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Introduction

In this book, we examine technologies that have significant impact to the healthcare
sector. Some of those burgeoning technologies include: (1) artificial intelligence
(AI); (2) Big Data; (3) Internet of Medical Things (IoMT); and (4) blockchain. The
term e-health (digital or connected health) refers to the use of information and
communication technologies (ICTs) in various healthcare-related activities, patient
populations, healthcare providers, and medical systems. E-health also encompasses
a set of digital applications aimed at disease diagnosis, prevention, and treatment
that expected to provide more precise, real-time solutions aimed at overcoming
challenges in modern medicine, particularly addressing the increasing burden of
chronic diseases (cancer, drug discovery, heart failure, Covid-19, etc.) and aging
patient populations. E-health also opens potential for real-time personalized inter-
action between patients and physicians, disease surveillance, resource management,
and targeted treatment strategies (e.g., precision health). AI can be applied at
multiple levels, from disease prevention to diagnoses, therapeutic surveillance, and
medical research. By leveraging AI and Big Data in medicine, we may identify
previously unknown links to underlying biological and pathological mechanisms of
various diseases.

In this context, a key to success in the future medicine lies in Big Data for
clinical decision support, incorporating topics such as predictive and preventive
medicine, aimed at disease prevention as well as personalized and participatory
medicine that promotes dynamic patient–physician–systems interactions. This will
lead to more precise disease diagnosis, treatment, and new adaptations as diseases
evolve or recur. Internet of Medical Things (IoMT), connected to cloud platforms
for data storage, management, and analysis, will optimize the electronic health
record (EHR) and enable globalization of telemedicine. This rise in digital
healthcare data does raise concern for the security and privacy of patient and
provider information. Here, AI, including Blockchain technologies, may also play a
key role for preserving privacy, security maintenance, as well as neutralizing
malicious activities in real time. Unlike a centralized system with inherent vul-
nerabilities for hacking or healthcare data leaks, a blockchain strategy may provide
an honest broker to allow for safe data exchange, new approaches for data
encryption for added security of sensitive data, auditability, and secure healthcare
transactions. In recent years, the combined use of (IoT) and blockchain
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technologies has led to initiatives such as blockchain of IoMT (BIOMT) for
improved security whereby (1) data does not pass through a cloud but sent directly
to service platform; (2) hacking entry points are drastically reduced; (3) medical
data are dematerialized, saving time; and (4) medical transactions occur with higher
security and transparency.
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AI and Big Data for Intelligent Health: 
Promise and Potential 

Andre Lupp Mota , Suely Fazio Ferraciolli , Aline Sgnolf Ayres , 
Laura Lane Menezes Polsin, Claudia da Costa Leite , 
and Felipe Kitamura 

1 Introduction 

Healthcare is an area of great complexity that produces a vast amount of infor-
mation ranging from the results of scientific research, from which knowledge can be 
generated in clinical practice, where knowledge is actually applied. Many complex 
datasets from different types and sources are generated daily worldwide. If it were 
possible to interpret all of these data, could we grasp which questions to humanity’s 
health problems could be answered? 
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Artificial intelligence, which was developed throughout the second half of the 
twentieth century and in the first decade of the twenty-first century, is associated 
with the improvement of computational power, made it possible for machines to 
perform some tasks previously restricted to humans. The development of tools such 
as machine learning has allowed computers to learn from humans and perform 
some of their tasks, which was later improved with the deep learning technique, 
enabling machines to self-learn and manipulate a massive amount of elaborated 
information. 
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Finally, massive amounts of data can now be stored, processed, and analyzed, 
enabling AI to respond to old and new problems. This digital revolution soon 
reached healthcare and changed traditional clinical research, clinical practice, and 
population health, impacting all healthcare specialties, which gradually integrated 
AI into their routine. The Covid-19 pandemic accelerated the incorporation of these 
new technologies and proved that they could provide quick answers and fill defi-
ciencies characteristic of critical situations. 

If used inclusively, AI can solve many of humanity's problems and improve the 
already consolidated processes. However, like every new tool, it must be supported 
by ethical and legal bases to guarantee safety and allow broad access to all, 
especially to less privileged populations, which can be the primary beneficiaries. 

2 Artificial Intelligence 

In the 1940s, AI emerged with the development of computational learning models 
similar to a simplified neuron. In the 1950s, researchers began to improve artificial 
systems to mimic human intelligence. In 1950, Alan Turing, considered the father
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of modern computer science, created the Turing test, which evaluates how close a 
machine came to human intelligence and later evaluated AI systems [1]. 

In 1956, during a conference in New Hampshire, USA, computational scientist 
John McCarthy used the term artificial intelligence for the first time. In 1958, 
Rosenblatt introduced a new system called perceptron, which consists of a math-
ematical model composed of several binary inputs that received different weights. 
The algorithm uses the weights for the desired output from a predetermined 
threshold. This system was later improved and used as the basis for creating neural 
networks [2]. Throughout the ‘70s and ‘80s, interest in AI development declined 
significantly owing to technological limitations. From the ‘90s and especially after 
the 2000s, fertile soil for AI growth appeared with increasing computer system 
capacity and the availability of big data [1]. 

Nowadays, artificial intelligence (AI) is a broad term concerning systems that 
perform tasks as humans do. It is a multidisciplinary field involving concepts from 
mathematics and computer science. In addition, some algorithms include statistical, 
psychological, philosophical, and linguistic concepts. The main requirements for AI 
are based on a triad of algorithms, high-performance computing infrastructure, and 
big data. 

AI has many different applications, such as reasoning, which gives the ability to 
make inferences based on information; planning, which is the system’s ability to 
elaborate a chain of actions autonomously to reach an end goal; natural language 
processing (NLP), which is the ability to train computers to understand written and 
spoken human language; and machine learning (ML), which is the computer's 
ability to learn from predefined examples, without being explicitly programmed [3]. 

In machine learning, a field called deep learning (DL) can automatically hier-
archize the data given using algorithms called neural networks (NN), which are AI 
algorithms that resemble a human neuron. These NNs have three main components: 
input data; the model's activation function; and output data corresponding to the 
dendrites, cellular body, and axon of a biological neuron. All these concepts are 
further explained in the next section and are displayed in the circle diagram of 
Fig. 1. 

2.1 Machine Learning 

The great utility of machine learning is in processing large amounts of information, 
allowing predictions and/or decisions to be made. The subtypes of machine learning 
vary according to the dependence of the system on the information previously 
supplied to develop the learning process. The information can be offered after 
classification by humans or the algorithm is permitted to identify it for itself. Based 
on these characteristics, ML can be expressed as:
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Fig. 1 Circle diagram of artificial intelligence, with machine learning, as one of its subsets, where 
machines can learn a human task without being explicit programmed. ML can use neural networks 
for many tasks, one of them is deep learning, that consists in the algorithm being able to deliver an 
automatic hierarchization of the data given 

• Supervised: when databases are labeled, known as ground truth, to train the 
algorithms to classify the information or make more accurate predictions. An 
example of its application is in the identification of normal and abnormal radi-
ological images. 

• Semi-supervised: When the number of inputs is larger than the number of tar-
gets, aiming for a better model accuracy when the main dataset has few labeled 
samples and a large number of unlabeled ones [4]. 

• Unsupervised: algorithms analyze unlabeled databases, allowing the algorithm to 
discover patterns or groupings of data without human intervention [2]. This 
model cannot be used for prediction models because there is no outcome vari-
able assigned to a single input data point, and it is advantageous when a massive 
amount of unlabeled information is available. 

These types of learning are schematized in Fig. 2. 
Another ML strategy is reinforcement learning, which is characterized by 

learning decisions by trial and error to reach the best goal and has excellent utility in 
robotics, games, and autonomous vehicles. 

In ML, training a system increases its experience and performance. The quality 
of the algorithm development involves training and validation. Initially, the data-
base was divided into three parts: training, validation, and testing, which generally 
had proportions of 80%, 10%, and 10% of the main dataset, respectively. However, 
this could be adapted according to the database size. In larger datasets, one could 
increase the percentage for training and reduce the proportion for validation, still 
guaranteeing an adequate amount of data. After achieving the best validation per-
formance, the algorithm was tested to measure and confirm its final performance 
[5]. The data must not be mixed, that is, it must be explicitly used for the group it 
was allocated to [6] to prevent the algorithm from “memorizing” the data instead of



learning from it. Therefore, the test set should be separated initially with data that 
has not been observed during training and validation. 
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Fig. 2 Types of learning in ML: supervised, semi-supervised and unsupervised 

Algorithms are instructions on how the system should work with information. 
Their creation involves programming languages such as Python, Java, C, C++, C#, 
and R [4]. 

The primary tasks performed by AI algorithms are classification, segmentation 
and regression. In classification, the system allocates information to specific classes. 
Applications of this task in healthcare include distinguishing between normal and 
abnormal patterns and enabling disease classification. Another example is the 
segmentation of a region, lesion, or anatomical structure according to their radio-
logical characteristics, which classifies the image pixels that will or will not be part 
of the segmented area. Regarding regression, the algorithm predicts continuous 
target by establishing relationships between two or more variables and has great 
importance in healthcare in establishing prognosis and responses to certain drugs 
[5]. 

The types of algorithms used in ML depend on the complexity of the task and 
the type and amount of input information. The main algorithms used in ML in 
healthcare are as follows: 

• Linear classification: These are used for classification and are based on linear 
relationships between the input and desired output values and can only be used 
when there is a linear relationship. They performed best with smaller databases.
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Examples include linear regression, logistic regression, and support vector 
machines. 

• Nonlinear classification: Uses kernel filters to separate nonlinear information in a 
database, performing classification and, in some cases, regression; 

• Decision tree: Predicts the output variable by learning decision rules from the 
input. It can be used in both classification and regression and also works well for 
large databases. 

• Artificial neural networks: These were inspired on neurons in the human brain 
and may be composed of multiple layers (input layer, one or more hidden layers, 
and an output layer). Each layer has many neurons with different learnable 
weights, which allows pattern recognition and problem-solving. It requires a 
large amount of complex information and allows for both classification, seg-
mentation and regression. Deep neural networks use multiple layers to predict 
outputs and enable deep learning. 

As previously mentioned, deep learning is a subtype of ML that allows a system 
to learn autonomously, using artificial neural networks with several layers to pro-
cess large amounts of information, permitting the algorithm to establish hierarchies 
and standardizations [2]. One of the main utilities of DL may be its ability to 
discover complex correlations and conglomerates, which cannot be seen by human 
intellect. 

DL is useful for processing unstructured data and is one of the main uses of 
image recognition. Therefore, it is widely used in healthcare, particularly in radi-
ology and other specialties that can use imaging examinations, such as dermatol-
ogy, pathology, and ophthalmology. 

These AI algorithms require a large amount of data and computational power, 
and have many different hidden layer structures. Convolutional neural networks are 
the main networks used for medical images with classification/segmentation/ 
regression tasks. The simplified scheme of a CNN is shown in Fig. 3, and a friendly 
introduction can be seen in a video from Luis Serrano [7]. 

Fig. 3 Example of a 
convolutional neural network 
(CNN), characterized by an 
input layer, several hidden 
layers, and an output layer
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3 Big Data 

Big data refers to a set of large amounts of varied and complex information that 
represents a great challenge for storage, access, analysis, and processing. These data 
are obtained from scientific research, social network interaction, internet posts, 
photos, videos, audio, text files, and various types of information from sensors and 
smartphones [8]. 

Big data comprises six characteristics, commonly called 6v’s: value, volume, 
velocity, variety, veracity, and variability [9], as shown in Fig. 4. 

Variety refers to the various types of data, which can be structured, that is, 
readily classified and analyzed; unstructured, which are not organized according to 
a predefined model of information (e.g., medical notes and images); and 
semi-structured, which are similar to a mixture of the other two types [8]. Volume 
represents the large and growing amount of data generated continuously, reaching 
magnitudes such as petabyte, exabyte, and zettabyte. Velocity refers to the latency 
of the time from creation to the final product of information processing. Value 
refers to the value added to information analysis. Variability is defined as the 
changes that information can present with time, location, and among different 
operators. Finally, veracity refers to the quality and relevance of the information [9]. 

The analysis of such a large amount of information is only possible owing to the 
development of artificial intelligence tools and powerful hardware. These tools 
make it possible to perform tasks such as anomaly detection, clustering, classifi-
cation, association, summarization, and visualization [9]. 

Several ethical and legal issues have been raised about big data and are a cause 
for concern regarding its use in health care. One concerns the privacy and security 
of patient information, which requires encryption and anonymization algorithms as 
well as security solutions. Another issue concerns data ownership [9]. With the 
advent of these new technologies, several countries have adopted laws to protect the 
data used, particularly the patient data. 

Fig. 4 The 6v’s of big data
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4 AI and Big Data in Healthcare 

Healthcare has embraced the digital revolution in which AI enables the analysis and 
processing of vast amounts of information. Since then, algorithms have been used 
in clinical practice, research, and in population health. 

For these new technologies to be inclusive, comprehensive, and to meet the 
demands of healthcare, nine conceptual elements for their use have been proposed 
[10], with schematic visualization in Fig. 5. 

1. Personalized—Guarantees the individualization of care; 
2. Predictive—Makes it possible to determine the predisposition to a particular 

condition; 
3. Preventive—Develops prevention strategies; 
4. Participatory—Allows the participation of the patient in his/her care; 
5. Pervasive—Is widely available, anywhere, anytime, and to everyone; 
6. Precise—Enables the identification of the condition and its precise treatment; 
7. Privacy-preserving—Ensure privacy of information; 
8. Protective—Ensuring the security of information and systems 
9. Priced reasonably—Be affordable [10]. 

It is estimated that all medical specialties will use AI in the future, and deep 
learning will represent a large part of this use, mainly for pattern recognition using 
neural networks [11]. The use of AI in health care is already a reality that can be 
present throughout human life: from fertilization, acting in the selection of viable 
embryos, through childhood, adulthood, and old age; aiding diagnosis through 
imaging; recognizing conditions through wearable monitoring; promoting health 
through smart speaker/voice assistant services and chat bots; and predicting 
in-hospital outcomes [11]. This broad employment is made possible by the ability 
to process a wide variety of inputs, such as photographs, video, audio, and text,

Fig. 5 The 9 P’s for the AI in 
healthcare



enabling the use of AI for diagnosis, prognosis, and treatment, leading to precision 
medicine.
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The following section discusses examples of AI and big data at different levels of 
healthcare spanning clinical research, clinical practice, and population health. 

One area of interest in the advances in AI and big data is the field known as 
omics, characterized by the study of various biological fields based on their 
structure function. The omics fields include genomics (study of genomes), epige-
nomics (study of non-genetic influences on gene expression), transcriptomics (study 
of RNA expression), proteomics (study of proteins), metabolomics (study of 
metabolites), interactomics (interaction between proteins and molecules), pharma-
cogenomics (study of pharmacology in the context of genomics), radiomics (study 
of radiological patterns), and diseasomics (study of diseases) [9]. 

The large amount and complexity of information can be integrated to search for 
biomarkers to predict new diseases, which are being developed using AI tools [9, 
12]. Moreover, this information can be analyzed in conjunction with lifestyle and 
environmental characteristics, which form the basis of an emerging field in medi-
cine: precision medicine. This makes it possible to customize the prevention and 
treatment of health conditions in an individual by defining the factors that predis-
pose the individual to that specific condition within the great diversity of human 
biology [13]. 

In addition, in the field of research, IA can be used for in silico drug testing, 
reducing costs and time for clinical trials in drug development, helping in the 
evaluation of candidate substances as therapeutic agents, and excluding those with 
undesirable side effects. The use of nanotechnology with biocompatible nanoma-
terials enables the development of nanomedicines designed by molecular dynamic 
simulators using AI tools to develop substances with low side effects and achieve 
the desired therapeutic effects [14]. 

It is probably in radiology that AI has found one of the most significant appli-
cations in medicine, which is why the use of AI and big data in radiology is 
discussed in Chap. 3. 

The development of digital pathology, which uses digital slide images, has 
opened this discipline to incorporate IA. Whole slide imaging (WSI), which allows 
complete evaluation of a tissue sample on one slide, has proven helpful in reducing 
the time for lesion identification compared to human evaluation. Algorithms can be 
developed to classify tumor types by identifying specific mutations that traditional 
techniques cannot recognize. New technologies have proven useful when inte-
grating histopathological images with other sources such as omics data, clinical 
records, and demographic information. When used synergistically with patholo-
gists, AI algorithms can also increase accuracy and reduce the time for slide 
evaluation [11, 15]. 

In ophthalmology, deep learning can be used for disease screening, such as 
diabetic retinopathy, retinopathy of prematurity (ROP), glaucoma and age-related 
macular degeneration [16]. Studies comparing the performance of humans and 
algorithms in evaluating fundus photographs or optical coherence tomography have 
shown to be as good as or better than expert evaluations. The prospects for



fundoscopy imaging are beyond the ophthalmological scope. Evidence suggests 
that they may help identify changes that indicate increased cardiovascular risk and 
early signs of dementia [11]. In communities distant from big cities or places that 
lack medical professionals, these algorithms can be used to expand the availability 
of services through telemedicine [16]. 
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In dermatology, IA allows the classification of neoplastic lesions using digital-
ized photographic or dermoscopic images. AI is being studied in gastroenterology 
to increase the accuracy of colonoscopy examinations in identifying intestinal 
polyps. In mental health, algorithms can be used to identify signs of mental dis-
orders such as depression and suicide risk from data generated from the interaction 
of the machine with the patient [11]. 

In cardiology, AI has been used to evaluate examinations, such as electrocar-
diogram images for early identification of heart attack and arrhythmias, and 
echocardiography, to classify hypertrophic cardiomyopathy, amyloidosis, and 
pulmonary arterial hypertension [11]. The application of convolutional neural 
networks enables the use of video images to analyze photoplethysmographic facial 
signals and identify atrial fibrillation [17]. 

In mental health, AI has been employed as a self-help modality for patients with 
depression. With chatbot use, AI models can recognize, evaluate, and deal with 
negative emotions, helping the user alleviate depression and establish new auto-
matic thoughts [18]. Another algorithm was developed to detect signs of severe 
depression in social networks in texts utilizing natural language processing, which 
can be used for suicide prevention [19]. 

AI has arrived in the operating room (OR) and is gaining relevance in optimizing 
the workflow of the OR, increasing safety, and improving surgical outcomes. AI 
systems can optimize surgical procedure scheduling, reduce delays, optimize 
resources, and reduce costs [20]. They can also be incorporated into monitoring 
systems to help the anesthesia team identify early potentially life-threatening situ-
ations, such as early recognition of hypotension and changes in the electrocardio-
graphic record [21]. AI models can also be used for risk prediction by assessing the 
risk of mortality and surgical complications, and assisting in choosing the most 
appropriate technique for a given patient. Other tools that use AI can assist surgeons 
during the procedure, such as augmented reality and virtual reality, allowing the 
integration of preoperative images in real-time during the procedure [22]. AI has 
also been applied in robotic surgery to assist surgeons in complex operations, 
reducing errors, complications, and hospital stays [23]. In addition, it can be used to 
evaluate the skills of robot-assisted surgery trainees by assessing their performance 
on simulators [24]. 

AI tools can assist in point-of-care decision making by providing evidence-based 
support, increasing insights, and reducing diagnostic and treatment errors. They can 
help optimize resources and address shortages of professionals in underserved or 
remote areas using remote assistance, tele-discussion, or triage resources [11]. AI 
can assist the education of healthcare providers by providing digital training models 
for radiological or pathological image recognition, for example, by providing 
feedback to improve professional self-performance [15].



AI and Big Data for Intelligent Health … 11

Another major revolution of AI is to enable patients to manage their own health 
data using wearable devices with sensors that allow them to monitor various health 
conditions such as diabetes, arrhythmias, hypertension, and asthma, among others, 
including the possibility of adding suggestions on when to seek medical 
help. Furthermore, patients can benefit from algorithms that assist with lifestyle 
guidelines to help manage diet and physical activity, for example [11]. 

In health systems, especially public health systems, AI tools can increase effi-
ciency and improve effectiveness, reaching and benefitting a more extensive 
number of people. The ability of AI algorithms to make predictions is one of the 
most promising applications that can significantly affect health systems. It can be 
used in health protection, in which algorithms analyze data for disease surveillance 
and detection, and in health promotion, providing disease prevention based on risk 
and behaviors. Another developing use is to improve the efficiency of healthcare 
services using screening systems [25]. 

The Covid 19 pandemic was the first major AI test to help humanity find 
solutions to deal with a previously unknown disease that quickly faced resource 
depletion, a lack of professionals, and the need to find fast solutions. Throughout 
the pandemic, IA has been of great importance as a tool for epidemiological 
assessment to predict the number of new cases, deaths, and recoveries, aid in the 
diagnosis of the disease, identify virus subphenotyping, quantify lung lesions, and 
determine patient prognosis [26]. AI has helped in the development of new drugs 
and in the search for known drugs with potential therapeutic benefits. In addition, 
IA tools have been used to study the three-dimensional conformation of viral capsid 
proteins, helping speed up vaccine development. 

During the Covid-19 pandemic, AI was used to monitor social distancing 
through smartphones and video cameras, facilitate the population's access to 
information about the disease, and help combat fake news. Due to the need for 
social isolation, telemedicine tools have been developed to triage symptoms and 
identify warning signs via video calls or chatbots, which are also very useful for 
identifying and managing symptoms related to psychiatric illnesses such as 
depression throughout the pandemic [26]. Another applicability tested during the 
pandemic was the use of robotic companion dogs or cats to mitigate the effects of 
social isolation on lonely or demented adults throughout the pandemic, providing 
well-being and quality of life during their time in isolation [27]. 

AI has also been used to help the elderly and people with disabilities, thereby 
improving their quality of life. In these systems, algorithms enable the recognition 
of facial expressions, thereby allowing the control of devices such as wheelchairs. 
Sensors to monitor activity, behavior, and the environment can be used for pre-
ventative measures or to trigger alerts once a risk situation has been identified, such 
as falls and incorrect medication administration. Other AI models can stimulate 
memory and prolong independence [28]. 

On one hand, if all the AI applications mentioned above can improve healthcare, 
some caveats are necessary. Generally, the implementation of AI systems is 
expensive. With this, it could leave low-and middle-income countries marginalized 
from advances in the field, and their populations, many of which are already



underserved, and are those that could benefit greatly from these technologies [29]. 
Another point of debate concerns the development of some algorithms that may 
have used the population characteristics of the majority in its development, thus 
excluding the inherent characteristics of minorities and making their use impossible 
in the real world, raising ethical dilemmas. Moreover, many people are not yet 
familiar with the technology to leverage its benefits, or may suffer from reduced 
human interaction. Other important issues are related to information privacy and 
data security. All of these issues have been widely discussed, and new strategies to 
ensure AI's inclusion and guarantee its ethical and legal aspects, including creating 
specific legislation, should be encouraged. 
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4.1 Core Messages 

• Artificial intelligence (AI) is a broad term that defines systems that can perform 
tasks like humans 

• One of the subdivisions of AI is machine learning (ML), which is the ability of a 
computer to learn from pre-defined examples, without being explicitly 
programmed 

• Deep learning (DL) is a field of ML that uses Neural Networks to exercise the 
ability of autonomous learning, that is, without prelabeled examples 

• Big Data refers to an immense set of complex information that requires powerful 
technological resources for its storage, access, analysis and processing 

• AI in heathcare is a very useful tool, due to the large amount and complexity of 
information analysed 

• AI in heathcare is already consolidated in clinical practice in several specialties 
and it is a trend which all specialties will use in the future. In addition, AI shows 
promises in the areas of research and population health 

• During the COVID-19 pandemic, AI was put to the test and was a very helpful 
in the search for faster ways to face the pandemic 

• AI can be important in promoting the inclusion of people with disabilities and 
improving assistance to populations with limited resources 

• AI should be considered in ethical and legal discussions aiming at greater 
inclusion and protection of patients. 

4.2 Short Expert Opinion 

We hope that in the coming years AI will be widely incorporated into healthcare 
practice, helping professionals in the most different specialties to offer higher 
quality care, which prevents errors and, at the same time, offers the best evidence of 
treatment in an individualized way. The function of AI systems should not be to 
replace professionals, but to assist them in their tasks in a way that can guarantee 
the principles of beneficence, non-maleficence, autonomy and justice for the



patients. In addition, respecting ethical and legal principles and seeking universal 
inclusion initiatives, AI can help in the search for much faster and more inclusive 
solutions to the health problems that plague humanity. 
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Perhaps it is conceivable that, in the future, some different kind
of computer might be introduced, that makes critical use of
continuous physical parameters-albeit within the standard
theoretical framework of today’s physics-enabling it to behave
in a way that is essentially different from a digital computer.
Roger Penrose: Shadows of the mind: a search for the missing
science of consciousness [1].
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1 Introduction 

Long before the Common Era, in the eighth century BC, Homer introduced auto-
mata from workshops of the Greek god Hephaestus in his poem The Iliad [2]. Later, 
around the fourth century BC, Aristotle presented the epistemological basis of the 
division of knowledge into categories, with theory being the most critical and art 
being less important [2]. In addition, he pioneered syllogistic logic, which was the 
first formal deductive reasoning system. In the late first-century CE, the Heron of 
Alexandria built mythical automata and many other mechanical marvels. In the 
fifteenth and sixteenth centuries, Paracelsus was the first to introduce the magnetic 
or sympathetic system of medicine as the basis for magnetic healing [3]. However, 
there is still much more history behind the evolution of artificial intelligence that 
can be found in a detailed review of the subject in [4]. 

According to the National Cancer Institute at the National Institutes of Health 
(NIH) [5], a definition for cancer as a term is described as follows: 

A term for diseases in which abnormal cells divide without control and can invade nearby 
tissues. 

Looking at the cancer statistics reported by the World Health Organization 
(WHO), it is revealed that cancer is the second most common cause of death 
globally, with 10 million deaths per year. This number translates to approximately 
one in six deaths due to cancer globally [6]. 

In the US, the total number of cancer-related deaths between 2015 and 2018 
increased tremendously [7]. In line with this result, Wilson et al. [8] presented a 
table (Table 1) of the number of publications concerning the application of Artificial 
Intelligence to cancer research during the period 1991–2018. 

Between 2015 and 2018, the number of citations using AI in cancer as a search 
term decreased even though the number of papers increased. This shows that 
research on Artificial Intelligence and cancer has increased, but the interest of 
researchers on this topic has decreased. 

However, between 2018 and 2021 Siegel et al. [9] stated that, since 2018, there 
has been a 33% decrease in the number of cancer-related deaths. This may be due to 
a reduction in smoking, as well as better diagnostics, resulting in earlier detection of 
cancer and better treatment. AI also plays a leading role in reducing smoking. In 
2020, the World Health Organization (WHO) introduced AI into its tobacco quit-
ting initiative to help people quit smoking and advance the precision and accuracy 
of diagnostics (that is, The diagnosis was made by a presumptive patient using 
chatbots, which can detect symptoms) [10]. 

1.1 Big Data and Artificial Intelligence (AI) 

An interesting definition of big data was provided by De Mauro et al. [11] a  
follows:



Big Data is the Information asset characterized by such a High Volume, Velocity and
Variety to require specific Technology and Analytical Methods for its transformation into 
Value. 
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Table 1 An overview of 
both the number of papers as 
well as citations related to 
artificial intelligence 
applications in cancer 
between 1991 and 2018 as 
adopted by [8] 

Year published Total number of papers Total citations 

2018 661 809 

2017 503 3206 

2016 435 3680 

2015 349 4524 

2014 284 4131 

2013 268 5167 

2012 202 4642 

2011 173 4706 

2010 146 5474 

2009 114 3550 

2008 88 3671 

2007 68 2480 

2006 58 2324 

2005 45 1885 

2004 26 1582 

2003 39 3115 

2002 17 3208 

2001 15 964 

2000 18 2040 

1999 13 1043 

1998 12 548 

1997 9 420 

1996 2 52 

1995 2 297 

1994 4 172 

1993 0 0 

1992 3 105 

1991 1 2 

As its name suggests, big data refer to a large amount of data that is available 
and collected by experts. Big data are vital to technological advancements because 
they are collected from every source to offer new perspectives and opportunities in 
modern healthcare. Dash et al. [12] argued that big data handling and manipulation 
is important for their efficient use and management. Because both handling and 
manipulation of big data cannot be achieved using traditional methods, the use of 
new and advanced techniques is inevitable. Although big data faces significant 
challenges owing to ethics, high costs, and privacy policies, it can transform 
medicine. Big data can be applied to science, academia, and industry. In healthcare,



big data combined with machine learning can be used to store and analyze a 
patient’s scan. This can then form part of the electronic health record, enabling 
professionals to follow up with the patient, determine the efficiency of a new drug, 
and design better clinical trials. 
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Artificial intelligence and big data are key factors that contribute to the early 
detection and treatment of cancer. According to the Merriam-Webster dictionary 
[13], artificial intelligence is ‘a branch of computer science dealing with the sim-
ulation of intelligent behavior in computers/The capability of a machine to imitate 
intelligent human behavior’ (Merriam-Webster). 

AI can analyze more health data faster, safer, and more efficiently (i.e., electronic 
health records-gathering patient data and insights that lead to predictive analysis) 
than before. This results in better use of the data and improvement of current 
diagnostic techniques. Therefore, the aim of AI in healthcare is to examine and 
determine patterns in large and complex datasets in less time and more accurately 
than in previous studies [14]. Another reason that artificial intelligence is important 
in healthcare is that it can perform sophisticated nonlinear calculations and deter-
mine outcomes with minimal or no human interference. 

1.2 Cancer Image Segmentation 

Tumor segmentation involves the separation of tumors from normal tissues. Tumor 
segmentation is a very useful tool for cancer detection in general, as it provides 
valuable data for diagnosis and treatment planning, and is commonly used in brain 
tumors [15]. Manual segmentation is, by far, the most accurate method for seg-
mentation method. However, in extensive studies, to achieve precise segmentation 
of cancerous lesions, more than one image modality with differing contrasts should 
be involved. In such cases, deep learning has emerged as an attractive solution for 
quantitative medical imaging analysis. 

Despite significant efforts, patient diagnosis using tumor segmentation remains 
poor [16]. Various medical imaging techniques such as magnetic resonance 
imaging (MRI), computed tomography (CT), and positron emission tomography 
(PET) have been used to assess tumor localization and progression before and after 
treatment. Owing to its high resolution, noninvasive characteristics, and soft tissue 
contrast, MRI is generally the most commonly used modality for brain tumor 
diagnosis and treatment planning [16, 17]. 

In clinical practice, tumor segmentation is manually performed. Usually, an 
experienced radiologist segments all the affected regions by meticulously studying 
the scanned patient’s images. This approach, which primarily depends on the 
radiologist, is laborious and subject to broad inter-and intra-rater variabilities [18]. 
Therefore, manual segmentation is limited to visual inspection and qualitative 
assessment, with marginal quantitative assessments. 

Quantitative analysis of tumors, such as those of the brain, offers significant 
information that helps doctors to understand tumor characteristics and provides 
better options for treatment planning [17]. Information provided by quantitative



assessments sheds light on the characteristics and progression of the disease and its 
effects on actual anatomical structures [19]. The limitations of these assessments 
can be attributed to the variability in the size, shape, and location of lesions. 
Furthermore, various imaging modalities with distinct contrasts must be considered 
for accurate lesion segmentation [20]. Therefore, at present, many research activ-
ities aim to use computer algorithms to achieve automated tumor segmentation. 
This approach enables reproducibility, objectivity, and quantitative assessment. In 
addition, the application of convolutional neural networks (CNNs) to this task has 
emerged as a dominant field in brain tumor segmentation [21]. 
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Similar to the segmentation of other tumors, brain tumor segmentation aims to 
identify the location and expansion of tumor areas. Qualitative and quantitative 
assessments play an important role in tumor segmentation. Depending on the 
human involvement, the segmentation of brain tumors can be branched into man-
ual, semi-automatic, and fully. Automatic segmentation of brain tumors does not 
require human interaction. Prior knowledge and AI are required to understand and 
solve segmentation problems [17]. Automated segmentation methods can be further 
classified as generative and discriminating techniques. The latter typically relies on 
supervised learning, where knowledge of the interactions among manually anno-
tated data, as well as image input, arose and learned from a large dataset. Owing to 
the complexity of medical images, discrimination methods may not be able to fully 
leverage training data. However, the use of deep learning methods is increasing 
owing to their exceptional performance in their ability to learn directly from data 
and computer visualization tasks. By contrast, generative methods use existing/prior 
knowledge of the distribution and appearance of different tissue types. Because 
deep learning requires large memory volume and computational resources, it serves 
as a limiting factor in the application of segmentation algorithms [17]. 

According to Pan [22], image processing can be categorized into different stages 
such as image acquisition, image preprocessing (deionizing/enhancement/ 
restoration), image segmentation/feature extraction, and object recognition (see 
Fig. 1). 

Data 
Acquisition 

Preprocessing 
Denoising 

Enhancement  
Restoration 

Segmentation 
Feature 

Extraction  

Object  
Recognition  

Fig. 1 A general representation of specific elements of classical image processing systems as 
adopted by [22]



20 Z. Dlamini et al.

Image Segmentation is characterized by a pixel-based selection of a Region Of 
Interest (ROI) where a similarity criterion or a threshold is performed locally. This 
method is used to evaluate and analyze Magnetic Resonance Imaging (MRI) medical 
scans. Ibrahim et al. [23] proposed the use of the Chaotic Salp Swarm Algorithm 
(CSSA), in the segmentation of images for breast cancer detection. In another study, 
Senthil Kumar et al. [24] used image segmentation algorithms to diagnose lung 
cancer using Computer Tomography (CT) scan images. Lastly, Shang et al. [25] 
proposed a model that utilizes the data sets from sequentially evaluated tomography 
and magnetic resonance image scans for left ventricle segmentation of the heart in 
patients. These were only some of the applications of Image Segmentation in cancer. 
Furthermore, there are several methods of image segmentation such as Region, 
Edge, Fuzzy Theory, Partial Differential Equation (PDE) Threshold based image 
segmentation; Semantic segmentation networks and Convolution Networks. 

A. Region Based Segmentation 

The region-based segmentation method uses a seed pixel inside the ROI as a reference 
point to correlate the neighboring pixels [26]. Thus, the region grew when similar 
adjacent pixels were identified. This similarity is based on similarity constraints, such 
as texture and intensity, which all pixels contained within a region have. Furthermore, 
this procedure is repeated, and the region grows until a pixel does not satisfy simi-
larity constraints. Finally, all pixels in the image were part of the region. 

According to Punitha et al. [26], the selection of the correct seed points, 
detection thresholds, and similarity constraints is crucial for the precision of the 
segmentation process. This method is used in planning the treatment of prostate 
cancer [27], breast cancer detection from mammogram images [28], and screening 
for cervical cancer improvement [29]. A detailed approach to region-growing-based 
image segmentation can be found in [30]. 

B. Edge Based Segmentation 

Edge-based segmentation was considered one of the oldest and most basic methods 
by Sponton and Cardelino [31]. This reduces the size of data storage used by an 
image by focusing only on the important structural characteristics of the image. 
Thus, this method separates the image background from the object [32]. In 1980 
Marr and Hildreth [33], creators of the Marr–Hildreth algorithm, proposed that the 
intensity of an image is related to its scale, thus, it needs operators different in size. 

According to Saini et al. [34], this technique is commonly used to detect 
interruption of the gray level (such as points, lines, and edges) in images, making it 
a boundary-based method. To detect edges, it is important to use operators that 
recognize them. They are classified into two categories: first- and second-order 
derivative operators. The first group contained four operators: Pewitt, Sobel, Canny, 
and the test operators. The second method includes the Laplacian operator and zero 
crossing [34].
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C. Fuzzy Theory Based Image Segmentation 

The third method, fuzzy theory-based image segmentation, is an amalgamation of 
these two methods. According to Basir et al. [35], this method is used to repeatedly 
combine regions based on the maximum fuzzy integral criterion. Thus, an algorithm 
that automatically chooses the optimal parameters from a plethora of fuzzy densities 
with respect to the minimum cost value was used. This procedure results in fuzzy 
densities adjusted according to the image. This was performed in such a way that no 
human intervention was required. However, the evaluation process of the seg-
mented images must be performed, and it is accomplished by utilizing magnetic 
resonance images (MRI) as well as natural images to establish that the strong 
segmentation achieved is better than that obtained with other approaches [35]. 

A new fuzzy algorithm based on the work of Khan [36] that uses morphology 
was introduced by Liu Yucheng. This algorithm uses morphological operations to 
smooth the image, and then performs gradient operations on the resultant image. 

D. Partial Differential Equation (PDE) Based Image Segmentation 

Partial differential equation (PDE) based image segmentation was first introduced in 
1988 by Osher and Sethian [37]. According to Sliž and Mikulka [38], the partial 
differential equation (PDE) is based on the energy of the image function and 
describes the parametric curve evolution based on the energy of the image function. 
More specifically, the solution of the PDE drives image segmentation, which, 
although it can be implemented, cannot deal with topological changes in the seg-
mented object. As Pan [22] stated, curve-evolution methods force one or more 
initial curve(s) onto an object’s borders within an image, based on the gradient 
and/or information of the region. In addition, the use of finite-difference approxi-
mations for the PDEs is essential for these methods. Another curve-propagation 
method was proposed by Tara et al. [39]. In addition, Wei et al. [40] reported that a 
PDE-based method has anti-noise capacity. 

Curve propagation is a popular technique in this field. This method has many 
applications in object extraction, tracking, and stereo reconstruction [39]. The aim 
of this approach is to use a propagation curve to partition the image. Therefore, a 
curve was created for the minimum cost function. For most inverse problems, 
minimizing the cost function is nontrivial and imposes certain smoothness con-
straints on the solution, which in the present case can be expressed as geometric 
constraints on the evolving curve [39]. 

E. Threshold-Based Image Segmentation 

Threshold-based methods are among the most widely used and simplest for image 
segmentation. This method focuses on creating binary images from grayscale 
images because a binary image reduces the complexity of the data, and thus sim-
plifies recognition and classification [41]. This is achieved by choosing a competent 
threshold value T [21]. T is the threshold value at which gray level values less than 
T are classified as black (0) and those greater than T are classified as white (1). 
Consequently, a binary picture was created that contained all relevant information
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regarding the position and shape of the items of interest (foreground) [41]. Thus, 
this method is valuable for differentiating foreground from background [42]. 
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The most challenging aspect of this strategy is determining the correct value for 
threshold T. Examining the histograms of the picture types that need to be seg-
mented is one technique to tackle this challenge. Because the histogram in the best 
scenario displays only two main modes and a distinct valley (bimodal), the value of 
T, which is the valley point between the two main modes, was chosen. Histograms 
in real-world applications, on the other hand, are more problematic since they have 
multiple peaks but no obvious troughs, making the selection of the value T more 
tough [42]. 

F. Semantic segmentation networks 

In contrast to other classification methods, semantic segmentation networks can 
categorize every pixel in an image as tumor or normal. This is important because 
there is no need to classify the entire area of the image as tumor or normal. Owing 
to the pooling layers, the output prediction is downsampled as the network archi-
tecture becomes deeper, and as a result, the sampling rate is minimized [43]. To 
maintain a dense output, Chen et al. [43] proposed a semantic segmentation 
framework to achieve downsampling using a dense deep convolutional neural 
network (DCNN), which uses an atrous convolution operation to replace traditional 
convolution and pooling operations. It can create dense predictions with the same 
receptive field through upsampling. However, performing semantic segmentation 
on a whole-slide image (WSI) requires time and memory for processing billions of 
pixels. In addition, most tissues in the WSI are normal, and semantic segmentation 
is not required [44]. 

G. U-Net: Convolutional Networks 

U-Net networks can be used to solve various biomedical segmentation problems. 
This method was created by Ronneberger et al. [45] at the University of Freiburg 
and consists of a two-path architecture and end-to-end fully convolutional network 
(FCN). The first path is a contracting path that functions as an encoder and has the 
architecture of a CNN. It consists of a stack of three convolutions, each with a 
rectified linear unit (ReLU) and a two-two max-pooling operation with a stride of 
two for downsampling. It should be noted that the number of feature channels was 
doubled in each phase. The second path is an expansive path, which is a decoder 
that contains an upsampling of the feature map, a 2 X 2 convolution, and two 
3 X 3 convolutions, each with a rectified linear unit (ReLU). The last layer was a 
1 1 convolution, resulting in a convolutional network with 23 layers. 

1.3 Cancer Detection 

Cancer is the leading cause of death worldwide. Therefore, early detection and 
prevention are crucial. The use of AI techniques and deep learning approaches has



changed the manner in which detection is performed. AI also allows the collection 
of data from various scientific fields, converting them into effective diagnostic 
systems, ranging from radiographic images to genomics, pathology data, electronic 
health records, and social networks [46]. As Suzuki et al. [47] stated, many methods 
have been used for image analysis since the 1970s. Image analysis using deep 
learning is the most popular method used for this purpose. This method classifies 
and recognizes medical images based on the cancerous conditions. The most 
popular images analyzed were those of the colonic polyps. 
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Image and pattern recognition, as well as computer-aided diagnosis (CAD), are 
methods that can detect cancer earlier and more accurately. Bi et al. [46] stated that 
emerging research shows that the application of AI to medical imaging is advancing 
in four tumor types: the lung, prostate, brain, and breast. The application of AI in 
cancer imaging can perform three main clinical tasks: tumor detection, character-
ization, and monitoring. Tumor detection is associated with the object localization 
of interest in radiographs. Object localization is collectively known as 
computer-aided detection (CAD). AI detection tools can be used as initial screens 
against omission errors and reduce observational discrepancies. Image and pattern 
recognition, as well as computer-aided diagnosis (CAD), are methods that can 
detect cancer earlier and more accurately. 

Chan et al. [48] stated that computer-aided diagnosis (CAD) is a tool that can be 
efficiently used by physicians to support decision-making. The method uses 
machine learning techniques and multidisciplinary knowledge to arrive at a diag-
nosis. In particular, scientists translate the features of an image into descriptors that 
use mathematical functions and image-processing techniques to obtain results. 
Furthermore, scientists should be careful when designing descriptors because tricky 
differences between normal and abnormal clinical conditions cannot be easily 
detected among populations. Although this method is useful and accurate, 
false-positive results can occur in some cases. 

Al-Shamasneh and Obaidellah [49] noted that the use of CAD methods reduces 
the time and cost of examination and contributes to fewer unnecessary biopsies. 
CAD combined with computed tomography (CT), X-ray, magnetic resonance 
imaging (MRI), or mammogram images could be a useful tool to act as a reference 
for specialists in cancer diagnosis. CAD systems are typically used to detect or 
assist in the treatment of breast, brain, lung, and other cancers. 

According to Bi et al. [46], CAD methods can be used as a supplementary tool to 
aid in the detection of cancers that were missed in the initial diagnostic imaging, 
normally found in low-dose CT screenings, brain metastases in MRIs, and 
microclassification clusters in screening mammography. 

AI is commonly used to assist in the diagnosis of lung, breast, and prostate 
cancers as well as cancers of the central nervous system (Fig. 2). Following 
diagnosis, AI can be used to classify cancers into stage, extent, and so on. Alter-
natively, it can be used to genetically profile tumors. Following treatment, AI can 
be used to monitor any changes that occur, allowing for monitoring the course of 
the disease [46].



24 Z. Dlamini et al.

Lung 
Early lung cancer 
screening is associated 
with improved survival, 
clinical outcomes and 
quality of life 

Prostate 
Identifying clinically 
suspicious prostate 
lesions allows 
prostate biopsies to 
be targeted.  

CNS 
Asymptomatic brain 
abnormalities are identified 
as incidental findings using 
brain screening tools 

Detection 
Analyse imaging data in order to identify suspicious regions 
Detect undefined nodules 
Addressing high false positive rates and overdiagnosis 

Breast 
Robust screening, 
mammography 
examination and 
analysis. 

Segmentation 
Using 2D or 3D assessments in order to clarify 
the extent of an abnormality. 

Characterization 
Identify intratumoral heterogeneity and variability based 
upon robust tumor descriptors. 

Staging 
Categorizing tumors into predefined categories 
based on expected  course and therapeutic 
strategies 

Diagnosis 
Classification of benign and malignant abnormalities 

Imaging genomics 
Associating imaging signatures with genomic 
data for comprehensive tumor characterization 

Monitoring 
Identify several characteristic features different from those 
determined by traditional criteria. 

Changing analysis 
Observe temporal tumor changes following both response 
to treatment and natural history. 

Fig. 2 Applications of artificial intelligence in cancer medical imaging can be summarized in the 
following three categories (as adopted by [46]): a detect abnormalities; b characterize a suspicious 
lesion through its shape, volume, molecular profile and stage of disease; and c determine through 
temporal monitoring prognosis and response to treatment (CNS: Central Nervous System; 2D: 
2-Dimensional; 3D: 3-Dimensional) 

Another field related to cancer prevention is the biological characterization of 
tumors. ‘Imaging genomics’ as presented by Linda Bi et al. [46] is a  field that 
associates radiographic imaging features along with biological data (somatic 
mutations, gene expression, chromosome copy number and molecular signatures). 
Finally, AI plays a vital role in monitoring tumor progression. Not only can it be 
used as a tool to oversee tumor progression, but it can also be used to observe the 
response of a tumor to treatment. 

1.4 Protein Structure Prediction 

The primary method for detecting cancer is based on protein structure. It would be 
easier to detect abnormalities that lead to cancer formation if the structure of a 
protein could be predicted. Proteins are comprised of amino acid sequences and 
have four well-defined structural levels: primary, secondary, tertiary, and quater-
nary. The folding of proteins and their resulting structures can play a vital role in 
the proper functioning of the body. Therefore, rigid quality control mechanisms are 
responsible for coordinating the rates of protein synthesis and proteasomal degra-
dation to prevent the formation of intracellular aggregates. If this regulation fails, a 
pathogenic mechanism is responsible for the increased levels of misfolded and 
aggregated proteins [50].
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These aggregated proteins are commonly represented by alpha-synuclein (aS) 
proteins, which are major components of Lewy bodies [51]. Additionally, aS 
protein aggregate deposits constitute a pathogenic hallmark of synucleinopathies 
including Parkinson’s disease (PD), dementia with Lewy bodies (DLB), and mul-
tiple system atrophy (MSA) [51]. Thus, it is important to predict the structure of 
proteins to understand the mechanisms of these pathological conditions and cure 
them. 

A typical pipeline for protein structure prediction proposes intermediate pre-
diction steps known as protein structure annotations (PSA). Several PSAs such as 
torsion angles, contact density, half-sphere exposure, and distance maps can be 
used [52]. A pipeline for predicting protein structure is shown in Fig. 3. 

More precisely, the prediction of the structure of a protein can reveal the amino 
acid sequence formation on a three-dimensional protein shape. Additionally, by 
examining the correlated variation of homologous sequences, which helps in the 
prediction of protein structures, it is feasible to establish which amino acid residues 
are in contact [50]. Accurate prediction of the distances between pairs of residues 
requires a trained neural network. Thus, the technique requires two basic biological 
assumptions: (1) conserved amino acids in the same positions are not random; 
rather, they reflect a very important part of the structure and function; and (2) by 
examining which amino acids are frequently mutated together, they can find amino 
acids that interact with one another. Consequently, its predictions are employed in 
the formulation of a mean force potential that accurately represents the structure of 
a protein. To build structures without sophisticated sampling techniques, a gradient 
descent algorithm can be used to maximize the resultant potential. AlphaFold, the

Amino acid 
sequence 

Alignment of related proteins 

1D Features 

2D Contacts 

3D 
Structure 

Fig. 3 A schematic representation of a generic pipeline for ab initio protein structure prediction as 
adopted by [52] where an evolutionary information in the form of alignments, 1D and 2D protein 
structure annotations (PSA) and 3D structures as intermediate steps is presented



resultant technology, can do high-precision analysis even for sequences with less 
homologous sequences [52].
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Specifically, the AlphaFold system uses three deep-learning-based methods for 
free modeling (FM) protein structure prediction. These methods are described as 
follows [53]. 

1. Prediction of the distance between pairs of residues within a protein. 
2. Direct estimation of the accuracy of a candidate structure (termed the 

GDT-net). 
3. Direct production of protein structures. 

An explanation of the 1st point was provided in the previous section. For the 
second point, GDT‐net, as explained in Fig. 4 [53], was trained in a distributed and 
continuous environment. Candidate structures were generated from actors that 
performed simulated annealing, along with the latest GDT‐net for all proteins in the 
training set [53]. Simultaneously, GDT‐net is trained by learners on candidates 
sampled from actors [53]. 

1.5 Cancer Prevention 

Since the 1970s, artificial intelligence (AI) has emerged as a significant tool in 
medicine, and is involved in disease prevention, diagnosis, and treatment. 
Regrettably, efforts to create an android that would provide a diagnosis to patients 
have been unsuccessful. Although the first attempt was unsuccessful, many of them 
were followed in the 2010s. Hence, the aim of machine-learning methods is to find 
new key relationships in complicated models and algorithms to make predictions 
using big data [54]. 
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Candidate 
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True 
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Geometric 
Elements 

GDT 
Network 

Maximize 
Mean 

Generate 

Logistic 
Regression 

Fig. 4 A representation of the GDT-net system as adapted by [53]. With grey colour the feature 
extraction stages are presented while structure-prediction neural network and structure-realization 
are presented with yellow and green respectively
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Screening techniques that can assist in cancer prevention, such as mammogra-
phy, colonoscopy, dual-stain cytology tests, and breast magnetic resonance imaging 
(MRI), are used for early cancer prediction. When combined with AI, these tech-
niques yield accurate predictions. Specifically, McKinney et al. [55] created an AI 
system that exceeded the capabilities of human diagnosticians, and the area below 
the receiver operating characteristic curve (AUC-ROC) for the average radiologist 
was less than that for the AI system by an absolute margin of 11.5%. Lui and Leung 
[56] created a deep learning model that could help endoscopists avoid missing 
colorectal lesions. Wentzensen et al. [57] created a deep learning-based, automated, 
dual-stained (DS) cytology method for screening breast cancer biopsies (Fig. 5). 

