL 60 was the first programming
language whose syntax was defined by a context-free grammar. Backus–Naur
Form (BNF) is named after John Backus and Peter Naur, the editors of the
ALGOL 60 report (Backus and Naur, 1963). Various successor languages –
including Algol W, Algol 68, Pascal, Modula and most recently Oberon –
are all based directly on ideas from ALGOL 60, and several other languages
are heavily inspired by features of the ALGOL family.

[call-vbss]
env′

V [x �→ l][next �→ new l], env′
P � 〈S, sto[l �→ v]〉 → sto′

envV , envP � 〈call p(a), sto〉 → sto′

where envP p = (S, x, env′
V , env′

P), envV , sto � a →a v and l = envV next

[call-v-recbss]
env′V [x �→ l][next �→ new l], env′

P [p �→ (S, x, env′V , env′
P)] � 〈S, sto[l �→ v]〉 → sto′

envV , envP � 〈call p(a), sto〉 → sto′

where envP p = (S, x, env′
V , env′

P), envV , sto � a →a v and l = envV next

Table 7.4 Transition rules for procedure calls using call-by-value

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511840449.008
https://www.cambridge.org/core

102 Parameters

ALGOL 60 has two parameter mechanisms, call-by-value and call-by-
name. In this section we consider call-by-name and derive its formal de-
scription as a structural operational semantics along the lines of what we
have seen so far.

7.5.1 The informal description of call-by-name

At the time of the ALGOL 60 report, the authors did not have access to the
methods of formal semantics. As we saw in Chapter 1, denotational seman-
tics only arrived on the scene in the late 1960s and structural operational
semantics was almost two decades away. Consequently, the ALGOL 60 re-
port had to resort to using English. Below is what Naur and his colleagues
gave as their semantics of call-by-name:

The effect of [a procedure invocation] will be equivalent to the effect of performing
the following operations on the program at the time of execution of the procedure
[invocation]: Any formal [name parameter identifier] is replaced, throughout the
procedure body, by the corresponding actual parameter, after enclosing the latter
in parentheses if it is an expression but not [an expression occurring on the left-
hand side on an assignment]. Possible conflicts between identifiers inserted through
this process and other identifiers already present within the procedure body will be
avoided by suitable systematic changes of the formal or local identifiers involved.
Finally, the procedure body, modified as above, is inserted in place of the procedure
[invocation] and executed. If the procedure is called from a place outside the scope
of any [free identifier] of the procedure body, the conflicts between the identifiers
inserted through this process of body replacement and the identifiers whose decla-
rations are valid at the place of the procedure statement will be avoided through
suitable systematic changes of the latter identifiers. (Backus and Naur, 1963)

Confused? Let us introduce call-by-name into Bump and give a structural
operational semantics of this relic of the 1960s in such a way that we follow
the requirements of the ALGOL 60 report.

Our abstract syntax is now

S ::= x := a | skip | S1; S2 | if b then S1 else S2 |
while b do S | begin DV DP S end | call p(a)

DV ::= var x := a; DV | ε

DP ::= proc p(name x) is S; DP | ε

The underlying idea is that in a procedure invocation call p(a) we syntac-
tically replace every occurrence of the formal parameter x inside the body
of p by the actual parameter a (having put a in brackets, following Backus
and Naur (1963)). We write this as S[x �→ a]. Note that this is something

7.5 Call-by-name 103

entirely different from the update notation for environments and stores. Syn-
tactic substitution, to be defined shortly, is an operator on statements. By
performing a syntactic substitution on a statement we get a modified state-
ment where all free occurrences of x have been replaced by the arithmetic
expression a.

Thus, the call-by-name parameter mechanism makes the association be-
tween the formal and the actual parameter at the syntactic level, whereas
the parameter mechanism that we have considered previously made the as-
sociation at the semantic level.

7.5.2 A strong parameter mechanism

Notice that we may never need to find the value of the actual parameter
when we use call-by-name as our parameter mechanism. A simple example
of this is proc p(name x) is skip. If p had used call-by-value, we would
have to evaluate the actual parameter. However, since we use call-by-name
we only need to evaluate the actual parameter where it will appear after
substitution – and here the formal parameter is absent in the body of p.

Another interesting consequence is that we can exploit the fact that every
occurrence of the actual parameter must be evaluated separately. In Figure
7.2 we use this to compute

∑10
i=1 i2, the sum of the squares of the first 10

positive integers. The trick here is that the formal parameter temp is replaced
by i*i. Every time the main loop of the procedure findsum is traversed,
i*i is evaluated anew.

This programming technique is known as Jensen’s device, named after its
inventor, the Danish programming pioneer Jørn Jensen.

7.5.3 Scope rules

We must first determine whether we should have static or dynamic scope
rules. Let us have another look at the excerpt from the Algol 60 report:

Finally, the procedure body, modified as above, is inserted in place of the procedure
[invocation] and executed. If the procedure is called from a place outside the scope
of any [free identifier] of the procedure body, the conflicts between the identifiers
inserted through this process of body replacement and the identifiers whose decla-
rations are valid at the place of the procedure statement will be avoided through
suitable systematic changes of the latter identifiers. (Backus and Naur, 1963)

Here, there is no explicit mention of which bindings should be in effect
during the execution of a procedure call. On the one hand, it is required
that the body of the procedure is inserted in place of the invocation, and

104 Parameters

begin

var lo := 1;
var i := lo;
var sum := 0;

proc findsum (name term) is
var hi := 10;
var temp := 0;

begin
while not (i > hi) do

begin
temp := temp + term;
i := i+1

end;
sum := temp

end;

call findsum (i*i)
end

Figure 7.2 Exploiting call-by-name for computing the sum
∑10

i=1 i2

this, taken on its own, would indicate dynamic scope rules. On the other
hand, the description also requires that any conflicts between identifiers
(i.e. procedure names and variables) that would arise must be dealt with
by systematic renaming of the identifiers that are available at the place of
invocation. This indicates that we should assume static scope rules.

As was the case for the other parameter mechanisms, we must remember
the name of the formal parameter and consequently the set of procedure
environments is defined by

EnvP = Pnames ⇀ Stm × Var × EnvV × EnvP.

The rules for procedure declarations can be found in Table 7.5.
The new rule for procedure calls is given in Table 7.6; note that only

non-recursive calls are possible according to this rule.

7.5.4 Defining syntactic substitution

All that is now missing is a precise definition of how to replace the for-
mal parameter by the actual parameter, i.e. a definition of S[x �→ a]. This
definition turns out to be fairly involved.

7.5 Call-by-name 105

[procbss]
envV � 〈DP , envP [p �→ (S, x, envV , envP)]〉 →DP env′

P

envV � 〈proc p(name x) is S ;DP , envP 〉 →DP env′
P

[proc-emptybss] envV � 〈ε, envP 〉 →DP envP

Table 7.5 Transition rules for declaration of call-by-name procedures
assuming fully static scope rules

[call-nbss]
env′

V , env′
P � 〈S[x �→ a], sto〉 → sto′

envV , envP � 〈call p(a), sto〉 → sto′

where envP p = (S, x, env′
V , env′

P)

Table 7.6 Transition rules for procedure calls using call-by-name

Arithmetic and Boolean expressions

Since arithmetic and Boolean expressions may contain occurrences of the
formal parameter and may appear in statements, we first need to define
syntactic substitution for these two syntactic categories.

The underlying idea is straightforward: a′[x �→ a] is the result obtained
by replacing all occurrences of x in a′ by a, where a is now enclosed in
parentheses. If a′ is the variable x, the result will be a. If a′ is some other
variable or a numeral, nothing is changed, and the result is a′. If a′ is a
composite expression, we replace x by a in each immediate constituent. In
other words, the definition of substitution will be recursive in the structure
of a′ and will not depend on the structure of a. The complete definition can
be found in Definition 7.7.

The substitution operators in the present section are all postfix opera-
tors: when a substitution acts on a composite term, we sometimes place
vertical bars ‖ around the term to which the substitution is applied. Thus
‖a1+a2‖[y �→ a] should be read as an application of the substitution to the
entire expression a1+a2.

Definition 7.7 (Substitution in arithmetic expressions) Syntactic substi-

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511840449.008
https://www.cambridge.org/core

106 Parameters

tution is defined compositionally for Aexp by

x[y �→ a] =
{

(a) if x = y,

x if x �= y

n[y �→ a] = n,

(a1)[y �→ a] = (a1[y �→ a])

‖a1+a2‖[y �→ a] = a1[y �→ a]+a2[y �→ a]

‖a1*a2‖[y �→ a] = a1[y �→ a]*a2[y �→ a]

‖a1-a2‖[y �→ a] = a1[y �→ a]-a2[y �→ a].

Example 7.8 We have that

‖(2+x)-z‖[z �→ (3+x)] = ‖(2+x)‖[z �→ (3+x)]-z[z �→ (3+x)]

= (2+x)[z �→ (3+x))]-(3+x)

= (2+x)-(3+x).

A moment’s thought 7.9 What is ‖y+((4-9)*x)‖[x �→ (x-3)]? (Apply
the definition!)

We can use Definition 7.7 to define syntactic substitution for Boolean
expressions.

Definition 7.10 (Substitution in Boolean expressions) Syntactic substi-
tution of arithmetic expressions is defined compositionally for Bexp by

‖a1=a2‖[y �→ a] = a1[y �→ a]=a2[y �→ a]

(a1)[y �→ a] = (a1[y �→ a])

‖a1 < a2‖[y �→ a] = a1[y �→ a] < a2[y �→ a]

‖b1 ∧ b2‖[y �→ a] = b1[y �→ a] ∧ b2[y �→ a]

‖¬b1‖[y �→ a] = ¬b1[y �→ a].

Statements and declarations

We finally come to the definition of substitution in statements. Since state-
ments can contain declarations, we also need to define how substitution acts
on declarations.

The definition of substitution is more involved here, since we need to take
the following part of the ALGOL 60 definition into account:

7.5 Call-by-name 107

Possible conflicts between identifiers inserted through this process and other iden-
tifiers already present within the procedure body will be avoided by suitable sys-
tematic changes of the formal or local identifiers involved. (Backus and Naur, 1963)

This part of the definition is intended to avoid introducing name clashes.
A name clash will occur if a local variable declared within a procedure shares
its name with a global variable occurring in the actual parameter. Figure
7.3 gives an example of this phenomenon. Here the procedure p contains a
locally declared variable y bearing the same name as a variable y found in
the surrounding block. Moreover, the procedure contains a locally declared
procedure whose formal parameter is also called x.

Consider the following example, where the body of p is the statement

begin

var y := 3;
var z := 2;

proc q (name x) is
begin

y := x+2;
end;

z := (z+x)*y;
call q(z)

end

What is the result of performing the substitution S[x �→ y+4]? We cannot
perform this substitution in the näıve way. If we did, we would get

begin

var y := 3;
var z := 2;

proc q (name x) is
begin

y := (y+4)+2
end;

z := (z+(y+4))*y;

108 Parameters

begin

var y:=2;
proc p(name x) is

begin
var y:= 3;
var z := 2;

proc q(name x) is begin y:= x+2 end;

z := (z+x)*y;
call q(z);

end

call p(y+4)

end

Figure 7.3 A Bump statement showing where name clashes could occur
as a result of an incorrectly defined substitution

call q(z)

end

But this introduces a name clash: we no longer distinguish between the
global y and the local y, and we erroneously instantiate the parameter x of
the local procedure q (which has not yet been invoked).

The way out of this problem is to require that all variables and parameters
must be uniquely named. After all, the importance lies in what the variables
denote. In fact, variables (and procedures) do not need names at all. We
might just as well designate a variable by an index which describes in which
block it occurs. The innermost y in Figure 7.3 could be given the index 11
(first variable declared in the first block at level 2), whereas the outermost
y would get the index 1 (first variable declared at the outermost level). This
indexing principle is called de Bruijn indexing after the Dutch logician W.
de Bruijn. However, in our treatment we shall not take this route.

When we define syntactic substitution on statements, it is important to
notice that some statements, namely blocks begin DV DP S end, contain
declarations. We substitute y by a in the block begin DV DP S end by
substituting y by a in the variable declaration DV , substituting y by a in

7.5 Call-by-name 109

the procedure declarations DP and finally substituting y by a in the block
body S.

Substitution of y by a in a variable declaration consists of replacing y by a

on the right-hand side of each single declaration. This, then, requires that we
avoid name clashes – if the block contains the declaration of a local variable
called y, we must rename this local y to a fresh name z and then replace
y by z in the remainder of the block. This kind of systematic renaming of
bound variable occurrences is known in the literature as alpha-conversion.

We shall return to alpha-conversion in Section 8.6 in the setting of the
π-calculus and in Section 12.3 in the setting of the λ-calculus, since the same
problem of name clashes also appears in those contexts.

Definition 7.11 (Substitution in variable declarations) Syntactic substi-
tution in variable declarations DecV is defined inductively by

‖var x := a′; DV ‖[y �→ a] =
{

var x := a′[y �→ a]; DV [y �→ a] if x �= y

var z := a′[y �→ a]; DV [y �→ z]) if x = y

ε[y �→ a] = ε

where z is a fresh variable name.

Problem 7.12 In this section we assume that all variables in a block are
pairwise distinct. This need not be the case. How should we modify the
definitions to reflect this?

Substitution of y by a in a procedure declaration also consists of replacing
y by a in each procedure that is being declared, and this is the other place
where we need to prevent name clashes: if a procedure p has a parameter
called y, we should not perform the replacement in the body of p.

Notice that the following definition assumes that substitution is defined
for statements; this is done below.

Definition 7.13 (Substitution in procedure declarations) Syntactic substi-
tution of arithmetic expressions is for procedure declarations DecP defined

110 Parameters

inductively by

‖proc p(name x) is S; DP ‖[y �→ a] =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

proc p(name y) is
S; DP [y �→ a]

if x = y

proc p(name x) is
S[y �→ a]; DP [y �→ a]

if x �= y

ε[y �→ a] = ε.

We are now finally able to define substitution for statements. The defini-
tion of substituting a for y is also fairly delicate; if a locally declared variable
shares its name with a variable occurring in the expression a, we must re-
name the local variable. However, we must remember to do this throughout
the block and therefore there will be two clauses in the definition for blocks,
depending on whether or not a local variable of the same name occurs.

Definition 7.14 (Substitution in statements) Syntactic substitution is
defined compositionally for statements as in Table 7.7.

7.6 A comparison of parameter mechanisms

In this chapter we have seen three distinct parameter mechanisms.
The semantics of call-by-name is a lot more complicated than that of call-

by-reference or call-by-value, since we need to associate actual parameters
with formals at the level of syntax and therefore need to define a notion of
syntactic substitution which avoids name clashes.

On the other hand, call-by-name is a much more powerful parameter
mechanism than the other two. Procedure calls sometimes succeed under
call-by-name, whereas they would result in a run-time error if either of the
other two parameter mechanisms had been assumed.

Consider again the procedure proc p(name x) is skip. The procedure
call call p(1/0) will not lead to a run-time error, since 1/0 will never be
evaluated. This would happen, had we taken call-by-name as our parameter
mechanism.

Moreover, what we have considered here are the complications that arise
in languages with binding constructs. Programming languages are by no
means the only such languages.

‖x:=a′‖[y �→ a] = x:=a′[y �→ a]
skip[y �→ a] = skip

‖S1 ;S2‖[y �→ a] = S1 [y �→ a];S2 [y �→ a]
‖if b then S1 else S2‖[y �→ a] = if b[y �→ a] then S1 [y �→ a] else S2 [y �→ a]

‖while b do S‖[y �→ a]) = while b[y �→ a] do S[y �→ a]

‖begin var x := a′; DV DP S end‖[y �→ a] = begin var z := a′[y �→ a] ; D′
V D′

P S′ end

where z is fresh and D′
V , D′

P and S′ are given by

begin D′
V D′

P S′ end

= ‖begin DV [x �→ z] DP [x �→ z] S[x �→ z] end‖[y �→ a]
if x = y or x occurs in a

‖begin var x := a′;D′
V D′

P S′ end‖[y �→ a] = begin x := a′ D′
V D′

P S end

where D′
V , D′

P and S′ are given by

begin D′
V D′

P S′ end

= ‖begin DV DP S end‖[y �→ a]
if x �= y and x does not occur in the block

‖begin ε DP S end‖[y �→ a] = begin ε DP [y �→ a] S[y �→ a] end

‖call p(a′)‖[y �→ a] = call p(a′[y �→ a])

Table 7.7 Substitution in statements

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511840449.008
https://www.cambridge.org/core

112 Parameters

We know similar examples from the realm of ordinary mathematical no-
tation. A well-known binding construct is the differential dx in an integral
such as ∫ π

2

0

√
y sin2x dx.

Here, the differential dx states that we must perform integration w.r.t. x

and that y is a free variable.
Another example of the rôle played by binding constructs in mathematics

is that of the quantifiers ∃ and ∀ from predicate logic (see Section 2.2.2)
that allow us to write formulae such as

∀x.x + y = 4.

In a formal treatment of predicate logic, all definitions of substitions within
formulae must avoid name clashes in a way which is entirely similar to that
presented in this chapter for call-by-name.

A moment’s thought 7.15 Give other examples of binding constructs
in mathematics, programming languages and elsewhere.

8

Concurrent communicating processes

In Chapter 5 we saw how one can describe parallel programs using structural
operational semantics. Concurrenct behaviour is explained as the nondeter-
ministic interleaving of the steps of the individual parallel components, so
to describe this we employ a small-step semantics.

However, the language constructs considered in Chapter 5 allowed parallel
components to communicate only by reading and modifying the values of
shared variables. In this chapter we take a look at other paradigms for
communication between concurrent processes.

The first language that we shall consider in Section 8.1 is very reminis-
cent of the process calculi CSP (Hoare, 1988) and CCS (Milner, 1989). The
languages considered in later sections are all variants of this language.

Section 8.5 of the chapter is devoted to a short introduction to the area of
behavioural equivalences for concurrent processes, and in particular to the
notion of bisimulation.

CSP and CCS are early examples of process calculi, and the idea of bisimu-
lation equivalence has become prominent here. A process calculus is a simple
notation designed with the aim of being able to describe and reason about
the behaviour of concurrent processes. The last section of the chapter de-
scribes a more recent and very important process calculus which has given
rise to a large body of research. This process calculus, the π-calculus, is an
expressive yet simple process calculus that allows one to describe phenomena
such as references and the transfer of reference.

8.1 Channel-based communication – Cab

We first extend Bims with concurrent processes that communicate over
channels – the resulting language is called Cab.1

1 Channels added to Bims.

114 Concurrent communicating processes

A program now consists of a collection of parallel processes (which are
statements) that can communicate using channels. A process can use a chan-
nel to emit or receive values.

The syntactic categories of Cab are those of Bims together with the
category Proc of programs and the category Channels of channels. We let
the metavariable c range over elements of Channels and let p range over
Proc.

The abstract syntax of Cab extends that of Bims as follows:

p ::= par(S1, . . . , Sn)

S ::= . . . | c?x | c!a

Here, we assume that in a parallel composition par(S1, . . . , Sn), any two
parallel components Si and Sj (for 1 ≤ i, j ≤ k and i �= j) are variable-
independent. By this we mean that none of the variables in one occurs in
the other. This will ensure that parallel components can execute without
interfering with each other.

Also note that the syntax allows us to express the parallel composition of
an arbitrary number of processes.

There are two new statements for channel-based communication: c?x de-
notes that a value is received on channel c and bound to x; c!a denotes that
the value of the arithmetic expression a is sent out on the channel c.

8.2 Global and local behaviour

In the following sections we describe variations of Cab and their semantics.
Common to all the semantics is a two-level view of the operational semantics
which is completely independent of our choice of communication.

It is probably easiest to understand the two-level semantics via a metaphor
taken from the realm of chemistry. A program can be thought of as a ‘so-
lution’ comprised of ‘molecules’ that react by means of rendezvous.2 This
chemistry metaphor was originally proposed by Gerard Berry and Gerard
Boudol in their work on the so-called Chemical Abstract Machine (Berry
and Boudol, 1992), and the following account is inspired by central ideas in
their work.

We can therefore think of two levels of behaviour.

Local behaviour: At the local level we describe the behaviour of a single
process, i.e. a ‘molecule’. A molecule exhibits local (molecular) be-

2 From French rendez–vous! - ‘present yourselves’.

8.3 Synchronous communication in Cab 115

haviour whenever its behaviour is independent of other molecules.
Here, only a single molecule is affected.

Global behaviour: At the global level we describe the interaction between
processes. A molecule (process) exhibits global behaviour when it
‘reacts’ with another molecule; the ‘solution’ is changed. Here, more
than one molecule is affected.

In order not to complicate the presentation, we shall here return to the
simple model of program states, i.e. we consider states s : Var ⇀ Z.

8.3 Synchronous communication in Cab

Our first semantics uses synchronous communication – both processes in-
volved in a communication must be ready for the exchange. In other words,
a communication between processes p1 and p2 can take place if p1 is able to
send v on channel c and p2 is able to receive a value on channel c. This is
called a rendezvous.

8.3.1 Local behaviour

In our transition system for the local level (Γl,⇒, T) the set of configurations
is defined by Γl = (Stm×States)∪States and the terminal configurations
are given by T = (Stm × States) ∪ States.

As for Bims, our transitions are of the forms 〈S, s〉 ⇒l 〈S′, s′〉 and
〈S, s〉 ⇒l s′. The rules defining ⇒l are shown in Table 8.1 and are com-
pletely similar to the rules of the small-step semantics of Bims.

8.3.2 Global behaviour – semantics of programs

We are now almost ready to describe the behaviour at the global level,
including rendezvous. As we saw above, a rendezvous can occur if two pro-
cesses agree to use a channel for exchanging a value. Our semantics must
therefore be able to describe the communication capabilites of individual
processes.

A capability semantics

We describe the communication capabilities of a process by means of a
labelled transition system.

Definition 8.1 (Labelled transition system) A labelled transition system
is a triple G = (Γ, A,

a→), where Γ is a set of configurations, A is a set

116 Concurrent communicating processes

[assl-sss] 〈x := a, s〉 ⇒l s[x �→ v] where s � a →a v

[skipl-sss] 〈skip, s〉 ⇒l s

[comp-1l-sss]
〈S1 , s〉 ⇒l 〈S′

1 , s
′〉

〈S1 ;S2 , s〉 ⇒l 〈S′
1 ;S2 , s′〉

[comp-2l-sss]
〈S1 , s, 〉 ⇒l s′

〈S1 ;S2 , s〉 ⇒l 〈S2 , s′〉

[if-truel-sss] 〈if b then S1 else S2 , s〉 ⇒l 〈S1 , s〉

if B[[b]]s = tt

[if-falsel-sss] 〈if b then S1 else S2 , s〉 ⇒l 〈S2 , s〉

if B[[b]]s = ff

[whilel-sss] 〈while b do S, s〉 ⇒l

〈if b then (S; while b do S) else skip, s〉

Table 8.1 Transition rules defining local transitions

of labels and →⊆ Γ × A × Γ is the labelled transition relation. Whenever
(γ1, a, γ2) ∈→, we write γ1

a→ γ2.

Problem 8.2 (Important) Finite-state automata and pushdown automata
can be viewed as labelled transition systems. Why? What are the configu-
rations and the transition relations?

In our capability semantics, the labelled transition semantics is given
by the labelled transition system (Γc, A,

a→). The set of labels is A =
Channels × Z; so here a label denotes a communication capability. Our
configurations are Γc = (Stm×States)∪States and transitions are of the
forms 〈S, s〉 c?v→ 〈S′, s′〉 and 〈S, s〉 c!v→ 〈S′, s′〉.

We should read 〈S, s〉 c?v→ 〈S′, s′〉 as follows: ‘From the configuration 〈S, s〉
we can reach the configuration 〈S′, s′〉 by receiving the value v on channel
c’. Similarly, we should read 〈S, s〉 c!v→ 〈S′, s′〉 as follows: ‘From the configu-
ration 〈S, s〉 we can reach the configuration 〈S′, s′〉 by sending the value v

on channel c’.

8.3 Synchronous communication in Cab 117

[inputc-sss] 〈c?x, s〉 c?v→ 〈skip, s[x �→ v]〉 for all v ∈ Z

[outputc-sss] 〈c!a, s〉 c!v→ 〈skip, s〉 where s � a →a v

[compc-sss]
〈S1 , s〉 α→ 〈S′

1 , s
′〉

〈S1 ;S2 , s〉 α→ 〈S′
1 ;S2 , s′〉

where α ∈ {c?v, c!v}

Table 8.2 Rules defining the capability semantics

The rules defining → are given in Table 8.2. We now present the content
of the most important rules.

The axiom [inputc-sss] should be read as follows: A process which is
ready to receive a value will accept an arbitrary value. The output axiom
[outputc-sss] states that a process which is ready to emit a specific value
can do so. The value is found by evaluating the arithmetic expression a.

Problem 8.3 Show that, if 〈S, s〉 c!v→ 〈S, s′〉, then we have s = s′. In other
words, the state does not change because a capability is offered.

Rules defining rendezvous

We can now describe the global semantics; here, we view the system of
parallel components as a ‘solution’ whose ‘molecules’ may interact.

Our transition system for programs is (Γg, Tg,⇒g) and is meant to capture
how communications happen. Our communications are either elements of
Proc × States – start configurations – or ‘solution configurations’ of the
form {|S1, . . . , Sn|}, where each ‘molecule’ Si in the ‘solution’ is a process.

More precisely, let M(Stm) denote the set of all multisets3 of state-
ments. Consequently, we have that Γg = (Proc × States) ∪M(Stm) and
Tg = {∅} × States. The transition relation ⇒g is defined by the transition
rules in Table 8.3. Note that in the rule [commg-sss] we do not require that
the parallel component 〈Si, s〉 has index i smaller than j, only that they are
different; communication is possible between any two components in either
direction, if they possess the right capabilities.

3 A multiset is a collection where elements may appear more than once. An example is
{|1, 1, 2, 3, 5, 2|} – which is different from the multiset {|1, 2, 3, 5|}.

118 Concurrent communicating processes

[startg-sss] 〈par(S1 , . . . , Sn), s〉 ⇒g ({|S1 , . . . , Sn |}, s)

[local-1g-sss]
〈Si, s〉 ⇒l 〈S′

i , s
′〉

({| · · · , Si, · · · |}, s) ⇒g ({| · · ·S′
i , · · · |}, s′)

[local-2g-sss]
〈Si, s〉 ⇒l s′

({| · · ·Si · · · |}, s) ⇒g ({| · · · |}, s′)

[commg-sss]
〈Si, s〉 c?v→ 〈S′

i , s
′〉 〈Sj , s〉 c!v→ 〈S′

j , s〉
({| · · · , Si, · · · , Sj , · · · |}, s) ⇒g ({| · · · , S′

i , · · · , S′
j , · · · |}, s′)

Table 8.3 Synchronous communication: transition rules for the global level

Problem 8.4 Let the statements S1, S2 and S3 be given by

S1 : x1 := 1;
c?x2;
if x1 = x2 then x1 := x1 + 1;

a!x1

else x2 := x2 + 1;
b!x2

S2 : z1 = 5;
z2 := 1;
c!z2

S3 : r := 7;
c!r + 2;
a?r

Find all computation steps from par(S1, S2, S3) starting in state s where
sx1 = sx2 = sr = sz1 = sz2 = 0.

As we can see from the semantics in this section and the ones that follow,
parallel programs are in general nondeterministic, so, even in a setting where
programs are known to terminate, there are complications: for a given initial
state and a given statement, more than one final state may be possible.

8.4 Other communication models 119

8.4 Other communication models

The literature describes several other models of communicating processes;
this section is devoted to a presentation of some of these.

8.4.1 Asynchronous Cab

In a rendezvous the participating processes must synchronize when they
communicate. However, one can imagine a different kind of communication,
namely asynchronous concurrency, where processes still communicate via
channels but emit values to a medium where messages may reside indefinitely
before they are received.

Let us say that a medium is an element of the set Media and that this
set is an abstract datatype which has the following operations:

• put : Z × Channels × Media → Media
• get : Channels × Media → Z

• remove : Channels × Media → Media
• isempty : Channels × Media → {tt, ff}.

We should think of a medium as a collection of ‘waiting rooms’, one for
each channel (or as a single waiting room, in which each value is labelled by
a channel). An output places a value in a waiting room; an input retrieves
a value from a waiting room. The intended workings of the operations are
now as follows:

• put(v, c, m) places a value v on channel c in the medium m

• get(c, m) reads a value from the medium m on channel c

• remove(c, m) removes a value from the medium m and puts it on channel
c

• isempty(c, m) returns tt if and only if the medium m contains no values
on channel c.

Often a medium is implemented as a queue and in this case the above
operations are then simply the corresponding operations on queues.

In our semantics, the connection between the local and the global level
is now affected, since our understanding of communication capabilities be-
comes different.

Asynchronous communication capabilities

In what follows, we shall assume that our medium has unlimited capacity,
i.e. that it can contain arbitrarily many values.

120 Concurrent communicating processes

[inputl-sss] 〈c?x, s,m〉 c?v→ 〈skip, s[x �→ v], remove(c,m)〉

if isempty(c,m) = ff
and v = get(c,m)

[outputl-sss] 〈c!a, s,m〉 c!v→ 〈skip, s, put(v, c,m)〉

where s � a →a v

[compl-sss]
〈S1 , s,m〉 α→ 〈S′

1 , s
′,m′〉

〈S1 ;S2 , s,m〉 α→ 〈S′
1 ;S2 , s′,m′〉

where α ∈ {c?v, c!v}

Table 8.4 Asynchronous communication: communication capabilities

Our transition system is (Γc, T,→c), where Γc = Stm × States × Media
and transitions are of the forms

〈S, s,m〉 c?v→ 〈S′, s′, m′〉

and

〈S, s,m〉 c!v→ 〈S′, s′, m′〉.

The rules defining →c are given in Table 8.4.

The global level

The only changes to the transition rules at the global level are caused by
the fact that a medium is now involved. Let m∅ denote the empty medium.
See Table 8.5.

Problem 8.5 Find all transitions starting from par(S1, S2, S3) as defined
in Problem 8.4, now assuming asynchronous communication. First assume
that the medium m is a queue. Then repeat the exercise, this time assuming
that the medium is a stack.

Problem 8.6 Define an operational semantics for asynchronous commu-
nication where the capacity of the medium is bounded.

8.4 Other communication models 121

[startg] 〈par(S1 , . . . , Sn), s〉 ⇒g ({|S1 , . . . , Sn |}, s,m∅)

[local-1g-sss]
〈Si, s〉 ⇒l 〈S′

i , s
′〉

({| · · ·Si, · · · |}, s,m) ⇒g ({| · · ·S′
i , · · · |}, s′,m)

[local-2g-sss]
〈Si, s〉 ⇒l s′

({| · · ·Si · · · |}, s,m) ⇒g ({| · · · · · · |}, s′,m)

[comm-1g-sss]
〈Si, s,m〉 c?v→ 〈S′

i , s
′,m′〉

({| · · ·Si, · · · |}, s,m) ⇒g ({| · · ·S′
i , · · · |}, s′,m′)

[comm-2g-sss]
〈Si, s,m〉 c!v→ 〈S′

i , s
′,m′〉

({| · · ·Si, · · · |}, s,m) ⇒g ({| · · ·S′
i , · · · |}, s′,m′)

Table 8.5 Asynchronous communication: the global level

8.4.2 Implicit parallelism

There is nothing sacred about the concurrency model in Cab. One could
just as well imagine a slightly different language, Pif ,4 whose syntax is the
following extension of Bims:

S ::= . . . | fork(S1)

The new statement fork(S) denotes that a new parallel component S is
created. This understanding of concurrency can be found in many program-
ming languages, including C and the functional language Concurrent ML
(Reppy, 1992), and is also similar to the notion of process forking used in
Unix.

One can imagine both synchronous and asynchronous versions of commu-
nication in this setting. In both cases we need only modify the semantics of
the global level. In both cases we replace the rule [startg] by the rule

{|fork(S1); S2, . . . |} ⇒g {|S2, S1, . . . |}

In this rule the parallel component fork(S1); S2 turns into two parallel com-
ponents, of which one continues executing the statement S2 and the other
continues by executing the newly forked statement S1.

Problem 8.7 Find all transitions from fork(S1); (fork(S2); S3) and from
4 Parallelism introduced by forking.

122 Concurrent communicating processes

fork(S1; (fork(S2)); S3), where S1, S2 and S3 are again defined as in Prob-
lem 8.4,

8.5 Bisimulation equivalence

In Chapter 5 we introduced a notion of semantic equivalence in the setting
of Bims. How should we define semantic equivalence in the setting of this
chapter? We choose an approach different from the one taken in Defini-
tions 2.16 and 5.6. These definitions have as a central assumption that only
terminating computations are of interest; two statements are semantically
equivalent if, in any initial state, they lead to the same final state.

However, parallel programs are often not supposed to terminate. Oper-
ating systems and control software are examples of reactive systems, that
is, highly parallel systems that react with their environment and are not
supposed to terminate.

Communication capabilities are essential to our revised definition of se-
mantic equivalence. It seems reasonable to say that two programs exhibit
the same behaviour if they always have the same communication capabilities
– that is, whenever two equivalent programs have used the same communi-
cation capability, they remain equivalent.

Definition 8.8 Let (Γ, A,
a→) be a labelled transition system. A bisimu-

lation is a relation R ⊆ Γ × Γ which satisfies the following conditions.
If xRy then for all a ∈ A we have the following.

1. If x
a→ x′ then there exists a y′ such that y

a→ y′ where x′Ry′.
2. If y

a→ y′ then there exists an x′ such that x
a→ x′ where x′Ry′.

If xRy for some bisimulation R over Γ, we say that x and y are bisimilar
and write x ∼ y.

This definition tells us that two programs are equivalent if we can find a
‘well-behaved’ relation that the successor configurations can remain within.

Problem 8.9 Show that ∼ is an equivalence relation. Hint: We need two
axuiliary definitions here: if R is a binary relation over Γ, then its inverse R1

is defined as R−1 = {(y, x)|xRy}. If R1 and R2 are binary relations over Γ, we
define their composition by R1 ◦R2 where R1 ◦R2 = {(x, z) |∃y : xRy, yRz}.
Now it suffices (why?) to show the following.

• The identity relation is a bisimulation.
• If R is a bisimulation, then so is R−1.
• If R1 and R2 are bisimulations, then so is R1 ◦ R2.

8.6 Channels as data – the π-calculus 123

The notion of bisimilarity was originally proposed by David Park in 1981
(Park, 1981), but it was through the work by Robin Milner (Milner, 1989)
that the importance of the concept became clear. Bisimilarity has become
important in the field known as process calculus theory ; the mathematical
theory of bisimilarity has been extensively studied and various notions of
bisimilarity have been used in the verification of real-life concurrent systems.

Bisimilarity has also been applied in the setting of modal logic and to the
study of the foundations of mathematics through its use in what is known
as non-well-founded set theory (Aczel, 1988).

8.6 Channels as data – the π-calculus

In this section we give a short introduction to the π-calculus. This is a
very different language for concurrency, where channel names are first-class
values.

8.6.1 A process calculus of references

What if we could send not just simple values but also names of channels
in a communication? The π-calculus was devised by Robin Milner, Joachim
Parrow and David Walker (Milner et al., 1992a,b) as a process calculus which
will allow precisely that. The resulting calculus allows one to express and
reason about the behaviour of concurrent systems whose communication
pattern may change dynamically, i.e. processes whose interconnections can
change as they interact. Here is a very simple example.

Alice has access to a resource R, which could be, say, a physical device
or a program library. She can make use of R by communicating with it on
the channel r. Suppose Alice would like to enable Bob to use the resource as
well. She has a channel b which she uses for communication with Bob. Alice
outputs the name r on this channel, and Bob can then use the channel to
send a request (whose name is d) to R. Expressed as a transition, this would
look as follows in the π-calculus:

br.A1︸ ︷︷ ︸
Alice

| b(x).xd.B1︸ ︷︷ ︸
Bob

| R
τ→ A1 | rd.B1 | R.

Here, r is used in two different ways. First, r is seen as the name of a data
object which is transferred between Alice and Bob. Next, r is seen as the
name of the communication channel used in communication with R.

This notion of reference passing has many counterparts in the setting of

124 Concurrent communicating processes

communication – and not only when computers are involved. For instance,
the topic of a phone conversation may be a phone number.

In fact, the notion of transfer of references is very general and versions
of the π-calculus have been successfully used to describe phenomena as di-
verse as object-oriented programs (Sangiorgi, 1998; Walker, 1991), crypto-
graphic protocols (Abadi and Gordon, 1999), biochemical processes (Regev
et al., 2001) and workflow processes in human organizations (Puhlmann and
Weske, 2005).

8.6.2 Syntax

The π-calculus has two syntactic categories:

• the syntactic category of processes Proc, where P ∈ Proc (sometimes
we also use Q as a metavariable for processes)

• the syntactic category of names, where n, x, c ∈ Names; we assume that
Names is a countably infinite set5

The formation rules are

P ::= (νn)P1 | P1 | P2 | xy.P1 | x(y).P1

| if x1 = x2 then P1 | if x1 �= x2 then P1 |!P1 | 0

The intuitive interpretations of these constructs are as follows. The restric-
tion construct (νn) declares a new name n whose scope is P1. P1 | P2 is the
parallel composition of processes P1 and P2. The process xy.P1 outputs a
name y on the channel named x and continues as P1, whereas the process
x(y).P1 inputs a name on the channel x and uses it to instantiate y in the P1

that follows. We have two tests for equality of names. In if x1 = x2 then P1,
if x1 and x2 are the same name, P1 is executed, otherwise the process termi-
nates. In if x1 �= x2 then P1, P1 is executed only if x1 and x2 are distinct
names. Finally, the replication construct !P1 denotes a process that can al-
ways start a new copy of the process P1. The 0 process cannot do anything.

Note that in the π-calculus there are no variable assignments, no loops
and no sequential composition. A process is able only to pass around names.
Names, on the other hand, are now a very general notion; names can stand
for either channels or variables. It turns out that this seemingly restrictive
setting of name passing is in fact a very powerful one. To see this, remember
that we need not physically transfer a resource (such as R in Section 8.6.1)
to make others able to use it – transferring the ‘key’ to the resource suffices.
5 A set M is countably infinite if it is infinite and there exists a bijection f : M → N between

M and the natural numbers.

8.6 Channels as data – the π-calculus 125

This observation has been made precise and helped establish one of the first
major results about the π-calculus, namely that one can use it to implement
the λ-calculus by means of an encoding (Milner, 1992).

8.6.3 A tiny example

Here is a tiny π-calculus process P that contains three parallel components:

(νa)(xa.0︸︷︷︸
P1

| a(w).we.0︸ ︷︷ ︸
P2

) | (νd)x(z).zd.0︸ ︷︷ ︸
P3

. (8.1)

Notice how the restriction construct describes the scope of the names.

• All three components know the names x and e; these names are not under
the scope of any restriction and are said to be free in P .

• The components P1 and P2 know the name a, and a is said to be bound
in P1 | P2.

• The component P3 knows d; d is bound in P3.

The process P can perform a communication over the channel x; after this
communication, P1 is the empty process and should disappear. On the other
hand, P3 now knows the name a and, since z becomes instantiated to a, P3

can send d on the channel a. In other words, the scope of x is extended as
the result of a communication. The semantics of the π-calculus must be able
to express this phenomenon, which is known as scope extrusion.

8.6.4 Free and bound names

We see that there are two binding constructs in the π-calculus, namely the
input prefix x(y).P and the restriction (νx)P . Both of these bind the name
x within the continuation P .

Given this observation, we can then make the notions of free and bound
names precise.

Definition 8.10 The set of free names of a process P is defined inductively

126 Concurrent communicating processes

by

fn((νx)P1) = fn(P1) \ {x}
fn(P1 | P2) = fn(P1) ∪ fn(P2)

fn(xy.P1) = {x, y} ∪ fn(P1)

fn(x(y).P1) = {x} ∪ fn(P1) \ {y}
fn(if x1 = x2 then P1) = {x1, x2} ∪ fn(P1)

fn(if x1 �= x2 then P1) = {x1, x2} ∪ fn(P1),

fn(!P1) = fn(P1).

fn(0) = ∅

Definition 8.11 The set of bound names of a process P is defined induc-
tively by

bn((νx)P1) = bn(P1) ∪ {x}
bn(P1 | P2) = bn(P1) ∪ bn(P2)

bn(xy.P1) = bn(P1)

bn(x(y).P1) = {y} ∪ bn(P1)

bn(if x1 = x2 then P1) = bn(P1)

bn(if x1 �= x2 then P1) = bn(P1)

bn(! P1) = bn(P1).

bn(0) = ∅

A moment’s thought 8.12 Use the definitions to check that e is free in
P in (8.1) and that a is bound.

Note that a name can be both free and bound in the same process! Another
example shows this:

x(y).(yz.0 | b(w).0)︸ ︷︷ ︸
P1

| (νb)xb.0︸ ︷︷ ︸
P2

. (8.2)

Here, the name b is free in P1 and bound in P2; clearly, these two name
occurrences should be thought of as referring to different channels. We do
not want the following to be the result of a communication on the x-channel:

(bz.0 | b(w).0), (8.3)

since we could then have a communication over the b-channel.

A moment’s thought 8.13 Why do the definitions of free and bound
names tell us that b is both free and bound?

8.6 Channels as data – the π-calculus 127

We need to deal with this phenomenon, which is known as scope intrusion.
Our solution is to rename the bound occurrence of b to another, different
name that will eliminate the confusion. Notice the similarity to the treatment
of name clashes in the treatment of call-by-name in Section 7.5. If we rename
the bound b to d, which does not occur anywhere in (8.2) and therefore is a
fresh name, we get

x(y).(yz.0 | b(w).0)︸ ︷︷ ︸
P1

| (νd)xd.0︸ ︷︷ ︸
P2

. (8.4)

After a communication along the channel named x, the resulting process is

(νd)(dz.0 | b(w).0), (8.5)

which cannot perform a communication. This systematic renaming of bound
names is called alpha-conversion. We return to this in Chapter 12, where we
introduce the same notion in our treatment of the λ-calculus (which is where
the notion originally arose). If process P1 can be obtained from process P2

by a systematic renaming of some bound names (maybe none at all), we
write P1 ≡α P2.

8.6.5 Structural congruence

We introduce a notion of structural congruence in Table 8.6. This is not
a behavioural equivalence; rather, as the name suggests, its purpose is to
define which processes have ‘the same structure’.

The first rule, [alphastr], describes that alpha-convertible processes must
be thought of as having the same structure.

Taken together, axioms [par-commutestr] and [par-assocstr] tell us
that the order of parallel composition does not matter, and [par-absorbstr]
tells us that empty parallel components do not matter.

From the point of view of algebra, these three axioms tell us that the set
of processes form a commutative semigroup with absorption under parallel
composition, where ≡ is used to identify terms. From the point of view of
parallel programming, the three axioms tell us that a process can be regarded
as a ‘solution’ of ‘molecules’ analogous to the way in which a parallel system
is viewed in the Chemical Abstract Machine (Berry and Boudol, 1992).

The axioms [res-absorbstr] and [res-commutestr] tell us that restric-
tions over empty processes can be omitted and that the order of successive
restrictions will not matter.

Two central axioms are [replicatestr] and [extendstr]. The replication
rule [replicatestr] tells us that a replicated process !P should be regarded

128 Concurrent communicating processes

[alphastr]
P1 ≡α P2

P1 ≡ P2

[par-commutestr] P1 | P2 ≡ P2 | P1

[par-assocstr] P1 | (P2 | P3) ≡ (P1 | P2) | P3

[par-absorbstr] P1 | 0 ≡ P1

[res-absorbstr] (νx)(νy)P ≡ (νy)(νx)P

[res-commutestr] (νx)0 ≡ 0

[res-ifstr] (νz)(if x = y then P1) ≡ if x = y then (νz)P1

if z �= x and z �= y

[res-ifnotstr] (νz)(if x �= y then P1) ≡ if x �= y then (νz)P1

if z �= x and z �= y

[replicatestr] !P1 ≡ P1 |!P1

[extendstr] ((νx)P1) | P2 ≡ (νx)(P1 | P2) if x �∈ fn(P2)

[reflexstr] P1 ≡ P1

[symmstr]
P1 ≡ P2

P2 ≡ P1

[transstr]
P1 ≡ P2 P2 ≡ P3

P1 ≡ P3

[match-congstr]
P1 ≡ P ′

1

if x = y then P1 ≡ if x = y then P ′
1

[mismatch-congstr]
P1 ≡ P ′

1

if x �= y then P1 ≡ if x �= y then P ′
1

[par-congstr]
P1 ≡ P2

P | P1 ≡ P | P2

[new-congstr]
P1 ≡ P2

(νx)P1 ≡ (νx)P2

[replicate-congstr]
P1 ≡ P2

!P1 ≡ !P2

Table 8.6 The structural congruence rules

8.6 Channels as data – the π-calculus 129

as the same as the process P |!P , where an occurrence of P exists as a
separate parallel component. [extendstr] tells us that the scope of a bound
name can be extended without causing any harm.

The rest of the rules define closure properties of ≡. The rules [reflexstr],
[symmstr] and [transstr] express that structural congruence is an equiv-
alence relation (Definition 2.16), and, taken together, the remaining rules
(from [par-congstr] onwards) express that structural congruence is a con-
gruence relation for parallel composition, restriction and replication, i.e. is
preserved by these constructs of the π-calculus.

8.6.6 Semantics

We now have everything necessary to present a semantics of the π-calculus.
In fact, we present two semantics, a reduction semantics, which is simple
but cannot describe communication capabilities, and a labelled semantics as
seen elsewhere in this chapter.

In both of our semantics, we write P{y/x} for P , where all free occurrences
of the name x have been substituted by the name y in such a way that no
name clashes between free and bound occurrences of y occur.

Problem 8.14 Give an inductive definition of the substitution operation
P{y/x}.

A reduction semantics

In the reduction semantics, configurations are just process terms from Proc.
Transitions are of the form P → P ′, and we call such a transition a reduction.

The rules of Table 8.7 define the reduction relation. [commred] tells us
that, in a communication on channel z, the output name y is received and
the input name x instantiated to it. [parred] tells us that, if a parallel
component can reduce, then so can the entire system. [resred] tells us that
reductions are allowed within the scope of a name. The rules [matchred]
and [mismatchred] describe when a conditional process can proceed. Fi-
nally, [strred] tells us that processes that have the same structure also
have the same reductions. It is the use of [strred] together with the axiom
[extendstr] that will allow us to describe scope extrusion.

It is now easy to explain the behaviour of the process (8.1). First, since
a �∈ fn((νd)x(z).zd.0), we can use [extendstr] and then [symmstr] and
[par-congstr] to get

(νa)(xa.0 | a(w).we.0) | (νd)x(z).zd.0 ≡
(νa)(xa.0 | (νd)x(z).zd.0 | a(w).we.0).

130 Concurrent communicating processes

[commred] zy.P1 | z(x).P2 → P1 | P2{y/x}

[parred]
P1 → P ′

1

P1 | P → P ′
1 | P

[resred]
P1 → P ′

1

(νx)P1 → (νx)P ′
1

[strred]
P1 ≡ Q1 Q1 → Q′

1 Q′
1 ≡ P ′

1

P1 → P ′
1

[matchred] if x = x then P1 → P1

[mismatchred] if x �= y then P1 → P1

Table 8.7 Rules of the reduction semantics of the π-calculus

We then use [extendstr] again to get

(νa)(xa.0 | (νd)x(z).zd.0 | a(w).we.0) ≡
(νa)(νd)(xa.0 | x(z).zd.0 | a(w).we.0).

Note that we have now pushed the restrictions as far outwards as possible. By
[commred] we can then get that xa.0 | x(z).zd.0 → 0 | (zd.0){a/z} ≡ ad.0.
But then, by [parred], we have

xa.0 | x(z).zd.0 | a(w).we.0 → ad.0 | a(w).we.0

and we now apply [resred] twice to get

(νa)(νd)(xa.0 | x(z).zd.0 | a(w).we.0) →
(νa)(νd)(ad.0 | a(w).we.0).

Problem 8.15 Find the next reduction step using the definitions in Tables
8.6 and 8.7.

A labelled semantics

Our labelled semantics also has configurations that are process terms from
Proc. The labels must now describe communication capabilities, so the set
of labels is given by the formation rules

α ::= τ | ax | a(x) | aνx.

8.6 Channels as data – the π-calculus 131

The three first cases are similar to ones that we have seen earlier in this
chapter. The label τ denotes an internal action that arises from a communi-
cation. ax denotes an output action, and a(x) denotes an input action. The
fourth label, aνx, is a so-called bound output, which describes that the name
x is a bound name which is sent out of a scope.

We can define the bound and free names of a label as follows:

bn(τ) = ∅
bn(ax) = ∅

bn(a(x)) = {x}
bn(aνx) = {x}

and

fn(τ) = ∅
fn(ax) = {a, x}

fn(a(x)) = {a}
fn(aνx) = {a}

The rules defining the labelled transition relation are shown in Table 8.8.
Some of the rules require some further explanation. The rule [strlab] is
similar in spirit to the corresponding rule of the reduction semantics; here,
we use it to say that processes with the same structure have the same capa-
bilities. The rule [prefixlab] tells us how labels arise.

In the rule [parlab], we see an interesting side condition, namely that
bn(α) ∪ fn(Q) = ∅. This is necessary, since we could otherwise introduce
name clashes. A simple example which shows this is

a(x).xe.0 | x(z).0.

We have that a(x).xe.0
a(x)→ xe.0. If we allowed the labelled transition

a(x).xe.0 | x(z).0
a(x)→ xe.0 | x(z).0,

we would now be able to communicate on the name x – but the x in a(x).xe.0
is a bound name which must therefore be different from the free name x in
x(z).0.

In the rule [reslab] we see that a restricted name x is local. Whenever
we want to describe scope extrusion, the trick is to use this rule together
with [commlab] and [strlab]. Here is a small example. Consider a process

132 Concurrent communicating processes

[strlab]
P1 ≡ Q1 Q1

α→ Q′
1 Q′

1 ≡ P ′
1

P1
α→ P ′

1

[prefixlab] α.P
α→ P

[matchlab] P
α→ P ′

if x = x then P
α→ P ′

[mismatchlab] P
α→ P ′

if x �= y then P
α→ P ′

[parlab]
P

α→ P ′

P | Q
α→ P ′ | Q

if bn(α) ∩ fn(Q) = ∅

[commlab] P
a(x)→ P ′ Q

au→ Q′

P | Q
τ→ P ′{u/x} | Q

[reslab] P
α→ P ′ x �∈ α

(νx)P α→ (νx)P ′

Table 8.8 Rules of the labelled semantics of the π-calculus

of the form

a(x).P | (νu)au.Q,

where P and Q are arbitrary processes and we assume that u �∈ fn(P). Here,
we have by [commlab] that

a(x).P | au.Q
τ→ P{u/x} | Q,

and by [reslab] we see that

(νu)(a(x).P | au.Q) τ→ (νu)(P{u/x} | Q).

By [strlab] we now get, since (νu)(a(x).P | au.Q) ≡ a(x).P | (νu)(au.Q),
that

a(x).P | (νu)(au.Q) τ→ (νu)(P{u/x} | Q),

where the scope of u has now been extended after the τ -transition.

8.6 Channels as data – the π-calculus 133

Relating the two semantics

Earlier in our text we have seen examples of semantics that are equivalent.
Here, we would expect the reduction semantics to describe the same com-
munications as the τ -labelled transitions. Indeed, this is the case. One can
prove the following theorem.

Theorem 8.16 For any process P , we have that P → P ′ if and only if
P

τ→ P ′.

Problem 8.17 Prove this equivalence result. The proof involves proving
the two implications separately and uses induction in the transition rules of
the two semantics.

There is a wealth of research on the π-calculus, and this section is only able
to scratch the surface. We refer the reader who would like to read more to two
excellent books on the π-calculus: Milner’s introduction to process calculi
and in particular to the π-calculus (Milner, 1999); and Sangiorgi and Walker
(2001) which provides an extensive account of the many aspects of the basic
theory of the π-calculus, such as behavioural equivalences (including versions
of bisimulation equivalence) and type systems.

9

Structured declarations

In this chapter we give a general treatment of structured declarations. This
allows us to give an account of language constructs such as structs in C-like
languages and objects in object-oriented languages.

In Section 9.2, we describe a big-step semantics of Bur.1 Then, in Section
9.3, we consider Coat, a small object-oriented language with classes and
dynamically generated objects.

9.1 Records

In this chapter, we will use the term record to stand for a structured decla-
ration. We shall allow record declarations inside records. Moreover, records
may contain both variables and procedures; this is in contrast to languages
such as C and Pascal that allow only the declaration of variables in struc-
tured declarations. By allowing procedure declarations as part of a record,
we can now view a record as an object. Variables then correspond to the
local variables of an object and procedures correspond to object methods.
Later, in Section 9.3, we extend this understanding so that we can speak of
objects that are dynamically generated instances of classes.

In Figure 9.1 we see an example of a program that has nested record
declarations. The program consists of a block which has a record r1 that
contains the declaration of a variable x, a procedure p and a record r2.
The record r2 contains the declaration of two variables, y and z. After the
declarations have been performed, the procedure p found in r1 is called and
a variable assignment is performed, modifying x, and another assignment
modifies the variable y of r2 by adding the value of x in r1 and then adding
30.

1 Bip using records.

9.2 The language Bur 135

begin
record r1 =

var x := 4;
proc p is x := x +4;
record r2 =

var y := 5;
var z := 3

end;
end;
call r1.p;
r1.r2.y := r1.r2.y + r1.x + 30

end

Figure 9.1 A program with nested record declarations

9.2 The language Bur

Bur is an extension of Bip with record declarations and constructs that
allow us to refer to the components of records.

9.2.1 Abstract syntax of Bur

The syntactic categories of Bur are those of Bip as well as the following
important additions:

• The category DecR of record declarations

• The category Rnames of record declarations

• The category Gvar of generalized variables

• The category Gpnames of generalized procedure names.

We let DR range over DecR and let r1, r2, . . . range over Rnames. Further,
we let X range over Gvar. Generalized variables r1.r2 . . . rn.x are sequences
of record names r1.r2 . . . rn concluded by a variable name x. The generalized
variable r1.r2 . . . rn.x refers to the variable x found in record rn occurring
within record rn−1 occurring within record rn−2 . . . Likewise, we introduce
generalized procedure names r1.r2 . . . rn.p and let P range over Gpnames.

136 Structured declarations

The formation rules of Bur are given below; note that generalized vari-
ables can occur in arithmetic expressions.

X ::= x | r.X

P ::= p | r.P

a ::= n | X | a1+a2 | a1*a2 | a1-a2 | (a1)

b ::= a1 = a2 | a1 > a2 | ¬b1 | b1 ∧ b2

S ::= X := a | skip | S1; S2 | if b then S1 else S2

| while b do S | begin DV DP DR S end | call P

DV ::= var x := a; DV | ε

DP ::= proc p is S; DP | ε

DR ::= record r = DV DP DR end; DR | ε

9.2.2 Environments

According to the environment-store model the value of a variable is stored
in the location associated with the variable. As before, we therefore let

EnvV = Var ∪ {next} ⇀ Loc

and

Sto = Loc ⇀ Z.

Since we are now also able to declare records, we need to keep track of
record bindings as well. For this we use a record environment. The set of
record environments is called EnvR.

A record environment must, given a record name r, hold information about
the variables, procedures and records bound within record r. Consequently,
the appropriate definition of the set of record environments EnvR is

EnvR = Rnames ⇀ EnvV × EnvP × EnvR.

Notice that this definition is recursive (as will be the case for the definition
of EnvP).

We assume static scope rules, and for this reason every procedure name
p must be able to retrieve the variables, procedures and records that were
known when p was declared. Consequently, the appropriate definition of
EnvP is

EnvP = Pnames ⇀ EnvV × EnvP × EnvR.

9.2 The language Bur 137

[gvar-1bss]
env′

R , env′
V � X → l

envR , envV � r.X → l

where envRr = (env′
V , env′

P , env′
R)

[gvar-1bss] envR , envV � x → l

where envV x = l

Table 9.1 Transition rules for generalized variables

9.2.3 Transition rules

We now describe the semantics of Bur. Notice that all transition rules are
affected, since generalized variables can appear as constituents of elements
from the syntactic categories Aexp, Bexp, Stm, DecV and DecR and
since generalized procedure names can appear in statements.

Generalized variables

A generalized variable refers to a variable appearing within a record. Since
the value of a variable is held in a location, the semantics of generalized
variables must describe how this location is to be found. The transitions are
therefore of the form

envR, envV � X → l.

Notice that the transitions are dependent on a variable environment as well
as a record environment. The transition rules are given in Table 9.1.

Arithmetic expressions

We now redefine the semantics of arithmetic expressions such that we can
capture the presence of generalized variables. The value of an arithmetic
expression can now depend on the record environment.

A moment’s thought 9.1 Why can the value of an arithmetic expression
depend on the record environment?

Transitions are therefore of the form

envR, envV , sto � a → v.

The transition rules are given in Table 9.2.

138 Structured declarations

[gvarbss]
envR , envV � X → l

envR , envV , sto � X →a v
where sto l = v

[plusbss]
envR , envV , sto � a1 →a v1 envR , envV , sto � a2 →a v2

envR , envV , sto � a1+a2 →a v

where v = v1 + v2

[minusbss]
envR , envV , sto � a1 →a v1 envR , envV , sto � a2 →a v2

envR , envV , sto � a1-a2 →a v

where v = v1 − v2

[multbss]
envR , envV , sto � a1 →a v1 envR , envV , sto � a2 →a v2

envR , envV , sto � a1*a2 →a v

where v = v1 · v2

[parentbss]
envR , envV , sto � a1 →a v1

envR , envV , sto � (a1) →a v1

[numbss] envR , envV , sto � n →a v where N [[n]] = v

Table 9.2 Transition rules for arithmetic expressions

Boolean expressions

Boolean expressions may compare arithmetic expressions, and, since these
can now have occurrences of generalized variables, the semantics of Boolean
expressions will also need to take this into account.

Problem 9.2 Define the big-step semantics of Boolean expressions.

Variable declarations

Variable declarations also depend on the record environment, since the vari-
able in a declaration var x := a must be initialized with the value of a.

The transitions here have the form

envR � 〈DV , envV 〉 →DV env′V .

The transition rules are given in Table 9.3.

Procedure declarations

Since we assume static scope rules, every procedure p that gets declared
must be associated with the variables, procedures and records that were
known when p was declared. The rules are given in Table 9.4.

9.2 The language Bur 139

[var-declbss]
envR � 〈DV , env′

V , sto[l �→ v]〉 →DV (env′V , sto′)
envR � 〈var x := a;DV , envV , sto〉 →DV (env′V , sto′)

where envR , envV , sto � a →a v
and l = envV next
and env′

V = envV [x �→ l][next �→ new l]

[empty-var-declbss] envR � 〈ε, envV , sto〉 →DV (envV , sto)

Table 9.3 Transition rules for variable declarations

[procbss]
envV , envR � 〈DP , env′

P 〉 →DP env′
P

envV , envR � 〈 proc p is S ;DP , envP 〉 →DP env′
P

where env′
P = envP [p �→ (S, envV , envP , envR)]

[proc-emptybss] envV � 〈ε, envP 〉 →DP envP

Table 9.4 Transition rules for procedure declarations

Generalized procedure names

A generalized procedure name refers to a procedure declared inside a record.
For this reason, the semantics of generalized procedure names must tell us
how to retrieve the body of a procedure and its associated bindings, when
we are given a generalized procedure name.

Transitions are of the form

envR, envP � P → (S, env′V , env′P , env′R).

The rules are given in Table 9.5.

Record declarations

A record declaration will update the record environment and will also update
the variable environment, in that the next-pointer will now point to a new
location.

Transitions therefore have the form

〈DR, envR, envV 〉 →DR (env′R, env′V).

The transition rules are given in Table 9.6.

140 Structured declarations

[gproc-1bss]
env′

R , env′
P � P → (S, env′′V , env′′

P , env′′
R)

envR , envP � r.P → (S, env′′V , env′′
P , env′′

R)

where envRr = (env′
V , env′

P , env′
R)

[gproc-2bss] envR , envP � p → (S, env′′V , env′′
P , env′′

R)

where envP p = (S, env′′
V , env′′

P , env′′
R)

Table 9.5 Transition rules for generalized procedure names

[recordbss]

envR � 〈DV , envV 〉 → env′
V

envR , env′
V � 〈DP , envP 〉 → env′

P

〈DR, envR , env′
V 〉 →DR (env′R , env′′

V)

〈D′
R , envR [r �→ (env′

R , env′′
V , env′

P)], env′′V 〉 →DR (env′′R , env′′′
V)

〈record r = DV DP DR end;D′
R , envR , envV 〉 →DR (env′′R , env′′′

V)

[emptybss] 〈ε, envR , envV 〉 →DR (envR , envV)

Table 9.6 Transition rules for record declarations

Statements

In the semantics of statements, the most important change is that we can
now modify the values of generalized variables.

As before, statements can modify the store, since a statement may change
the value of a variable. Since statements can modify and inspect the values
of variables (including those of variables found inside records) and invoke
procedures (including procedures that are local to records), transitions in
semantics of statements must depend on environments for variables, proce-
dures and records.

Transitions therefore have the form

envR, envV , envP � 〈S, sto〉 → sto′.

The transition rules are given in Table 9.7.

9.2 The language Bur 141

[assbss] envR , envV , envP � 〈X := a, sto〉 → sto[l �→ v]

where envR , envV , sto � a →a v
and envR , envV � X → l

[skipbss] envR , envV , envP � 〈skip, sto〉 → sto

[compbss]
envR , envV , envP � 〈S1 , sto〉 → sto′′

envR , envV , envP � 〈S2 , sto
′′〉 → sto′

envR , envV , envP � 〈S1 ;S2 , sto〉 → sto′

[if-truebss]
envR , envV , envP � 〈S1 , sto〉 → sto′

envR , envV , envP � 〈if b then S1 else S2 sto〉 → sto′

if envR , envV , sto � b →b tt

[if-falsebss]
envR , envV , envP � 〈S2 , sto〉 → sto′

envR , envV , envP � 〈if b then S1 else S2 sto〉 → sto′

if envR , envV , sto � b →b ff

[while-sandbss]
envR , envV , envP � 〈S, sto〉 → sto′′

envR , envV , envP � 〈while b do S, sto′′〉 → sto′

envR , envV , envP � 〈while b do S, sto〉 → sto′

if envV , sto � b →b tt

[while-falsebss] envV , envP � 〈while b do S, sto〉 → sto

if envV , sto � b →b ff

[blokbss]

envR � 〈DV , envV , sto〉 →DV (env′V , sto′′)
env′

V � 〈DR, envR 〉 →DR (env′R , env′′
V)

env′′
V � 〈DP , envP 〉 →DP env′

P
env′

R , env′′
V , env′

P � 〈S, sto′′〉 → sto′

envR , envV , envP � 〈begin DV DP DR S end, sto〉 → sto′

[callbss]
env′

R , env′
V , env′

P � 〈S, sto〉 → sto′

envR , envV , envP � 〈call P, sto〉 → sto′

where envR , envP � P → (S, env′R , env′
V , env′

P)

Table 9.7 Transition rules for statements in Bur

142 Structured declarations

9.3 The class-based language Coat

So far we have just shown how structured declarations can be used to de-
scribe simple objects. However, almost all object-oriented programming lan-
guages have a notion of class. In this section we outline a big-step semantics
of the language Coat,2 which is a class-based language with objects.

9.3.1 Syntax

The Coat language is an extension of Bims and has several syntactic cat-
egories, many of which are familiar from the previous section:

n ∈ Num – the category of numerals

x ∈ Var – the category of variables

X ∈ EVar – the category of extended variables

a ∈ Aexp – the category of arithmetic expressions

b ∈ Bexp – the category of Boolean expressions

m ∈ Mnames – the category of method names

M ∈ EMnames – the category of extended method names

o ∈ Onames – the category of object names

O ∈ Oseq – the category of object sequences

OE ∈ Oexp – the category of object expressions

c ∈ Cnames – the category of class names

DV ∈ DecV – the category of variable declarations

DM ∈ DecM – the category of method declarations

DO ∈ DecO – the category of object declarations

DC ∈ DecC – the category of class declarations

S ∈ Stm – the category of statements

S ∈ Prog – the category of programs

2 Classes, objects and that’s all.

9.3 The class-based language Coat 143

The formation rules are as follows:

A ::= n | X | a1+a2 | a1*a2 | (a1)

b ::= a1 = a2 | a1 < a2 | ¬b1 | b1 ∧ b2 | (b1)

S ::= X := a | skip | S1; S2 | if b then S1 else S2

| while b do S | call M | o := OE

O ::= ε | O.o

OE ::= O | new c.O

M ::= OE.m

X ::= OE.x

DV ::= var x := a; DV | ε

DM ::= method m is S; DM | ε

DO ::= object o := O; DO | ε

DC ::= class c is DV DM DO end; DC | ε

P ::= DV DC DO S

The most notable new features of the syntax of Coat are the following.

• The introduction of programs P and class declarations DC . A program
P consists of a series of declarations followed by a statement S. The
declarations are the following: first, a declaration of global variables DV ,
next, a declaration of classes DC (wherein the global variables may be
mentioned), and finally a declaration of objects DO . These objects must be
created as instances of the classes by means of dynamical object creation.

• The introduction of dynamically created objects using new c. This creates
a new instance of the class c.

• We introduce object path expressions OE; these describe a path of object
names that describes the path to an object variable or method. Notice
that the first object in the path can be dynamically created using the
new construct. Otherwise, the object path is an object sequence, i.e. a
sequence of known object names.

Example 9.3 Figure 9.2 shows an example of a Coat program.
In the example, we declare the following.

• Three global variables, x, y and w.
• A class tiny with an instance variable z and a method called increase.

This method updates the value of the global variable y and adds it to the
instance of z.

• An object increaser, which is an instance of the class tiny.

144 Structured declarations

var x:= 3;
var y:= 2;
var w:= 45;

class tiny is
var z is x+3;
method increase is

y:= x+y;
z:= z+y

end;

object increaser := new tiny;

w:= (new tiny).z
call tiny.increase;
w:= w + increaser.z

Figure 9.2 A Coat program example

The body of the program first assigns a new value to the global variable w.
This is done by dynamically creating a new instance of the class tiny and
then using the value of the z, found in this dynamically created object. In
the second line of the program body, the method increase is called for the
object tiny. Finally, w is again assigned a new value, this time by adding
the value of the instance z in the increaser object.

Problem 9.4 What is the final value of w? And of y?

9.3.2 Environments and stores

In the semantics that follows, we extend the environment-store model so
that object names are bound to locations. A location will then contain in-
formation about the bindings found within the object.

In the extended model, we follow the standard practice of keeping track
of the bindings of variables, objects and methods by means of environments.

Variables are bound to locations, just as before, so therefore the set of
variable environments is again given by

EnvV = Var ⇀ Loc.

As before, we assume a special next-pointer and a function new : Loc →
Loc that returns a successor location. However, we cannot associate the
next-pointer with a variable environment, since object declarations can also

9.3 The class-based language Coat 145

allocate new locations. Instead, we keep this information in the store (see
below).

We assume static scope rules, so the method environments of the Coat
semantics look very similar to the procedure environments that we have seen
previously in this chapter. We have

EnvM = Mnames ⇀ Stm × EnvV × EnvM × EnvO.

A moment’s thought 9.5 Why is EnvM defined in this way, when we
have static scope rules?

Every object name refers to a location. This location contains information
about the variable bindings of the object, the name of the class that the
object is an instance of and the bindings of its local objects in the form
of an object environment . We do not need to store information about the
methods of an object, since these methods are common to all objects that
are instances of a given class.

Finally, we need to keep track of the next free location. Since both variable
declarations and object declarations can cause new locations to be used, it
is now more natural to keep this information in the store component than
in any of the environments. We can then write e.g. l = sto next to signify
that l is the next free location.

Summing up, we have the following definitions.

EnvO = Onames ⇀ Loc,

Sto = Loc ∪ {next} ⇀ EnvV × Cnames× EnvO ∪ Z ∪ Loc.

In the rest of this section, we often write envVMO instead of a long triple
(envV , envM , envO) and use superscripts and dashes accordingly so that e.g.
envVMO

′ stands for (env′V , env′M , env′O). If we are considering only e.g. the
pair (envV , envO) we write envVO.

We keep track of classes by using a class library. A class library lib is a
function which belongs to the set Lib defined by

Lib = Cnames ⇀ DecV × DecM × DecO

In other words, we associate with each class name its declarations of vari-
ables, methods and local objects.

9.3.3 Transition systems and transition rules

In this section we give the highlights of the semantics of Coat. The reader
is encouraged to fill in the remaining rules.

146 Structured declarations

[classbss]
envVMO � 〈DC , lib′′〉 → lib′

envVMO � 〈class c is DV DM DO end;DC , lib〉 → lib′

where lib′′ = lib[c �→ (DV , envM ,DO , envVMO)]

[nonebss] envVMO � 〈ε, lib〉 → lib

Table 9.8 The semantics of class declarations

Class declarations update the class library. Because of this, the transitions
describing class declarations are of the form

envV , envM � 〈DC, lib〉 → lib′

and our transition system for class declarations is

(DecC × Lib ∪ Lib,→,Lib),

where the transition relation is defined by the rules in Table 9.8.