Finally, Jiang et al. [58] applied AI to breast MRI. The aim was to value the 
effectiveness of an AI system that is used compared with the conventionally 
available software regarding the diagnostic performance of radiologists in the dif-
ferentiation of cancer from non-cancer on dynamic contrast material-enhanced 
(DCE) breast MRI is improved if an AI system is used in comparison with com-
monly available software. The diagnostic performance of 19 breast radiologists 
improved from an AUC of 0.71–0.76 (P = 0.04) when the differentiation of cancers 
from benign lesions at breast MRI occurred with the use of an AI system. Also, the 
sensitivity was higher when BI-RADS 3 category was used as the cut-off point 
(from 90 to 94%) but not when using BI-RADS category 4a; specificities did not 
show differences. 
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Fig. 5 Artificial intelligence study design as adopted by [57] where AI = artificial intelligence; 
CNN = convolutional neural network; CIN3 + = cervical intraepithelial neoplasia grade 3 or 
worse; and finally DS = dual stain
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2 Conclusions 

Despite valuable efforts by cancer researchers, clinicians, and patients, cancer 
continues to affect public health. It is indisputable that AI and big data are gen-
erating waves and emerging as potent solutions in the fight against cancer. Limited 
access to large-scale clinical training datasets poses an obstacle to the application of 
AI and big data in cancer detection, segmentation, and prevention. Nonetheless, 
significant advances have been made by researchers in the application of AI for the 
detection, characterization, and monitoring of lung, breast, prostate, and brain 
cancers. These advances pave the way for unlocking the great potential of AI for 
application on other cancer types. Not only do manual detection and segmentation 
processes require highly experienced clinicians, such as radiologists, they are also 
costly in terms of time and finances, while intra-and inter-variability discrepancies 
cannot be ignored by such traditional practices. Furthermore, qualitative assess-
ments not only play a role in cancer detection and segmentation, but the role of 
quantitative assessments cannot be emphasized sufficiently. AI and big data provide 
immense room for quantitative assessment using segmentation algorithms, which 
can be leveraged for the identification of clinical biomarkers that can be used not 
only for tumor detection but also for prevention. 
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Radiology, AI and Big Data: Challenges 
and Opportunities for Medical 
Imaging 

Houneida Sakly , Aline Sgnolf Ayres, Suely Fazio Ferraciolli , 
Claudia da Costa Leite, Felipe Kitamura , and Mourad Said 

1 Introduction 

Artificial intelligence (AI) and machine-learning techniques have been integrated into 
imaging diagnostics owing to technological advancements. These technologies allow 
for the detection of patterns and correlations in medical image data that are not 
detectable by humans as well as the connection of multiple medical data sources to 
generate medical knowledge for enhanced imaging diagnoses. One of the major 
responsibilities of translational clinical research in the twenty-first century is to 
continue to develop and investigate these technologies, particularly in medical
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imaging, which is a pioneer in hospital digitalization. The working group “Artificial 
Intelligence and Big Data” explored and created innovative ways based on a clinical 
understanding of data analysis in strong multidisciplinary collaboration, particularly 
with medical expertise and computer science. The goal is to enhance diagnosis, 
treatment assessment, and prognosis using machine learning and artificial intelligence 
techniques as well as to enable the development of tailored precision medicine [1, 2].
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Experts regularly draw up a list of professions at risk or even those that are likely 
to disappear. In the medical world, radiology and pathology appear to be the most 
threatened species, to the point that the choices of future interns/residents are 
affected. Some researchers believe that radiologists can be replaced by powerful 
servers running advanced image-recognition algorithms trained on international 
databases with millions of patients. The server generates radiological reports without 
human intervention. The training of AI algorithms, generally based on 
neural-network-type approaches, requires a large number of reliable cases. However, 
the rarity of certain pathologies makes it impossible to collect the number of cases 
required to train the algorithm. Although AI systems have great potential for reading 
and recognizing images, their ability to write a structured report that considers a 
patient's clinical context is limited [3]. AI represents a new step in the development 
of medical imaging, which is a tremendous opportunity that arises when existing 
techniques for interpreting radiological examinations overcome their limitations. 
Because the speed of the machine increases the number of patients who may be 
examined at every shift, the number of images to be read increases dramatically, 
resulting in a substantially shorter reading time per image and a correspondingly 
larger possibility of missing a lesion. When this is considered, the potential role of 
AI in the radiological process becomes clear, and AI may assist in medical 
decision-making [4]. Based in the intensive use of big data in hospitals, a paradigm 
changes from a patient-centric to a data-centric approach has been advocated; this 
new manner of processing data is a first step toward the creation of artificial intel-
ligence (AI). Big data has made a great number of medical scans accessible [5] and
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has great promise for training neural networks and deep learning in particular. The 
recent spiking of interpretation software by AI approaches speeds up this work, 
giving the radiologist additional time for interpretation, diagnosis, and talks with 
colleagues or even performing interventions, taking advantage of its benefits, and 
expanding radiologists’ abilities with this new technology rather than fighting it [4]. 
The foundations of deep learning are available to every radiologist without the need 
for particular equipment, as they have been in the past when new imaging modalities 
were debuted. Understanding the concepts of tools that are becoming increasingly 
prevalent in industry is beneficial. We provide radiologists with the chance to 
become acquainted with deep learning approaches, starting with readymade codes, 
to provide them with the keys to comprehending this burgeoning technology [6].
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2 AI and Radiology 

Over the last few decades, the generation of large amounts of digital information 
has enabled the incorporation of AI into daily life. The success of this application 
by integrating information from different sources, helping the daily routine (online 
shopping, facial recognition, geolocation, etc.), and the greater efficiency of the 
algorithms in carrying out tasks have led to the introduction of this technology in 
the medical field. Several areas of medicine can (and already benefit from) the 
application of AI algorithms. Among the most promising areas, radiology is 
undoubtedly one of the fields with the most potential to gain from the development 
of this technology. Artificial intelligence significantly affects the work environment 
of radiologists. Prevention, diagnosis, and treatment are the three aspects of health 
care, and diagnoses are further subdivided into several approaches. Most modali-
ties, such as magnetic resonance imaging (MRI) and computed tomography 
(CT) provide visual data. Subsequently, the data were evaluated to reach conclu-
sions regarding medical issues [7]. 

The radiology department is one of the largest sources of digital information in 
medicine, resulting from the digitalization of medical images. Radiology services 
create vast quantities of data on a regular basis, making it a promising field for AI 
applications. 

Artificial intelligence has been developed to (1) report and manage medical 
imaging segmentation issues [8] (registration (identifying the borders of a target 
lesion/structure) [3], detection (finding shapes/structures), (2) simplification of the 
input of information in radiology processes, and (3) classification [9] (i.e., dividing 
medical information into groups) (for example, natural language processing) [5]. 
Machine learning (ML) is a type of artificial intelligence (AI) that enters data into a 
computer (“machine “) and uses models to extract actionable insights from the data. 
With the evolution of these approaches to deeper network topologies, known as deep 
neural networks (DNNs), the use of neural networks, a well-known machine learning 
method, has increased rapidly in recent years. The term ‘deep learning’ refers to the 
entire process. Previous studies have examined more complex designs [10].



The quality of the deployed models was determined by the quantity of the available 
relevant data. Therefore, it is crucial to have both historical data and a steady flow of 
fresh data. Consequently, big data is often used in the development of deep-learning 
solutions [11]. Deep learning researchers working on medical imaging encounter a 
number of obstacles, including (1) a number of legislative impediments, the bulk of 
which are connected to privacy concerns, obstructing data interchange across 
organizations, or even inside the same institution. (2) Data with a high resolution and 
dimensionality (e.g., 3D + time) typically lead to AI models with large parameters. 
(3) Furthermore, most medical imaging applications involve image annotations (i.e., 
segregation) to train AI systems, demanding large amounts of data [12]. To train and 
update medical imaging models, researchers researching the latest breakthroughs in 
machine learning must rearrange their procedures to accommodate the constant 
influx of high-quality, annotated data. It is necessary to divide the degree of research, 
production, and feedback maturity in the radiology process into stages. The ultimate 
goal is to encourage the integration of AI imaging into the radiological process, 
where inference-generating models evolve organically in response to the constant 
input of new medical data and radiologist feedback, resulting in continuous model 
learning. 
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3 Radiology and Big Data Industry for Medical Imaging 

The radiology department is centralized in the healthcare industry. It is a naturally 
data-rich environment in which information can be mined, analyzed, and used to 
improve departmental operations, and has technical roots. The electronic health 
record (HER) system can drastically reduce the amount of time and effort required 
to plan and provide healthcare services. Therefore, they are widely used in hos-
pitals. However, because these technologies are implemented in a variety of 
institutions, it is unclear whether they have the same effect [13]. 

Medical big data is a particularly rich but delicate type of big data that has 
enormous promise as a resource for EHR systems. Big data is a large-scale data 
storage system that has the potential to replace traditional database systems, data 
storage, useful information retrieval techniques, and all data management strategies. 
The four Vs of big data and big data analytics (velocity, veracity, volume, and 
variety) describe the capacity to manage data that have been created or generated 
[14]. Healthcare data included genomic structure, family health history, infection 
status, symptoms of a specific disease in any patient, previous surgeries, a historical 
record of any disease in any patient, or any structural changes in the human body as 
well as a variety of other data created and saved sequentially. The amount of data 
preserved in a big data storage space is referred to as the volume of data. The 
amount or quantity of data is referred to as data volume [15–17]. Medical infor-
mation was also collected. For each patient, EMR is a technique for conserving data 
digitally rather than retaining and maintaining it in conventional analog ways. One 
of the four Vs values of a large data volume was used to define this technique.



Real-time notifications

Evidence-based medicine

Fraud detection

Volume refers to the amount of information obtained from a problem. Genetic 
structure and harmonic illness history are the focus of patient health history data 
[18]. The following sections outline some big data use cases that revolutionize the 
healthcare business. Figure 1 depicts the many disciplines in the medical sector. 
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Fig. 1 Various fields of the 
medical domain 

A. 

The real-time application is a clinical decision-making aid. A prescription was 
written after the medical data of the patients were analyzed. This process will 
assist doctors in analyzing their patients’ health situations and recommending 
appropriate management. A patient's treating physician will examine any ail-
ments, such as high blood pressure or headache, rapid spike or reduction in 
blood pressure, or any other health abnormalities associated with the patient’s 
condition, and then prescribe appropriate treatment. All treatment operations 
utilize the most cutting-edge big-data techniques [19]. 

B. 
Evidence-based medicine provides physicians with information about a 
patient's medical history and compares symptoms with those in a broader 
database of clinical data, making it easier to manage accurate, closer, and more 
effective therapies based on big data for decision-making [20]. 

C. The procedure of hospital readmissions
Based on medical and clinical reports, big data analytical algorithms identify 
at-risk patients and attempt to provide them with a lower readmission rate, 
allowing them to focus on their clinical treatment rather than readmission 
charges [21]. 

D. 
It is vital that all records or information about each patient be kept private while 
monitoring their testing and health conditions. In domains such as personal
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identity, medical information, and clinical testing, big data analysis tools may 
help to uncover fraud. Insurance fraud has become a global issue, with clai-
mants seeking to obtain funds, while the healthcare system strives to prevent 
fraud using big-data tactics [22]. 

3.1 Technologies and Tools 

Radiology departments are crucial in the healthcare industry. It has technological 
origins and is a naturally data-rich environment in which data can be mined, ana-
lyzed, and used to enhance departmental operations. Recent movements of many 
healthcare organizations have aided this trend in picture preservation and com-
munication technology. 

Picture archiving and communication systems (PACS) are computer networks 
that specialize in storing and retrieving medical sequences. These systems started as 
simple picture management systems, but have since grown to include frames, 
speech, text, medical data, and video recordings [23]. Verifying that all interface 
data formats correspond to different definitions and standards is inadequate. It is 
critical to have a common semantic understanding of data content across multiple 
interfaces and database areas. The fact that all data item identification criteria must 
be consistent across all components is a sub-problem related to this fundamental 
requirement. The validity of the set of criteria is correlated with the significant data 
items in our hospital information system (HIS), radiology information system 
(RIS), and image archive and communication system. A strategy was developed, 
and a prototype tool was built (PACS) [24]. Patient IDs and exam information can 
be smoothly mapped into exam reports by merging radiology information systems 
(RISs), picture archiving and communication systems (PACS), and reporting sys-
tems. For radiologists, report automation offers various potential advantages, 
including enhanced productivity and accuracy [25]. 

Case Example (RadMonitor, BigDataBench) 

A. RadMonitor 

RadMonitor is a platform-agnostic online application developed in our department 
to assist in the management of intricacies in information flow throughout a 
healthcare company, as shown in Fig. 2. The system tracks HL7 traffic and 
maintains the operating statistics in a database. The data were then displayed to the 
viewer as a tree map, which is a graphical visualization technique for displaying 
hierarchical data. Although RadMonitor was designed to investigate radiology 
operations, it may be used with nearly any other hierarchical dataset because of its 
XML backend [26]. 

The order message (ORM) and result message (ORU) data streams from Quo-
vadx, previously Cloverleaf, are received by an HL7 application on the server at the



backend. Processing HL7 communication allows mapping, routing, and extraction 
of information from the medical information system. The RadMonitor database 
contains statistical data that are essential for radiology operation management. 
Fields that track order status changes, as well as start and completion dictation and 
transcribing time events, are included in database entries [27]. 

Radiology, AI and Big Data: Challenges and Opportunities … 39

Fig. 2 Architecture of RadMonitor 

B. BigdataBench 

Several technological shifts have suggested that sphere-specific tackling and soft-
ware design are the only methods forward. Architecture, systems, data operation, 
and machine literacy groups have devoted attention to slice-edge big data, AI 
algorithms, armatures, and systems in this setting. Unfortunately, the complexity, 
variety, dynamic workloads, and rapid growth of big data and artificial intelligence 
(AI) systems pose significant problems. For big data and AI benchmarking, the 
conventional benchmarking method for creating a new standard or deputy for every 
implicit workload is not scalable if not insolvable. Second, acclimatizing an 
armature to the features of one or more operations or a sphere of operations is 
prohibitively expensive [28]. The process of big data and AI may be seen as a 
channel, with one or further classes of computer units performing on colorful 
original or intermediate data inputs, called as data motifs. For big data and AI 
benchmarking, the conventional benchmarking fashion of creating a new standard 
or deputy for every implicit workload is hamstrung if not insolvable. Second, 
customizing the armature to meet the requirements of a single operation or appli-
cation sphere is prohibitively expensive [29]. Big data and AI work may be con-
ceived as a channel composed of one or more classes of computer units acting on a 
number of original or intermediate data inputs, each of which is obtained as a data 
motif in the big data bench approach [28]. 

Based on this methodology, BigData Bench4.0 delivers big data and the AI 
standard suite. Bigdata Bench4.0 includes 13 real-world datasets and 47 big data and 
AI marks for seven workload types: online services, offline analytics, graph



analytics, AI, data storehouses, NoSQL, and streaming. It also included 13 
real-world datasets and 47 big data and AI marks for seven different workload types: 
online services, offline analytics, graph analytics, AI, data storehouses, NoSQL, and 
streaming. Colorful executions using state-of-the-art and stylish-practice software 
heaps are available for each workload order. The full reason for the data, including 
structured, semi-structured, and unshaped ones, was considered. Data creators are 
hired to induce data of a certain size by using genuine datasets as seeds [30] (Fig. 3). 
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Fig. 3 Benchmark specification 

3.2 Radiology for Data Mining Radiology and Storage 

EMRs are currently used by medical institutions to track patient progress, including 
diagnostic information, procedures performed, and treatment outcomes. EMR has 
been proven to be an important resource for large-scale analyses. Data mining and 
analysis are challenging because of the diversity, incompleteness, redundancy, and 
privacy of EMRs. Therefore, to increase data quality and data mining outcomes, 
source data must be prepared. Different types of data require different processing 
techniques. Traditional preparation methods such as data purification, integration, 
transformation, and reduction are required for the majority of structured data. 
Additional complicated and demanding processing is required for semi-structured 
or unstructured data such as medical language, which provides more health infor-
mation, as shown in Fig. 4 [31]. Both strategies for extracting information from the 
medical literature are named entity recognition (NER) and recognition of entities 
(RE) (relation extraction). 

As information technology and health-information systems have improved, 
EMRs have become increasingly common. Medical providers captured words, 
symbols, charts, scans, statistics, and other digital information produced by the HIS. 
EMRs and EHRs are electronic medical records that can be stored, exchanged, or 
duplicated. A multitude of clinical data (including demographics, individual his-
tory, conventions, laboratory test results, and vital signs) are becoming available, 
establishing EMR as valuable large-scale health data discovery [32].
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Fig. 4 Flow of EMR data 
processing 

Recent improvements in data mining technology, such as natural language 
processing (NLP), have enabled the medical informatics sector to quantify con-
cepts, such as uncertainty in reports. The next step from quantification to under-
standing is to create knowledge discovery databases that require a combination of 
standardized report content, data mining, and artificial intelligence (KDD). 
Advances in database technology will increase our capacity to acquire, analyze, and 
interpret report data as well as the possibility of developing data-driven and auto-
mated decision-making tools at the point of care. This might improve radiologists’ 
report content by providing data-driven analysis for improved diagnostic and 
clinical findings as well as objective and thorough knowledge of ambiguity, 
defining the source of the issue, and delivering data-driven analysis [33, 34]. 

Current reporting methodologies, as outlined in the first part of this series, have 
several flaws that can be grouped into four categories: content, communication, 
analysis, and organization. Content refers to the facts and observations identified by 
a radiologist based on the collected imaging data [35]. The manner in which these 
contextual variables are provided to undertake appropriate and timely therapeutic 
action, resulting in a better clinical outcome, is referred to as communication. The 
process of understanding data, which may include imaging, technical, and clinical 
data, is referred to as unk analysis. The idea is to combine these various data 
sources to obtain reliable and reproducible results [31]. 

3.3 Radiology and Dark Data Exploration 

Data visualization techniques provide effective ways to organize and present data in 
visually attractive formats, which not only speeds up the decision-making and



pattern identification processes, but also allows decision-makers to completely 
comprehend data insights and make well-informed judgments. With the advance-
ments in technical and computing resources, scientific knowledge has grown 
exponentially worldwide. However, most of the information is unstructured, 
making it difficult to categorize and integrate into standard databases. Dark data 
refer to this type of information. Data visualization tools offer a potential way to 
investigate such data because they allow for the fast interpretation of information, 
detection of new trends, and identification of connections and patterns. 
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A massive amount of data is available in the form of scholarly publications, 
government reports, natural languages, and medical frames, accounting for approx-
imately 80% [36] of all data created worldwide. However, most of the data are 
unstructured and cannot be classified or imported into standard databases. Dark data 
were used to describe this type of information. Data visualization approaches can 
address the problem of dealing with and analyzing large amounts of data. As a result 
of developments in computer technology, “big data” refers to a shift in the scale of 
data utilization and aggregation into large databases. The major difficulties in the 
development of big data in the radiation environment are the restatement of regular 
care particulars into black data or data that have not yet been collected, and the 
integration of databases that collect colorful types of information. The overall care 
process and quality of the acquired data should not be harmed by big data collection 
methods and structures. To produce, manage, and use big data in radiology, physi-
cists, software inventors, and health authorities must collaboratively work [37]. 

4 Radiology and Machine Learning 

Machine learning breakthroughs have shown promise in various sectors and 
applications, including medical imaging. Machine learning is a set of methods and a 
topic of study in data science that enables computers to learn and extract or classify 
patterns in the same manner as humans. Machines may potentially be able to assess 
and extract features from large data sets [38]. Recent research and advancements 
have resulted in promising diagnostic imaging technologies for future radiology 
[39]. Diagnostic and therapeutic applications of radiological imaging are rapidly 
increasing. The demand for faster, more precise, cost-effective, and less intrusive 
therapies has increased significantly. The use of imaging has also been boosted by 
technological improvements in the radiological imaging equipment. An example of 
technological development is the capacity to collect better and higher-quality 
sequences, allowing the visibility of tiny anatomic structures and anomalies [34]. 
Radiologists read and analyzed medical images using several modalities. Machine 
learning was used to automate medical image analysis and diagnosis. This can ease 
the burden on radiologists in terms of defining the patient prognosis [40, 41]. 

Machine literacy refers to the study of computer algorithms that can describe 
complicated patterns or correlations in empirical data and make applicable judg-
ments. Artificial intelligence, pattern recognition, data mining, statistics, probability



proposition, optimization, statistical drugs, and theoretical computer wisdom are all 
covered in this content [42]. Machine literacy algorithms can be classified into several 
orders based on their principles. Markers in training samples, for example, can be 
used to distinguish between supervised, semi-supervised, and unsupervised literacy 
styles. In most cases, input compliances are made, but the affair compliance is con-
stantly affected. Supervised literacy refers to the inference of a well-generalized 
functional relationship between the training and testing data. A series of equations 
with numerical portions or weights were used to represent this concept. Classifica-
tion, regression, and reinforcement learning (RL) are examples of supervised learning 
techniques (RL). Unsupervised learning is used to determine correlations between 
samples or reveal hidden factors in the data. Clustering, density estimation, and blind 
source separation are some examples of unsupervised learning methods. Semi-
supervised learning is classified as supervised or unsupervised learning. During the 
training phase, both labelled and unlabelled data were used. Because labeling data is 
expensive or difficult in certain situations, semisupervised learning techniques have 
been developed. Semi-supervised categorization and information recommendation 
systems are examples of semi-supervised learning [43–47]. 
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There are several fields in which ML can be incorporated into radiology, 
including its application in radiology service flow (exam scheduling, schedule 
organization, report delivery deadline), test protocols, and image acquisition (choice 
of the most appropriate protocol, optimization of acquisition technique: quality 
control), and as a tool for radiologists (post-processing image, lesion detection tools, 
CAD, lesion segmentation, disease characterization, and follow-up comparison with 
previous studies). Finally, radiology, being a department closely linked to technol-
ogy and generating high-dimensional digital information (big data), benefits from AI 
resources and can grow as a specialty based on the promising resources of AI [48]. 

1. Test scheduling: scheduling optimization, predicting shortages, and organization 
of the waiting list. Intelligent scheduling using ML techniques can optimize 
patient scheduling and reduce the possibility of missed follow-ups owing to a 
lack of medical care or missed exam schedules. In addition, ML applications can 
increase the safety of the examination by detecting patients who have con-
traindications (e.g., allergy to the contrast agent and implants/devices that are 
not magnetic field safe). 

2. Test protocol: Select the best examination protocol based on clinical and patient 
data, allowing protocol optimization and less variability between studies. The 
radiation dose can be calculated according to the indication of the examination 
and the characteristics of each patient as well as the contrast dose (if indicated) 
and acquisition time [48]. 

3. DL has been shown to expand low-dose contrast-enhanced MRI, enabling future 
MRI scans with lower contrast volume. Data-processing technologies based on 
machine learning have the potential to reduce the test time and image artifacts. 
By reconstructing undersampled MRI data, AI may potentially be utilized to 
reduce the MRI scan duration (i.e., image capture time) [48]. PET/MRI 
experiments in which a DL algorithm was used to produce “pseudo”-CT scans
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from MRI data fared better than existing clinical techniques in one research [49]. 
Reconstruction of routine-dose CT scans from low-dose scans can also be 
performed using neural networks. 

4. Automated detection and interpretation of findings Algorithms that can help 
detect (computer-aided detection) and diagnose (computer-aided diagnosis) are 
already being studied and are sometimes applied in radiology. There is already 
promising experience with computer-aided detection for detecting suspicious 
lesions on mammography and chest CT for pulmonary nodules. However, 
computer-aided diagnosis is still a field of study, with good results in the 
assessment of bone age through radiography and interpretation of pulmonary 
nodules [39]. 

5. Post-processing: ML can aid in post-processing tasks such as registration, 
segmentation, and quantification. Deep learning algorithms were used to 
delineate and quantitatively analyze brain structures and abnormalities using 
brain MRI anatomical segmentation [39, 48, 49]. 

6. Machine learning methods have been extensively used in natural language 
processing (NLP) to generate and communicate reports (NLP). NLP can be used 
to recognize data from radiology report texts to assess the quality and perfor-
mance of radiology departments. Furthermore, machine learning and natural 
language processing algorithms may enhance radiologist judgments and activate 
communication cascades in the event of significant results, making it easier for 
doctors and patients to retrieve crucial data from their reports [39, 48, 49]. 

7. Automated Data Integration and Analysis: Several ML techniques can be 
applied to integrate a rich database of medical records. Medical history, prior 
surgeries, test findings, pathology and radiology reports, genomes, and family 
medical histories are only a few examples of data sources. The availability of 
this data opens up possibilities for data mining, but also presents obstacles to 
integrating disparate data sources [39]. 
Other tools, such as clinical decision support, can alert physicians to submit the 

correct patient with a risk factor for a specific disease to the most suitable imaging 
study for their case. Physicians should be alert in an emergency service about the 
possibility of a poor evolution of a patient based on their clinical data and labo-
ratory tests, alerting them to the need to perform imaging tests for investigation. 
Thus, this tool brings the proper imaging examination closer to the patient who will 
benefit from it [48]. 

4.1 Explainable Artificial Intelligence (XIA) for Radiology 

Deep neural networks (DNNs) based on artificial intelligence (AI) have transformed 
this approach into real-world human tasks. Machine learning (ML) algorithms have 
become increasingly popular in recent years for automating various medical 
applications. This increase is due in part to an increase in research on deep learning 
(DL), a type of machine learning in which hundreds (or even billions) of neural 
parameters are learned to generalize task performance. Deep learning can dissect,



test, and run ML algorithms at a scale of bitsy edge bias owing to enhanced access 
to high-performance computing bumps via pall computing ecosystems, 
high-outturn AI accelerators to boost performance, and access to massive data 
datasets and storehouses [50, 51]. Deep neural networks (DNNs) are difficult to 
comprehend and understand because of the complex number of parameters to 
handle. Deep learning (DL) models may naturally learn or fail to learn represen-
tations from materials that a person can judge as relevant, regardless of 
cross-validation accuracy or other assessment metrics that would demonstrate a 
high learning performance. Non-AI experts and end users who are more concerned 
with obtaining the appropriate response will be unable to explain the decisions 
made by DNNs owing to their lack of understanding of the underlying 
operations/mechanisms of DNNs. Consequently, the capacity to understand AI 
judgments is sometimes disregarded in order to obtain state-of-the-art outcomes or 
cross-human-level accuracy [52–54]. As designated by the European General Data 
Protection Regulation, there has recently been a lot of interest in XAI, particularly 
from governments (GDPR) [55], demonstrating the importance of understanding AI 
ethics [56, 57], trust [58], bias [59], and the impact of adversarial examples [60] in  
deceiving classifier decisions. According to Miller et al. [61], individuals seek 
answers to specific activities for various reasons, one of which is curiosity. Another 
explanation might be that repeating the model generation process and obtaining 
better outcomes make learning easier. Each description should be reliable across 
comparable data points and similar or consistent explanations should be provided 
across time [62]. To improve human comprehension and trust in decision-making, 
as well as encourage fair judgments, explanations should make the AI system 
thorough. Consequently, an explanation or interpretable solution for ML systems is 
necessary to ensure openness, confidence, and justice in the decision-making pro-
cess. Explanations can also be grounded in the parameters or activations of the 
trained models, which can be communicated using surrogates, similar to decision 
trees, slants, or other methods. Reinforcement learning approaches may explain 
why an agent chooses one option over another; interpretable and explainable AI 
concepts, however, are often generic, may be deceptive, and must include some 
reasoning [63, 64]. Decision tree and rule-based models are examples of intrinsi-
cally interpretable AI models. However, they have interpretability-versus-accuracy 
trade-off constraints when compared to deep learning models. This study examined 
many tactics and approaches used by academics to solve the topic of deep learning 
algorithm explainability. Otherwise, if the model parameters and architecture are 
understood beforehand, the techniques can be efficiently applied. Modern 
API-based AI services, on the other hand, provide additional issues due to the 
problem's relative ‘black-box’ character, in which the end-user only understands the 
deep learning model’s input rather than the model itself [65]. Figure 6 depicts a 
comprehensive overview of the explainable and interpretable algorithms as well as 
a history of significant events and research publications divided into three tax-
onomies (Fig. 5). 
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XAI approaches have been classified based on their breadth and use in previous 
explainability studies. Classification based on the technology that underpins XAI



deep-learning algorithms, emphasis on mathematical descriptions of major publi-
cations, and XAI algorithm evaluation procedures have all been established [66]. In 
this section, we summarize the taxonomies [67] covered in Fig. 5. 
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Fig. 5 Areas of AI use in radiology

● Scope: Explanations can be local or universal and both styles can employ the 
same ideas. The individual feature attributions of a single instance of input data x 
from data population X are conveyed in a general fashion using locally 
explainable procedures.

● Methodology: The explainable model’s core algorithmic notion can be classified 
based on implementation methodology. Backpropagation- or perturbation-based 
approaches can be used to classify local-and global-explainable algorithms. The 
explainable method in backpropagation-based approaches feeds one or more 
forwards through the neural network, and then constructs attributions using 
partial derivatives of the activations during the backpropagation phase.

● Usage: A well-developed explainable technique with a specified scope and 
approach can be included in a neural network model, or used as an external 
explanation algorithm. The model-intrinsic category encompasses any explain-
able algorithm that is dependent on model architecture. Most model-intrinsic 
algorithms are model-specific and require major modifications to the method or 
modest adjustments to the explainable algorithm hyperparameters to accom-
modate changes in the architecture. 

The conclusion of a machine learning model is critical for ethical, legal, and 
safety considerations, particularly when AI algorithms are used in healthcare.



However, XAI is critical for several reasons. The preceding discussion identifies 
two major issues with XAI visuals and interpretability techniques: (1) the inability 
of human attention to construct XAI explanation maps for decision-making, and 
(2) the lack of a quantitative evaluation of the completeness and correctness of the 
explanation map. Consequently, the employment of visualization techniques for 
mission-critical applications may need to be revisited. It is also worth considering 
new ways of expressing and delivering explanations. 
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Fig. 6 Taxonomy of XIA 

4.2 Artificial Intelligence of Things (AIoT) (AIOT) 
for Radiology 

AI has recently gained considerable traction in radiology [68]. The Internet of 
Things (IoT) is a network of interconnected devices that may operate individually 
or collectively based on data gathered from each other [69]. Radiology is intricately 
tied to the Internet and is at the forefront of medical innovation. In the field of 
healthcare, the use of Internet-based technologies is becoming more common [70]



and has increased rapidly in recent years, with imaging being one of the most 
important applications. Several Internet-based applications and technologies have 
made progress in medicine, and radiology is well ahead of other clinical specialties 
in this regard [71]. Many radiography programs are available online, and new 
programs are often published. The growing relevance of the Internet in radiology 
has been boosted by the introduction of mobile devices and their incorporation into 
imaging workflows. IoT-enabled technology is shifting healthcare away from tra-
ditional hub-based systems and toward more personalized solutions owing to the 
increasing usage of wearable devices and smartphones. This section discusses how 
IoT may be integrated into radiology processes as well as how it affects resident and 
medical student teaching, research, and patient engagement in radiology [72]. Edge 
computing has recently received a lot of press [73], which is appropriate for IoT 
applications because of its high responsiveness, higher speed, and improved data 
security compared to fog and cloud computing infrastructures. Artificial intelligence 
of things (AIoT) combines the computational power of artificial intelligence with 
that of the real world. It is appropriate for IoT applications because of its high 
responsiveness, higher speed, and improved data security compared with fog and 
cloud computing infrastructures. The artificial intelligence of things (AIoT) com-
bines the computational power of artificial intelligence with that of the real world 
[74] and the collective interoperability of the IoT, which pushes the intelligence of 
smart devices to new heights by enabling them to perform highly difficult tasks that 
are currently impossible with current IoT architectures. The Internet of Things 
(IoT), artificial intelligence (AI), big data, 5G, and other technologies are all part of 
industrial revolution 4.0 [75]. 
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Cyber physical system (CPS), Internet of Things (IoT), resource availability, and 
cognitive computing are the four key components of the 4.0. Computing, com-
munication [76], and entertainment are all components of information and com-
munication technology (ICT), which aids in the transmission of information via 
digital electronic media [77]. It focuses on integrating novel computer science 
research disciplines, such as IoT, AI, big data, robots, and other structures for data 
analysis and predictive modeling to create a decentralized patient-friendly health-
care system, such as hospitals. Sensors linked to microcontrollers (e.g., Arduino) 
and integrated circuits (e.g., Raspberry Pi) monitor health statistics and vital factors 
including body temperature, pulse rate, respiration rate, blood glucose level, and 
ECG in IoT-based healthcare systems. 

AIoT has enormous promise in overcoming the shortcomings of IoT in H4.0. 
Telemedicine, remote data collection, and algorithms are the three major compo-
nents of the AIoT systems. As illustrated in Fig. 7, sensors for recording data or 
monitoring patient health are incorporated into the telemedicine sector as actuators 
that function physically in response to a signal via a healthcare provider 
(semi-automated system) or directly from an algorithm (fully automated system). 

AI will be used to turn IoT data into valuable medical data for enhanced 
decision-making, laying the groundwork for future innovations such as IoT data as 
a service (IoTDaaS). Because AI provides value to AIoT via machine-learning 
capabilities, and AIoT adds value to AI through connection, signaling, and data



sharing, AIoT is transformative and mutually beneficial for both types of tech-
nology. As IoT networks extend throughout large medical sectors, the quantity of 
unstructured data in EHRs is expected to increase. IoT may assist in the develop-
ment of large medical data analytics systems that can extract value from IoT data. 
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Fig. 7 AIOT for smart health 

5 Conclusion 

Radiology has a plethora of AI tool applications that would benefit considerably 
from the available resources. It has technological origins and is a naturally data-rich 
environment in which data can be mined, analyzed, and used to enhance depart-
mental operations. 

In addition to dealing with this big data, it is necessary to integrate clinical 
knowledge of the disease with technical developments to optimize the application 
of AI models. AI models that integrate a patient’s clinical information into the 
specific context of a given disease perform better. 

Advancements in database technology will increase the capacity to record, track, 
and evaluate report data as well as the possibility of developing data-driven and 
automated decision-making tools at the point of care. This approach assists radi-
ologists by providing data-driven analysis for better diagnostic and clinical findings 
as well as objective and thorough knowledge of ambiguity, identifying its under-
lying origins, and providing data-driven analysis.
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Several fields can incorporate ML into the radiology department, including its 
application in patient service organization, test protocols, image acquisition, and as 
a tool for radiologist scan interpretation. Finally, radiology, being a department 
closely linked to technology and generating high-dimensional digital information 
(big data), benefits from AI resources and can grow as a specialty based on the 
promising resources of AI.

● Perspectives 

Thus, the application of AI to radiology is promising. The benefits of this tech-
nology are already known and have been applied in some centers with good results. 
Advances in medical and technological knowledge for the development of models 
with applications in the organization of radiology departments and optimizing 
agendas, protocols, and scans have had a positive impact on both physicians and 
patients. 

The development of tools that integrate clinical information and patient history 
will improve the interpretation of examinations by radiologists, contributing to 
better patient management. 

It seems that the future of clinical practice will be the integration of physician 
and AI models, increasing the performance of clinical decisions, allowing the 
advancement of precision medicine, and the potential for developing personalized 
therapies, with a positive impact on the quality of life and survival of the 
population.

● Bullets 
– Radiology is a rich field of AI tool applications, which will benefit signifi-

cantly from its resources. It has technological origins and is a naturally 
data-rich environment in which data can be mined, analyzed, and used to 
enhance departmental operations. 

– Big data is a massive data storage system that substitutes for a typical data-
base system, as well as data storage, useful information retrieval procedures, 
and all data management strategies. The four Vs of why big data and big data 
analytics (velocity, veracity, volume, and variety) describe the capacity to 
manage data that has been created or generated. 

– Medical big data are particularly rich and offer tremendous potential as a 
resource for EHR systems. 

– Machine learning is a collection of techniques and a field of study within data 
science that allows computers to learn like people and to extract or categorize 
patterns. Machines may also be able to evaluate larger data volumes and 
extract their characteristics from such data. 

– There are several fields in which ML can be incorporated into radiology, 
including its application in patient service flow, test protocols and image 
acquisition, and as a tool for the interpretation of radiologist examinations.
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Neuroradiology: Current Status 
and Future Prospects 

Suely Fazio Ferraciolli , Andre Lupp Mota , Aline Sgnolf Ayres , 
Laura Lane Menezes Polsin, Felipe Kitamura, 
and Claudia da Costa Leite 

1 Introduction 

One approach to understanding the future perspective of neuroradiology is to look 
at the past, see what has already happened, and compare it with the predictions 
made before. From this information, it is possible to try to make new forethoughts 
in the future. 

In the PubMed search for articles with the words “neuroradiology” and “future” 
in the title or abstract, there were almost 200 results, from which the most inter-
esting articles were included in this chapter. The first article in the list is the 
Neuroradiology editorial of 1976 [1]. The author, G Salomon, presented a lot of
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enthusiasm for his future perspectives, especially with the new imaging technique 
called computed tomography (CT). Dr. Godfred Hounsfield built the first CT 
scanner in 1971 and performed the first imaging of a 41-year-old patient with a 
brain tumor. Needless to say, this new technology has changed the day-to-day lives 
of medical doctors, improving patient quality of life and survival in many cases.
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In another article from 1990, “Neuroradiology: Past, Present, Future,” published in 
Radiology [2] by JM Taveras, takes us back in time. He reviewed all eras of neuro-
radiology from the first period of development (from 1918 to 1939, when the first 
international conference on cranial radiology occurred). Through the second period of 
development (from 1939 to 1972, with the introduction of computed tomography), 
and ending in the modern period from 1973 to 1989 (remember that Taveras wrote the 
article in 1990), magnetic resonance imaging (MRI) began to be introduced. With the 
incorporation of new invasive neuroimaging, diagnostic, and therapeutic methods, a 
subfield of interventional neuroradiology has been established. 

Another fascinating article is “Neuroradiology Back to the Future: Brain 
Imaging,” published in AJNR in 2012 [3]. Hoeffner et al. reviewed the entire path 
of neuroradiology up to 2012, showing how specialty has always been connected to 
the emergence, adaptation, and incorporation of new technologies. In their con-
clusion, the authors state,’ It is impossible to know (but exciting to contemplate) 
what developments will occur in neuroradiology in the next 100 years. Hopefully, 
progress will continue to lead us to increasingly less invasive, safer, faster, and 
more specific techniques that result in earlier diagnosis and treatment with a pos-
itive impact on patient outcome. 

If we compare the content of these articles with the current state of neuroradi-
ology, we can see that they were correct in most of their predictions. However, 
sometimes these predictions do not match the current situation, presenting flaws 
concerning our present. 
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One of the reasons that may explain this is the concept of known and unknown, 
addressed in the famous speech by Donald Rumsfeld, the defense secretary of the 
US government in 2002. When we form our discourse, we base it on our previous 
knowledge of the world, and there are many things that we do not know and 
consider in our predictions, which can make them entirely wrong in the future. In 
his speech, Rumsfeld stated that there were: (1) Known Known: we know of their 
existence and understand them; (2) Known Unknown: we know of their existence, 
but do not understand them; (3) Unknown Known: we do not know of their 
existence, but understand them; and (4) Unknown Unknown: we do not know of 
their existence, nor do we understand them. 

In the 2014 TextOre article on Analytics, Knows, and Unknowns [4], the authors 
said that it is precisely in these “Unknown Unknowns” that the possibility of 
analyzing large datasets (Big Data) through artificial intelligence (using machine 
learning/deep learning) may help us discover new relationships/hierarchization and 
create predictions based on them, which would not be possible without the use of 
these tools. 

Therefore, if artificial intelligence may help us better understand our world, why 
is there so much fear about it? Whenever a new technology appears, we follow a 
pattern called the hype circle. This shows how the visibility of the new technology 
behaves over time after its appearance. Initially, there is a peak in inflated expec-
tations, thinking that the new technology will solve all problems. There is a trough 
of disillusionment when we get frustrated because the new technology does not 
provide the answers/functionalities imagined before. After that, there is a slope of 
enlightenment when people begin to realize the actual applications of the new 
technology and in which activities it will really make a difference. Finally, there is a 
plateau in productivity, in which the new technology has a well-defined role in the 
day-to-day life of the professionals involved in its use. 

As an example, we could use magnetic resonance imaging (MRI). Initially, MRI 
was believed to solve all medical problems related to diagnostic imaging since it 
would be so detailed that it would provide doctors with the correct diagnosis to treat 
their patients correctly. Moreover, it would be interpretable that radiology ceases as 
a specialty. Currently, we know that this did not occur. In contrast, several sub-
specialties in radiology have arisen precisely because of the degree of complexity of 
interpreting MRI images. 

As we can see by comparing Gartner’s 2020 hype cycle with the 2021 hype 
cycle [5], most artificial intelligence techniques (natural language processing, 
machine learning, and deep learning) are descending into the trough of disillu-
sionment. Some experts predicted that these technologies would already be at a 
plateau of productivity within two to five years, which is very encouraging. 

Therefore, if you use the past to understand what led to the present state of 
neuroradiology and to predict its future, based on the “Known Knows” and dis-
carding the fear caused by inflated expectations related to the implementation of 
new artificial intelligence (AI) technologies, it is plausible to consider that in the 
coming years, artificial intelligence algorithms will have practical applicability in 
the daily routine of neuroradiologists. With this, neuroradiologists will be able to



better use their work time, either to contact the patient or the requesting physician, 
expanding their functionalities by adapting these tools in their daily tasks, which 
will bring new important information to the reports (such as quantitative data and 
biomarkers), making them more efficient and accurate for the patients. 

60 S. F. Ferraciolli et al.

In this way, radiologists will be able to better understand the “Unknown 
Unknowns” present in neuroradiology, growing, updating, improving, and 
expanding their abilities using these new technologies, and determining a more 
precise and positive medicine for patients. 

2 AI in Neuroradiology 

2.1 Overview of Articles and Main CNS Subjects 

In a review of articles published in recent years using the terms “artificial intelli-
gence,” “machine learning,” “deep learning,” and “neuroradiology” in the PubMed 
search tool. Sixty-one published papers were found, with only one published from 
1996, one in 2017, and the others from 2018 onwards. 

In addition to its historical value, the 1996 publication [6] describes the use of 
computer-aided design (CAD) to aid the work of neuroradiologists. The software 
offered an interactive interface with the radiologist, characterized by data entry from 
CT and MRI images. The system provides a list of diagnostic hypotheses from the 
entered data by using a decision tree. 

Since 1996 to the present day, computing power and processing speed have 
significantly increased, and it has become possible to create and implement 
increasingly complex artificial neural networks. 

To be able to understand this subject a little more, especially machine learning 
(“machine learning”) and deep learning (“deep learning”), an article published in 
2018 in AJNR has an excellent summary of all areas of artificial intelligence, with a 
good review for the reader [7]. Chapter ‘Introduction Chapter: AI and Big Data for 
Intelligent Health: Promise and Potential’ of this book can also be reviewed. 

Another interesting article reviewed manuscripts published between 2014 and 
2018 [8], discussing the 10 main areas of neuroradiology that presented research 
using machine learning techniques. These include Alzheimer’s disease, mild cog-
nitive decline, brain tumors, schizophrenia, depression, Parkinson’s disease, 
attention deficit/hyperactivity disorder, autism spectrum disorder, epilepsy, multiple 
sclerosis, stroke, and traumatic brain injury. The main limitation reported in this 
study was the size of the study datasets, which were mostly small, with a sample 
(n) between 120 and 200 patients. 

In the 2020 A systematic review article in Radiology: Artificial Intelligence [9] 
showed that the size of the dataset remains one of the main limitations observed 
when reviewing published articles discussing applications of AI in neuroradiology. 
In this study, most (80%) of the reviewed articles had datasets smaller than 1000, 
and 34% used a dataset smaller than 100. These numbers limit the generalizability



of the AI model used in these studies because the quality and size of these datasets 
significantly influence the results presented, and may not reflect the proper per-
formance of the algorithm when tested on datasets from other institutions (gener-
alization). Quantitative evaluation methods also varied widely among the studies, 
making it difficult to interpret and compare these papers, even for readers familiar 
with machine learning. Another problem was the lack of description of the 
methodology for implementing the algorithms, which may render them irrepro-
ducible. Finally, few studies have provided clinical validation for their models, 
limiting their implementation in a single healthcare setting. This subject will be 
addressed more extensively when we discuss the review paper by Olthof et al. [10], 
which evaluates algorithms that are already on the market. 
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Among other articles, many presented applications of automatic segmentation 
with classification, especially for tumors [11]. One of these articles, published by 
Rauschecker et al. [12], drew much attention for its excellent performance in 
providing differential diagnoses (involving 19 neurological pathologies, some 
common and some rare). This AI system combines deep learning techniques to 
analyze quantitative data extracted from images (using atlas-based registration and 
segmentation). These imaging features were combined with five clinical features 
using Bayesian inference to develop differential diagnoses ranked by probability. 
This algorithm performed similarly to a neuroradiologist, and its performance was 
better than that of general radiologists, neuroradiology residents, and general 
radiology residents. However, the dataset size was smaller than 100 (82 and 96 
patients in the training and test sets, respectively), which may limit its generaliz-
ability and reduce the performance of this algorithm “in the real world”. However, 
this high level of accuracy in common and rare diseases has never been demon-
strated before. This article is one of the many works that cause uneasiness in 
the reader and rekindle doubt about the possibility of replacing neuroradiologists 
with AI. 

2.2 A Systematic Review of Applications Already Available 

Olthof et al. [10] put our minds at ease because they carried out a systematic review 
(technographic, since it is a technological development analysis) of the possibilities 
of using AI in neuroradiology, evaluating the algorithms available on the market, 
and checking their potential impacts on the work of neuroradiologists. The purpose 
was to answer two questions: whether and how AI will influence the daily practice 
of neuroradiologists. This article identified all software offered on the market from 
2017 to 2019, collecting structured information from them and grouping their 
potential impacts into supporting, extending, and replacing neuroradiologists’ tasks. 
They identified 37 applications from 27 different companies that together offered 
more than 111 features. 

For the most part, these functions supported neuroradiologists’ activities, such as 
detecting and interpreting imaging findings, or extending their tasks, such as 
algorithms allowing the identification of additional information on imaging



examinations (e.g., those providing quantitative information on pathological find-
ings). Only a small group of applications sought to replace tasks such as warnings 
about the occlusion of a large vessel in intracranial arterial angiotomography. 
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Another important point addressed by the authors was the scientific validation of 
AI products, which is usually limited, even with approval from regulatory agencies 
(FDA in the US and EC in the European Economic Area). More than half of the 
software products (68%) received regulatory approval from at least one of these 
entities. However, approximately 50% of the evaluated software did not provide 
information about their scientific validation. Furthermore, it is impossible to 
determine the actual clinical impact of these tools. 

Another important piece of information highlighted in this work is that knowing 
the strengths and weaknesses of the application in use is crucial for improving 
quality, ensuring security, and understanding the eventual artifacts related to 
already known mechanisms. However, no specific information about the technical 
details of the algorithms or the training and validation data is available in the 
general information on these software websites. These data are essential for ana-
lyzing the reliability and applicability of these algorithms. Without this, the AI tool 
becomes a rugged black box for interpretation. 

As for the imaging examinations on which the algorithms were based, half of 
them used MRI and half used CT scans. Most algorithms aim at only one 
pathology, and the most common pathologies are mild cognitive impairment and 
dementia, including Alzheimer’s disease (7 applications; 19%), multiple sclerosis 
(4 applications; 11%), tumors (4 applications; 11%), traumatic brain injury (3 
applications; 8%), Parkinson’s disease (2 applications; 5%), and intracranial 
aneurysm (1 application; 3%). In all three regulatory approval groups (FDA, EC, 
and others), ischemic stroke, intracranial hemorrhage, and dementia were more 
frequent than in the other categories. An example of an AI algorithm for Alzheimer 
Disease is shown in Fig. 1. 

Fig. 1 Multimodal algorithm for Alzheimer disease
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Fig. 2 Main functionalities of neuroradiology AI algorithms in the market, by Olthof et al. 

The functionalities presented are divided into (shown in Fig. 2): 

1. Quantitative information about pathology (13 applications, 12%): This measures 
the characteristics of pathological findings, as in the case of the algorithm that 
marks the location of hemorrhagic stroke and calculates the volume of the 
hematoma to aid in diagnosis and determine the patient’s prognosis. 

2. Marking of regions of interest or change detection (38 applications, 34%): 
visually marks the abnormal finding, as in the case of algorithms that auto-
matically assess the presence of sizeable arterial trunk occlusion in intracranial 
CTA. 

3. Classification, diagnosis, or probability of outcome (19 applications, 17%): 
interprets the imaging findings and provides a standardized diagnosis or clas-
sification, as in the case of algorithms that evaluate ischemic infarcts and pro-
vide the ASPECTS. 

4. Report Preparation (15 applications, 14%): Organizes the diagnostic findings 
into a report, such as providing a comparative analysis with individuals of the 
same age group. 

5. Automatic derivation of brain biomarkers (12 applications, 11%): compares 
quantitative information derived from normal or pathological findings with a 
specific disease group, such as hippocampal volume, with population curves to 
aid in the diagnosis of Alzheimer’s disease. 

6. Workflow and triage organization (12 applications, 11%): This facilitates the 
effectiveness of the diagnostic process, for example, by warning of abnormal 
tests that need to be reported as a priority. 

7. Anatomical segmentation (two applications, 2%): Segment anatomical areas, 
such as algorithms that calculate the volume of brain regions. 

Most of the algorithms’ functionalities (39 applications; 54%) ‘support’ radi-
ologists in performing their current tasks. Some other applications ‘extend’ the 
radiologists’ work by providing quantitative information, which was impossible to



extract without the use of these algorithms (23 applications; 32%). Only a few 
algorithms (10 applications; 14%) offered functions that replaced specific tasks. 
A typical example of functionality substitution is the preparation of a report (with 
schematic reports filled with information). In both approved and not yet approved 
software, the most frequent category is “support,” followed by “extend” and 
“replace.” 
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The most numerous functionalities are directly related to the core of the radi-
ologist’s business: finding and interpreting abnormalities, and making the correct 
diagnosis. The daily workflow of a neuroradiologist involves the tasks of infor-
mation, indication, decision support, verification, acquisition, post-processing (of 
the imaging modality itself and within the PACS), prioritization, detection, seg-
mentation, and quantification (of anatomical and pathological findings), interpre-
tation, reporting, communication of imaging findings, reporting of critical findings, 
case discussion, peer review, and quality control. In general, AI will partially affect 
many tasks within this workflow, but others may not be changed. 

As a result of this study [10], the main functionalities of the available software 
are to support (in detection and interpretation) and extend (with quantitative and 
biomarker information) the neuroradiologist’s tasks. The few algorithms that can 
replace physicians do so only for a limited set of tasks, such as reporting and 
analyzing a stroke patient. The authors concluded that AI is already a reality, and is 
currently available in clinical practice. However, none of the applications can 
replace the profession as a whole, although they can substitute for some specific 
tasks. 

Therefore, AI algorithms could be used in: 
Prioritizing studies in the PACS worklist based on the presence of pathology

• Workflow optimization 
Quantification of anatomical structures and comparison with a control group 
based on age and biomarker derivation.

• Automated pathology detection and segmentation 
Automated classification of pathology based on specific guidelines and criteria.

• Imaging screening and longitudinal analysis and follow-up of lesions Tumors 
and multiple sclerosis. 
This list shows that neuroradiology will not be the same in the near future with 
the use of AI facilitating daily work. 

2.3 Main Review Articles Published 

In addition to this technographic review, several other review articles have been 
published in the past two years. 