Variable declarations are a little more complex, since these may have side
effects. A simple variable declaration var x := a updates the variable envi-
ronment and the store, but we will also need to know the object declarations
in order to evaluate a, since a may contain occurrences of extended variables.
A method environment is not needed for the declaration itself, but we may
need to pass it along when a variable declaration happens as part of the
instantiated dynamically created object. We will discover why in our treat-
ment of object expressions.

Consequently, transitions are of the form

envVMO � 〈DV , envV , sto〉 → (env′V , sto′)

and our transition system for variable declarations is

(DecV × EnvV × Sto ∪ EnvV × Sto,→,EnvV × Sto).

The transition rules are given in Table 9.9.

Method declarations update a method environment. For this reason, the
transitions describing method declarations are of the form

envVO � 〈DM , envM 〉 → env′M

9.3 The class-based language Coat 147

[varbss]
envVMO, lib � a → v

envVMO � 〈DV , env′′
V , sto′′〉 → (env′V , sto′)

envVMO � 〈var x := a;DV , envV , sto〉 → (env′V , sto′)

where env′′V = envV [x �→ l]
and sto′′ = sto[l �→ v][next �→ new l]

[nonebss] envVMO � 〈ε, envV , sto〉 → (envV , sto)

Table 9.9 The semantics of variable declarations

[nonebss] envVO � 〈ε, envM 〉 → envM

[methodbss]
envVO � 〈DM , env′′

M 〉 → env′
M

envVO � 〈method m is S;DM , envM 〉 → env′
M

where env′′
M = envM [m �→ (S, envV , envM , envO)]

Table 9.10 The semantics of method declarations

and our transition system for method declarations is

(DecM × EnvM ∪ EnvM,→,EnvM).

The transition rules are given in Table 9.10.

Object declarations have a semantics that involves creation of new objects,
and transitions must be relative to the class library. Moreover, new locations
will be used to store the objects that have been declared. Transitions are
therefore of the form

lib � 〈DO, envO, sto〉 → env′O, sto′

and the transition system is

(DecO × EnvO × Sto ∪ EnvO × Sto,→,EnvO × Sto).

The transition rules are shown in Table 9.11. The important rule here is
[objectbss]. Whenever an object o is declared, we first need to look up the
contents of an object of class c in the class library. Then these declarations
are performed, and a new location is added to the environment. In this

148 Structured declarations

[nonebss] lib � 〈ε, envO 〉 → envO

[objectbss]

env1
O � 〈DV , env1

V , sto〉 → (env′′V , sto′′)

env′′
V , env1

O � 〈DM , env1
M 〉 → env′′

M

lib � 〈D1
O , env1

O , sto′′〉 → 〈env′′
O , sto(3)〉

lib � 〈DO , envO [o �→ l], sto(4)〉 → 〈env′
O , sto′〉

lib � 〈object o := new c;DO , envO , sto〉 → (env′O , sto′)

where lib c = (DV ,DM ,D1
O , envVMO

1)
and l = sto(3) next
and sto(4) = sto(3) [l �→ envVMO

′′][next �→ new l]

Table 9.11 The semantics of object declarations

location we place the environments that we obtained by performing the
declarations of local variables, methods and objects.

Object sequences are crucial, since these are the paths that tell us where
to find methods and instance variables. The result of evaluating an object
sequence is a triple of environments that describe the bindings that hold in
the subobject which is found at the end of the path.

Therefore, we see that transitions are of the form

envVMO, sto � O → envVMO
′

and the transition system is

(Oexp ∪ EnvV × EnvM × EnvO,→,EnvV × EnvM × EnvO).

The transition rules are given in Table 9.12.

Object expressions The value of an object expression is the environment
triple envVMO that holds at the end of the object expression path together
with a modified store.

Therefore transitions are of the form

envVMO, lib � 〈OE, sto〉 → (envVMO
′, sto′)

and our transition system is

(Oexp× Sto ∪ Sto,→,Sto).

9.3 The class-based language Coat 149

[none-seqbss] envVMO, sto � ε → envVMO

[some-seqbss]
envVMO, sto � O → envVMO

′′

envVMO, sto � O.o → envVMO
′

where env′′
O o = l

and sto l = envVMO
′

Table 9.12 The semantics of object sequences

The semantics of object expressions is given in Table 9.13.
The evaluation of an object expression can modify the store, since the

object expression can start with a dynamically created object that will typi-
cally need to use new locations. To see this, consider the rule [newbss]. Here,
the first premise env1

O � 〈DV , env1
V , sto〉 → (env′′V , sto′) describes that the

local declarations of the class are performed. The local variables will need
to be bound to fresh locations.

Note that, for an object expression new c.O, the rule [seq-expbss] and
then the rule [none-seqbss] from Table 9.12 will eventually be invoked to
return an environment triple. Since we want to return all three components
in our evaluation of an object expression, the envM component will have
to be present as an assumption in the semantics of object sequences, even
though a method environment does not appear to be necessary when the
rules for sequences are seen in isolation.

Arithmetic expressions have a big-step semantics which is almost as before.
Transitions are of the form

envVMO, lib, sto � a → v,

so the transition system is

(Aexp,→, Z).

The notable modification is the rule for extended variables; here we may
dynamically create an object and return the value of one of its instance
variables. Therefore the evaluation must be relative to the class library lib.
Note that any store modifications that may result from evaluating an ex-
tended variable of this kind are discarded in the conclusion of [Evarbss].
This rule can be seen in Table 9.14.

A moment’s thought 9.6 Why are the store modifications discarded?

150 Structured declarations

[seq-expbss]
envVMO, sto � O → envVMO

′

envVMO, lib � 〈O, sto〉 → (envVMO
′, sto′)

[new-expbss]

env1
O � 〈DV , env1

V , sto〉 → (env′′V , sto′)

env′′
V , env1

O � 〈DM , env1
M 〉 → env′′

M

lib � 〈DO , envO , sto〉 → 〈env′′
O , sto′′〉

envVMO
′′, lib, sto′′ � O → envVMO

′

envVMO, lib � 〈new c.O, sto〉 → (envVMO
′, sto′)

where lib c = (DV ,DM ,DO , envVMO
1)

and sto′′ = sto′[l �→ envVMO
′]

Table 9.13 The semantics of object expressions

[evarbss]
envVMO, lib � 〈OE, sto〉 → (envVMO

′, sto′)
envVMO, lib � 〈OE.x, sto〉 → v

where env′
V x = l and sto′ l = v

Table 9.14 Evaluating extended variables (in the semantics of arithmetic
expressions)

Problem 9.7 Complete the definition of the semantics of Aexp.

Problem 9.8 Give the definition of the semantics of Bexp.

Statements modify the store. The execution of a statement may need to
consult the bindings of all forms, so transitions are of the form

envVMO, lib � 〈S, sto〉 → sto′.

Here, there are three interesting transition rules, which are the ones shown
in Table 9.15.

The rule [call-methodbss] describes the behaviour of a method call
call m. Here we first need to retrieve the body of the method which is
referred to by the object path expression M . We do this by evaluating the
prefix OE and then looking up m in the method environment that we got
from the evaluation of OE. Finally, we can execute the body of method m

using the environments known at declaration time.

9.3 The class-based language Coat 151

[call-methodbss]
envVMO, lib � 〈OE, sto〉 → (envVMO

′, sto′′)

envVMO
′′, lib � 〈S, sto′′〉 → sto′

envVMO, lib � 〈call M, sto〉 → sto′

where M = OE.m
and env′

M m = (S, envVMO
′′)

[var-assignbss]
envVMO, lib � 〈O, sto〉 → (envVMO

′′, sto′)

envVMO, lib � 〈a, sto′〉 → v

envVMO, lib � 〈X := a, sto〉 → sto′[l �→ v]

where X = O.x
and env′′

V x = l
and sto′l = v

[obj-assignbss]

env1
O [next �→ newl′][� 〈DV , env1

V , sto〉 → (env′′V , sto′′)

env′′V , env1
O � 〈DM , env1

M 〉 → env′′
M

envVMO
1 , lib � 〈DO , envO , sto〉 → 〈env′′

O , sto′′〉
envVMO, lib � 〈o := new c, sto〉 → sto′

where lib c = (DV ,DM ,DO , envVMO
1)

and sto′ = sto′′[l �→ envVMO
′′]

and l = envO o

Table 9.15 Important transition rules for statements

A moment’s thought 9.9 Many object-oriented languages allow an ob-
ject to call any of its own methods. Why is this not possible in the semantics
given here?

The rule [var-assignbss] requires us to first find the location referred
to by the extended variable X. This is similar to what we have just de-
scribed; the main difference is that the extended variable cannot start with
a dynamically created object, since this would not make sense.

In the rule [obj-assignbss] we first look up the information about the
class c, namely the initial environments env1

V and env1
O known when c was

declared and the declarations DV , DM and DO that must be made in any
object instance. We then perform these declarations; note that the next-
pointer must be updated to point to the next free location at the time of
the assignment.

152 Structured declarations

Finally, we look up the location l of the object named o and store the
results of the declaration in this location.

Again, note that the store modification that may be the result of perform-
ing the declarations will not be discarded but carries over. This is the case,
since a store modification will have to take place if a new object is generated
and this new object contains local variables.

Problem 9.10 Find the remaining transition rules in the semantics of
Stm.

Programs are easily described, given what we now have. Transitions are of
the form

envVMO, lib � 〈P, sto〉 → sto′

and the transition system is

(Prog × Sto ∪ Sto,→,Sto).

The transition rule [programbss] defining the transition relation is given
in Table 9.16.

[programbss]

env∅O � 〈DV , env∅
V , sto〉 → (envV , sto(1))

envV , env∅
M , env∅

O � 〈DC , lib∅〉 → lib

envV , env∅
M , env∅

O , lib � 〈DO , sto(1)〉 → (envO , sto(2))

envV , env∅
M , envO � 〈S, sto(2)〉 → sto′

envVMO, lib � 〈DV DC DO S, sto〉 → sto′

Table 9.16 Transition rule for programs

The rule has four premises that describe the following.

1. First, we declare the global variables found in DV using the empty vari-
able environment as the initial environment.

2. Then, we declare the classes from the empty class library using the global
variable bindings and empty method and object environments.

3. Then, we declare the global objects found in DO using the global variable
bindings and the newly found class library. The method environment
must be empty, since there are no global methods.

4. Finally, we execute the statement S with the bindings that we now have.

9.3 The class-based language Coat 153

Problem 9.11 Extend the syntax of Coat with the object expression self.
The intended interpretation of a method call call self m occurring in the
body of a method is that the method named m within the same object is
invoked. Modify the semantics such that all methods within an object are
able to call each other in this way.

10

Blocks and procedures (2)

In Chapter 6 we saw a big-step semantics of the language Bip, which extends
Bims with blocks and procedures. In this chapter we present a small-step
semantics of Bip. This semantics extends that of Bims given in Section
4.3, more precisely the small-step semantics of statements given in Table
4.4. Again, we shall consider how the various choices of scope rules can be
captured.

10.1 Run-time stacks

As before, we shall assume the environment-store model introduced in Sec-
tion 6.2. The set of variable environments is given by

EnvV = Var ∪ {next} ⇀ Loc.

The set of stores is defined by

Sto = Loc ⇀ Z.

As in Chapter 6 the definion of procedure environments will depend on our
choice of scope rules. We shall return to this later.

An important change is due to the fact that configurations in a small-step
semantics represent intermediate stages in the execution of a statement.

Where transitions in the big-step semantics of Chapter 6 were of the form

envV , envP � 〈S, sto〉 → sto′

and where a transition described the execution of an entire statement, we
must now describe the individual execution steps. A single step may be a
procedure call or the beginning of a block and may therefore involve new,
temporary bindings. In other words, transitions should now have the form

〈S, bindings〉 ⇒ 〈S′, new bindings〉.

10.2 Declarations 155

This will then require us to keep track of the bindings that are currently
in effect. We achieve this by introducing a notion of run-time stack . The
run-time stack envl is a list of pairs (envV , envP), i.e. envl is an element of
the set of run-time stacks Envl:

Envl = (EnvV × EnvP)∗;

(EnvV×EnvP)∗ here denotes the set of all lists whose elements belong to
the set EnvV × EnvP.

The top element of a run-time stack is the pair (envV , envP) which is
currently in effect. Whenever a new scope is entered, i.e. whenever we enter
a block or call procedure, we push a new pair (env′V , env′P) on top of the
run-time stack. Such a pair corresponds closely to the notion of activation
record used in compiler construction. We indicate that the top of the run-
time stack envl is (envV , envP) by writing envl = (envV , envP) : envl′ for
some envl′.

10.2 Declarations

The semantics of variable and procedure declarations will be that of the
big-step semantics of Chapter 6. This is the sensible choice, since a decla-
ration should be thought of as an indivisible action performed in a single
step – when the declaration is executed, we allocate storage to all variables
mentioned and note the address of the code of the procedure bodies.

Note that the transition relation is defined for simple variable environ-
ments, i.e. not for run-time stacks. This will suffice, since the semantics of
declarations is invoked only whenever a block is entered and is then invoked
only in order to create a new, updated environment to be placed on top
of the run-time stack. In other words, we can simply reuse the definitions
found in Section 6.4.

10.3 Statements

As always, in a small-step semantics a configuration is an instantaneous
description of the program that contains information about the part of the
program which remains to be executed as well as information on the bindings
that are in effect.

156 Blocks and procedures (2)

10.3.1 Evaluation contexts

Since we are now considering run-time stacks, we need to indicate the active
part of the program, i.e. the part of the program that uses the bindings
which are on top of the run-time stack. If S is the active part, we denote
this by encapsulating it as active S end. We call this an evaluation context.

Our abstract syntax will now include the syntactic category EvCxt of
evaluation contexts, and we let C range over the set of evaluation contexts.
The formation rules are now

C ::= active C end | x := a | skip | C1; C2 |
if b then C1 else C2 | while b do C |
begin DV DP C end | call p

DV ::= var x := a; DV | ε

DP ::= proc p is C; DP | ε

In our semantics of statements, the configurations are

• 〈C, sto, envl〉, which are intermediate configurations; C is a statement that
may contain active-encapsulations

• (sto, envl), which are terminal configurations.

Our transition system now becomes

((EvCxt × Sto) ∪ (Sto × Envl),⇒,Sto × Envl)

and transitions are of the form

〈C, sto, envl〉 ⇒ (sto′, envl′);

⇒ is actually a transition relation relating configurations containing evalua-
tion contexts. However, this also tells us of the behaviour of statements, since
a statement is simply an evaluation context devoid of active-encapsulations.

10.3.2 Transition rules for statements

The transition rules for procedure calls depend on our choice of scope rules.
All other rules defining ⇒ are independent of our choice of scope rules and
can be found in Table 10.1.

A moment’s thought 10.1 Why are the rules for procedure calls the
only transition rules in the semantics for statements that depend on the
choice of scope rules?

10.3 Statements 157

[asssss] 〈x := a, sto, envl〉 ⇒ (sto[l �→ v], envl)
where envl = (envV , envP) : envl′

and l = envV x
and envV , sto � a →a v

[skipsss] 〈skip, sto, envl〉 ⇒ (sto, envl)

[comp-1sss]
〈C1 , sto, envl〉 ⇒ 〈C ′

1 , sto
′, envl′〉

〈C1 ;C2 , sto, envl〉 ⇒ 〈C ′
1 ;C2 , sto′, envl′〉

[comp-2sss]
〈C1 , sto, envl〉 ⇒ (sto′, envl′)

〈C1 ;C2 , sto, envl〉 ⇒ 〈C2 , sto′, envl′〉

[if-truesss] 〈if b then C1 else C2 sto, envl〉 ⇒ 〈C1 , sto, envl〉
if envV , sto � b →b tt where envl = (envV , envP) : envl′

[if-falsesss] 〈if b then C1 else C2 sto, envl〉 ⇒ 〈C2 , sto, envl〉
if envV , sto � b →b ff where envl = (envV , envP) : envl′

[whilesss] 〈while b do C, sto, envl〉 ⇒
〈if b then (C; while b do C) else skip, sto, envl〉

[block-1sss]
〈DV , envV , sto〉 →D (sto′, env′

V) env′
V � 〈DP , envP 〉 →DP env′

P

〈begin DV DP C end, sto, envl〉 ⇒ 〈active C end, sto′, envl′〉
where envl′ = (env′

V , env′
P) : envl

and envl = (envV , envP) : envl′′

[block-2sss]
〈C, sto, envl〉 ⇒ 〈C ′, sto′, envl′〉

〈active C end, sto, envl〉 ⇒ 〈active C ′ end, sto′, envl′〉

[block-3sss]
〈C, sto, envl〉 ⇒ (sto′, (envV , envP) : envl′)〉
〈active C end, sto, envl〉 ⇒ (sto′, envl′)

Table 10.1 Transition rules for statements other than procedure calls

The rules that come from the Bims small-step semantics are only slightly
modified from those of Table 4.4. The modification amounts to the change

158 Blocks and procedures (2)

that the evaluation of Boolean and arithmetic expressions must now be made
relative to the variable environment found on top of the run-time stack (cf.
the side condition of these rules).

Transition rules for blocks

There are three rules that together describe the behaviour of a block. The
rule [block-1sss] describes what happens when a block is entered: we de-
clare variables and procedures, place the updated environments on top of the
run-time stack and place the body of the block in an active-encapsulation.
The two other rules for blocks describe the behaviour of an evaluation con-
text. [block-2sss] expresses that an evaluation context performs a step by
performing a step of its content, and [block-3sss] describes what will hap-
pen when the execution of a block ends. Since the block has now terminated,
the topmost environment-pair must be removed from the run-time stack.

Procedure calls

The semantics of procedure calls depends on our choice of scope rules, that is,
on which variable and procedure bindings we assume during the execution of
a procedure body. We here limit ourselves to the two most common choices:

• Static scope rules for variables and procedures
• Dynamic scope rules for variables and procedures

In the case of static scope rules for variables and procedures, the proce-
dure environment must hold information about the variable and procedure
bindings known at the time of declaration for each procedure. This then
means that our set of procedure environments is given by (6.5):

EnvP = Pnames ⇀ Stm × EnvV × EnvP.

When we call a procedure p, the run-time stack must be updated with the
bindings that were in effect when p was declared.

Whenever a procedure is called, the body of the procedure and the as-
sociated declaration-time environments must be retrieved. This is done by
a lookup in the procedure environment which is found at the top of the
run-time stack. We place the declaration-time environments on top of the
run-time stack and encapsulate the procedure body.

As always, there are two rules for procedure calls – one allowing for recur-
sive calls and another which does not allow for recursive calls. If we call a
procedure that allows for recursive calls, we must also add a binding which
makes the procedure aware of its own presence (cf. Section 7.3).

The transition rules are given in Table 10.2.

10.3 Statements 159

[callsss] 〈call p, sto, envl〉 ⇒ 〈active C end, sto, (env′
V , env′

P) : envl〉

where envP p = (C, env′V , env′
P)

and envl = (envV , envP) : envl′

[call-recsss] 〈call p, sto, envl〉 ⇒
〈active C end, sto, (env′V , env′

P [p �→ (C, env′
V , env′

P)]) : envl〉

where envP p = (C, env′V , env′
P)

and envl = (envV , envP) : envl′

Table 10.2 Transition rules for procedure calls assuming static scope rules

In the case of dynamic scope rules for variables and procedures the pro-
cedure environments need only contain information about the body of each
procedure. The set of procedure environments is therefore again given by
(6.2):

EnvP = Pnames ⇀ Stm.

Here, the run-time stack does not need to be updated when a procedure is
called, since no new bindings are introduced. We do not even need to place
the procedure body inside an evaluation context. The transition rule is given
in Table 10.3.

A moment’s thought 10.2 Why is it not necessary to place the body
of the procedure inside an evaluation context, if we assume dynamic scope
rules?

Moreover, when we assume dynamic scope rules for variables and proce-
dures, there is no need for a special rule that allows recursive calls. Because
of our choice of scope rules. any call of p within the body of p is seen as a
recursive call of p itself.

A moment’s thought 10.3 Why is this the case?

Problem 10.4 Give transition rules that capture the ‘mixed’ scope rules
found in Chapter 6.

A moment’s thought 10.5 Which theorem would you expect to hold for
the small-step semantics presented in this chapter and the big-step semantics
of Chapter 6?

160 Blocks and procedures (2)

[callsss] 〈call p, sto, envl〉 ⇒ 〈C sto, envl〉

where envP p = C

Table 10.3 Transition rule for procedure calls assuming dynamic scope
rules

11

Concurrent object-oriented languages

In this chapter we shall consider a tiny object-oriented language, Cola,1

inspired by Emerald (Hutchinson et al., 1987) In Cola , objects are executed
concurrently and an object o1 can communicate with another object o2 by
calling a method found in o2. This is known as a remote procedure call .

Our semantics is a small-step semantics combining ideas from Chapters 8
and 10.

11.1 The language Cola

We make the following simplifying assumptions about Cola:

• Objects are ‘orphans’ – there is no notion of class
• Objects do not contain subobjects
• Methods have no parameters
• Methods do not contain local methods.

Moreover, we shall assume static scope rules for objects, so that any
method in an object o knows only of the variables and methods found within
o.

11.1.1 Abstract syntax

The abstract syntax of Cola extends that of Bims. We have the following
syntactic categories and associated metavariables:

DO ∈ DecO – Object declarations
DM ∈ DecM – Method declarations
DV ∈ DecV – Variable declarations
1 Concurrent object-oriented language.

162 Concurrent object-oriented languages

o ∈ Onames – Object names
m ∈ Mnames – Method names
x ∈ Var – Variables
S ∈ Stm – Statements
a ∈ Aexp – Arithmetic expressions
b ∈ Bexp – Boolean expressions

and the formation rules are

DO ::= object o is DM ; S end; DO | ε

DV ::= var x := a; DV | ε

DM ::= method m is DV ; S; DM | ε

S ::= x := a | skip | S1; S2 | if b then S1 else S2 |
while b do S | begin DV S end | o?m | o!m |
active S end | serve o S end | wait o end

The two new statements are o?m and o!m; as can be seen from the cho-
sen notation, these statements are related to the communication primitives
described in Chapter 8. The statement o?m is a remote procedure call , i.e.
a request for calling the method m found in object o. The statement o!m
permits another object o to call method m in object o. (We shall explain
these statements in more detail later.)

In our semantics, we need to have three evaluation contexts – active S end
appears when a local block is executed, serve o S end appears when a
method called by object o is executed, and wait o end appears when we
wait for the object o to complete its execution of a method whose service we
have requested. The latter two evaluation contexts always appear together,
as we shall see later.

11.1.2 Rendezvous with Cola

As the formation rules of the abstract syntax indicate, a Cola program
consists of a sequence of object declarations. Each object contains a sequence
of method declarations and a body, which is a statement. The execution of
the program consists of the concurrent execution of the objects that have
been declared.

The execution of an object amounts to executing its body. The body may
contain requests for methods found in other objects.

Let us consider the situation where object o1 requests the use of method
m found in object o2. As we have seen, we express this by the statement

11.2 A small-step semantics of concurrent behaviour 163

o2?m. The method m can be executed only once this is allowed by o2, i.e.
when the statement o1!m is executed. When both objects are ready, the
remote procedure call can proceed. This is the Cola version of a rendezvous
(see Chapter 8). The body of m is executed and upon completion – and only
then – o1 and o2 complete the rendezvous and continue.

11.2 A small-step semantics of concurrent behaviour

As in Chapter 8, we describe concurrent behaviour as interleaving , i.e. the
parallel components take turns performing individual computation steps.
Conceptually, we can think of the parallel components as sharing access to
a single processor.

Again, our semantics is nondeterministic in that it does not describe how
to schedule this access; a description of the scheduling is left to the actual
implementation.

11.2.1 Environments

Like the small-step semantics for Bip in Chapter 10, the semantics of Cola
will utilize the notion of run-time stacks in order to describe the bindings
that are in effect at any given point during execution. Again, we shall use
the environment-store model introduced in Chapter 6.

Moreover, we shall need to introduce method environments in order to
describe method bindings. Method environments are very similar to the
procedure environments of Chapter 6; the set of method environments is
given by

EnvM = Mnames ⇀ Stm × EnvV.

Since we do not allow method declarations within methods, a run-time stack
is simply a list of variable environments, i.e. a run-time stack envl is an
element of

Envl = EnvV∗.

The top element is the variable environment which is currently in effect. We
write envl = envV : envl′ to denote that the run-time stack envl has envV

as its top element.

11.3 Transition systems

In the operational semantics of Cola we need three transition systems to
describe the behaviour of objects.

164 Concurrent object-oriented languages

• A local transition system (Γl,⇒l, Tl) describing local behaviour
• A labelled transition system (Γc, { a==⇒ | a ∈ A}, Tc) describing the com-

munication capabilities of an object. The label set A is defined as

A = Onames × Onames × Mnames × {?, !}

• A global transition system (Γg,⇒g, Tg) describing global behaviour. This
is done by referring to transitions from the other two transition systems.

Moreover, we need to describe the semantics of declarations.

11.3.1 Declarations

Since a statement may contain local declarations, we also need to give an
account of the semantics of declarations. As in the semantics of Bip we give
a big-step semantics of variable declarations, and again it suffices to consider
how a single variable environment gets modified by a declaration. We leave
the details of the semantics as an exercise for the reader.

Problem 11.1 Define the transition rules for variable declarations.

11.3.2 The local transition system

The local transition system describes the behaviour of a single object. It is
of the form (Γl,⇒l).

An intermediate configuration is an instantaneous description of an object,
i.e. the statements yet to be executed by the object, its store and its run-
time stack. A terminal configuration describes the result of executing the
object, i.e. a run-time stack and a store. Consequently

Γl = (Stm × Sto × Envl) ∪ (Sto × Envl).

The transition rules defining ⇒l are essentially those of the small-step of
Bims. See Table 11.1.

11.3.3 The labelled transition system

We describe the communication between objects using the labelled transition
system (Γc, Ac, { a==⇒ | a ∈ Ac}). Its set of configurations Γc is simply the
set of pairs of statements and object names,

Γc = (Stm ∪ {ε}) × Onames.

11.3 Transition systems 165

[asslocal-sss] 〈x := a, sto, envl〉 ⇒l (sto[l �→ v], envl)
where envl = envV : envl′, l = envV x
and envV , sto � a →a v

[skiplocal-sss] 〈skip, sto, envl〉 ⇒l (sto, envl)

[comp-1local-sss]
〈S1 , sto, envl〉 ⇒l 〈S′

1 , sto
′, envl′〉

〈S1 ;S2 , sto, envl〉 ⇒l 〈S′
1 ;S2 , sto′, envl′〉

[comp-2local-sss]
〈S1 , sto, envl〉 ⇒l (sto′, envl′)

〈S1 ;S2 , sto, envl〉 ⇒l 〈S2 , sto′, envl′〉

[if-truelocal-sss] 〈if b then S1 else S2 sto, envl〉 ⇒l 〈S1 , sto, envl〉

if envV , sto � b →b tt where envl = envV : envl′

[if-falselokal-sss] 〈if b then S1 else S2 sto, envl〉 ⇒l 〈S2 , sto, envl〉

if envV , sto � b →b ff where envl = envV : envl′

[whilelocal-sss] 〈while b do S, sto, envl〉 ⇒l

〈if b then (S; while b do S) else skip, sto, envl〉

[block-1local-sss]
〈DV , envV , sto〉 →D (sto′, env′

V)
〈begin DV ;S end, sto, envl〉 ⇒l 〈active S end, sto′, envl′〉
where envl′ = env′

V : envl
and envl = envV : envl′′

[block-2local-sss]
〈S, sto, envl〉 ⇒l 〈S′, sto′, envl′〉

〈active S end, sto, envl〉 ⇒l 〈active S′ end, sto′, envl′〉

[block-3local-sss]
〈S, sto, envl〉 ⇒l (sto′, envV : envl′)

〈active S end, sto, envl〉 ⇒l (sto′, envl′)

Table 11.1 Transition rules for the local transition system

The labels on transitions describe communication capabilities: who wants
to communicate, which method is involved, and to which object the method
belongs and whether we are dealing with a request or a permission.

166 Concurrent object-oriented languages

[callc] 〈o1?m, o2〉
o2 ,o1 ,m ,?

========⇒ 〈ε, o2〉

[acceptc] 〈o1 !m, o2〉
o1 ,o2 ,m ,!

========⇒ 〈ε, o2〉

[compc]
〈S1 , o1〉

o2 ,o1 ,m ,d
========⇒ 〈S′

1 , o1〉
〈S1 ;S2 , o1〉

o2 ,o1 ,m ,d
========⇒ 〈S′

1 ;S2 , o1〉
where d ∈ {?, !}

Table 11.2 Transition rules of the labelled transition systems

Consequently, a label is a triple (o1, o2, d), where o1 and o2 are object
names and d ∈ {?, !} is a direction,

Ac = Onames × Onames × Mnames × {?, !}.

The transition

< S, o1 >
o1 ,o2 ,m,?

========⇒< S′, o1 >

should be read as follows. Object o1 requests use of the method m found in
object o2. The transition

< S, o1 >
o1 ,o2 ,m,!

=======⇒< S′, o1 >

should be read as follows: Object o1 is allowed to use the method m found
in object o2.

Most of the rules defining the labelled transition relation can be found in
Table 11.2.

Problem 11.2 The only rule missing from Table 11.2 is the rule for eval-
uation contexts. Define it. For which evaluation contexts do we need a rule?

Problem 11.3 Why are there no rules for e.g. if- and while-statements in
Table 11.2 ?

11.3.4 The global transition system

The global transition system is of the form (Γg,⇒). The set Γg contains
three kinds of configurations:

• The initial configurations are object declarations

11.3 Transition systems 167

[startg] DO ⇒g (S(DO), sto∅)

where

S(ε) = ∅
S(object o is DM ;S end;DO) =

{|〈S, envl∅, updM (DM , env∅
M), o〉|} ∪ S(DO)

Table 11.3 Transition rules for the global level (1) – initialization

• Intermediate configurations are instantaneous descriptions comprised of
a set of configurations corresponding to the parallel components and a
store, shared by all objects.

• The terminal configurations are stores, because the result of running a
program will be a modified store.

Thus2

Γg = DecO ∪ (P(Stm × Envl × EnvM × Onames) × Sto)

Notice that the intermediate configurations contain a subconfiguration for
each object present, but that these subconfigurations are not the configura-
tions found in Γl for they do not contain an element of Sto, since the store
is now treated as a global component.

The transition rules fall into three categories.
Table 11.3 describes how the ‘solution’ containing parallel objects is cre-

ated. Here, we use an auxiliary function S that creates the solution by
traversing the list of object declarations.

env∅M denotes the empty method environment, envl∅ denotes the empty
run-time stack and sto∅ denotes the empty store.

Problem 11.4 (Important) updM in Table 11.3 is an auxiliary function
for updating method environments. Find its domain and range and give a
formal definition of it; you will need to define a similar function that extracts
a variable environment from the variable declaration local to a method.

The other rules describe the behaviour of a program following initializa-
tion. First we need to describe that an object acting on its own will cause a
change to the ‘solution’ (expressed in [local1g]). This is where interleaving
2 Remember that, if M is a set, then P(M) denotes the power set of M , cf. Section 2.4.3

168 Concurrent object-oriented languages

[local1g]
〈S1 , envl1 , sto〉 ⇒g 〈S′

1 , envl′1 , sto
′〉

({|〈S1 , envl1 , envl
M , o1〉, · · · |}, sto) ⇒g

({|〈S′
1 , envl′1 , envl

M , o1〉, · · · |}, sto′)

[local2g]
〈S1 , envl, sto〉 ⇒g 〈envl, sto′〉

({|〈S1 , envl1 , envl
M , o1〉 · · · |}, sto) ⇒g ({| · · · |}, sto′)

Table 11.4 Transition rules for the global level (2) – the connection
between global and local behaviour

shows up in our semantics in the form of nondeterminism; if more than one
object is able to proceed, any one of them will be able to do so.

We also need a rule which expresses that terminated objects disappear;
this is the rule [local2g].

The remaining rules describe how remote procedure calls affect the ‘solu-
tion’; they are to be found in Tables 11.4 and 11.5.

Taken together, the rules describe that a rendezvous is possible if two
objects agree on it. This is captured using the labelled transitions.

A rendezvous starts when the calling object waits for the method to be-
come available; this is the content of [bonjourglobal-sss]. The calling ob-
ject is encapsulated and the object containing method m starts executing
the body of m inside an evaluation context.

Notice how this resembles the rule [callsss] for procedure calls in Table
10.1 in Chapter 10. Also note that the evaluation contexts carry the name of
the other object involved in the rendezvous so that we can determine when
the rendezvous is supposed to finish.

[maintenantglobal-sss] describes the behaviour of an evaluation con-
text. Finally, the rule [au revoirglobal-sss] expresses that the run-time
stack has its top element removed and that the encapsulation of the evalua-
tion context disappears as soon as the method call is over. It is in this rule
that we see the importance of evaluation contexts containing the names of
both objects involved in the remote call.

Problem 11.5 We can introduce a simple notion of class into Cola and
thereby get the language Ble++ (similar to Coat of Chapter 9). Let us
introduce two new syntactic categories:

[bonjourglobal-sss]
〈S1 , o1〉

o1,o2,m ,?
========⇒ 〈S′

1 , o1〉 〈S2 , o2〉
o2,o1,m ,!

========⇒ 〈S′
2 , o2〉

({|〈S1 , envl1 , env1
M , o1〉, 〈S2 , envl2 , env2

M , o2〉}, sto) ⇒g

({|〈wait o2 S′
1 , envl1 , envl

M , o1〉, 〈serve o1 S end;S′
2 , envl′2 , env2

M , o2〉 · · · |}, sto)

where env1
M m = (S1 , envv)

and envl′2 = envv : envl2

[maintenantglobal-sss]
〈S1 , envl1 , sto〉 ⇒ 〈S′

1 , envl′1 , sto
′〉

({|〈serve o2 S1end;S, envl1 , envl
M , o1〉, · · · |}, sto) ⇒g

({|〈serve o2 S′
1 end;S, envl′1 , envl

M , o1〉, · · · |}, sto′)

[au revoirglobal-sss]
〈S1 , envl, sto〉 ⇒g 〈envl, sto′〉

({|〈serve o2 S1end;S, envl1 , envl
M , o1〉, 〈wait o1 S2 , envl2 , env2

M , o2〉 · · · |}, sto) ⇒g

({|〈S, envl′1 , envl
M , o1〉, 〈S2 , envl2 , env2

M , o2〉 · · · |}, sto′)
where envl1 = env′

v : envl′1

Table 11.5 Transition rules for the global level (3) – rendezvous

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511840449.012
https://www.cambridge.org/core

170 Concurrent object-oriented languages

P ∈ Prog – Programs
DC ∈ DecC – Class declarations

and we now get

P ::= DV DC DO S

DC ::= class c is DM ; S end; DC | ε

DO ::= o : c; DO | ε

– the rest is as before. A program now consists of a sequence of declarations
of global variables, followed by a sequence of class declarations, a sequence
of declarations of instances of these classes and a final statement. Define a
small-step operational semantics of Ble++ by augmenting the semantics
of Cola. Hint: A ‘molecule’ should now contain not a method environment
but the name of the class that the object molecule is an instance of. The
definitions of methods are now retrieved from a class library (which should
of course also be defined).

Problem 11.6 Extend the syntax of Cola with local declarations such
that an object can contain subobjects and such that a method can con-
tain submethods. Modify the semantics of Cola to capture this. Hint: A
‘molecule’ must now contain information about its ‘parent molecule’, and
this must also be reflected in the labelled transition system for communica-
tion capabilities.

Problem 11.7 Extend methods in Cola with parameter passing. Hint:
The rules for rendezvous and the definition of the set of method environ-
ments must be modified. (Is there anything else that needs to be modified?)

12

Functional programming languages

This chapter gives a short introduction to functional programming languages
and their structural operational semantics.

In the first sections we take a look at the characteristic features of pro-
gramming languages of this kind (Section 12.1) and how they arose (Section
12.2). Then, in Section 12.3, we provide a short introduction to the theoret-
ical foundations of functional programming languages, the λ-calculus.

Finally, in Section 12.4 we introduce the language Flan, which is a subset
of ML, and show how to give it a big-step and a small-step semantics.

12.1 What is a functional programming language?

In languages such as C, Java, Pascal and Bims variable assignment is a cen-
tral language construct. A program in any of these languages is essentially a
highly structured sequence of variable assignments that change the contents
of the store. Languages with this central characteristic are known as imper-
ative languages. It is not particularly surprising that the environment-store
model is well suited for the semantics of imperative languages.

However, there are programming languages that take a very different ap-
proach. A functional programming language is an expression-based language
– a functional program is essentially a collection of declarations of functions,
as opposed to a sequence of statements. A function f is a function in the
sense of ordinary mathematics – given an argument x, the value of the ap-
plication f(x) depends only on the value of x.

The body of a function is an expression, which can be built from function
applications, variables and constant values. A function itself can be a value,
and the argument and result value of a function can themselves be functions.

A pure functional language has only these features, i.e. does not have
assignments. Haskell (Peyton Jones, 2003) is a prominent example of this

172 Functional programming languages

class of functional languages. Impure functional languages add imperative
features such as assignment and imperative input/output statements to the
language syntax . Well-known impure functional languages include members
of the ML family – Standard ML (NJ-SML, 2002; Paulson, 1996; Hansen
and Rischel, 1999) and OCaml (Hickey, 2007) – and the many dialects of
Lisp. However, in impure functional languages it is often possible to keep
the use of imperative features to a minimum or avoid them altogether.

As a first example, let us have a look at two different implementations
of the Euclidean algorithm for finding the greatest common divisor of two
natural numbers.

First, consider the Standard ML implementation. In normal mathematical
parlance, the function gcd would usually be defined as

gcd(m, n) =
{

n if m = 0
gcd(n mod m, m) otherwise.

A program for computing gcd may look as follows in Standard ML:

fun gcd (m,n) = if m = 0 then n else gcd (n mod m,m)

Note the close resemblance to the original definition. In the imperative lan-
guage Pascal (Jensen and Wirth, 1975), one might write the following im-
plementation:

function gcd(m,n: integer): integer
var prevm : integer

begin
while m <> 0 do

begin prevm := m; m:= n mod m;
n := prevm

end;
gcd := n

end

This small example shows an important difference in programming style:
Functional programs rely on recursion where imperative programs use iter-
ation.

Pure functional languages are referentially transparent – within a given
scope, all occurrences of an expression have the same meaning. This is not
the case in imperative programming languages. Consider as an example the
tiny program fragment

x := 1;

12.2 Historical background 173

x := x+1;
y := x;

Here the variable x does not have a unique meaning, and this is because of
the presence of assignments. Note that this is not how we think of variables in
mathematics; consider as an example the quadratic equation x2−4x+3 = 0.
No-one would proceed to solve this equation as follows: ‘First, x is 5 and
then 7, since 52 − 4 · 7 + 3 = 0’. We always assume that x stands for the
same number throughout the equation.

12.2 Historical background

Functional programming first saw the light of day in the 1950s, when John
McCarthy invented the Lisp programming language. Lisp was (and still is)
a conceptually simple language: data are lists of atoms, and a program is a
collection of function definitions, each of which is a list.

In the years that followed, a lot of attention was devoted to the study of
functions as a model of computation and as a means of defining the semantics
of programs; the latter led to denotational semantics, the subject of Chapter
14. In 1964, Peter Landin devised the SECD machine (Landin, 1964) as a
mathematical decription of the evaluation of computable functions. In this
way, the SECD machine anticipates structural operational semantics.

Two years later, Landin proposed the language ISWIM (If you See What
I Mean) (Landin, 1966). ISWIM is an abstract programming language and
was never implemented.

ISWIM, which has a functional core as well as imperative features, was a
major source of inspiration for the language ML. ML stands for MetaLan-
guage, since ML was originally conceived as an auxiliary language for use
with the theorem prover LCF (Logic for Computable Functions) (Gordon
et al., 1978). In 1977, the first implementation of the language ML saw the
light of day.

In 1978, John Backus received the ACM Turing Award. In his Turing
Lecture (Backus, 1978) he proposed a language called FP (Functional Pro-
gramming) whose underlying idea is that of higher-order functions, that
is, functions that take functions as arguments and can return functions as
results.

Two major dividing lines in the functional language community are be-
tween impure/pure languages and between strict/lazy languages. Strict lan-
guages employ the call-by-value parameter mechanism, whereas lazy lan-
guages use lazy evaluation, a variation on the notion of call-by-name.

174 Functional programming languages

While ML is an impure, strict language, by the mid 1980s, there were more
than a dozen pure, lazy functional programming languages. The best-known
of these was Miranda. The Miranda interpreter, however, was a proprietary
piece of software. In 1987, there was a strong consensus that a committee
should be established to define an open standard for languages of this kind.
The result was the language Haskell, whose first version was defined in 1990
(Hudak et al., 2007).

Most recently, the language F# (Microsoft, 2009) has been developed
by Microsoft. The language is a variant of ML, is largely compatible with
OCaml and will be distributed as a fully supported language in the .NET
framework and as part of the Visual Studio.

Today, there are two major strands of ML dialects, one based around
Standard ML (Milner et al., 1997) and another based around CAML (Hickey,
2007; INRIA, 1995–2005).

12.3 The λ-calculus

The λ-calculus provides the theoretical foundations of functional program-
ming languages; it is a theory of computable functions devised in the 1930s
by the logician Alonzo Church (1932; 1936; 1941), who introduced the λ-
calculus as a language of computable functions in his work on the founda-
tions of formal logic.

Let λ-Exp be the syntactic category of λ-expressions and let e ∈ λ-Exp.
The abstract syntax of the λ-calculus is then given by the formation rules

e ::= x | λx.e1 | e1e2.

The underlying intuition of the λ-calculus is that its expressions denote
control structures. Moreover, the syntax makes it very simple to describe
higher-order functions.

We let x range over an infinite set of variables.
Abstraction, λx.e1, denotes a function with argument x and body e1.

Think of x as a formal parameter and e1 as a procedure body. As an example,
λx.x can be thought of as the identity function. Note that the syntax for
abstraction allows the body of the abstraction to be any λ-expression – so
the body of an abstraction can itself be an abstraction. Consequently, the
return value of a function can be a function.

Also note that functions in the λ-calculus are anonymous; a function does
not have to be declared prior to its use.

Application, e1e2, denotes that the function e1 is applied to the argument
e2. Note that this syntax allows a λ-expression to have any λ-expression

12.3 The λ-calculus 175

as argument, so functions can have functions as arguments. Applications
associate to the left, so e1e2e3 denotes (e1e2)e3.

We often put parentheses in expressions in order to indicate other choices
of precedence of applications, and we also omit repeated λs, so e.g. λx.λy.x

becomes λxy.x.
An important notion is that of free and bound variables.

Definition 12.1 The set of free variables in a λ-expression is defined by
the function FV : λ-Exp → P(Var) defined by

FV (x) = {x}
FV (e1e2) = FV (e1) ∪ FV (e2)

FV (λx.e1) = FV (e1) \ {x}

Similarly, we can define the set of bound variables in a λ-expression by the
function BV : λ-Exp → P(Var) defined by

BV (x) = ∅
BV (e1e2) = BV (e1) ∪ BV (e2)

BV (λx.e1) = BV (e1) ∪ {x}

Problem 12.2 Find the free and bound variables in

1. λx.xxxy

2. λxyz.zx(yz)
3. λxy.z

A moment’s thought 12.3 Are there any scope rules in the λ-calculus?

A moment’s thought 12.4 Can a variable be both free and bound in
the same expression?

The operational semantics of the λ-calculus is given by the transition sys-
tem (λ-Exp,→, λ-Exp) and is a small-step semantics. There is only one
rule, β-reduction. This rule describes how an application e1e2 is to be eval-
uated, when e1 is an abstraction: the argument (the actual parameter) e2 is
substituted for each occurrence of the formal parameter found in the body
of e1.

[beta] (λx.e1)e2 → e1[x �→ e2].

A moment’s thought 12.5 Which parameter mechanism is this?

The definition of substitution is somewhat involved, since we must avoid
capturing free variables. Compare this with the involved definition of sub-
stitution in the setting of call-by-name in Section 7.5.

176 Functional programming languages

Definition 12.6 e1[x �→ e2], substitution of e2 for all free occurrences of
the variable x in e1 is defined inductively in the structure of e1 by

(e′e′′)[x �→ e2] = e′[x �→ e2]e′′[x �→ e2]

y[x �→ e2] =
{

y if y �= x

e2 if y = x

(λy.e′)[x �→ e2] =

⎧⎨
⎩

λy.e′ if y = x

λy.(e′[x �→ e2]) if y �= x and y �∈ FV (e2)
λz.((e′[y �→ z])[x �→ e2]) if y �= x and y ∈ FV (e2)

where z is a fresh variable, i.e. z �= x, z �∈ FV (e2) and z �∈ FV (λy.e′).

Problem 12.7 Perform the following substitutions:

1. (λx.xx)[x �→ xx]
2. (λzy.x)[z �→ y]
3. (λx.x)(λy.yx)[x �→ xy]
4. ((λy.xy)z)[x �→ λx.xy]

We often want to rename bound variables; in the definition of substitu-
tion this is essential, since we need to prevent name clashes. This notion
of renaming of bound variables is also known as alpha-conversion (compare
with Section 7.5.4, page 109) and is defined by the rule

[alpha] λx.e → λy.e[x �→ y] y �∈ FV (e).

Problem 12.8 Reduce (λyz.zy)p(λx.x) by using the [alpha] and [beta]
rules. Next, try reducing (λx.xx)(λx.xx).

12.3.1 The applied λ-calculus

An early, important result by Church (1936) is that the λ-calculus is a
universal model of computation. Informally, this means that any algorithm
can be expressed in it, i.e. the λ-calculus is Turing-complete.1 On the other
hand, it gets very tedious to express algorithms in this very simple language.
As a consequence, it is common practice to extend the abstract syntax with
data values (integers, for instance) and basic functions (integer arithmetic,
for instance). The resulting language is called the applied λ-calculus.

Let c ∈ λ-Con, where λ-Con is a set of constants. Then the formation
rules are

e ::= x | λx.e1 | e1e2 | c.

1 See also the footnote on p. 29.

12.4 Flan – a simple functional language 177

A functional programming language is in its essence simply an applied λ-
calculus.

We must now describe the behaviour of constants. We can either do this by
adding a number of rules that describe the intended behaviour of constants
such as

[plusconst] Plus n1 n2 → N [[n1]] + N [[n2]]

or introduce a function apply which for each constant c returns the result
of applying c to its arguments.

The rule [plusconst] corresponds to letting

apply(Plus, n1, n2) = N [[n1]] + N [[n2]].

In what follows, we shall use this, the latter approach.

12.4 Flan – a simple functional language

We now present Flan,2 a strict, pure functional programming language
which is a subset of ML.

12.4.1 Abstract syntax

Let Fexp denote the syntactic category of Flan programs (or expressions,
if you want), let Fcon denote the syntactic category of Flan constants and
let Var denote the set of variables.

Let e ∈ Fexp, c ∈ Fcon and x, f ∈ Var. The formation rules are then

e ::= x | c | (e1, e2) | e1e2 | if e0 then e1 else e2 |
fn x.e | let x = e1 in e2 | letrec x = e1 in e2

c ::= n | True | False | Plus | Times | Minus | Equal | Not | IsZero

fn x.e denotes a function with parameter x and body e. Function application
is denoted by juxtaposition of expressions, so all functions have exactly
one argument. The similarity to the λ-calculus is very deliberate – Flan is
simply an applied λ-calculus extended with local declarations, conditionals
and pairs.

Local declarations can be recursive or non-recursive. If letrec x = e1 in e2

has an occurrence of x in e1, we treat this as a recursive call of x. But this
is not the case, if x occurs in e1 in the declaration let x = e1 in e2 – here,
the x found in e1 must be declared elsewhere for this to make sense.
2 Functional language.

178 Functional programming languages

Example 12.9 The factorial function n! = n · (n − 1) · · · 1 can be imple-
mented in Flan as

fn y. letrec fac = fn x.
if IsZero(x) then 1
else Times x (fac (Minus x 1))

in
fac y

Example 12.10 The Flan function

fn f. fn x. let twice = fn g.
g (g x)

in
twice f

defines a function that takes a function f as argument and returns a function
which applies f twice to its argument.

12.4.2 A big-step semantics of Flan

In our big-step semantics transitions are of the form env � e → v, where
env ∈ Env. This must be read as follows: expression e evaluates to the value
v, given the bindings in our environment env. In our environment we keep
the bindings that are currently known. So here

Env = Var ⇀ Values

The set of values, Values, is comprised of the following:

• All constants in Fcon are values, so Fcon ⊆ Values
• All closures 〈x, e, env〉 are values
• All recursive closures 〈f, x, e, env〉 are values.

In other words, we have

Values = Fcon∪Var×Fexp×Env∪Var×Var×Fexp×Fexp×Env.

As this definition shows, the set of environments is again recursively defined.
Notice the resemblance to the definition of EnvP in Section 6.6.3.

In the transition rules that follow, the environment comes into play when
we evaluate variables in [varfun-bss] (we look up the value in the environ-
ment), when we reach a local declaration in [letfun-bss] (we add informa-
tion about the local variable and its value to the environment) and when we

12.4 Flan – a simple functional language 179

[varfun-bss] env � x → v where envx = v

[constfun-bss] env � c → c

[pairfun]
env � e1 → v1 env � e2 → v2

env � (e1 , e2) → (v1 , v2)

[app-1fun-bss]
env � e1 → 〈x, e, env′〉 env � e2 → v env′[x �→ v] � e → v′

env � e1e2 → v′

[app-2fun-bss]
env � e1 → c env � e2 → v′

env � e1e2 → v′ where apply(c, v) = v′

[if-1fun-bss]
env � e0 → True env � e1 → v

env � if e0 then e1 else e2 → v

[if-2fun-bss]
env � e0 → False env � e2 → v

env � if e0 then e1 else e2 → v

[fnfun-bss] env � fn x.e → 〈x, e, env〉

[letfun-bss]
env � e1 → v env[x �→ v] � e2 → v′

env � let x = e1 in e2 → v′

[letrecfun-bss]
env � e1 → 〈x, e, env′〉 env[f �→ [f, x, e, env′]] � e2 → v2

env � letrec f = e1 in e2 → v2

[app-3fun-bss]

env � e1→[f, x, e, env′]
env � e2 → v
env′[x �→ v, f �→ 〈f, x, e, env′〉] � e → v′

env � e1e2 → v′

Table 12.1 Big-step semantics for Flan

reach a recursive local declaration [letrecfun-bss] (where we also need to
add information about the name of the recursive function).

Our transition system is (Fexp ∪ Values,→,Values). The rules for →
can be found in Table 12.1.

Problem 12.11 Write the gcd-program in Flan and find gcd(3, 2) by
building a derivation tree for a suitable big-step transition.

Problem 12.12 The semantics of Table 12.1 is a call-by-value seman-
tics. Change the semantics so that it becomes a call-by-name semantics and

180 Functional programming languages

[pair-1fun-sss]
e1 ⇒ e′1

(e1 , e2) ⇒ (e′1 , e2)

[pair-2fun-sss]
e2 ⇒ e′2

(e1 , e2) ⇒ (e1 , e′2)

[let-1fun-sss]
e1 ⇒ e′1

let x = e1 in e2 ⇒ let x = e′1 in e2

[let-2fun-sss] let x = v in e2 ⇒ e2 [x �→ v]

[app-1fun-sss]
e2 ⇒ e′2

e1e2 ⇒ e1e′2

[app-2fun-sss]
e1 ⇒ e′1

e1v ⇒ e′1v

[app-3fun-sss] (fn x.e)v ⇒ e[x �→ v]

[app-4fun-sss] c v ⇒ apply(c, v)

Table 12.2 Some of the small-step semantics of Flan

show by an appropriate program example that the two semantics are not
equivalent.

Problem 12.13 Implement the big-step semantics of Flan in SML.

12.4.3 A small-step semantics of Flan

It is of course also possible to give a small-step semantics of Flan. Here the
transition system is (Fexp ∪ Values,⇒,Values), where ⇒ is defined by
the rules in Table 12.2 – and rules for conditionals and recursive local decla-
rations, not presented here. In the semantics we use substitutions instead of
environments; we leave the definition of substitution as an exercise for the
reader.

Note how the small-step semantics is reminiscent of the reduction rules
of the applied λ-calculus. Also note that our semantics is a call-by-value
semantics, since the argument of an application must be a value (and applied
to an abstraction) for the application itself to reduce.

Problem 12.14 Give an inductive definition of substitution in Flan. Hint:
The definition is similar in spirit to that of substitution in the λ-calculus.

12.5 Further reading 181

Problem 12.15 Add the missing rules to Table 12.2!

A moment’s thought 12.16 How can we modify the semantics of Table
12.2 to a call-by-name semantics for Flan?

12.5 Further reading

The functional programming languages provide a good example of the inter-
play between programming language semantics and programming language
design and implementation.

An important topic of programming language semantics is that of types
and many of the central insights here arise from the study of functional
programming languages. In Chapter 13 we describe a type system for Flan.

In the 1990s, researchers attempted to integrate notions of parallel pro-
gramming into functional programming. Two prominent examples are Con-
current ML (Reppy, 1992) and Facile (Giacalone et al., 1989). Both are
based on Standard ML, using its implementation and type system. More-
over, both have synchronous, channel-based communication similar to that
used in Chapter 8 as the means for interprocess communication.

PART IV

RELATED TOPICS

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511840449
https://www.cambridge.org/core

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511840449
https://www.cambridge.org/core

13

Typed programming languages

In this chapter we take a look at types. We give a type system for the im-
perative language Bump introduced in Chapter 7 and another type system
for the functional language Flan from Chapter 12. We show that both type
systems are sound under the operational semantics that we have. By this we
mean that a well-typed program will never exhibit the run-time errors that
the type system is intended to prevent.

This chapter is intended only as a short introduction; for a very thorough
treatment of type systems for programming languages, Pierce’s excellent
book (Pierce, 2002) is highly recommended.

13.1 Type systems

Most programming languages today incorporate a type system of some kind
that defines a way of classifying syntactic entities. Some languages such as
C have very simple type systems, while others, notably functional languages
such as the languages of the ML family (Milner et al., 1997; INRIA, 1995–
2005) and Haskell (Peyton Jones, 2003), have very strong type systems.

13.1.1 Why are type systems useful?

A first, very important reason for introducing a notion of type is that cer-
tain run-time errors can then be avoided by a simple compile-time analysis.
Consider as a simple example the expression

7+(2=3).

Intuitively, this should not make sense. 7 is a numeral, that will evaluate to
the integer 7, whereas (2=3) is a Boolean expression, that will evaluate to a

186 Typed programming languages

truth value. If an interpreter of Bims tried to evaluate the above expression,
it would cause a run-time error.

If we therefore give each expression a type, which is either the integer type
Int or the type of truth values Bool, and require that in a sum expression
a1 +a2 both subexpressions must have type Int, we can immediately rule out
ill-fated examples such as the above. The use of types has become important
in the setting of program analysis for computer and network security.

Another reason for introducing a notion of type is that the classification
of data at compile-time will aid in better memory allocation and better effe-
ciency. For instance, floating-point numbers, booleans, integers and strings
have different memory requirements.

A third reason for introducing types is that of readability. It is often easier
to read a large program if its variables are labelled according to their type
and if its procedures/methods/functions are labelled according to the types
of their parameters and return value.

13.1.2 The components of a type system

The notion of a type system originates in logic. Originally, the idea was
introduced by Bertrand Russell and Alfred North Whitehead in Principia
Mathematica (Russell and Whitehead, 1910) in order to deal with paradoxes
in the foundations of set theory. A later development that became particu-
larly important to programming language theory was Church’s type system
for the λ-calculus (Church, 1940).

Our presentation in this chapter will reveal that the mode of defining a
type system is in many ways similar to that of defining a structural opera-
tional semantics. In particular, in both cases, the definition is syntax-directed
and contains a collection of rules.

The definition of a type system must contain the following.

• A definition of the syntactic category of types.
• For the elements of each syntactic category in the programming language,

a definition of the form of type judgments.
• For the elements of each syntactic category, a set of type rules that define

the valid type judgments.

13.1.3 Type checking and type inference

Traditionally, type systems have been used to classify programs by means of
type checking : given an assignment of types to data entities in program P ,

13.2 Typed Bump 187

check that P is well-typed , i.e. does not contain type errors. Implementations
of typed programming languages incorporate a type checker as an early
part of the process of parsing and translation. For this reason, a natural
requirement of a type system is that type checking is an effective notion,
which means that there exists an algorithm which can determine whether a
program P is well-typed.

Following the pioneering work by Milner (Milner, 1978), the notion of type
inference has become increasingly important. Type inference can be seen as
the inverse problem to type checking: given a program P , can we construct
a type assignment that will make P well-typed? Implementations of many
functional languages, including the ML family (Milner et al., 1997; INRIA,
1995–2005; Hickey, 2007) and Haskell (Peyton Jones, 2003), incorporate type
inference as a central aspect.

13.2 Typed Bump

In this section we describe a type system for Bump. At the end of the
section, we describe a result that links our semantics to properties of the
type system.

13.2.1 Abstract syntax

In order to better illustrate what happens, we here replace the syntactic
categories Aexp and Bexp by the syntactic category of expressions Exp
ranged over by e. Moreover, we require that variable declarations include
type information.

In the following, T will range over the syntactic category Types of types.
We define the elements of Types in Section 13.2.3.

e ::= e1 = e2 | e1 < e2 | ¬e1 | e1 ∧ e2 | (e1)

| n | x | e1+e2 | e1*e2 | e1-e2 | (e1)

DV ::= T var x := e; DV | ε

S ::= x := e | skip | S1; S2 | if e then S1 else S2

| while e do S | begin DV DP S end | call p(e)

DV ::= T var x := e; DV | ε

DP ::= proc p(T x) is S; DP | ε

188 Typed programming languages

[plus-bumpbss]
envV , sto � e1 →e v1 envV , sto � e2 →e v2

envV , sto � e1+e2 →e v

where v = v1 + v2

[minus-bumpbss]
envV , sto � e1 →e v1 envV , sto � e2 →e v2

envV , sto � e1-e2 →e v

where v = v1 − v2

[mult-bumpbss]
envV , sto � e1 →e v1 envV , sto � e2 →e v2

envV , sto � e1*e2 →e v

where v = v1 · v2

[parent-bumpbss]
envV , sto � e1 →e v1

envV , sto � (e1) →e v1

[num-bumpbss] envV , sto � n →e v if N [[n]] = v

[var-bumpbss] envV , sto � x →e v if envV x = l and sto l = v

Table 13.1 Big-step operational semantics of Exp (arithmetic part)

13.2.2 Semantics

The semantics of Bump is revised slightly, since we now have a single syn-
tactic category of expressions and since we can now have Boolean-valued
variables.

For expressions, we define the transition system

(Exp ∪ Z ∪ {tt, ff},→, Z ∪ {tt, ff}),

where the transition relation is defined by the rules in Table 13.1 and ad-
ditional rules for the Boolean operations. The latter rules are not presented
here but are straightforward.

13.2.3 Types in Bump

The syntactic category of types is called Types and is ranged over by T . A
subset of this category is the set of base types, ranged over by the metavari-
able B. The type rules that we present in the following will guarantee that
the type of an expression will always be a base type.

The type of a declaration or a statement will simply be ok; we say that
the declaration or statement is well-typed .

13.2 Typed Bump 189

[ass-bumpbss] envV , envP � 〈x := e, sto〉 →e sto[l �→ v]
where envV , sto � e →e v and envV x = l

[skip-bumpbss] envV , envP � 〈skip, sto〉 →e sto

[comp-bumpbss]
envV , envP � 〈S1 , sto〉 →e sto′′

envV , envP � 〈S2 , sto
′′〉 →e sto′

envV , envP � 〈S1 ;S2 , sto〉 →e sto′

[if-true-bumpbss]
envV , envP � 〈S1 , sto〉 →e sto′

envV , envP � 〈if e then S1 else S2 , sto〉 →e sto′

if envV , sto � e →e tt

[if-false-bumpbss]
envV , envP � 〈S2 , sto〉 →e sto′

envV , envP � 〈if e then S1 else S2 , sto〉 →e sto′

if envV , sto � e →e ff

[while-true-bumpbss]
envV , envP � 〈S, sto〉 →e sto′′

envV , envP � 〈while e do S, sto′′〉 →e sto′

envV , envP � 〈while e do S, sto〉 →e sto′

if envV , sto � e →e tt

[while-false-bumpbss] envV , envP � 〈while e do S, sto〉 →e sto′

if envV , sto � e →e ff

[block-bumpbss]

〈DV , envV , sto〉 →DV (env′V , sto′′)
env′

V � 〈DP , envP 〉 →DP env′
P

env′
V , env′

P � 〈S, sto′′〉 →e sto′

envV , envP � 〈begin DV DP S end, sto〉 →e sto′

Table 13.2 Big-step transition rules for Bump statements (except procedure
calls)

The type of a procedure is the composite type x : B → ok, which is to be
read as follows: if we know that the type of the formal parameter is B, then
the body of the procedure will be well-typed.

190 Typed programming languages

Summing up, the formation rules for types are

B ::= Int | Bool

T ::= B | x : B → ok.

13.2.4 Type environments

In an operational semantics for a language with variables, we must keep
track of the values of the variables. This is done by making the semantics
relative to a state for Bims, or, in the case of later extensions, by a variable
environment and a store.

In the type system that we now present, we use a similar notion: a type
environment keeps track of the types of variables and procedure names.

Definition 13.1 (Type environment) A type environment is a partial
function E : Var ∪ Pnames ⇀ Types.

Definition 13.2 (Update of type environments) We write E[x �→ T] for
the type environment E′ defined by

E′(y) =

{
E(y) if y �= x

T if y = x.

13.2.5 Assigning types

We now describe the heart of the type system, namely the rules that define
how types are assigned to syntactic entities. We need to describe how this
assignment is done for each syntactic category.

Type rules for expressions

The type judgment E � e : T is to be read as e has type T , given the type
bindings of type environment E.

We define the type judgment by the rules in Table 13.3. An essential type
rule is [varexp], since this is the rule that invokes the type environment to
find the type of x.

Type rules for declarations

In the type rules for non-empty declarations, we define the auxiliary func-
tions E(DV , E) and E(DP , E) that return the updated type environments
generated by a declaration DV or DP when starting with type environment
E. The function is defined as follows:

13.2 Typed Bump 191

[subsexp] E � e1 : Int E � e2 : Int

E � e1 − e2 : Int
[numexp] E � n : Int

[addexp] E � e1 : Int E � e2 : Int

E � e1 + e2 : Int
[varexp]

E(x) = T

E � x : T

[multexp] E � e1 : Int E � e2 : Int

E � e1 ∗ e2 : Int
[parenexp]

E � e1 : T

E � (e1) : T

[equalexp] E � e1 : T E � e2 : T

E � e1 = e2 : Bool

[andexp] E � e1 : Bool E � e2 : Bool

E � e1 ∧ e2 : Bool
[negexp]

E � e1 : Bool

E � ¬e1 : Bool

Table 13.3 Type rules for Bump expressions

[emptydec] E � ε : ok

[vardec] E[x �→ T] � DV : ok E � a : T

E � var T x := a;DV : ok

[procdec]
E[p �→ (x : T → ok)] � DP : ok

E � proc p(T x) is S;DP : ok

Table 13.4 Type rules for variable and procedure declarations in Bump

E(ε, E) = E

E(var T x; DV , E) = E(DV , E[x �→ T])

E(proc p(T x) is S; DP , E) = E(DP , E[p �→ (x : T) → ok)]).

Note that we add a type assumption about the variable or procedure that
is being declared when the remaining declarations are examined.

Type rules for statements

The type rules are shown in Table 13.5. In the rule [blockstm] we need
to type the block body in a type environment where we have added type
assumptions from the local declarations.

192 Typed programming languages

[skipstm] E � skip : ok

[assstm] E � x : T E � a : T

E � x := a : ok

[ifstm]
E � e : Bool E � S1 : ok E � S2 : ok

E � if e then S1 else;S2 : ok

[whilestm] E � e : Bool E � S : ok

E � while e do S : ok

[compstm]
E � S1 : ok E � S2 : ok

E � S1 ;S2 : ok

[blockstm]
E � DV : ok E1 � DP : ok E2 � S : ok

E � begin DV DP S end : ok

where E1 = E(DV ,E)
and E2 = E(DP ,E1)

[callstm]
E � p : (x : T → ok) E � e : T

E � call p(e) : ok

Table 13.5 Type rules for Bump statements

13.2.6 Safety properties

Every type system is supposed to be safe. By this we mean that, if a term
is well-typed, then certain properties of the term are guaranteed to hold.
In our case, we would expect, among other things, that, if E � e : T , then
e will evaluate to a value from the set that the type T denotes. Moreover,
we would expect, for instance, that, in a while loop while b do S, b will
evaluate to a truth value.

To reflect this, we must make precise what types denote. Base types are
supposed to denote sets. The type Int denotes the set Z, and the type Bool

denotes the set {tt, ff} of truth values. Let set(T) denote the set correspond-
ing to type T .

We also need to make precise that the bindings of a type environment E

correspond to the value bindings found in an environment–store pair. For
instance, if x has type Int, then the location of x should contain an integer
value.

Definition 13.3 (Agreement for variables) A pair (envV , sto) agrees with

13.2 Typed Bump 193

type environment E if it is the case that for any variable x, if E(x) = T ,
then envV x = l and sto l = v where v ∈ set(T).

Theorem 13.4 (Safety for expressions) Suppose (envV , sto) agrees with
type environment E and that E � e : T . Then envV , sto � e → v and
v ∈ set(T).

Proof This is a result that states a property for all terms that are well-
typed. We therefore prove this theorem by induction on the depth of the
derivation tree for E � e : T .

n = 0: Here, there are two cases to consider.

• If E � e : T was concluded using [varexp], then e = x for
some variable x, and since E agrees with (envV , sto) we have that
sto(envV) = v for some v ∈ set(T). The desired property is now
seen to hold immediately.

• If E � e : Int, we have that e is some numeral n, and envV , sto �
n →e v where N [[n]] = v. Since N : Aexp → Z, we have v ∈ Z.
Since Z = set(Int), the property therefore holds in this case.

Assume for all j ≤ n, prove for n + 1: Suppose the derivation tree for
E � e : T has height n + 1, then one of the rules not covered by the
base case above must have been used. We must then consider each
rule in turn. All of the cases are similar, so we give the proof only
for one of them here.

Suppose [addexp] was the last rule used. The derivation tree for
E � e1 : Int has height j1 ≤ n and the derivation tree for E �
e2 : Int has height j2 ≤ n. By virtue of our induction hypothesis we
have envV , sto � e1 →e v1 with v1 ∈ Z and envV , sto � e2 →e v2

with v2 ∈ Z. From the transition rule [plus-bumpbss] we have that
envV , sto � e1 + e2 →e v1 + v2 and clearly v1 + v2 ∈ Z and Z =
set(Int), as we needed to prove.

Theorem 13.5 (Safety for variable declarations) Suppose (envV , sto) agrees
with type environment E and that E � DV : ok. Then

• 〈DV , sto, envV 〉 → (env′V , sto′) where (env′V , sto′) agrees with E

• �E 〈DV , sto, envV 〉 �→ wrong.

Proof This is a result that states a property for all variable declarations
that are well-typed. We therefore prove this theorem by induction on the

194 Typed programming languages

[declerror] �E 〈x := e;DV , sto, envV 〉 → wrong

if E(x) = T but envV , sto �E e → v where v �∈ set(T)
or �E 〈DV , envV , sto〉 → wrong

Table 13.6 The error predicate for variable declarations

depth of the derivation tree for E � DV : ok. To show that a configuration
does not lead to wrong, we show that the conditions in the definition of the
error predicate do not apply.

n = 0: Here, the only case is that of [emptydec]. Since 〈ε, sto, envV 〉 →
envV and the error predicate is not defined for empty declarations,
the result is immediate.

Assume for j ≤ n, show for n + 1: If the derivation tree has height n+1,
then the last rule must be [vardec]. By Theorem 13.4 we have
that envV , sto � a →e v where v ∈ set(T). We now see that
E[x �→ T] agrees with (envV [x � l, next �→ new l], sto[l �→ v]),
and we can therefore apply the induction hypothesis. The induction
hypothesis states that when 〈DV , sto[l �→ v], envV [x � l, next �→
new l]〉(env′V , sto′) we have that E[x �→ T] agrees with (env′V , sto′).
Then, clearly it is also the case that E agrees with (env′V , sto′).
Moreover, by virtue of our induction hypothesis we have that �E

〈DV , sto, envV 〉 �→ wrong, so the conditions of the error predicate do
not apply. This completes the proof.

Definition 13.6 (Agreement for procedure names) A procedure environ-
ment envP agrees with type environment E if it is the case that, for any
procedure name p, if E(p) = x : T → ok, then envV p = (x, S, env′V , env′P)
and E, x : T � S : ok.

Theorem 13.7 (Safety for procedure declarations) Let envV be a variable
environment. Suppose there exists a sto such that (envV , sto) agrees with type
environment E and that E � DP : ok. Then envV � 〈DP , envP 〉 → env′P
where env′P agrees with E.

Proof This is left as an exercise for the reader.

Problem 13.8 Prove Theorem 13.7.