Lui et al. [13] presented the current status and future directions of AI in neu-
roradiology, with graphics showing an increasing number of publications, articles, 
and meeting posters/abstracts of neuroradiology on the subject. They also discussed



the most promising clinical applications of AI in neuroradiology, such as classifi-
cation of abnormalities (e.g. urgent findings, such as hemorrhage, infarct, and mass 
effect) and detection of lesions (e.g. metastasis) and prediction of outcomes (e.g. 
predicting final stroke volume, tumor type, and prognosis), post-processing tools 
(for example, brain tumor volume quantification), and image reconstruction (e.g. 
fast MRI, low-dose CT) and enhancement (e.g. noise reduction, super-resolution) 
and workflow (for example, automate protocol choice and optimize scanner effi-
ciency), citing many examples in the literature. 
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Kaka et al. [14], focus especially in the main tasks as: hemorrhage detection, 
stroke imaging, intracranial aneurysm screening, multiple sclerosis imaging, 
neuro-oncology, head and tumor imaging, and spine imaging. Duong et al. [15] 
divided the main applications of worklist prioritization, lesion detection, anatomic 
segmentation and volumetry, patient safety and quality improvement, precision 
medical education, and multimodal integration (in multiple sclerosis, epilepsy, and 
neurodegenerative disease), explaining many machine learning articles for each 
section. Kitamura et al. [16] also illustrated some applications of AI in neurora-
diology and reviewed the machine learning challenges related to neuroradiology. 

There are also specific reviews, such as the two stroke imaging reviews by 
Yedavalli et al. [17] and Soun et al. [18], describing the AI algorithms available in 
stroke imaging and summarizing the literature of AI applications for acute stroke 
triage, surveillance, and prediction, using different methods such as CT angiogra-
phy and MRI. An example of a possible application of AI in acute stroke is shown 
in Fig. 3. 

There are also many articles related to neuro-oncology, including those on the 
use of radiomics and radiogenomics, which will be discussed further in Chap. 12. 
There is one recent review dedicated to neuroradiologists, “Radiomics, machine 
learning, and artificial intelligence—what the neuroradiologist needs to know” [19], 
which explains the main principles (as shown in Fig. 4), utilization, and bias related 
to the use of these techniques. 

Fig. 3 Use of AI in stroke 
detection
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Fig. 4 Main steps of central nervous system tumors radiomics 

3 Conclusion 

The conclusion of that older article we cited [6], dated 1996, is nevertheless still 
very current: “The computer can function in one of two roles: as an independent 
interpreter that will analyze images with little or no input from the radiologist; or as 
an accessory interpreter that would act as an auxiliary brain for the radiologist. 

Computers could assist radiologists, and radiologists could act as an eye for the 
computer rather than being displaced by it. This relationship represents ideal col-
laboration between both parties, complementing strengths and weaknesses.” This is 
the path that we should walk hand-in-hand. 

Moreover, to conclude, we will use the words of the July 2019 Editorial of the 
Journal of Neuroradiology, [20] in which the authors make an almost poetic 
observation: “Artificial intelligence and neuroradiology cannot coexist side-by-side; 
they must be brought together to advance knowledge. Artificial intelligence must be 
a human-driven activity that shapes but does not replace the future of neuroradi-
ology and neuroradiologists by extending our human skills to provide the best 
possible medical care.” With the use of AI in neuroradiology, we aimed to deliver 
better medicine with precision and positive clinical impact on the lives of our 
patients.
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Perspectives: 

Neuroradiology has been created and developed alongside with technological 
development. It could not be different with the assimilation of AI algorithm in daily 
routine for neuroradiological tasks. In the near future, AI application will help to 
improve and complement with new information the neuroradiology’s reports, 
delivering a more accurate and personalized medicine for the patients. 

Core messages: 

The use of AI applications in neuroradiology is already a reality, making it nec-
essary for neuroradiologists to understand how AI algorithms are made, which are 
the main bias and problems that they need to be aware of, as well as the main 
improvements and additional information that could be added to the reports, 
helping to diagnose and to better treat neurological diseases. 

Short expert opinion: 

In 30 years, we believe that AI algorithm will improve the neuroradiologists per-
formance and reports, helping them to spend less time in laborious repetitive tasks 
and more time in important ones such as adding volumetric, biometric and quan-
titative information in the reports, positively impacting on the patients diagnosis, 
prognosis and treatment. 
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Big Data and AI in Cardiac Imaging 

Charitha D. Reddy 

1 Introduction 

The utility of “big data” and artificial intelligence (AI) in healthcare is growing. As 
efforts to translate theoretical results into clinical practice have become more suc-
cessful, there will be an exponential growth in the development of AI applications. 
Cardiac imaging is ripe for the use of artificial intelligence, as it is a frontline tool 
for diagnosis, generates large amounts of granular data, and can be used alone or 
with other clinical data for personalized disease management. Moreover, the mul-
tiple steps involved in cardiac imaging, such as image acquisition, image opti-
mization, measurements, interpretation, and reporting, provide immense 
opportunities for improvement in any part of the chain (Fig. 1). AI has the potential 
to positively affect clinical outcomes, reduce variability, and increase accessibility 
to broader populations. In this chapter, we review the basic terminology of AI, 
explore some current AI applications in cardiac imaging, and discuss future chal-
lenges and opportunities in the field. 

AI is defined as a computer system that can complete tasks that typically require 
human intelligence (e.g., visual recognition, speech processing, and decision-
making) by using data as input [1]. Vast amounts of health data exist within the 
medical record and diagnostic testing to serve as input for algorithms designed to 
aid in diagnosis or management [2]. In the past, there were significant limitations in 
processing complex health data, but recent advances in collating, labeling, and 
machine learning techniques have helped popularize AI in healthcare [2]. Lastly, 
technological developments and increased user access to AI technologies have 
contributed to improved incorporation into clinical workflows. Thus, three impor-
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Fig. 1 Process of cardiac imaging chain (in echocardiography) and target areas for arti cial

tant aspects to successfully implement AI applications in cardiac imaging are input 
data (source, amount, and variety), algorithm design, and validation and imple-
mentation strategy (testing, bias, and deployment).
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2 Data Management 

The Gartner Report defined successful use of “Big Data” using the concept of the 
“3Vs”: volume, variety, and velocity [3]. More recently, the addition of fourth and 
fifth “Vs” has been suggested—veracity and value. Volume refers to the need for 
large amounts of data, while variety refers to the type and source of data [3]. 
Velocity is the ability to generate and process datasets, while veracity focuses on 
the reliability and quality of said datasets [3, 4]. Value is less about the data and 
more about whether the endpoint results in actionable insights that have down-
stream impact [5]. Healthcare data can be obtained from electronic health records, 
patient-generated data (e.g., wearable devices, social media), laboratory results, 
imaging and diagnostic testing, genomic data, and outcomes, to name a few [6]. 
There has been growing interest in formally organizing the enormous volume of 
data, in the form of biobanks or public datasets in order to derive meaningful results 
[7, 8]. The benefits of applying AI to big data include the ability to rapidly digest 
large amounts of data and identify novel patterns that would otherwise be missed; 
humans would not be able to process the same amount or variety of data. 

Big data has traditionally been touted as a necessity for successful implemen-
tation of AI in healthcare, but recent paradigm shifts suggest that smaller datasets 
can be effective as well. One way to use a smaller dataset effectively is to extract 
granular pieces of data. This is particularly beneficial in cardiac imaging, where 
each data point could focus at the pixel level (color, shapes, brightness, motion,



borders) or report level (phrases and descriptive terms) [9]. These derived data 
points are referred to as “features.” The features distilled from the dataset directly 
impact the success of an AI algorithm; the features and associated labelling should 
be accurate, diverse, and of high quality. Inaccurate features and the classification 
of input data adversely affect the ability of the algorithm to understand relevant 
real-world data. 
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3 Algorithm Design 

Machine learning (ML) is a subset of AI that is characterized by the ability of an 
algorithm to improve task performance by “learning” from new data by identifying 
patterns without specific programming. Machine learning is categorized into two 
types: supervised and unsupervised. A supervised learning strategy trains the 
computational model to identify patterns by associating predetermined outcomes 
with input data [10]. In addition, Supervised models can be honed by selecting and 
weighting certain features over others to arrive at the desired outcome. Regression 
analysis, support vector machines, and random forests are all supervised learning 
methods [11, 12]. Neural networks are a more complex form of supervised learning, 
often referred to as deep learning, and are meant to recreate human thought pro-
cesses. Convolutional neural networks (CNNs) are multi-layered neural networks 
that use prior experiences to improve on outcomes [9, 13]. Unsupervised learning 
models are comparatively free-form; the model is left to discover patterns in the 
data that may have never been identified before [14]. In this strategy, data is 
“clustered” into various categories based on similarities that the model has iden-
tified, and additional statistical evaluation is required to identify the actual similar 
characteristic or feature. Hierarchical, k-means, and model-based clustering are 
examples of cluster analysis types. A combination of supervised and unsupervised 
learning strategies was used. In this approach, an unsupervised model provides 
novel features that can be plugged into a supervised model to be weighted and used 
to predict an outcome [15]. 

4 Validation and Implementation 

The successful validation and deployment of a machine learning model requires 
sufficient “training” and “testing” of data. To train the model, a subset of the total 
data is utilized for “training.” The model uses this subset of data to identify patterns 
and determine the features that are more or less important in predicting the deter-
mined outcome. “Testing” data is a separate subset (or new data) to assess the 
model’s ability to accurately predict the correct outcome despite never having seen 
the test data. This process is referred to as validation (Fig. 2). The ability of the 
model to handle variations in new data determines its generalizability and success



in clinical practice. When a model is trained on insufficient data, there is a risk of 
“overfitting,” where the model can only work on data that is extremely close to the 
original dataset. This has the additional risk of introducing bias to a model if the 
data have certain homogenous characteristics that do not reflect real-world distri-
bution. As AI technologies have been developed for imaging in clinical practice, 
their implementation depends on the ability to define important features in the 
imaging data, applying the correct type of machine learning, and designing 
deployable applications. 
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Fig. 2 Machine learning process of training, validation, and testing 

5 Implementation in Cardiac Imaging 

AI has been steadily gaining traction in all forms of cardiac imaging, including 
echocardiography, magnetic resonance imaging (MRI), computed tomography 
(CT), and nuclear medicine. Unlike the early focus of AI on radiology applications 
with static image datasets, cardiac imaging poses additional challenges owing to the 
video-based or non-static format of the data. Moreover, there are multiple areas for 
potential improvement, including operator skill impacting image quality, variability 
in measurements, and differences in interpretation. The introduction of novel AI 
technologies that can tackle some of these challenges, while also decreasing costs 
and improving efficiency, could have a profound impact on patient care and out-
comes. Machine learning applications in cardiac imaging are therefore primarily 
focused on the following four categories: image acquisition and quality, automated 
measurements, diagnostic support, and outcome prediction [9, 16, 17]. In this 
section, we review some of the current technologies that have been developed for 
various cardiac imaging modalities.
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5.1 Echocardiography 

Echocardiography is the most common imaging modality in cardiology and remains 
a frontline diagnostic and management tool. However, it is heavily dependent on 
operator skill for image acquisition, quality, and measurements, leading to con-
siderable concerns about intra- and inter-observer variability in data collection and 
clinical interpretation [18, 19]. AI technologies are continually being developed to 
reduce variability and improve interpretation [20–26]. 

Narang et al. [27] used a deep-learning-based algorithm to aid novices in 
acquiring echocardiographic images. In this study, healthcare providers with no 
prior ultrasound experience performed ultrasound with or without deep learning 
guidance. With the deep learning algorithm, providers were able to obtain 10 
standard transthoracic echocardiographic views that provided some diagnostic 
assessment for ventricular size and function [27]. EchoNet, a deep learning model, 
by Ghorbani et al. used CNNs to accurately identify cardiac structures and evaluate 
left ventricular function [28]. Zhang et al. trained CNNs on 14,035 echocardio-
grams to automatically identify 23 imaging planes, segment the images, measure 
cardiac structure and function, and detect disease [29]. This study demonstrated 
forward progress in the area of automated measurements by using the model to 
calculate left ventricular volumes, mass, and ejection fraction. The automated 
measurements for ejection fraction and longitudinal strain deviated from manual 
measurements by approximately 6 and 1.6% [29]. Currently, 3D echocardiography 
is generally considered to have better accuracy than 2D evaluation, but is limited in 
clinical practice due to a high standard of operator expertise [30]. However, Narang 
et al. used a machine learning-based algorithm to automate the measurement of 
dynamic left ventricular and left atrial volumes that showed it was both accurate 
compared to manual 3D measurements and MRI, as well as efficient by shortening 
the time required to analyze the datasets [22]. Knackstedt et al. [20] and Salte et al. 
[31] have already shown the successful clinical workflow implementation of full 
automated assessment of global longitudinal strain. 

Studies have also begun to focus on the use of machine learning models to aid in 
diagnostic support and interpretation. Zhang et al. used the aforementioned dataset 
of >14,000 echocardiograms to effectively detect hypertrophic cardiomyopathy, 
pulmonary hypertension, and cardiac amyloidosis using two echocardiographic 
planes, with a C statistic (area under the receiving operating characteristic curve) of 
greater than 0.85 for all three diseases [29]. A few studies have evaluated the ability 
to accurately assess the severity of valve dysfunction; Moghadddasi et al. [32] and 
Playford et al. [33] used machine learning models to grade mitral and aortic valve 
dysfunction, respectively. Moghaddasi et al. developed a model that had greater 
than 99% overall sensitivity and specificity in predicting whether a mitral valve was 
normal and graded the severity of regurgitation [32]. The algorithm designed by 
Playford et al. used data from the entire echocardiogram, as opposed to only the left 
ventricular outflow tract, to more accurately predict severe aortic stenosis [33]. 

Deep learning models are also utilized in fetal echocardiography and pediatric 
echocardiography. Arnaout et al. [34] used 107,832 fetal echocardiogram images to



create a CNN to automatically identify standard fetal cardiac planes, automate 
segmentation to allow for biometric measurements, and differentiate between nor-
mal hearts and those with congenital heart disease. Le et al. [35] similarly studied a 
machine learning model using random forests to detect congenital heart disease 
using retrospective data. Others have studied how to automate image acquisition in 
fetal echocardiography, as well as interpreting Doppler signals [36–38] utilizing big 
data and artificial intelligence in pediatric echocardiography is relatively new, with 
a few studies in the abstract phase applying deep learning models to automate view 
identification, [39] and assessment of ejection fraction [40]. 
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5.2 Cardiac Magnetic Resonance Imaging 

Cardiac magnetic resonance imaging (CMR) has made significant strides in the 
application of deep learning to clinical practice. The use of AI in CMR has led to 
improvements in some areas that had previously been significant barriers to the 
widespread use of CMR. The extensive time required for image acquisition and 
post-processing, artifacts affecting image quality related to cardiac motion, and 
patient factors have been the focus of various studies aimed at streamlining the 
CMR imaging chain. 

Leiner et al. and Frick et al. have both published on the automation of image 
acquisition planes, image optimization, and artifact detection [41, 42]. More recent 
work by Kustner et al. used deep learning methods to allow for reconstruction of 
low resolution CMR data to clinically comparable image quality as high resolution 
images in less than 1 min [43]. Similarly, Steeden et al. [44] used CNNs to recreate 
high resolution images from a low-resolution three-dimensional dataset in patients 
with congenital heart disease. Tissue characterization in CMR imaging often 
requires gadolinium contrast. However, Zhang et al. developed a CNN model to 
optimize existing imaging sequences, resulting in images with superior quality and 
comparable tissue burden quantification without the use of gadolinium [45]. 

Segmentation of image contours has historically been a manual task; however, 
this process is time-consuming and suffers from significant intra- and inter-observer 
variability. Multiple efforts have been successful at automatically segmenting right 
and left ventricles [46–50]. Owing to the relative scarcity of CMR data in patients, 
Winther et al. [50] used four separate sources to train a vendor-neutral CNN, which 
is an enormous advantage that allows for broader implementation. Bidhendi et al. 
[51] similarly demonstrated the success of a CNN in pediatric patients with con-
genital heart disease, which performed better than the baseline platform. 

Radiomics, a relatively new area of study in cardiac imaging, is a method to 
extract features from large amounts of medical imaging data that can identify 
previously unseen patterns and characteristics. Texture analysis (TA) uses 
machine-learning strategies to evaluate subtle variations in image intensities at the 
pixel level. Multiple studies have already demonstrated the use of machine learning 
to accurately identify clinically relevant variations in imaging texture that are not 
obvious to the naked eye [52–54]. Mancio et al. [54] employed TA to quantify



tissue changes within the myocardium of patients with hypertrophic cardiomy-
opathy to help risk-stratify patients with a lower probability of having scar tissue. 
Neisius et al. [52] discovered features using TA that could identify differences 
between CMRs in patients with hypertension and hypertrophic cardiomyopathy, 
which is a common challenge in typical clinical practice. 
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CMR studies have also shown promise for predictive modelling and decision 
support. Bello et al. used CNN modeling to segment labeled CMR images to 
develop 3D models that identified features to predict survival in patients with 
pulmonary hypertension [55]. Diller et al. used a U-net algorithm to evaluate CMR 
video clips to automatically trace endocardial borders in two views to directly 
predict prognosis in patients with tetralogy of Fallot [56]. Kotu et al. used a 
combination of multiple machine learning algorithms to stratify patients into high 
and low risk of arrhythmia after myocardial infarction [57]. 

5.3 CT 

Cardiac computed tomography (CCT) is an important imaging modality in cardi-
ology owing to its efficiency and image quality, particularly for small structures 
within the heart. However, radiation dose is a constant area of concern. Machine 
learning algorithms utilizing CCT have focused on improving image quality while 
reducing contrast. Santini et al. used a supervised learning model to “transform” 
non-contrast CCT scans into an image quality comparable to contrast CCT scans 
[55]. Geng et al. [58] also focused on improving image quality by using an 
unsupervised method to reduce “noise” in non-contrast CCTs. 

Automated measurements and segmentation have also been evaluated for CCT. 
Zreik et al. evaluated 55 patients as part of a training set to perform automatic 
segmentation of the left ventricle, which resulted in high sensitivity and specificit 
[59] coronary artery disease (CAD) is a primary disease state that utilizes CCT as a 
diagnostic tool. Given that CAD is a leading cause of mortality globally, [60] early 
diagnosis by CCT has shown benefits to aid in treatment and prevention [61] and 
can avoid unnecessary invasive testing [62, 63]. Coronary artery calcium (CAC) is 
used as a predictive score for adverse cardiac events [61] and multiple studies have 
tackled the ability to automatically estimate the value. Using a CNN architecture to 
generate a CAC score, Wolterink et al. [64] achieved able to reach 72%. In light of 
the focus on contrast reduction, Lessmann et al. [65] used non-contrast CT scans 
and the aforementioned model by Wolterink et al. to detect calcium and identify 
false positives by using paired CNNs. There was a high detection rate of CAC, but 
the model was less successful in identifying calcium in the mitral and aortic valves 
[65]. However, the potential to utilize non-contrast CTs to predict CACS is very 
promising. 

Diagnostic interpretation is another important focus of the application of AI to 
CCT. Van Hamersvelt et al. [66] evaluated the use of texture analysis (TA) of the 
myocardium to automatically identify significant coronary artery stenosis in favor 
of a typical approach in which a model is trained to identify features determined by



a human expert. Using a combination of methods, including supervised and 
unsupervised techniques, a deep learning model showed an improved prediction of 
coronary stenosis [66]. 
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Finally, CCT is one of the few cardiac imaging modalities that has used a broad 
registry to predict adverse cardiovascular events. Both Motwani et al. [67] and Van 
Rosendael [68] utilized the CONFIRM (Coronary CT Angiography EvaluatioN For 
Clinical Outcomes: An inteRnational Multicenter) registry [69, 70] to apply arti-
ficial intelligence to estimate the survival and prognosis of patients with cardio-
vascular disease. The Framingham risk score is widely accepted as a method for the 
risk stratification of patients; it uses a combination of patient demographics, lab-
oratory values, and CAC. Motwani et al. [67] incorporated CCT data and clinical 
markers to train an AI-based algorithm that performed better than the Framingham 
score. Motwani et al. trained their model by ranking the importance of expert-
determined features and placing more weight on some findings than on others. Van 
Rosendael employed a similar strategy with imaging as the only input, and found 
comparable success [68]. 

6 Nuclear Medicine 

Nuclear medicine in cardiac imaging typically encompasses myocardial perfusion 
imaging (MPI) by SPECT (single-photon emission computed tomography (SPECT) 
and positron emission tomography (PET). SPECT is more commonly used in 
clinical practice, although PET requires less radiation. SPECT is unique to other 
imaging modalities because many of the measurements are already automated, 
including quantitative perfusion assessment, ventricular volumes, myocardial mass, 
ejection fraction, myocardial thickening, and dyssynchrony. In fact, there is already 
a large registry, REFINE SPECT, with >20,000 patients from multiple centers 
collecting imaging and clinical data to serve as a dataset for AI applications [71]. 
Therefore, AI applications for SPECT are geared towards automating diagnosis, 
prognostication, and management [72]. 

Betancur et al. [73] used the REFINE SPECT registry to train and develop a 
deep learning algorithm to detect coronary artery stenosis in <1 s The model was 
trained on catherization-based coronary angiography to identify coronary artery 
stenosis and then given the automated SPECT images as an input and performed 
better than the conventional method (AUC 0.8 vs. 0.78) [73] Nakajima et al. [74] 
used a supervised learning model based on expert labels from a multi-center dataset 
to design a neural network that performed better than human experts (AUC 0.97). 
Multiple studies have combined imaging variables and clinical factors to serve as 
inputs for machine learning models and have yielded better diagnostic accuracy 
than visual assessment alone [75, 76]. Haro Alonso et al. [77] compared a support 
vector machine (SVM) to traditional regression models to accurately predict cardiac 
death in patients. The study used SPECT data to train the model and found that the 
SVM performed better than the regression model (AUC 83 vs. 0.77).



Big Data and AI in Cardiac Imaging 77

7 Challenges and Pitfalls 

The deployment of machine learning models in the real world remains one of the 
biggest challenges facing the incorporation of AI into clinical practice. Initial 
concerns about the inexplicability, or “black box” nature, of results from AI-derived 
data has plagued the adoption of AI in the healthcare field despite ongoing focus on 
designing models that are more transparent [78]. “Explainable AI” could include 
neural networks with built-in layers to assess decision-making and quality, allowing 
users to gain insight into the features that the model has selected [79]. Another 
approach asks the model to provide confidence intervals for its own predictions, 
allowing the user to provide clearer feedback focused on predictions that have wide 
intervals [80]. 

Another major challenge is the lack of infrastructure in most healthcare insti-
tutions, impacting the initiation of projects, inconsistent data labeling, difficulty 
navigating privacy laws and data sharing, and lack of technical support. This often 
limits research to single-center studies, often with retrospective data. While the 
model may perform well, it is unlikely to generalize widely and effectively impact 
clinical practice effectively [81] large datasets are necessary to adequately train 
deep learning models. This is especially difficult to overcome in patients with rare 
diseases or relatively small patient populations (congenital heart disease). In 
addition, the risk of utilizing narrow patient groups has been shown to result in a 
significant bias that could have a negative impact on the healthcare system; [82] it  is  
of paramount importance to have adequately diverse datasets. Given the heavy 
involvement of vendors in cardiac imaging, it can also be challenging to incorporate 
vendor-neutral models, although there have been a few [83]. In the same vein, it is 
difficult to prove the benefit of AI-based care without extensive testing with human 
experts. Lastly, most clinicians do not have the opportunity to learn or experiment 
with AI concepts or how they can be incorporated into clinical practice. This can 
adversely affect the uptake of new technologies and the progress of stymie. 

8 Future Directions 

Despite the challenges mentioned in the previous section, the advances that have 
already been made in the areas of cardiac imaging and AI are impressive. For each 
imaging modality, studies have demonstrated improved image acquisition, quality, 
diagnostic accuracy, measurement automation, and outcome prediction. The results 
are promising and have the potential for far-reaching impacts on improving 
workflows and patient care. Future endeavors should focus on multicenter collab-
oration to create broadly representative datasets to encourage generalizable and 
reproducible results. Additional efforts should be placed on the effective deploy-
ment of algorithms and a way to compare algorithms that attempt to solve the same 
diagnostic question. As AI applications become more pervasive in healthcare, the



combination of imaging data and radiomics and the other “-omics” (genomics, 
proteomics, and metabolomics) will strengthen the ability of machine learning 
predictions to provide individualized care to patients. 
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1 Introduction 

Positive individuals typically exhibit bilateral diffuse patchy opacities with some 
bibasilar sparing on chest X-ray images, which can assist in the diagnosis of the 
condition. Irritation of the lungs, and lymph adenopathy are saliant features on 
computed tomography (CT) scans of COVID-19 patients. Lungs involvement shows 
a patterned dissemination of opacities (interlobular septal thickening layered on 
ground-glass opacities) [7]. The prime goal of evaluating the density of these pat-
terns is to provide a truthful diagnosis, regulate the sternness of the ailment, and offer 
prognosis advice. Artificial intelligence (AI) performance for detecting infections 
and associated radiological characteristics from medical imaging, such as chest 
X-rays and CT scans, has proven to be beneficial in making truthful diagnoses [8, 9]. 
Machine learning and deep learning may be used to solve COVID-19 identification 
and segmentation difficulties in a number of different ways. Medical imaging 
analysis aided by AI offers great potential as a primary diagnostic tool for 
COVID-19 detection [10, 11]. The first step in the diagnosis is to identify deep 
features that may be used to detect COVID-19 radiological patterns on chest X-ray 
and CT scans. Machine learning-based prediction techniques have the potential to be 
used in prognostic analyses. As a result, several studies have employed algorithms 
such as Support Vector Machine (SVM) and Random Forests to provide critical

The World Health Organization (WHO) recently designated coronavirus disease 
2019 (COVID-19) as an infectious pandemic.1 Since the beginning of the epidemic, 
there have been over 243 million confirmed infections and over 4.9 million fatal-
ities. Because of the rapid spread of the disease, most health institutions and hos-
pitals are unprepared to deal with the influx of cases. With a 2–14 day incubation 
period, the severe acute respiratory syndrome coronavirus 2 (SARS-CoV2) is said 
to spread by tiny droplets and perhaps aerosols [1, 2]. COVID-19 positive persons 
may have symptoms such as fever, dry cough, bodily aches, shortness of breath, 
lack of taste and smell, sore throat, and diarrhea [3]. With such readily misconstrued 
symptoms and the danger of negative repercussions from a misdiagnosis, effective 
viral infection detection is one of the top objectives of medical organizations. 
Artificial Intelligence (AI) diagnostic models might relieve the burden on healthcare 
staff, allowing them to devote more time to patient care and vaccine research. It is 
vital to recognize the presence of infection early in order to provide treatment and 
save lives. According to a survey, symptoms may begin with a simple cold and 
progress to life-threatening pneumonia [4, 5]. The most prevalent form of diag-
nostic test is reverse transcription-polymerase chain reaction (RT-PCR) evaluation 
for the detection of viruses via pharyngeal swabs or blood samples. With an 
accuracy range of 81–96%, RT-PCR can deliver results in as little as a few hours up 
to two days. These tests, on the other hand, are unable to assess the degree of 
contamination, and their accuracy is contingent on the strength of the viral strain. 
Differentiating between coronavirus infections and other infections is a vital step 
toward appropriate diagnosis [6]. 

1 https://www.who.int/emergencies/diseases/novel-coronavirus-2019/situation-reports.

https://www.who.int/emergencies/diseases/novel-coronavirus-2019/situation-reports


insight into coronavirus infection prediction and diagnosis [12, 4]. By automating 
the COVID-19 diagnostic selection procedure, these automation technologies help 
ease the burden on healthcare workers. Early identification of infection can save time 
by allowing treatment to begin, while the disease is still mild, reducing the chance of 
consequences. The consequences of a misdiagnosis pose a major risk to the patient 
and can even be fatal. Automated systems face a number of challenges because of the 
enormous amount and velocity of data. Data cleaning and processing becomes a 
huge difficulty with such a large intake of cases, especially when high-resolution 
images are required. A consistent nursing and remote detection method for people 
will help in the wild trailing of suspected COVID-19 cases. Furthermore, the usage 
of such systems would generate a vast amount of data, presenting various oppor-
tunities for big data analytics tools to improve healthcare service quality [13, 14]. 
The Six V’s [15] are a set of essential qualities of big data, which include value, 
volume, velocity, variety, veracity, and variability. The inventive definition of big 
data essential qualities, however, only considers three Vs: volume, velocity, and 
variety [16]. Big data analytics technologies are considered critical for gaining the 
knowledge needed to make judgments and take preventive steps [17]. As the large 
amount of available data on COVID-19 comes from various sources, it will be 
crucial to review the protagonists of big data analysis in governing COVID-19, as 
well as a promoter insight of the main contests and main uses of COVID-19 data 
prevention, as well as a number of correlated current frameworks with the goal of 
COVID-19 breakdown [18]. COVID-19 has been proven to benefit from big data in 
the battle against infectious illnesses. To combat the COVID-19 pandemic, big data 
may hold many intriguing possibilities. When big data is integrated with AI ana-
lytics, it helps researchers better understand the COVID-19 outbreak, viral structure, 
illness treatment, and vaccine manufacturing [19–21]. For instance, complex sim-
ulation models based on coronavirus data streams may be created using big data and 
powerful AI-based techniques to anticipate epidemics. This would allow health 
agencies to follow the coronavirus’s progress and better plan preventative actions 
[31]. Because of their data aggregation capabilities, which allow them to use huge 
volumes of data for early detection, big data models can also assist in predicting the 
COVID-19 epidemic in the future. Furthermore, big data analytics as a diversity of 
medical sources, such as infected patients, can support the implementation of 
large-scale COVID-19 research and the creation of high-reliability treatment tech-
niques [22–24].
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2 COVID-19 Therapy and Health Informatics: Promises 
and Challenges 

The worldwide health care community continues to grow to the defiance of the 
coronavirus complaint 2019 (COVID-19) epidemic, from combat zone caregivers 
to information processing experts. Clinical informatics is dependent on the relin-
quishment of specialized backing, which is critical for optimizing COVID-19



epidemic clinical operations. The requirement to produce a “new normal” for safe 
and operative care for all cases urged major advancements in data use, including the 
use of big data for exploration because traditional time-long studies were no longer 
an option, prophetic logical functionality retooled to assist prognosticate 
COVID-19, supersonic deployment of test attempts and trials of new drugs, 
development and implementation of innovative telemedicine care models, and the 
exponential expansion of the information technology system [25]. Loosening laws, 
encouraging cooperative practice between health systems and their merchandisers, 
and a worldwide need for answers created the ideal early slush for invention to sow 
at snappy rates. By keeping up with diurnal non-supervisory changes to offering 
day-to-day help to a tired bedside clinician, informaticists play a crucial part in a 
successful epidemic response strategy. Informatics are about fostering invention 
and advancing health care in the information age. As the new coronavirus spread 
throughout China and the world, informatics passed a DNA transformation to help 
frontline icons and discover a way to annihilate the contagion [26]. The Marvel 
X-MenTM conception, in which fictional characters’ transformation into icons is 
backed by hyper-accelerated inheritable mutation, is a good starting point for 
allowing the tremendous hops in informatics necessary to respond to COVID-19. 
Like numerous grand narratives, the speeding up of growth creates opponents as 
well as protagonists. The villains began as well-known data-related issues, such as a 
lack of an initial dataset for nursing evaluation and interventions or a lack of 
ICD-10 canons to register a new hazard complaint, but the pandemic quickly 
transformed them into major hurdles to finding answers [27, 28]. Informatics is 
much more than flow charts in an electronic health record (EHR). Experts in health 
informatics who work within a medical system handle a variety of data-related 
procedures in order to assist doctors in patient care. Architecting, locating the right 
seller, carrying backing, assuring nonsupervisory compliance, and establishing a 
structure similar to servers or interfaces can take months or times [29, 30]. 
A benchmark for classifying IT informatics solutions of the numerous activities 
elaborated in public health planning, replies, and retrieval was established based on 
this abstract model (Fig. 2). Indeed, seemingly basic procedures such as confirming 
that the EHR supports a new business strategy can take hundreds of hours to 
develop, test, educate, implement, and track compliance or effectiveness [31]. On 
the clinical side, IT infrastructure must be expanded to enable an increase in tele-
health usage. To help preserve physician resources during a surge, all emergency 
departments were given the option of telehealth consultations for qualified patients 
who presented during the surge. The registration/check-in process now includes 
questions about travel and symptom screening (Fig. 1). All paperwork had to be 
completed in all patients treated for acute and elective treatment across the hospital 
and screened using the EHR by front desk personnel. 
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In care settings, interviews generated a predictive alert with clinical decision 
support to provide a suitable track for following clinical treatment, including any 
testing or isolation orders required, and front-line employees followed a uniform 
screening “script” using EHR templates as needed [26, 32].
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Fig. 1 Tools for managing a pandemic 

Fig. 2 Framework involved in preparing for, reacting to, and recovering from severe public health 
risks 

At the time of ordering, clinical decision support in the form of screening 
criteria, specimen collection instructions, the requirement of defending equipment, 
and test result turnaround time estimates for simple assessment were supplied. The 
COVID-19 orders asked the ordering practitioner to answer a series of questions on 
the patient’s compliance with the testing requirements. 

Our build structure allowed for fast adjustments to maintain the system in line 
with operational expectations because screening criteria and lab handling processes 
often changed after the first deployment. Our occupational health department used



COVID-19 ordering practices similar to avert infections. When it comes to IT 
resources, there are always conflicting priorities. A crisis, such as an emerging 
disease danger, is necessary to bring all stakeholders together to work toward a 
common objective. Each category includes a variety of informatics and technology 
solutions that can be used at different stages of a major health problem [33]. 
Furthermore, each sector is influenced by a certain stakeholder group. It should be 
noted that the project’s finance and implementation may include a large number of 
parties. Each category has a wide range of informatics and technology solutions that 
can be applied at various stages of a serious health issue [34, 35]. 
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Clinicians in various system institutions may manage in different areas where 
caretakers are required, either due to universal access security requirements; they 
may only travel inside their own hospital or to another hospital system [36]. Per-
sonnel from surgical and procedural sectors, as well as affiliated surgery centers and 
clinics, were given access as part of an all-hands-on-deck plan to successfully 
staffing in a significant surge situation. This information is now available to res-
piratory therapists, pharmacists, physical therapists, and others who interact directly 
with patients [37]. Non-bedside clinicians, such as nurse auditors, administrative 
function clinicians, and IT clinicians, are also provided access. From a compliance 
viewpoint, lowered constraints are required for this type of access to be possible. 
Reports on access availability monitoring have been utilized to assist in preventing 
misuse [38]. Big data is being utilized in the EHR to train predictive analytic 
(PA) algorithms to alleviate the cognitive burden on overworked doctors. The team 
created a sepsis/infection risk PA tool to detect inpatients with COVID-19 symp-
toms after an initial emerging disease screening on arrival. When a patient is at 
danger for COVID, the EHR alerts clinicians, allowing the patient to be evacuated, 
evaluated, and treated as needed while also ensuring the safety of the crew [39]. To 
stay current with CDC standards, the emerging disease screen (EDS) is updated on 
a regular basis. Many aspects of clinical decision support (CDS) are powered by 
EDS, which allows busy physicians when a patient tests positive for COVID or 
other developmental illnesses [40]. On the clinical side, IT infrastructure must be 
expanded to enable an increase in telehealth usage. To help preserve physician 
resources during a surge, all emergency departments were given the option of 
telehealth consultations for qualified patients who presented during the surge. On 
the clinical side, IT infrastructure must be expanded to enable an increase in tele-
health usage. To help preserve physician resources during a surge in demand, all 
emergency departments were offered the option of performing telehealth consul-
tations for approved patients [41, 42]. 

3 COVID-19 Infrastructures and Technological Solutions 

The epidemic has generated a rush of interest in initiatives that would utilize 
cutting-edge technology to mitigate COVID-19’s influence on our lives. To combat 
the coronavirus pandemic, a number of technological advances and applications



have been developed. Technology development, design, and use were all affected 
by the epidemic. It is critical to have a better understanding of the role that 
information systems and technology researchers may play in combating this global 
crisis [43]. The rapid adoption of telemedicine in response to the coronavirus threat 
reminds us that digital technologies may help with pandemic management and 
reduce risks both during and after the pandemic [44]. Many IT workers are helping 
to battle the outbreak in a variety of ways, including developing anti-virus software, 
tracking and forecasting the disease’s growth, and protecting hospitals from 
cyberattacks [45]. The pandemic has consequences for manipulating information 
systems and implementation based on IT technology infrastructure. Researchers 
and practitioners in the fields of information systems and technology may assist 
with the analysis of COVID-19 pandemic data, such as the rate of interest in a 
prospective new promoter axis [44, 46]. 
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Adapting, coping, and halting the information crisis were characterized as 
reforming organizations by improving crisis-driven agility and minimizing 
crisis-revealed fragility [47]. COVID-19’s significant challenges should be assessed 
from the perspective of information systems and technology, with implications for 
further research and recommendations on COVID-19’s influence on information 
management. It is impossible to overestimate the role of information systems and 
technology in civilization [48]. The pandemic of COVID-19 has emphasized the 
urgent need to shift the public health system from reactive to proactive, as well as to 
develop technology that provides restructured data for proactive decision-making. 
COVID-19 is unique among chronic illnesses in that it is extremely infectious, may 
be transmitted from person to person, and has a high mortality rate. Furthermore, 
since COVID-19 is a novel illness, scientific knowledge of the virus that causes it, 
as well as medical treatments and government and organization responses, are still 
in the early stages of development. COVID-19’s impact on individuals and society 
is growing unanticipated. Because of the present pandemic situation and its rami-
fications, combating the COVID-19 pandemic necessitates extensive coordination 
of various factors [49–51]. 

To combat this problem, new technological solutions, such as mobile tracing 
COVID-19 and chatbots, have recently been exploited. These technologies may 
assist individuals, businesses, and society in dealing with the repercussions of the 
coronavirus pandemic. New technologies can aid in the detection of 
community-wide coronavirus propagation, monitoring of infected people’s health, 
and treatment of COVID-19 patients [52, 53]. Machine learning, image recognition, 
and deep learning algorithms are examples of AI-based technologies that may be 
used to enable faster drug discovery and development of new therapies, as well as 
for early detection and diagnosis of infection [54]. A few businesses have also 
adopted AI systems created for other purposes to help with social distance 
enforcement and contract tracking [55]. During the COVID-19 outbreak, emer-
gency 3D-printing of therapeutic items was proposed as a feasible method to 
alleviate shortages. In the field of crisis management, medical manufacturing and IT 
equipment within hospitals have been explored. Experts in health and additive 
manufacturing technology are anticipating this shift, but legislative reforms will be



required. A 3D-printed medical case study item developed during the COVID-19 
epidemic offers the design and manufacture of a suture guide for heart surgery [56]. 
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In the field of health, big data (or massive data) corresponds to all 
socio-demographic and health data available from different sources that collect data 
for various reasons. The use of these data has many advantages for COVID-19: 
identification of disease risk factors, aid in diagnosis, choice and monitoring of the 
effectiveness of treatments, pharmacovigilance, and epidemiology. Nevertheless, 
this raises many technical challenges and human beings and poses many ethical 
questions [57]. These standards have made it easier for hospitals and healthcare 
organizations to gather all of the data acquired for Covid-19 into biomedical data 
warehouses, which researchers can query through online interfaces. Many research 
groups now use integrated systems to link databases and aggregate data from 
cohorts. 

As the number of mobile applications is constantly growing, it is advisable to 
integrate them into the e-health quality process, that is, to test them internally 
using the practices and tools made available to experts. The coronavirus pandemic 
has shaken for the medical industry, which has proven extremely resilient, that of 
mobile applications. With the massive use of telecommuting, the installation of 
professional applications for monitoring and trapping covid-19 has increased 
considerably, assuming you have been diagnosed with a COVID-19-related ill-
ness. In this case, health officials may be able to use the technology to track down 
any mobile application in the case of a suspected case [58]. The current 
COVID-19 epidemic has shattered provincial, radical, intellectual, spiritual, social, 
and educational barriers worldwide. An Internet of Things (IoT) equipped 
healthcare system is useful for effective monitoring of COVID-19 patients because 
it uses a linked network. This technology contributes to increasing patient satis-
faction and decreasing readmission rates to hospitals. The use of the Internet of 
Things has a favorable impact on the healthcare expenses and treatment outcomes 
of infected patients. As a result, the goal of this research is to investigate, eval-
uate, and highlight the diverse applications of the well-known IoT idea, as well as 
to create a road map for dealing with them [59, 60]. Blockchain technology has 
been employed in the fight against COVID-19 to overcome the problems and trust 
concerns that arise with safeguarding privacy and fulfilling public health goals, 
such as tracking infected persons. Blockchain based on distributed ledgers is a 
type of digital ledger that records online medical encrypted transactions that use a 
consensus technique to operate. To support the fight against the coronavirus 
epidemic, a solution based on mHealth, blockchain technology, and AI was 
created [61, 62]. The technologies listed in Table 1 require data, people, and 
systems to be integrated and classified based on their primary focus and initial 
design intent for practical use. Data-centric technologies such as machine 
learning/deep learning, big data analytics, IoT, and blockchain are being utilized 
to combat COVID-19.
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Table 1 Notes of COVID-19 technological solutions 

Technologies COVID-19 solutions 
examples 

Sample Tools—frameworks 

Machine 
learning/deep 
learning 

An explainable AI 
COVID-19 evaluation 
and lesion 
characterization from CT 
images using an 
automated method [63] 

166 CT scans http://perceivelab.com/ 
covid-ai 

For stock price 
movement prediction, 
COVID-19 used a hybrid 
and parallel deep 
information fusion 
methodology [64] 

Twitter data with 
extended horizon market 
data 

COVID19-HPSMP 
framework 

COVID-19 classification 
and lesion localization 
from chest CT using a 
weakly-supervised 
framework [65] 

3D CT volumes for 
COVID-19 

https://github.com/ 
sydney0zq/covid-19-
detection 

Big data Deep features and SVM 
to classify images [66] 

2138 images Deep visual words 
(BoDVW) 

Researchers and 
decision-makers are 
paying more attention to 
technological 
advancements and big 
data analytics approaches 
for evaluating large 
quantities and types of 
data [67] 

COVID statistics: https:// 
covid.ourworldindata. 
org/data/owid-covid-
data.xlsx, Google. 2020. 
Mobility data. https:// 
www.google.com/ 
covid19/mobility 

Big data analytics 
techniques 

COVID-19 is being 
tracked utilizing big data 
and big technologies via 
a digital Pandora’s box 
[68] 

The NHS is collaborating 
with a various of big tech 
companies, including 
Google, Amazon, and 
data-processing firm 
Palantir, to create a 
common data platform to 
aid with COVID-19 
monitoring 

Pandora’s box 

IOT Testing and tracking of 
IoT-COVID-19 can assist 
to limit the virus’s 
transmission, which is 
critical in the fight 
against the pandemic 
[69] 

5000 subjects IoT-enabled HVAC 
systems, sensor data 
integration for 
context-awareness

http://perceivelab.com/covid-ai
http://perceivelab.com/covid-ai
https://github.com/sydney0zq/covid-19-detection
https://github.com/sydney0zq/covid-19-detection
https://github.com/sydney0zq/covid-19-detection
https://covid.ourworldindata.org/data/owid-covid-data.xlsx
https://covid.ourworldindata.org/data/owid-covid-data.xlsx
https://covid.ourworldindata.org/data/owid-covid-data.xlsx
https://covid.ourworldindata.org/data/owid-covid-data.xlsx
https://www.google.com/covid19/mobility
https://www.google.com/covid19/mobility
https://www.google.com/covid19/mobility
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Technologies COVID-19 solutions 
examples 

Sample Tools—frameworks 

The AIoT was used in 
the COVID-19 pandemic 
prevention and control 
[70] 

Data collected from GPS 
location 

AI + IoT (AIoT), 5G 

CIoTVID: COVID-19: 
towards an open 
IoT-platform for 
infectious pandemic 
diseases [71] 

The NGSI protocol was 
established by the open 
mobile alliance 
(OMA) to deal with 
context information. 
The FIWARE IoT agent, 
which supports MQTT 
and lightweight M2M 
protocols, will next 
process the data. 
FIWARE is an 
open-source platform for 
controlling internet of 
things (IoT) systems. 
In FIWARE, the 
OMA NGSI interface is a 
RESTful API that can be 
accessed over HTTP 
(https://knowage. 
readthedocs.io/en/6.1.1/ 
user/NGSI/README/ 
index.html) 

CIoTVID platform 

Blockchain COVID-19 blockchain 
uses in health care [72] 

A total of 85,375 articles 
were reviewed, with 415 
full-length papers (37 of 
which were connected to 
COVID-19 and 378 
which were not) 

Ethereum and 
hyperledger platform 

Process claims and issue 
buyouts; develop a 
“digital identity” for 
healthy persons [73] 

COVID-19 related health 
data 

“Immunity certificates” 
or “immunity licenses” 

Robotic 
applications 

Robot-assisted surgery 
for gynecological cancer 
was employed during the 
COVID-19 outbreak [74] 

Healthcare providers Disposable surgical hat, 
medical protective mask 
(FFP3) with 
goggles/visor, work 
uniform, disposable 
latex gloves) 

Using four robotic arms 
to perform Senhance® 

robotic surgery at 
COVID-19 may reduce 
the risk of coronavirus 
infection among medical 
staff [75] 

To date, our hospital has 
done 100 different types 
of gynaecological 
surgeries, 10 of which 
were performed utilizing 
four robotic arms 

Senhance® robotic 
platform “https://www. 
senhance.com”

https://knowage.readthedocs.io/en/6.1.1/user/NGSI/README/index.html
https://knowage.readthedocs.io/en/6.1.1/user/NGSI/README/index.html
https://knowage.readthedocs.io/en/6.1.1/user/NGSI/README/index.html
https://knowage.readthedocs.io/en/6.1.1/user/NGSI/README/index.html
https://www.senhance.com
https://www.senhance.com
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Technologies COVID-19 solutions 
examples 

Sample Tools—frameworks 

3D printing The effect of 3D printing 
on patient education, 
diagnosis, and treatment 
in medicine [76] 

Copper3D NanoHack 
mask model, Lowell 
Makes mask design, and 
open-source 
non-adjustable venturi 
valve design, early 
reusable Prusa research 
3D 

Materialise 
“https://www. 
materialise.com/en” 

COVID-19-related 
supply shortages can be 
addressed using 3D 
printing technology [77] 

N95 respirators masks 
with CAD format, 
Ventilator valves, 

COVID-19 Specimen 
Collection Kit 

As part of a pandemic 
printing initiative, a new 
3D-printed swab for 
detecting SARS-CoV-2 
has been produced [78] 

The study experiment 
included nasal swabs 
manufactured in 3D, 50 
hospital staff who 
attended a COVID-19 
clinic processing, and 2 
patients with 
laboratory-confirmed 
COVID-19 

3DMEDiTech 
“https://www. 
3dmeditech.com” 

Mobile 
application 

Smartphone applications 
for corona virus disease 
2019 (COVID-19) and a 
quality assessment using 
the mobile application 
rating scale (MARS) [79] 

18 apps were created to 
share up-to-date 
COVID-19 information, 
and 8 were used for 
contact tracing 

PRISMA—mobile app 

Examine and rank the 
contents and features of 
the COVID-19 mobile 
applications [80] 

223 COVID-19-related 
mobile apps, 28 in the 
play store 

Both the android play 
store and the iOS app 
store include mHealth 
applications 

COVID-19, mobile 
health, and significant 
mental illness are all 
issues that need to be 
addressed [81] 

With serious mental 
illnesses (SMI) patients 

Mobile mental health 

4 The Post-COVID-19 Era and e-Health 

The use of the Internet for healthcare delivery is referred to as electronic health 
(e-Health), sometimes known as cybermedicine. Telemedicine, telesurgery, telere-
habilitation, teledentistry, and ePrescribing are only a few options available [82]. 
Certain developments in healthcare delivery worldwide have been hastened by the 
epidemic. As many governments across the world struggle to curb the outbreak,

https://www.materialise.com/en
https://www.materialise.com/en
https://www.3dmeditech.com
https://www.3dmeditech.com


eHealth has become increasingly important. While eHealth services are not new, 
their acceptance by many healthcare organizations throughout the world has been 
examined, and regulations controlling their use have been devised to speed up their 
deployment. eHealth has become a requirement to maximize resources, partly due 
to the logistical and financial demands of the COVID-19 epidemic [83]. 
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The rate of adoption varies because of the variances in pre-existing infrastructure 
between countries. Ironically, while eHealth is a critical resource for delivering 
healthcare to places with limited access to healthcare services, the same areas 
frequently lack access to the requirements for eHealth. Electricity and Internet 
access are not commonly available in low- and middle-income nations. Further-
more, the current economic situation makes it more difficult to utilize workaround 
solutions to these issues, exacerbating the problem of access [84]. Even when 
sufficient motivation exists, eHealth is not only a distant priority, but also a costly 
luxury in many countries, which ironically contributes to healthcare disparity. 

Beyond infrastructure and financing, the discussion of eHealth encompasses a 
wide range of issues. Data privacy is still a major concern and a barrier to adoption 
in many wealthy countries. Despite being partly helpful during the epidemic, public 
anxieties persist that eHealth solutions will establish a permanent governmental 
monitoring system. As a result, government mandates may have a negative impact 
on the public adoption and usage of accessible eHealth technologies [85]. Thus, 
citizens must be involved in policymaking. They must be informed of the shifting 
scene as stakeholders in continuing innovation. Individual freedoms and common 
goods must be carefully balanced. This delicate balancing act is critical for gov-
ernment preparedness for the next pandemic, which will undoubtedly occur. 

Another significant challenge confronting eHealth is end-user digital literacy. 
While continual technical improvements make the implementation of digital solu-
tions simpler, they may also increase the difference between those who are digitally 
savvy and those who are not, producing even more inequality [86]. The degree to 
which digital technologies are used limits the utilitarian gains that drive eHealth 
solutions. Digital solutions should be made as simple to use as feasible while 
retaining a high level of cybersecurity and data protection. Communication portals, 
in particular, should not be difficult to set up and should make use of existing 
consumer technologies, such as PCs and mobile phones. 

Despite the hurdles, eHealth will continue to flourish in the post-COVID age. 
Although each nation and location has a unique set of issues, worldwide legislation 
and actions have mostly favored eHealth. As previously stated, the pandemic has 
accelerated the global trend toward the adoption of a plethora of digital health 
solutions that fall under the eHealth banner. In the post-pandemic world, many of 
these are still applicable [87]. Such technology solutions would undoubtedly be 
beneficial in integrating disparate healthcare systems and perhaps lowering 
ever-increasing healthcare expenses.
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5 Medical Digital Transformation by the COVID-19 
Pandemic 

The COVID-19 pandemic served as a stimulus for the digital transformation of the 
healthcare industry. Opportunities to provide healthcare appeared in the middle of the 
pandemic’s social, economic, and regulatory uncertainties. Virtual outpatient visits 
have increased by 50–175 times in the United States, according to healthcare pro-
fessionals. Telehealth use surged 38 times since the beginning of the outbreak. 
According to McKinsey and Company, virtual care might account for up to $250 
billion in US healthcare spending. According to their findings, Telehealth is currently 
used by 46% of patients to replace canceled in-person appointments, up from 11% in 
2019. A similar upward trend was observed among healthcare providers, with 57% 
seeing telehealth in a more positive light than before the pandemic and 64% indi-
cating that they are more comfortable using virtual solutions for healthcare delivery. 