13.2 Typed Bump 195

[asserror] envV , envP �E 〈x := e, sto〉 → wrong
if E(x) = T but envV , sto �E e → v
where v �∈ set(T)

[comperror] envV , envP �E 〈S1 ;S2 , sto〉 → wrong
if envV , envP �E 〈S1 , sto〉 → wrong
or envV , envP � 〈S1 , sto〉 → sto′

but envV , envP �E 〈S2 , sto
′〉 → wrong

[iferror] envV , envP �E 〈if e then S1 else S2 , sto〉 → wrong

if envV , sto �E e → v with v �∈ {tt, ff}
or envV , sto �E e → tt but envV , envP �E 〈S1 , sto〉 → wrong
or envV , sto �E e → ff but envV , envP �E 〈S2 , sto

′〉 → wrong

[whileerror] envV , envP �E 〈while e do S, sto〉 → wrong
if envV , sto �E e → v with v �∈ {tt, ff}
or envV , sto � e → tt but envV , envP �E 〈S, sto〉 → wrong
or envV , sto � e → tt and envV , envP �E 〈S, sto〉 → sto′

but envV , envP �E 〈while e do S, sto′〉 → wrong

[blockerror] envV , envP �E 〈begin DV DP S end, sto〉 → wrong

if envV , envP �E 〈S, sto〉 → wrong
or �E 〈DV , sto, envV 〉 → wrong

[callerror] envV , envP �E 〈call p(e), sto〉 → wrong

if E(p) = T → ok but envV , sto �E e → v
where v �∈ set(T)

Table 13.7 The error predicate for statements

The main theorem for our type system states that a well-typed statement
will not result in errors of certain kinds. To be precise about what an error
is in our setting, we define an error predicate in Table 13.7. The idea is that
a statement S results in an error if it assigns a value of the wrong type to a
variable or if an expression occurring in S is not well-typed.

Since statements contain variable declarations where variables are initial-
ized, we also need to define an error predicate on variable declarations. The
definition, which can be found in Table 13.6, makes use of conditions that
are similar to those for assignments.

196 Typed programming languages

Theorem 13.9 (Safety for statements) Suppose (envV , sto) and envP

agree with type environment E and that E � S : ok. Then, if envV , envP �
〈S, sto〉 → sto′, E agrees with (envV , sto′) and envV , envP � 〈S, sto〉 �→
wrong.

Proof In this theorem we state a property of all transitions, so here the
proof proceeds by induction on the height of the derivation tree of the tran-
sition envV , envP � 〈S, sto〉 → sto′.

n = 0: Here, there are two cases to consider.

• If [skip-bumpbss] was used, the conclusion is immediate, since
envV , envP � 〈skip, sto〉 → sto and the error predicate is not
defined for skip.

• If [ass-bumpbss] was used, we have that S is x := e and that
E � e : T where E(x) = T . But by Theorem 13.4 we have that
envV , sto � e → v with v ∈ set(T), so the error predicate does not
apply. Moreover, it then also follows that the pair (envV , sto[l �→
v]) agrees with E.

Assume for j ≤ n, show for n + 1: We describe only two of the cases be-
low, namely the ones where the previous theorems about the type
system are invoked. The remaining cases are all similar or simpler
and the reader may want to complete these as an exercise.

• Consider the rule [while-true-bumpbss]. Here the premises tell
us that envV , envP � 〈S, sto〉 → sto′′ for some sto′′ and that
envV , envP � 〈while e do S, sto′′〉 → sto′. Since E � while e do S :
ok, we have that E � S : ok, so by virtue of our induction
hypothesis we have that envV , envP �E 〈S, sto〉 �→ wrong and
envV , envP �E 〈while e do S, sto′′〉 �→ wrong. Consequently, none
of the conditions of the error predicate will hold in this case, so
we conclude that envV , envP �E 〈while e do S, sto〉 �→ wrong.
Moreover, by virtue of our induction hypothesis we have that E

agrees with (envV , sto′′) and with (envV , sto′); the latter is what
remained to be shown.

• Consider the rule [block-bumpbss]. In this case the premises
tell us the following: that 〈DV , envV , sto〉 →DV (env′V , sto′′), that
env′V � 〈DP , envP 〉 → env′P and that env′V , env′P � 〈S, sto′′〉 →
sto′. The type rule that was used to conclude that the block is well-
typed, can only have been [blockstm]. The induction hypothesis
then tells us that the pair (env′V , sto′′) agrees with E1, that env′P
agrees with E2 and that (env′V , sto′) agrees with E2. Since env′V

13.2 Typed Bump 197

extends envV and E2 extends E with bindings for at least the
variables in dom(env′V) \ dom(envV), we get that E agrees with
(envV , sto′).
To show that the error predicate does not hold, first note that
by Theorem 13.5 we have that E agrees with (env′V , sto′′) and
by Theorem 13.6 that E agrees with env′P . We can then use the
induction hypothesis to conclude that env′V , env′P �E 〈S, sto′′ �→
wrong. Consequently, the conditions of the error predicate do not
apply.

13.2.7 The limitations of the type system

Our type system captures a certain class of run-time errors but there is a
price to pay. Some statements that can be executed without problems will
be rejected by the type system.

We say that a statement S is safe w.r.t. type environment E, (envV , envP)
and sto if envV , envP �E 〈S, sto〉 �→ wrong.

It is easy to find examples of statements that are not well-typed w.r.t. E

but are safe wrt. E and any choice of (envV , envP) and sto that agree with
E. A simple example is the statement S given by

begin
var x := 42
if 0=1
then

x := true
else

x := 44
end

It is easy to see that E � S : ok. The class of statements of this nature, i.e.
ones that are safe, but not well-typed, constitutes what is called the slack
of the type system. See Figure 13.1.

It should not be too much of a disappointment that the type system
has slack. Even the small language Bump is Turing-complete (see page
29), and, because of this, it is easy to show that it is decidable whether a
statement is well-typed while it is undecidable whether a statement is safe.
This property – that type checking is tractable while safety checking is not –
should hold if the type system is reasonable and the programming language
under consideration is Turing-complete.

198 Typed programming languages

........

........

........
........
........
.........
.........
.........

..........
..........

..........
...........

...........
............

.............
..............

...............
................

..................
....................

........................
.............................

..
...

....................................
...........................

.......................
...................

..................
................

...............
.............

.............
............

...........
...........
..........
..........
.........
.........
.........
.........
........
........
........
........
......

........

........
.........
.........
..........

..........
...........

............
..............

...............
.................

....................
.........................

.................................
..

..
..................................

..........................
....................

..................
...............

..............
............

...........
..........
..........
.........
.........
........
........
.

Safe

Well-typed

Figure 13.1 A type system is an overapproximation of safety

A moment’s thought 13.10 How can we check whether a Bump state-
ment is well-typed in some type environment E?

13.3 Typed Flan

We now describe a type system for the functional language Flan. We here
use a small-step semantics of the language.

13.3.1 Syntax

Let Fexp denote the syntactic category of Flan programs (or expressions,
if you want), let Fcon denote the syntactic category of Flan constants and
let Var denote the set of variables.

Let e ∈ Fexp, c ∈ Fcon and x, f ∈ Var. First, we consider a version
of Flan where local declarations are nonrecursive. The formation rules are
then

e ::= x | c | (e1, e2) | e1e2 | if e0 then e1 else e2 |
fn x.e | let x = e1 in e2 | letrec x = e1 in e2

c ::= n | Plus | Times | Minus | Equal | IsZero
| True | False | Not | First | Second

13.3 Typed Flan 199

13.3.2 The type system

The set of types Types is this time given by the following formation rules:

T ::= Int | Bool | T1 → T2 | T1 × T2.

The central idea is that an expression has the function type T1 → T2 if it
represents a function that takes an argument of type T1 and returns a value
of type T2. Moreover, an expression has the pair type T1 ×T2 if it represents
a pair whose first coordinate has type T1 and whose second coordinate has
type T2.

We also assume the existence of a signature σ that assigns types to the
constants. For instance, we shall assume that σ(Plus) = Int× Int → Int and
that σ(True) = Bool.

Type judgments are of the form

E � e : T,

where E is a type environment , that is, E is a partial function E : Var ⇀

Types assigning types to variables. If E is the empty type environment, we
simply write � e : T .

The type rules are given in Table 13.8. We here explain the most inter-
esting rules. The rule [varfun] is a particularly important rule, since this
is the rule that shows the rôle played by the type environment: to find the
type of a variable, look it up in the type environment. In the application
rule [appfun] we require that expression e1 represents a function, that is,
has type T1 → T2; and that e2 is a valid argument, that is, has type T1. In
the abstraction rule [absfun] we express that a function fn x.e is well-typed
and has function type T1 → T2 if it is the case that the body e is well-typed
with result type T2 whenever the argument is known to have type T1.

The rule for non-recursive let-definitions [letfun] states that we must be
able to type the locally defined x with some type T1 and then be able to
type the body e2 under the assumption that x has type T1. The type rule
for recursive let-definitions will be presented in Section 13.3.5.

13.3.3 Semantics

As noted before, Flan includes a slightly sugared version of the simply typed
applied λ-calculus. We now present a small-step semantics of Flan.

In our semantics, values are functions and constants.

Definition 13.11 A value v is any expression given by the following

200 Typed programming languages

[varfun]
E(x) = T

E � x : T

[pairfun]
E � e1 : T1 E � e2 : T2

E � (e1 , e2) : T1 × T2

[appfun] E � e1 : T1 → T2 E � e2 : T1

E � e1e2 : T2

[absfun] E[x �→ T1] � e : T2

E � fn x.e : T1 → T2

[iffun] E � e0 : Bool E � e1 : T E � e2 : T

E � if e0 then e1 else e2 : T

[letfun] E � e1 : T1 E, x : T1 � e2 : T2

E � let x = e1 in e2

[constfun] E � c : T if σ(c) = T

Table 13.8 Type rules for Flan

formation rules:

v ::= c | fn x.e | x

The transition rules are presented in Table 13.9. In some of the rules, we
need to perform substitutions. In order to define substitution, we need to be
sure that we do not incorrectly capture variables. The situation is the same
as in Section 7.5, where we had to avoid name clashes.

As an example of this subtlety, consider the expression e = fn y.Minus y x

and the value v = Plus y y. What is e[x �→ v]? If we näıvely replaced all
occurrences of x by Plus y y in the body of the function e, we would get
fn y.Minus y (Plus y y) which is clearly not what we want.

The problem is caused by the confusion between the two ys and just as
in the λ-calculus, the solution is to apply alpha-conversion to rename the
bound occurrence of y found in e (cf. Section 12.3, page 176). First, let us
define the notions of free and bound variables (cf. Section 12.3).

Definition 13.12 (Free variables) The set of free variables of an expression

13.3 Typed Flan 201

[pair1fun-sss]
e1 ⇒ e′1

(e1 , e2) ⇒ (e′1 , e2)

[pair2fun-sss]
e2 ⇒ e′2

(e1 , e2) ⇒ (e1 , e′2)

[let1fun-sss]
e1 ⇒ e′1

let x = e1 in e2 ⇒ let x = e′1 in e2

[let2fun-sss] let x = v in e2 ⇒ e2 [x �→ v]

[letrec1fun-sss]
e1 ⇒ e′1

letrec f = e1 in e ⇒ letrec f = e′1 in e

[letrec2fun-sss] letrec f = v in e ⇒ e[f �→ (letrec f = v in v)]

[if1fun-sss]
e ⇒ e′

if e then e1 else e2 ⇒ if e′ then e1 else e2

[if2fun-sss] if tt then e1 else e2 ⇒ e1

[if3fun-sss] if ff then e1 else e2 ⇒ e2

[app1fun-sss]
e2 ⇒ e′2

e1e2 ⇒ e1e′2

[app2fun-sss]
e1 ⇒ e′1

e1v ⇒ e′1v

[app3fun-sss] (fn x.e)v ⇒ e[x �→ v]

[app4fun-sss] c(e) ⇒ apply(c, e) if apply(c, e) is defined

Table 13.9 The small-step semantics of Flan

is defined by

fv(x) = {x}
fv(c) = ∅

fv((e1, e2)) = fv(e1) ∪ fv(e2)

fv(if e0 then e1 else e2) = fv(e0) ∪ fv(e1) ∪ fv(e2)

fv((fn x.e) = fv(e) \ {x}
fv(let y = e1 in e2) = fv(e1) ∪ fv(e2) \ {y}

fv(letrec y = e1 in e2) = fv(e1) ∪ fv(e2) \ {y}

202 Typed programming languages

Definition 13.13 (Bound variables) The set of bound variables of an
expression is defined by

bv(x) = ∅
bv(c) = ∅

bv((e1, e2)) = bv(e1) ∪ bv(e2)

bv(if e0 then e1 else e2) = bv(e0) ∪ bv(e1) ∪ bv(e2)

bv((fn x.e) = bv(e) ∪ {x}
bv(let y = e1 in e2) = bv(e1) ∪ bv(e2) ∪ {y}

bv(letrec y = e1 in e2) = bv(e1) ∪ bv(e2) ∪ {y}

Definition 13.14 An expression e is closed if fv(e) = ∅.

We can now deal with the problem of name clashes in a systematic fashion.

Definition 13.15 (Confusion-free expressions) A Flan expression e is
confusion-free if the sets of free and bound variables are disjoint, i.e. if
fv(e) ∩ bv(e) = ∅.

Every Flan expression can easily be rewritten as a confusion-free expres-
sion by alpha-conversion (see Section 12.3) of the bound names such that
they are all distinct and distinct from the free names. It is therefore safe to
assume in the following that Flan expressions are confusion-free.

Definition 13.16 (Substitution) The substitution of free variable x by
value v in an expression e is defined as follows (where z denotes a fresh
variable):

y[x �→ v] = y

x[x �→ v] = v

(e1, e2)[x �→ v] = (e1[x �→ v], e2[x �→ v])

(if e0 then e1 else e2)[x �→ v] = if e0[x �→ v] then e1[x �→ v] else e2[x �→ v]

(fn y.e)[x �→ v] = (fn y.e[y �→ z]) if y ∈ bv(v) and z fresh

(fn y.e)[x �→ v] = (fn y.e[y �→ z]) if y �∈ bv(v)

(let y = e1 in e2)[x �→ v] = let y = e1[x �→ v] in e2[x �→ v]

(letrec y = e1 in e2)[x �→ v] = letrec y = e1[x �→ v] in e2[x �→ v]

13.3 Typed Flan 203

13.3.4 Properties of the type system

We can now analyse the type system for Flan. The first two sections deal
only with Flan−, the sublanguage without recursive declarations. We con-
sider letrec-declarations in Section 13.3.5.

Subject reduction

Our first result is a preservation result commonly known as the subject reduc-
tion property ; it states that a well-typed expression e will remain well-typed
after a small-step transition.

The proof of this result proceeds by an induction on the derivation tree
for the type judgment E � e : T . A complication is that we can perform
substitutions as the result of a function application. Therefore we first need
to show that whenever we substitute a variable x by a value v (where x

does not occur free) of the same type within a well-typed expression e, the
resulting expression e[x �→ v] remains well-typed.

This is the content of the following important lemma.

Lemma 13.17 (Substitution lemma) Suppose that e is a Flan− expres-
sion, that E[x �→ T1] � e : T and that for value v where x �∈ fv(v) we have
E � v : T1. Then E � e[x �→ v], where x �∈ dom(E).

Proof The proof proceeds by induction on the structure of the derivation
tree of the type judgment E � e : T . Many of the cases are similar, so we
consider only two here and leave the remaining ones as an exercise.

[varfun]: Here, e = x. Since x[x �→ v] = v and we have E � v : T1, this case
follows immediately.

[absfun]: Here, e = fn y.e1. Since we are considering only confusion-free
expressions, we know that y �= x and e[x �→ v] = fn y.e1[x �→ v].
By virtue of our induction hypothesis, we have that E[y �→ T1] �
e1[x �→ v], where x �∈ dom(E). By using [absfun], we get that E �
(fn y.e1)[x �→ v].

Problem 13.18 Prove the remaining cases of the substitution lemma.

We can now prove the following theorem.

Theorem 13.19 (Subject reduction) Suppose e is a Flan− expression and
that E � e : T and e ⇒ e′. Then also E � e′ : T .

Proof We proceed by induction on the derivation tree for e ⇒ e′. We do

204 Typed programming languages

not include all cases below, since all of them are simple. The remaining ones
are left to the reader as an exercise.

pair1: Assume that E � (e1, e2) : T . By application of the type rule
[pairfun] we conclude that T = T1 × T2 and that E � e1 : T1. By
virtue of our induction hypothesis we have that E � e′1 : T1 and by
an application of the type rule [pairfun] with premises E � e′1 : T1

and E � e2 : T2, we get that E � (e′1, e2) : T as desired.
app3 Assume that E � (fn x.e)v : T . By application of the type rules

[absfun] and [appfun] we conclude that T = T2, that E, x : T1 �
e : T2 and that E � v : T1. From Lemma 13.17 we now get that
E � e[x �→ v] : T2.

Problem 13.20 Complete the proof of Theorem 13.19.

Termination

The safety property that we shall show for Flan− deals with termination.
Even without letrec we are able to express infinite behaviour. However,

this leads to some complications. Consider the expression e∞ given by

e∞ = (fn x.x x)(fn x.x x).

Clearly, e∞ is not a value and it is also easy to see from the small-step
semantics that

e∞ ⇒ e∞.

This then means that there is an infinite transition sequence

e∞ ⇒ e∞ ⇒ e∞ ⇒ e∞ · · · .

Can e∞ be well-typed? The answer is no. We are now going to establish a
theorem which has the consequence that e∞ cannot be well-typed!

Our theorem states that any well-typed program in the fragment Flan−

will terminate.

Definition 13.21 (Termination) We write e ↓ if there exists a value such
that e ⇒∗ v.

Theorem 13.22 Let e ∈ Flan− and assume e is closed. If E � e : T for
some type T , then e ↓.

To prove this theorem, we consider a slightly modified version of Flan−.

13.3 Typed Flan 205

The basic observation is that if-then-else expressions and let-declarations
are both syntactic sugar that can be eliminated.

We can get rid of the construct if e0 then e1 else e2 by introducing
a new constant Cond, where the intended behaviour of Cond(e0, e1, e2) is
defined by the rules

apply(Cond, (tt, (e1, e2))) = e1,

apply(Cond, (ff, (e1, e2))) = e2.

The type of Cond is (Bool×T ×T) → T for any T . In fact, we should think
of Cond as a family of constants, one for each type.1

Moreover, we can eliminate all local declarations let x = e1 in e2 by
instead writing (fn x.e1)e2.

If we let T (e) denote the version of expression e obtained by making
the above transformation, one can show that this transformation preserves
termination and typability.

Lemma 13.23 For any Flan− expression e we have

• T (e) ⇒∗ v iff e ⇒∗ v

• E � T (e) : T iff E � e : T.

Problem 13.24 Prove the above lemma.

So from now on we consider a version of Flan− without if-then-else or let-
declarations and show that, in this simpler language, well-typed expressions
always terminate.

How do we prove Theorem 13.22? It would of course be preferable if we
could perform a proof by induction on the structure of e. However, it is not
obvious how this should be done. The reason is that a reduction step may
make the structure of the resulting expression more involved by duplicating
expressions.

Problem 13.25 Try to prove Theorem 13.22 by induction on the structure
of e. What happens?

Instead, we introduce a type-indexed reducibility predicate RedT (e) which
we define by

• RedT (c) for any constant c

• For any other expression e

– RedInt(e) iff e ↓
– RedBool(e) iff e ↓

1 This amounts to saying that Cond is polymorphic.

206 Typed programming languages

– RedT1→T2 (e) iff e ↓ and, whenever RedT1 (e1), we have RedT2 (e e1)
– RedT1×T2 (e) iff e ↓ and RedT1 (First e) and RedT2 (Second e).

This technique is an example of the method of logical relations that was
originally introduced by Tait (Tait, 1967, 1975) in order to show termination
in the simply typed λ-calculus. A logical relation is a type-indexed family
of sets, and the family of RedT (e)-sets is just that.

The idea in the proof that follows is to show that if an expression e is
well-typed, then it is reducible. Note that the converse does not hold!

A moment’s thought 13.26 Find an example of a reducible expression
that is not well-typed.

To show that well-typed expressions are reducible, we must first show two
results. First, we must show that a reducible expression terminates. Second,
we must show that reducibility is preserved by transitions in the small-step
semantics.

The first of these results is immediate from our definition of the predicate.

Lemma 13.27 If RedT (e) then e ↓.

Next, we come to the preservation result. This is stated as follows.

Lemma 13.28 If � e : T and e ⇒ e′, then we have that RedT (e) iff
RedT (e′).

Proof If e is a constant, the result is immediate. For any other expression,
we proceed by induction on the structure of the type T .

T = Int: Here, there is nothing to prove, as RedInt(e) for any expression e.
T = Bool: Similarly, there is nothing to prove in this case.
T = T1 → T2: We assume that the lemma holds for T1 and for T2 and

prove each implication separately. First, suppose that RedT1→T2 (e)
and let e1 be an arbitrary expression such that RedT1 (e1). By def-
inition this means that RedT2 (e e1). The small-step semantics tells
us that e e1 ⇒ e′ e1, and from the induction hypothesis we now
get that RedT2 (e

′ e1). Because e1 was arbitrary, we conclude that
RedT1→T2 (e

′). This proves one implication.
The reverse implication is similar. Assume that RedT1→T2 (e

′) and
let e1 be an arbitrary expression such that RedT1 (e1). By definition
this means that RedT2 (e

′ e1). The small-step semantics again tells
us that e e1 ⇒ e′ e1, and from the induction hypothesis we now
get that RedT2 (e e1). Because e1 was arbitrary, we conclude that
RedT1→T2 (e), and we are done.

13.3 Typed Flan 207

T = T1 × T2: As before, we assume that the lemma holds for T1 and for
T2 and prove the two implications separately. Suppose first that
RedT1×T2 (e). This by definition means that we have RedT1 (First e)
and RedT2 (Second e). We know that e ⇒ e′ implies that First e ⇒
First e′ and Second e ⇒ Second e′.

By application of the type rule [constfun] we know that � First e :
T1 and that � Second e : T2. By virtue of our induction hypothesis
we have that RedT1 (First e′) and that RedT2 (Second e′). But that
then implies that RedT1×T2 (e

′).
The reverse implication is entirely similar and therefore omitted

here.

The termination result follows directly from the following result, which
states that the reducibility predicate is closed under substitution: if an ex-
pression e is well-typed and reducible and we replace all its free variables
by reducible, well-typed expressions, the resulting expression will also be
reducible.

Theorem 13.29 Suppose v1, . . . , vk are closed values, that � vi : Ti and
RedTi (vi) for 1 ≤ i ≤ k. Let e be an expression where fv(e) = {x1, . . . , xk}
and suppose [x1 �→ T1, . . . , xk : Tk] � e : T . Then we have that RedT (e[x1 �→
v1, · · · , xk �→ vk]).

Proof Since this is a theorem about all well-typed expressions, the proof is
an induction on n, the depth of the derivation tree for [x1 �→ T1, . . . , xk �→
Tk] � e : T .

n = 0: Here, we consider the two axioms.

[varfun]: This case is immediate, since e = x and e[x �→ v] = v and
since we already assume RedT (v).

[consfun]: This case is also immediate, since RedT (c) for any con-
stant c and since fv(v) = ∅.

Assume for n, prove for n + 1: Here, there are three rules to deal with.

[absfun]: Here we have that e = fn x.e′ with [x1 �→ T1, . . . , xk �→
Tk] � e : U1 → U2 and we also know that [x1 �→ T1, . . . , xk �→
Tk, x �→ U1] � e′ : U2.
We must now show that RedU1→U2 (e). To do this, we must
show that for any e1 for which RedU1 (e1) we have that
RedU2 (e e1).
So let e1 be an arbitrary expression where RedU1 (e1). By

208 Typed programming languages

Lemma 13.27 we know that there is a value v such that e1 ⇒∗

v.
Now let v1, . . . , vk be values where � vi : Ti and RedTi (vi) for
1 ≤ i ≤ k. By virtue of our induction hypothesis, RedU2 (e

′[x1 �→
v1, · · · , xk �→ vk, x �→ v]).
From the small-step semantics we see that

(fn x.e′[x1 �→ v1, · · · , xk �→ vk])e1 ⇒∗

e′[x1 �→ v1, · · · , xk �→ vk, x �→ v]

and Lemma 13.28 gives us that

RedU2 ((fn x.e′[x1 �→ v1, · · · , xk �→ vk])e1)

Since e1 was arbitrary, the case follows.
[appfun]: In this case we have that e = e1 e2. We have that [x1 �→

T1, . . . , xk �→ Tk] � e1 : U1 → U2 and [x1 �→ T1, . . . , xk �→
Tk] � e2 : U1. We must show that RedU2 (e[x1 �→ v1, . . . , xk �→
vk]).
To improve the readability of the rest of the proof of this case,
let us abbreviate the substitution [x1 �→ v1, . . . , xk �→ vk] by
σ in the following.
By virtue of our induction hypothesis, we now have that
RedU1→U2 (e1σ) and RedU1 (e2). But, by virtue of the defini-
tion of RedU1→U2 (e1σ), we have that for all e′ where RedU1 (e

′)
it is the case that RedU2 (e1σ e′), so in particular it must hold
that RedU2 (e1σ e2σ). Then, since (e1σ e2σ) = (e1 e2)σ, we
get RedU2 ((e1 e2)σ), which is what we wanted to show.

[pairfun]: Here e = (e1, e2) with [x1 �→ T1, . . . , xk �→ Tk] � e : U1 ×
U2 and we also know that [x1 �→ T1, . . . , xk �→ Tk] � e1 : U1

and that [x1 �→ T1, . . . , xk �→ Tk] � e2 : U2.
Again, let us abbreviate the substitution [x1 �→ v1, . . . , xk �→
vk] by σ in the following.
Now we must show that RedU1×U2 (eσ). We know that eσ =
(e1σ, e2σ). By virtue of our induction hypothesis we have
RedU1 (e1σ) and RedU2 (e2σ). From the small-step semantics
we conclude that First (e1σ, e2σ) ⇒ e1σ, so we get from
Lemma 13.28 that RedU1 (First (e1σ, e2σ)). In the same fash-
ion we can conclude that RedU2 (Second (e1σ, e2σ)). From
these and the definition of the reducibility predicate we now
get that RedU1×U2 (eσ).

13.4 Type polymorphism and type inference 209

[letrecfun] E, x : T1 � e1 : T1 E, x : T1 � e2 : T2

E � letrec x = e1 in e2

Table 13.10 The type rule for letrec

13.3.5 Well-typed recursion

If we want to be able to deal with potentially infinite behaviour within
our type system, we need to introduce the letrec-construct and give it a
suitable type rule. The rule is found in Table 13.10.

In the case of a recursive let-definition x may occur in e1, and these
occurrences of x must be recursive calls of e1. So in [letrecfun] we further
require that e1 must have type T1 under the assumption that x also has type
e1.

13.4 Type polymorphism and type inference

The type systems that we have described in this chapter are fairly weak;
many reasonable programs remain untypable. A lot of research has been
devoted to developing and understanding more powerful type systems and
techniques for implementing them. In this short, final section we briefly
outline two of these developments. The interested reader is again referred to
Pierce (2002) for more details.

In the setting of functional programs, the notion of type polymorphism is
central. Consider the identity function

fn x.x

in Flan. What is its type? Clearly, the identity function can take an ar-
gument of any type T and return an argument of type T . So we can say
that the identity function has type T → T for all types T . A type of this
kind is called a polymorphic type, and this is tantamount to introducing type
variables (ranged over by α) and the notion of a universal quantifier into
our language of types. Then the type of the identity function can be written
∀α.α → α.

Another development is that of type inference, the study of how to auto-
matically find the types of all entities in a given program.

In a seminal paper Robin Milner relates these two notions; he describes

210 Typed programming languages

a type inference algorithm for a functional programming language with
polymorphic types (Milner, 1978). This work forms a cornerstone of the sub-
sequent work on polymorphically typed functional programming languages
such as the languages from the ML family and Haskell.

More recently, there has been work on extending Milner’s ideas to other
kinds of programming languages, involving traditional imperative languages.

14

An introduction to denotational semantics

This chapter gives a short introduction to the general principles of denota-
tional semantics. We do this by giving a denotational semantics of Bims. It
turns out that the semantics of while-loops poses a problem, as the obvious
semantics is not compositional. However, at the end of the chapter we find
a way to circumvent this problem of non-compositionality.

14.1 Background

Denotational semantics is a child of the 1960s and is based on the ground-
breaking insights of Christopher Strachey and Dana Scott (Strachey, 1966,
1967; Scott and Strachey, 1971). Since then, a lot of work has gone into
providing denotational semantics for existing programming languages such
as Algol 60, Pascal, Smalltalk and Lisp.

Denotational semantics has also turned out to be a particularly useful
tool in the design and implementation of languages such as Ada, CHILL
and Lucid (Schmidt, 1986).

Denotational semantics can also be useful in static program analysis, which
is the study of the correctness properties on the basis of analyses of the
program text (as opposed to analyses of the behaviour of the program).

Simple examples of static analysis involve methods for code optimization.
Here are two examples.

Consider the so-called constant-folding problem: when is it possible to
replace an expression involving variables by a constant? For instance, a
solution to the constant-folding problem will allow us to conclude that the
variable y in the statement

x := 7; y:= x + x + 26

212 An introduction to denotational semantics

always has the value 40.
Or consider sign analysis. In the above example we see that y will al-

ways have a positive integer as its value. This kind of information can be
used to optimize the code generated during compilation. Consider the Bims
fragment

x := 7; y:= x + x + 26; while y < 0 do...

Here, we will not need to generate code for the body of the while-loop.
The idea of static program analysis is to define a non-standard semantics

that captures the property that we want to analyse – e.g. that of the sign
of integer variables. This kind of non-standard semantics is a denotational
semantics, where the meaning of an expression is its sign and the meaning
of a program is either of the values safe or not safe. If we had wanted to,
we could have given a structural operational semantics; the idea of static
program analysis is not specific to denotational semantics.

A good introduction to the use and usefulness of denotational semantics
in static program analysis is the book by Nielson and Nielson (2007).

Another advantage of denotational semantics is that it describes programs
as computable functions; this makes it very easy to implement the definitions
of a denotational semantics in a functional programming language. The pi-
oneering system SIS (Mosses, 1975) developed by Mosses in 1975 made use
of this observation.

For the same reason, it is fairly easy to describe the denotational semantics
of a functional programming language.

Denotational semantics has its disadvantages, too. In particular, it is dif-
ficult to provide a simple account of nondeterminism and concurrency using
this kind of semantics; this difficulty was one of the motivations behind the
development of structural operational semantics.

14.2 λ-Notation

In this and the next chapter we shall devote a lot of attention to func-
tions. For this reason it is important to establish a convenient notation for
functions. Our choice of notation, λ-notation, is directly inspired by the
λ-calculus (see Chapter 12). A function with argument x and body e is
written as the abstraction λx.e. A function f is said to have type A → B if
the domain of f is the set A and the range of f is the set B.

Example 14.1 λz.3 + z denotes a function whose type is Z → Z. This
function adds 3 to its argument. λx.x · x denotes a function of type Z → Z

that squares its argument.

14.2 λ-Notation 213

The body of a λ-expression always extends as far to the right as possible,
i.e. λx.x + 1 is λx.(x + 1) and not (λx.x) + 1.

The λ-notation is therefore just another notation for functions. One of
its advantages is that we do not need to name functions. Another, even
more important advantage, which is inherited from the λ-calculus, is that
we can now express higher-order functions, i.e. functions that take functions
as arguments and/or return a function.

Example 14.2 λx.λy.x + y denotes the function which takes an argu-
ment x and returns the function which takes an argument and adds x to it.
Consequently, λx.λy.x + y has the type Z → (Z → Z).

Problem 14.3 For each of the following λ-expressions, describe its in-
tended meaning and find its type:

1. λx.x − 2
2. λx.¬x

3. λf.λx.f(f(x + 3)) + 1
4. λs.λ(x, v).s[x �→ v]

As in the λ-calculus, we write the application of a λ-expression to an
argument as the juxtaposition of the two.

Example 14.4 For example,

(λx.x + 45)9 = 54, (14.1)

(λx.λy.x + y)3 = λy.3 + y. (14.2)

Sometimes it is convenient to use conditional expressions, and here we use
a simple if. . . then . . . else . . . notation. So

λx.if x > 0 then 1 else − 1

denotes the function whose type is Z → {−1, 1} and that returns 1 if the
argument is positive and −1 otherwise.

If a function is not defined for all arguments (and therefore is a partial
function), we indicate the missing cases by undef.

Example 14.5 The function whose type is R ⇀ R,

λx.if x ≥ 0 then
√

x else undef

is the square-root function (which is a partial function when seen as a func-
tion over the reals).

214 An introduction to denotational semantics

14.3 Basic ideas

The central idea of denotational semantics is that a semantic definition de-
fines a semantic function SF which to every element in the syntactic cate-
gory Syn assigns a denotation, which is an element of a semantic category,
Sem:

SF : Syn → Sem.

Consequently, there must a semantic function for each syntactic category
in the language. SF must be specified by means of a syntax-directed and
preferably also compositional definition.

We now make this idea concrete by presenting a denotational semantics
of the arithmetic and Boolean expressions of Bims.

14.3.1 Denotational semantics of Aexp

Let us start by giving a denotational semantics of arithmetic expressions
without variables, i.e. the elements of Aexp given by the formation rules

a ::= n | a1+a2 | a1*a2 | a1-a2 | (a1)

The denotation of an arithmetic expression is its value, which is an integer.
This means that the semantic category is the set of integers, Z. Our semantic
function is called A− and its type is

A− : Aexp → Z.

We now define A− by defining how the function acts on each construct of
Aexp. Here, we again make use of the function N : Num → Z whose value
is the integer value of a given numeral.

A−[[n]] = N [[n]]

A−[[a1+a2]] = A−[[a1]] + A−[[a2]]

A−[[a1*a2]] = A−[[a1]] · A−[[a2]]

A−[[a1-a2]] = A−[[a1]] −A−[[a2]]

A−[[(a)]] = A−[[a]].

Example 14.6 Let us try to find A−[[(3+4)*(9-4)]]. By directly applying

14.3 Basic ideas 215

the definition of A− we get

A−[[(3+4)*(9-4)]] = A−[[(3+4)]] · A−[[(9-4)]]

= A−[[3+4]] · A−[[9-4]]

= (A−[[3]] + A−[[4]]) · (A−[[9]] −A−[[4]])

= (3 + 4) · (9 − 4)

= 7 · 5
= 35.

Notice from the above example how important it is to have a composi-
tional definition, i.e. a definition which satisfies that the denotation of a
composite element can be determined by finding the denotations of its im-
mediate constituents. This gives us a divide-and-conquer strategy for finding
the denotation.

When variables are present, the value of an arithmetic expression will de-
pend on the values of the variables, i.e. of a program state. So the denotation
of an arithmetic expression is now a function from states to values:

A : Aexp → (States → Z)

and our definition of A becomes

A[[n]] = λs.N [[n]]

A[[x]] = λs.sx

A[[a1+a2]] = λs.A[[a1]]s + A[[a2]]s

A[[a1*a2]] = λs.A[[a1]]s · A[[a2]]s

A[[a1-a2]] = λs.A[[a1]]s −A[[a2]]s

A[[(a)]] = λs.A[[a]]s.

Example 14.7 Let s1 ∈ States be given by [x �→ 3, y �→ 14]. Then

A[[x + 2]]s1 = (λs.(A[[x]]s) + (A[[2]]s))s1

= (λs.((λs.sx)s) + ((λs.N [[2]])s))s1

= (s1x) + 2

= 3 + 2 = 5.

Problem 14.8 Let s ∈ States be given by [x �→ 3, y �→ 14]. Find, by
applying the definition, A[[((x+x)-2)*(y-3*x)]]s and A[[(3+42)+x*y]].

216 An introduction to denotational semantics

14.3.2 Denotational semantics of Bexp

Bexp is given by the formation rules

b ::= a1 = a2 | a1 < a2 | ¬b1 | b1 ∧ b2 | (b1).

The denotational semantics of Bexp should depend on that of Aexp. Since
arithmetic expressions may occur as part of Boolean expressions, the deno-
tation of a Boolean expression also has to depend on the program state.

Consequently, our semantic category is the set States → {tt, ff}, and our
semantic function B has type

B : Bexp → (States → {tt, ff}

and is defined by

B[[a1 = a2]] = λs.if (A[[a1]]s = A[[a2]]s) then tt else ff

B[[a1 < a2]] = λs.if (A[[a1]]s < A[[a2]]s) then tt else ff

B[[¬b]] = λs.if (B[[b]]s = tt) then ff else tt

B[[b1 ∧ b2]] = λs.if (B[[b1]]s = tt) and(B[[b2]]s = tt) then tt else ff

B[[(b1)]] = λs.B[[b1]]s.

A moment’s thought 14.9 Let the state s1 ∈ States be given by

s = [x �→ 14, y �→ 3, z �→ 11].

Find, using the definition, the value of B[[x = y+z ∧ ¬ (y < 5)]]s1.

14.4 Denotational semantics of statements

We are now finally ready for the definition of the denotational semantics of
statements in Bims.

14.4.1 The denotation of a statement

What should the denotation of a statement be? A statement can change
the values of variables, and the values of variables are given by the program
state.

Therefore, a statement will, given an initial state, produce a final state.
So the denotation of a statement should be a function over the set of states.
Sometimes a statement will not produce a final state. This is the case when
the statement fails to terminate. This then means that the denotation of a
statement should be a partial function over the set of states, i.e. a function
of type States ⇀ States. The semantic function S therefore has type

14.4 Denotational semantics of statements 217

S : Stm → (States ⇀ States).

A function whose type is States ⇀ States is often called a state transfor-
mation.

A moment’s thought 14.10 Explain why we do not want the type of S
to be

S : Stm → States.

Also explain why we do not want the type of S to be

S : Stm ⇀ (States ⇀ States).

Let us now consider each of the language constructs of Bims to get an
idea of what its denotation should be.

First, let us find the state transformation that corresponds to skip. The
statement skip does not alter the state, so its denotation should simply be
the identity function λs.s.

An assignment statement x := a will, given a state s, return a state which
is s except that x now has the value of a, where a is evaluated in state s. The
denotation of x := a should therefore be the function λs.s[x �→ (A[[a]]s)].

A sequential composition S1; S2 will first change the state according to
the state transformation of S1 and then change the state according to the
state transformation of S2. So, if our initial state is s, the final state will
be S[[S2]](S[[S1]]s). This then means that the denotation of S1; S2 should be
λs.S[[S2]](S[[S1]]s). This is simply the function composition S[[S2]] ◦ S[[S1]].

A conditional statement if b then S1 else S2 gives rise to either a
state change corresponding to the state transformation of S1 or the state
transformation of S2, depending on the value of b. The denotation of a
conditional statement is therefore λs.if (B[[b]]s = tt) then S[[S1]]s else S[[S2]]s.

We execute a loop while b do S in state s by first checking the condition
b in state s. If b evaluates to true, then we must execute S in initial state s

and then re-enter the loop. Otherwise, nothing happens, and the final state
is simply s.

All in all, this leads to the following definition of S:

218 An introduction to denotational semantics

S[[skip]] = λs.s

S[[x := a]] = λs.s[x �→ (A[[a]]s)]

S[[S1; S2]] = S[[S2]] ◦ S[[S1]]

S[[if b then S1 else S2]] = λs.if (B[[b]]s = tt) then S[[S1]]s else S[[S2]]s

S[[while b do S]] = λs.if (B[[b]]s = tt) then

(S[[while b do S]] ◦ S[[S]])s

else s.

Example 14.11 Let us find

S[[if x > 3 then (x := 3+x; y := 4) else skip]].

We have

S[[if x > 3 then (x := 3+x; y := 4) else skip]] =

λs.if (B[[x > 3]]s = tt) then S[[x := 3+x; y := 4]]s else S[[skip]]s =

λs.if (sx > 3) then (S[[y := 4]] ◦ S[[x := 3+x]])s else s =

λs.if (sx > 3) then s[x �→ 3 + sx][y �→ 4] else s.

A moment’s thought 14.12 Why is there a section on λ-notation in this
chapter?

Problem 14.13 Let S be the statement

x := 3; y:= 0; if (y > x) then y:= 3-y else x:= 42

and let s be given by sx = 4. Find S[[S]]s.

Problem 14.14 Let S be the statement

i:= 1; while (x > 0) do (i:= i * x; x:= x-1)

Try finding S[[S]]. Let s be given by sx = 3. Find S[[S]]s.

14.4.2 Subtleties in the definition of S
The definition of S is not compositional : On the right-hand side of the
definition of the denotation of while b do S we have an occurrence of
while b do S. The consequence is that it becomes difficult for us to use the
definition for finding the denotation of any statement that involves while-
loops.

In fact, one may ask whether the denotation of a while-loop is well defined

14.4 Denotational semantics of statements 219

at all. A slightly different way of phrasing this question is the following.
Given a while-loop while b do S, does there exist a state transformation
f : States ⇀ States which satisfies the condition below?

f = λs.if (B[[b]]s = tt) then (f ◦ S[[S]])s else s. (14.3)

Fortunately, the answer is yes. In general there may be more than one f

satisfying (14.3). As a matter of fact, there may be infinitely many. So which
one do we choose?

Consider the statement

while ¬(x=0) do x:= x-1.

What is S[[while ¬(x=0) do x:= x-1]]? Consider the two state transforma-
tions

• f1 = λs.if (s x ≥ 0) then s[x �→ 0] else undef
• f2 = λs.s[x �→ 0]

We can show that f1 and f2 both satisfy (14.3). Here we consider the case
of f1. This gives rise to the equation

λs.if (s x ≥ 0) then s[x �→ 0] else undef =λs.if (s x �= 0) then

((λs.if (s x ≥ 0) then s[x �→ 0]

else undef) ◦ (λs.s[x �→ (s x) − 1])s)

else s.

Call the function on the left-hand side f ′
1 and the function on the right-hand

side f ′′
1 . We must now show that f ′

1 = f ′′
1 . Two functions are equal if they

return the same value for any choice of argument. Here, this means that for
all s ∈ States we have that f ′

1s = f ′′
1 s. There are three cases to consider

– states s where sx > 0, states s where sx = 0 and states s where sx < 0.
First consider the case where sx = 0. Here we see that

f ′
1s = s[x �→ 0]

and that

f ′′
1 s = s.

But since sx = 0, we have that s = s[x �→ 0]. Next consider the case where
sx > 0. Here we have that

f ′
1s = s[x �→ 0]

and that

f ′′
1 s = (λs.s[x �→ 0])s[x �→ (s x) − 1] = s[x �→ 0].

220 An introduction to denotational semantics

The third case, where sx < 0, is similar.

Problem 14.15 Prove the case where sx < 0.

Problem 14.16 (Important) Show that f2 also satisfies (14.3).

So which state transformation should we choose? f1 or f2? Intuitively
while ¬(x=0) do x:= x-1 corresponds to the following: if we start out in
a state where x has a non-negative value, we end up in a state where x has
the value 0, whereas if we start in a state where x has a negative value, then
the final state is undefined, since the execution of the loop never terminates.

So f1 is the best choice for the denotation of while ¬(x=0) do x:= x-1.
The other state transformations ‘say too much’.

Therefore, while there may in general be more than one transformation
that satisfies (14.3), we should always choose the one which is minimal in
the sense that it does not provide unnecessary information.

The equation (14.3) can be viewed differently. Let us define a function
F : (States ⇀ States) → (States ⇀ States) defined by

F = λf.λs.if (B[[b]]s = tt) then f ◦ S[[S]])s else s.

Asking for a solution to (14.3) is tantamount to asking for an f such that
f = F (f).

In mathematics, when given a function g : D → D, we call an x such that
x = g(x) a fixed point of g. So our denotation of while b do S should be a
fixed point of F and it should be a minimal function, where we need a good
definition of ‘minimal’.

If we can set up reasonable definitions and conditions that will guarantee
that F does indeed have such a fixed point, then we can define the semantics
of while-loops as such a fixed point.

Setting up the necessary mathematical apparatus for this is the topic of
the following chapter.

14.5 Further reading

There are some older books whose main focus is denotational semantics.
Stoy, who worked with Christopher Strachey at Oxford University, was the
first to write a book about the subject (Stoy, 1977). A few years laters,
Gordon wrote a fairly short text (Gordon, 1979), whose emphasis is on
applications and does not describe the mathematical underpinnings. Two
more technically oriented accounts were given by Schmidt (1986) and Allison
(1987).

14.5 Further reading 221

Many more recent books with a broader focus have chapters devoted to
denotational semantics. These include the books by Winskel (1993) and Niel-
son and Nielson (2007). The latter also describes applications of denotational
semantics to static program analysis.

15

Recursive definitions

Recursive definitions appear in many different contexts throughout theo-
retical computer science and mathematics and are central to the study of
programming language semantics and program verification.

In this, the last chapter of the book, we present a general result which
will allow us to

• establish sufficient criteria for the existence and uniqueness of a minimal
solution to a recursive definition

• find a way to compute the minimal solution to any recursive definition
that satisfies these criteria.

As an important application we can now prove that the big-step semantics
of Bims presented in Chapter 4 and the denotational semantics of Bims
found in Chapter 14 are equivalent. We do this in Section 15.8.

15.1 A first example

In this section we present an example of a recursive definition and analyze
its properties. We shall see that

• We can think of a recursive definition as an equation
• An object which satisfies a recursive definition is a solution to this under-

lying equation.

15.1.1 A recursively defined language

We define a language LS by the following recursive definition:

LS = {a}LS{b} ∪ {c} ∪ LS. (15.1)

15.1 A first example 223

This definition is not as arcane as it might appear at first sight. For we could
have defined LS using a context-free grammar (V, Σ, R, S), where V = {S},
Σ = {a, b, c} and the production rules of R are given by

S → aSb | c | S. (15.2)

Notice how the grammar of (15.2) corresponds to the definition in (15.1).

15.1.2 Computing a solution

We are now going to present a systematic approach to finding a language
U that satisfies (15.1). It is this approach that will be central to the rest of
the chapter.

The underlying idea is to use the following procedure.

1. Start out by instantiating the right-hand side of the definition with the
minimal candidate for a solution U0.

2. This gives us a new candidate for a solution U1. Now instantiate the
right-hand side of the definition with U1. This gives yet another solution
candidate, U2.

3. Continue in this way: obtain a new solution candidate Ui+1 by instanti-
ating the right-hand side of the definition with Ui.

This procedure gives us a sequence of solution candidates:

U0, U1, U2, U3 . . .

The limit of the sequence is the minimal solution U . It is important to note
that the sequence may be infinite.

In our example, the minimal solution candidate is the empty language ∅.
We now have

U1 = {a}U0{b} ∪ {c} ∪ U0 = {c},
U2 = {a}U1{b} ∪ {c} ∪ U1 = {c, acb},
U3 = {a}U2{b} ∪ {c} ∪ U2 = {c, acb, aacbb},

. . .

and we see that the languages form a sequence which is increasing w.r.t.
subset inclusion:

U0 ⊆ U1 ⊆ U2 ⊆ U3 . . .

In other words, this is an increasing sequence. What is the limit of the

224 Recursive definitions

sequence {U0, U1, U2, . . .}? It must be a language which is a superset of any
language found in the sequence. A good candidate for a limit is the language

U = {aicbi | i ≥ 0}.

If we instantiate (15.1) with U , we get

{c} ∪ {a}U{b} ∪ U = {c} ∪ {aaicbbi | i ≥ 0} = {aicbi | i ≥ 0} = U,

so U is a solution of the equation (15.1).

15.1.3 Existence and uniqueness

We have just seen a way of computing a solution to the equation associated
with a recursive definition. However, there may be many solutions to such
an equation. In our example, another solution is

L′′
S = {w ∈ Σ∗ | ∃n ≥ 0.w = ancccbn} ∪ {w ∈ Σ∗ | ∃n ≥ 0.w = ancbn}.

Problem 15.1 Show that L′′
S really is a solution of (15.1). Show that there

are in fact infinitely many solutions to (15.1). Hint: Try some variations of
L′′

S .

However, L′′
S is not a sensible solution – it contains strings of the form

aicccbi that are not mentioned in the definition. In a sense, L′′
S ‘tells us more

than we want’.
Rather, we are interested in a minimal solution.

15.2 A recursive definition specifies a fixed-point

Every recursive definition is of the form

X = F (X), (15.3)

where X is the object to be defined (the definiendum) and the right-hand
side F (X) is the defining property (the definiens).

If we know that X is a member of some set D, we can think of the right-
hand side F (X) as a function over D, so F : D → D. We call D the solution
domain.

Definition 15.2 (Fixed-point) Let D be any set and let f : D → D be
any function over D. We say that x ∈ D is a fixed-point of f if we have
f(x) = x.

15.3 The fixed-point theorem 225

In other words, a fixed point of a function f is a point which is left
unchanged by f .

Saying that X satisfies (15.3) is therefore equivalent to saying that X is
a fixed point of the right-hand-side function F , and our quest becomes that
of computing a fixed point of a function.

15.3 The fixed-point theorem

In this section we shall formulate and prove a very important theorem,
Theorem 15.3.

This theorem uses a lot of new concepts that we need to define. The goal
of the sections that follow is to define these concepts.

Theorem 15.3 (Fixed-point theorem) If (D,�) is a cpo and f : D → D

is a continuous function, then f has a least fixed-point w.r.t. the ordering
�. This fixed point, called x∗, is given by

x∗ = lim{fi ⊥ | i ≥ 0}, (15.4)

where ⊥ is the bottom element of D.

15.3.1 Cpos

In this book a cpo stands for a complete partial order.

Partially ordered sets

A partially ordered set is a set equipped with a relation � which has prop-
erties in common with the relation ≤ (less than or equal) on numbers.

We speak of partially ordered sets, since we do not require all elements in
our set to be comparable under �.

Definition 15.4 (Partially ordered set) Let D be a set, called the set of
points, and let � be a binary relation over D. The pair (D,�) is called a
partially ordered set if the following conditions are satisfied:

1. d � d for all d ∈ D (� is reflexive)
2. For all d1, d2 ∈ D: if d1 � d2 and d2 � d1 then d1 = d2 (� is antisymmet-

ric)
3. For all d1, d2, d3 ∈ D: if d1 � d2 and d2 � d3 then d1 � d3 (� is transi-

tive).

A partially ordered set (D,�) is a totally ordered set if for all d1, d2 ∈ D we
have d1 � d2 or d2 � d1.

226 Recursive definitions

3

2

1

0

Figure 15.1 Part of the Hasse diagram for (N,≤)

Examples of partially ordered sets

Partially ordered sets occur in many different settings in mathematics.

Example 15.5 Let R be the set of real numbers and let ≤ be defined in
the usual way. Then it is easy to show that (R,≤) is a partially ordered set:
we check the three properties of the definition. It clearly holds for all x ∈ R

that x ≤ x. It is also immediately obvious that for any x, y ∈ R we have that
if x ≤ y and y ≤ x then x = y. Also, if x ≤ y and y ≤ z we have that x ≤ z.
(R,≤) is also a totally ordered set (any two numbers can be compared).

Example 15.6 Let N be the set of natural numbers and let ≤ be defined
in the usual way. Then (N,≤) is a partially ordered set. The proof of this
proceeds exactly as in the previous example.

A partially ordered set is often given in the form of a Hasse diagram. A
Hasse diagram is a directed acyclic graph (a dag) whose vertices correspond
to the points and whose edges correspond to the ordering relation. The
smaller a point is, the closer it is to the bottom of the diagram. An example
is shown in Figure 15.1.

Example 15.7 Let Σ be an alphabet and let u and v be strings over Σ.
We say that u � v if there exists a w ∈ Σ∗ such that uw = v. Then we have

15.3 The fixed-point theorem 227

that (Σ∗,�) is a partially ordered set. The ordering relation given here is
often called the prefix ordering, since u � v if and only if u is a prefix of v.

Problem 15.8 Prove that (Σ∗,�) as defined in Example 15.7 is a partially
ordered set. Is it also a totally ordered set?

Increasing sequences and limits

In our setting, a limit is a least upper bound of an increasing sequence.

Definition 15.9 Let (D,�) be a partially ordered set. An increasing se-
quence in D is a subset of points Y ⊆ D, where Y = {y1, y2, y3 . . .} and
where we have for all i ≥ 1 that yi � yi+1.

In the literature on partially ordered sets, an increasing sequence is often
called a chain.

Definition 15.10 Let (D,�) be a partially ordered set and let Y ⊆ D be
any set of points. The point x is called an upper bound of Y if we have for
all y ∈ Y that y � x.

Definition 15.11 (Limit) Let Y be an increasing sequence in (D,�). The
point x ∈ D is called a limit of Y if the following conditions are satisfied:

1. x is an upper bound of Y

2. For every upper bound z of Y we have x � z.

We denote the limit of Y in D, if it exists, by limY or limy∈Y y.

Example 15.12 Let (N,≤) be the set of natural numbers under the usual
ordering. Then 42 is an upper bound of the set {9, 17, 23, 38}.

Note that the limit of an increasing sequence is unique. Suppose x1 and x2

are both limits of Y , then it follows from the second condition of Definition
15.11 that x1 � x2, since x1 is a limit, and that x2 � x1, since x2 is a limit.
But then, since a partial order is antisymmetric, we have that x1 = x2.

A moment’s thought 15.13 What is the least upper bound of the set
in the above example?

Example 15.14 Consider again (R,≤) and let Y be the set of natural
numbers, that is, Y = {1, 2, 3, 4, . . .}. Then Y has no upper bound, so limY

is not defined.

Example 15.15 Let Q be the set of rational numbers and consider the
increasing sequence

Y = {xi|xi is the number whose decimals are the first i decimals of π, i ≥ 0}.

228 Recursive definitions

Then numbers such as 3.1415927, 3.2 and 4 are upper bounds of Y . However,
Y has no limit in Q – the least number greater than or equal to any number
in Y is π, which is not a rational number.

If we instead considered Y as an increasing sequence in the set R, we
would have limY = π.

Note that this example also demonstrates that the limit of an increasing
sequence need not be an element of the sequence.

Complete partial orders – the definition

A complete partial order (D,�) is a partially ordered set with a least point
and the property that every increasing sequence has its limit within D.

Definition 15.16 (Complete partial order) A partially ordered set (D,�)
is a complete partial order (cpo) if

• For every increasing sequence Y ⊆ D the limit lim Y exists
• There exists a least element ⊥∈ D (also known as the bottom element),

that is, a point ⊥ such that ⊥� d for all d ∈ D

Problem 15.17 Show that a cpo has exactly one bottom element. That
is, show that if there are two bottom elements, then they are equal.

Problem 15.18 Prove that lim ∅ = ⊥. That is, show that the second
condition of Definition 15.16 is in fact redundant.

Example 15.19 (R,≤) is not a cpo. For instance the increasing sequence
{1, 2, 3, 4, 5, . . .} has no limit. Likewise, (Q,≤) is not a cpo as evidenced by
Example 15.15.

15.3.2 Continuous functions over cpos

When we compute a fixed-point for a function we need to require that the
function is continuous. In this setting, a function is continuous if it respects
limits. A consequence is that it makes sense only to speak of continuity of
functions whose domain and range are both cpos in the sense of Definition
15.16.

A moment’s thought 15.20 Why do we need to assume that both the
domain and the range are cpos when we talk of continuity?

We require that a continuous function is monotone. A monotone function
respects the ordering relation.

15.3 The fixed-point theorem 229

Definition 15.21 (Monotone function) Let (D,�) be a partially ordered
set. A function f : D → D is monotone if it is the case that whenever d1 � d2

then also f(d1) � f(d2).

A moment’s thought 15.22 What is the difference between this defini-
tion of monotonicity and the one that we use in calculus?

Monotone functions satisfy a nice property: they map increasing sequences
to increasing sequences.

Lemma 15.23 Let (D,�) be a partially ordered set and let f : D → D

be a monotone function. If Y = {d1, d2, . . .} is an increasing sequence, then
the sequence f(Y) = {f(d1), f(d2), . . .} is also increasing.

Problem 15.24 Prove Lemma 15.23.

A continuous function is a monotone function that respect limits of in-
creasing sequences.

Notation 15.25 If Y is a set of points, we let f(Y) denote the set of
resulting function values:

f(Y) = {f(y) ∈ D | y ∈ Y }.

When we use this notation we can think of continuity as follows: A func-
tion f is continuous if we can ‘move f underneath a lim’:

Definition 15.26 (Continuous function) Let (D,�) be a cpo and let f :
D → D be a monotone function. We say that f is continuous if for every
increasing sequence Y

f(lim Y) = lim f(Y) (15.5)

Observe that Lemma 15.23 will guarantee that the limit on the right-hand
side of (15.5) is well defined.

Our definition of continuity is in fact an extension of the well-known notion
of continuity for functions over the reals. A real-valued function is continuous
if its graph has no ‘holes’ and thus preserves limits.

A moment’s thought 15.27 Why is preservation of limits the appropri-
ate reformulation of the ‘usual’ notion of continuity?

15.3.3 Proving the fixed-point theorem

All the necessary definitions are now in place, and we are able to prove
Theorem 15.3.

230 Recursive definitions

Since we are interested in fixed points, it makes sense only to consider
functions whose domain and range coincide. Such functions have type D →
D for some set D and are called endofunctions.

A moment’s thought 15.28 Why are we interested only in endofunc-
tions?

Let us first recall the definition of fixed points.

Definition 15.29 (Fixed point) Let f : D → D be an endofunction. A
fixed-point of f is an x ∈ D such that f(x) = x.

Notation 15.30 fid will denote that the function f has been applied i

times to the argument d. So f0d = d and fi+1d = f(fid).

Lemma 15.31 Let (D,�) be a partially ordered set and let f : D → D be
monotone. Then the function fi is monotone for any value of i, that is, if
d1 � d2 then fid1 � fid2.

Proof Induction on i. If d1 � d2 we immediately see that d1 = f0d1 �
f0d2 = d2. Now assume that if d1 � d2, then fid1 � fid2. We must
now prove that the same holds for i + 1. Since f is monotone, we get that
f(fid1) � f(fid2), and the proof is complete.

The following lemma is essential. It tells us that we form an increasing
chain by repeatedly applying a monotone function to the bottom element of
a cpo.

Lemma 15.32 Let (D,�) be a cpo, let f : D → D be monotone and let
⊥ be the bottom element of D. Then the set

{fi⊥ | i ≥ 0} = {⊥, f(⊥), f2(⊥), . . .}

is an increasing sequence.

Proof The ith element in our set {fi(⊥) | i ≥ 0} is fi(⊥). It is easy to
see that fi(⊥) � fi+1(⊥). For since ⊥� f ⊥, Lemma 15.31 tells us that
fi ⊥� fi+1 ⊥.

Now for the fixed-point theorem and its proof.

Theorem 15.1 (Existence of a least fixed point) If (D,�) is a cpo and
f : D → D is continuous, then f will have a least fixed point w.r.t. �, called
x∗. The fixed point x∗ is found as the limit

x∗ = lim{fi ⊥ | i ≥ 0}, (15.6)

where ⊥ is the bottom element of D.

15.4 How to apply the fixed-point theorem 231

Proof First notice that Lemma 15.32 and the assumption that (D,�) is a
cpo imply that the limit in (15.6) is well defined.

The theorem itself consists of two claims, so there are two claims to prove.

• We must show that x∗ actually is a fixed point of f .
• We must show that x∗ is the least fixed point of f .

First we must show that x∗ is a fixed point. By definition, x∗ is a fixed-
point if f(x∗) = x∗. We use (15.6) to check this:

f(x∗) = f(lim{fi ⊥ | i ≥ 0}) (15.7)

= lim{fi+1 ⊥ | i ≥ 0} (15.8)

= lim{fj ⊥ | j ≥ 1} (15.9)

To get from (15.7) to (15.8) we made use of the continuity of f to move f

underneath the lim. Also, since ⊥ is the least element of D, we have that
lim({⊥} ∪ Y) = lim Y for any increasing sequence Y . So in particular

lim{fj ⊥ | j ≥ 1} = lim({fj ⊥ | j ≥ 1} ∪ {⊥}) (15.10)

= lim{fj ⊥ | j ≥ 0} (15.11)

= x∗ (15.12)

which is what we wanted.
Next, we must show that x∗ is the least fixed point. So let d be an arbitrary

fixed point. To show that x∗ is the least fixed point, it suffices to show that
x∗ � d.

Since ⊥ is the least element of D, we have that ⊥� d. Because f is
monotone and d is a fixed point, we have that fi(⊥) � fi(d) = d for all
i ≥ 0 by virtue of Lemma 15.31. d is therefore an upper bound of the set
{fi ⊥ | i ≥ 0} and thus we get that lim{fi ⊥ | i ≥ 0} � d, so x∗ � d as was
to be shown.

15.4 How to apply the fixed-point theorem

Theorem 15.3 is extremely useful. If we are given a recursive definition

X = F (X)

we can use the following strategy when computing a solution to the definition
in the form of a fixed point of F .

• First prove that the set of candidate solutions can be described as a cpo
(D,�). To do this, you must first find D and � and then show that (D,�)
actually satisfies the conditions required of a cpo.

232 Recursive definitions

• Next, show that the right-hand-side function F is continuous. To do this,
you first show that F is monotone and then that F preserves limits of
increasing sequences in (D,�).

• Finally, compute the least fixed point x∗ of F by applying Theorem 15.3.

Theorem 15.3 is only one among a great many fixed-point theorems in
mathematics. fixed-point theorems are important not just in theoretical
computer science but also in areas such as mathematical economics and
theoretical physics. The best known fixed-point theorem in mathematics is
probably Brouwer’s fixed-point theorem from 1910 (see Shashkin (1991) for
an elementary introduction).

If we invert all concepts and instead speak of decreasing sequences, great-
est lower bounds, top elements, decreasing sequences and anti-continuous
functions (that preserve limits of decreasing sequences) we get a dual result
about greatest fixed points.

A moment’s thought 15.2 What would this dual fixed-point theorem
look like?

15.5 Examples of cpos

In this section we shall consider two kinds of cpos that often arise in com-
puter science. We call these subset cpos and function-space cpos, respectively.
In Section 15.6 we will have a look at some examples of functions on these
two kinds of cpos.

15.5.1 Subset cpos

Some cpos have sets as their points and use set inclusion, ⊆, as the ordering
relation. We shall call cpos of this kind subset cpos. We now look at some
interesting cases.

The power-set cpo

Let S be an arbitrary set. Then if we order the elements of the power set of
S w.r.t. set inclusion, we have that (P(S),⊆) is a cpo.

Theorem 15.3 For any set S, (P(S),⊆) is a partially ordered set.

Proof Reflexivity: It is obvious that for any S′ ∈ P(S) we have S′ ⊆ S′.
Antisymmetry: If S1 ⊆ S2 and S2 ⊆ S1, we immediately get that S1 = S2.
Transitivity: Assume that S1 ⊆ S2 and S2 ⊆ S3. Let x ∈ S1. Since S1 ⊆ S2,

15.5 Examples of cpos 233

{3}

�
�

�
��

�
�

�
�� �

�
�

��

�
�

�
�� �

�
�

��

�
�

�
�� �

�
�

��

{1, 2, 3}

{1, 2} {2, 3}{1, 3}

{1}

∅

{2}

�
�

�
��

Figure 15.2 A Hasse diagram for (P({1, 2, 3}),⊆)

we have x ∈ S2. Also, since S2 ⊆ S3 we have x ∈ S3. That is, if x ∈ S1 then
x ∈ S3, and consequently S1 ⊆ S3.

However, (P(S),⊆) fails to be a totally ordered set. A simple counterex-
ample is any set S with two or more elements. Let x, y ∈ S, where x �= y. It
is neither the case that {x} ⊆ {y} nor that {y} ⊆ {x}.

Example 15.4 Let S = {1, 2, 3}. A Hasse diagram for (P(S),⊆) is shown
in Figure 15.2.

Example 15.5 Let S = {1, 2, 3} and consider the partially ordered set
(P(S),⊆). The set {∅, {1}, {1, 3}} is an increasing sequence. On the other
hand, {∅, {1}, {1, 3}, {2}} is not an increasing sequence.

A moment’s thought 15.6 Why is {∅, {1}, {1, 3}} in the above example
an increasing sequence? Why is it not the case that {∅, {1}, {1, 3}, {2}} is
an increasing sequence?

Theorem 15.7 For any set S, (P(S),⊆) is a cpo.

Proof We must show that P(S) has a least element and that every increas-
ing sequence has a limit which is a point in P(S). The first property is easily
obtained; the least element is ∅, since ∅ ⊆ S′ for all S′ ∈ P(S).

What is the limit of an increasing sequence in (P(S),⊆)? Recall that

234 Recursive definitions

an increasing sequence here is a sequence of sets Y = {M1, M2 . . .} such
that Mi ⊆ Mi+1 for all i. Next, recall that the limit of this Y is the least
set M such that Mi ⊆ M for all Mi ∈ Y . The union

⋃
i Mi satisfies this

requirement, so we have that limMi∈Y Mi =
⋃

i Mi.

A moment’s thought 15.8 Again consider the increasing sequence Y =
{∅, {1}, {1, 3}} from Example 15.5. What is limY ?

Problem 15.9 Let S be an arbitrary set and let � be defined as ‘reverse
inclusion’, so S1 � S2 if S2 ⊆ S1. Show that (P(S),�) is a cpo (first check
that it is a partially ordered set).

The cpo of languages over Σ

An important example of a subset cpo is the set of languages over some
given alphabet. Let Σ be an alphabet. Then Σ∗ is the set of all strings over
Σ. A language over Σ is a set of strings over Σ, so the set of all languages
over Σ is P(Σ∗).

The results in this section tell us that (P(Σ∗),⊆) is a cpo.

15.5.2 Function-space cpos

Other cpos have points that are partial functions. The set of functions with
domain A and range B is often called the function space from A to B and
cpos of this kind are therefore often referred to as function-space cpos.

The cpo of partial functions from A to B

Let A and B be sets. Then A ⇀ B denotes the set of partial functions with
domain A and range B. We now show that A ⇀ B can be regarded as a
cpo.

Definition 15.10 Let f : A ⇀ B be a partial function. The graph of f is
the set of pairs defined by

graph(f) = {(a, b) | f(a) = b}.

It is now easy to define an ordering relation for partial functions.

Definition 15.11 Define the ordering � over A ⇀ B by

f1 � f2 if graph(f1) ⊆ graph(f2).

The intuition here is that f1 is ‘less than’ f2 if we, by using f2 instead of
f1, can obtain at least the same results as we could have by using f1. Notice
that if f1 and f2 happen to be total functions, f1 � f2 implies that f1 = f2.

15.5 Examples of cpos 235

Example 15.12 Let A = B = Z and consider

f1(n) = if n is even then 0 else undef

and

f2(n) = 0.

We have f1 � f2, since

graph(f1) = {(n, 0) | n is even},
graph(f2) = {(n, 0) | n ∈ Z}.

Lemma 15.13 (A ⇀ B,�) is a partially ordered set.

Proof We have defined � by means of ⊆. Let G denote the set of graphs of
functions in A ⇀ B. Since (G,⊆) is a subset cpo, we immediately get that
(A ⇀ B,�) is a partially ordered set.

Lemma 15.14 (A ⇀ B,�) is a cpo.

Proof We must show that for any increasing sequence Y the limit limY

is defined. This is the same as saying that if Y = {f0, f1, . . .} is a set of
functions in A ⇀ B, where f0 � f1 � f2 . . ., then there exists a function f

in A ⇀ B which satisfies that fi � f for all fi ∈ Y and that for any other
upper bound g we have that f � g.

The limit is simply the function f which satisfies that

graph(f) =
⋃
i

graph(fi).

It is clear that such a function does indeed exist, since all functions in Y

agree on their values: if fi(a) = b′ and fj(a) = b′′ and i ≤ j, then we have
that b′ = b′′, since graph(fi) ⊆ graph(fj). It is also not hard to convince
oneself that f is in fact an upper bound of Y . If f(a) = b is defined, it must
be because fi(a) = b for some fi ∈ Y . But since all members of Y agree
on their values, we have that fj � f for all fj ∈ Y . Similarly, it is easy to
see that f is the least upper bound, since its graph contains exactly those
values that are known by the functions in Y .

The least element of the cpo (A ⇀ B,�) is the fully undefined function
f⊥ given by

f⊥(n) = undef.

The cpo of partial functions over N

The above now tells us that the set of partial functions over N, N ⇀ N, is a
cpo if we use the ordering relation given above.

236 Recursive definitions

The cpo of state transformations

A state transformation f is an element of the set States ⇀ States, and
consequently we can regard the set of state transformations as a cpo using
the ordering relation defined above.

15.6 Examples of continuous functions

15.6.1 A useful theorem about function composition

Often the most difficult aspect, when examining a recursive definition, is
to show that the right-hand-side function is continuous. Here the following
result is often extremely useful.

Theorem 15.15 The composition of two continuous functions yields a
continuous function: if the functions f : D → D and g : D → D are
continuous, then the composition g ◦ f : D → D is also continuous.

Problem 15.16 Prove Theorem 15.15

15.6.2 Context-free grammars

The grammar (15.2) defines a language over the alphabet {a, b, c}, so the
domain of candidate solutions must be the set of all languages over {a, b, c}.
This set is P({a, b, c}∗) and can be ordered w.r.t. ⊆. In section 15.5.1 we
saw that this solution domain does indeed satisfy the conditions required of
a cpo.

The right-hand-side function F must be (15.1) with the recursive call of
F ‘abstracted out’:

F (X) = {a}X{b} ∪ {c} ∪ X

F is defined using concatenation and set union, so Theorem 15.15 tells us
that if we want to show that F is continuous, it will suffice to show that
these two operations are continuous. We omit the proof of this and invite
the reader to fill in the details.