Virtual urgent care, virtual office visits, close virtual workplace visits, home 
health services, and tech-enabled medical supervision were highlighted as the major 
paths that might have the most effect. It is predicted that by using these channels to 
move to virtual delivery, 20% of all emergency department visits may be avoided, 
24% of office visits could be virtualized, and another 9% could be managed 
remotely. Furthermore, virtual home health services with technology-enabled 
medicine administration might account for 2% of all outpatient volumes, and virtual 
home health attendant services could account for 35% of normal home health 
attendant services. However, to fully achieve the promise of delivering healthcare 
electronically, two key components must be prioritized: providing the correct 
treatment in the right location and providing a positive patient experience. 

The shift to reimbursement based on outcomes as opposed to volume of service 
necessitates that patient must be cared for in the most appropriate setting. This 
means that patient populations must be segregated based on their clinical condition 
and based on their need for specialties with remote interactions that might be scaled 
up using home-based diagnostics and equipment. In addition, virtual healthcare 
delivery requires the development of provider competencies and the creation of 
incentives. Health systems must construct a sturdy infrastructure. Telehealth tech-
nology needs to be integrated with electronic health records, clinical protocols for 
appropriate telehealth visits must be defined, and hospital and physician practice 
processes must be revamped to support virtual care. Finally, measurable clinical 
outcomes must be tracked to quantify the value of virtual care [88, 89]. 

The pandemic response has forced many consumer service providers to digitize 
their services and offerings [88]. Limiting the spread of the virus was the aim, and 
convenience was the by-product. As such, patient experience, just as customer 
experience, is paramount for virtual healthcare delivery. Patient expectations of ease 
of use and equal effectiveness must be honored. Many healthcare systems have 
implemented “digital front-door services”. Digital front doors have arisen as a 
patient engagement buzzword in recent years. In its most basic definition, it refers 
to the digital means of scheduling appointments, finding and interacting with



healthcare providers, renewing medications, paying bills, and navigating the 
healthcare system among other services. Many healthcare systems have adopted 
these digital front-door services, but they remain crude. Therefore, these services 
will continue to improve [89]. 
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6 Artificial Intelligence (AI) and Supply IT Infrastructure 
During COVID-19 

With a few exceptions, most of the AI literature on COVID-19 detection is in the 
deep learning field. I have examined machine learning methods. Fully automated 
deep learning algorithms learn feature extraction directly from image data. In 
medical image processing, CNNs for deep feature representation and classification 
have demonstrated great performance, and they perform extremely well in the 
COVID-19 detection challenge. The ability of clinicians to diagnose patients is 
greatly aided by their knowledge of essential traits and patterns gained from data. 

Deep neural networks are a type of learning system that layers several neuronal 
nodes on top of the other. They are gradient-based learners, meaning that their 
parameters vary in response to the model’s classification/segmentation mistake. 
This involves employing stratified-class sampling to build up the model training, 
modifying the calculation of the learning rate over epochs, and performing a 
hyper-parameter has made significant progress in healthcare automation by pro-
viding for a variety of design alternatives that may be adjusted for significant 
features. Because of the computational capabilities of graphics processing units 
(GPUs) and distributed computing models, the proposed deep learning architectures 
can be taught and evaluated in clinical routine. Several studies have investigated a 
variety of CNN approaches, ML classifiers on deep features, capsule networks, 
CNN, and other methods for COVID-19 detection. This section examines a number 
of cutting-edge AI-based COVID-19 detection techniques. Table 2 summarizes the 
various classification and segmentation methods. 

6.1 Classification for COVID-19 

Various COVID-19 categorization research methods have been thoroughly exam-
ined. For the COVID-19 identification task, these investigations used two primary 
imaging modalities (chest X-ray/CT). The key takeaways from these books have 
been extensively examined. Chest X-ray images are considered the most reachable 
modality for diagnosing COVID-19 in the AI literature. The following are the 
several types of X-ray detection techniques: Transfer learning techniques [110– 
112], customized deep architectures [113–115], capsule networks and sequential 
CNN [116, 117], semi-supervised GAN techniques [118, 119], deep feature 
extraction and image processing techniques [120, 121], and CAD methodologies
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and optimization algorithms [122, 123]. As shown in Fig. 3, transfer learning 
models apply prior experience-based knowledge to the dataset by altering or adding 
specialized layers to match the dataset.
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Fig. 3 Transfer learning process 

In the CNN-sponsored COVID-19 study, this topic attracted a lot of attention. 
This field includes VGG networks, Residual networks, Inception, Xception CNNs, 
and a combination of architectures. Because of its ability to avoid the vanishing 
gradient problem, residual learning was a popular design paradigm in most CNN 
projects. To help in the diagnosis of COVID-19 chest X-rays, a multi-channel 
pre-trained ResNet architecture was presented [124]. Following that, three 
ResNet-based models were retrained one by one to categorize X-rays. A various 
method that includes pre-processing, augmentation, and crucial steps to implement 
transfer learning model was used to compare several networks [125]. The first stage 
used different ResNet topologies to recover viral pneumonia features from other 
pneumonia, whereas the second stage used different ResNet topologies to gain 
COVID from other viral pneumonia. A concatenation-based arrangement of transfer 
learning models was another sort of combination [126]. 

Deep features were extracted using the combined ResNet50V2 and Xception 
models to improve the classification based on feature vectors. The pretrained 
ResNet50 and InceptionV3 transfer learning architectures were employed with 
logistic regression to detect COVID-19 in a similar study [127]. 

Since COVID-19 has been related to airspace opacities in X-rays, the 
Resnet-based CNN is being used to train the task of identifying airspace opacities in 
chest X-rays [128]. The performance of multiple transfer learning CNNs has been 
compared in several different studies. For example, Minaee et al. used a 
custom-constructed dataset to report findings for four alternative architectures: 
ResNet18, ResNet50, SqueezeNet, and DenseNet-121 [89]. The performance of 
inception and Xception networks has been compared in several studies. Xception,



ResNet50, MobileNet, and Inception V3 were used to create a “recommendation 
network” that included four pre-trained architectures [129]. Pre-trained 
deep-learning models for recognizing COVID-19 or normal X-ray images (Dense-
Net121, ResNet50, VGG16, and VGG19) have also been reported. ResNet, VGG16, 
Xception, and Inception networks, as well as modified ResNet, VGG16, Xception, 
and Inception networks, were adapted for COVID-19 classification. The Xception 
net architecture was used to construct transfer learning models to correctly identify 
COVID-19 from chest X-rays. A multimodal classification model with enriched 
input data was published and tested on eight different transfer learning architectures. 
Transfer knowledge from previous designs, such as the DarkNet model, which 
started with fewer layers and filters and subsequently increased them depending on 
trial results [130]. Unlike current CNN architectures, customized CNN architectures 
are expressly created for classification applications [131]. The class decomposition 
technique is used for invention-scan irregularities in its class borders. A composite of 
three binary decision trees, each trained using a CNN model, was characterized 
using an external classifier [132]. Low-level features were extracted using a bespoke 
deep CNN model, which was then categorized using an Xception network [133]. For 
the classification of COVID-19 X-rays, the feature engineering technique was uti-
lized to choose relief features from deep features from a pre-trained AlexNet CNN. 
Many CNN architectures have convolutional and pooling layers stacked in a linear 
pattern [134]. A network was designed with a 14-layer convolutional network, and 
spatial pyramid pooling was created for the multi-scale classification architecture 
[135]. Das et al. used an approach to minimize over-fitting and model complexity, 
and a truncated architecture was created utilizing the transfer learning technique 
[136]. The simplified InceptionV3-based architecture was pre-trained on the Ima-
geNet database using an adjustable learning rate technique. Bridge et al. proposed a 
generalized extreme value distribution-based activation function that may be utilized 
with the Inception model to improve pre-trained InceptionV3 models. On unbal-
anced datasets, this resulted in a better classification performance than models using 
typical activation methods [136]. The GreyWolf Optimizer (GWO) method was 
used to optimize the architecture of the CNN feature extraction and classification 
components [137]. Many studies have backed up the effectiveness of the capsule 
network. Afshar et al. developed the COVID-CAPS model, which was pre-trained 
using an external X-ray dataset, to investigate the performance of various capsule net 
topologies [138]. A capsule network-based model with five distinct convolutional 
layers was constructed to provide richer feature maps to better understand its con-
tribution [139]. COVID Diagnosis-Net was built using Deep Bayes-SqueezeNet 
[120] to include the benefits of data enhancement and network optimization For a 
chest X-ray dataset, the network was developed using the SqueezeNet architecture, 
which was pre-trained and conducted Bayesian optimization as well as offline 
augmentation. A CycleGAN to enhance the sample count was developed using 
convolutional backbones as a feature extractor [121]. To forecast COVID-19, 
CT-based algorithms have used a range of feature extraction and assembly methods. 
Only a few studies have used the transfer learning technique for CT picture classi-
fication, in contrast to chest X-ray literature. Pathak et al. COVID-19 positive and

Artificial Intelligence and Big Data for COVID-19 Diagnosis 101



negative CT images were detected using deep transfer learning on ResNet32 with 
appropriate layers [140]. A number of studies on CT-based COVID-19 detection 
have been based on feature extraction. Yan et al., For example, based on the 
multi-scale spatial pyramid, constructed a CNN with a decomposition architecture 
(MSSP) [141], which was able to learn multi-scale feature representations without 
the need for massive amounts of training data With the Enhanced kNN algorithm, 
Shaban et al. suggested a hybrid feature selection strategy [142], When paired with a 
classifier, it’s a powerful combination. New heuristics were added to a standard kNN 
classifier, and the strategy included wrapper and filter feature selection strategies. 
Han et al. used a deep 3D multi-instance learning model to extract features at the 
instance level. To create patient-level classification, attention-based pooling of such 
instance labels is applied [143]. New heuristics were added to a standard kNN 
classifier, and the strategy included wrapper and filter feature selection strategies. 
Han et al. employed a deep 3d multi-instance learning model to extract features at the 
instance level. To produce patient-level classification, attention-based pooling of 
such instance labels is applied [124]. Similarly, Li et al. used a modified Rubik’s 
cube Pro model as the backbone of the classification network to extract 3D attributes 
using a self-supervised technique. Wang et al. changed the network topology and 
learning mechanism for cosine annealing in their previously proposed pre-trained 
COVID-Net architecture [99]. They also showed how to deal with data hetero-
geneity and improve model performance using a collaborative learning technique. 
Ztürk et al. used a 2-stage classification model using an SVM classifier in a similar 
investigation [144]. The data were lightly augmented and subjected to numerous 
feature extraction methods before being over-sampled using the SMOTE technique. 
A Q-deformed entropy-based texture feature and deep CNN features to train a 
Bi-LSTM classifier for COVID-19 identification from CT slices was employed 
[145]. The combined feature collection was refined using a statistical ANOVA. 
Solutions provide settings for parameter adjustment based on classic CNNs. 
According, Pathak et al. [95] An LSTM network-based deep bidirectional classifi-
cation model was proposed. A mixed density network is used in the bi-directional 
LSTM network, using a memetic adaptive differential evolution technique, and the 
hyperparameters were fine-tuned. COVID-19 traits were discovered from X-ray 
images using an unsupervised clustering-based technique. They used a 
self-organizing feature map to cluster infection incidences by analyzing each com-
ponent of the image separately [96]. To develop a comparison of these networks, we 
used a deep CNN architecture for COVID-19 classification that used multi-objective 
differential evolution. It is a form of genetic algorithm that uses many rounds of 
mutation, crossover, and selection to improve the search for hyperparameters [146]. 
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6.2 Segmentation for COVID-19 

Singh et al. proposed a deep CNN architecture for COVID-19 classification that 
used multi-objective differential evolution to build a network comparison. It is a 
type of genetic algorithm that optimizes the search for hyperparameters through a



series of mutation, crossover, and selection phases. Automatic COVID-19 diagnosis 
approaches employing deep learning on CT images have garnered considerable 
interest as a way to speed up the examination process. However, the number and 
type of COVID-19 diagnosis datasets that may be utilized for training are limited, 
and the number of initial COVID-19 samples is substantially smaller than the 
average, resulting in a class imbalance problem. Because some classes have a lot of 
data and others have a lot of data, segmentation algorithms have a hard time 
learning discriminative boundaries. As a result, building robust deep neural net-
works with skewed data is a difficult yet critical challenge in the diagnosis of 
COVID-19. 
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The issue of AI efforts for COVID-19 identification using X-ray modalities has 
addressed the problem of segmentation. In X-ray, only a few studies on segmenting 
COVID-19-affected areas have been conducted. This is because, unlike CT, X-ray 
characteristics for COVID-19 localization and quantification are not commonly 
used in clinical settings. COVID-19 CT symptoms have been extensively resear-
ched, and their characteristics are typically used to identify COVID-19-affected 
areas. X-rays, on the other hand, are an excellent tool for diagnosing any type of 
pneumonia, prompting some studies to use them to divide COVID-19 infections 
into subgroups. The majority of algorithms are used for optimization. Abdel-Basset 
et al. developed a meta-heuristic approach that combines the slime mold technique 
(SMA) with the whale optimization algorithm to enhance Kapur’s entropy [147]. 
The model uses thresholding approaches to extract the regions of interest in the 
X-ray image. Ground-glass or consolidative pulmonary opacities can be observed in 
the excised areas of the image. COVID-19 can manifest itself in several ways, 
including X-ray findings. On chest X-rays, the performance of the integrated SMA 
was compared to the performance of five algorithms: WOA, FireFly algorithm FFA, 
HHA, Lshade algorithm, and salp swarm. Abdel-Basset et al. proposed a hybrid 
detection model for X-ray image segmentation based on an improved marine 
predator algorithm (IMPA) and a ranking-based diversity reduction (RDR) ap-
proach [100]. The test of reverse transcription polymerase chain reaction (RT-PCR) 
[148] is used to detect viral RNA in sputum or a nasopharyngeal swab is currently 
the gold standard for detecting COVID-19. The RT-PCR test falls short of its main 
purpose of swiftly detecting and isolating positive patients due to the time it takes to 
receive results, the restricted availability of the material in hospitals, and its rela-
tively poor sensitivity. Medical imaging, such as chest radiography or computed 
tomography (CT) scanners, may be utilized as a rapid screening alternative [149]. 

6.3 COVID-19 Risk Assessment and Prognosis 

Early treatment and selection of the course of follow-up treatment are aided by 
COVID-19 risk analysis. Some studies have examined methods for predicting the 
severity of a viral infection in order to aid clinical prognosis. The assessment of the 
regression task for lung involvement and opacity in COVID-19 was modeled with



DenseNet applied to chest X-ray scans [150]. For feature extraction, fully connected 
layers were exhibited for the target predictions. Li et al. developed a convolutional 
Siamese network algorithm that learns from chest X-rays to assess COVID-19 
pulmonary disease severity [151]. 
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DenseNet121 was trained on a CheXpert dataset with weak labels as a Siamese 
network. To test the influence of COVID-19 on pulmonary risk, CNN learning was 
switched to a smaller COVID-19 training dataset that included a random forest 
classifier based on patient health data and symptoms [136]. A multivariable logistic 
regression-based risk prediction model [152] considering the input (sex, age, 
symptoms, blood test results, and CXR findings) of the patient were all taken into 
account for medical decision making. A deep learning-based survival model that 
can predict the risk of COVID-19 patients acquiring critical illness based on clinical 
parameters at the time of admission was described [153]. For survival modeling, the 
researchers developed a three-layer feed-forward neural network, which was then 
integrated with a deep learning survival Cox model, which was used to split patients 
into high- and low-risk groups, using CT-segmented lung lesion sites and clinical 
data as input. CT segmentation was used to identify consolidation (CL), 
ground-glass opacity (GGO), pulmonary effusion, and pleural effusion. Research 
into severity assessment and criticality prediction is the next stage in the automation 
of COVID-19 therapeutic regimens [154]. 

7 Big Data Management and IT Infrastructure During 
COVID-19 

Health big data offer great prospects for innovation and progress in the sector. The 
COVID-19 crisis highlighted the value of this data and its usefulness for analysis, 
information, and awareness. 

Patients who might benefit from preventative treatment or lifestyle modifications 
can be identified using big data analysis techniques; the most valuable patient 
nursing programs can be determined by collecting and analyzing medical procedure 
data; and the most valuable patient nursing programs can be determined by ana-
lyzing and drug treating patients’ health status can be determined by analyzing and 
drug treating patients’ health status. Technological advances have increased the 
volume of health data that are available exponentially. However, the sources and 
types of data remain heterogeneous and compartmentalized, making their use by 
health actors more complex [155, 156]. As shown in Fig. 4, the implementation of 
these first application cases makes it possible to deal with data collection, trans-
formation, standardization, architecture, and storage issues as they arise [157]. 

The fast spread of the epidemic, along with its ever-changing patterns and 
symptoms, makes it increasingly impossible to manage. In addition, the epidemic 
has wreaked havoc on health systems and medical resource availability in a number 
of countries throughout the world, resulting in a high fatality rate.
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Fig. 4 Big data analytics 

Individuals will be checked on a regular basis, and a remote detection device will 
help track suspected COVID-19 instances more quickly. Furthermore, the utiliza-
tion of such systems will create a vast volume of data, opening up a variety of 
opportunities for big data analytics [158] to raise the level of healthcare service 
quality open-source software, such as the Apache project’s big data components, is 
widely accessible [159]. Cloud computing and distributed environments are con-
sidered crucial for building efficient medical data applications. The Six V’s [15] are 
a set of key qualities of big data, which include value, volume, velocity, variety, 
veracity, and variability [16]. Big data analysis methodologies are more likely to be 
employed to enhance the sector’s services and performance because of the features 
of big data that apply to data obtained from the healthcare business. Because of its 
capacity to foresee epidemics using large-scale data analytics, big data is crucial for 
combatting COVID19. During local or global disease outbreaks, big data analytics 
is progressively becoming a vital component for modeling viral propagation, 
infection control, and emergency response evaluations. The topic of data quality for 
covid-19 patients is also a major challenge. With millions of data created every day, 
problems of duplicates, updates, and availability of data are frequent. Guaranteeing 
the reliability of data in its operation involves the setting up of data management 
projects (governance, roles, mapping, repositories, processes, etc.). It is essential to 
establish rules, roles, and iterative processes for data management to ensure its 
integrity in a sustainable manner [20]. The establishment of a patient data ware-
house for covid-19 can occur in the context of collecting, processing, and sharing 
massive volumes of data. A big data application can lead to privacy issues or even 
storage costs [160]. The volume and heterogeneity of health data sources and 
formats raise real complexities in terms of data integration, processing, and anal-
ysis. Current hospital information systems are generally made up of application 
silos that do not allow data to be sufficiently standardized and cross-referenced 
[161].
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Prior to the COVID-19 pandemic, infectious disease case data reports were 
extensively dependent on early sickness detection and monitoring, as well as 
improving medical institutions, information processes, and storing and gathering a 
large amount of medical service data. The hospital information system (HIS) is a 
hospital information management system [162] including: (1) laboratory informa-
tion system (LIS) [163], (2) Radiation Safety Information Management System 
(RASIMS), (3) Picture Archive and Communication System (Pacs), and Radiology 
Information System (RIS) [164] are considered the main servers implemented in 
hospital environments for data storage and management. In medical and health 
departments, data on patient coordinates, historical medical records, illnesses, test 
results, orders, operation records, and nursing records are all recorded in the 
electronic medical record system (EMRS) [31, 165]. Following the outbreak, the 
use of big data technologies to prevent and manage COVID-19 has become a 
critical step in medical decision-making. To manage epidemic monitoring and 
analysis, viral source tracking, epidemic prevention and treatment, and resource 
allocation, digital technologies such as big data, AI, and cloud computing are being 
used. 

Utilizing big data technologies, the activity patterns of verified people and close 
connections were evaluated, and an epidemic spread model was developed using 
the positioning system. There is no doubt about the predictive competence that data 
offers us, but this advantage is perhaps all the more decisive in the medical field. 
Indeed, business intelligence in healthcare aims to help physicians make 
data-driven decisions in seconds and improve the treatment of covid 19 patients. 

This is particularly useful in patients with a complex medical history and mul-
tiple comorbidities [166]. Healthcare systems that contain features and capabilities 
for analyzing massive volumes of data are known as big data analytics platforms. It 
allows medical decision-makers to sift through huge amounts of big data for pre-
viously undiscovered connections, market trends, and pertinent data. Table 3 out-
line the most common big data analytics systems and data storage management 
platforms. 

It will feasible to simplify the actions of managing covid-19 patients using big 
data solutions in the healthcare industry. Time-constrained medical institutions may 
maximize staffing while anticipating diagnostic demands by using the correct 
human resource analytics, therefore expediting the treatment of patients afflicted by 
covid19. To combat the danger of covid-19, big data and healthcare are essential. 
This may also aid in the prevention of degeneration. Healthcare facilities can give 
correct preventative care and eventually account for hospital admissions by 
examining information such as kind of medicine, symptoms, and frequency of 
medical visits, among other things. This degree of risk assessment will not only 
result in lower inpatient expenditure, but it will also guarantee that space and 
resources are accessible to individuals who need them.
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Table 3 Summary of big data tools 

Tools Features Availability 

Apache 
Hadoop [167] 

Hadoop distributed file system (HDFS) 
distributed parallel processing of enormous 
amounts of data, including MapReduce YARN 
data storage and distributed processing (“yet 
another resource negotiator”) 

https://hadoop.apache.org 

IBM [168] IBM big SQL, apache spark, text analytics, and 
data visualization are just a few of the big data 
tools available 

https://www.ibm.com/ 
analytics/hadoop/big-data-
analytics 

Amazon [169] Data storage, data analysis systems data 
analytics is a term that refers to the study of 
apache spark, hive, presto, and other big data 
applications can be easily performed and 
scaled. scalable and easy to use apache spark, 
hive, presto, and other big data workloads 

https://aws.amazon.com/ 
emr/?c=a&sec=srv 

Microsoft azure 
[170] 

Using a cloud-based big data platform, you 
may design, assess, build, and manage 
applications. It offers the following goods and 
services: software as a service (SaaS) (SAAS). 
PaaS (platform as a service) is a term for 
infrastructure that is offered as a service 

https://azure.microsoft.com/ 
en-us/industries/healthcare/ 

Knime [171] KNIME Server is corporate software that 
enables data scientists to collaborate, automate, 
manage, and deploy analytical applications and 
services. Non-experts may use the KNIME 
WebPortal or REST APIs to access data 
science 

https://www.knime.com 

Datameer [172] Tools for data administration and modeling that 
are easy to use. Datameer spectrum is a 
non-programmable ETL++ tool and platform 

https://www.datameer.com/ 
healthcare/ 

Apache 
Cassandra [173] 

Database management system with several 
servers and a distributed database 

https://cassandra.apache. 
org/_/index.html 

Chukwa [174] Hadoop distributed file system (HDFS) https://chukwa.apache.org 

Rapiminer [171] Regulatory compliance needs a thorough grasp 
of difficult data issues 

https://rapidminer.com/ 
industry/healthcare/ 

BigML [175] BigML encrypts all connections using HTTPS, 
ensuring the safety of user data and 
discussions. The BigML team does not have 
access to any data in the system unless the user 
grants explicit permission 

https://bigml.com 

COVID-QF 
[176] 

Over COVID-19, a big data-based framework 
for complex query execution 

https://github.com/ 
cqframework/covid-19 

Apache spark 
[177] 

Using apache spark, a multi-dimensional big 
data storing system for generated COVID-19 
large-scale data 

https://spark.apache.org

https://hadoop.apache.org
https://www.ibm.com/analytics/hadoop/big-data-analytics
https://www.ibm.com/analytics/hadoop/big-data-analytics
https://www.ibm.com/analytics/hadoop/big-data-analytics
https://aws.amazon.com/emr/?c=a&sec=srv
https://aws.amazon.com/emr/?c=a&sec=srv
https://azure.microsoft.com/en-us/industries/healthcare/
https://azure.microsoft.com/en-us/industries/healthcare/
https://www.knime.com
https://www.datameer.com/healthcare/
https://www.datameer.com/healthcare/
https://cassandra.apache.org/_/index.html
https://cassandra.apache.org/_/index.html
https://chukwa.apache.org
https://rapidminer.com/industry/healthcare/
https://rapidminer.com/industry/healthcare/
https://bigml.com
https://github.com/cqframework/covid-19
https://github.com/cqframework/covid-19
https://spark.apache.org
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8 Conclusion 

The COVID-19 outbreak has sparked great concern around the world. In a silver 
lining, the uproar may act as a motivation for artificial intelligence research and 
development to assist medical personnel in combatting the epidemic. While the 
advantages are clear, artificial intelligence models will never be able to completely 
replace doctors and radiologists. Nonetheless, in recent years, computer-assisted 
techniques for medical image processing have made significant progress, boosting 
medical research and practical applications. Recent research using deep learning 
and machine learning architectures has demonstrated the reliability of image-based 
COVID-19 diagnosis. The goal of this research is to examine how far these designs 
have progressed in terms of categorization and segmentation of COVID-19 
symptoms using the modalities that have been used. The COVID-19 outbreak has 
sparked great concern around the world. In a silver lining, the uproar may act as a 
motivation for artificial intelligence research and development to assist medical 
personnel in combatting the epidemic. While the advantages are clear, artificial 
intelligence models will never be able to completely replace doctors and radiolo-
gists. Nonetheless, in recent years, computer-assisted techniques for medical image 
processing have made significant progress, boosting medical research and practical 
applications. The reliability of image-based COVID-19 diagnosis has been estab-
lished in recent research employing deep learning and machine learning architec-
tures. This study aims to examine the current accomplishments and progress of 
these architectures in the classification and segmentation of COVID-19 infection 
manifestations using the modalities utilized. Despite these advances, significant 
barriers remain, preventing future growth. Because of the urgency of this epidemic, 
humanity is counting scientific ingenuity to find a cure. Breakthroughs may happen 
quicker if medical practitioners and radiologists are engaged in the conceptual-
ization and building of a framework for artificial intelligence models. While deep 
learning and machine learning have shown promise in the medical field, they also 
have great promise in other image-based classification and segmentation problems. 

The massive amount of time and resources necessary, as well as hefty imple-
mentation costs, are now impeding this potential. Insufficient and uneven data are 
another difficulty for classification and segmentation algorithms, which leads to 
overfitting and erroneous predictions. Further advancements and innovations aimed 
at overcoming these limitations may significantly contribute to advances in 
biomedical image processing. 

Controlling an epidemic requires a complete understanding of its features and 
behavior, which may be discovered through the collection and analysis of relevant 
big data. Big data analytics are critical for obtaining the data needed to make 
judgments and take precautionary steps. The huge volumes of data currently 
available pose technical challenges for their storage and operational capacities. 
Increasingly complex computer and statistical programs and algorithms are 
required.



References

Artificial Intelligence and Big Data for COVID-19 Diagnosis 109

1. Ejima K, Kim KS, Ludema C, Bento AI, Iwanami S, Fujita Y, Ohashi H, Koizumi Y, 
Watashi K, Aihara K, Nishiura H, Iwami S (2021) Estimation of the incubation period of 
COVID-19 using viral load data. Epidemics 35:100454. https://doi.org/10.1016/j.epidem. 
2021.100454 

2. Zaki N, Mohamed EA (2021) The estimations of the COVID-19 incubation period: a 
scoping reviews of the literature. J Infect Public Health 14:638–646. https://doi.org/10.1016/ 
j.jiph.2021.01.019 

3. Teotônio IMSN, de Carvalho JL, Castro LC, Nitz N, Hagström L, Rios GG, de Fátima 
Rodrigues de Oliveira M, Dallago BSL, Hecht M (2021) Clinical and biochemical 
parameters of COVID-19 patients with prior or active dengue fever. Acta Tropica 
214:105782. https://doi.org/10.1016/j.actatropica.2020.105782 

4. Owais M, Yoon HS, Mahmood T, Haider A, Sultan H, Park KR (2021) Light-weighted 
ensemble network with multilevel activation visualization for robust diagnosis of COVID19 
pneumonia from large-scale chest radiographic database. Appl Soft Comput 108:107490. 
https://doi.org/10.1016/j.asoc.2021.107490 

5. Rosas J, Liaño FP, Cantó ML, Barea JMC, Beser AR, Rabasa JTA, Adsuar FM, Auli BV, 
López IF, Sainz AMG, Ramis PE, Pérez LR, Rebollo MLN, Lorido RH, Escolar LG (2020) 
Experience with the use of baricitinib and tocilizumab monotherapy or combined, in patients 
with interstitial pneumonia secondary to coronavirus COVID19: a real-world study. 
Reumatología Clínica. https://doi.org/10.1016/j.reuma.2020.10.009 

6. Karthik R, Menaka R, Hariharan M, Kathiresan GS (2021) AI for COVID-19 detection from 
radiographs: incisive analysis of state of the art techniques, key challenges and future 
directions. IRBM. https://doi.org/10.1016/j.irbm.2021.07.002 

7. Xie Y, Wang X, Yang P, Zhang S (2020) COVID-19 complicated by acute pulmonary 
embolism. Radiol Cardiothoracic Imaging 2:e200067. https://doi.org/10.1148/ryct.2020200067 

8. Shuja J, Alanazi E, Alasmary W, Alashaikh A (2020) COVID-19 open source data sets: a 
comprehensive survey. Appl Intell:1–30. https://doi.org/10.1007/s10489-020-01862-6 

9. Alsharif W, Qurashi A (2021) Effectiveness of COVID-19 diagnosis and management tools: 
a review. Radiography (Lond) 27:682–687. https://doi.org/10.1016/j.radi.2020.09.010 

10. Alakus TB, Turkoglu I (2020) Comparison of deep learning approaches to predict 
COVID-19 infection. Chaos Solitons Fractals 140:110120. https://doi.org/10.1016/j.chaos. 
2020.110120 

11. Sufian A, Ghosh A, Sadiq AS, Smarandache F (2020) A survey on deep transfer learning to 
edge computing for mitigating the COVID-19 pandemic. J Syst Architect 108:101830. 
https://doi.org/10.1016/j.sysarc.2020.101830 

12. Singh S, Parmar KS, Makkhan SJS, Kaur J, Peshoria S, Kumar J (2020) Study of ARIMA 
and least square support vector machine (LS-SVM) models for the prediction of 
SARS-CoV-2 confirmed cases in the most affected countries. Chaos Solitons Fractals 
139:110086. https://doi.org/10.1016/j.chaos.2020.110086 

13. Bachhety S, Kapania S, Jain R (2021) 2—big data analytics for healthcare: theory and 
applications. In: Khanna A, Gupta D, Dey N (eds) Applications of big data in healthcare. 
Academic Press, pp 45–67 

14. Renugadevi N, Saravanan S, Naga Sudha CM (2021) Revolution of smart healthcare 
materials in big data analytics. Mater Today Proc. https://doi.org/10.1016/j.matpr.2021.04. 
256 

15. Andreu-Perez J, Poon CCY, Merrifield RD, Wong STC, Yang G-Z (2015) Big data for 
health. IEEE J Biomed Health Inform 19:1193–1208. https://doi.org/10.1109/JBHI.2015. 
2450362 

16. Hagar Y, Albers D, Pivovarov R, Chase H, Dukic V, Elhadad N (2014) Survival analysis 
with electronic health record data: experiments with chronic kidney disease. Stat Anal Data 
Min 7:385–403. https://doi.org/10.1002/sam.11236

http://dx.doi.org/10.1016/j.epidem.2021.100454
http://dx.doi.org/10.1016/j.epidem.2021.100454
http://dx.doi.org/10.1016/j.jiph.2021.01.019
http://dx.doi.org/10.1016/j.jiph.2021.01.019
http://dx.doi.org/10.1016/j.actatropica.2020.105782
http://dx.doi.org/10.1016/j.asoc.2021.107490
http://dx.doi.org/10.1016/j.reuma.2020.10.009
http://dx.doi.org/10.1016/j.irbm.2021.07.002
http://dx.doi.org/10.1148/ryct.2020200067
http://dx.doi.org/10.1007/s10489-020-01862-6
http://dx.doi.org/10.1016/j.radi.2020.09.010
http://dx.doi.org/10.1016/j.chaos.2020.110120
http://dx.doi.org/10.1016/j.chaos.2020.110120
http://dx.doi.org/10.1016/j.sysarc.2020.101830
http://dx.doi.org/10.1016/j.chaos.2020.110086
http://dx.doi.org/10.1016/j.matpr.2021.04.256
http://dx.doi.org/10.1016/j.matpr.2021.04.256
http://dx.doi.org/10.1109/JBHI.2015.2450362
http://dx.doi.org/10.1109/JBHI.2015.2450362
http://dx.doi.org/10.1002/sam.11236


110 H. Sakly et al.

17. Wang L, Alexander C (2021) Chapter 2—big data in personalized healthcare. In: 
Moustafa AA (ed) Big data in psychiatry #x0026; neurology. Academic Press, pp 35–49 

18. Chugh S, Kumaram S, Sharma DK (2021) 3—application of tools and techniques of big data 
analytics for healthcare system. In: Khanna A, Gupta D, Dey N (eds) Applications of big 
data in healthcare. Academic Press, pp 69–84 

19. Chae S, Kwon S, Lee D (2018) Predicting infectious disease using deep learning and big 
data. Int J Environ Res Public Health 15:E1596. https://doi.org/10.3390/ijerph15081596 

20. Bansal S, Chowell G, Simonsen L, Vespignani A, Viboud C (2016) Big data for infectious 
disease surveillance and modeling. J Infect Dis 214:S375–S379. https://doi.org/10.1093/ 
infdis/jiw400 

21. Eisenstein M (2018) Infection forecasts powered by big data. Nature 555:S2–S4. https://doi. 
org/10.1038/d41586-018-02473-5 

22. Mangono T, Smittenaar P, Caplan Y, Huang VS, Sutermaster S, Kemp H, Sgaier SK (2021) 
Information-seeking patterns during the COVID-19 pandemic across the United States: 
longitudinal analysis of google trends data. J Med Internet Res 23:e22933. https://doi.org/10. 
2196/22933 

23. Chen C-M, Jyan H-W, Chien S-C, Jen H-H, Hsu C-Y, Lee P-C, Lee C-F, Yang Y-T, Chen 
M-Y, Chen L-S, Chen H-H, Chan C-C (2020) Containing COVID-19 among 627,386 
persons in contact with the diamond princess cruise ship passengers who disembarked in 
Taiwan: big data analytics. J Med Internet Res 22:e19540. https://doi.org/10.2196/19540 

24. Zhang S, Diao M, Yu W, Pei L, Lin Z, Chen D (2020) Estimation of the reproductive 
number of novel coronavirus (COVID-19) and the probable outbreak size on the diamond 
princess cruise ship: a data-driven analysis. Int J Infect Dis 93:201–204. https://doi.org/10. 
1016/j.ijid.2020.02.033 

25. Padden JS (2020) Informatics X-men evolution to combat COVID-19. Nurse Lead 18:557– 
560. https://doi.org/10.1016/j.mnl.2020.09.005 

26. Reeves JJ, Hollandsworth HM, Torriani FJ, Taplitz R, Abeles S, Tai-Seale M, Millen M, 
Clay BJ, Longhurst CA (2020) Rapid response to COVID-19: health informatics support for 
outbreak management in an academic health system. J Am Med Inform Assoc 27:853–859. 
https://doi.org/10.1093/jamia/ocaa037 

27. Werley HH, Devine EC, Zorn CR, Ryan P, Westra BL (1991) The nursing minimum data 
set: abstraction tool for standardized, comparable, essential data. Am J Public Health 
81:421–426 

28. Dixon BE (2020) Applied public health informatics: an eHealth discipline focused on 
populations. J Int Soc Telemed eHealth 8:e14(1–8). https://doi.org/10.29086/JISfTeH.8.e14 

29. Grange ES, Neil EJ, Stoffel M, Singh AP, Tseng E, Resco-Summers K, Fellner BJ, 
Lynch JB, Mathias PC, Mauritz-Miller K, Sutton PR, Leu MG (2020) Responding to 
COVID-19: the UW medicine information technology services experience. Appl Clin 
Inform 11:265–275. https://doi.org/10.1055/s-0040-1709715 

30. Vilendrer S, Patel B, Chadwick W, Hwa M, Asch S, Pageler N, Ramdeo R, 
Saliba-Gustafsson EA, Strong P, Sharp C (2020) Rapid deployment of inpatient 
telemedicine in response to COVID-19 across three health systems. J Am Med Inform 
Assoc 27:1102–1109. https://doi.org/10.1093/jamia/ocaa077 

31. Huang Y, Li X, Zhang G-Q (2021) ELII: a novel inverted index for fast temporal query, with 
application to a large COVID-19 EHR dataset. J Biomed Inform 117:103744. https://doi.org/ 
10.1016/j.jbi.2021.103744 

32. Dagliati A, Malovini A, Tibollo V, Bellazzi R (2021) Health informatics and EHR to support 
clinical research in the COVID-19 pandemic: an overview. Brief Bioinform 22:812–822. 
https://doi.org/10.1093/bib/bbaa418 

33. Moore JH, Barnett I, Boland MR, Chen Y, Demiris G, Gonzalez-Hernandez G, Herman DS, 
Himes BE, Hubbard RA, Kim D, Morris JS, Mowery DL, Ritchie MD, Shen L, 
Urbanowicz R, Holmes JH (2020) Ideas for how informaticians can get involved with 
COVID-19 research. BioData Mining 13:3. https://doi.org/10.1186/s13040-020-00213-y

http://dx.doi.org/10.3390/ijerph15081596
http://dx.doi.org/10.1093/infdis/jiw400
http://dx.doi.org/10.1093/infdis/jiw400
http://dx.doi.org/10.1038/d41586-018-02473-5
http://dx.doi.org/10.1038/d41586-018-02473-5
http://dx.doi.org/10.2196/22933
http://dx.doi.org/10.2196/22933
http://dx.doi.org/10.2196/19540
http://dx.doi.org/10.1016/j.ijid.2020.02.033
http://dx.doi.org/10.1016/j.ijid.2020.02.033
http://dx.doi.org/10.1016/j.mnl.2020.09.005
http://dx.doi.org/10.1093/jamia/ocaa037
http://dx.doi.org/10.29086/JISfTeH.8.e14
http://dx.doi.org/10.1055/s-0040-1709715
http://dx.doi.org/10.1093/jamia/ocaa077
http://dx.doi.org/10.1016/j.jbi.2021.103744
http://dx.doi.org/10.1016/j.jbi.2021.103744
http://dx.doi.org/10.1093/bib/bbaa418
http://dx.doi.org/10.1186/s13040-020-00213-y


Artificial Intelligence and Big Data for COVID-19 Diagnosis 111

34. Brown JS, Bastarache L, Weiner MG (2021) Aggregating electronic health record data for 
COVID-19 research—caveat emptor. JAMA Netw Open 4:e2117175. https://doi.org/10. 
1001/jamanetworkopen.2021.17175 

35. Pryor R, Atkinson C, Cooper K, Doll M, Godbout E, Stevens MP, Bearman G (2020) The 
electronic medical record and COVID-19: is it up to the challenge? Am J Infect Control 
48:966–967. https://doi.org/10.1016/j.ajic.2020.05.002 

36. Bowman S (2013) Impact of electronic health record systems on information integrity: 
quality and safety implications. Perspect Health Inf Manage 10:1c 

37. Zarour M, Alenezi M, Ansari MTJ, Pandey AK, Ahmad M, Agrawal A, Kumar R, Khan RA 
(2021) Ensuring data integrity of healthcare information in the era of digital health. Healthc 
Technol Lett 8:66–77. https://doi.org/10.1049/htl2.12008 

38. Graber ML, Byrne C, Johnston D (2017) The impact of electronic health records on 
diagnosis. Diagnosis (Berl) 4:211–223. https://doi.org/10.1515/dx-2017-0012 

39. Zahabi M, Kaber DB, Swangnetr M (2015) Usability and safety in electronic medical 
records interface design: a review of recent literature and guideline formulation. Hum 
Factors 57:805–834. https://doi.org/10.1177/0018720815576827 

40. Wu G, Yang P, Xie Y, Woodruff HC, Rao X, Guiot J, Frix A-N, Louis R, Moutschen M, 
Li J, Li J, Yan C, Du D, Zhao S, Ding Y, Liu B, Sun W, Albarello F, D’Abramo A, Schininà 
V, Nicastri E, Occhipinti M, Barisione G, Barisione E, Halilaj I, Lovinfosse P, Wang X, 
Wu J, Lambin P (2020) Development of a clinical decision support system for severity risk 
prediction and triage of COVID-19 patients at hospital admission: an international 
multicentre study. Eur Respir J 56:2001104. https://doi.org/10.1183/13993003.01104-2020 

41. Dixon BE, Grannis SJ, McAndrews C, Broyles AA, Mikels-Carrasco W, Wiensch A, 
Williams JL, Tachinardi U, Embi PJ (2021) Leveraging data visualization and a statewide 
health information exchange to support COVID-19 surveillance and response: application of 
public health informatics. J Am Med Inform Assoc 28:1363–1373. https://doi.org/10.1093/ 
jamia/ocab004 

42. Bookman RJ, Cimino JJ, Harle CA, Kost RG, Mooney S, Pfaff E, Rojevsky S, Tobin JN, 
Wilcox A, Tsinoremas NF (2021) Research informatics and the COVID-19 pandemic: 
challenges, innovations, lessons learned, and recommendations. J Clin Transl Sci 5.https:// 
doi.org/10.1017/cts.2021.26 

43. Sein MK (2020) The serendipitous impact of COVID-19 pandemic: a rare opportunity for 
research and practice. Int J Inf Manage 55:102164. https://doi.org/10.1016/j.ijinfomgt.2020. 
102164 

44. Richter A (2020) Locked-down digital work. Int J Inf Manage 55:102157. https://doi.org/10. 
1016/j.ijinfomgt.2020.102157 

45. Pranggono B, Arabo A (2021) COVID-19 pandemic cybersecurity issues. Internet Technol 
Lett 4:e247. https://doi.org/10.1002/itl2.247 

46. O’Leary DE (2020) Evolving information systems and technology research issues for 
COVID-19 and other pandemics. J Organ Comput Electron Commer 30:1–8. https://doi.org/ 
10.1080/10919392.2020.1755790 

47. Dwivedi YK, Hughes DL, Coombs C, Constantiou I, Duan Y, Edwards JS, Gupta B, Lal B, 
Misra S, Prashant P, Raman R, Rana NP, Sharma SK, Upadhyay N (2020) Impact of 
COVID-19 pandemic on information management research and practice: transforming 
education, work and life. Int J Inf Manage 55:102211. https://doi.org/10.1016/j.ijinfomgt. 
2020.102211 

48. Sharma A, Borah SB, Moses AC (2021) Responses to COVID-19: the role of governance, 
healthcare infrastructure, and learning from past pandemics. J Bus Res 122:597–607. https:// 
doi.org/10.1016/j.jbusres.2020.09.011 

49. Rehani B, Rodriguez JA, Nguyen JK, Patel MM, Ammanuel SG, Winford E, Dillon WP 
(2021) COVID-19 radiology preparedness, challenges & opportunities: responses from 18 
countries. Curr Probl Diagn Radiol. https://doi.org/10.1067/j.cpradiol.2021.03.017

http://dx.doi.org/10.1001/jamanetworkopen.2021.17175
http://dx.doi.org/10.1001/jamanetworkopen.2021.17175
http://dx.doi.org/10.1016/j.ajic.2020.05.002
http://dx.doi.org/10.1049/htl2.12008
http://dx.doi.org/10.1515/dx-2017-0012
http://dx.doi.org/10.1177/0018720815576827
http://dx.doi.org/10.1183/13993003.01104-2020
http://dx.doi.org/10.1093/jamia/ocab004
http://dx.doi.org/10.1093/jamia/ocab004
http://dx.doi.org/10.1017/cts.2021.26
http://dx.doi.org/10.1017/cts.2021.26
http://dx.doi.org/10.1016/j.ijinfomgt.2020.102164
http://dx.doi.org/10.1016/j.ijinfomgt.2020.102164
http://dx.doi.org/10.1016/j.ijinfomgt.2020.102157
http://dx.doi.org/10.1016/j.ijinfomgt.2020.102157
http://dx.doi.org/10.1002/itl2.247
http://dx.doi.org/10.1080/10919392.2020.1755790
http://dx.doi.org/10.1080/10919392.2020.1755790
http://dx.doi.org/10.1016/j.ijinfomgt.2020.102211
http://dx.doi.org/10.1016/j.ijinfomgt.2020.102211
http://dx.doi.org/10.1016/j.jbusres.2020.09.011
http://dx.doi.org/10.1016/j.jbusres.2020.09.011
http://dx.doi.org/10.1067/j.cpradiol.2021.03.017


112 H. Sakly et al.

50. Gupta D, Bhatt S, Gupta M, Tosun AS (2021) Future smart connected communities to fight 
COVID-19 outbreak. Internet Things 13:100342. https://doi.org/10.1016/j.iot.2020.100342 

51. Shahroz M, Ahmad F, Younis MS, Ahmad N, Kamel Boulos MN, Vinuesa R, Qadir J 
(2021) COVID-19 digital contact tracing applications and techniques: a review post initial 
deployments. Transp Eng 5:100072. https://doi.org/10.1016/j.treng.2021.100072 

52. Goel I, Sharma S, Kashiramka S (2021) Effects of the COVID-19 pandemic in India: an 
analysis of policy and technological interventions. Health Policy Technol 10:151–164. 
https://doi.org/10.1016/j.hlpt.2020.12.001 

53. Dodoo JE, Al-Samarraie H, Alzahrani AI (2021) Telemedicine use in sub-Saharan Africa: 
barriers and policy recommendations for COVID-19 and beyond. Int J Med Informatics 
151:104467. https://doi.org/10.1016/j.ijmedinf.2021.104467 

54. Brohi S, Zaman N, Brohi N, Brohi MN (2020) Key applications of state-of-the-art 
technologies to mitigate and eliminate COVID-19 

55. Sipior JC (2020) Considerations for development and use of AI in response to COVID-19. 
Int J Inf Manage 55:102170. https://doi.org/10.1016/j.ijinfomgt.2020.102170 

56. Laliève L, Adam J, Nataf P, Khonsari RH (2021) 3D-printed suture guide for thoracic and 
cardiovascular surgery produced during the COVID19 pandemic. Ann 3D Printed Med 
1:100005. https://doi.org/10.1016/j.stlm.2020.100005 

57. Bragazzi NL, Dai H, Damiani G, Behzadifar M, Martini M, Wu J (2020) How big data and 
artificial intelligence can help better manage the COVID-19 pandemic. Int J Environ Res 
Public Health 17:E3176. https://doi.org/10.3390/ijerph17093176 

58. Kalgotra P, Gupta A, Sharda R (2021) Pandemic information support lifecycle: evidence 
from the evolution of mobile apps during COVID-19. J Bus Res 134:540–559. https://doi. 
org/10.1016/j.jbusres.2021.06.002 

59. Singh RP, Javaid M, Haleem A, Suman R (2020) Internet of things (IoT) applications to 
fight against COVID-19 pandemic. Diabetes Metab Syndr 14:521–524. https://doi.org/10. 
1016/j.dsx.2020.04.041 

60. Otoom M, Otoum N, Alzubaidi MA, Etoom Y, Banihani R (2020) An IoT-based framework 
for early identification and monitoring of COVID-19 cases. Biomed Signal Process Control 
62:102149. https://doi.org/10.1016/j.bspc.2020.102149 

61. Fusco A, Dicuonzo G, Dell’Atti V, Tatullo M (2020) Blockchain in healthcare: insights on 
COVID-19. Int J Environ Res Public Health 17:E7167. https://doi.org/10.3390/ijerph17197167 

62. Tan L, Tivey D, Kopunic H, Babidge W, Langley S, Maddern G (2020) Part 2: blockchain 
technology in health care. ANZ J Surg 90:2415–2419. https://doi.org/10.1111/ans.16455 

63. Pennisi M, Kavasidis I, Spampinato C, Schinina V, Palazzo S, Salanitri FP, Bellitto G, 
Rundo F, Aldinucci M, Cristofaro M, Campioni P, Pianura E, Di Stefano F, Petrone A, 
Albarello F, Ippolito G, Cuzzocrea S, Conoci S (2021) An explainable AI system for 
automated COVID-19 assessment and lesion categorization from CT-scans. Artif Intell Med 
118:102114. https://doi.org/10.1016/j.artmed.2021.102114 

64. Ronaghi F, Salimibeni M, Naderkhani F, Mohammadi A (2022) COVID19-HPSMP: 
COVID-19 adopted hybrid and parallel deep information fusion framework for stock price 
movement prediction. Expert Syst Appl 187:115879. https://doi.org/10.1016/j.eswa.2021. 
115879 

65. Wang X, Deng X, Fu Q, Zhou Q, Feng J, Ma H, Liu W, Zheng C (2020) A weakly-supervised 
framework for COVID-19 classification and lesion localization from chest CT. IEEE Trans 
Med Imaging 39:2615–2625. https://doi.org/10.1109/TMI.2020.2995965 

66. Sitaula C, Aryal S (2021) New bag of deep visual words based features to classify chest 
x-ray images for COVID-19 diagnosis. Health Inf Sci Syst 9:24. https://doi.org/10.1007/ 
s13755-021-00152-w 

67. Sözen ME, Sarıyer G, Ataman MG (2021) Big data analytics and COVID-19: investigating 
the relationship between government policies and cases in Poland, Turkey and South Korea. 
Health Policy Plann. https://doi.org/10.1093/heapol/czab096 

68. Roberts SL. Tracking COVID-19 using big data and big tech: a digital Pandora’s Box

http://dx.doi.org/10.1016/j.iot.2020.100342
http://dx.doi.org/10.1016/j.treng.2021.100072
http://dx.doi.org/10.1016/j.hlpt.2020.12.001
http://dx.doi.org/10.1016/j.ijmedinf.2021.104467
http://dx.doi.org/10.1016/j.ijinfomgt.2020.102170
http://dx.doi.org/10.1016/j.stlm.2020.100005
http://dx.doi.org/10.3390/ijerph17093176
http://dx.doi.org/10.1016/j.jbusres.2021.06.002
http://dx.doi.org/10.1016/j.jbusres.2021.06.002
http://dx.doi.org/10.1016/j.dsx.2020.04.041
http://dx.doi.org/10.1016/j.dsx.2020.04.041
http://dx.doi.org/10.1016/j.bspc.2020.102149
http://dx.doi.org/10.3390/ijerph17197167
http://dx.doi.org/10.1111/ans.16455
http://dx.doi.org/10.1016/j.artmed.2021.102114
http://dx.doi.org/10.1016/j.eswa.2021.115879
http://dx.doi.org/10.1016/j.eswa.2021.115879
http://dx.doi.org/10.1109/TMI.2020.2995965
http://dx.doi.org/10.1007/s13755-021-00152-w
http://dx.doi.org/10.1007/s13755-021-00152-w
http://dx.doi.org/10.1093/heapol/czab096


Artificial Intelligence and Big Data for COVID-19 Diagnosis 113

69. Umair M, Cheema MA, Cheema O, Li H, Lu H (2021) Impact of COVID-19 on IoT 
adoption in healthcare, smart homes, smart buildings, smart cities. Transp Ind IoT Sensors 
21:3838. https://doi.org/10.3390/s21113838 