Problem 15.17 Show that the concatenation function ◦ is a continuous
function in each of its arguments over the cpo (P(Σ∗),⊆). In other words,
show that for any language L the functions

f1(X) = X ◦ L

f2(X) = L ◦ X

are both continuous. First show that each of these functions is monotone.

15.6 Examples of continuous functions 237

Problem 15.18 Show that the union function ∪ is a continuous function
in each of its arguments over the cpo (P(Σ∗),⊆). Proceed in the same way
as in Problem 15.17 by first establishing monotonicity.

15.6.3 Recursive functions over the natural numbers

Here is a recursive function over the natural numbers:

g(n) = if (n = 0) then 1 else n · g(n − 2)

We can rewrite this definition as

g(n) = f(n)

where f(n) = if (n = 0) then 1 else n · f(n − 2).

What is the domain D of candidate solutions? We are looking for a recursive
function over the natural numbers, and the function need not be defined for
all arguments. So D must be the set of partial functions over the natural
numbers, N ⇀ N ordered w.r.t. the ordering relation � defined in section
15.5.2

What is the right-hand side function F? It is

F (f) = h

where h(n) = if (n = 0) then 1 else n · f(n − 2).

In other words, F is a function over functions over the natural numbers, so
F is of type (N ⇀ N) → (N ⇀ N).

We now prove that F is continuous. This requires us to first establish the
following lemma.

Lemma 15.19 F is monotone.

Proof Assume that f1 � f2. We must show that F (f1) � F (f2). We have

F (f1) = h1 where h1(n) = if (n = 0) then 1 else n · f1(n − 2)

and

F (f2) = h1 where h2(n) = if (n = 0) then 1 else n · f2(n − 2).

We now show that h1 � h2, and we do this by showing that for all n ∈ N

we have that if h1(n) = k then also h2(n) = k. If n = 0, we have that
h1(n) = h2(n) = 1. If n �= 0, then we have h1(n) = nf1(n − 2) and h2(n) =
nf2(n − 2). If h1(n) is defined for n �= 0, we have that f1(n − 2) is defined.
Also, since f1 � f2, we have that f2(n−2) is defined and therefore also that
h2(n) is defined in this case.

238 Recursive definitions

Lemma 15.20 F is continuous.

Proof Let Y = {f0, f1 . . .} be an increasing sequence in (N ⇀ N,�). We
know from the proof of Lemma 15.14 that limY is the function

f(n) =
{

fi(n) if for some fi ∈ Y the value fi(n) is defined
undef otherwise.

(15.13)

Now consider the increasing sequence of F -values FY = {Ffi | fi ∈ Y }. We
know that limFY exists and is the function h defined by

h(n) =
{

(Ffi)(n) if for some (Ffi) ∈ FY the value (Ffi)(n) is defined
undef otherwise.

This is again equivalent to

h(n) =
{

(Ffi)(n) if for some fi ∈ Y the value fi(n) is defined
undef otherwise.

(15.14)

By definition we have that F is continuous if Ff = h. We show that this is
the case by computing Ff and h and checking that they agree.

For an arbitrary fi ∈ Y we have

(Ffi)(n) = if n = 0 then 1 else n · fi(n − 2).

By substituting this into (15.14) we get

h(n) =

⎧⎪⎪⎨
⎪⎪⎩

1 if n = 0
n · fi(n − 2) if n > 0 and there exists an fi ∈ Y

such that fi(n − 2) is defined
undef otherwise.

(15.15)

When we look at the condition ‘if there exists an fi ∈ Y such that fi(n− 2)
is defined’ and recall the definition of f in (15.13), we see that the above is
equivalent to

(limFY)(n) =

⎧⎨
⎩

1 if n = 0
n · f(n − 2) if n > 0 and f(n − 2) is defined
undef otherwise.

(15.16)

We have that the function F (lim Y) is given by

(Ff)(n) = if n = 0 then 1 else n · f(n − 2), (15.17)

but this is equivalent to

(F (lim Y))(n) =

⎧⎨
⎩

1 if n = 0
n · f(n − 2) if n > 0 and f(n − 2) is defined
undef otherwise,

(15.18)

15.6 Examples of continuous functions 239

which is precisely (15.16)!

15.6.4 Denotational semantics

We know from Section 15.5.2 that the set of state transformations States ⇀

States can be seen as a cpo where ⊥ is the state transformation λs.undef.
We now only need to show that the function F : States ⇀ States given by

F = λf.λs.if (B[[b]]s = tt) then (f ◦ S[[S]])s else s, (15.19)

where we make use of the definition of the semantics of while-loops, is con-
tinuous. We omit the proof of this here; the details are straightforward.

Problem 15.21 Prove that the function F in (15.19) is continuous (re-
member to first show monotonicity).

Given that F is continuous, Theorem 15.3 guarantees the existence of a
least fixed-point of F . The final version of the semantics of while-loops is
then

S[[while b do S]] = f∗

where f∗ is the fixed point of F

where F = λf.λs.if (B[[b]]s = tt) then (f ◦ S[[S]])s else s,

We now take a closer look at the state transformation that f∗ corresponds
to, and we do so through an example. Let us consider the statement

while ¬(x=0) do x:= x-1.

Here we have that

F 0 ⊥ = ⊥= λs.undef

F 1 ⊥ = λs.if (sx �= 0 = tt) then (λs.undef ◦ S[[x:= x-1]])s else s,

= λs.if (sx �= 0 = tt) then undef else s

F 2 ⊥ = λs.if (sx �= 0 = tt) then

((λs.if (sx �= 0 = tt) then undef else s) ◦ S[[x:= x-1]])s else s

= λs.if (sx �= 0 = tt) then undef else S[[x:= x-1]]s.

The above line of reasoning can be continued, and it turns out that Fk ⊥ is
the state transformation which describes that the while-loop is traversed at
most k times.

From Theorem 15.3 we see that the semantics of our while-loop is the
limit of all these approximations – and is the state transformation which

240 Recursive definitions

agrees with all the Fk ⊥ approximations. This is the state transformation
describing an arbitrary number of traversals of the loop.

15.7 Examples of computations of fixed-points

In this, the last section, we shall use the cpos and functions from the previous
two sections to show how we can compute least fixed points.

15.7.1 Recursive definitions of languages

In Section 15.5.1 we saw that (P(Σ∗),⊆) is a cpo and that the least ele-
ment of this cpo is ∅. Again consider the function fS : P(Σ∗) → P(Σ∗)
corresponding to (15.1):

fS(X) = {a} · X · {b} ∪ {c} ∪ X.

If we define the functions f1(X) = {a}·X, f2(X) = X ·{b}, f3(X) = X∪{c}
and f4(X) = X ∪ X, we have that fS = f4 ◦ f3 ◦ f2 ◦ f1.

We can now apply Theorem 15.15, which tells us that it suffices to show
that f1, f2, f3 and f4 are continuous (as one can establish by solving Prob-
lems 15.17 and 15.18).

Theorem 15.3 tells us that fS has a least fixed-point given by x∗
S =⋃

{fS
i∅ | i ≥ 0}. We have

fS
0∅ = ∅

fS
1∅ = {c}

fS
2∅ = {acb} ∪ {c} = {aicbi | i ≤ 1}

and an inductive argument tells us that in general

fS
k∅ = {aicbi | i < k}.

So fS
k∅ describes the set of strings that can be derived by the rules of

the grammar using fewer than k derivation steps. This corresponds to the
derivation relation ⇒k .

15.7.2 Functions over the natural numbers

Let us now return to the example from Section 15.6.3. We wish to find
the limit of the increasing sequence {⊥, F 1(⊥), F 2(⊥), . . .}. We can find the

15.8 An equivalence result 241

elements of the sequence by applying the definition of F :

F 0(⊥) = f0

where f0(n) = undef,
F 1(⊥) = F (F 0(⊥))

= f1

where f1(n) = if n = 0 then 1 else undef,
F 2(⊥) = F (F 1(⊥))

= f2

where f2(n) = if n = 0 then 1 else
if n − 2 = 0 then n else undef,

F 3(⊥) = F (F 2(⊥))
= f3

where f3(n) = if n = 0 then 1 else
if n − 2 = 0 then n else
if n − 2 − 2 = 0 then n · (n − 2) else undef

. . .

These terms should convince us that in general Fm(⊥) is defined by

Fm(⊥) = f where

f(n) = if n is even and n ≤ m then
n div 2∏
i=1

2i else undef. (15.20)

That this is in fact the case can be shown by induction on m.

Problem 15.22 Prove (15.20) by induction on m. Both the base case and
the induction step will require another inductive argument, this time an
induction on n.

From (15.20) we see that the limit of the increasing sequence of Fm(⊥)-
functions is exactly the function g1 given by

g1(n) = if n is even then
n div 2∏
i=1

2i else undef.

15.8 An equivalence result

In this section we show how the result about least fixed points finally allows
us to prove that the operational and denotational semantics of Bims are
equivalent.

242 Recursive definitions

15.8.1 Equivalence of semantics of expressions

Our first results express that the big-step semantics of arithmetic and Boolean
expressions agree with the corresponding denotational semantics.

Lemma 15.23 A[[a]]s = v if and only if s � a →a v.

Proof induction on the structure of a. We present only two cases here; the
remaining ones are similar or simpler.

a = x: We have A[[a]]s = sx and s � a →a v where sx = v.
a = a1 + a2: By virtue of our induction hypothesis, we have that A[[a1]]s =

v1 if and only if s � a1 →a v1 and A[[a2]]s = v2 if and only if
s � a2 →a v2. But A[[a1 + a2]] = A[[a1]]s + A[[a2]]s = v1 + v2 and
s � a1 + a2 →a v where v = v1 + v2, and this case now follows.

Lemma 15.24 A[[b]]s = v if and only if s � b →b v.

Problem 15.25 Prove the lemma.

15.8.2 Equivalence of semantics of statements

The equivalence results were not so hard to prove for expressions. For state-
ments we need to do a little more work.

Definition 15.26 We define the state transformation Ssos by

Ssos[[S]]s = s′ if 〈S, s〉 → s′.

The equivalence result now simply says that Ssos and S are the same func-
tion.

Theorem 15.27 For every statement S and state s we have Ssos[[S]]s =
S[[S]]s.

The proof of this theorem is more involved, because neither the opera-
tional nor the denotational semantics is compositional. For this reason we
cannot prove the result by structural induction. Instead we have to use the
characterization of the denotational semantics as a fixed-point.

To prove that Ssos[[S]] = S[[S]], it suffices to prove that

Lemma 15.28 Ssos[[S]] � S[[S]]

and

Lemma 15.29 S[[S]] � Ssos[[S]]

15.8 An equivalence result 243

where � is the partial ordering on state transformation functions of Defini-
tion 15.11:

f1 � f2 if for all s,whenever f1s = s′ then also f2s = s′

We first prove Lemma 15.28. To do this, we need the following simple lemma.

Lemma 15.30 We have

S[[while b do S]] = S[[if b thenS; while b do S else skip]].

Proof We have

S[[while b do S]] = f,

where f is the least fixed-point of the function

λg.λs.if B[[S]]s then (g ◦ S[[S]])s else s.

So

S[[while b do S]] = λs.if B[[S]]s then ((S[[while b do S]]) ◦ S[[S]])s else s.

By applying the clauses of the definition of S we also have

S[[if b thenS; while b do S else skip]] =

λs.if B[[S]]s then ((S[[while b do S]]) ◦ S[[S]])s else s

We can now prove Lemma 15.28.

Proof The lemma states that whenever 〈S, s〉 → s′ we have S[[S]]s = s′. So
this is a statement about all transitions of the big-step semantics, and the
proof is therefore a proof by induction on the transition rules.

[skipbss]: We have 〈skip, s〉 → s and S[[skip]] = λs.s, so S[[skip]]s = s.
[assbss]: Suppose 〈x := a, s〉 → s[x �→ v], where s � a →a v. We have

S[[x := a]] = λs.s[x �→ A[[a]]s]. Then by virtue of Lemma 15.23 we
have that A[[a]]s = v, and therefore we get that S[[x := a]]s = s[x �→
v] as desired.

[compbss]: Suppose 〈S1; S2, s〉 → s′. We must show that S[[S1; S2]]s = s′.
The transition was due to

〈S1, s〉 → s′′ 〈S2, s
′′〉 → s′

〈S1; S2, s〉 → s′

By virtue of our induction hypothesis, we get that S[[S1]]s = s′′

and S[[S2]]s′′ = s′. But then we have that S[[S2]](S[[S1]]s) = s′, and

244 Recursive definitions

this completes this case of the proof, since S[[S1; S2]] = λs.(S[[S2]] ◦
S[[S1]])s.

[if-truebss]: We here consider a state s where s � b →b tt. Since Lemma
15.24 holds, we have that B[[b]]s = tt. We have

〈S1, s〉 → s′

〈if b then S1 else S2 , s〉 → s′

and by virtue of our induction hypothesis S[[S1]]s = s′. Since we by
definition also have

S[[if b then S1 else S2]] = λs.if (B[[b]]s = tt) then S[[S1]]s else S[[S2]]s

we now get S[[if b then S1 else S2]]s = s′ as desired.
[if-falsebss]: This case is similar to the previous one and is therefore omit-

ted.
[while-truebss]: We here consider a state s where b � s →b tt. Since

Lemma 15.24 holds and by virtue of Lemma 15.30, we have that
S[[while b do S]]s = S[[S; while b do S]]s.

We have
〈S, s〉 → s′′ 〈while b do S, s′′〉 → s′

〈while b do S, s〉 → s′
.

By virtue of our induction hypothesis, we have S[[S]]s = s′′ and
S[[while b do S]]s′′ = s′. This means that S[[while b do S]](S[[S]]s) =
s′, so we get that S[[S; while b do S]]s = s′, as we were to show.

[while-falsebss]: We now consider a state s where s � s →b ff . Again,
since Lemma 15.24 holds and by virtue of Lemma 15.30, we have
that S[[while b do S]]s = S[[skip]]s. We have

〈while b do S, s〉 → s,

completing this case.

To prove Lemma 15.29, we need a different strategy. First we need to show
the following general result about continuous functions.

Theorem 15.31 Suppose (D,�) is a cpo and that f : D → D is a contin-
uous function with least fixed point x∗. If a point d ∈ D satisfies that fd � d,
then x∗ � d.

Proof We show that fi ⊥� d for all i ≥ 0, for then we have lim fi ⊥= x∗ �
d. The proof is by induction on i.

15.8 An equivalence result 245

i = 0: f0 ⊥=⊥, and obviously ⊥� d.
Assume for i, prove for i + 1: We assume that fi ⊥� d. Since f is mono-

tone, we have that f(fi ⊥) � fd. But f(fi ⊥) = fi+1 ⊥ and, since
fd � d, the result follows.

A point d which satisfies that fd � d is usually called a pre-fixed-point, since
fd is ‘before’ d.

Proof of Lemma 15.29 We now proceed by induction on the structure of
S. The difficult case is that of while-loops; we show this and two other cases.
The remaining cases are straightforward and are left as an exercise.

S = skip: We must prove that S[[skip]] � Ssos[[skip]]. So let s be an ar-
bitrary state. We have that S[[skip]]s = (λs.s)s = s and must show
that then also Ssos[[skip]]s = s. But this is immediately apparent
from the transition rule [skipbss].

S = x := a: We must show that S[[x := a]] � Ssos[[x := a]]. We have that
S[[x := a]] = λs.s[x �→ A[[a]]s]; we must show that, if S[[x := a]]s =
s′, then Ssos[[x := a]]s = s′. Let s be an arbitrary state. We have
S[[x := a]]s = s[x �→ A[[a]]s]. By virtue of Lemma 15.23 we have that
A[[a]]s = v if and only if s � a → v. Since Ssos[[x := a]]s = s′ where
〈x := a, s〉 → s′ and since s′ = s[x �→ v] where s � a → v, the result
now follows for this case.

S = while b do S: We must show that S[[while b do S]] � Ssos[[while b do S]].
We have that

S[[while b do S]] = f∗,

where f∗ is the least fixed point of

F = λf.λs.if (B[[b]]s = tt) then (f ◦ S[[S]])s else s.

Let fsos denote the state transformation Ssos[[while b do S]]. We must
show that f∗ � fsos, and we can do so by showing that Ffsos � fsos,
for then the result follows from Theorem 15.31. We have

Ffsos = λs.if (B[[b]]s = tt) then fsos(S[[S]]s) else s.

Now suppose (Ffsos)s = s′. From the definition of �, we see that we
need to show that then also fsoss = s′.

Since (Ffsos)s = s′, and since the definition of F involves S[[S]]s,
we must have that S[[S]]s = s1 for some state s1 and that (Ffsos)s =

246 Recursive definitions

fsoss1. There are now two subcases depending on the value of the
Boolean expression b.

• If B[[b]]s = ff then (Ffsos)s = s, so here s′ = s. By virtue of Lemma
15.24 we have s � b →b ff , so the transition rule [while-falsebss]
applies and we get 〈while b do S, s〉 → s. But then we have
fsoss = s.

• If B[[b]]s = tt then (Ffsos)s = fsos(S[[S]]s) = fsoss1. By virtue of
Lemma 15.24 we have s � b →b tt. We know that fsoss1 = s′. By
virtue of our induction hypothesis we know that Ssos[[S]]s = s1.
Since fsoss1 = s′, we have the transition 〈while b do S, s1〉 →
s′ and the transition rule [while-truebss] can be applied. We
conclude that there must be a transition 〈while b do S, s〉 → s′.
But this then implies that fsoss = s′.

15.9 Other applications

The mathematical apparatus introduced in this chapter has many other
applications. In the following we shall give a short introduction to some of
them.

15.9.1 Logical properties of programs

A well-known approach to program verification consists of describing prop-
erties of programs as logical formulae, and it is often natural to define such
properties recursively.

Let us outline a very simple example. Suppose we want to describe that
some property of a Bims program will hold eventually (it may even hold
now). For instance we might want to describe that our program will termi-
nate eventually, which means that there exists some number of steps after
which the program will have terminated.

Here, our definition of a program step will refer to the small-step semantics
of Bims.

Let Q denote the property that we want to hold eventually and let us
write ©F if the logical formula F can be ensured to hold after the next
program step:

〈S, s〉 satisfies © F

if there exists a γ such that 〈S, s〉 ⇒ γ where γ satisfies F

15.9 Other applications 247

Then we can define the property eventually Q is true, written EFQ, recur-
sively by

EFQ = Q ∨©EFQ.

For either it is the case that Q is true now or after the next step it is the
case that Q will eventually hold.

We can therefore specify program properties by means of recursively de-
fined formulae. We can then use Theorem 15.3 to compute the set of program
configurations which satisfy EFQ.

The operator © is known as a modality ; logics with operators of this kind
are known as modal logics and have become very important in computer
science. The idea of considering modal logics with recursive declarations
dates back to unpublished notes from 1969 by Dana Scott and Jaco de
Bakker; after that, the important developments in the area are from the
1980s and onwards. Two particularly important developments of this era
are due to Dexter Kozen (1982), who introduced the so-called propositional
µ-calculus, and to Emerson and Clarke (1980), who independently of Kozen
devised a modal logic with least as well as greatest fixed points.

15.9.2 A recursively defined program equivalence

The ‘dual’ version of Theorem 15.3, which talks about the existence of a
maximal fixed-point, has applications in the study of program equivalence.
For Definition 8.8 of bisimulation equivalence speaks of the maximal bisim-
ulation relation, and this can be defined recursively. Let us here recall the
definition.

Definition 15.32 Let G = (Γ, A,
a→) be a labelled transition system. A

bisimulation is a relation R ⊆ Γ×Γ which satisfies the following conditions.
If xRy then for all a ∈ A we have that

1. If x
a→ x′ then there exists a y′ such that y

a→ y′, where x′Ry′.
2. If y

a→ y′ then there exists an x′ such that x
a→ x′, where x′Ry′.

If xRy for some bisimulation R over Γ, we say that x and y are bisimulation
equivalent (or bisimilar) and write x ∼ y.

Another way of putting this is that we have defined a relation ∼ by the
following recursive definition.

Definition 15.33 Let G = (Γ, A,
a→) be a labelled transition system. Then

∼ is the largest relation ∼ ⊆ Γ × Γ which satisfies the following conditions:
If xRy then for all a ∈ A we have that

248 Recursive definitions

1. If x
a→ x′ then there exists a y′ such that y

a→ y′, where x′ ∼ y′.
2. If y

a→ y′ then there exists an x′ such that x
a→ x′, where x′ ∼ y′.

When given a labelled transition system, we can then use the dual version
of Theorem 15.3 to compute ∼; this has been applied to devise efficient
algorithms for checking equivalence of processes.

15.9.3 Recursively defined sets

In Chapter 6 we saw a definition of the set

EnvP = Pnames ⇀ Stm. × EnvP

In order to be able to solve recursive equations of this kind we need to define
an ordering relation � between cpos, such that we can say that a cpo D1 is
‘less than’ another cpo D2.

If we can do this, we can compute the least solution to the recursive
definition.

However, the class of cpos cannot be a cpo in the usual sense. For, if it
were, we would have a paradox – the class of cpos would have itself as a
member!

We therefore need to generalize the notion of cpo and to generalize Theo-
rem 15.3. This can be done using a branch of mathematics known as category
theory; we shall not describe the details of this approach here, but refer to
(Gierz et al., 2003).

15.10 Further reading

The results presented in this chapter date back to the work of Tarski and
are a very small part of domain theory , which is an area that borders on
both pure mathematics and theoretical computer science.

There is now a large body of literature on domain theory but two fairly
recent books deserve particular mention.That by Gierz et al. (2003) gives a
clear account of the mathematical theory of domains and the comprehensive
text by Amadio and Curien (1998) is a very thorough treatment of how
domain theory relates to the λ-calculus.

A good account of modal logics with recursion can be found in a survey
chapter by Bradfield and Stirling (2001). Finally, the book by Aceto et al.
(2007) is recommended for its detailed and clear account of the fixed-point
characterization of bisimulation equivalence.

Appendix A

A big-step semantics of Bip

In this chapter we present a complete big-step semantics of the language
Bip assuming static scope rules for variables and procedures. The following
description consists of all the elements necessary for a complete semantic
definition, namely

• An abstract syntax containing

– names of all syntactic categories
– formation rules for each syntactic category

• Definitions of additional sets and auxiliary functions
• Definitions of all transition systems; for each transition system

– a definition of the set of configurations and the set of terminal configu-
rations

– a definition of the transition relation by means of a set of transition
rules

A.1 Abstract syntax

A.1.1 Syntactic categories

n ∈ Num – Numerals
x ∈ Var – Variables
a ∈ Aexp – Arithmetic expressions
b ∈ Bexp – Boolean expressions
S ∈ Stm – Statements
p ∈ Pnames – Procedure names
DV ∈ DecV – Variable declarations
DPDecP – Procedure declarations

250 A big-step semantics of Bip

A.1.2 Formation rules

We do not present formation rules for numerals or variables.

a ::= n | x | a1+a2 | a1*a2 | (a1)

b ::= a1 = a2 | a1 < a2 | ¬b1 | b1 ∧ b2 | (b1)

S ::= x := a | skip | S1; S2 | if b then S1 else S2

| while b do S | begin DV DP S end | call p

DV ::= var x := a; DV | ε

DP ::= proc p is S; DP | ε

A.2 Additional sets and auxiliary functions

We assume the existence of a function N : Num → Z that for each numeral
n ∈ Num returns the value of n.

The set of variable environments is the set of partial functions from vari-
ables to locations:

EnvV = Var ∪ {next} ⇀ Loc.

Here, next is a special pointer to the next available location. We let envV

denote an arbitrary member of EnvV.
The function new : Loc → Loc returns for any location its successor (no

matter whether this successor location is available or not).
The set of stores is the set of partial functions from locations to values.

Sto = Loc ⇀ Z.

We let sto denote an arbitrary element of Sto.
We again introduce a notation for updating environments and stores. For

environments, we write envV [x �→ l] to denote the environment env′V given
by

env′V y =
{

envV y if y �= x

l if y = x.
(A.1)

A similar update notation exists for stores, procedure environments etc.
We assume static scope rules for variables and procedures, so the set of

procedure environments is given by

EnvP = Pnames ⇀ Stm × EnvV × EnvP. (A.2)

We let envP range over EnvP.

A.3 Transition systems 251

A.3 Transition systems

Our operational semantics does not define transition systems for Num or
Var.

A.3.1 Transition system for Aexp

(ΓAexp,→a, TAexp) is defined below.

Configurations

ΓAexp = Aexp ∪ Z.

Terminal configurations

TAexp = Z.

The transition relation Transitions in this transition system are relative to
an environment–store pair and are therefore of the form

envV , sto � a →a v.

→a is defined as the least relation closed under the rules in Table A.1.

A.3.2 Transition system for Bexp

(ΓBexp,→b, TBexp) is defined below.

Configurations

ΓBexp = Bexp ∪ {tt, ff}.

Terminal configurations

TBexp = {tt, ff}.

The transition relation Transitions in this transition system are relative to
an environment-store pair and are therefore of the form

envV , sto � b →b t.

→b is defined as the least relation satisfying the rules in Table A.2.

252 A big-step semantics of Bip

[plus-bipbss]
envV , sto � a1 →a v1 envV , sto � a2 →a v2

envV , sto � a1+a2 →a v

where v = v1 + v2

[minus-bipbss]
envV , sto � a1 →a v1 envV , sto � a2 →a v2

envV , sto � a1-a2 →a v

where v = v1 − v2

[mult-bipbss]
envV , sto � a1 →a v1 envV , sto � a2 →a v2

envV , sto � a1*a2 →a v

where v = v1 · v2

[parent-bipbss]
envV , sto � a1 →a v1

envV , sto � (a1) →a v1

[num-bipbss] envV , sto � n →a v if N [[n]] = v

[var-bipbss] envV , sto � x →a v
if envV x = l and sto l = v

Table A.1 Big-step operational semantics of Aexp

A.3.3 Transition system for DecV

Our semantics for variable declarations is given by the transition system
(ΓDecV,→DV , TDecV).

Configurations

ΓDV = (DecV × EnvV × Sto) ∪ (EnvV × Sto),

TDV = EnvV × Sto.

Terminal configurations

TDecV = EnvV × Sto.

The transition relation Transitions are of the form

〈DV , envV , sto〉 →DV (env′V , sto′).

and the transition relation →DV is defined as the least relation which is
closed under the rules in Table A.3.

A.3 Transition systems 253

[equals-1bss]
envV , sto � a1 →a v1 envV , sto � a2 →a v2

envV , sto � a1 = a2 →b tt

if v1 = v2

[equals-2bss]
envV , sto � a1 →a v1 envV , sto � a2 →a v2

envV , sto � a1 = a2 →b ff

if v1 �= v2

[greaterthan-1bss]
envV , sto � a1 →a v1 envV , sto � a2 →a v2

envV , sto � a1 < a2 →b tt

if v1 < v2

[greaterthan-2bss]
envV , sto � a1 →a v1 envV , sto � a2 →a v2

envV , sto � a1 < a2 →b ff

if v1 �< v2

[not-1bss]
envV , sto � b →b tt

envV , sto � ¬b →b ff

[not-2bss]
envV , sto � b →b ff

envV , sto � ¬b →b tt

[parent-bbss]
envV , sto � b1 →b v

envV , sto � (b1) →b v

[and-1bss]
envV , sto � b1 →b tt envV , sto � b2 →b tt

envV , sto � b1 ∧ b2 →b tt

[and-2bss]
envV , sto � bi →b ff

envV , sto � b1 ∧ b2 →b ff

(i ∈ {1, 2})

Table A.2 Big-step transition rules for →b

A.3.4 Transition system for DecP

Our semantics is given by the transition system (ΓDecP,→DP , TDecP).

Configurations

ΓDP = (DecP × EnvP) ∪ EnvP,

TDP = EnvP.

254 A big-step semantics of Bip

[var-declbss]
〈DV , envv′′, sto[l �→ v]〉 →DV (env′V , sto′)

〈var x := a;DV , envV , sto〉 →DV (env′V , sto′)

where envV , sto � a →a v
and l = envV next
and envv′′ = envV [x �→ l][next �→ new l]

[empty-varbss] 〈ε, envV , sto〉 →DV (envV , sto)

Table A.3 Big-step semantics of variable declarations

Terminal configurations

TDecP = EnvP.

The transition relation Transitions are of the form

envV � 〈DP , envP 〉 →DP env′P

and the transition relation →DP is defined as the least relation satisfying
the transition rules in Table A.4.

[proc-bipbss]
envV � 〈DP , envP [p �→ (S, envV , envP)]〉 →DP env′

P

envV � 〈proc p is S ;DP , envP 〉 →DP env′
P

[proc-empty-bipbss] envV � 〈ε, envP 〉 →DP envP

Table A.4 Transition rules for procedure declarations assuming fully static
scope rules

A.3.5 Transition system for Stm

We here have the transition system (ΓStm,→, TStm).

Configurations

ΓStm = Stm × Sto ∪ Sto.

A.3 Transition systems 255

Terminal configurations

TStm = Sto.

The transition relation Transitions are relative to a variable environment
and a procedure environment and are therefore of the form

envV , envP � 〈S, sto〉 → sto′.

The transition relation → is the least relation which is closed under the rules
in Table A.5.

256 A big-step semantics of Bip

[ass-bipbss] envV , envP � 〈x := a, sto〉 → sto[l �→ v]

where envV , sto � a →a v and envV x = l

[skip-bipbss] envV , envP � 〈skip, sto〉 → sto

[comp-bipbss]
envV , envP � 〈S1 , sto〉 → sto′′

envV , envP � 〈S2 , sto
′′〉 → sto′

envV , envP � 〈S1 ;S2 , sto〉 → sto′

[if-true-bipbss]
envV , envP � 〈S1 , sto〉 → sto′

envV , envP � 〈if b then S1 else S2 , sto〉 → sto′

if envV , sto � b →b tt

[if-false-bipbss]
envV , envP � 〈S2 , sto〉 → sto′

envV , envP � 〈if b then S1 else S2 , sto〉 → sto′

if envV , sto � b →b ff

[while-true-bipbss]
envV , envP � 〈S, sto〉 → sto′′

envV , envP � 〈while b do S, sto′′〉 → sto′

envV , envP � 〈while b do S, sto〉 → sto′

if envV , sto � b →b tt

[while-false-bipbss] envV , envP � 〈while b do S, sto〉 → sto

if envV , sto � b →b ff

[block-bipbss]

〈DV , envV , sto〉 →DV (env′V , sto′′)

env′
V � 〈DP , envP 〉 →DP env′

P

env′
V , env′

P � 〈S, sto′′〉 → sto′

envV , envP � 〈begin DV DP S end, sto〉 → sto′

[call-stat-statbss]
env′

V [next �→ l], env′
P � 〈S, sto〉 → sto′

envV , envP � 〈call p, sto〉 → sto′

where envP p = (S, env′
V , env′

P)
and l = envV next

Table A.5 Big-step transition rules for Bip statements

Appendix B

Implementing semantic definitions in SML

This chapter describes how one can implement a structural operational se-
mantics in SML and thereby build a prototype interpreter. We shall look at
the operational semantics of Bims and the extensions of it with repeat-until
loops, nondeterminism and parallelism.

The following presentation uses Standard ML as its starting point (NJ-
SML, 2002; Moscow ML, 2002), but the setting is easily adapted to other
functional languages such as Ocaml (Hickey, 2007) or Haskell (Peyton Jones,
2003).

B.1 Abstract syntax

The abstract syntax of a language can easily be captured in SML using
datatype declarations. For each syntactic category we introduce a datatype,
and its formation rules are captured by a datatype constructor for each rule.
We also need to agree on the representation of elements of basic syntactic
categories Num and Var.

Compare the following version of the abstract syntax of Bims extended
with repeat-until loops,

n ∈ Num – Numerals

x ∈ Var – Variables

a ∈ Aexp – Arithmetic expressions

b ∈ Bexp – Boolean expressions

S ∈ Stm – Statements

258 Implementing semantic definitions in SML

Formation rules

S ::= x:=a | skip | S1; S2 | if b then S1 else S2 |
while b do S | repeat S until b

b ::= a1 = a2 | a1 < a2 | ¬b1 | b1 ∧ b2 | (b1)

a ::= n | x | a1+a2 | a1*a2 | a1-a2 | (a1)

with the SML datatype declaration

type Var = string;

datatype aexp = N of int | V of var |
Add of aexp * aexp |
Mult of aexp * aexp |
Sub of aexp * aexp |
Parent of aexp;

datatype bexp = TRUE | FALSE |
Eq of aexp * aexp |
Le of aexp * aexp |
Neg of bexp |
And of bexp * bexp;

datatype stm = Ass of var * aexp | Skip |
Comp of stm * stm |
If of bexp*stm*stm |
While of bexp * stm |
Repeat of stm * bexp

The program

x := 4;
y := 2;
repeat

x := x+y
until x = y

can be represented as the datatype value

Comp ((Ass ("x", (N 4))),(Comp (Ass ("y", (N 2))),
(Repeat ((Ass

("x" ,(Add ((V "x"),(V "y"))))),
(Eq (Add (V "x") (V "y")))))))

B.2 Transition systems 259

An obvious addition is to build a parser that takes Bims source code as
input and returns the corresponding datatype value.

B.2 Transition systems

We represent transition systems in a slightly indirect fashion. Let us first
consider the big-step semantics of arithmetic expressions and then the se-
mantics of statements.

B.2.1 Program states

We represent the set of program states as the datatype of functions from
variables to integers. This becomes

type Z = int
type T = bool
type States = Var -> Z

The program state [x �→ 3, y �→ 0] is described as

fun s_init "x" = 3
| s_init "y" = 0

B.2.2 Semantics of arithmetic and Boolean expressions

We describe the transition relation →a by the function

a_val :: aexp -> (States -> Z)

defined as

a val a s = v if s � a →a v.

Each transition rule in the definition of →a is represented by a clause in the
definition of a val. For instance the rule

[multbss]
s � a1 →a v1 s � a2 →a v2

s � a1*a2 →a v
where v = v1 · v2

becomes

...
(* other clauses for a_val *)

a_val (Mult (a1, a2)) s = (a_val a1 s) * (a_val a2 s)

260 Implementing semantic definitions in SML

If we want to find the value that an arithmetic expression evaluates to,
we apply a val to an arithmetic expression and a state as e.g.

(* other clauses for a_val *)

a_val (Add ((N 2), (N 2))) s_init

B.3 Big-step semantics of statements

We must first define the set of configurations. We do this by declaring the
datatype config as

datatype config = Inter of Stm * States |
Terminal of States

The implementation of the big-step semantics of statements follows the
same ideas as those of the implementation of the semantics for arithmetic
expressions. We implement the transition relation → by defining the function
bss stm given by

bss stm S s = s′ if 〈S, s〉 → s′.

There must be a clause in the definition of bss stm for each transition
rule. For instance, the rule

[compbss]
〈S1, s〉 → s′′ 〈S2, s

′′〉 → s′

〈S1; S2, s〉 → s′

becomes

...
(* other clauses for bss_stm *)

bss_stm (Inter ((Comp (ss1 , ss2)), s)) =

let val Terminal s’ = bss_stm (Inter (ss1 , s))

val Terminal s’’ = bss_stm (Inter (ss2 , s’))

in Terminal s’’

end;

To simulate the execution of a Bims program, we apply bss_stm to a
configuration.

B.4 Small-step semantics of statements 261

Problem B.1 (Important) Implement an SML datatype which describes
derivation trees in the semantics of Aexp and define a function maketree
that for any given configuration 〈S, s〉 returns the derivation tree whose root
is 〈S, s〉 → s′, if such a tree exists.

B.4 Small-step semantics of statements

The ideas behind implementation of the small-step semantics of Bims are
completely analogous to those used to implement the big-step semantics.

We implement the transition relation ⇒ as the function sss stm given by

sss stm S s = γ if 〈S, s〉 ⇒ γ.

As before, the transition rules become clauses in a function definition. The
rules

[comp-1sss]
〈S1, s〉 ⇒ 〈S′

1, s
′〉

〈S1; S2, s〉 ⇒ 〈S′
1; S2, s〉

[comp-2sss]
〈S1, s〉 ⇒ s′

〈S1; S2, s〉 ⇒ 〈S2, s′〉
become

sss_stm (Inter (Comp (ss1 , ss2)) s) =

case sss_stm (Inter (ss1 , s)) of
Inter (ss1 ’,s’) => Inter (Comp (ss1 ’, ss2)) s’

| Terminal s’ => Inter (ss2 ,s’);

Note how the side conditions of the rules correspond to a case-construct.

Problem B.2 Implement the small-step semantics of Aexp.

B.5 Parallelism

When we implement the transition rules describing a language with a non-
deterministic semantics – such as the extensions of Bims with nondeter-
ministic choice or parallel composition – we must proceed in a somewhat
different manner.

Consider the semantics of Bims extended with parallel composition. Here
we implement the function sss_stm:

262 Implementing semantic definitions in SML

sss stm 〈S, s〉 = {γ | 〈S, s〉 ⇒ γ}.

That is, for any given configuration we compute the set of all possible im-
mediate successor configurations. There is no type for sets in SML, so we
define sss stm such that it returns the list of all immediate successor con-
figurations.

Consider the rules

[par-1sss]
〈S1, s〉 ⇒ 〈S′

1, s
′〉

〈S1 par S2, s〉 ⇒ 〈S′
1 par S2, s′〉

[par-2sss]
〈S1, s〉 ⇒ s′

〈S1 par S2, s〉 ⇒ 〈S2, s′〉

[par-3sss]
〈S2, s〉 ⇒ 〈S′

2, s
′〉

〈S1 par S2, s〉 ⇒ 〈S1 par S′
2, s

′〉

[par-4sss]
〈S2, s〉 ⇒ s′

〈S1 par S2, s〉 ⇒ 〈S1, s′〉

Together, these give rise to the following clauses in the definition of
sss stm. We define the auxiliary functions leftcombine and rightcombine.
These combine a list of successor configurations for the left and right compo-
nent, respectively, with the list of successors for the other parallel component
to a new list of configurations.

local
fun leftcombine (Inter (ss1 ,s1) :: l1) ss2 =

(Inter (Par (ss1 ,ss2),s1)) :: (leftcombine l1 ss2)

| leftcombine ((Terminal s1) :: l1) ss2 =

(Inter (ss2 ,s1)) :: (leftcombine l1 ss2)

| leftcombine [] ss2 = []

B.5 Parallelism 263

fun rightcombine ss1 (Inter (ss2 ,s2) :: l2) =

(Inter (Par (ss1 ,ss2),s2)) :: (rightcombine ss1 l2)

| rightcombine ss1 ((Terminal s2) :: l2) =

(Inter (ss1 ,s2)) :: (rightcombine ss1 l2)

| rightcombine ss1 [] = []

in
...
(* other clauses for sss_stm *)

sss_stm (Inter ((Par (ss1 , ss2)), s)) =
let val ss1parts = (sss_stm (Inter (ss1 , s)))

val ss2parts = (sss_stm (Inter (ss1 , s)))
val ss1results = leftcombine ss1parts ss2
val ss2results = rightcombine ss1 ss2parts

in
ss1results @ ss2results

end;

end;

References

Abadi, M., and Gordon, A. D. 1999. A calculus for cryptographic protocols: the
spi calculus. Information and Computation, 148(1), 1–70.

Aceto, L., Ingólfsdóttir, A., Larsen, K.G., and Srba, J. 2007. Reactive Systems:
Modelling, Specification and Verification. Cambridge: Cambridge University
Press.

Aczel, P. 1988. Non-Well-founded Sets. CSLI Lecture Notes, vol. 14. Stanford:
Center for the Study of Language and Information.

Allison, L. 1987. A Practical Introduction to Denotational Semantics. Cambridge:
Cambridge University Press.

Alves-Foss, J. (ed). 1999. Formal Syntax and Semantics of Java. Lecture Notes in
Computer Science, vol. 1523. Berlin: Springer-Verlag.

Amadio, R. M., and Curien, P.-L. 1998. Domains and Lambda-calculi. Cambridge:
Cambridge University Press.

Apt, K. R. 1981. Ten years of Hoare’s logic: A survey – Part 1. ACM Transactions
on Programming Languages and Systems, 3(4).

Backus, J. 1978. Can programming be liberated from the von Neumann style?
Communications of the ACM, 21(8), 613–641.

Backus, J., and Naur, P. 1960. Report on the algorithmic language ALGOL 60.
Communications of the ACM, 3, 299–314.

Backus, J., and Naur, P. 1963. Revised report on the algorithmic language ALGOL
60. Communications of the ACM, 6(1), 1–20.

Bengtsson, J., Larsen, K. G., Larsson, F., Pettersson, P., and Yi, W. 1995. UPPAAL
- a tool suite for automatic verification of real-time systems. pp. 232–243 in
Alur, R., Henzinger, T. A., and Sontag, E. D. (eds), Hybrid Systems. Lecture
Notes in Computer Science, vol. 1066. Berlin: Springer-Verlag.

Berry, G., and Boudol, G. 1992. The chemical abstract machine. Theoretical Com-
puter Science, 96(1), 217–248.

Board, Ariane 501 Inquiry. 1996. Report. http://esamultimedia.esa.int/docs/
esa-x-1819eng.pdf.

Börger, E., Fruja, N. G., Gervasi, V., and Stärk, R. F. 2005. A high-level modular
definition of the semantics of C#. Theoretical Computer Science, 336(2–3),
235–284.

Bradfield, J. C., and Stirling, C. 2001. Modal logics and mu-calculi: an introduction.
Chapter 1.4 in Bergstra, J. A., Ponse, A., and Smolka, S. A. (eds), Handbook
of Process Algebra. Amsterdam: Elsevier Science.

References 265

Chalub, F., and Braga, C. 2007. Maude MSOS Tool. Electronic Notes in Theoretical
Computer Science, 176(4), 133–146.

Church, A. 1932. A set of postulates for the foundation of logic. Annals of Mathe-
matics, 33, 346–366.

Church, A. 1936. An unsolvable problem of elementary number theory. American
Journal of Mathematics, 58(2), 345–363.

Church, A. 1940. A formulation of the simple theory of types. Journal of Symbolic
Logic, 5(2), 56–68.

Church, A. 1941. The Calculi of Lambda Conversion. (AM-6) (Annals of Mathe-
matics Studies). Princeton, NJ: Princeton University Press.

Diehl, S. 2000. Natural semantics-directed generation of compilers and abstract
machines. Formal Aspects of Computing, 12(2), 71–99.

Emerson, E. A., and Clarke, E. M. 1980. Characterizing correctness properties
of parallel programs using fixpoints. pp. 169–181 in Proceedings of the 7th
Colloquium on Automata, Languages and Programming. London: Springer-
Verlag.

ESA. 2001. Ariane 5. http://esapub.esrin.esa.it/br/br200/Ariane-5.pdf.
Giacalone, A., Mishra, P., and Prasad, S. 1989. Facile: A symmetric integration

of concurrent and functional programming. International Journal of Parallel
Programming, 18(2), 121–160.

Gierz, G., Hofmann, K. H., Keimel, K., Lawson, J. D., Mislove, M., and Scott, D. S.
2003. Continuous Lattices and Domains. Encyclopedia of Mathematics and
its Applications, vol. 93. Cambridge: Cambridge University Press.

Goguen, J., and Malcolm, G. 1996. Algebraic Semantics of Imperative Programs.
Cambridge, MA: MIT Press.

Gordon, M. J. C. 1979. The Denotational Description of Programming Languages:
An Introduction. Berlin: Springer-Verlag.

Gordon, M. J. C., Milner, R., Morris, L., Newey, M. C., and Wadsworth, C. P. 1978.
A metalanguage for interactive proof in LCF. pp. 119–130 in Principles Of
Programming Languages.

Guessarian, I. 1981. Algebraic Semantics. Lecture Notes in Computer Science, vol.
99. Berlin: Springer-Verlag.

Hansen, M. R., and Rischel, H. 1999. Introduction to Programming Using Standard
ML. New York, NY: Addison-Wesley.

Hickey, J. 2007. Introduction to Objective Caml. Cambridge University Press.
Hoare, C. A. R. 1969. An axiomatic basis for computer programming. Communi-

cations of the ACM, 12(10), 576–580.
Hoare, C.A.R. 1988. Communicating Sequential Processes. New York, NY:

Prentice–Hall.
Holzmann, G. J. 1990. Design and Validation of Computer Protocols. Prentice-Hall.
Hudak, P., Hughes, J., Peyton-Jones, S., and Wadler, P. 2007. A history of Haskell:

being lazy with class. In HOPL III: Proceedings of the Third ACM SIGPLAN
Conference on History of Programming Languages. New York, NY: ACM.

Hutchinson, N. C., Raj, R. K., Black, A. P., Levy, H. M., and Jul, E. 1987 (Oc-
tober). The Emerald Programming Language Report. Technical report 87/22.
Datalogisk Institut, Københavns Universitet.

INRIA. 1995–2005. The Caml language.
Jacopini, G., and Böhm, C. 1966. Flow diagrams, Turing machines and languages

with only two formation rules. Communications of the ACM, 9, 366–371.

266 References

Jensen, K., and Wirth, N. 1975. PASCAL, User Manual and Report. Second edn.
Lecture Notes in Computer Science, vol. 18. Berlin: Springer-Verlag.

Knuth, D. E. 1967. The remaining trouble spots in ALGOL 60. Communications
of the ACM, 10, 611–18.

Kozen, D. 1982. Results on the propositional µ-calculus. pp. 348–359 in Nielsen,
M., and Schmidt, E. M. (eds), ICALP. Lecture Notes in Computer Science,
vol. 140. Springer-Verlag.

Landin, P. J. 1964. The mechanical evaluation of expressions. Computer Journal,
6(4), 308–320.

Landin, P. J. 1966. The next 700 programming languages. Communications of the
ACM, 9(3), 157–166.

Jet Propulsion Laboratories. 1999 (September). NASA’s Mars Climate Orbiter be-
lieved to be lost.

Microsoft. 2009. F#. http://msdn.microsoft.com/fsharp.
Milner, R. 1978. A theory of type polymorphism in programming. Journal of

Computer and System Sciences, 17, 348–375.
Milner, R. 1980. A Calculus of Communicating Systems. Lecture Notes in Computer

Science. Berlin: Springer-Verlag.
Milner, R. 1989. Communication and Concurrency. Prentice-Hall International.
Milner, R. 1992. Functions as processes. Mathematical Structures in Computer

Science, 2(2), 119–141.
Milner, R. 1999. Communicating and Mobile Systems: the π-Calculus. Cambridge:

Cambridge University Press.
Milner, R., Parrow, J., and Walker, D. 1992a. A calculus of mobile processes, I.

Information and Computation, 100(1), 1–40.
Milner, R., Parrow, J., and Walker, D. 1992b. A calculus of mobile processes, II.

Information and Computation, 100(1), 41–77.
Milner, R., Tofte, M., Harper, R., and MacQueen, D. 1997. The Definition of

Standard ML (Revised). Cambridge, MA: MIT Press.
Moscow ML. 2002. Moscow ML home page. http://www.dina.kvl.dk/~sestoft/

mosml.html.
Mosses, P. D. 1975. Mathematical semantics and compiler generation. Ph.D. thesis,

Oxford University.
Mosses, P. D. 1976. Compiler generation using denotational semantics. pp. 436–441

in Mazurkiewicz, A. W. (ed), MFCS. Lecture Notes in Computer Science,
vol. 45. Berlin: Springer-Verlag.

NASA. 1999. Mishap Investigation Board Phase I Report. ftp://ftp.hq.nasa.
gov/pub/pao/reports/1999/MCO_report.pdf.

Nielson, F., and Nielson, H. R. 2007. Semantics with Applications: An Appetizer.
Berlin: Springer-Verlag.

NJ-SML. 2002. Standard ML. http://cm.bell-labs.com/cm/cs/what/smlnj/
index.html.

Owre, S., Rushby, J. M., and Shankar, N. 1992. PVS: A prototype verification
system. pp. 748–752 in Kapur, D. (ed), CADE. Lecture Notes in Computer
Science, vol. 607. Berlin: Springer-Verlag.

Park, D.M.R. 1981. Concurrency and automata on infinite sequences. pp. 167–
183 in Deussen, P. (ed), Proceedings of 5th GI Conference. Lecture Notes in
Computer Science, vol. 104. Berlin: Springer-Verlag.

References 267

Paulson, L. 1982. A semantics-directed compiler generator. pp. 224–233 in POPL
’82: Proceedings of the 9th ACM SIGPLAN-SIGACT symposium on Principles
of programming languages. New York, NY: ACM.

Paulson, L. C. 1996. ML for the Working Programmer. Cambridge: Cambridge
University Press.

Pettersson, M. 1999. Compiling natural semantics. Lecture Notes in Computer
Science, vol. 1549. Berlin: Springer-Verlag.

Peyton Jones, S. 2003. Haskell 98 Language and Libraries: the Revised Report.
Cambridge: Cambridge University Press.

Pierce, B. C. 2002. Types and Programming Languages. Cambridge, MA: MIT
Press.

Plotkin, G. 1981. A Structural Approach to Operational Semantics. Technical
report FN-19. Computer Science Department, Aarhus University. Reprinted
in Journal of Logic and Algebraic Programming, 60–61, 17–139 (2004).

Plotkin, G. 2004. The origins of structural operational semantics. Journal of Logic
and Algebraic Programming, 60-61, 3–15.

Puhlmann, F., and Weske, M. 2005. Using the π-calculus for formalizing workflow
patterns. pp. 153–168 in van der Aalst, W. M. P., Benatallah, B., Casati,
F., and Curbera, F. (eds), Business Process Management. Lecture Notes in
Computer Science, vol. 3649. Berlin: Springer-Verlag.

Regev, A., Silverman, W., and Shapiro, E. Y. 2001. Representation and simulation
of biochemical processes using the π-calculus process algebra. pp. 459–470 in
Pacific Symposium on Biocomputing.

Reppy, J.H. 1992. Higher-Order Concurrency. Ph.D. thesis, Department of Com-
puter Science, Cornell University.

Reynolds, J. C. 1999. Theories of Programming Languages. Cambridge: Cambridge
University Press.

Roscoe, A. W. 1995. Modelling and verifying key-exchange protocols using CSP
and FDR. pp. 98–107 in CSFW. New York, NY: IEEE Computer Society.

Russell, B., and Whitehead, A. N. 1910. Principia Mathematica. Cambridge: Cam-
bridge University Press.

Sangiorgi, D. 1998. An interpretation of typed objects into typed pi-calculus. In-
formation and Computation, 143(1), 34–73.

Sangiorgi, D., and Walker, D. 2001. π-Calculus: A Theory of Mobile Processes.
Cambridge: Cambridge University Press.

Schmidt, D. A. 1986. Denotational Semantics: A Methodology For Language De-
velopment. Boston, MA: Allyn & Bacon, Inc.

Scott, D., and Strachey, C. 1971. Toward a Mathematical Semantics for Computer
Languages. Programming Research Group Technical Monograph PRG-6. Ox-
ford University Computing Lab.

Scott, D. S. 2000. Some reflections on Strachey and his work. Higher-Order and
Symbolic Computation, 13(1/2), 103–114.

Scott, Dana. 1976. Data types as lattices. SIAM Journal on Computing, 5(3),
522–587.

Shashkin, Y. 1991. Fixed Points. New York, NY: American Mathematical Society.
Sipser, M. 2005. Introduction to the Theory of Computation. Second edn. Florence,

KY: Course Technology.
Stoy, J. E. 1977. Denotational Semantics: The Scott–Strachey Approach to Pro-

gramming Language Theory. Cambridge, MA: MIT Press.

268 References

Strachey, C. 1966. Towards a formal semantics. pp. 198–220 in Formal Lan-
guage Description Languages for Computer Programming. Amsterdam: North
Holland.

Strachey, C. 1967. Fundamental Concepts in Programming Languages. Lecture
Notes, International Summer School in Computer Programming, Copenhagen.
Reprinted in Higher-Order and Symbolic Computation, 13(1/2), 1–49 (2000).

Tait, W. 1967. Intensional interpretations of functionals of finite type I. Journal of
Symbolic Logic, 32(2), 198–212.

Tait, W. 1975. A realizability interpretation of the theory of species. pp. 240–251
in Parikh, R. (ed), Logic Colloquium. Lectures Notes in Mathematics, vol.
453. Berlin: Springer-Verlag.

Tarski, A. 1935. Die Wahrheitsbegriff in den formalisierten Sprachen. Studia Philo-
sophica, 1, 261–405.

Velleman, D. J. 2006. How to Prove It: A Structured Approach. Second edn. Cam-
bridge: Cambridge University Press.

Walker, D. 1991. Pi-calculus semantics of object-oriented programming languages.
pp. 532–547 in Ito, T., and Meyer, A. R. (eds), TACS. Lecture Notes in
Computer Science, vol. 526. Berlin: Springer-Verlag.

Winskel, G. 1993. The Formal Semantics Of Programming Languages. Cambridge,
MA: MIT Press.

Index

λ-calculus, 174, 248
abstraction, 174
application, 174
applied, 176
bound variables, 175
free variables, 175
operational semantics, 175
substitution, 176
variables, 174

λ-notation, 212
abstraction, 212
application of expression, 213
conditional expression, 213
higher-order function, 213
partial function, 213
type of expression, 212

π-calculus
alpha-conversion, 127
bound names, 125, 126, 131
free names, 125, 131
scope extrusion, 125
scope intrusion, 127
semantics, 129

labelled semantics, 130
reduction semantics, 129

structural congruence, 127
substitution, 129

abstract syntax, 27
actual parameter, 95, 104
algebraic semantics, 8
ALGOL 60, 5, 100, 211

call-by-name, 102
problems in, 5

alpha-conversion, 109, 127, 176
antisymmetric, 225
Ariane 5, 12
axiomatic semantics, 8
Backus, John, 5, 100, 173
base type, 188, 192

behaviour
global, 115
local, 114, 115

Berry, Gerard, 114
big-step semantics, 31, 32, 41
Bims, 28

big-step semantics of Stm, 45
example, 48

small-step semantics of Stm, 53
binding construct, 110
binding construct, 125
Bip, 79

semantics of Aexp, 83
semantics of Bexp, 83
semantics of Stm, 85
semantics of declarations, 84

bisimulation, 247
bisimulation equivalence, 70, 247
block, 80
Boudol, Gerard, 114
Bump, 94

Cab, 113
call-by-name, 100
call-by-reference, 96
call-by-value, 99
cardinality, 91
CCS, 7, 113
chain, 227
channel, 113
Chemical Abstract Machine, 114
Chemical Abstract Machine, 127
Church, Alonzo, 174
class, 142

declaration, 142, 143
Coat, 134, 142
Cola, 161
communication

asynchronous, 119
synchronous, 115

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511840449
https://www.cambridge.org/core

270 Index

complete partial order, 225
composite type, 189
composite element, 28
compositional, 35, 215, 218

example of a non-compositional rule, 36, 48
concurrency, 76

attempt at big-step semantics, 77
small-step semantics, 77

configuration, 30, 33
terminal, 30, 33

confusion-free, 202
connective, 18

and, 18
not, 18
or, 18

constant, 176
constant-folding problem, 211
continuous function, 228, 229

composition of, 236
examples of, 236

cpo, 225, 228
examples, 232
function space, 234
powerset, 232, 233
subset, 232

CSP, 113

de Bakker, Jaco, 247
de Bruijn index, 108
declaration of

classes, 143, 146
methods, 147, 161
objects, 147, 161
procedures, 85

with parameters, 96
records, 139
variables, 84, 161

denotation, 214
of a statement, 216

denotational semantics, 7, 211, 239
of Aexp, 214
of Bexp, 216
of Stm, 216
x Stm, 218
equivalence with structural operational se-

mantics, 10, 241
derivation tree, 34

construction of, 48–52
deterministic, 38, 61
domain theory, 91, 248

Emerald, 161
endofunction, 230
environment

method environment, 163
object environment, 145
procedure environment, 82
record environment, 136
type environment, 199

variable environment, 80
variable environment, 81, 144, 154

environment–store model, 80
update notation, 81

environment-store model
for objects, 144

equivalence
of big-step and small-step semantics, 55

equivalence relation, 22, 70
evaluation context, 156

fixed-point, 224, 230
theorem, 225, 229, 230

applications, 231
Flan, 177

big-step semantics, 178, 179
bound variables, 202
closure, 178
free variables, 201
recursive closure, 178
small-step semantics, 180, 199, 201

for-loop, 71
formal parameter, 95
formal parameter, 104
formation rule, 28
function, 22

partial, 23
total, 23

function space, 23
functional programming language, 171
functional programming language

impure, 172
functional programming language

pure, 171

generalized procedure name, 139
generalized variable, 137

Haskell, 174
Hasse diagram, 226, 233

immediate constituents, 28
imperative language, 171
implicit parallelism, 121
increasing sequence, 227
induction, 16

on the length of transition sequences, 55
interleaving, 163

Jensen, Jørn, 103

Knuth, D. E., 5
Kozen, Dexter, 247

labelled transition system, 247
least upper bound, 227
least element, 228
least upper bound, 227
limit, 227
Lisp, 172, 173, 211
locations, 81
logic of programs, 246
logical relation, 206

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511840449
https://www.cambridge.org/core

Index 271

loops forever
in the big-step semantics, 52
in the small-step semantics, 54

Mars Climate Orbiter, 13
McCarthy, John, 5
metavariable, 28
method

declaration, 146
environment, 146

method environment, 163
Milner, Robin, 123, 209
ML, 173, 177

OCaml, 172, 174
Standard ML, 172, 174

modal logic, 247
recursive, 247

monotone function, 228, 229

name clash, 107–109, 127, 129, 131, 176
Naur, Peter, 5, 100
new, 81
next, 81, 145
nondeterminism, 73

angelic, 65, 75
big-step semantics, 74
bounded, 74
demonic, 65, 75
small-step semantics, 75

not compositional, 218

object
declaration, 147
dynamically created, 143, 144
path expression, 143
sequence, 148

parameter
actual, 95, 104
formal, 95, 104
mechanism, 95

parameters, 94
name, 100
reference, 96
value, 99

Parrow, Joachim, 123
partial function

cpo, 234, 235
partial order, 225

example, 226
Hasse diagram, 226

Pascal, 5, 6, 100, 172, 211
Pif , 121
polymorphic type, 205, 209
power set

cpo, 232, 233
pre-fixed-point, 245
prefix ordering, 227
premise, 32
procedure call, 80

dynamic scope rules

big-step semantics, 89
mixed scope rules

big-step semantics, 91
recursive, 90, 97, 98, 158
remote, 161, 162
static scope rules

big-step semantics, 93
small-step semantics, 159

procedure declaration
dynamic scope rules, 89
mixed scope rules, 90
static scope rules, 92, 254

procedure environment, 85, 95, 104
for dynamic scope rules, 89
for mixed scope rules, 90
for static scope rules, 92

process calculus, 113, 123
proof by

induction on the length of transition se-
quences, 61

proof by
induction on the length of transition se-

quences, 58
mathematical induction, 16
transition induction, 39, 56, 60

quantifier
existential, 18
universal, 18

record, 134, 135
recursive definition, 222, 224

definiendum, 224
definiens, 224
of EnvP, 91, 248
of function over N, 237, 240
of language, 222, 224, 236, 240
of set, 248
solution, 223
solution to, 223

recursively defined set, 91
referentially transparent, 172
reflexive, 22, 225
relation, 21

binary, 21
rendezvous, 114, 162
repeat-loop, 66
run-time stack, 154, 155, 163
Russell, Bertrand, 186

safe, 192
scope rules

according to the ALGOL 60 report, 103
dynamic, 86, 89, 159

big-step semantics, 89
example, 88
mixed, 90
static, 86, 92, 158

Scott, Dana, 7, 80, 211, 247
SECD machine, 173

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511840449
https://www.cambridge.org/core

272 Index

semantic category, 214
semantic equivalence, 70
semantic function, 214
set, 19

cardinality, 91
Cartesian product, 21
equality, 19
intersection, 20
power set, 20, 167
subset, 19
union, 20

set abstraction, 19
side condition, 32
slack, 197
small-step semantics, 31, 36, 41
Standard ML, 172
state, 44

update, 44
state transformation, 217, 220

cpo, 236
store, 80, 81, 154
Strachey, Christopher, 7, 80, 211
structural operational semantics, 8

equivalence with denotational semantics, 10,
241

structured declaration, 134
object, 134
record, 134
struct, 134

substitution, 129
for Aexp, 105
for Bexp, 106
for call-by-name in Bump, 104

in DecP, 109
in DecV, 109
in Stm, 110

Sweden, 19
symmetric, 22
syntactic category, 27, 28

Tarski, A., 4
terminal configuration, 30, 33
terminates

in the small-step semantics, 54
in the big-step semantics, 52

totally ordered set, 225
transition, 30
transition induction, 56
transition rule, 27, 32, 33

conclusion, 32
premises, 32
side condition, 32

transition sequence, 37
transition system, 27, 30

configuration, 30
definition of, 30
global, 164, 166
labelled, 115, 164
local, 164
terminal configuration, 30

transitive, 22, 225
type, 186

checking, 186, 187
derivation, 193, 194, 203
environment, 190

update, 190
inference, 187, 209
judgment, 186, 190, 199, 203
rule, 186
safety, 192

in Bump, 193, 195
type environment, 199
type system, 185

for Bump, 188
for Flan, 198
slack, 197

upper bound, 227

verification, 11
tools, 14

Walker, David, 123
well-typed, 187, 188
while-loop

big-step semantics, 47
denotational semantics, 217, 218
denotational semantics of, 239
semantics as a fixed-point, 239
small-step semantics, 53

Whitehead, A. N., 186
Wirth, Niklaus, 6

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511840449
https://www.cambridge.org/core

	Transitions and Trees: An Introduction to Structural Operational Semantics
	Contents
	Preface
	About this book
	Related work
	What you need to know in advance
	Ways through the book
	Problems and thoughts
	Related resources
	Acknowledgements

	About the illustrations
	List of illustrations
	List of tables
	Part I: Background
	1 A question of semantics
	1.1 Semantics is the study of meaning
	1.2 Examples from the history of programming languages
	1.2.1 ALGOL 60
	1.2.2 Pascal

	1.3 Different approaches to program semantics
	1.4 Applications of program semantics
	1.4.1 Standards for implementation
	1.4.2 Generating interpreters and compilers
	1.4.3 Verification and debugging – lessons learned
	Ariane 5
	The Mars Climate Orbiter
	Software verification methods and tools

	1.4.4 The principles of programming languages

	2 Mathematical preliminaries
	2.1 Mathematical induction
	2.2 Logical notation
	2.2.1 Boolean connectives
	2.2.2 Quantifiers

	2.3 Sets
	2.4 Operations on sets
	2.4.1 Union
	2.4.2 Intersection
	2.4.3 Power set
	2.4.4 Cartesian product

	2.5 Relations
	2.6 Functions
	2.6.1 Partial and total functions
	2.6.2 Defining functions
	2.6.3 Function spaces

	Part II: First Examples
	3 The basic principles
	3.1 Abstract syntax
	3.1.1 The language Bims and its abstract syntax
	3.1.2 Some useful conventions

	3.2 Transition systems
	3.3 Big-step vs. small-step semantics
	3.4 Operational semantics of arithmetic expressions
	3.4.1 A big-step semantics of Aexp
	3.4.2 A small-step semantics of Aexp

	3.5 Proving properties
	3.5.1 Determinacy

	3.6 A semantics of Boolean expressions
	3.7 The elements of an operational semantics

	4 Basic imperative statements
	4.1 Program states
	4.1.1 A new big-step operational semantics of Aexp
	4.1.2 A new big-step operational semantics of Bexp

	4.2 A big-step semantics of statements
	4.2.1 The transition system for Stm
	4.2.2 On building derivation trees

	4.3 A small-step semantics of statements in Bims
	4.4 Equivalence of the two semantics
	4.5 Two important proof techniques

	Part III: Language Constructs
	5 Control structures
	5.1 Some general assumptions
	5.2 Loop constructs
	5.2.1 Repeat-loops

	5.3 Semantic equivalence
	5.3.1 For-loops

	5.4 Abnormal termination
	5.5 Nondeterminism
	5.6 Concurrency

	6 Blocks and procedures (1)
	6.1 Abstract syntax of Bip
	6.2 The environment–store model
	6.3 Arithmetic and Boolean expressions
	6.4 Declarations
	6.4.1 Declaring variables
	6.4.2 Procedure declarations

	6.5 Statements
	6.6 Scope rules
	6.6.1 Fully dynamic scope rules
	6.6.2 Mixed scope rules
	6.6.3 Fully static scope rules

	7 Parameters
	7.1 The language Bump
	7.1.1 Syntax of Bump
	7.1.2 Basic assumptions about our semantics

	7.2 Call-by-reference
	7.3 On recursive and non-recursive procedure calls
	7.4 Call-by-value
	7.5 Call-by-name
	7.5.1 The informal description of call-by-name
	7.5.2 A strong parameter mechanism
	7.5.3 Scope rules
	7.5.4 Defining syntactic substitution

	7.6 A comparison of parameter mechanisms

	8 Concurrent communicating processes
	8.1 Channel-based communication – Cab
	8.2 Global and local behaviour
	8.3.1 Local behaviour
	8.3.2 Global behaviour – semantics of programs

	8.4 Other communication models
	8.4.1 Asynchronous Cab
	8.4.2 Implicit parallelism

	8.5 Bisimulation equivalence
	8.6 Channels as data – the π-calculus
	8.6.1 A process calculus of references
	8.6.2 Syntax
	8.6.3 A tiny example
	8.6.4 Free and bound names
	8.6.5 Structural congruence
	8.6.6 Semantics

	9 Structured declarations
	9.1 Records
	9.2 The language Bur
	9.2.1 Abstract syntax of Bur
	9.2.2 Environments
	9.2.3 Transition rules

	9.3 The class-based language Coat
	9.3.1 Syntax
	9.3.2 Environments and stores
	9.3.3 Transition systems and transition rules

	10 Blocks and procedures (2)
	10.1 Run-time stacks
	10.2 Declarations
	10.3 Statements
	10.3.1 Evaluation contexts
	10.3.2 Transition rules for statements

	11 Concurrent object-oriented languages
	11.1 The language Cola
	11.1.1 Abstract syntax
	11.1.2 Rendezvous with Cola

	11.2 A small-step semantics of concurrent behaviour
	11.2.1 Environments

	11.3 Transition systems
	11.3.1 Declarations
	11.3.2 The local transition system
	11.3.3 The labelled transition system
	11.3.4 The global transition system

	12 Functional programming languages
	12.1 What is a functional programming language?
	12.2 Historical background
	12.3 The λ-calculus
	12.3.1 The applied λ-calculus

	12.4 Flan – a simple functional language
	12.4.1 Abstract syntax
	12.4.2 A big-step semantics of Flan
	12.4.3 A small-step semantics of Flan

	12.5 Further reading

	Part IV: Related Topics
	13 Typed programming languages
	13.1 Type systems
	13.1.1 Why are type systems useful?
	13.1.2 The components of a type system
	13.1.3 Type checking and type inference

	13.2 Typed Bump
	13.2.1 Abstract syntax
	13.2.2 Semantics
	13.2.3 Types in Bump
	13.2.4 Type environments
	13.2.5 Assigning types
	13.2.6 Safety properties
	13.2.7 The limitations of the type system

	13.3 Typed Flan
	13.3.1 Syntax
	13.3.2 The type system
	13.3.3 Semantics
	13.3.4 Properties of the type system
	13.3.5 Well-typed recursion

	13.4 Type polymorphism and type inference

	14 An introduction to denotational semantics
	14.1 Background
	14.2 λ-Notation
	14.3 Basic ideas
	14.3.1 Denotational semantics of Aexp
	14.3.2 Denotational semantics of Bexp

	14.4 Denotational semantics of statements
	14.4.1 The denotation of a statement
	14.4.2 Subtleties in the definition of S

	14.5 Further reading

	15 Recursive definitions
	15.1 A first example
	15.1.1 A recursively defined language
	15.1.2 Computing a solution
	15.1.3 Existence and uniqueness

	15.2 A recursive definition specifies a fixed-point
	15.3 The fixed-point theorem
	15.3.1 Cpos
	15.3.2 Continuous functions over cpos
	15.3.3 Proving the fixed-point theorem

	15.4 How to apply the fixed-point theorem
	15.5 Examples of cpos
	15.5.1 Subset cpos
	15.5.2 Function-space cpos

	15.6 Examples of continuous functions
	15.6.1 A useful theorem about function composition
	15.6.2 Context-free grammars
	15.6.3 Recursive functions over the natural numbers
	15.6.4 Denotational semantics

	15.7 Examples of computations of fixed-points
	15.7.1 Recursive definitions of languages
	15.7.2 Functions over the natural numbers

	15.8 An equivalence result
	15.8.1 Equivalence of semantics of expressions
	15.8.2 Equivalence of semantics of statements

	15.9 Other applications
	15.9.1 Logical properties of programs
	15.9.2 A recursively defined program equivalence
	15.9.3 Recursively defined sets

	15.10 Further reading

	Appendix A: A big-step semantics of Bip
	A.1 Abstract syntax
	A.1.1 Syntactic categories
	A.1.2 Formation rules

	A.2 Additional sets and auxiliary functions
	A.3 Transition systems
	A.3.1 Transition system for Aexp
	A.3.2 Transition system for Bexp
	A.3.3 Transition system for DecV
	A.3.4 Transition system for DecP
	A.3.5 Transition system for Stm

	Appendix B: Implementing semantic definitions in SML
	B.1 Abstract syntax
	B.2 Transition systems
	B.2.1 Program states
	B.2.2 Semantics of arithmetic and Boolean expressions

	B.3 Big-step semantics of statements
	B.4 Small-step semantics of statements
	B.5 Parallelism

	References
	Index