70. Chen S-W, Gu X-W, Wang J-J, Zhu H-S (2021) AIoT used for COVID-19 pandemic 
prevention and control. Contrast Media &#x26 Mole Imaging 2021:e3257035. https://doi. 
org/10.1155/2021/3257035 

71. Ramallo-González AP, González-Vidal A, Skarmeta AF (2021) CIoTVID: Towards an open 
IoT-platform for infective pandemic diseases such as COVID-19. Sensors (Basel) 21:E484. 
https://doi.org/10.3390/s21020484 

72. Ng WY, Tan T-E, Movva PVH, Fang AHS, Yeo K-K, Ho D, Foo FSS, Xiao Z, Sun K, 
Wong TY, Sia AT-H, Ting DSW (2021) Blockchain applications in health care for 
COVID-19 and beyond: a systematic review. Lancet Digit Health S2589–7500(21):00210– 
00217. https://doi.org/10.1016/S2589-7500(21)00210-7 

73. Bansal A, Garg C, Padappayil RP (2020) Optimizing the implementation of COVID-19 
“immunity certificates” using blockchain. J Med Syst 44:140. https://doi.org/10.1007/ 
s10916-020-01616-4 

74. Kimmig R, Verheijen RHM, Rudnicki M (2020) Robot assisted surgery during the 
COVID-19 pandemic, especially for gynecological cancer: a statement of the society of 
European robotic gynaecological surgery (SERGS). J Gynecol Oncol 31:e59. https://doi.org/ 
10.3802/jgo.2020.31.e59 

75. Samalavicius NE, Siaulys R, Janusonis V, Klimasauskiene V, Dulskas A (2020) Use of 4 
robotic arms performing Senhance® robotic surgery may reduce the risk of coronavirus 
infection to medical professionals during COVID-19. Euro J Obstetrics Gynecol Reprod 
Biol 251:274–275. https://doi.org/10.1016/j.ejogrb.2020.06.014 

76. Tino R, Moore R, Antoline S, Ravi P, Wake N, Ionita CN, Morris JM, Decker SJ, Sheikh A, 
Rybicki FJ, Chepelev LL (2020) COVID-19 and the role of 3D printing in medicine. 3D 
Print Med 6:11. https://doi.org/10.1186/s41205-020-00064-7 

77. Ishack S, Lipner SR (2020) Applications of 3D printing technology to address COVID-19— 
related supply shortages. Am J Med 133:771–773. https://doi.org/10.1016/j.amjmed.2020. 
04.002 

78. Williams E, Bond K, Isles N, Chong B, Johnson D, Druce J, Hoang T, Ballard SA, Hall V, 
Muhi S, Buising KL, Lim S, Strugnell D, Catton M, Irving LB, Howden BP, Bert E, 
Williamson DA (2020) Pandemic printing: a novel 3D-printed swab for detecting 
SARS-CoV-2. Med J Aust 213:276–279. https://doi.org/10.5694/mja2.50726 

79. Davalbhakta S, Advani S, Kumar S, Agarwal V, Bhoyar S, Fedirko E, Misra DP, Goel A, 
Gupta L, Agarwal V (2020) A systematic review of smartphone applications available for 
corona virus disease 2019 (COVID19) and the assessment of their quality using the mobile 
application rating scale (MARS). J Med Syst 44:164. https://doi.org/10.1007/s10916-020-
01633-3 

80. Ming LC, Untong N, Aliudin NA, Osili N, Kifli N, Tan CS, Goh KW, Ng PW, Al-Worafi
YM, Lee KS, Goh HP (2020) Mobile health apps on COVID-19 launched in the early days 
of the pandemic: content analysis and review. JMIR Mhealth Uhealth 8:e19796. https://doi. 
org/10.2196/19796 

81. Torous J, Keshavan M (2020) COVID-19, mobile health and serious mental illness. 
Schizophr Res 218:36–37. https://doi.org/10.1016/j.schres.2020.04.013 

82. Eysenbach G (2001) What is e-health? J Med Internet Res 3:e833. https://doi.org/10.2196/ 
jmir.3.2.e20 

83. Bitar H, Alismail S (2021) The role of eHealth, telehealth, and telemedicine for chronic 
disease patients during COVID-19 pandemic: a rapid systematic review. Digit Health 
7:20552076211009396. https://doi.org/10.1177/20552076211009396 

84. Li J, Seale H, Ray P, Rawlinson W, Lewis L, Macintyre CR (2012) Issues regarding the 
implementation of eHealth: preparing for future influenza pandemics. Interact J Med Res 1: 
e20. https://doi.org/10.2196/ijmr.2357

http://dx.doi.org/10.3390/s21113838
http://dx.doi.org/10.1155/2021/3257035
http://dx.doi.org/10.1155/2021/3257035
http://dx.doi.org/10.3390/s21020484
http://dx.doi.org/10.1016/S2589-7500(21)00210-7
http://dx.doi.org/10.1007/s10916-020-01616-4
http://dx.doi.org/10.1007/s10916-020-01616-4
http://dx.doi.org/10.3802/jgo.2020.31.e59
http://dx.doi.org/10.3802/jgo.2020.31.e59
http://dx.doi.org/10.1016/j.ejogrb.2020.06.014
http://dx.doi.org/10.1186/s41205-020-00064-7
http://dx.doi.org/10.1016/j.amjmed.2020.04.002
http://dx.doi.org/10.1016/j.amjmed.2020.04.002
http://dx.doi.org/10.5694/mja2.50726
http://dx.doi.org/10.1007/s10916-020-01633-3
http://dx.doi.org/10.1007/s10916-020-01633-3
http://dx.doi.org/10.2196/19796
http://dx.doi.org/10.2196/19796
http://dx.doi.org/10.1016/j.schres.2020.04.013
http://dx.doi.org/10.2196/jmir.3.2.e20
http://dx.doi.org/10.2196/jmir.3.2.e20
http://dx.doi.org/10.1177/20552076211009396
http://dx.doi.org/10.2196/ijmr.2357


114 H. Sakly et al.

85. Gerli P, Arakpogun E, Elsahn Z, Olan F, Prime KS (2021) Beyond contact-tracing: the 
public value of ehealth application in a pandemic. Gov Inf Q 38.https://doi.org/10.1016/j. 
giq.2021.101581 

86. Neter E, Brainin E (2012) eHealth literacy: extending the digital divide to the realm of health 
information. J Med Internet Res 14:e1619. https://doi.org/10.2196/jmir.1619 

87. Scott RE, Mars M (2021) COVID-19 and eHealth: a promise or peril paradox? J Int Soc 
Telemed eHealth 9:e1(1–2). https://doi.org/10.29086/JISfTeH.9.e1 

88. Palabindala V, Bharathidasan K (2021) Telemedicine in the COVID-19 era: a tricky 
transition. J Community Hosp Intern Med Perspect 11:302–303. https://doi.org/10.1080/ 
20009666.2021.1899581 

89. Dorn SD (2021) Backslide or forward progress? Virtual care at U.S. healthcare systems 
beyond the COVID-19 pandemic. NPJ Digit Med 4:6. https://doi.org/10.1038/s41746-020-
00379-z 

90. Farooq M, Hafeez A (2020) COVID-ResNet: a deep learning framework for screening of 
COVID19 from radiographs. arXiv:200314395 [cs, eess] 

91. Mahanta SK, Kaushik D, Jain S, Van Truong H, Guha K (2021) COVID-19 diagnosis from 
cough acoustics using ConvNets and data augmentation. arXiv:211006123 [cs, eess] 

92. Khan AI, Shah JL, Bhat MM (2020) CoroNet: a deep neural network for detection and 
diagnosis of COVID-19 from chest x-ray images. Comput Methods Programs Biomed 
196:105581. https://doi.org/10.1016/j.cmpb.2020.105581 

93. Karthik R, Menaka RMH (2021) Learning distinctive filters for COVID-19 detection from 
chest X-ray using shuffled residual CNN. Appl Soft Comput 99:106744. https://doi.org/10. 
1016/j.asoc.2020.106744 

94. Cohen JP, Morrison P, Dao L (2020) COVID-19 image data collection. arXiv:200311597 
[cs, eess, q-bio] 

95. Pathak Y, Shukla PK, Arya KV (2021) Deep bidirectional classification model for 
COVID-19 disease infected patients. IEEE/ACM Trans Comput Biol Bioinf 18:1234–1241. 
https://doi.org/10.1109/TCBB.2020.3009859 

96. King B, Barve S, Ford A, Jha R (2020) Unsupervised clustering of COVID-19 chest X-ray 
images with a self-organizing feature map. In: 2020 IEEE 63rd international midwest 
symposium on circuits and systems (MWSCAS), pp 395–398 

97. Ahuja S, Panigrahi BK, Dey N, Rajinikanth V, Gandhi TK (2021) Deep transfer 
learning-based automated detection of COVID-19 from lung CT scan slices. Appl Intell 
51:571–585. https://doi.org/10.1007/s10489-020-01826-w 

98. Shibly KH, Dey SK, Islam MT-U, Rahman MM (2020) COVID faster R-CNN: a novel 
framework to diagnose novel coronavirus disease (COVID-19) in X-ray images. Inform Med 
Unlocked 20:100405. https://doi.org/10.1016/j.imu.2020.100405 

99. Wang Z, Liu Q, Dou Q (2020) Contrastive cross-site learning with redesigned net for 
COVID-19 CT classification. IEEE J Biomed Health Inform 24:2806–2813. https://doi.org/ 
10.1109/JBHI.2020.3023246 

100. Abdel-Basset M, Mohamed R, Elhoseny M, Chakrabortty RK, Ryan M (2020) A hybrid 
COVID-19 detection model using an improved marine predators algorithm and a 
ranking-based diversity reduction strategy. IEEE Access 8:79521–79540. https://doi.org/ 
10.1109/ACCESS.2020.2990893 

101. Wang G, Liu X, Li C, Xu Z, Ruan J, Zhu H, Meng T, Li K, Huang N, Zhang S (2020) A 
noise-robust framework for automatic segmentation of COVID-19 pneumonia lesions from 
CT images. IEEE Trans Med Imaging 39:2653–2663. https://doi.org/10.1109/TMI.2020. 
3000314 

102. Fan D-P, Zhou T, Ji G-P, Zhou Y, Chen G, Fu H, Shen J, Shao L (2020) Inf-Net: automatic 
COVID-19 lung infection segmentation from CT images. IEEE Trans Med Imaging 
39:2626–2637. https://doi.org/10.1109/TMI.2020.2996645

http://dx.doi.org/10.1016/j.giq.2021.101581
http://dx.doi.org/10.1016/j.giq.2021.101581
http://dx.doi.org/10.2196/jmir.1619
http://dx.doi.org/10.29086/JISfTeH.9.e1
http://dx.doi.org/10.1080/20009666.2021.1899581
http://dx.doi.org/10.1080/20009666.2021.1899581
http://dx.doi.org/10.1038/s41746-020-00379-z
http://dx.doi.org/10.1038/s41746-020-00379-z
http://dx.doi.org/10.1016/j.cmpb.2020.105581
http://dx.doi.org/10.1016/j.asoc.2020.106744
http://dx.doi.org/10.1016/j.asoc.2020.106744
http://dx.doi.org/10.1109/TCBB.2020.3009859
http://dx.doi.org/10.1007/s10489-020-01826-w
http://dx.doi.org/10.1016/j.imu.2020.100405
http://dx.doi.org/10.1109/JBHI.2020.3023246
http://dx.doi.org/10.1109/JBHI.2020.3023246
http://dx.doi.org/10.1109/ACCESS.2020.2990893
http://dx.doi.org/10.1109/ACCESS.2020.2990893
http://dx.doi.org/10.1109/TMI.2020.3000314
http://dx.doi.org/10.1109/TMI.2020.3000314
http://dx.doi.org/10.1109/TMI.2020.2996645


Artificial Intelligence and Big Data for COVID-19 Diagnosis 115

103. Ranjbarzadeh R, Jafarzadeh Ghoushchi S, Bendechache M, Amirabadi A, Ab Rahman MN, 
Baseri Saadi S, Aghamohammadi A, Kooshki Forooshani M (2021) Lung infection 
segmentation for COVID-19 pneumonia based on a cascade convolutional network from CT 
images. Biomed Res Int 2021:e5544742. https://doi.org/10.1155/2021/5544742 

104. Berta L, Rizzetto F, De Mattia C, Lizio D, Felisi M, Colombo PE, Carrazza S, Gelmini S, 
Bianchi L, Artioli D, Travaglini F, Vanzulli A, Torresin A (2021) Automatic lung 
segmentation in COVID-19 patients: impact on quantitative computed tomography analysis. 
Phys Med 87:115–122. https://doi.org/10.1016/j.ejmp.2021.06.001 

105. Elaziz MA, Ewees AA, Yousri D, Alwerfali HSN, Awad QA, Lu S, Al-Qaness MAA (2020) 
An improved marine predators algorithm with fuzzy entropy for multi-level thresholding: 
real world example of COVID-19 CT image segmentation. IEEE Access 8:125306–125330. 
https://doi.org/10.1109/ACCESS.2020.3007928 

106. Kim Y-G, Kim K, Wu D, Ren H, Tak WY, Park SY, Lee YR, Kang MK, Park JG, Kim BS, 
Chung WJ, Kalra MK, Li Q (2020) deep learning-based four-region lung segmentation in 
chest radiography for COVID-19 diagnosis. arXiv:200912610 [cs, eess] 

107. Teixeira LO, Pereira RM, Bertolini D, Oliveira LS, Nanni L, Cavalcanti GDC, Costa YMG 
(2021) Impact of lung segmentation on the diagnosis and explanation of COVID-19 in chest 
X-ray images. arXiv:200909780 [cs, eess] 

108. Müller D, Rey IS, Kramer F (2020) Automated chest CT image segmentation of COVID-19 
lung infection based on 3D U-Net. arXiv:200704774 [cs, eess] 

109. Krinski BA, Ruiz DV, Todt E (2021) Spark in the dark: evaluating encoder-decoder pairs for 
COVID-19 CT’s semantic segmentation. arXiv:210914818 [cs, eess] 

110. Civit-Masot J, Luna-Perejón F, Domínguez Morales M, Civit A (2020) Deep learning 
system for COVID-19 diagnosis aid using X-ray pulmonary images. Appl Sci 10:4640. 
https://doi.org/10.3390/app10134640 

111. Pandit MK, Banday SA (2020) SARS n-CoV2-19 detection from chest x-ray images using 
deep neural networks. Int J Pervasive Comput Commun 16:419–427. https://doi.org/10. 
1108/IJPCC-06-2020-0060 

112. Makris A, Kontopoulos I, Tserpes K (2020) COVID-19 detection from chest X-ray images 
using deep learning and convolutional neural networks. In: 11th Hellenic conference on 
artificial intelligence. Association for Computing Machinery, New York, NY, USA, pp 60– 
66 

113. Dey N, Zhang Y-D, Rajinikanth V, Pugalenthi R, Raja NSM (2021) Customized VGG19 
architecture for pneumonia detection in chest X-rays. Pattern Recogn Lett 143:67–74. 
https://doi.org/10.1016/j.patrec.2020.12.010 

114. Wang W, Yu Z, Fu C, Cai D, He X (2021) COP: customized correlation-based filter level 
pruning method for deep CNN compression. Neurocomputing 464:533–545. https://doi.org/ 
10.1016/j.neucom.2021.08.098 

115. Zhang Z, Lin X, Li M, Wang Y (2021) A customized deep learning approach to integrate 
network-scale online traffic data imputation and prediction. Transp Res Part C Emerging 
Technol 132:103372. https://doi.org/10.1016/j.trc.2021.103372 

116. Lee K, Joe H, Lim H, Kim K, Kim S, Han CW, Kim H-G (2021) Sequential routing 
framework: fully capsule network-based speech recognition. Comput Speech Lang 
70:101228. https://doi.org/10.1016/j.csl.2021.101228 

117. Shahin I, Hindawi N, Nassif AB, Alhudhaif A, Polat K (2022) Novel dual-channel long 
short-term memory compressed capsule networks for emotion recognition. Expert Syst Appl 
188:116080. https://doi.org/10.1016/j.eswa.2021.116080 

118. Deng X, Jiang P, Zhao D, Huang R, Shen H (2021) Effective semi-supervised learning for 
structured data using embedding GANs. Pattern Recogn Lett 151:127–134. https://doi.org/ 
10.1016/j.patrec.2021.07.019 

119. Zhang G, Pan Y, Zhang L (2021) Semi-supervised learning with GAN for automatic defect 
detection from images. Autom Constr 128:103764. https://doi.org/10.1016/j.autcon.2021. 
103764

http://dx.doi.org/10.1155/2021/5544742
http://dx.doi.org/10.1016/j.ejmp.2021.06.001
http://dx.doi.org/10.1109/ACCESS.2020.3007928
http://dx.doi.org/10.3390/app10134640
http://dx.doi.org/10.1108/IJPCC-06-2020-0060
http://dx.doi.org/10.1108/IJPCC-06-2020-0060
http://dx.doi.org/10.1016/j.patrec.2020.12.010
http://dx.doi.org/10.1016/j.neucom.2021.08.098
http://dx.doi.org/10.1016/j.neucom.2021.08.098
http://dx.doi.org/10.1016/j.trc.2021.103372
http://dx.doi.org/10.1016/j.csl.2021.101228
http://dx.doi.org/10.1016/j.eswa.2021.116080
http://dx.doi.org/10.1016/j.patrec.2021.07.019
http://dx.doi.org/10.1016/j.patrec.2021.07.019
http://dx.doi.org/10.1016/j.autcon.2021.103764
http://dx.doi.org/10.1016/j.autcon.2021.103764


116 H. Sakly et al.

120. Devulapalli S, Potti A, Krishnan R, Khan MdS (2021) Experimental evaluation of 
unsupervised image retrieval application using hybrid feature extraction by integrating deep 
learning and handcrafted techniques. Mater Today Proc. https://doi.org/10.1016/j.matpr. 
2021.04.326 

121. Popescu DM, Abramson HG, Yu R, Lai C, Shade JK, Wu KC, Maggioni M, Trayanova NA 
(2021) Anatomically-informed deep learning on contrast-enhanced cardiac magnetic 
resonance imaging for scar segmentation and clinical feature extraction. Cardiovascular 
Digital Health J. https://doi.org/10.1016/j.cvdhj.2021.11.007 

122. Costa G, Montemurro M (2020) Eigen-frequencies and harmonic responses in topology 
optimisation: a CAD-compatible algorithm. Eng Struct 214:110602. https://doi.org/10.1016/ 
j.engstruct.2020.110602 

123. Laishram R, Rabidas R (2021) WDO optimized detection for mammographic masses and its 
diagnosis: a unified CAD system. Appl Soft Comput 110:107620. https://doi.org/10.1016/j. 
asoc.2021.107620 

124. Misra S, Jeon S, Lee S, Managuli R, Jang I-S, Kim C (2020) Multi-channel transfer learning 
of chest X-ray images for screening of COVID-19. Electronics 9:1388. https://doi.org/10. 
3390/electronics9091388 

125. Jain G, Mittal D, Thakur D, Mittal MK (2020) A deep learning approach to detect 
COVID-19 coronavirus with X-ray images. Biocybern Biomed Eng 40:1391–1405. https:// 
doi.org/10.1016/j.bbe.2020.08.008 

126. Rahimzadeh M, Attar A (2020) A modified deep convolutional neural network for detecting 
COVID-19 and pneumonia from chest X-ray images based on the concatenation of Xception 
and ResNet50V2. Inform Med Unlocked 19:100360. https://doi.org/10.1016/j.imu.2020. 
100360 

127. Arora V, Ng EY-K, Leekha RS, Darshan M, Singh A (2021) Transfer learning-based 
approach for detecting COVID-19 ailment in lung CT scan. Comput Biol Med 135:104575. 
https://doi.org/10.1016/j.compbiomed.2021.104575 

128. Che Azemin MZ, Hassan R, Mohd Tamrin MI, Md Ali MA (2020) COVID-19 deep learning 
prediction model using publicly available radiologist-adjudicated chest X-ray images as 
training data: preliminary findings. Int J Biomed Imaging 2020:e8828855. https://doi.org/10. 
1155/2020/8828855 

129. Apostolopoulos ID, Mpesiana TA (2020) COVID-19: automatic detection from X-ray 
images utilizing transfer learning with convolutional neural networks. Phys Eng Sci Med 
43:635–640. https://doi.org/10.1007/s13246-020-00865-4 

130. Manickam A, Jiang J, Zhou Y, Sagar A, Soundrapandiyan R, Dinesh Jackson Samuel R 
(2021) Automated pneumonia detection on chest X-ray images: a deep learning approach 
with different optimizers and transfer learning architectures. Measurement 184:109953. 
https://doi.org/10.1016/j.measurement.2021.109953 

131. Abbas A, Abdelsamea MM, Gaber MM (2021) Classification of COVID-19 in chest X-ray 
images using DeTraC deep convolutional neural network. Appl Intell 51:854–864. https:// 
doi.org/10.1007/s10489-020-01829-7 

132. Yoo SH, Geng H, Chiu TL, Yu SK, Cho DC, Heo J, Choi MS, Choi IH, Van Cung C, 
Nhung NV, Min BJ, Lee H (2020) Deep learning-based decision-tree classifier for 
COVID-19 diagnosis from chest X-ray imaging. Front Med 7:427. https://doi.org/10.3389/ 
fmed.2020.00427 

133. Narayan Das N, Kumar N, Kaur M, Kumar V, Singh D (2020) Automated deep transfer 
learning-based approach for detection of COVID-19 infection in chest X-rays. IRBM. 
https://doi.org/10.1016/j.irbm.2020.07.001 

134. Haque KF, Abdelgawad A (2020) A deep learning approach to detect COVID-19 patients 
from chest X-ray images. AI 1:418–435. https://doi.org/10.3390/ai1030027 

135. Abdani SR, Zulkifley MA, Mamat M (2020) U-net with spatial pyramid pooling module for 
segmenting oil palm plantations. In: 2020 IEEE 2nd international conference on artificial 
intelligence in engineering and technology (IICAIET). pp 1–5

http://dx.doi.org/10.1016/j.matpr.2021.04.326
http://dx.doi.org/10.1016/j.matpr.2021.04.326
http://dx.doi.org/10.1016/j.cvdhj.2021.11.007
http://dx.doi.org/10.1016/j.engstruct.2020.110602
http://dx.doi.org/10.1016/j.engstruct.2020.110602
http://dx.doi.org/10.1016/j.asoc.2021.107620
http://dx.doi.org/10.1016/j.asoc.2021.107620
http://dx.doi.org/10.3390/electronics9091388
http://dx.doi.org/10.3390/electronics9091388
http://dx.doi.org/10.1016/j.bbe.2020.08.008
http://dx.doi.org/10.1016/j.bbe.2020.08.008
http://dx.doi.org/10.1016/j.imu.2020.100360
http://dx.doi.org/10.1016/j.imu.2020.100360
http://dx.doi.org/10.1016/j.compbiomed.2021.104575
http://dx.doi.org/10.1155/2020/8828855
http://dx.doi.org/10.1155/2020/8828855
http://dx.doi.org/10.1007/s13246-020-00865-4
http://dx.doi.org/10.1016/j.measurement.2021.109953
http://dx.doi.org/10.1007/s10489-020-01829-7
http://dx.doi.org/10.1007/s10489-020-01829-7
http://dx.doi.org/10.3389/fmed.2020.00427
http://dx.doi.org/10.3389/fmed.2020.00427
http://dx.doi.org/10.1016/j.irbm.2020.07.001
http://dx.doi.org/10.3390/ai1030027


Artificial Intelligence and Big Data for COVID-19 Diagnosis 117

136. Bridge J, Meng Y, Zhao Y, Du Y, Zhao M, Sun R, Zheng Y (2020) Introducing the GEV 
activation function for highly unbalanced data to develop COVID-19 diagnostic models. 
IEEE J Biomed Health Inform 24:2776–2786. https://doi.org/10.1109/JBHI.2020.3012383 

137. Goel T, Murugan R, Mirjalili S, Chakrabartty DK (2021) OptCoNet: an optimized 
convolutional neural network for an automatic diagnosis of COVID-19. Appl Intell 
51:1351–1366. https://doi.org/10.1007/s10489-020-01904-z 

138. Afshar P, Heidarian S, Naderkhani F, Oikonomou A, Plataniotis KN, Mohammadi A (2020) 
COVID-CAPS: a capsule network-based framework for identification of COVID-19 cases 
from X-ray images. Pattern Recogn Lett 138:638–643. https://doi.org/10.1016/j.patrec.2020. 
09.010 

139. Dhaya R (2020) Deep net model for detection of COVID-19 using radiographs based on 
ROC analysis. J Innov Image Process 2:135–140. https://doi.org/10.36548/jiip.2020.3.003 

140. Deep transfer learning based classification model for COVID-19 disease. IRBM (2020). 
https://doi.org/10.1016/j.irbm.2020.05.003 

141. Yan T, Wong PK, Ren H, Wang H, Wang J, Li Y (2020) Automatic distinction between 
COVID-19 and common pneumonia using multi-scale convolutional neural network on 
chest CT scans. Chaos Solitons Fractals 140:110153. https://doi.org/10.1016/j.chaos.2020. 
110153 

142. Shaban WM, Rabie AH, Saleh AI, Abo-Elsoud MA (2020) A new COVID-19 patients 
detection strategy (CPDS) based on hybrid feature selection and enhanced KNN classifier. 
Knowl-Based Syst 205:106270. https://doi.org/10.1016/j.knosys.2020.106270 

143. Han Z, Wei B, Hong Y, Li T, Cong J, Zhu X, Wei H, Zhang W (2020) Accurate screening of 
COVID-19 using attention-based deep 3D multiple instance learning. IEEE Trans Med 
Imaging 39:2584–2594. https://doi.org/10.1109/TMI.2020.2996256 

144. Öztürk Ş, Özkaya U, Barstuğan M (2021) Classification of coronavirus (COVID-19) from 
X-ray and CT images using shrunken features. Int J Imaging Syst Technol 31:5–15. https:// 
doi.org/10.1002/ima.22469 

145. Hasan AM, AL-Jawad MM, Jalab HA, Shaiba H, Ibrahim RW, AL-Shamasneh AR (2020) 
Classification of COVID-19 coronavirus, pneumonia and healthy lungs in CT scans using 
Q-deformed entropy and deep learning features. Entropy 22:517.https://doi.org/10.3390/ 
e22050517 

146. Fung DLX, Liu Q, Zammit J, Leung CK-S, Hu P (2021) Self-supervised deep learning 
model for COVID-19 lung CT image segmentation highlighting putative causal relationship 
among age, underlying disease and COVID-19. J Transl Med 19:318. https://doi.org/10. 
1186/s12967-021-02992-2 

147. Hurt B, Kligerman S, Hsiao A (2020) Deep learning localization of pneumonia: 2019 
coronavirus (COVID-19) outbreak. J Thorac Imaging 35:W87. https://doi.org/10.1097/RTI. 
0000000000000512 

148. Xu X, Jiang X, Ma C, Du P, Li X, Lv S, Yu L, Ni Q, Chen Y, Su J, Lang G, Li Y, Zhao H, 
Liu J, Xu K, Ruan L, Sheng J, Qiu Y, Wu W, Liang T, Li L (2020) A deep learning system 
to screen novel coronavirus disease 2019 pneumonia. Engineering 6:1122–1129. https://doi. 
org/10.1016/j.eng.2020.04.010 

149. Wang S, Kang B, Ma J, Zeng X, Xiao M, Guo J, Cai M, Yang J, Li Y, Meng X, Xu B (2021) 
A deep learning algorithm using CT images to screen for corona virus disease (COVID-19). 
Eur Radiol 31:6096–6104. https://doi.org/10.1007/s00330-021-07715-1 

150. Cohen JP, Dao L, Roth K, Morrison P, Bengio Y, Abbasi AF, Shen B, Mahsa HK, 
Ghassemi M, Li H, Duong TQ. Predicting COVID-19 pneumonia severity on chest X-ray 
with deep learning. Cureus 12:e9448. https://doi.org/10.7759/cureus.9448 

151. Li MD, Arun NT, Gidwani M, Chang K, Deng F, Little BP, Mendoza DP, Lang M, Lee SI, 
O’Shea A, Parakh A, Singh P, Kalpathy-Cramer J (2020) Automated assessment and 
tracking of COVID-19 pulmonary disease severity on chest radiographs using convolutional 
Siamese neural networks. Radiol Artif Intell 2:e200079. https://doi.org/10.1148/ryai. 
2020200079

http://dx.doi.org/10.1109/JBHI.2020.3012383
http://dx.doi.org/10.1007/s10489-020-01904-z
http://dx.doi.org/10.1016/j.patrec.2020.09.010
http://dx.doi.org/10.1016/j.patrec.2020.09.010
http://dx.doi.org/10.36548/jiip.2020.3.003
http://dx.doi.org/10.1016/j.irbm.2020.05.003
http://dx.doi.org/10.1016/j.chaos.2020.110153
http://dx.doi.org/10.1016/j.chaos.2020.110153
http://dx.doi.org/10.1016/j.knosys.2020.106270
http://dx.doi.org/10.1109/TMI.2020.2996256
http://dx.doi.org/10.1002/ima.22469
http://dx.doi.org/10.1002/ima.22469
http://dx.doi.org/10.3390/e22050517
http://dx.doi.org/10.3390/e22050517
http://dx.doi.org/10.1186/s12967-021-02992-2
http://dx.doi.org/10.1186/s12967-021-02992-2
http://dx.doi.org/10.1097/RTI.0000000000000512
http://dx.doi.org/10.1097/RTI.0000000000000512
http://dx.doi.org/10.1016/j.eng.2020.04.010
http://dx.doi.org/10.1016/j.eng.2020.04.010
http://dx.doi.org/10.1007/s00330-021-07715-1
http://dx.doi.org/10.7759/cureus.9448
http://dx.doi.org/10.1148/ryai.2020200079
http://dx.doi.org/10.1148/ryai.2020200079


118 H. Sakly et al.

152. Ng M-Y, Wan EYF, Wong HYF, Leung ST, Lee JCY, Chin TW-Y, Lo CSY, Lui MM-S, 
Chan EHT, Fong AH-T, Fung SY, Ching OH, Chiu KW-H, Chung TWH, Vardhanbhuti V, 
Lam HYS, To KKW, Chiu JLF, Lam TPW, Khong PL, Liu RWT, Chan JWM, Wu AKL, 
Lung K-C, Hung IFN, Lau CS, Kuo MD, Ip MS-M (2020) Development and validation of 
risk prediction models for COVID-19 positivity in a hospital setting. Int J Infect Dis 101:74– 
82. https://doi.org/10.1016/j.ijid.2020.09.022 

153. Liang W, Wang H, Huang X, Zhou J, Liu W (2020) 56 Gbit/s OOK signal in C-band over 20 
km dispersion-uncompensated link transmission with receiver-side EDC algorithm. IEEE 
Photonics J 12:1–7. https://doi.org/10.1109/JPHOT.2020.3027836 

154. Zhang K, Liu X, Shen J, Li Z, Sang Y, Wu X, Zha Y, Liang W, Wang C, Wang K, Ye L, 
Gao M, Zhou Z, Li L, Wang J, Yang Z, Cai H, Xu J, Yang L, Cai W, Xu W, Wu S, 
Zhang W, Jiang S, Zheng L, Zhang X, Wang L, Lu L, Li J, Yin H, Wang W, Li O, Zhang C, 
Liang L, Wu T, Deng R, Wei K, Zhou Y, Chen T, Lau JY-N, Fok M, He J, Lin T, Li W, 
Wang G (2020) Clinically applicable AI system for accurate diagnosis, quantitative 
measurements, and prognosis of COVID-19 pneumonia using computed tomography. Cell 
181:1423-1433.e11. https://doi.org/10.1016/j.cell.2020.04.045 

155. Ginsberg J, Mohebbi MH, Patel RS, Brammer L, Smolinski MS, Brilliant L (2009) 
Detecting influenza epidemics using search engine query data. Nature 457:1012–1014. 
https://doi.org/10.1038/nature07634 

156. Bragazzi NL, Dai H, Damiani G, Behzadifar M, Martini M, Wu J (2020) How big data and 
artificial intelligence can help better manage the COVID-19 pandemic. Int J Environ Res 
Public Health 17:3176. https://doi.org/10.3390/ijerph17093176 

157. Garattini C, Raffle J, Aisyah DN, Sartain F, Kozlakidis Z (2019) Big data analytics, 
infectious diseases and associated ethical impacts. Philos Technol 32:69–85. https://doi.org/ 
10.1007/s13347-017-0278-y 

158. Ajah I, Nweke H (2019) Big data and business analytics: trends, platforms, success factors 
and applications. Big Data Cogn Comput 3:32. https://doi.org/10.3390/bdcc3020032 

159. White T (2012) Hadoop: the definitive guide, 3rd edn. Yahoo Press, Beijing 
160. Chowell G, Cleaton JM, Viboud C (2016) Elucidating transmission patterns from internet 

reports: ebola and middle east respiratory syndrome as case studies. J Infect Dis 214:S421– 
S426. https://doi.org/10.1093/infdis/jiw356 

161. Salathé M (2016) Digital pharmacovigilance and disease surveillance: combining traditional 
and big-data systems for better public health. J Infect Dis 214:S399–S403. https://doi.org/10. 
1093/infdis/jiw281 

162. Zhao Y, Liu L, Qi Y, Lou F, Zhang J, Ma W (2020) Evaluation and design of public health 
information management system for primary health care units based on medical and health 
information. J Infect Publ Health 13:491–496. https://doi.org/10.1016/j.jiph.2019.11.004 

163. Petrides AK, Tanasijevic MJ, Goonan EM, Landman AB, Kantartjis M, Bates DW, 
Melanson SEF (2017) Top ten challenges when interfacing a laboratory information system 
to an electronic health record: experience at a large academic medical center. Int J Med 
Inform 106:9–16. https://doi.org/10.1016/j.ijmedinf.2017.06.008 

164. Mosser H, Urban M, Dürr M, Rüger W, Hruby W (1992) Integration of radiology and 
hospital information systems (RIS, HIS) with PACS: requirements of the radiologist. Eur J 
Radiol 16:69–73. https://doi.org/10.1016/0720-048X(92)90248-8 

165. EMRS adoption: exploring the effects of information security management awareness and 
perceived service quality. Health Policy Technol 7:365–373 (2018). https://doi.org/10.1016/ 
j.hlpt.2018.10.012 

166. Wu J, Wang J, Nicholas S, Maitland E, Fan Q (2020) Application of big data technology for 
COVID-19 prevention and control in China: lessons and recommendations. J Med Internet 
Res 22:e21980. https://doi.org/10.2196/21980 

167. Rodger JA (2015) Discovery of medical big data analytics: improving the prediction of 
traumatic brain injury survival rates by data mining patient informatics processing software 
hybrid Hadoop hive. Inform Med Unlocked 1:17–26. https://doi.org/10.1016/j.imu.2016.01.002

http://dx.doi.org/10.1016/j.ijid.2020.09.022
http://dx.doi.org/10.1109/JPHOT.2020.3027836
http://dx.doi.org/10.1016/j.cell.2020.04.045
http://dx.doi.org/10.1038/nature07634
http://dx.doi.org/10.3390/ijerph17093176
http://dx.doi.org/10.1007/s13347-017-0278-y
http://dx.doi.org/10.1007/s13347-017-0278-y
http://dx.doi.org/10.3390/bdcc3020032
http://dx.doi.org/10.1093/infdis/jiw356
http://dx.doi.org/10.1093/infdis/jiw281
http://dx.doi.org/10.1093/infdis/jiw281
http://dx.doi.org/10.1016/j.jiph.2019.11.004
http://dx.doi.org/10.1016/j.ijmedinf.2017.06.008
http://dx.doi.org/10.1016/0720-048X(92)90248-8
http://dx.doi.org/10.1016/j.hlpt.2018.10.012
http://dx.doi.org/10.1016/j.hlpt.2018.10.012
http://dx.doi.org/10.2196/21980
http://dx.doi.org/10.1016/j.imu.2016.01.002


Artificial Intelligence and Big Data for COVID-19 Diagnosis 119

168. Winters-Miner LA, Bolding P, Hill T, Nisbet B, Goldstein M, Hilbe JM, Walton N, 
Miner G, Brown EW, Kohn MS (2015) Chapter 25—IBM Watson for clinical decision 
support. In: Winters-Miner LA, Bolding PS, Hilbe JM, Goldstein M, Hill T, Nisbet R, 
Walton N, Miner GD (eds) Practical predictive analytics and decisioning systems for 
medicine. Academic Press, pp 1038–1040 

169. Douine M, Lambert Y, Galindo MS, Mutricy L, Sanna A, Peterka C, Marchesini P, Hiwat H, 
Nacher M, Adenis A, Demar M, Musset L, Lazrek Y, Cairo H, Bordalo Miller J, Vreden S, 
Suarez-Mutis M (2021) Self-diagnosis and self-treatment of malaria in hard-to-reach and 
mobile populations of the Amazon: results of Malakit, an international multicentric 
intervention research project. Lancet Regional Health Am:100047.https://doi.org/10.1016/j. 
lana.2021.100047 

170. Wu CH, Chiu RK, Yeh HM, Wang DW (2017) Implementation of a cloud-based electronic 
medical record exchange system in compliance with the integrating healthcare enterprise’s 
cross-enterprise document sharing integration profile. Int J Med Inform 107:30–39. https:// 
doi.org/10.1016/j.ijmedinf.2017.09.001 

171. Santos-Pereira J, Gruenwald L, Bernardino J (2021) Top data mining tools for the healthcare 
industry. J King Saud Univ Comput Inf Sci. https://doi.org/10.1016/j.jksuci.2021.06.002 

172. Mathew PS, Pillai AS (2015) Big data solutions in healthcare: problems and perspectives. In: 
2015 international conference on innovations in information, embedded and communication 
systems (ICIIECS), pp 1–6 

173. Dolezel D, McLeod A (2019) Big data analytics in healthcare: investigating the diffusion of 
innovation. Perspect Health Inf Manage 16:1a 

174. Zhang H, Zang Z, Zhu H, Uddin MI, Amin MA (2022) Big data-assisted social media 
analytics for business model for business decision making system competitive analysis. Inf 
Process Manage 59:102762. https://doi.org/10.1016/j.ipm.2021.102762 

175. Wang M, Tai C, Zhang Q, Yang Z, Li J, Shen K, Wang K (2021) Application of BigML in 
the classification evaluation of top coal caving. Shock Vib 2021:e8552247. https://doi.org/ 
10.1155/2021/8552247 

176. Khashan EA, Eldesouky AI, Fadel M, Elghamrawy SM (2020) A big data based framework 
for executing complex query over COVID-19 datasets (COVID-QF). arXiv:200512271 [cs] 

177. Elmeiligy MA, Desouky AIE, Elghamrawy SM (2020) A multi-dimensional big data storing 
system for generated COVID-19 large-scale data using apache spark. arXiv:200505036 [cs] 

Houneida Sakly is a Ph.D. and Engineer in Medical Informatics. 
She is a member of the research program “deep learning analysis 
of Radiologic Imaging” in Stanford university. Certified in 
Healthcare Innovation with MIT-Harvard Medical school. Her 
main field of research is the Data science (Artificial Intelligence, 
Big Data, blockchain, Internet of things…) applied in healthcare. 
She is a member in the Integrated Science Association (ISA) in 
the Universal Scientific Education and Research Network 
(USERN) in Tunisia. Currently, she is serving as a lead editor for 
various book and special issue in the field of digital Transfor-
mation and data science in Healthcare. Recently, she has won the 
Best Researcher Award in the International Conference on Car-
diology and Cardiovascular Medicine—San Francisco, United 
States.

http://dx.doi.org/10.1016/j.lana.2021.100047
http://dx.doi.org/10.1016/j.lana.2021.100047
http://dx.doi.org/10.1016/j.ijmedinf.2017.09.001
http://dx.doi.org/10.1016/j.ijmedinf.2017.09.001
http://dx.doi.org/10.1016/j.jksuci.2021.06.002
http://dx.doi.org/10.1016/j.ipm.2021.102762
http://dx.doi.org/10.1155/2021/8552247
http://dx.doi.org/10.1155/2021/8552247


AI and Big Data for Drug Discovery 

Aglaia Kavidopoulou, Konstantinos N. Syrigos, 
Stylianos Makrogkikas, Zodwa Dlamini, Rodney Hull, 
Rahaba Marima, Amanda Skepu, Elias P. Koumoulos, George Bakas, 
Ioannis Vamvakaris, George Evangelou, and Georgios Lolas 

One of the biggest challenges to medicine is the incorporation 
of information technology in our practices. Samuel Wilson 

K. N. Syrigos . G. Evangelou . G. Lolas 
3rd Department of Internal Medicine and Laboratory, National and Kapodistrian University 
of Athens (NKUA), Athens School of Medicine, 11527 Athens, Greece 

S. Makrogkikas 
FALCONBIO PTE, Ltd., SGInnovate, 32 Carpenter Street, Singapore 059911, Singapore 

Z. Dlamini . R. Hull . R. Marima . A. Skepu . G. Lolas 
SAMRC Precision Oncology Research Unit (PORU), Pan African Cancer Research Institute 
(PACRI), University of Pretoria, Hatfield 0028, South Africa 

A. Skepu 
Next Generation Health Division 1, CSIR, Meiring Naude Road, Brummeria, Pretoria 0001, 
South Africa 

E. P. Koumoulos . G. Bakas 
Innovation in Research and Engineering Solutions (IRES), Boulevard Edmond Machtens 
79/22, 1080 Brussels, Belgium 

A. Kavidopoulou . E. P. Koumoulos . G. Lolas (&) 
Integrate Computational & Mathematical Modeling Approaches (InCELLiA) P.C., Lavriou 1, 
19500 Lavrion, Greece 
e-mail: glolas@med.uoa.gr 

I. Vamvakaris 
Department of Pathology, Athens Chest Hospital “Sotiria”, 11527 Athens, Greece 

121© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022 
H. Sakly et al. (eds.), Trends of Artificial Intelligence and Big Data for E-Health, 
Integrated Science 9, https://doi.org/10.1007/978-3-031-11199-0_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-11199-0_7&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-11199-0_7&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-11199-0_7&amp;domain=pdf
mailto:glolas@med.uoa.gr
https://doi.org/10.1007/978-3-031-11199-0_7


122 A. Kavidopoulou et al.

1 Introduction 

Drug research, discovery, and development are complex, costly, lengthy, and 
time-consuming [1]. In clinical studies, at least nine in ten drug candidates fail 
between phase 1 and regulatory approval in clinical trials [2]. As a result of this 
attrition, much financial and resource loss is induced (recent estimates range the cost 
of a drug’s R&D from $314 million to $2.8 billion [3]). In drug discovery research, 
in vitro and in silico approaches play a significant role in lowering the costs, com-
pared to conventional animal models. Using this new approach in the early stages of 
drug discovery research, it is possible to reduce the high number of drug attritions by 
selecting drug candidates with acceptable therapeutic activities, thereby avoiding 
inappropriate compounds with negative side effects [4–7]. Even though this in vitro-
in silico modern technology seems better than the traditional animal model 
approach, the modern approach still has low correspondence to in vivo drug 
activities with regard to efficacy and undesirable side effects [8, 9]. On the other 
hand, AI can examine substances for their possible toxicities and biological func-
tions using computational drug modeling. Existing computer models, such as 
quantitative structure–activity relationship (QSAR) models, can be used to predict a 
large number of novel compounds that are involved in a variety of biological out-
comes. Existing models in commercial drug discovery software can be used to 
predict the physicochemical and pharmacokinetic properties of novel compounds. 
However, such models are not yet optimal for predicting new drug efficacy and side 
effects, as shown in Fig. 1 [9, 10]. For instance, with the QSAR model, issues around 
experimental data errors in training sets, the use of small training sets, and the lack of 
experimental validations are limiting factors [11, 12]. QSAR is based on the 
hypothesis of similarity in chemical structures; that is, similar compounds have 
similar activities. However, training sets are not adequate to address the high attrition 
rates in drug discovery research because they provide information on the chemical 
structure and target activity [12–14]. 

Chemical libraries have become indispensable tools for new drug development 
procedures [15, 16]. Chemical compounds can be combined together to refine the 
development process, and the combinatorial chemistry effort has, over the past 
decade, induced the development of high-throughput screening techniques 
(HTS) [17, 18]. HTS uses a standard protocol to screen for millions of compounds. 
Modern HTS techniques are commonly combined with robotic systems and have a 
significant impact on experimental testing cost reduction [19, 20]. Using HTS and 
combinatorial drug synthesis, data related to chemical responses grow rapidly, 
especially data related to the drug response of specific targets [21]. 

The four Vs are the issues related to big data: variety (source diversity), volume 
(data scale), velocity (data expansion), and veracity (data consistency) (data 
uncertainty) [22, 23]. Unfortunately, the conventional QSAR model and machine 
learning methods are not suitable for dealing with big datasets generated by drug 
discovery research involving thousands to millions of compounds [24]. Addition-
ally, the sparsity and variety of the resulting data, coupled with complex



physiological mechanisms, such as drug responses, increase significantly when 
moving from in vitro to in vivo studies. To forecast medication efficacy and safety 
in in vivo models and in humans, complex scenarios incorporating big data 
necessitate the development of creative computational algorithms to deal with 
multidimensional, large-volume, and high-sparsity data sources. With the 
advancement of predictive modeling in drug discovery research, these unique 
computational methodologies allow AI to move from traditional machine learning 
to modern deep learning [25–27]. 
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Fig. 1 A caricature representation of a QSAR model. AI can be used to predict physical–chemical 
properties, membrane transport, and target binding. Model reliability and predictivity are 
maximized in early stages of prediction: physical–chemical properties, membrane transport, and 
target binding but are minimized as the complexity increases from cell, to mice and finally humans 

2 Big Data in Drug Discovery 

Along with the development of HTS techniques, various data-sharing projects have 
also been developed. These include PubChem (chemical structure and associated 
biological properties public repository) [28] and ChEMBL [database comprising 
information on compound binding, function, toxicity, absorption, distribution, 
metabolism, and excretion (ADME)] [29]. Additional data-sharing sources are 
designed specifically for drugs and drug candidates, including DrugBank, Drug-
Matrix, and Binding Database (BindingDB). DrugBank (https://www.drugbank.ca) 
is a publicly accessible database containing information on all approved drugs and 
their mechanisms, interactions, and apposite targets [30]. DrugMatrix (https://ntp. 
niehs.nih.gov/results/drugmatrix/index.html) contains toxicogenomic information 
data of drugs [31]. BindingDB (https://www.bindingdb.org/bind/index.jsp) is also a 
public data resource sharing information regarding drug-target (protein/enzyme)

https://www.drugbank.ca
https://ntp.niehs.nih.gov/results/drugmatrix/index.html
https://ntp.niehs.nih.gov/results/drugmatrix/index.html
https://www.bindingdb.org/bind/index.jsp


binding, illustrated as measured binding affinities [32]. To process and analyze 
these large datasets, advanced computational approaches such as cloud computation 
and graphics processing units (GPUs) are required [33, 34]. 
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3 From Machine Learning to Deep Learning: AI Milestone 

Although the concept of AI was introduced in the 1950s, the first QSAR study was 
conducted in the 1960s. Before the 1990s, linear regression computational 
approaches were used in the early stages of drug discovery [35, 36]. During these 
early stages, the chemical structures of the drugs were used as chemical descriptors 
for modeling [35, 37]. As AI applications have advanced in drug discovery, the 
development of novel chemical descriptors beyond chemical structures, such as 
molecular fingerprints, has significantly increased. In contrast to linear regression, 
machine-learning approaches between the 1990s and the 2000s were based on 
nonlinear modeling algorithms [35]. 

Data availability for drug discovery and advancements in computational 
approaches have led to innovative modeling techniques, such as large-scale net-
works. In 1989, the first application of a neural network in drug discovery was 
reported, followed by the application of various other neural networks, including 
the popular artificial neural network (ANN) [38]. The ANN approach has numerous 
variables, such as the input, thus forming a network through hundreds of artificial 
neurons, jointly contributing to the prediction of the output. The use of ANN 
approaches required advanced computational models and directly benefited from 
the computer hardware developments in the 1990s. Together with ANN approa-
ches, the concept of deep learning was introduced in the 1980s [5]. Compared to 
other machine learning approaches, such as deep learning, ANNs do not demon-
strate significant advantages when data availability is constrained for drug model 
development [35, 39]. Furthermore, between the 1990s and the 2000s, computa-
tional hardware models were still inadequate for training neural networks (such as 
ANN) with many hidden layers and large datasets for drug model development. 

In the 2010s, when computer hardware used graphics processing units (GPUs) 
and cloud computing, significant progress in ANN was achieved. Advancements in 
computational models have benefited ANN approaches and subsequent deep neural 
networks (DNNs) with many hidden layers [40]. The deep learning milestone and 
big data concepts have been almost simultaneously published and are increasingly 
being applied to study complex biological systems and patterns, such as drug 
discovery research [41–43]. 

Convolutional neural networks (CNNs) are among the most commonly used 
deep learning approaches. CNNs are commonly used in cancer clinical image 
modeling diagnosis, heart disease, and Alzheimer’s disease [44–46]. In drug dis-
covery research, CNN approaches are used to analyze image data acquired from 
experimental HTS data [47]. CNNs have distinct advantages in image recognition;



hence, they are also used in the recognition of 3D experimental and virtual images 
to predict protein–ligand binding [48, 49]. CNNs have also been used to interpret 
drug molecular graphs for anticipated molecular features [50]. 
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4 Recent Novel Targets by AI 

A novel target and its associated small-molecule inhibitor involved in idiopathic 
pulmonary fibrosis has recently been proposed through AI-based approaches by 
Insilico Medicine a biotechnology company [51]. So far, small-molecule inhibitors 
have demonstrated acceptable efficacy in in vitro and in vivo models. This 
small-molecule inhibitor was nominated for investigation as a novel drug. This 
enabled studies to commence in December 2020 and will be targeted for clinical 
trials in early 2022. Depending on the clinical trial outcome, the novel target and its 
small-molecule inhibitor are the first candidates to be discovered, proposed, and 
approved using AI. 

Currently, AI research has focused on deep learning, which is a subfield of 
machine learning. A characteristic of this new research field is that its artificial 
neural network (ANN) mimics the structure of the human brain [52]. 

Since DENDRAL and META-DENDRAL were introduced, chemists have been 
involved in AI applications. Chemists used AI to rethink some of their theories; 
DENDRAL induced new rules of mass spectral fragmentation and explored new 
fields, such as chemoinformatics. Chemoinformatics includes an environment with 
computational drug design tools ranging from classical structure-based QSAR and 
matched molecular pairs to free-energy perturbation [52]. Machine learning tools 
have been developed, such as QSAR modeling, which can analyze potential bio-
logically active molecules from a pool of candidate compounds rapidly and at low 
cost. Therefore, drug development has evolved dramatically in the era of `̀ big data'' 
and machine learning, progressing toward deep learning methodologies. This new 
age promises a more powerful and effective means of working with massive amounts 
of data generated by modern drug development methods [52]. As a result of these 
advancements, artificial intelligence has been used to discover drugs. The four crucial 
primary stages of drug discovery are target identification and validation, compound 
screening and lead optimization, preclinical research, and clinical trials [53]. 

The first step is the study of the disease-target to identify the desirable molecule, 
which can be achieved by cellular and genetic evaluation of the molecule, genomic 
and proteomic analysis, and bioinformatic predictions [52]. 

The second step is devoted for formulation and testing of the optimal compound 
To find the chemical, researchers used molecular libraries and methods like com-
binatorial chemistry, high-throughput screening, and virtual screening. To improve 
the functional qualities of newly synthesized drug candidates, structure–activity and 
in silico research, as well as cellular functional testing, are used. Finally, to 
investigate the chemical in vivo, animal models were used to perform pharma-
cokinetic and toxicity tests [52].
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After passing all preclinical tests, step three entailed administering the medica-
tion candidate to patients in clinical research. Clinical trials were conducted in three 
stages: Phase I, drug safety (a small number of human subjects were tested); 
Phase II, drug efficacy (a small number of people affected by the specified ailment 
were tested); and Phase III, efficacy studies (a large number of people affected by 
the specified ailment were tested) [53]. The chemical has been reviewed for 
approval and commercialization by organizations such as the Food and Drug 
Administration (FDA) and the European Medicines Agency (EMA), since the 
therapeutic candidate's safety and efficacy have been shown in clinical trials 
(EMA) [53]. 

Specifically, AI can be used to design new molecules and plan synthesis if the 
system has the fundamental intelligence to generate autonomously innovative 
molecular representations that are structurally and chemically similar to existing 
medications. To put it another way, artificial intelligence has been used to develop 
new lead compounds that demonstrate the required activity in a virtual environ-
ment. Combining computational de novo design with AI can create a “computer 
chemist” who can learn from known and useful molecules to create chemically 
precise and synthesizable structures with predetermined biological activity. The 
most noteworthy outcomes of these efforts are molecular graph convolution tech-
niques, variational autoencoders, and recurrent neural networks (RNNs) [52]. 

According to Olivecrona et al. [54], the training of an RNN using simplified 
molecular-input line-entry system (SMILES) representations from the ChEMBL 
database was used in an experiment to build novel compounds. Subsequently, new 
sequences were created using pre-trained RNNs that were tweaked using 
policy-based reinforcement learning. The training set performs the learning oper-
ation for sequences that follow conditional probability distributions. 94% of the 
sequences generated by the network corresponded to real chemical structures, 90% 
of which were new. After the molecular structure inputs were provided, machine 
learning and neural network methods were used to predict the activity of the 
compound. 

According to Schneider [55], advanced machine learning requires large, 
well-annotated datasets that must be compiled or created. Furthermore, the chem-
ical structure and observable pharmacological effects of a single drug have not been 
analyzed in a straightforward manner. Consequently, most medications have many 
biological targets and actions that are heavily influenced by the patient's genetic 
profile and other circumstances. Accordingly, several hurdles may arise in drug 
design, primarily due to intrinsically ill-posed problems caused by unknown con-
tributing basics. 

Schneider et al. [55] made an effort to create a non-human ‘drug designer’. He  
stated, “Modern machine-learning methods are very fast and can consider several 
design goals in parallel. Therefore, our drug design software was used to identify 
important features and characteristics of known drugs. The obtained models were 
then used to automatically assemble new molecules with the desired properties 
learned from scratch.”
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Another neural network-based project is Atomwise [56], invented by Abraham 
Heifets and Izhar Wallach in California, USA. It uses machine learning technology 
to screen compounds quickly, and applies the same technology as in 2D image 
analysis as well as speech recognition, all utilized to perform molecular recognition 
(3D image recognition). However, human intervention is also inevitable. 

PaccMann, INtERAcT, and pathway-induced multiple kernel learning (PIMKL) 
from IBM research are open-source deep-learning projects. 

4.1 PaccMann 

PaccMann [57] is an innovative approach for the prediction of anticancer com-
pound sensitivity (cancer cell-drug sensitivity) using a multimodal attention-based 
neural network. This initiative is built on three pillars of drug sensitivity: the 
molecular structure of drugs, cancer cell transcriptome profiles, and prior knowl-
edge of protein interactions within cells [57]. 

4.2 INtERAcT 

INtERAcT [58] is a database that gathers information by reviewing cancer research 
publications, and derives interactions by applying unsupervised machine learning. 
An increasing number of biomedical publications is a rich source of new knowl-
edge. Thus, a large amount of biological data are not immediately available, making 
it difficult for researchers to uncover these relationships. As a result, INtERAcT 
pulls information about protein–protein interactions from a large number of 
biomedical articles across a wide range of scientific fields in an entirely unsuper-
vised manner. This makes it easier for researchers to use interactive data. It pro-
poses a new metric for estimating the interaction score between two molecules in 
the space where the associated words are contained, based on vector representations 
of words previously assessed on a large amount of domain-specific data. All other 
methods were outperformed by this metric. It is also quite forgiving when it comes 
to parameter selection, which results in the identification of known molecular 
interactions in every cancer type analyzed [58]. 

4.3 PIMKL 

PIMKL, or  pathway-induced multiple kernel learning [59], is a machine-
learning algorithm that can predict phenotypes from multiomic data. Specifically, 
this groundbreaking methodology can classify samples and provide a 
pathway-based molecular fingerprint of the signature that underlies classification. It 
integrates multimodal molecular measurements optimized from a set of 
pathway-induced kernels. These kernels were created using prior knowledge in the 
form of a molecular interaction network and a set of annotated gene sets. The links



between these pathway-based kernels were then strengthened with the purpose of 
identifying a phenotype of interest. Finally, as illustrated in Fig. 2, PIMKL iden-
tifies the molecular pathways that aid in the prediction of the phenotype in question 
[60]. 
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Fig. 2 A representation of the PIMKL concept as adopted by [59]. A network topology describes 
chemical interactions in PIMKL, and comparable sub-networks can be used to build a combination 
of pathway-induced kernels. After that, the complicated combination of kernels is optimized to 
anticipate a desired phenotype. The mixture's weights assign a value to each chosen pathway, 
offering light on the molecular pathways that contribute to the specific phenotype [59] 

5 Deep Neural Networks 

One of the most effective promoter strategies in drug development is the use of 
massive transcriptional response datasets to train deep neural networks (DNNs) to 
classify diverse medicines into therapeutic groups based on their transcriptional 
profiles. Aliper et al. [61] used DNNs to predict the pharmacological features of 
drugs by exploring the transcriptome data for repurposing. DNNs are multilayer 
networks of connected and interacting artificial neurons with multiple hidden layers



that perform data transformation. Although state-of-the-art results have outper-
formed human accuracy, the use of deep learning in biomedicine has been gradual. 
Furthermore, significant levels of accurate classification have been accomplished 
using traditional machine learning approaches, but these require the use of manually 
selected and tuned features. On the other hand, the greatest benefit of neural net-
works is the automatic feature of learning from massive datasets (details are pre-
sented in Fig. 3)  [61]. 
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Fig. 3 A comprehensive summary of how deep neural networks are being used in drug discovery 
and development, as adopted by [61] 

The LINCS Project examined 678 drug samples from the A549, MCF-7, and 
PC-3 cell lines and related them to 12 therapeutic drug classes determined from 
MeSH. They employed both unprocessed and processed transcriptome data to train 
the DNN. For a pooled dataset of samples disturbed with varied concentrations of 
the medication for 6 and 24 h, the processed data were obtained utilizing 
pathway-activation-scoring methods. DNN achieved high classification accuracy in 
both processed and unprocessed data, even though the accuracy of the processed 
data was significantly better (for an overview see Fig. 4) [61]. 

6 AI in 3D Pharmacophore Models 

A pharmacophore is a 3D molecular structure that contains the alignment of the 
molecular characteristics responsible for recognizing and binding to a pharmaco-
logical target [62]. The 3D molecular structure was used to identify lead compounds 
in ligand-based virtual screening via 3D-molecular similarity methods. The prin-
ciple of this method is that similar compounds would have similar bioactivity [62]. 

The features obtained from the 3D alignment of the structure are employed in the 
development of machine learning algorithms that can predict binding locations and 
rank docking postures (i.e., the favored orientation of one molecule in accordance



with a second one when bound with each other, and the formation of a stable 
complex is accomplished). 

130 A. Kavidopoulou et al.

High-throughput 
screening 

Diseases 

Chemical 
properties 

Functional class 

Efficacy 

Therapeutic use 

Toxicity 

L1 L2 L3 L4 L5 

Hidden layers Input layer Output layer 

Fig. 4 Aliper et al. [61] used a training design in which gene expression data from the LINCS 
project were connected to 12 MeSH therapeutic use categories. The DNN was trained with 977 
and 271 neural nodes, respectively, on gene expression level data for “landmark genes” and 
pathway activation scores for significantly perturbed samples, as adopted by [61] 

Ballirani et al. [63] developed the HS-Pharm model, which is a knowledge-based 
strategy that takes advantage of atom-based fingerprints of known ligand-binding 
sites. These are fed into a random forest (RF) model (i.e., a machine learning model 
that creates output predictions by combining the results of a series of regression 
decision trees [3]) that can be used to rank cavity atoms that should be employed as 
ligand-binding targets. 

Another model, Pharm-IF, was developed by Sato et al. [62] and is called 
Pharm-IF. This model is based on a pharmacophore interaction fingerprint using 
machine learning methods (i.e., support vector machines (SVMs) and RFs) rather 
than similarity-based ranking. Pharmacophoric descriptors were used to train a 
convolutional neural network (CNN) to locate cavities and predict binding 
affinities. 

7 AI and Gene Profiling Analysis 

Gene profiling analysis plays a vital role in drug development, as reported by 
Chengalvala et al. [60]. Specifically, accessibility to human genomes and a large 
number of experimental animals have enriched gene expression profiles and their 
connections to physiological outcomes. Gene expression profiles can be charac-
terized as genetic fingerprints that are unique to a specific cell or tissue, providing 
information about their functions and thus contributing to the identification of new 
drug targets used for drug discovery techniques. Furthermore, if a large number of 
genes from different tissues or the same tissue need to be analyzed under a wide



range of experimental conditions or among different species, high-density DNA 
microarrays are among the most effective and versatile tools. 
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The first bioinformatics and microarray-based method for cancer diagnosis was 
developed in 1999 by Golub et al. [64]. The aim of this method was to create a 
powerful diagnostic platform that could classify leukemia based on genomes, 
identify known prognostic leukemia subtypes, and detect characteristic gene sig-
natures to explicitly opt for individual patients who are at risk of relapse [65]. 
Furthermore, for feature selection and statistical analysis, this method employs the 
signal-to-noise (SN) technique. 

For class discovery, this method uses both unsupervised learning (grouping 
samples based on the similarity of their gene expression profiles using 
self-organization maps (SOMs), as well as hierarchical and probabilistic clustering) 
and supervised learning (gathering tumors based on known differences and forming 
transcriptional profiles from defined groups using weighted voting, (SVM), and 
other methods) [65]. 

8 AI and Drug Screening 

In addition to designing new drug molecules using artificial intelligence, it is also 
important to predict the features of new drugs, such as physicochemical properties, 
bioactivity, and toxicity. 

The first characteristic refers to properties such as partition coefficient (logP), 
solubility, intrinsic permeability of the drug, and degree of ionization [66]. These 
can be predicted using AI-based tools such as the QSPR workflow [67]. Deep 
learning algorithms such as undirected graph-recursive neural networks and 
graph-based convolutional neural networks (CVNNs) can be used to predict the 
solubility of substances [67]. Additionally, models (as well as graph kernels and 
kernel ridge-based models) were used to estimate the acid dissociation constants of 
the ANN-based molecules. Cell lines from various or the same species are utilized 
to create cellular permeability data for a variety of compounds to predict cellular 
permeability [67]. AI-assisted predictors were provided with this information. 
Support vector machines (SVMs), artificial neural networks (ANNs), k-nearest 
neighbor algorithms, probabilistic neural network algorithms, partial least squares 
(PLS), and chemical compounds for training can predict intestinal absorption based 
on the molecular mass, molecular surface area, molecular refractivity, total 
hydrogen count, molecular volume, total polar surface area, partition coefficient 
(log P), solubility index (log S), and rotatable bonds [67]. 

AI-assisted predictors can provide insight into the bioactivity of drug molecules. 
Bioactivity is based on the efficiency of a drug molecule linked to the target protein 
or receptor. If the drug molecule does not present affinity towards the targeted 
protein, delivery of the therapeutic response will not be able to be transferred. 
Unwanted affinities of the created therapeutic compounds with inappropriate pro-
teins or receptors can lead to harm in some situations [67].
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Artificial intelligence approaches are used to calculate a drug's binding affinity, 
taking into account the drug's properties or similarities with its target, to avoid such 
situations. Some apps for predicting such interactions include ChemMapper and the 
Similarity Ensemble Approach (SEA) [67]. 

Finally, AI-assisted predictors last can predict the toxicity of a drug. It is 
important to ensure that the drug molecules are present. To identify the toxicity of a 
compound, in vitro assays based on cells have been used in previous animal studies. 
LimTox, pkCSM, admetSAR, and Toxtree are web-based tools that can provide 
toxicity [67]. 

9 AI and Drug Delivery 

Another important aspect of drug development is the establishment of tools that can 
provide successful drug delivery, frequently called nanorobots. Nanorobots are 
drug delivery vehicles that include integrated circuits, power supplies, sensors, and 
secure data backups. Computational technologies, such as artificial intelligence, 
have been used to preserve such data. Nanorobots are designed to bypass collision, 
identify the target, detect and attach, and excrete the body [67]. Based on physi-
ological parameters, such as pH, they may navigate to the target location. Finally, 
implantable nanorobots (i.e., microchip implants) are employed for controlled drug 
administration, and dose, modified release, and controlled release should all be 
taken into consideration. AI tools such as neural networks, fuzzy logic, and inte-
grators are some of the artificial intelligence tools used for that purpose [67]. 

10 AI in Clinical Trials 

In the drug development process, clinical trials are one of the most crucial and 
critical steps [52]. The clinical development phase is responsible for ensuring the 
efficacy and safety of the new medicines. It was formed from four phases, as shown 
in Fig. 5 [68]. The pipeline of drug development is difficult to manage; thus, it is 
challenging to proceed with costly and time-consuming clinical trials as rapidly as 
possible. Every delay in the process of getting out of the market means millions of 
dollars in lost revenues for a blockbuster drug. 

Most of the time, in clinical trials, all the information needed is gathered by 
human service suppliers amid patient visits without direct information from 
patients. As Nayak et al. [69] stated, all that information is collected from indi-
vidualized computing gadgets (advanced cells and tablets), which billions of 
individuals are using. In this way, the data from every patient in a continuous and 
convenient way are entered into the devices and apps and stored on their own cell 
phones. Information on non-transferable ailments, such as hypertension and dia-
betes, can be collected and conveyed accurately through wearable medicinal



gadgets. Next, all collected information will be published from cloud-based clinical 
trial frameworks in order for the results and registries of examiners and patients to 
be accessible on the web. 
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Research & 
Discovery 

Clinical 
Development  

Manufacturing & 
supply chain 

Launch & 
Commercialization 

Post-market 
surveillance & 

patient support 

Early Phase I : Optional first in-human trials with a single sub-therapeutic  
dose of study drug given to small number of subjects  to test body response.   

Phase I: Often first-in-person trials. Evaluate safety, determine safe 
dosage and identify potential side effects through testing within a small 
group of people (~20 - 80).  
Takes 3-6 months and approximately 70% move to next phase.  

Phase II: Determine efficacy and evaluate safety usually versus placebo via 
testing in larger group of people (~100-300).  
Takes 1-2 years  & approximately 33% move to next phase.  

Phase III: Confirm efficacy, evaluate effectiveness, monitor side 
effects, compare with alternative treatments and assess safety 
through testing through a larger group (~1000 - 3000).  
Takes 1-4 years & approximately 25 to 30% move to the next phase.  

Phase IV: Post-marketing studies, present the risks & benefits while outline 
optimal use. Drug's active medical use in thousands of patients.  
Takes 1+ years with a success rate of 70-90%.  

Among drug candidates that entering clinical trials only 10% becoming regulatory approved drugs 

Fig. 5 An overview of the lengthy process of clinical development with the success rate to be just 
over 10% as adopted by [68] 

AI has also been applied to the design of clinical trials to make things easier. As 
Woo [70] pointed out, a protocol is followed in every clinical trial, which details 
how the study will be carried out. Months of delays and hundreds of thousands of 
dollars could be added to the total cost if a problem arises and changes to the 
current protocol are required [70]. To avoid this issue, all prior information essential 
for the design of a study as well as similar studies, clinical data, and regulatory 
information should be gathered from a variety of sources. For this purpose, 
AI-powered software can digest all the data faster and collect more data than a 
human can. 

Trials.ai, a start-up company in San Diego, California, specializes in designing 
better trial protocols using its AI tool. Natural language processing (NLP) and other 
AI techniques collect and evaluate publicly available data such as journal articles 
and prescription labels. The company’s software then uses these data to build the 
customer’s proposed trial, taking into account elements such as the rigor of the 
eligibility criteria and the potential influence on outcomes such as cost, time, or 
participant retention [70]. 

It is also worth noting that even studies with well-designed protocols rely on the 
participants’ ability to follow instructions. AI once again found a solution to this 
issue. AiCure, a data analysis firm based in New York City, offers a platform that 
allows users to capture videos of themselves taking medication using their smart-
phones. Subsequently, AiCure software analyzes the photographs and utilizes 
computer vision techniques to identify the person and the pill, confirming whether it 
was consumed [70].
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11 Conclusions 

AI and big data are promising tools for successful drug discovery research because of 
the high attrition rates of drug development and discovery. The ultimate aim was to 
remove human decision making and bias from the procedure. This can be achieved 
through the full automation of the machine learning process in combination with AI 
to select potential compounds and predict their interactions and side effects. 
Advances in modern machine learning approaches, such as deep learning, have 
improved the drug discovery research landscape with unique abilities to deal with big 
datasets. The application of big data in drug discovery may face specific challenges. 
Such challenges are often related to the need for large amount of data, sparsity in data, 
and their lack of interpretability. Furthermore, there is still a need to develop standard 
criteria and modelling workflows for the applicability of deep learning approaches. 
Nonetheless, AI and big data applications are revolutionizing drug discovery 
research, salvaging the image of this entity, and advancing healthcare quality. 
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1 Introduction 

The adoption of IoT-based concepts and practices in medicine and healthcare has 
the potential to reduce costs, increase healthcare quality, and improve 
customer-related reactions. The Internet of Medical Things (IoMT) is an IoT net-
work of medical devices, sensors, and apps that uses computer networks to connect 
healthcare cyber and physical resources. The use of new smart technologies in 
IoMT-based frameworks has been regarded as a crucial factor in the uptake of 
telemedicine practices [1, 2]. 

With contemporary technological advancements, the fields of medicine and 
healthcare are rapidly increasing, and many new fields of human health diagnosis, 
treatment, and care are being developed. Wireless technology is improving, and 5G 
mobile technology enables the Internet of Medical Things (IoMT) to enhance 
patient care and prevent sickness more efficiently [3]. In the healthcare field, the 
Internet of Medical Things (IoMT) has been developed with other tactics to combat 
COVID-19, enhance the safety of frontline experts and covid-19 patients, boost 
effectiveness by reducing the disease's harshness in human lives, and lower fatality 
rates. Significant advancements in terms of applications and technology, as well as 
in diagnosing the healthcare cybersecurity crisis [4], have been made, which have 
been amplified by the quick and broad adoption of IoMT throughout the world. 
Several ongoing studies have suggested that integrating security measures with 
technology may lead to the adoption of secure IoMT applications. Furthermore, 
Artificial intelligence, big data, and blockchain technology paired with IoMT 
technologies present more viable possibilities. This chapter discusses the IoMT 
architecture, applications, technologies, and security advancements made in the 
fight against COVID-19 [5]. This study also contains critical information on 
specific IoMT architectural models, unique IoMT applications, IoMT security 
metrics, and technical guidance that could be applied to a variety of IoMT systems 
in the medical industry to address COVID-19 [6]. 

Financial resources and the ability to adapt to rapidly changing healthcare and 
medicine industries, as well as all other institutions that must accept these new 
technologies, are the most serious dangers associated with the deployment of 
Internet of Medical Things (IoMT) [7]. 

Governments will have to stay up with the shift as new technologies are 
employed in medical and healthcare by offering the best rules for these new services 
to the public. This requires large amounts of resources from various regulatory 
agencies and countries. Another issue is the wide range of available medical 
record-keeping technologies as well as the lack of compatibility and interoperability 
across many systems utilized by institutions. If data cannot be easily exchanged, 
they cannot be integrated and aggregated to facilitate information exchange and 
patient record sharing across many medical specialists, with whom the patient may 
have to interact. This may result in big data analysis and communication across 
organizations with mismatched database architectures [8]. The convergence of 
machine learning (ML) and artificial intelligence (AI) enhances the usefulness



(IoMT) [9]. Doctors can reach appropriate conclusions more quickly and reliably 
when dealing with massive amounts of streaming data from networked medical 
equipment. If the Internet of Things (IoT) or sensor network has a large number of 
base stations delivering data, a data center server will have problems acquiring, 
assessing, and processing data [10]. Data collection for the IoMT system will 
experience a concurrent bottleneck based on present technical solutions when the 
number of wireless sensor network base stations is considerable, resulting in data 
collection failure and a catastrophic impact on IoMT applications. Coronavirus 
disease (COVID-19) has suddenly appeared, putting the entire healthcare system on 
high alert. COVID-19 has spurred scientists to create a new 'Smart' healthcare 
system that emphasizes early detection, prevention, education, and handling. The 
role of IoMT applications in improving healthcare systems, an assessment of the 
current state of research demonstrating the effectiveness of IoMT benefits to 
patients and healthcare systems, and a brief overview of technologies that sup-
plement IoMT, as well as the challenges that come with the development of a smart 
healthcare system are all discussed. IoMT and related technologies have solved 
various problems by utilizing remote monitoring, telemedicine, robots, and sensors. 
However, widespread adoption appears to be difficult because of issues such as data 
privacy and security, data management, scalability, and upgradeability [11]. 
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For several years, blockchain registries have piqued the curiosity of healthcare 
industry participants. Distributed registers, such as storage and transmission tech-
nologies, may handle several challenges related to the medical and pharmaceutical 
fields as well as the research area. Some initiatives seem promising even though 
they are still in their early stages. Several healthcare firms are keen to develop a 
distributed patient registry that can be built on a blockchain architecture. Currently, 
information is not shared among physicians, and patients must disclose the results 
of past visits to each new expert on their own. One task made it more difficult for an 
uneducated patient who lacked a grasp of medical jargon and had no exact 
understanding of his file contents [12]. The overarching vision of blockchain 
technology for the future is to address many of the issues currently plaguing the 
healthcare industry, including the creation of a shared archive of health-related 
information for physicians and patients, independent of their electronic diagnosis, 
improving safety and secrecy, and allocating more resources to patient care rather 
than medical staff. This is the start of a blockchain revolution that is predicted to 
move from Bitcoin to the medical industry. Blockchain may have significant 
advantages in the context of intelligent health, especially when individuals and 
society as a whole benefit from effective and personalized solutions [13, 14]. 

Some crises are susceptible to blockchain technology; however, they have 
built-in security against others. Consequently, data security must be prioritized, 
particularly when utilized in healthcare. Blockchain technology should not be 
handled randomly in healthcare, because of its immutability. Massive files or those 
that change frequently may be kept outside, and all network credentials are kept 
confidential. Decentralized administration, immutable databases, sources of fea-
tures, detectable features, resilient features, and the availability of features are some 
of the advantages of using blockchains over traditional methods of health database



management systems. any authorized user; however, encryption based on a 
patient’s private key keeps it out of the hands of unauthorized users. Blockchain has 
the potential to provide a one-of-a-kind system for securely storing and retrieving 
personal records of authorized users. By eliminating misunderstandings among 
different healthcare professionals involved in caring for the same patient, numerous 
errors can be avoided, faster diagnosis and interventions can be performed, and care 
can be tailored to the particular needs of each patient [15, 16]. Healthcare providers 
can submit and share characteristics through a secure system, registering a specified 
set of standardized features on the network and keeping private encrypted stems to 
segregate information such as X-rays or other scans. The practice of contracts and 
standard endorsement processes can help achieve seamless communication in large 
medical network [17, 18]. The COVID-19 pandemic has exposed flaws in our 
health systems, revealing, among other things, the high vulnerability of supply 
chains, questions of sovereignty and interdependence, the inefficiency of overly 
centralized EHR systems, the importance of the state to assist healthcare providers 
to hold on and then restart, and a lack of international cooperation and alignment of 
health ecosystem strategies. This problem has also highlighted the relevance of 
medical data, which is a holy grail for modeling, choosing, and predicting, as well 
as the role of blockchain as a vital and tangible component in cybersecurity and 
storage strategies [19]. In other words, the crisis has highlighted the need for 
healthcare providers to rebuild their confidence, making their exchanges and 
medical transactions more dependable and safer [20]. In this section, we describe 
the benefits of combining connected medical devices with the blockchain tech-
nology. IOMTs are becoming more autonomous as they integrate cognitive abilities 
and can make judgments in real time based on collected data. Consequently, health 
users of IoT will need to create smart contracts that describe the business rules 
governing the different potential interactions between the network's health domain 
interveners. On the other hand, the shared ledger is used to keep track of the 
objects’ activities (exchanges, flows, interactions, etc.) and make them available to 
all medical network members. The remainder of this chapter is organized as fol-
lows: Sect. 2 is provided to describe the IoMT concept for COVID-19; Sect. 3 is 
devoted to present the role of artificial intelligence and big data technology in 
IoMT; Sect. 4 we will present the concept of HealthBlock for secure 
blockchain-based healthcare data management system; Sect. 5 describes the para-
digm of Chains of Medical Things (COMT) for Healthcare Integration; and the last 
section, the blockchain IoMT (BIoMT) insight for solving IoT security and 
healthcare issues will be developed. 

142 H. Sakly et al.

2 IoMT Concept for COVID-19 

The Internet of Medical Things (IoMT) is a collection of medical equipment and 
software that communicate with healthcare IT systems over the internet. 
Machine-to-machine communication, which is at the heart of IoMT, is enabled by



medical equipment outfitted with Wi-Fi technology. Cloud platforms such as 
Amazon’s web services connect IoMT devices [21, 22] that store and analyze data 
input. IoMTs include patient wearable mHealth devices that may communicate 
information to caregivers, remote monitoring of covid-19 patients, tracking medi-
cine or vaccine orders, and locating covid-19 patients admitted to hospitals. Oxygen 
pumps that connect to analytical dashboards and hospital beds with sensors that 
monitor patients’ vital signs are examples of medical devices that can be trans-
formed or installed as IoMT [23]. 
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Many customer mobile devices are designed with RFID tags (RFIDs) and 
near-field communication (NFC) devices that allow devices to share information 
with computer systems, which are more viable uses for IoMT than ever before. 
RFID tags can also be affixed to covid-19 equipment and medical supplies, 
allowing hospital staff to keep track of them [24]. Data are collected via a variety of 
wearable sensors for quick monitoring, assessment, decision-making, and improved 
care approvals from doctors via IoMT devices to powerful cloud and data analytics 
layers. Telemedicine is the process of using IoMT devices to remotely monitor 
covid-19 patients in their homes. Patients do not have to travel to the hospital every 
time they have a medical query or change their condition with this form of pro-
cessing [25]. Healthcare providers are becoming increasingly concerned about the 
security of sensitive data such as private health information, which goes through 
IoMT and is controlled under the Health Insurance Portability and Accountability 
Act. To provide versatility and scalability in IoMT systems in a variety of situa-
tions, the IoMT architecture comprises of multiple layers. 

Indeed, the Internet of Things in Health has enabled covid-19 patients to benefit 
from a number of benefits, including the collection of more data to further specify 
the diagnosis, general improvements in diagnoses, more regular health monitoring, 
and better management of crises and health emergencies. Undeniably, most 
healthcare professionals are wary of IoT if they do not offer sufficient security for 
their patient data. The processes for gathering and utilizing data must be rigorous 
and entirely open to generate an environment of confidence that may expedite 
extensive growth. Healthcare options that are useful during the Covid-19 epidemic. 

According to the layer functions in the IoT system, the IoMT architecture 
consists of multiple levels [26–29]: 

1. The sensor layer: is the lowest layer and consists of integrated smart objects 
and sensors. These medical sensors enable real-time information processing by 
connecting real-world and physical measurements. Sensors come in a range of 
shapes and sizes, and each is employed for covid-19 patients that allows them to 
save a set of measurements of clinical symptoms. A sensor can detect a physical 
property and convert it into an interpretable signal. The majority of sensors 
connect to sensor gateways (aggregators) through a personal area network 
(PAN), such as Bluetooth, ZigBee, or ultra-wideband (UWB), or a local area 
network (LAN), such as WiFi or Ethernet. Wireless sensor networks (WSNs) 
have low data rates and low power consumption.
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Application layer: includes the various applications of the IoMT systems
described in Fig. 1.
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2. The Gateways and network layers: Vast amounts of data are generated by 
small sensors, necessitating a high-performance, reliable, and wired/wireless 
network architecture. Machine-to-machine (M2M) networks and applications 
are supported by networks connected using various protocols [30]. Multiple 
networks, each with their own set of access protocols and technologies, must be 
integrated into a heterogeneous configuration. To fulfill the communication 
needs for bandwidth, latency, or security, these networks may be public, private, 
or hybrid. Converged network-layer abstraction allows different hospitals and/or 
medical centers to communicate routed information independently, without 
jeopardizing security, privacy, or performance. In healthcare applications, each 
medical organization uses the network as if it were private. 

3. Management service layer: Information processing, security controls, medic 
image analytics, storage of medical reports, and device management are a 
components of the management service layer. Various analytical approaches a 
used to extract relevant information from large amounts of raw data so that it ca 
be processed more quickly. Furthermore, data-in-motion analysis, often know 
as streaming analytics, must be performed in real-time. By reducing recurrin 
communication, analytics minimizes network layer stress and lowers sens 
power consumption, allowing for quicker reactions to data established by t 
sensors. Information can be accessed, managed, or integrated during the da 
management. Furthermore, data filtering techniques such as data integratio 
data anonymization, and data synchronization are used to hide informatio 
specifics. Data abstraction was used to extract specific information fro 
covid-19 patient. Finally, security should be included in all aspects of the Io 
architecture. Security is used to secure data as they pass through the HE 
system. Medical data integrity allows genuine and dependable judgments b 
preventing unauthorized healthcare consumers or hackers from accessing t 
IoMT system. Physicians want to develop several security methods. Furthe 
more, numerous authentication and encryption methods for privacy and securit 
such as message authentication codes (MACs) and rivest shamir adlema 
(RSAs), ensure the legitimacy and confidentiality of transaction data while bein 
sent across networks. Furthermore, an extensible authentication protocol is a 
authentication framework that supports various authentication techniqu 
(EAP). 
Technological solutions and policy methods are used to ensure the removal of 
sensitive data. To ensure data privacy, the European Network and Information 
Security Agency (ENISA) developed a data-privacy strategy based on a 
data-masking platform. Threats from other networks seek spoof data access 
while using IoT-distributed systems that incorporate embedded devices in public 
spaces. Therefore, IoT security must be implemented on a solid basis at several 
interacting levels. 

4. 

This IoT architecture is depicted in layers using various technologies that can be 
divided into three categories: network sharing, latency, and capacity, such as
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Fig. 1 Architecture of IOMT Layers for covid-19 

software-defined radios and cognitive networks for radiologists; (ii) micropro-
cessor chips and devices, such as low-power sensors and wireless sensor net-
works in hospitals and medical institutions; and (iii) service management to 
support IoMT applications, such as storage and streaming analytics. 

3 Artificial Intelligence and Big Data Technology in IoMT 
for Covid-19 Management 

“E-health” is a complicated field because it involves several actors in the medical 
manufacturing industry, all of whom are governed by regulations that are more or 
less adapted to today's reality, especially as newly connected medical devices 
emerge, allowing covid-19 patients to take real-time control of their health. New 
information and communication technologies are at the core of the progress of the 
healthcare system, facilitating the flow of data among many stakeholders. 

The volume of medical data created by the IoT is expanding as the number of 
connected things increases. Consequently, big data analytical tools are required to 
support and analyze them in real time [10]. These systems can quickly handle vast 
volumes of data continuously generated by IoMT devices and derive relevant 
insights for supporting medical decisions. Machine learning makes it possible to 
identify precise data models of covid-19. Using these patterns, medical institutions 
can establish predictive maintenance for EHR systems. 

Devices connected to the IoT generate large amounts of data that are collected, 
stored, and processed [31]. Machine learning will then use these vast oceans of data 
to improve the processes and increase the autonomy of medical systems. Big data 
and the Internet of Medical Things are opening up new prospects for efficiency 
gains, whether in the fields of research, prevention, understanding covid-19 diseases 
or the efficacy of drugs and vaccines post pre-treatment. The analysis of the data 
collected by doctors, the hospital, or the patients themselves via connected objects



allows them to be contextualized, and their crossing helps to forge more precise 
scans of the problem analyzed [32]. 
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The progress of these new technologies (Spark and Spark streaming) [33] makes 
it conceivable to process increasingly large volumes of data in real time but also to 
exploit them more quickly owing to the use of parallel, distributed calculation 
methods and memory, thereby opening the door to new use cases and creating 
value. By combining analytics with other techniques, such as machine learning, it is 
easy to imagine new applications that provide high value-added, such as predictive 
medicine. 

If, until now, patient covid-19 management consisted of moving from a curative 
to a preventive logic (PCR test, awareness campaigns, vaccination, hygiene, etc.), 
the multiplication of connected objects and cross-analysis of data health systems 
now allows for the adoption of predictive logic through the study of medical 
antecedent data for covid-19 cases (chronic disease, consumption, drug, etc.) risk 
element localization. Machine learning allows for the enrichment of analytical 
models over time. Consequently, it is feasible to envision the development of a 
real-time automated alarm system that alerts doctors to the possibility of a problem 
before it occurs [34]. 

Personalized medicine consists of individualizing the treatments for covid-19 
patients: On the one hand, sensors (placed either on the patient himself by means of 
connected objects such as a bracelet, or nearby, by example on smart hospital beds) 
collect data on a regular basis. However, this information is crossed and integrated 
with other data in business intelligence applications to improve the effectiveness of 
the treatments. Combined with 3D printing [35], personalized medicine offers even 
more attractive perspectives. The ability to collect, store, process, and return data is 
crucial. In addition to the phenomenal evolution of technologies for the intelligent 
use of these data [36], the communication protocols of connected objects have also 
significantly improved, making them lighter (MQTT) [37]. The means to promote 
the interoperability of data is to ensure that it is shared and to make the most of it to 
make medical decisions more efficient. 

This section discusses how IoMT systems are being used, the impact of 
COVID-19, the supporting applications and technology used, and the potential 
design and security challenges. Table 1 presents the taxonomy of these insights. 

4 Blockchain Concept for COVID-19 

A system that manages transactions among partners in a dispersed network is what 
Blockchain is defined in the broadest sense. When we discuss transactions, we can 
refer to the transfer of assets, currencies, and exchanges as well as the recording of 
states in a register and the capacity to track actions [59]. In this situation, we are 
interested in medical transaction management. In such a situation, transaction 
management is of interest. For covid-19 patients, blockchain is a method for storing 
and sending medical data. It is designed to be transparent, secure, and operate



without the need for a central control authority [60]. The study and potential 
implementation of a blockchain network make sense as soon as a medical trans-
actional act between numerous stakeholders in the health area brings the principles 
of honesty, security, sharing, or traceability into play. The central idea is built on 
collective confidence rather than the presence of a centralized trustworthy third 
party. There is no third-party verifier or central control body in a blockchain system 
[61]. From a technical standpoint, the installation of a blockchain system is based 
on a chained and stored set of records in a distributed covid-19 patient database, 
using a revolutionary replication method. User anonymity depends on crypto-
graphic keys. Asymmetric cryptography has also been used to sign and verify 
transactions. 
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Table 1 Taxonomy IoMT pandemic mitigation 

Application Architecture Technology Security 

IOMT pandemic mitigation 

Detection and prediction 
[38] 

5 layers [39] Device [40] Confidentially 
[41] 

Tracking and monitoring 
[42] 

4 layers [43] Big data [44] Integrity [45] 

Records/EHR [46] 3 layers [47] Artificial intelligence 
[48] 

Availability [49] 

Telemedicine and mHealth 
[50] 

Fog layers 
[51] 

Blockchain [52] Authenticity 
[53] 

IOMT framework-based AI and big data 

Using IoMT and DNN, a drone-assisted covid-19 screening and detection framework for rural 
areas [54] 

Early covid-19 assessment using an IoT-based deep learning framework [55] 

COVID-19: a framework based on internet-of-medical-things-enabled edge computing [56] 

A cloud and IoMT-based big data analytics system was used during the COVID-19 pandemic 
[24] 

An intelligent framework based on disruptive technologies has been designed for COVID-19 
analysis [57] 

A security management framework for big data in smart healthcare was developed for 
COVID-19 [58] 

The concept is the same: one can calculate a public key using a private key, but 
not vice versa. This concept is incorporated into blockchain, which is currently used 
in various secure systems. Finally, the blockchain’s core provides a built-in system 
for generating key pairs (private and public keys) that are required to sign medical 
transactions. Therefore, corrupting a node group to obtain an agreement is both 
difficult and expensive. Modifying a record, on the other hand, would have no 
influence on the global record chain’s security because a transaction would have to 
be recreated from the beginning of the network. Apart from security, Tend the 
blockchain is built on two other concepts: the concept of a distributed ledger 
(shared ledger) and the concept of a contract (smart contract) [62, 63]) (Fig. 2).
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Fig. 2 Blockchain concept for COVID-19 

The tamper-proof replicated and distributed ledger stores the entire history of 
medical transactions in the form of individual recordings chained together and 
timestamped. Thus, a blockchain-type network is a distributed register with a high 
level of security, based on very precise encryption techniques, and contains all 
transactions conducted since the inception of the network. All stakeholders in the 
healthcare network are involved in the replication process and each has a local 
copy. Rights and permissions govern the network, ensuring that each healthcare 
participant only sees relevant transactions [64, 65]. 

APIs would synchronize such registers in traditional methods (application pro-
gramming interfaces). However, this method becomes more difficult when the 
number of integration points increases. 

1. In terms of security, the overall susceptibility is increasing, and one of the nodes 
might frequently contaminate the entire hospital network. 

2. End-to-end global supervision Producing real-time monitoring medical data and 
anticipating probable difficulties for covid-19 tracking becomes tricky. 

3. Maintenance costs are often exorbitant when it comes to ensuring that updated 
and relevant information is opportunistically distributed to healthcare profes-
sionals in an opportune way. The blockchain method distributes, synchronizes, 
and duplicates the ledger, ensuring that all healthcare contributors have access to 
the same consistent, updated, and secure scans. 

A distributed ledger serves as a unique spot in a blockchain network to deter-
mine the ownership of an asset or transaction (a shared ledger). Each healthcare 
provider has the same ledger state, which is updated for each transaction through 
peer-to-peer replication processes. After the register, the contract (or smart contract) 
was the second-founding notion. In a blockchain, a contract contains medical rules



that describe the conditions that must be followed and confirmed for a medical 
transaction in which the transfer conditions for an asset must be implemented. The 
contract also specifies the asset ownership, compliance, conditions, and security 
criteria. The contract is integrated into the blockchain, and each participant at the 
application level executes its rules throughout the transaction [66]. This process 
must be able to sign it as it is verifiable. Contracts must be established in an 
appropriate programming language for each local application connected to the 
Blockchain network. From a practical standpoint, it is frequently necessary to adjust 
covid-19 patient applications connected to the blockchain network. Consequently, 
these applications are loaded to implement and test the set of rules of a contract. In 
general, any regulation that has practical and medical applications during the 
transfer of an asset or the execution of a transaction can be entered into a contract 
[67]. 
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5 HealthBlock: A Secure Blockchain-Based Healthcare 
Data Management System 

Owing to the popularity of blockchain, numerous potential applications in the 
healthcare industry, such as electronic health record (EHR) systems, have been 
presented. As a result, we conducted a comprehensive literature evaluation of 
blockchain techniques built for EHR systems in this study, concentrating only on 
security and privacy issues. Prior to analyzing the (possible) uses of blockchain in 
EHR systems, we present the necessary background information pertaining to both 
EHR systems and blockchain as part of the assessment [68]. 

A central institution is entrusted with administering, organizing, and supervising 
the entire network in a centralized design, such as those that support a standard 
EHR system. A distributed design, on the other hand, ensures that all nodes are 
maintained without the assistance of a central authority. Blockchain technology has 
recently emerged as a promising solution to address such security concerns and 
challenges. To grasp the attractiveness of blockchain technology in healthcare, one 
must first grasp the characteristics that distinguish it from current data-sharing and 
management platforms [69]. At the outset, blockchain is a decentralized technol-
ogy. Unlike traditional tools, which are centrally managed by a single intermediary, 
blockchain is a database distributed among all nodes of the network. Thus, each 
minor has a copy of the register. This technology lends itself to the sharing of 
information among several stakeholders such as hospitals, research centers, and 
pharmaceutical laboratories. 

Blockchain also makes it possible to trace the origin and fate of recorded 
medical data. Unlike a centralized EHR system, in which an administrator controls 
this information in a blockchain, only the owner can save it and transfer it to other 
healthcare providers. In addition, although the ledger created by the blockchain is 
made available to all members of the network, the medical data it contains are



encrypted, which helps ensure the confidentiality and security of sensitive data 
[70]. Currently, it is difficult to clearly visualize all data related to covid-19 patient 
and accumulate them during their care journey. This information is usually 
obtained from a wide variety of sources, such as doctors, hospitals, insurance 
companies, pharmacists, and medical analysis laboratories for the PCR test. The 
medical software used by radiologists to collect and manage electronic health 
records differs and is not interoperable. Thus, information-sharing is difficult. In 
addition, although this information can be retrieved and assembled, it is not always 
clear in what order it was produced, and whether it was exhaustive. This problem 
is frequently encountered when admitting a covid-19 patient to a hospital. 
Healthcare professionals do not always have access to his history and do not have 
full visibility of the treatments he is taking, the history of his disease, or his 
medical history [71]. 
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Clinical trials are a mandatory step in vaccine development for patient 
covid-19. Therefore, patient participation is a sine qua non in clinical trials. 
Informed consent was obtained from all the patients before the start of the trial. 
Through the inviolability and traceability of data, blockchain can provide a solid 
foundation for the inclusion of covid-19 patients in clinical trials. The blockchain 
can timestamp and store the steps of the consent process, ensuring authenticity and 
traceability. This would allow clinical research managers to share consent requests 
in real time [72]. The protocols of these trials for covid-19 patients can also be 
recorded on the blockchain, allowing patients to receive a notification with each 
protocol change, again requiring the collection of consent. Obtaining the latter 
must be a “lock” that prevents further study if it is not obtained [73]. The trial 
prosecution conditions can be encoded into the blockchain as a smart contract: “IF 
(condition) THEN (consequence)”. This system automatically triggered an event 
when coded clauses were present. In the case of a consent form, the smart contract 
could indicate that if a patient's covid-19 consent is recorded with their unique 
digital signature, the patient can be included in the trial. The blockchain, therefore, 
appears to be a solution that not only guarantees data integrity and traceability but 
also preserves the confidentiality of covid-19 patients. Indeed, each result and 
medical report produced during the trial can be recorded on a private blockchain 
managed by regulators and medical institutions [74]. The information then 
becomes immutable and transparent. Additionally, when confidentiality of medical 
data is required, the information can be encrypted, thus ensuring that identifiable 
data regarding patient covid-19 patients are not disclosed. Figure 3 represents the 
complex flows of information exchanged in a clinical trial and the possible 
interactions with the blockchain. 

Thus, the main advantage of blockchain technology is the increased transparency 
and reliability of protocols and results of clinical trials. However, one of the 
essential conditions for the use of this technology for the traceability of medical 
information resulting from clinical trials is the digitization of data.
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Fig. 3 A secure blockchain-based healthcare data management system 

6 IOMT and Supply Chain for Covid-19 Patient 
Integration: Towards Chain of Medical Things (COMT) 

The COVID-19 crisis highlighted the fragility of global supply chains. Companies 
seek to better understand a future marked by many factors of uncertainty, such as 
(1) the health sector weakened by the crisis, possible second wave of the health 
crisis, etc. This uncertain context forces actors in the medical industry to review 
their priorities. Making supply chains more resilient is urgently needed [75]. To this 
end, solutions for monitoring flows using the IoT have several advantages. Dealing 
with uncertainty requires resilience and agility. The increasing degree of uncertainty 
requires the faster detection of disturbances to remedy them as quickly as possible. 
Therefore, medical manufacturers need to improve the visibility of their covid-19 
post-processing flows were operated. Therefore, it is important to measure their 
performance. With the right measurement tools, it becomes possible to manage the 
flow of admission more covid-19 [40]. The progressive optimization of supply 
chain networks must be based on objective visible medical data for the treatment of 
covid-19. Digital technologies can improve the visibility and control of logistics 
flow. Among digital technologies, the Internet of Things (IoMT) is gradually 
establishing itself as an effective tool for visibility into logistics flows for the 
admission of a covid patient-19. An IOMT logistics flow-monitoring solution 
consists of connected objects called trackers [76]. These trackers contain sensors 
that generate continuous medical data. Finally, they use communication networks 
that allow them to transmit the data collected to patients. The collected data were 
automatically processed to standardize the data and enrich them with additional data 
to help medical decisions. Real-time monitoring enables alert logic, allowing for 
corrective interventions as soon as possible. Opportunities for optimizing the supply



chain are revealed using the newly accumulated data. The availability of this data 
and the increased capacity to share it promote efficient collaboration between 
experts based on objective facts [77, 78]. 
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Understanding the supply chain issue that must be solved is critical for properly 
utilizing IoMT’s potential. As a result, it is vital to determine the appropriate data 
on which to base an effective reaction to the challenge provided by patient 
covid-19’s post-and era treatment. Data can be accessed in various ways. What is 
this point? When do you think this is available?’ Which medical device companies 
should have access to them? 

The trackers were then injected into the flow. They generated and transmitted 
relevant medical data. These data provide real-time and end-to-end visibility of the 
flows. The speed of deployment is an advantage of IoMT solutions that are based 
on private hospital networks. This allows the quick collection of data without 
massive investment. The scalability of these solutions makes it possible to increase 
the volume, if necessary. IoMT data were then enriched with available medical, 
historical, and external data relevant to patients. Data science is used on cloud 
platforms for data collection, analysis, and feedback. They make it possible to 
transform data into information that is useful for medical decision making and 
action, as shown in Fig. 4. 

The COVID-19 crisis has forced medical industries to focus on assessing their 
risks, and they will tend to diversify their suppliers of IOMT sensors and medical 
equipment for covid-19 patient in order to limit the risks of patient disruption. 
Additionally, the bankruptcy of certain suppliers necessitates the use of new part-
ners. This implies starting new collaborations, building trust, piloting the start-up of 
new relationships, and evaluating performance. The IoMT monitoring solution 
makes it possible to make these new flows for medical establishments more reliable

Fig. 4 IOMT and supply chain for Covid-19 patient integration



and to limit the associated risks. The use of visibility solutions based on IOMT 
enables the quick identification of supply chain optimization opportunities. Finally, 
increased automation in the management of supply chain flows allows operational 
cost reduction for experts and patients with covid-19. operators spend less time on 
flow-monitoring. They can decide faster by being alerted in real time and benefiting 
from the decision support provided by IOMT monitoring.
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7 Blockchain IoMT (BIoMT): A New Paradigm 
for Healthcare Security and Issues Related 
to the Internet of Things 

COVID-19 is a rapidly spreading illness that has prompted countries to develop 
technologies for the detection of the coronavirus infection. Several countries have 
put much effort into combatting COVID-19. Many countries have used various 
methods to battle the pandemic, including gathering data on growth, monitoring, 
and leaking individuals’ personal information. IOMT-based healthcare devices 
collect important data, offer extra insight via symptoms and behaviors, enable 
remote monitoring, and empower individuals to make better decisions regarding 
their own health. The medical distribution network is regulated by a blockchain, 
which provides the safe transmission of patient health information. The goal of 
installing mobile applications on smart devices is to save time and money, while 
improving the performance of infected patients. 

The development of IoT will make use of blockchain services. The goal of this 
section is to decrease security concerns, remove failure points, streamline processes, 
and reduce costs. The combination of IoT and blockchain will make it possible to 
imagine breakthrough innovations in the field of health. A blockchain is a dis-
tributed ledger system in which transactions are recorded through multiple nodes. 
Although blocks are publicly visible, their content is available only from medical 
organizations with the correct encryption key [79]. Because transactions must be 
authorized by several parties before their acceptance, the blockchain guarantees a 
high degree of reliability. Additionally, transactions can be added only, not deleted 
or edited, making this solution attractive to organizations required to adhere to 
HIPAA [80] and other national regulatory frameworks. In an IoT network, the 
blockchain can not only facilitate medical transactions but also secure message 
exchanges between covid-19 patient tracking devices. By operating under inte-
grated smart contracts, the two parties can share data without compromising the 
confidentiality of their health care owners. Although blockchain does not solve all 
security concerns for IoT devices, such as hacking devices for use in DDoS botnets 
[81], it does help protect data from malicious actors. With the proliferation of 
Internet of Medical Things (IoT) devices, traditional server/client models of net-
work traffic management are becoming too laborious and unwieldy to be effective. 
Conversely, the simplicity of distributed medical transactions in blockchains makes 
them interesting. Accompanied by the growth of computing equipment (edge



computing) and 5G networks [82, 83], this uncomplicated approach will allow for 
faster and more efficient communication among standalone devices without the 
need for single points of failure. The blockchain can also accurately record a 
sensor’s or object’s “activities” and transactions, allowing IoT devices to com-
municate without the need for a centralized authority. Blockchain and the Internet 
of Medical Things add complexity to hospital IT infrastructure in medical digital 
transformation technology [84]. These include blockchain transaction equipment 
and edge servers, middleware for encryption and authentication, and virtual com-
puters for databases and distributed applications. While autonomous device com-
munication and faster medical transactions can boost efficiency and increase 
availability, enhanced security can lower costs, ensuring optimal service quality 
remains necessary. In an Internet of Things (IoT)/blockchain environment, service 
delivery can be affected by loads, latencies, or errors. Owing to the highly dis-
tributed nature of blockchain, guaranteeing the provision of services is more 
difficult. 
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This requires the complete end-to-end visibility of the program and session flow, 
which includes load balancers, gateways, service providers (including DNS), net-
works, cloud servers, and databases. 19 patients, distributed or not, with all of their 
interdependencies The announced development of blockchain-related Internet of 
Things equipment would result in an increase in DNS queries and related services, 
which could have a substantial influence on hospital and medical institution service 
delivery and performance [85, 86]. The ultralow latency of DNS services is 
problematic for medical business continuity and the performance quality of the IoT. 
If DNS performs poorly, IoT and blockchain services will also suffer. In other 
words, all swathes of connected experts/physicists, who increasingly rely on 
automation, would be at a standstill. DNS issues can interfere with medical 
transactions relating to patient covid-19 care. A proper covid-19 doctor/service 
expert tracking tool that provides IT teams with good insight into DNS issues, such 
as mistakes and busy servers, aids in the prevention of control loss [87, 88]. IT 
professionals will be able to comprehend the complete context of services and DNS 
anomalies that hurt user experience and application performance owing to the 
combination of intelligent data and enhanced analytics. However, blockchains are 
inextricably linked to the future of the connected item networks. 

The Internet of Medical Things platforms and blockchain-based architecture for 
coronaviruses are summarized in Table. Two must have resistance (the capacity to 
sustain a functional state during a failure) and resilience qualities (implementation 
strategies aimed at restoring a functional state). The need to scale up in the face of a 
large number of connected medical objects, piloting (manufacturer independence 
and a lack of standards, resulting in isolated sub-assemblies that are sometimes 
incompatible), governance (split between many healthcare providers), heterogeneity 
(medical equipment, protocols, programming environments, and exchange for-
mats), and the discovery of connected objects are all factors to consider. Lone 
platforms that distribute communication, medical data processing (access, filtering, 
aggregation, and storage), and administrative capacities as close to objects as 
possible can address these problems. As indicated in Fig. 5, these platforms will be



sophisticated multi-agent systems for medical decision aid and tracking of covid-19 
patients, and the blockchain will enable solutions of choice for building these 
platforms with IoT [89–92]. 
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Fig. 5 Blockchain IoMT (BIoMT) architecture 

Even if the blockchain does not provide solutions to all of the difficulties of 
IOMT, it presents a set of intriguing traits and qualities that might make it a 
desirable component for IOMT systems. The discovery of related devices and 
hospital infrastructure creates a high level of complexity because of this 
relationship. 

Furthermore, by forbidding this consideration, it is necessary to safeguard 
healthcare practitioners and patients from dangerous situations. By providing a 
resistant and verifiable record of authorizations connecting the choices of experts to 
IoT platforms, the blockchain solution enables objects to be legitimized, repudiated, 
and prohibited. This feature is an extension of permission management, which 
entails documenting the conditions of access to third-party data given by the owner. 
In this situation, the holder or administrator of an item will be able to describe its 
state (operational, outdated, open to the public, etc.) in a manner that is both 
traceable and nonrepudiable for patients (Table 2). 

8 Conclusion 

The most crucial return of EHR systems is access to enormous amounts of data, 
which may be utilized for better data analysis and machine learning, as well as other 
medical research activities like covid-19 forecasts. Wearable and other Internet of 
Medical Things (IoMT) devices may also gather and upload pertinent data, 
including data from EHR systems, to help with healthcare monitoring and per-
sonalized health services. Therefore, this non-exhaustive list of potential blockchain 
health applications has a real impact on the organization and efficiency of the
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Table 2 Tools for IoT and blockchain-based framework for covid-19 

IoT and blockchain-based 
framework for covid-19 

Description 

Aarogya Setu This software collects location data that 
requires a constant connection to the mobile 
device, which is invasive in terms of privacy 
and security. This, as well as facilitating legal 
compliance criteria, is something it can 
accomplish [93] 

Kwarantanna domowa This software, among other things, allows 
users to investigate area health insurance 
institutions that, under plausible 
circumstances, would supply treatments as 
well as memories. People might also quickly 
alert a member of staff. Apart from individuals, 
app users typically have quick access to 
relevant information. This is useful during 
quarantine and as a means of communication 
with the counseling service. A self-monitoring 
setting for medical therapy a few days prior 
was also provided by the designers. This 
software's official developer is Poland [94] 

Tawakkalna (covid-19 KSA) The purpose of this app is to monitor people’s 
movements around Saudi Arabia. This 
involves the movement’s authorization as well 
as the health concerns of each patient. This is a 
China project simulation. It’s a color-based 
classification system that represents a person’s 
health. The color green indicates that the item 
is clean and safe to travel with. The perpetrator 
is represented by the yellow color, and he or 
she is not allowed to travel. The color red 
denotes that you are both afflicted and unable 
to go [95] 

TraceTogether It’s intended to support ongoing regional 
efforts to combat the COVID-19 epidemic by 
allowing community-driven touch monitoring. 
The Singapore government released this 
software, which employs a modified Blue-trace 
standard to allow digital touch monitoring [96] 

LetsBeatCOVID It was designed to allow people to have a fast 
conversation about fitness, including the risk 
of COVID-19, in order to save more lives. 
MedShr, a medical app used by over a million 
doctors, provided this information [97] 

CovidWatch This software was developed in collaboration 
with Stanford University and represents the 
actual fortitude of people to sustain themselves 
and their communities while sacrificing their 
privacy. This uses Bluetooth signals to identify 

(continued)
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(continued)
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IoT and blockchain-based 
framework for covid-19 

Description 

persons who are in close proximity to one 
another, or to notify people when they are in 
contact with infected people [98] 

HaMagen Contact tracing with IoTrace: a flexible, 
efficient, and privacy-preserving IoT-enabled 
architecture [99] 

Covid-19 tracker An association research from the COVID 
symptom tracker APP identified key predictors 
of COVID19 hospitalization [100] 

COVID symptom tracker Analysis of questionnaire data from an 
app-based tracking of self-reported COVID-19 
symptoms [101] 

Corona DataSpende Quantifying the privacy-utility trade-offs in 
COVID-19 contact tracing apps [102] 

COVID-19 blockchain framework P2P-mobile application, and mass-surveillance 
system are anticipated to provide an effective 
system capable of assisting governments, 
health authorities, and citizens in making key 
decisions about illness detection, prediction, 
and prevention [103] 

Framework for coronavirus (COVID-19) 
disease based on internet of things and 
blockchain 

Through smart gadgets, the internet of things 
(IoT) and blockchain technologies are being 
implemented [104] 

A blockchain-based safe framework for 
e-learning was developed for COVID-19 

A blockchain-based EL framework is offered 
to assist EL designers in maintaining the 
security of EL data and the environment [105] 

CovidChain An anonymity-preserving blockchain-based 
framework for COVID-19 defense [106] 

A blockchain framework for sharing contact 
information and a risk notification system has 
been developed for COVID-19 

Through hierarchical smart contract design, 
users can form global agreements about how to 
handle and use their data, improving data 
usage transparency. In addition, a mechanism 
to protect user identity privacy from a range of 
perspectives, as well as smart contract 
notifications warning users to the risk of 
exposure [107] 

DHP framework Blockchain-based digital health passports; case 
study on international tourism during the 
COVID-19 pandemic [108] 

Blockchain for multi-robot collaboration for 
COVID-19 

The proposed framework can improve the 
intelligence, decentralization, and autonomous 
operations of connected multi-robot 
collaboration in the blockchain network [109] 

Blockchain and ANFIS empowered IoMT 
application 

A blockchain-based system for tracking 
patients’ contacts using Bluetooth-enabled 
cellphones while maintaining their anonymity 
[110]



Table 2 (continued)

healthcare system. However, it is important to note that this technology is only a 
tool and not a solution to all of the health care industry’s ills. Blockchain imple-
mentation is possible only after real cooperation from all stakeholders. Therefore, it 
is necessary to perform significant upstream work on data digitization, medical 
process automation, medical staff backgrounds, and regulatory oversight. Faced 
with the many challenges posed by IOMT and e-health and the needs arising in 
terms of decentralization, traceability, and trust, blockchain offers answers. Without 
claiming to solve all the problems, it also opens the door to new horizons for the 
concept of blockchain coupled with IoMT (BIoMT) as a new direction for solving 
IoT security and healthcare issues. Consequently, it presents new fields of inves-
tigation for health actors.
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IoT and blockchain-based 
framework for covid-19 

Description 

B5G framework using blockchain for 
COVID-19 diagnosis 

Based on B5G network, an artificial 
intelligence-enabled edge-centric COVID-19 
screening and diagnosis system was built using 
a blockchain-based safe transfer of patient data 
at the edge [111] 

SPIN: a blockchain-based framework for 
COVID-19 

SPIN is a sharing system based on a 
permissioned blockchain. COVID-19 data 
exchange between countries [112] 

Blockchain-based supply chain traceability for 
COVID-19 PPE 

Grounded on generic framework based on 
Ethereum smart contracts and decentralized 
storage systems to automate processes and 
information lePara> 
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AI and Big Data for Therapeutic 
Strategies in Psychiatry 

Shankru Guggari 

There is hope, even when your brain tells you there isn’t. 

John Green. 

1 Introduction 

Artificial intelligence (AI) and big data are used to develop tools that help patients 
or professionals such as psychiatrists, psychologists, social workers, occupational 
therapists, nurses, pharmacists, or counselors. In Study 1, five people encounter 
these types of disorders. Mental disorders usually have a strong influence on 
individuals’ daily activities, significant suffering to their families, and a starting 
point for socioeconomic burden. Generally, these disorders are faced by young, 
healthy people and socially and economically critical segments. Therefore, it is a 
crucial and real-time requirement to monitor, providing highly significant treatment 
with an efficient way to detect it in the population. Development of tools for 
psychiatric disorders requires a deep understanding of mental illness, the present 
mental healthcare system, and, more importantly, medical ethics. 

Various mental disorders vary in clinical presentation and cause. Autism, sui-
cide, depression, schizophrenia, dementia, and attention-deficit hyperactivity dis-
order are few. Comorbidity or a single patient with more than one disorder is the 
main challenge for both machine learning and big data approaches. Psychiatry is a 
medical domain related to the treatment of people with mental illnesses. Generally,
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psychiatric disorders occur due to higher functions of the brain and are highly 
associated with social, cultural, and experiential factors. There are two approaches 
in computational psychiatry: theory driven (mechanistic models for explicit 
hypotheses) and data-driven approaches [1]. The main challenges of psychological 
disorders are: Mental disorders are unique, these follow multivariate and 
multi-model in nature, Curse of dimensionality i.e. size of the data set, Fuzziness 
and unreliable labels of a disease in psychiatry [2].
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The structure of the chapter: Artificial Intelligence in psychiatric disease is 
introduced in Sect. 2, Big Data in Psychiatric is introduced in Sect. 3, Datasets and 
Tools are introduced in Sect. 4, and the usage of AI models in psychiatric disorders 
is presented in Sect. 5. Finally, concluding remarks are presented in Sect. 6. 

2 Artificial Intelligence in Psychiatric Disease 

In general, AI helps in clinical outcomes, patient safety, and cost-effective solutions 
in the healthcare domain. In mental health diseases, it helps approximately in all 
stages, such as diagnosis, prognosis, and treatment. It takes care of patient flow 
activities, such as bed occupancy, electronic health records, and readmission risk [3]. 
AI techniques have been used to treat psychiatric disorders. Brain structure and 
function are the main biological phenotypes and diagnostic biomarkers of psychi-
atric disorders. Therefore, AI-related techniques provide detailed descriptions and 
characteristics of different psychiatric disorders to diagnose psychiatric disorders [4]. 

2.1 Machine Learning for Psychiatric Diseases 

Present treatment for psychiatric disease is purely based on the experiential terms of 
the patient, rather than the objective markers of the illness. Previously, a set of 
events was performed to alleviate the symptoms of psychiatric patients, such as 
(i) Identification of new disease mechanisms using neuroscience studies. 
(ii) Explored new innovative treatments for the new disease i.e. design and test of 
candidate molecular components. (iii) Validate the new treatment using a large 
clinical trial, all of which encounter a few difficulties. Artificial intelligent 
approaches such as machine learning (ML) and deep learning models have the 
potential to improve the well-being of psychiatric patients. 

Machine learning models discover general rules or principles from observations 
without using any instructions. These are characterized as (i) Make some formal 
assumptions, (ii) Allow the data, speak for themselves, and (iii) capacity to mine the 
structured knowledge from big or extensive data. These models are mainly grouped 
into supervised (development of models such as decision trees, neural networks, or 
support vector machines using few training samples) and unsupervised (these directly 
discover features and feed those features into quantitative models) techniques.



AI and Big Data for Therapeutic Strategies in Psychiatry 169

Psychiatric disorders are the main research area in brain science. To date, 
psychiatrists have diagnosed diseases based on subjective experience rather than 
the pathophysiology of the disease [5, 6]. This leads to a misdiagnosis of diseases 
by psychiatrists and provides incorrect treatment. Therefore, it is essential to 
develop effective treatments based on the etiology and pathogenesis of psychiatric 
diseases. The brain structure and its functions are major diagnostic biomarkers and 
biological phenotypes of psychiatric disorders [7]. This helps AI-related approaches 
to characterize various psychiatric disorders and enhance support for diagnosing 
mental-related disorders. 

Magnetic resonance imaging (MRI), Kinesics diagnosis, and electroen-
cephalography (EEG) are the three main brain observations in the study of psy-
chiatric disorders. MRI is usually used to understand behavioral and cognitive 
neuroscience, which helps detect psychiatric abnormalities that cannot be detected 
by computed tomography (CT). Various AI applications have been developed with 
the support of MRI [8–11]. MRI is a crucial diagnostic tool. It has a few drawbacks; 
for example, it is not efficient for the imaging process (takes a long time). We need 
to optimize the key parameters in the big data. This requires very high computer 
configurations. EEG signals help to understand how information is processed by the 
human brain and diagnose psychiatric disorders. It has a high temporal resolution 
compared to that of CT and MRI. These signals are utilized in the diagnosis of 
depression, anxiety or psychosis. More specifically, these signals are used in the 
time resolution in the millisecond range. In EEG data, too many factors need to be 
considered so that there is a large amount of noise while building the classification 
model. Kinetic data such as facial expression and behavioral data are helpful for 
studying the pathogenesis, development transition, and diagnosis assistance for 
psychiatric disorders [12–14]. 

2.2 Opportunities 

Current drug treatment for psychiatric disorders is successful in every second 
patient [15]. The best possible treatment for psychiatric disease is not based on 
knowledge of the causes of mental illness for a given patient or does not depend on 
the complex mechanism of the disease. The trial-and-error method is used to treat a 
few mental disorders [16]. Psychotherapy or specific drug treatment is successful, 
more effective for a few patient subgroups, and not successful for some patient 
groups with similar diagnoses. This challenge provides new opportunities to 
develop algorithmic frameworks for the diverse psychiatric conditions of patients to 
predict individual treatment [17]. 

Machine learning models offer either fully or partially suited clinical predictions 
at the individual level. All these models are conceptually placed between genetic 
risk variants and the clinical symptoms of the patient. These models can be directly 
used to predict inherently valid and useful clinical objects, such as drug dosage. ML 
models are naturally applicable to single-subject-level predictions. Therefore, it is 
essential to tune them for group-level analyses. ML models provide an opportunity



to focus on improvements in classification accuracy and model evaluation using 
different sampling techniques [18]. 
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Machine learning models provide a two-step workflow [19]. Initially, structured 
knowledge is extracted from an openly available large dataset or dataset provided 
by hospitals. In the next step, the built model is shared as a collaborative research 
product. This product can be later tuned with little effort for a large number of 
patients with different mental disorders. In psychiatric medicine, ML models must 
be exploited for observational data such as movement and sleeping patterns, genetic 
variants, brain scans, or blood or metabolic samples. as they gathered without a 
controlled experimental setup [17]. 

In psychiatry practice, the main challenge is to identify whether a person has 
mental illness or not. It is very important to choose the appropriate treatment if a 
person has a mental illness. ML models provide an opportunity to predict treatment 
and treatment options. These models are applicable when we want to distinguish 
between two groups of patients or two treatment options by considering a wide 
number of outcomes. These also provide rankings for possible options based on 
pertinence. A single model needs to predict several psychiatric diagnoses based on 
disease categories. In brief, ML models handle multiple outcomes simultaneously 
[20]. 

In psychiatry, using various heterogeneous datasets such as experiential, 
behavioral, or genetic measurements of psychiatric diseases and their complex 
relationships can be described using small dimensions or features. These parameters 
can be easily obtained using ML models [21]. 

The development of explainable prediction models is another opportunity for 
building the model and generating explanations for the predictions. 

2.3 Challenges 

There are many reasons for extending ML models to psychology. These models 
suffer severely from a few challenges in everyday applications. Now, we are 
introducing a few challenges to precision medicine in the field of psychiatry 
[22–27]. 

1. All ML models followed a multistep workflow. As the dataset changes, these 
models require the manual tuning of the parameters. Therefore, it is difficult to 
reproduce a highly efficient model. 

2. The primary limitation of all ML benchmark models is the availability of the 
data. In the psychiatric domain, datasets are unable to provide information such 
as medical history, presence of more than two medical conditions in the patient, 
progression in symptoms, treatment, and response. 

3. The characteristics of metal disorders are time dependent. The lack of longi-
tudinal data (data collected from sensors, voice data from smartphones, etc.) in 
model building is another pitfall in terms of the performance of the model. 
These longitudinal data help to understand the diverse behavior, sleeping
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patterns, and geographical movement of people with mental illness is another 
challenge. 

4. The prediction of the model is highly dependent on the training data. In psy-
chiatric institutes, data are collected with respect to subject they research and 
researchers are not aware of the influencing features such as drug usage, 
heartbeat, age or gender etc. which they have collected for the experiment. This 
typically affects the performance of the model. 

5. Clinical data were gathered from different centers under various clinical con-
ditions. These data suffer from quality, and in some cases, useful information 
may be missed. In summary, heterogeneous and incomplete data are the most 
important and frequently encountered challenges in the psychiatric domain. 

6. Psychiatric disorder evaluation is either laboratory or semi-supervised evalua-
tion. Machine learning models are highly beneficial when evaluating them 
rigorously with different groups of participants. 

7. Internal validity of the clinical data is the major challenge. 
8. Results of machine learning models are related to current samples which are 

used while building the model. 
9. Lack of data pool availability. 

10. Detection of influence factors which effects high prediction such as age, gender, 
smoking, drug usage, or physiological noise like respiration and heart beat. 

2.4 Deep Learning Models for Psychiatric Disorders 

Deep learning (DL) models are very popular in the machine learning domain 
because of their adaptability to high-dimensional datasets. DL models are hierar-
chical models that achieve higher levels of abstraction and provide stacking of 
consecutive nonlinear transformations. These advantages help DL models to use 
various psychiatric disorders. DL models avoid manual feature extraction and 
feature selection, and attain less bias. These models are widely used in various 
applications of psychiatric diseases such as brain age and sex prediction [28], 
neuroimaging data [29], and neurological disorders [12]. Various neuroimaging 
datasets with respect to deep learning were described in [30]. DL models have made 
great progress in diagnosing psychiatric disorders but suffer from higher require-
ments for computer configurations (hardware), a large amount of data quantity, and 
time consumption to carry out the experiments [4]. 

3 Big Data in Psychiatry 

Generally, the diagnosis of mental-related issues is based on the patient’s interview 
and self-reported experience. With the increase in personal digital devices, it is very 
easy to capture movement using the movement information of the patient using a 
digital phenotype [31]. This helps to predict the mental status of an individual by



utilizing both active and passive data. The research framework of digital pheno-
typing for mental disorders is shown in Fig. 1, which has four layers: conceptual, 
sensing, computing, and application. 
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Fig. 1 Research framework of digital phenotyping for mental health 

The conceptual layer deals with five important factors: biological, emotional, 
behavioral, social, and cognitive capabilities of mental health. The sensing layer is a 
physical layer that includes data generation and collection. Collection of data from 
ubiquitous sensors (wearable and smart phones), social media platforms, health care 
systems, etc. The computing layer provides brief information related to behavioral 
anomaly detection, affect recognition, cognitive analytics, social analytics, and 
biomarker analytics. Finally, key applications of digital phenotyping of mental 
health are described in the application layers. 

There are two mechanisms and pragmatics in the field of psychiatry, where big 
data are used. Omics is a well-known mechanism for identifying the etiological 
mechanisms of human diseases. Genomic and proteomic omics is popular in tra-
ditional research. More recently, researchers are working towards metagenomics 
and metabolomics, which are collections of quantitative big data. On the other 
hand, pragmatics are like electronic health records, which are big data. 

Numerous applications have been proposed for the treatment of psychiatric 
disorders. EmotionCheck [32] is utilized to control the anxiety of an individual and 
provide feedback via vibrations. Energy is the main challenge in this device for 
continuous monitoring. MoodRhythm [33] and CrossCheck [34] are used to predict 
a user’s daily activities, infer sleep duration, and track sociability using audio data 
collected through a microphone. Mobile applications such as Ginger.io and 
MindStrong are used to quantify and understand the behavior of a patient through 
smartphones. 

Integrating multimodal and heterogeneous data is a major challenge in digital 
phenotyping. These applications are not adopted for diagnosis because of the lack 
of rigorous evaluations using big data. Most of these applications do not consider 
social incentives. The main limitations with regard to this domain data are its 
governance and security, velocity of data acquisition, storage capacity, and col-
lection of the data are not always based on the research questions and are not aware 
of influence factors [35]. 

3.1 Challenges of Big Data in Psychology 

Data collection in a big data context is a human process that involves patients and 
their behaviors, such as purchasing decisions, reacting to emails, status updates, etc.
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Challenges of big data research in psychology: 

(1) Various technologies and statistical constraints are emerged as constant 
challenge. 

(2) Gap in adopting current methodological training in psychology. It is essential 
to concentrate more on quantitative methodologies. It is equally important to 
make use of other disciplines, such as computer science and business analytics, 
to generate useful behavioral data. Therefore, it is time for psychology students 
to choose courses that are helpful in conducting multidisciplinary research, as 
many business schools are adopting courses related to psychology 
departments. 

(3) Quality of the data which collected from various methodologies and deriving 
meaningful psychological variable. 

(4) In exploratory analysis, understand what big data say is very important but are 
insights from big data can applied? Is the major concern. 

3.2 Opportunities of Big Data in Psychiatry 

Big data in psychiatry is a crucial component for the treatment of patients and 
provides brief information regarding their disorders. It also helps psychiatry pro-
fessionals understand the disorders quickly and enhance their productivity. The 
following are the few opportunities described in the literature with respect to big 
data in psychiatry [36–41]: 

(1) Provides an opportunity for clinical data mining. 
(2) It creates chances to produce new clinical distinctions and phenotypes based 

on observational data with the help of few aggregated measurements. 
(3) It allows to explore previously unavailable clinical questions so that controlled 

trials can be performed for new hypotheses. 
(4) Effective Opportunity for epidemiologic research. 
(5) Generalizes the conclusions which are derived from the randomized clinical 

trials. 
(6) Observational evidences for randomized controlled trials. 
(7) Demonstrates relationship between parameters such as genetic findings and 

rare diseases. 
(8) It provides sufficient data to study the sub-populations that are underrepre-

sented. For example, we used an integrative data analysis technique for heroin 
addicts by combining two independent datasets to generate a suitable sample 
size. 

(9) Combination of both behavior data and omics data enhances the possibilities of 
finding new biomarkers for psychiatric illnesses. 

10) Provides an opportunity to analyze the human behavior and actions.
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4 Datasets and Tools 

Various datasets such as electronic health records, administrative datasets, case 
registers involving de novo datasets, and surveys and biobanks have been discussed 
in the literature [35]. The RDoC is a platform used to categorize large sets of data 
for the implementation of machine learning models developed by the National 
Institute of Mental Health. It is the integration of different large psychopathological 
domains to validate the diagnostic structure [27]. In another study, PredPsych: A 
toolbox in experimental psychology for analyzing quantitative behavioral data [42]. 
The Autism Brain Imaging Data Exchange (ABIDE) is a data-sharing initiative that 
consists of more than 20 scanning sites. It consists of more than 2000 features with 
structural and functional MRI scans of children with autism (ABIDE-I and 
ABIDE-II) and structural MRI (s-MRI) [29]. Figure 2 shows the neuroimaging 
datasets for the classification of psychiatric patients. 

Monitoring is an important and effective component in the treatment. Supervi-
sion of nurses are required at regular intervals, sometimes it might take hours 
together. In few cases the patients may face problem in night, which leads to lower 
chances of a faster recovery and increase length of stay at hospital. Barrera et al. 
[43] introduced AI based digitally assisted nursing observations and enhance 
patient and staff experiences. This tool support nurses to take observations remotely 
using a sensor. It utilizes computer vision, signal processing. Here, AI is used to 
observe micromovements by using pulse and breathing rate. Experience Sampling 
Method is used to collect longitudinal data of participants experiences. This data is 
utilized for diagnosis psychosis spectrum disorder [44]. Integration study is per-
formed using clinical research datasets for creating effective bipolar disorder

Fig. 2 Neuroimaging datasets



datasets [45]. Transcranial magnetic stimulation and electroencephalography 
(TMS-EEG) is a tool to study the neurophysiologic biomarkers for psychiatric 
disorders [46]. Similarly, An automated tool P.266 is used for psychiatric diagnosis 
which uses free speech [47]. AyuSoft prakriti diagnostic tool has been extensively 
used in Ayurveda research to diagnose psychiatric disorders [48]. Patient Partici-
pation Culture Tool for inpatient PSYchiatric wards to analyze psychometric 
properties [49].
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5 Usage of AI Models in Psychiatry 

Machine learning is a data-driven technique in which the initial model is built based 
on the initial inputs. Tune the model in the next step, and finally, the model is 
utilized to predict the unknown data or event based on its past and present learnt 
experience. Predictive analytics is a challenging and important task in 
machine-learning models. As mentioned earlier, the curse of dimensionality is the 
main obstacle in psychiatry. This can be overcome using three techniques: feature 
engineering, that is, creating useful predictors from the given input data, using 
unsupervised techniques such as principal component analysis to transform the 
given input to the lower dimensions, and finally, adopting penalty techniques such 
as regularization and Bayesian models to reduce the model complexity [2]. 

(1) Suicide prediction model for the Korean population: Suicide is a crucial and 
very important health disease in the modern world. It is the most prominent 
health concern for human health and wellness. According to the World Health 
Organization, nearly 800,000 people die due to suicide. It highly affects the 
society and individuals of the nation. The present study used 372,813 indi-
viduals’ medical checkup data from 2009 to 2015 in Korea. A random forest 
algorithm was used to build the model. It utilizes a five-fold cross-validation 
technique to calculate the performance of the model. Experiments were con-
ducted using the R software. The study used medical check-up data collected 
from the National Health Insurance Sharing Service between 2009 and 2015. 
This study effectively classifies suicide and non-suicide categories. It also 
indicates that the suicide group had lower income, alcohol consumption, and 
smoking. The dataset was divided into 70% and 30% of the training and test 
datasets, respectively. Model performance was measured using the area under 
the curve (AUC), accuracy, sensitivity, and specificity. In summary, the model 
identified high-risk groups in the population [46]. Another study predicted 
suicide attempts among medical college students in China. It uses 4882 
medical students for the experiment. Data were collected via an online plat-
form using WeChat social media. It adopts a random forest model and utilizes 
a five-fold cross-validation technique to understand the performance model. 
The performance of the model was measured using the area under the curve 
(AUC), sensitivity, specificity, and classification accuracy. The experimental
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analysis was performed using the MATLAB software. It demonstrated accu-
racy, sensitivity, and specificity of 90%, 73.5%, and 91.6%, respectively. This 
makes use of female participants a major drawback of this study. The studies 
suggested that the application of ML models assists in improving the efficiency 
of suicide prevention [50]. 

(2) Prediction of criminal offense of psychiatric patients: This study uses ML 
models such as random forest, elastic net, and support vector machine. It 
makes use of 1240 patient details, which have information on clinical and 
sociodemographic features, are considered as potential predictors. Feature 
selection techniques were considered for model generality and interpretability. 
It is a binary (violent and nonviolent) classification model. This indicates 
82.5% sensitivity and 60% specificity [51]. 

(3) Depression: It is a psychological disorder, and persistent sadness for at least 
2 weeks is one of the characteristics of this disease. During this period, the 
patient was unable to perform daily activities. A study was conducted to 
identify whether a person was depressed or not. Sociodemographic and psy-
chosocial information was used to conduct the experiments. Six different ML 
models were used in this study. K-Best features, minimum redundancy and 
maximum relevance, and Boruta feature selection techniques were utilized to 
extract the most relevant features from the dataset. The class imbalance 
problem of the dataset is addressed with the support of the synthetic minority 
oversampling technique (SMOTE) to improve the classification accuracy in 
predicting depression. The AdaBoost model indicates the highest (92.56%) 
among all the ML models. The efficiency of the models is based on metrics 
such as sensitivity, specificity, precision, F1-score, and area under the curve 
[52]. In another study, textual-based feature methods were used to detect 
depression. The study makes use of social media posts with words such as 
depression or diagnosis. It uses both ensemble and single models. Experiments 
were performed using both labeled and non-Twitter datasets. The results show 
that the proposed model effectively detects depression without the important 
keywords mentioned earlier [53]. 

(4) Psychosis: The symptoms of first-episode psychosis vary greatly. These may 
vary from population to population and show different potential illness cour-
ses. A clustering ML model was adopted to examine the dimensional structure 
of symptoms, which enhanced the identification of individual trajectories at the 
initial stage of the illness. This also indicates the potential risk factors. Prin-
cipal component analysis was used to identify the dimensions. Fuzzy clus-
tering (an unsupervised ML model) demonstrates the clinical subgroups of 
patients. This study provides a better understanding of the heterogeneous 
profile of first-episode psychosis [54]. A study was performed to predict 
patients with psychotic disorders. The experience sampling method was used 
to collect the data. The ReliefF method was used for the feature selection. It 
uses random forest, support vector machines, Gaussian processes, logistic 
regression, and neural networks to build models with different sampling 
techniques, such as cross-validation or training/testing. The stability of the
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model is based on Monte Carlo simulations. Support vector machines with 
radial kernels provide better performance (82% accuracy) [44]. 

6 Conclusions 

In summary, there is a need to understand the complexities of mental disorders, 
such as diagnosis and treatment. The impact of these complexities on AI and big 
data space diagnosis is a major step in the treatment of mental illnesses. In this 
scenario, ML and big data technologies help us understand which group of people 
are at risk. These will also provide interventions that save lives, and many cases 
prevent illness. ML models describe trends and variables of the larger population 
and help organize social events to decrease these disorders. In some cases, clini-
cians are unable to predict which patients are at risk. Predictive tools have the 
potential to fill this gap and save the lives of patients with mental illnesses. Pre-
dictive models support patients by providing more useful information regarding the 
treatment of mental disorders. These tools also help patients’ families plan for 
different clinical courses. 

These tools help in the selection of optimal treatments from a range of psy-
chiatric interventions without affecting efficacy. AI technology provides personal-
ized and virtual treatments using digital therapeutic applications. These usually 
replace traditional psychotherapies. Monitoring patients with mental illness is an 
essential task for clinicians to gain a deeper understanding of their condition and 
symptoms. Clinicians must frequently report patients to non-hospitalized patients. 
Automated and semi-automated tools help in this type of scenario. All use-cases of 
this domain must take care of ethical issues such as patient dignity, right or present 
medical ethics, etc. 

Future Scopes 

(1) Develop sharpen AI models (using natural language processing techniques) 
that provide consequential insights from human dialogue and communications 
to better understand psychiatric disorders. 

(2) Design federated machine-learning models in which a centralized model was 
developed using decentralized data. These models are very helpful for 
community-based healthcare services. This kind of service is highly encour-
aged to treat patients with mental illnesses. 

(3) Developing new techniques and applications for human–computer interaction 
will help to provide non-intrusive sensing so that researchers can continuously 
gather the mental conditions of a patient. 

(4) Current studies utilize classic shallow models. The high-dimensional features 
of a dataset face serious challenges in this context. Hope deep learning models 
will address these challenges. 

(5) Adopt unsupervised learning models for automatic annotation for psychiatric 
disorders datasets.
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(6) Rigorous research needs to be performed using ensemble, migration, and 
multiview learning approaches to process big psychiatric disorder data to 
improve the performance of the models. 

(7) Need to study the psychiatry diseases at cellular level. 
(8) Deep learning models have a promising role in the development of future 

biological neuroimaging biomarkers for psychiatric disorders. 
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Distributed Learning in Healthcare 

Anup Tuladhar , Deepthi Rajashekar , and Nils D. Forkert 

1 Introduction 

Artificial intelligence (AI) with the subfield of machine learning (ML) and espe-
cially deep learning (DL) are all around us today, and many solutions and tools 
making use of this technology often achieve a performance similar to that of human 
observers [1]. Healthcare is no exception to this, [2] and it is expected that these 
data-driven advances enable prevention of diseases before they develop, an earlier 
and better diagnosis of diseases, and better patient-individual patient care (from 
treatment to rehabilitation). These three main pillars of precision medicine have the 
potential to reduce healthcare costs [3, 4]. 
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From an AI standpoint, problems in healthcare are mostly related to predictive
modeling of patient outcomes and recovery, developing prognostic support systems
for disease screening, or predictive modeling of operational events in healthcare. In
the sub-field of predictive analytics for diagnostic support alone, AI techniques
have successfully been applied in many specialties, such as radiology [5, 6], car-
diology [7–9], neurology [10–16], endocrinology [17], nephrology [18], and oto-
logic diseases[19]. AI has also been successfully used in drug discovery [20, 21]
and for understanding patient recovery using personal healthcare data from wear-
able devices or smartphone apps [22].
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The performance of these AI-based models depends on many factors, such as 
(1) the fidelity of the sample data to true disease populations and (2) the size of the 
data used for training the models. If the training data are sampled from a 
homogenous patient cohort (not representative of the general population), the 
performance of the model on unseen datasets collected from a different sample 
population will be considerably low. This is commonly referred to as the lack of 
generalizability of AI solutions, which can ultimately introduce considerable racial, 
gender, social, and other biases. A similar phenomenon is likely to occur when the 
training datasets are heterogeneous but small in number (relative to the number of 
features describing each patient’s data). This is a classic example of model com-
plexity, which is substantially higher than the variability captured in the training 
dataset, often leading to model overfitting. 

Thus, it is necessary to train AI models on large-scale heterogeneous datasets 
that are representative of the true disease population, thereby enhancing model 
robustness and generalizability to unseen patient data. 

1.1 Caveats of Central Learning 

The traditional approach to building these effective AI solutions has been to train 
them on large volumes of healthcare data that are obtained from multiple sources 
into a centralized data repository, ensuring data variety and veracity. A simplified, 
yet typical, setup of the central big data-driven machine learning framework is 
depicted in Fig. 1a. Here, data are aggregated from multiple participating institu-
tions into a single data center, the AI model is developed using this centralized data, 
and the knowledge is disseminated to the stakeholders of the AI model, such as 
clinicians, healthcare providers, researchers, pharmaceutical companies, and hos-
pital caregivers. 

Individual healthcare providers and research institutions barely have access to 
sufficient healthcare data to train robust and reliable machine learning models, 
especially in the case of rare diseases. Thus, one important resource to develop 
successful AI models are large-scale databases that are curated for scientific 
advancements and/or commercial value. Briefly, they can be categorized as follows. 

(1) Regional or nationwide data lakes: These are databases curated by national 
collaborative health care providers, public health, and government agencies.



Fig. 1 Illustrative comparison of key differences between a central learning and b distributed
learning 
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Typical examples include the French Health Data Hub [23], National Safe 
Haven from NHS Scotland [24], and Health Data Research UK [25]. 

(2) Population studies: These comprehensive data sources often integrate multi-
modal clinical information such as basic clinical data, imaging, biospecimens 
data, neuropsychological assessments, survey data, and disease information for 
a large population, both cross-sectional and longitudinal. Common examples 
include the UK Biobank [26] and the Canadian Biobank [27]. 

(3) Pathology-focused studies: These secondary datasets are often curated by 
institution level or provincial clinical trials [28], or pathology-specific research 
consortiums such as ADNI [29], PPMI [30], HERMES [31], and OASIS 
[32, 33]. 

While this centralized data collection approach has resulted in many advanced 
AI solutions, there are various conceptual, regulatory, and technical limitations in 
the centralized learning paradigm with respect to healthcare that prevent the 
widespread adoption of this approach for any disease. First, AI models trained on 
curated datasets from a few select sources are likely to have hidden biases intro-
duced by patient demographics or data acquisition protocols. These hidden biases 
might skew the model performance on unseen test data that are sampled from a 
different patient sub-population, such as rare disease phenotypes. Furthermore, 
there are often ethical, legal, and regulatory challenges to centralize sensitive patient 
information. These regulations require medical data to be anonymized, such that 
patients cannot be re-identified, a common security threat in healthcare. Despite the 
strict measures to safely transfer anonymized patient health information to a central 
repository, one cannot guarantee that any aspect of sensitive patient information



will not be leaked during data transfer. Thus, ensuring the privacy of the patient’s 
medical records while building robust AI models is a non-trivial endeavor, this 
creates the need to develop AI strategies that support data privacy in healthcare. 
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1.2 Motivation for Distributed Learning 

The optimal approach to upholding the security of patient information is to ensure 
that the patient data do not leave the participating institution to create a centralized 
data repository in the first place. One way to eliminate data transfer is by con-
ceptualizing the model training process such that the AI models are trained locally 
at the participating institutions and design a way to aggregate the learned

Fig. 2 Distributed learning methods. a Global ensemble method b Parameter aggregation 
c Traveling model d Split learning



knowledge from each site (see Fig. 1b). This style of AI model development is 
often referred to as distributed learning. Figure 2 depicts a broad categorization of 
distributed learning. A detailed review of these methods and their applications in 
healthcare is presented in Sect. 2.
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Within this context, a participating institution can be any entity that is capable of 
collecting and storing healthcare data locally. The scale of these entities can range 
from government agencies, hospitals, clinics, or even individual patient data col-
lected via wearables or other mobile health platforms. Additionally, these institu-
tions are also required to have the technological capabilities to train AI models 
locally and to ensure that confidential patient information does not leave the safety 
of the institution’s health data management protocols. 

Multiple institutions participating in the distributed learning of an AI model form 
a collaborative network, referred to as a consortium, to share the experiences 
learned locally at each institution. Contrary to central learning, in the distributed 
learning framework, individual institutions within the consortia collaborate on 
model training (instead of data sharing) (Fig. 1). This, in turn, requires that the 
datasets maintained at each participating institution of the consortium should follow 
a standard set of guidelines and quality control procedures while still following the 
national healthcare regulations ensuring confidentiality and patient privacy [34–37]. 
The scope of a consortium can be designed either horizontally or vertically, as 
illustrated in Fig. 3. The most common approach is the horizontal split of patient 
information (Fig. 2a), where multiple institutions train on the same set of 
descriptors (i.e., input features) for a given patient dataset (Fig. 3a). Here, the data 
sample from each institution is comprised of an exclusive set of individuals, while 
the features curated at each center are standardized [38]. It is also possible for 
institutions to contain data on the same patient sample, but provide a different type 
or subset of features acquired. For instance, one institution can contain only 
imaging data, whereas another institution within the consortia can contain 
biospecimen data for the same patient sample. This type of distribution by patient 
descriptors is known as a vertical split (Fig. 3b). 

Fig. 3 Two modes of data distributions: a horizontal split of data across institutions b vertical 
split of data across input features
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The remainder of this chapter is organized as follows. Section 2 describes the 
various methods that can be used to implement distributed learning in real-life 
scenarios and provide relevant and current applications in healthcare. These 
applications range from distributed learning employing radiology data, electronic 
health records, and personal smartphone data to learn tasks such as tissue seg-
mentation, disease stage classification, and patient recovery trends, respectively. 
Section 3 reviews the current challenges and considerations in designing a dis-
tributed learning framework for healthcare applications. Section 4 provides a future 
outlook of distributed learning and its principles, and is meant to serve as a 
hitchhiker’s guide to employing distributed learning. Finally, the chapter concludes 
with key observations and core messages related to distributed learning. 

2 Distributed Learning Methods 

Distributed learning addresses the problem of data privacy and governance by 
avoiding data sharing and training models locally at the healthcare provider or data 
holders. Thus, data holders can retain control over how and when the data are used 
in all stages of the artificial intelligence model development process. 

Thus, the main challenge of distributed learning is to develop methods that can 
achieve accuracies similar to a hypothetical central learning model that could have 
been created if all the decentralized data were aggregated into a single dataset. In 
lieu of transferring data from a center, what is transferred is the model parameters 
from the locally trained model. By combining locally trained models from members 
of the distributed learning consortia or training such models sequentially at the data 
contributors, a global model can be created that leverages the knowledge derived 
from a large amount and variety of data to achieve accuracies greater than any 
locally trained model alone. To date, there are four established distributed learning 
methods that have shown promise: global ensembling, parameter aggregation, 
traveling models, and split learning methods. These methods are described in detail 
below. 

2.1 Global Ensemble 

The global ensemble method is potentially the simplest form of distributed learning 
and, briefly described, uses an ensemble of independently trained models (Fig. 2a). 
Each participating institution shares a model that is fully trained using only its own 
private data. These locally trained models retain their own unique parameters and 
form a global ensemble of independent models. At inference, the global model 
combines predictions from independent models into a single prediction [39–41]. 
Although a central server can be used to ensemble the locally trained model, this 
method easily lends itself to a decentralized peer-to-peer design in which trained 
models are directly shared between consortia members. A key consideration for this



distributed learning approach is the combination of these individual predictions. 
Averaging predictions, such as probabilities, classification outputs, and regression 
outputs, are the simplest form. However, this does not account for bias or poor 
performance in some local models, which can unduly affect the accuracy of the 
global ensemble. Methods to account for skewed or poor local model performance, 
such as weighting individual models by the number of datasets they were trained 
on, can be used to improve the performance of the global ensemble [41]. The global 
ensemble method has been used to train AI models for disease prediction using both 
imaging [39, 40] and non-imaging medical data [41] (Table 1). 
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This method has a low communication overhead during model training and 
provides more flexibility for participating institutions. As the institutions only share 
models after local training is complete, only a single communication round is 
needed. A potential benefit as well as a drawback of this approach is that the AI 
models, in theory, used at each institution can be different (e.g., support vector 
machine in one institution and artificial neural network in another institution). 
While this gives the participating institutions some flexibility, different models are 
potentially harder to combine. This flexibility in model details also means that the 
global ensemble method can be used for both horizontally and vertically partitioned 
data (Fig. 3), as different models can be trained on different feature sets. Further-
more, they can update their local model on new data without needing to retrain the 
entire global ensemble at each institution and can elect to remove their model from 
the ensemble without having to retrain the global model at each institution. 
A limitation of the global ensemble approach is that training is not performed on the 
overall pool of data, and the overall performance of the global model is restricted by 
the performance of individual locally trained models. Thus, the benefits of this 
approach are primarily in improving performance at inference and not during 
training. While this may be sufficient when problems are simple and local dataset 
sizes are large enough to train individual models with fair performance, it may be 
inadequate for more challenging tasks such as in medical imaging or with small 
local dataset sizes, such as in rare diseases [41]. Furthermore, as the global 
ensemble consists of many models, the computational cost at inference may be 
higher compared to approaches that use a single model. 

2.2 Parameter Aggregation 

The parameter aggregation method, often referred to as federated learning [42, 43], 
creates a single global model by aggregating the parameters of locally trained models 
(Fig. 2b). Same like in case of the global ensemble approach, each participating 
institution trains local models in parallel on their local data and shares the model 
parameters. However, in contrast to the global ensemble methods, the models are not 
used separately to make inferences on new data, which are then combined; instead, 
the model parameters from each contributing center are aggregated together to 
construct a single global model. This is often an iterative process, where the global 
model is sent to institutions for a few rounds of local training, returned for parameter



(continued)
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Table 1 Current applications of distributed learning 

Problem AI model(s) used Distributed learning 
method(s) 

Data (source) 

Disease prediction 
(dementia, heart 
disease, liver disease, 
breast cancer) [41] 

Artificial neural 
network, Support 
vector machine, 
Random forests 

Global ensemble Tabular medical data from 
various sources (heart 
disease [141], diabetes 
[142], ADNI [29], breast 
cancer [143] 

Disease prediction 
(schizophrenia) [40] 

Support vector 
machine 

Global ensemble Medical imaging (Patient 
data from multiple 
hospitals) 

Disease prediction 
(retinal fundus, 
breast cancer) [39] 

Convolutional 
neural network 

Global ensemble, 
Traveling model 

Medical imaging (Kaggle 
diabetic retinopathy [144], 
USF Digital 
Mammography DDSM) 
[145] 

Mortality prediction 
[49] 

Artificial neural 
network 

Parameter aggregation EHR (eICU collaborative 
research database) [146] 

Disease prediction 
(dyspnea) [46] 

Bayesian network Parameter aggregation EHR (Patient data from 
multiple hospital) 

Drug discovery [50] Artificial neural 
network 

Parameter aggregation Quantitative structure– 
activity relationships 
(multiple) 

Predicting 
hospitalizations [147] 

Support vector 
machine 

Parameter aggregation EHR (Boston Medical 
Center) 

Adverse drug 
reaction prediction 
[148] 

Support vector 
machine, artificial 
neural network, 
logistic regression 

Parameter aggregation EHR (Limited IBM 
MarketScan Explorys 
Claims EMR, LCED) 

Mobile activity 
monitoring [52] 

Artificial neural 
network 

Parameter aggregation Smartphone wearable 
device data (Heterogeneity 
Human Activity 
Recognition (HHAR)) 
[149] 

Mobile activity 
monitoring [150] 

Artificial neural 
network 

Parameter aggregation Smartphone wearable 
device data [151] 

Mobile disease 
monitoring 
(Parkinson’s) [51] 

Convolutional 
neural network 

Parameter aggregation Smartphone wearable 
device data (UCI 
Smartphone dataset [152] 
and Parkinson’s patient 
wearable device data) 

Disease prediction 
(Covid-19) [47] 

Convolutional 
neural network 

Parameter aggregation Medical imaging 
(COVIDx dataset [153]) 

Lesion segmentation 
(Brain tumor) [48] 

Convolutional 
neural network 

Parameter 
aggregation, 
Traveling model 

Medical imaging (BRaTS 
2017 [154])



Table 1 (continued)

aggregation, and sent out again for local training. This loop of local training and 
global aggregation is repeated until a predefined model convergence criterion is met. 
The coordination of the overall training process is most often performed using a 
central server that orchestrates local training and parameter aggregation. Decentral-
ized training is also possible in this approach by using a peer-to-peer design, where 
model updates can be shared between all participants or a subset of participants [44, 
45]. The parameter aggregation method has been used to train AI models for many 
healthcare applications, such as disease prediction [46, 47], brain tumor segmentation 
in medical imaging [48], mortality prediction in critical care [49], drug discovery 
[50], and mobile disease monitoring [51, 52] (Table  1).
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Problem AI model(s) used Distributed learning 
method(s) 

Data (source) 

Disease prediction 
[63] 

Convolutional 
neural network 

Split learning Medical imaging (Kaggle 
Diabetic retinopathy [144], 
Chest X-ray CheXpert 
[155]) 

Disease prediction 
(Arrhythmia 
diagnosis) [64] 

Convolutional 
neural network 

Split learning Electrocardiograms 
(MIT-BIH Arrhythmia 
dataset [156]) 

Disease prediction 
(Covid-19, bone 
fracture) [62] 

Convolutional 
neural network 

Split learning Medical imaging 
(Covid-19 Chest CT scans, 
MURA bone x-ray dataset 
[157]) 

Disease prediction 
[54] 

Convolutional 
neural network 

Traveling model Medical imaging (NIH 
Chest X-ray dataset [158], 
Kaggle diabetic 
retinopathy [144]) 

Disease prediction 
[55] 

Support vector 
machine, artificial 
neural network, 
logistic regression 

Traveling model Medical data (breast 
cancer [143], diabetes 
[142], NSCLC-Radiomics 
dataset [159, 160], 
NSCLC Stage III cancer 
dataset [161]) 

Mortality prediction, 
disease prediction 
(breast cancer) [56] 

Artificial neural 
network 

Traveling model EHR (eICU collaborative 
research database) [146], 
Genome data (TCGA 
Cancer Genome Atlas) 
[162] 

As in the global ensemble method, a key consideration in the parameter 
aggregation method is how to best combine locally trained models. In the context of 
deep learning models, the model parameters are learned weights and biases. In this 
case, the local updates can be aggregated by combining gradient updates to those 
parameters, referred to as federated stochastic gradient descent (FedSGD) [42], or 
by combining the parameters themselves, referred to as federated averaging 
(FedAvg) [43]. Combining the model gradients in FedSGD is computationally



efficient and provides a model convergence guarantee [42]. However, FedSGD has 
a higher communication cost because gradient updates need to be communicated in 
each local training iteration. Conversely, combining the updated model parameters 
in FedAvg can have a lower communication cost, as local models may be trained 
for multiple iterations before the parameters are averaged [43]. However, conver-
gence is not guaranteed in FedAvg and generally performs worse than FedSGD 
when trained on heterogeneous or skewed local datasets [53]. One exception is 
when FedAvg is performed after each local training iteration, in which case FedAvg 
and FedSGD are equivalent. Improvements to the baseline FedAvg algorithm have 
been suggested, such as FedProx, which provides a theoretical convergence guar-
antee and has more robust convergence in practice [53]. 
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The parameter aggregation method trains a global model on the total pool of 
available data, which may enable a greater overall performance compared to the 
global ensemble method. Additionally, the computational cost at inference is lower 
than that in the global ensemble approach, as only a single model needs to be 
executed. However, this comes at a greater communication cost, as model 
parameters need to be transmitted and received multiple times over the course of 
training. Furthermore, all institutions must use the same type of model for this 
distributed learning approach and update the model with new local data and 
removing data from a single center requires retraining at all participating institu-
tions, incurring significant computational and communication costs. 

2.3 Traveling Model 

The basic idea of the traveling model, also referred to as cyclical weight transfer 
[54], is to create a single global model that is trained on all local datasets (Fig. 2c). 
In contrast to the parameter aggregation method, a single-traveling model is trained 
sequentially at all institutions. The traveling model performs local training at a 
single institution and updates itself after each institution. The order of training may 
be defined in any way, such as training at the largest institutions first, randomly 
selecting the training order, or in case of ongoing studies traveling to every insti-
tution where data becomes available. The model may visit each institution just 
once, which is beneficial as the healthcare data used for training can be removed 
from the local compute clusters immediately after training is finished. However, 
multiple traveling cycles often result in a better performance [39, 54]. The coor-
dination of the overall training process can be performed using a centralized server 
or in a decentralized peer-to-peer fashion. The traveling model method has been 
used to train AI models for disease prediction [54, 55], brain tumor segmentation in 
medical imaging [48], and mortality prediction in critical care [56] (Table 1). 

As the traveling model is a single model that is trained on all the data, it may be 
more suitable than the global ensemble and parameter aggregation methods when 
local dataset sizes are very small, such as in rare diseases or in the case of very 
small contributing institutions that only provide data for a single patient [55]. This 
method has many of the same considerations as the parameter aggregation method.



First, communication costs may be similarly high with the traveling model and 
inversely related to the number of local training iterations performed in each 
traveling round. As model updates are performed after training at a single institu-
tion, there is a risk that a large number of local training iterations may impede 
model convergence. Similar to the parameter aggregation method, the traveling 
model method may struggle with convergence on heterogeneous and skewed local 
datasets [57]. Furthermore, updating the trained traveling model with new local data 
or removing datasets from the training sets may also require retraining at all 
institutions, with the associated significant computational and communication costs. 
Finally, as the traveling model is trained sequentially at institutions, it is important 
to monitor the model for catastrophic forgetting [58], where models forget previ-
ously learned knowledge and adapt training methods to protect against it [59]. This 
will be especially relevant if the traveling model can only train on the data once or 
when updating the model with new local data. 

Distributed Learning in Healthcare 193

2.4 Split Learning 

The basic idea of the split learning method, which was primarily designed for neural 
network models, is to split the computational burden of model training between 
local hardware at contributing institutions and a central server [60, 61] (Fig. 2d). 
Therefore, the model is trained at each institution on the local data up to an 
intermediate layer, the so-called split layer, in the neural network. The model 
parameters at this split layer are sent back to the central server, where training of the 
remaining neural network layers continues using the split layers from all institu-
tions. The training predictions are finally sent back to the local machines to compare 
against ground truths and calculate the backpropagation error signal used to update 
the entire model. This method requires a central server to participate in training and 
coordinate with the local machines. The split learning method has primarily been 
used to train AI models for medical imaging applications [62–64] (Table 1). 

Compared to the parameter aggregation and traveling model methods, the split 
learning method is more communication efficient and has a lower computational 
burden for local institutions. Although split learning requires constant communi-
cation between a local compute unit and the central server during training, the size 
of this communication is much smaller than in other methods, as only the neural 
network parameters from the split layer need to be transferred. One distinct 
advantage of split learning compared to the parameter aggregation method and the 
traveling model is its suitability for vertically partitioned data, as different feature 
sets can be aggregated on the central server. In split learning, datasets with different 
features can be used by concatenating intermediate layers from local datasets. 
Furthermore, it may offer better privacy, as neither the central server nor the local 
institution has the entire model. This may offer better protection against model 
inversion attacks that attempt to reconstruct the training data [65] (see Sect. 3.3). 
However, these benefits come at the cost of increased complexity and training 
times, and the continual need for a central server, even during inference. Recent



studies have explored the possibility of combining split learning with federated 
learning to improve training times [66]. As in the parameter aggregation and 
traveling model methods, updating the split learning model with new data or 
removing data from a contributing center may incur computational and commu-
nication costs to perform retraining across all institutions. 
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3 Challenges and Considerations 

While distributed learning offers many clear advantages over traditional centralized 
learning in terms of healthcare data privacy and data governance, it does not solve 
all the issues inherent to training artificial intelligence models on healthcare data. 
Challenges and considerations remain in addressing the challenge of heterogeneous 
and skewed data distributions inherent in distributed medical data, the communi-
cation and computational efficiency of methods, privacy and security protection, 
and model interpretability and fairness. 

3.1 Heterogenous Data Distributions 

Training models on diverse healthcare data are favorable for achieving generaliz-
able and fair AI models. However, heterogeneous data distributions in local data 
pose a challenge for distributed learning algorithms and strategies. This data 
heterogeneity can be a result of factors such as differences in local healthcare 
guidelines leading to differences in acquired data such as imaging modalities, 
different medical equipment devices, variability in local demographics due to 
geographical and socioeconomic diversity, shifts in the data distribution over time, 
and even different measurement units. 

Generally, current applications of distributed learning use model designs and 
learning algorithms that were primarily developed for centralized training on 
independent and identically distributed (IID) data and apply these to the distributed 
learning context with skewed non-IID data. As a result, local datasets that dis-
tributed models train on may be skewed in their feature distribution, label distri-
bution, or quantity. Improving the performance of distributed learning algorithms 
on non-IID data is an active area of research [67–72]. As distributed learning 
becomes the de facto method of developing artificial intelligence models for 
healthcare, both model design and learning algorithms may need to be redesigned 
specifically for the distributed learning context. 

Another consideration with heterogeneous data distributions is that a consensus 
solution reached through a global model may not necessarily be desirable in all 
cases. While this global model may optimize model performance across all data and 
learn generalizable features for a given task, embracing the heterogeneity of local 
datasets may help to personalize the global solution for the local context [67, 73]. 
Multiple methods have been investigated to personalize models trained with



distributed learning on local datasets, such as fine-tuning the consensus model on 
local datasets, adaptive training to facilitate collaboration between institutions with 
statistically similar private datasets [70], multi-task learning to learn relationships 
between heterogeneous local datasets [74], or using private personalized layers in 
local training and inference [75]. Incorporating personalization into distributed 
learning may be particularly relevant when training models for personalized med-
icine or using them in under-represented patient populations. 
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3.2 Computational and Communication Costs 

Since collaboration in distributed learning is achieved by sharing locally trained 
models, there is a greater burden of computational power and network communi-
cation costs that must be shouldered by participating institutions. Training large 
models, such as the BERT or GPT-3 language models used with EHRs [76, 77], 
may be too slow or expensive for participants, especially small and rural clinics. 
Furthermore, this may also exclude large centers in third-world countries, which 
could result in highly biased AI models. Thus, considerations of computational 
costs need to be taken into account when choosing models to train with distributed 
learning [78]. As most distributed learning approaches (parameter aggregation, 
traveling model, split learning) require iterative rounds of model sharing to train a 
global model, communication costs and communication efficiency are active areas 
of research in distributed learning. Briefly described, improving the communication 
efficiency of distributed learning systems is currently tackled in three ways: 
reducing the size of model updates, reducing the frequency of model updates, and 
reducing the number of institutions in a given training round. 

The size of the model updates can be reduced using model compression, which 
also reduces the computational costs of the model. A number of model compression 
techniques can be used such as network pruning, weight quantization, and model 
distillation [78–84]. Models can also be compressed using lossy compression 
methods, such as random rotations and subsampling [78, 84], before sending them 
to the central server or peers. In the parameter aggregation approach, federated 
dropout reduces communication costs by training smaller sub-models, which are 
subsets of the global model, at local institutions [78, 85]. In the split learning 
approach, the choice of the split layer directly impacts the communication costs and 
can be chosen with the primary aim of reducing the size of model updates [60, 61]. 

Reducing the frequency of updates in the parameter aggregation and traveling 
model approaches will naturally make distributed learning methods more com-
munication efficient. As local computation costs and communication frequency are 
interlinked in distributed learning, this trade-off must also be considered when 
improving communication efficiency, as slow convergence due to infrequent 
communication may increase the overall communication cost. Rather than updating 
models at fixed frequencies, such as a given number of epochs, models can also be 
updated based on a dynamic criterion, such as parameter divergence from a ref-
erence model [86] or partitioned variational inference to allow participants to decide



how much local training should be done before communicating the update [87]. 
Alternatively, one-shot distributed learning can be used to train the global model 
from just one round of communication [39, 41, 54, 79, 88, 89]. 
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Rather than requiring all participating institutions to perform local training in 
each round of distributed learning, restricting the number of institutions partici-
pating in a given round will reduce the overall communication cost. For example, 
participant selection can be performed in a random fashion. However, more 
informed approaches may be more efficient. This could be as simple as training 
more frequently at institutions with large datasets or using information from the 
training process as part of the participant selection strategy, such as local losses [90] 
or the size of gradient updates [91]. Peer-to-peer distributed learning can also 
reduce communication costs, such as in RingFed, where model updates are per-
formed peer-to-peer and only the final model is sent to the central server [71]. 
Finally, it has been suggested that reinforcement learning can be used to optimize 
the computational and communication costs during distributed learning by 
managing participant selection and communication resources [69, 92, 93]. 

3.3 Privacy and Security 

While avoiding the sharing of sensitive and private healthcare data offers clear 
benefits for data confidentiality, it might not be enough to fully protect patient data, 
and further measures might be needed to guarantee data privacy and security. 
Distributed learning requires network communication between local hardware and a 
coordinating server or other consortia participants to receive and transmit model 
parameters. This could potentially create an opportunity for a malicious attacker to 
access local training data if proper network security protection is not in place, such 
as using a virtual private network or sandboxing the model training and model 
transfer functions. However, even with protection in place against direct access to 
patient data, vulnerabilities remain [94]. These can be at the level of participating 
institutions in the collaborative process, the central entity coordinating the dis-
tributed learning process, or malicious attacks on the training process or the trained 
model. Thus, additional considerations are needed to protect the privacy and 
security of healthcare data. 

While distributed learning avoids the need to share healthcare data, the shared 
model information may still be vulnerable to data leakage. For example, artificial 
neural networks learn representations of training data, which can be seen as a type 
of memory mechanism within their learned parameters. Model inversion attacks, for 
example, using generative models, may be able to reconstruct data used for training 
[95–97], such as imaging data [65, 98], from model information using training 
gradients, model updates, or the final model parameters [97, 99–101]. The vul-
nerability of models to inversion attacks depends on the type of distributed learning 
used. Methods that share the entire model (e.g., the global ensemble method, 
parameter aggregation method, and traveling model) have an increased risk of these 
attacks. Even if data reconstruction is incomplete, they can be combined with other



types of privacy attacks, such as re-identification attacks or membership inference 
attacks, to compromise patient privacy. This may be especially problematic in the 
case of distributed learning on vertically partitioned data, as the training process and 
the learned model must address health record linkage across participants [102]. In 
such cases, information leakage may compromise more than one participating 
institution. Several protection mechanisms have been proposed to address these 
potential privacy risks, such as sharing less sensitive models or update data [103– 
105], differential privacy [106–108], or incorporating defense strategies against 
inversion attacks such as adversarial training [109, 110], and is an active area of 
research. Furthermore, current privacy measures, such as the data perturbations 
used in differential privacy, require a trade-off with model performance, which must 
be considered [72, 106, 111–113]. 
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These privacy and security vulnerabilities can be exploited by multiple parties in 
the distributed learning process, such as unscrupulous consortia members, com-
mercial or other entities coordinating model training, or malicious attackers. While 
enforceable collaboration agreements among trustworthy consortia participants, 
such as a network of hospitals, may obviate the need for protection against inten-
tional privacy and security attacks, the multi-party nature of model training and 
sharing may also increase the security risk. Generally, malicious attacks against a 
single institution with weaker security protocols, such as smaller or underprivileged 
hospitals, may pose a risk to the entire consortia with some distributed learning 
methods (parameter aggregation, traveling model, split learning). These malicious 
attacks could attempt to reconstruct or infer properties from private data at a 
compromised location or from other institutions from the consortia. Alternatively, 
the attacks could attempt to compromise the training process and corrupt the model 
using model poisoning attacks [94, 114, 115]. Furthermore, as distributed learning 
becomes the standard approach to machine learning model training and commercial 
interest in creating and deploying models increases, enforcing accountability in 
distributed learning consortia may become increasingly difficult. This may be 
especially the case when the distributed learning network crosses national bound-
aries and individual participants have limited recourse in response to any com-
promises of data security and privacy. Methods to improve privacy and security, 
such as differential privacy [106–108], secure multi-party computation [34, 116], or 
homomorphic encryption [34, 117, 118], can be used alongside distributed learning 
to increase the overall privacy and security protection of patient data. 

3.4 Model Interpretability and Fairness 

While tremendous advances in machine learning, especially deep learning, have 
resulted in many reliable, accurate, and robust models developed in the academic 
setting [1], these models are often limited in terms of replicability, transparency, 
and explainability. This, in turn, hinders the translation of such AI-based solutions 
into the clinical setting. Furthermore, attempts to explain the workings of the 
so-called black box deep learning solutions can also be a means to validate the AI



framework itself and can enhance the acceptability and trust of health care providers 
and patients. This growing subfield of research, known as explainable AI (XAI), 
has resulted in various methods to improve model interpretation both as part of 
model training and as an analysis tool to use after model training. However, 
research in this domain is still sparse in the context of distributed learning methods. 
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For example, when images are used directly as inputs to a convolutional neural 
network, model interpretability can begin by visually checking which parts of the 
image or radiological scan maximally influence the network towards an inference. 
Within this context, saliency maps [119], class-activation maps [120], and attention 
maps [121] are widely used methods to probe the network (after training) to 
visualize the understanding of unseen data. Alternatively, networks can also be 
interpreted by changing conditional inputs and observing the change in the desired 
targets, known as counterfactual-based analysis [122]. Furthermore, so-called 
self-explainable invertible models utilizing normalizing flows not only predict an 
outcome based on the input features but also allow data exploration for a given 
outcome [123, 124]. 

While improving the interpretability of an AI model helps improve clinician 
confidence in using these diagnostic decision support systems, they do pose a 
trade-off with data privacy. Identifying the most important features that lead to a 
certain prediction might reveal certain aspects of the nature of the dataset that make 
data rediscovery more likely. However, a solution to the interpretability problem 
has been proposed for the vertical federated learning framework using Shapley 
values for feature importance [125]. There is a definite requirement to balance the 
trade-off between model explainability and data privacy in the distributed learning 
paradigm. To this end, the use of invertible models and other counterfactual-based 
analyses has yet to be explored in this context. 

Another probable reason that might hinder the translation of distributed learning 
solutions into the clinical setting is that underprivileged institutions may not con-
tribute to any training data. These include hospitals or clinics that do not have the 
infrastructure for electronic data management, storage, or computational capabili-
ties, or patients with poor socio-economic backgrounds who may not have access to 
today’s standard of healthcare. As a result, these hospitals may not acquire mea-
sures of patient recovery that are comparable to the participating institutions in the 
federated consortia, and therefore, may not be able to use federated models. Fur-
thermore, a lack of training data from under-represented populations will lead to 
issues with model fairness, as models trained on biased datasets tend to produce 
biased results [126]. 

To overcome the problem of biased AI models, various model debiasing 
methods have been proposed in the central learning paradigm [127, 128]. Briefly 
described, these strategies attempt to remove the effect of bias or confounding 
factors during model training. A similar solution has been adapted to distributed 
learning where the training objective is optimized such that the training frequency is 
weighted to appropriately represent the frequency of rare cases [129]. However, this 
research is still in its infancy, and it remains to be seen if techniques developed for 
the central learning paradigm can be applied to the distributed learning paradigm



and the unique challenges it entails. Given the trade-offs between de-biasing and 
privacy preservation [130], the need to develop distributed AI solutions that are 
unbiased, interpretable, and still reduce the likelihood of data leakage cannot be 
overlooked. 
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4 Outlook 

Distributed learning offers an infrastructural approach for training artificial intelli-
gence models on sensitive and private healthcare data. It has the potential to 
increase the quantity and diversity of data sources that can be used to develop 
robust and reliable artificial intelligence. Advances in distributed learning methods 
continue to improve performance on heterogeneous data, reduce computational and 
communication costs, increase privacy and security, and guarantee and expand 
model interpretability and fairness. However, the widespread adoption of dis-
tributed learning will also require addressing some open problems. 

While distributed learning methods help to increase the quantity and variety of 
model training data, another important factor that impacts the value of the resulting 
models is data quality. As most healthcare data are collected with the aim of aiding 
human decision-making and not with the aim of providing training data for artificial 
intelligence models, the format and quality of available data may not be immedi-
ately suitable for model training. For example, in medical image analysis, differ-
ences in medical images due to different imaging parameters and scanners used can 
negatively impact the accuracy of models [131]. In such cases, data harmonization 
strategies, such as histogram matching, image resampling, image-to-image trans-
lation, and style transfer [131–134], can be used to ameliorate differences that are 
not relevant to the actual AI task. Thus, consideration of how to filter, correct, and 
complete data without access to the actual data from the contributing centers to 
ensure data quality will be a key consideration for distributed learning system 
implementation. 

The healthcare environment within which the distributed learning system will 
operate is dynamic, and consideration of how to handle changing participation and 
data availability will also be important. As artificial intelligence driven healthcare 
solutions become more popular and the value of participation in the model training 
process becomes more apparent, the number of participants in the collaborative 
network may increase with time. Even with a static number of collaborators, the 
amount of data available for training increases over time. How different distributed 
learning methods handle new data and the associated costs need to be considered in 
system design. For example, adding new participants or data in the global ensemble 
method will be as simple as training a single local model at the participating site, 
whereas the parameter aggregation, traveling model, and split model methods may 
require costly re-training for all participants. Other important considerations are 
participant or data unavailability when performing model updates and compliance 
with regulatory demands on the right to be forgotten, such as machine unlearning to



‘un-train’ a model when consent for data use is removed [135, 136]. As models 
continue to be updated, they must be monitored for a potential statistical drift [137] 
to ensure that learning does not lead to catastrophic forgetting [58, 59]. Within this 
context, it remains an open challenge to interpret, investigate, and debug model 
failures when global access to training data is unavailable. 
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Training artificial intelligence models involves computational, communication, 
and personnel costs. Although large healthcare institutions may have the resources 
to bear this cost, smaller institutions such as hospitals in rural or under-funded 
regions may not have the resources to participate in distributed learning. This bears 
the risk of undercutting the amount of data an artificial intelligence model can be 
trained on, reducing the overall value of the model, and creating biased models that 
are not representative of the general patient population. Incentive schemes and 
revenue models may be needed to encourage participation and compensate for the 
computational, communication, and personnel costs needed for distributed learning. 
The incentive mechanisms may also incorporate collaboration fairness by assessing 
the value of their data contributions to the distributed learning system, whether 
simply through data size or more sophisticated valuation methods such as “leave 
one out” participant valuation or Shapley value for data valuation [138–140]. Fair 
incentive schemes and revenue models increase the overall participation in dis-
tributed learning and the value of artificial intelligence models for healthcare. 

Distributed learning is a promising approach for training AI models that prior-
itize data privacy and security. It replaces the traditional method of centralized 
model training, which requires sharing and collecting private and sensitive patient 
data. Multiple approaches to distributed learning are available, and efforts are 
ongoing to improve the performance, computation and communication efficiency, 
and privacy and security of these methods. Training AI models with distributed 
learning directly addresses the need for reliable and representative data for AI 
solutions in healthcare. The widespread adoption of distributed learning will pro-
vide the ability to train accurate, robust, generalizable, and unbiased models, and 
may open up novel research and business opportunities that have the potential to 
improve healthcare. 

5 Core Messages 

. Distributed learning is a promising approach to training machine learning 
models that replace the traditional method of sharing and collecting data for 
centralized model training. 

. This approach directly addresses the need for reliable and representative data for 
AI solutions in healthcare, while avoiding the need to share private and sensitive 
patient data at a central location. 

. Multiple approaches to distributed learning are available, and efforts are ongoing 
to improve the performance, computation and communication efficiency, and 
privacy and security of these methods.
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. The ability to train accurate, robust, generalizable, and unbiased models while 
retaining control over data usage and governance may open up novel research 
and business opportunities that have the potential to improve healthcare. 

The future of e-health and healthcare in general will come to rely on artificial 
intelligence technologies driven by big data. The amount of healthcare data being 
collected is growing exponentially within both traditional healthcare settings, such 
as hospitals, and at the individual level, such as with wearable devices. Distributed 
learning will become the standard approach to training artificial intelligence models 
in healthcare and beyond, as it is better suited to address issues of data privacy and 
data governance. Incorporating these key considerations into the design of artificial 
intelligence and big data systems may encourage increased participation in the 
healthcare data economy. This will, in turn, increase the amount of available data 
that can be used to train advanced models. As healthcare shifts towards precision 
medicine, distributed learning may need to shift from primarily training at health-
care institutions to primarily training on highly personalized datasets, such as those 
stored on smart devices. This ability to train accurate models from large amounts of 
distributed data will be especially important for precision medicine, as models will 
need to be trained on local datasets at the individual level while still learning a large 
amount and variety of data. 
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The five most efficient cyber defenders are: Anticipation,
Education, Detection, Reaction and Resilience. Do remember:
“Cybersecurity is much more than an IT topic”.

—Stephane Nappo

Cybersecurity in Healthcare 

Brendan Kelly, Conor Quinn, Aonghus Lawlor, Ronan Killeen, 
and James Burrell 

1 Introduction 

Digital health technology includes the integration of a myriad of medical devices, 
wireless technologies, data warehouses, sensors and wearables, and even social 
networks, all with an emphasis on real-time connectivity. These advancements in
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technology provide opportunities for patient care; however, they also pose a risk to 
healthcare providers in the form of challenges to personal data, privacy, and 
security. These cybersecurity threats are not entirely new to healthcare, but have 
certainly become more abundant with the digital health revolution and have been 
identified as one of the major healthcare risks of 2021 [1]. Cybersecurity represents 
both external threats and accidental errors by internal staff, which can pose par-
ticular risks. Fortunately, healthcare providers and device manufacturers have the 
advantage of being able to take inspiration from other industries that are leading the 
way in the field. This chapter seeks to provide an introduction to digital health as it 
pertains to cybersecurity, a background to both general and healthcare specific 
cybersecurity challenges, general approaches to improving security through both 
detection and preventative techniques, and ways in which technology can increase 
security while mitigating risks.
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Herein we propose to highlight how common cybersecurity issues need to be 
considered for the development and integration of artificial intelligence (AI) and 
Big Data projects in healthcare both for the benefit of patients, healthcare providers, 
institutions and industry partners. 

2 Introduction to Health Information Technology (HIT) 

Over the last decade, there has been an explosion in the volume of medical data [2]. 
Coupled with this, there is a shortage of medical experts with the expertise required 
to interpret these data [3]. The application of analytical processes, including AI, has 
been suggested as a potential solution to address this supply/demand issue [4]. In 
parallel with this issue is a new focus on “personalised medicine”, whereby data can 
be leveraged to provide individually tailored care and treatment for a patient [5]. To 
fill this niche in the market, there has been a huge growth in the digital health 
sector. While there are many potential benefits and some improvements in patient 
outcomes are now being delivered, the adoption of these technologies is not without 
risk to healthcare providers [6]. While any new technology or medical device comes 
with a degree of risk, medical device manufacturers and healthcare delivery 
organisations have a duty to be informed of potential risks and take steps to mitigate 
them. 

2.1 The Electronic Health Record 

The electronic health record (EHR) [7] is now the dominant source of adminis-
trative and clinical data that contains medical history, pharmacological prescrip-
tions, laboratory and imaging, and other patient and population data [8]. The EHR 
was originally proposed as an almost universally positive step for digital health. The 
potential benefits were clear.
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. Allow for up-to-date medical records that can be easily accessed and edited. 

. Records can be viewed simultaneously in multiple locations, allowing for 
enhanced communication between clinicians. 

. Reduction of medical errors through fail safety and checks. 

. Increased legibility of records 

Furthermore, in theory, the EHR should lead to gains in efficiency, allowing for 
more time for clinicians and enabling the achievement of business goals. 

However, along with all the potential benefits, there are drawbacks related to 
privacy and security. One of the key potential security concerns relates to the 
number of different systems and services (radiology information system (RIS), 
medical laboratory results, billing) that need to interact with the EHR, giving many 
potential points of access. The ability of multiple users to interact with the EHR is a 
cornerstone of its value. Multiple users, however, pose risks to their own. Those 
with permissions to download or access the Internet have the potential to be 
exploited. Restricting permissions may help to limit this risk. Any system with 
multiple users is also likely to be impacted by phishing attacks that gather cre-
dentials in the hope of using them to compromise a system. Strong security con-
trols (such as encryption) are an obvious first step in ensuring security; however, it 
can be a double-edged sword because it reduces the usability of the end user. 

2.2 Complicating Factors 

An interesting challenge inextricably linked with the increasing connectivity of the 
“Internet of Things” is the integration of legacy devices with a digital health 
environment where there is a continuous flow of information. Many of these 
devices and infrastructure have been designed without network connectivity 
capabilities. This invites unique challenges for IT departments tasked with the 
integration of legacy technology. In addition, with technologies such as 5G wireless 
networks enabling faster remote capabilities such as telemedicine and robotics 
support robotic-assisted surgical procedures, the need for the integrity of these 
applications has never been higher. There is also an elevated risk associated with 
the use of end-of-life software that has been clearly demonstrated in attacks on 
healthcare providers such as the Irish Health Service Executive (HSE) “Conti” and 
the UK National Health Service (NHS) “WannaCry” ransomware attacks [9]. 

2.3 Data 

A modern advent in digital health is the ability to leverage the increasing volumes 
of data collected by hospitals and healthcare systems in the form of data analytics 
and extension AI. AI provides the ability for computers to mimic human behaviour 
and depends on the availability of large volumes of data. It is in this way linked to 
big data. Machine learning is a subset of AI where computers are able to



demonstrate learning characteristics without being explicitly programmed and has 
shown great promise in the processing and analysis of tabular medical data. More 
recently, advances in deep learning, such as convolutional neural networks and 
natural language processes, with recurrent neural networks have made significant 
progress in the analysis of image analysis and language-based tasks (such as 
translation). The black-box nature of these modern data science methods leads to 
potential issues, such as adversarial attacks. 
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2.4 Trends 

Cyber threats have increased steadily over the past several years across all sectors 
[10]. There has been an exponential growth in data breaches and organisations 
suffering cybersecurity-related issues (i.e. ransom payments). Cybersecurity relates 
to the use of controls, processes, and technologies to protect systems and data from 
these cyber threats [11]. Mandatory, regulatory backed, cybersecurity programs are 
becoming mainstream, and healthcare is of particular focus due to the sensitivity of 
healthcare data. The core goals of an organisation's cybersecurity program can be 
defined within the information security model known as the ‘CIA Triad’. The CIA 
triad relates to the principles of confidentiality, integrity, and availability of data. 
The definitions of these terms are provided in Table 1 [12]. 

The healthcare sector is one of the most targeted sectors globally, and digital 
health has been impacted by a large number of high-profile incidents. In one survey 
over 110 million patients and 81% of 223 organisations experienced a compromise 
of data in the year 2015 [13]. Figure 1 shows a detailed breakdown of the targets 
within the healthcare sector. Figure 2 illustrates the patterns used to exploit these 
targets. Governments, regulators, and organisations have been forced to make 
improvements in their handling of cybersecurity threats to protect individuals and 
their data. Different industries have differing concerns, with varying degrees of 
cybersecurity maturity. Healthcare lags behind the leading industries when it comes 
to securing vital data [14]. As a result, cybersecurity in the healthcare industry is of 
growing concern, which is viewed as having immature cybersecurity practices and 
is a prime target for data theft [14]. This lack of maturity in healthcare cybersecurity 
programs can be a result of limited resources, lack of financial backing, fragmented 
governance, and cultural behaviours. In addition, there is consistent underinvest-
ment in information technology, resulting in legacy IT issues [14]. Examples of this

Table 1 The CIA Triad 

Term Definition 

Confidentiality Data is not disclosed (intentionally or unintentionally) to unauthorised 
individuals 

Integrity Data is not altered from its original state either accidentally or maliciously, 
by unauthorized individuals 

Availability Data is accessible and usable by authorized individuals



have already been identified in the banking industry [15], and prioritisation of 
cybersecurity resources should be considered in healthcare to avoid the same poor 
outcomes.
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Fig. 1 Patterns in Healthcare industry incidents (n = 798). Adapted from Verizon Communica-
tions (2020). 2020 Data Breach Investigations Report (DBIR). https://enterprise.verizon.com/en-
gb/resources/reports/2020-data-breach-investigations-report.pdf 

2.5 Health Information Technology 

Health information technology (HIT) presents a unique scenario for healthcare and 
cybersecurity practitioners, where the creation and development of technology must 
meet the principles of the CIA triad to protect the confidentiality, integrity, and 
availability of information of individuals, while also balancing useability, inter-
operability, and accuracy. In addition, once the HIT is operationalised within an 
organisation, the technology must be secure and robust enough to resist 
cyber-attacks even with an immature cybersecurity program [14]. 

3 Regulatory Compliance and Standards 

As highlighted in the previous section, the rise in cybersecurity threats to organi-
sations has forced governments and regulators to compel organisations to establish 
robust cybersecurity programs to protect sensitive personal information. In terms of 
the healthcare sector, primary legislative actions that have resulted in the 
improvement of cybersecurity program maturity are the U.S. Health Insurance 
Portability and Accountability Act (HIPAA) and the European Union General Data 
Protection Regulation (GDPR) [16, 17]. These regulations are data protection and 
privacy-focused, with the aim of providing accountability for organisations that 
collect, store, and process sensitive personal information. As part of meeting these 
regulations, several related requirements must be implemented, and as a result, 
drive maturity improvement in cybersecurity programs.

https://enterprise.verizon.com/en-gb/resources/reports/2020-data-breach-investigations-report.pdf
https://enterprise.verizon.com/en-gb/resources/reports/2020-data-breach-investigations-report.pdf
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Fig. 2 Patterns in Healthcare industry breaches (n = 521). Adapted from Verizon Communica-
tions (2020). 2020 Data Breach Investigations Report (DBIR). https://enterprise.verizon.com/en-
gb/resources/reports/2020-data-breach-investigations-report.pdf 

3.1 HIPAA 

HIPAA has a defined security rule, which extends to the physical and cyber 
domains. It has a requirement that physicians should protect electronically stored, 
protected health information (known as “ePHI”) of patients, through the use of 
appropriate administrative, physical, and technical safeguards. This is to guarantee 
the confidentiality, integrity, and security of this information [16]. Furthermore the 
Security Rule in HIPAA applies to any healthcare provider that transmits health 
information in an electronic format. As a result, the scope of HIPAA compliance 
includes healthcare institutions storing and transmitting health-related data in 
addition to HIT, which transmits, receives, or records health related information. 

Physical safeguards for ePHI are required by the HIPAA Security Rule. This 
includes maintaining controls that achieve the CIA triad (Table 1) as well as 
employee compliance [16]. 

3.2 GDPR 

The GDPR, although not cybersecurity or healthcare-specific, requires organisa-
tions that hold personal information (health-related data included) to protect and use 
it in appropriate ways. Concerning security, the GDPR ‘security principle’ Article 5 
(1)(f) highlights the ‘integrity and confidentiality’ of personal data. It states that 
personal data should be ‘Processed in a manner that ensures appropriate security 
of the personal data, including protection against unauthorised or unlawful pro-
cessing and against accidental loss, destruction or damage, using appropriate 
technical or organisational measures’. 

Although the GDPR does not mandate specific security controls, similar to 
HIPAA, security controls must be appropriate for the risk and protect the confi-
dentiality and integrity of personal data.

https://enterprise.verizon.com/en-gb/resources/reports/2020-data-breach-investigations-report.pdf
https://enterprise.verizon.com/en-gb/resources/reports/2020-data-breach-investigations-report.pdf
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3.3 Compliance 

Data protection regulatory compliance can be a driver of cybersecurity within an 
organisation. The controls an organisation decides to implement must comply with 
the requirements of the regulation and reasonable in their protection. The definition 
of ‘reasonable’ is still a source of debate, but the guiding factors should be aligned 
with industry best practices and leading cybersecurity frameworks. Although reg-
ulation alone may not be a strong driver, the repercussions imposed by failure to 
comply with regulations to adequately protect individuals’ data can be a motivating 
factor for this increasing cybersecurity. 

3.4 Security Controls 

There is an interesting interplay between increasing security control and compli-
ance. Compliance with regulatory requirements may appear to provide security; 
however, in practice, it may not provide an enhanced level of security and often 
struggle to maintain pace with technological advancement. Security controls are 
updated regularly, and in some cases, may provide greater protection than 
requirements listed by regulators. For example, in practice there are situations that 
may arise on shared facilities where only one user is given particular permissions 
and may lead to the account being left “logged in” all the time. It is important that 
appropriate steps are taken to maintain adequate patient and corporate safety while 
minimising the impact on the performance of technology users, which ultimately 
reduces the time spent on patient care. These issues also affect big data and AI as 
they apply to digital health, where the requirement for security may not be adequate 
to protect these systems or regulations may not prescribe the use of these systems to 
help secure the organisation. 

3.5 De-identification 

De-identification is a key step in maintaining patient privacy, especially with the 
sharing of patient data. However, this process is not as simple as it appears. 
A common example of added complications in de-identification occurs with 
medical imaging. Many software services are available for de-identification that 
remove the patient's name and date of birth. However, this is far from full 
anonymisation, as most files contain metadata, which is not so easily removed and 
often contains other information that could be used to re-identify the patient. 
Furthermore, the medical images themselves often contain identifiable information, 
such as data that can be reconstructed to provide an image of the patient’s face. This 
emphasises some of the additional complexities encountered in Healthcare specific 
use cases [18].
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3.6 Transfer 

Data often need to be transferred to another site to facilitate the analysis. This 
transfer can be physical or over a network connection. Health care institutions may 
not have the computing power necessary to perform the analysis, necessitating 
transfer either to a university, industry partner, or other organisation with adequate 
computational resources. The addition of this step to the pipeline increased the 
attack surface. Whether data are stored locally or remotely, the security and privacy 
of the stored data is an important consideration which includes both hardware and 
software applications and access, control, and the integrity of the systems governing 
these processes. 

3.7 Devices 

The importance of different healthcare devices and information systems to freely 
exchange information is well established [19]. The framework for integration 
between different vendors and technologies is outlined in Health Level 7 (HL7). 
HL7 Version 3, which is based on XML, involves the transfer of text data without 
encryption. To facilitate transfer between different technologies, HL7 assumes that 
encryption will take place at a lower level and provides no protocol-level encryp-
tion. As communication relies on establishing short-term client connections, it has 
been established that HL 7 could be vulnerable to “man in the middle” attacks. The 
requirement for communication between devices using a consistent streamlined 
protocol has been a fundamental challenge for cybersecurity in healthcare. Con-
sistent communication between technologies for a particular protocol or format has 
the potential to increase speed and consistency (e.g. facilitating the use of simple 
regular expressions or direct string manipulation). 

3.8 Labelling 

Data labelling is one of the most interesting challenges in both big data and AI for 
digital health [20]. A malicious attacker can gain access to the data labels used to 
train an AI algorithm or used to form the foundational integrity of a large dataset, 
where the outputs of any model could be significantly compromised. A further 
complication is that the performance of models trained on faulty data might only 
become apparent when the model is implemented on external data. This type of 
compromise has the potential to harm patients.
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4 Information Security and Data Privacy 

Information security and data privacy concerns exist across the creation, imple-
mentation, and operation of HIT. The issues affect both the organisations that create 
and utilise HIT, where cybersecurity and data privacy may be lacking in medical 
devices, and the medical device has sufficient cybersecurity and privacy controls. 
These devices may be integrated and operated in institutions that have weak 
cybersecurity controls to provide adequate protection. 

There is an increasing focus on the cybersecurity aspect of HIT, Internet of 
Things (IoT) medical devices, and wearable health devices [21]. There are various 
cybersecurity and data privacy elements that must be considered during the 
development process of HIT devices. 

4.1 Software Development 

There have been a variety of different software development methodologies in 
circulation for several years, including agile, waterfall, and scrum. What all 
methodologies have in common is the planning, analysis, development, imple-
mentation, and release phases with varying levels of iterations between each phase. 
Traditionally, cybersecurity has been thought to occur only when the project has 
been completed. This usually requires vulnerability scans and penetration tests to 
determine the existence of vulnerabilities in the completed project, and ‘bolt-on’ 
fixes may be required to plug security gaps. The cost of identifying and fixing 
security issues increases with the need for fundamental changes in a product/device 
which is a consideration for profit-driven organisations. 

As the practices in software development matures and the concern of 
cybersecurity-related issues increases, there is a growing interest in the develop-
ment of software-based solutions in the process of DevOps and DevSecOps. These 
processes consist of shifting the thought of cybersecurity earlier in the development 
process (‘shifting left’). Shifting cybersecurity left in the development process 
allows security to be built into a product from the start and allows 
cybersecurity-related issues to be identified earlier within the development process. 
This process allows for iterations between phases, where cybersecurity issues can 
be addressed and resolved. Current trends indicate that this process can lead to the 
production of more secure devices/systems [22]. In addition, security issues iden-
tified later in the project can be rectified sooner at a lower cost than at the end of a 
project. 

4.2 Third Parties 

As healthcare institutions rely on third parties for the development and creation of 
new technology, the industry is not immune to rising incidents of supply chain



attacks, where attackers access organisations by compromising third-party provi-
ders. A recent example was the Solarwinds attack, where the software provider 
Solarwinds source code was compromised by installing malicious backdoors which 
impacted thousands of organisations using their software. The California Depart-
ment of State Hospitals was included in the list of victims. Although Solarwinds is 
not a healthcare technology, the plausibility of an attack on a healthcare technology 
provider is plausible. Trend Micro, a leading cybersecurity company, also high-
lighted the concern with third parties and supply chain risks for hospitals, high-
lighting potential vectors for compromise including device firmware attacks, 
mHealth mobile app compromise, source code compromise during manufacturing, 
etc. 
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4.3 Privacy 

As previously highlighted, there are information and data privacy concerns asso-
ciated with technology as it is being created and implemented. This concern does 
not stop at the perimeter of the produced device. As previously mentioned, the 
shortcomings of cybersecurity programs within the healthcare industry show vul-
nerabilities within institutions [13, 14]. Although a medical device may have been 
created with privacy as a priority, the overall security can be difficult to maintain if 
organisations do not have adequate cybersecurity controls. 

According to the Verizon 2020 Data Breach Investigations Report [23], the 
increase in data breaches recorded in that year was reflected across multiple 
industries, including healthcare. The report lists miscellaneous errors and web 
applications as the top two verticals for an attack. Although errors and attacks on 
web applications can occur across any industry, the report states that as healthcare 
organisations make new methods of interacting with patients, they in turn introduce 
additional attack surfaces [23]. 

4.4 Transformation 

Organisations and healthcare institutions are currently undergoing digital trans-
formation in terms of utilising third-party providers for more innovative technology 
and cloud-based solutions to accommodate flexibility and scalability. The security 
issues already highlighted continue to apply to these domains, and in some cir-
cumstances may represent a risk for healthcare institutions despite having limited 
control over the risk factor. In 2017, Nuance Communications suffered a ran-
somware attack, the systems that were affected were mainly transcription services 
and imaging orders for healthcare customers. The results of these attacks included 
critical systems for healthcare institutions which impacted patient care. Due to the 
nature of the attack, it also spread from Nuance to other healthcare institutions 
through shared connections.
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4.5 Industry Standards 

The nature of the industry-specific technology utilised within healthcare institutions 
represents unique issues that are more effectively addressed by security practitioners 
with a focus in the healthcare field to identify security issues with common 
healthcare technologies. For example, Digital Imaging and Communications in 
Medicine (DICOM) is the international 30-year-old standard protocol for managing 
and transmitting medical images, such as ultrasound, MRI, X-ray, and CT scans 
[24]. In 2019, researchers highlighted the possibility of “showing how an attacker 
can use deep learning to add or remove evidence of medical conditions from 
volumetric (3D) medical scans” (i.e. DICOM files) [25]. The researchers showed 
that it is possible to infiltrate healthcare institutions and use malware to alter the 
Digital Imaging and Communications in Medicine file format. Although there is no 
evidence of such an attack actually taking place, the use case highlights that attack 
vectors exist that are unique to the healthcare sector and have not been previously 
examined. This reiterates the need for security assessment of healthcare technolo-
gies and processes, even industry standards that have been utilised for many years, 
based on changes in technology and attack vectors. 

4.6 Ethics 

The ethics associated with the use of patient data for training and testing AI 
algorithms is complex and a matter of debate [26]. There are two high-level per-
spectives associated with this ethical debate. One is from the patient's individual 
point of view, where their data are used directly for their own healthcare benefit, for 
example, a wearable smartwatch. The other level of use of data is to benefit society 
as opposed to the individual to whom the data relates. These two different use cases 
raise separate ethical concerns with the corresponding cyber security issues. Larson 
and colleagues [27] argue thus rather than considering who “owns” the data either 
the institution or the patient to whom it relates, it is more useful to consider data as a 
resource that can benefit society. From this viewpoint, taking all necessary mea-
sures to ensure the integrity of the data is paramount. Kurpinski [28] observed that 
almost every healthcare institution had a third-party request to purchase their data. 
While the ethics of buying data are still a subject for debate, it is clear that security 
and confidentiality updates are inextricably linked with good ethical standards. This 
is especially true when a patient may not directly benefit from the sharing of data. 
Medicine is becoming increasingly personalised which involves analysis of 
patient-level data as well as “big data” and tailoring solutions for individual patients 
[29]. It is clear that where an individual may make decisions about their healthcare 
based on data that they have shared, it is necessary to ensure the integrity of the data 
and the reasons for any decision made concerning the data.
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5 Hardware and Software-Based Security Models 

Although the maturity of cybersecurity programs within healthcare institutions may 
be at a level of concern, there are several recurring issues that will alleviate some 
risks. 

5.1 Legacy Software 

As previously mentioned, because the nature of technologies utilised within 
healthcare is unique to their environment, there can be a reliance on systems that are 
based on legacy software for operations. These systems require legacy software (i.e. 
Microsoft Windows 7 operating system) for operations are at risk because they are 
not supported by the vendor and do not have the latest security controls. If a 
vulnerability is discovered as part of a legacy software, it may not receive a fix and 
can become a permanent risk. Healthcare institutions should maintain a robust 
lifecycle and asset management programs to determine the scope of their support 
infrastructure and to identify the risks of legacy software. 

5.2 Identity Management 

Identity management in the case of large healthcare organisations can be difficult 
because of the transient nature of the work done on site. Healthcare professionals 
require mobility within the hospital to interact with patients requiring various levels 
of care at different locations. This type of work environment can lead to shared 
devices/user accounts across the organisation. Ensuring a robust identity manage-
ment capability within healthcare institutions for access management and privileged 
access management requires the establishment and compliance with processes and 
procedures to ensure that the correct users access the correct devices securely using 
multi-factor authentication. 

5.3 Network Security 

Healthcare institutions require systems to communicate with each other across 
organisations. This can range from diagnostics to patient care systems. ‘Flat’ net-
works describe a device on a network that are able to interact with another device 
within the same network with very little routing/switching controls. Ensuring 
correct network segmentation is conducted when creating these communication 
paths can greatly reduce the risk of stopping ransomware/malware infections that 
spread across organisations.
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5.4 Audit and Logging 

Medical devices are created to serve a particular medical purpose and ensure the 
accuracy and safety of that action. Limited logging capabilities may be performed 
by devices for actions taken by a user. When an incident occurs, these logs can be 
reviewed to determine the root cause and drive cyber security improvement based 
on lessons learned. Ensuring that medical devices can log activities can increase the 
overall security of institutions. 

5.5 Solutions 

Addressing the issues highlighted above will improve the cybersecurity programs 
of healthcare institutions and, consequently, improve the safety of sensitive patient 
data. In addition, there are examples of how AI and big data can be used to address 
some of these cybersecurity concerns. The advances in using this technology in 
cybersecurity have improved over the past few years. AI and big data can identify 
trends in vast amounts of structured and unstructured data which in a healthcare 
setting can be valuable in identifying malicious activity. AI can be used to identify 
malicious activity on networks and host devices that would be outside the baseline 
usage to identify unusual activity historically via audit logs. 

In response to difficulties concerning the volume of training days required for 
accurate models and various issues pertaining to data access, different proposals 
have been put forward in order to sate data-hungry algorithms. 

Data augmentation methods have been well established [30]. In medical imaging 
data, for example, it is very common to augment training data by resizing, rotating, 
or using symmetry operations. Recently, with the advent of generative adversarial 
networks, it has become possible to create synthetic data for training [31]. This is 
now possible using tabular and medical imaging data. The cybersecurity issues 
outlined above carry forward the generation of synthetic data. Small changes in 
algorithms to generate synthetic data could instigate a decrease and change in the 
performance of models trained on these data. Similarly, a single malicious incident 
where a mislabelled data point could be propagated forward, causing more damage. 
It may be more difficult to identify anomalous data that have been poisoned because 
of the nature of it being artificially created. However, there are advantages of 
synthetic data from a privacy perspective, as systems are trained on created data, the 
privacy of individual data is not relied upon, and in the case of a data breach, the 
use of synthetic data mitigates concerns. 

Distributed Privacy 
Distributed privacy has been suggested as a possible solution to enable institutions 
to share data [32]. This involves sharing networks whereby only necessary data are 
sent from institution to institution, and any identifiable information is kept at the 
source location. This has the possibility of increasing privacy, but is dependent on 
the fundamental principles of cyber security outlined above.
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Federated Learning 
A further innovation to enable the development of more robust models is federated 
(or distributed) learning [33]. The concept behind federated learning is that rather 
than data being collected centrally and the training and testing of a model being 
performed on that central data, the model is trained locally, whether at different 
hospitals, institutions, or individual devices. Theoretically, this should allow for 
training robust models on diverse datasets without the associated legal and security 
complications of accessing such diverse data. Through this system, sensitive data 
can remain with its data controller for the owner while still facilitating distributed 
training. With each participant retaining responsibility for their own clinical data 
and employing local corporate governance, these federated models should enable 
data access. The difficulty from a security point of view is using an increased 
number of nodes, and the number of access points that require security controls also 
increases. If a single node is compromised, the confidentiality and integrity of the 
model may not be maintained. Ensuring that systems are up to date with the correct 
controls that comply with security standards is a large task with the potential for 
error. This type of model can introduce security weaknesses that grow 
exponentially. 

As the concept of federated learning has grown in recent years for the training of 
AI-based technology, security and privacy concerns are not yet fully understood 
and realised. Recent studies have highlighted the potential implications of this 
learning method. Mothukuri et al. included the security concerns of poisoning (data 
and model), inference, and backdoor attacks. Each of these security concerns has a 
differential likelihood of being realised with differing impacts on the over system. 
The study highlights that this process of learning is in its infancy and that future 
work would need to be done to understand the security and threats of zero-day 
attacks, trusted traceability, and well-designed APIs [34]. 

6 Security and Privacy Implications of Artificial 
Intelligence 

6.1 Languages and Platforms 

AI models are typically built using open-source platforms. Recently, Python has 
become the most popular language for the development of artificial intelligence in 
addition to languages such as R and C [35]. Applications that are created using 
these programming languages are routinely targeted for attack, as attackers try to 
maximise the usage of their resources for a large pool of targets. Furthermore, 
machine learning projects are often built using open-source libraries and modules, 
such as numpy or scikit learning. The use of these libraries and modules has created 
unique security challenges for practitioners. If a vulnerability is identified within 
these packages, obtaining a fix for it may not be straightforward. Additionally, as 
more open source libraries and modules are used, it may become more difficult to



track which modules are used without the use of mature development processes. 
This can lead to unidentified vulnerabilities within software products and is par-
ticularly relevant to the advent and popularity of high-level APIs Keras and Pytorch 
which allowed developers to employ machine learning without direct control. The 
particular algorithm used also has particular cybersecurity concerns. CNNs have 
been shown to be susceptible to malicious attacks [36]. Furthermore, tree-based 
algorithms which are prone to overfitting can be targeted in particular ways, such as 
changing small portions of the training data. 
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6.2 Testing 

Another important consideration is implementation which often occurs after several 
phases of “in silico” testing. It is possible that performance will dramatically change 
between testing and implementation. As such, practitioners need to be vigilant 
during the implementation phase. If the purpose of the implemented model is to 
augment performance, human-computer interaction must be taken into account. 
Furthermore, if the proposed use case is implemented as an autonomous device, 
there are additional levels of security concerns critical to this is reporting and 
communication of real-time alerts, and the need for ongoing oversight is an addi-
tional security consideration. 

6.3 Implementation 

Implementation issues such as an audit of performance must be taken into con-
sideration. Regular audits and clinical governance are of paramount importance for 
the safe introduction of digital health systems. This is further complicated by the 
fact that many of the proposed systems will implement continuous learning. This 
means that, rather than the product or device being static, it will continue to learn 
from ongoing experience and has potential benefits in terms of performance 
accuracy. It is unavoidably associated with ongoing risk as problems occur when 
things change. 

The developing technique of federated learning, which also shares many simi-
larities with distributed learning, is an area of research which is concerned with 
developing more robust models that are trained on local nodes and aggregated 
together into a central model. This facilitates, in theory, the use of more diverse data 
with much larger sample sizes without the need to transfer physical data between 
nodes. The use of federated learning should reduce local data governance issues, 
including particular data privacy and data access rights at individual institutions 
through the use of distributed nodes rather than open sharing of clinical data. 
Distributed systems operate based on remote local execution of training iterations 
and the use of a central algorithm. As such, the data remain at a local institution 
while contributing to a centralised model.
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7 Conclusion 

Herein, we have provided an introduction to cybersecurity as it pertains to the 
application of AI and big data to health data. There are, of course, specific use case 
cybersecurity concerns that vary from task to task and depend on particular hard-
ware and software; however, general principles form the foundation of any 
cybersecurity regime. While issues such as multivendor connectivity, multiple 
users, and legacy software make the implementation of security principles more 
difficult in digital health, the value and sensitive nature of the data make over-
coming these barriers all the more crucial. While increased connectivity makes 
modern cybersecurity more complex, there are opportunities to use emerging 
techniques to develop innovative security solutions which will be critical for the 
ongoing growth in the use of AI and big data in digital health. 
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1 Introduction 

Radiomics is the process of converting medical images into quantitative images and 
is driven by the concept that imaging studies contain information on pathophysi-
ological processes that can be revealed only by quantitative analysis [1]. 

Historically, radiology is based on qualitative and subjective image evaluation, 
which delegates correct interpretation to the radiologist. Thus, medical reasoning is 
the result of objective knowledge and a subjective assessment of patterns, and 
finally, a complex equation that combines the findings, subjectively attributing them 
importance, resulting in the diagnosis. However, this method is time-consuming 
and requires radiologist experience [2]. 
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Radiomics emerged as a field of knowledge to transform diagnostic reasoning, 
often a laborious and subjective task, into a quantitative process, based on infor-
mation generated in the images [2]. 

Radiomics is designed to extract and organize many features from digital 
medical images (big data) and perform statistical calculations that can correlate 
findings with a specific diagnosis, genetic characteristics, staging, response to 
treatment, or outcome. This process ideally links imaging data with clinical 
information from patients, thereby improving the decision-making power of the 
model [3]. 

This process began with the acquisition of high-quality and reproducible images. 
These images were standardized and evaluated, and the volume of interest was 
selected and segmented. The segmented volume was then subjected to artificial 
intelligence (AI) models to extract the features and correlate them with the patient’s 
data. Finally, statistical calculations were performed by associating a specific fea-
ture (or combining a pool of features) with the diagnosis. 

Features can be classified as semantic and agnostic. Semantics correspond to 
those that are part of the radiologist’s lexicon (size, shape, location, and spicula-
tion). Agnostics are features extracted mathematically. They can be assorted as first, 
second, or higher orders features and they are described in the radiologist’s report. 
The first-order features describes the distribution of individual voxels without 
reporting their spatial relationships. They are based on histograms and are 
expressed using average, median, maximum, and minimum values, as well as 
uniformity (entropy) of the image intensities, skewness (asymmetry), and kurtosis 
(flatness) of the histogram values [1–3]. 

Second-order features reflect the statistical relationship between voxels, which 
may be similar or opposite and are called texture features. These features can 
express the heterogeneity of tumors. Higher-order statistical methods impose filter 
grids on the image to extract repetitive and nonrepetitive patterns, including fractal 
analyses [2, 3]. These features are summarized in Fig. 1. 
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At the beginning of radiomic expansion, the features were previously selected, 
an d the model should statistically relate them to a certain outcome. This process, 
kn own as supervised machine learning, has yielded good results; however, the 
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machine learning is a more modern method that delegates to the model the task to 
identify among the features generated, which were individually (or as a group) 
those that resulted in a greater statistical power. 
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Fig. 1 Radiomic features 

Deep learning, a field of machine learning, is based on a model’s ability to 
identify characteristics that may not be perceptible to human evaluation and sta-
tistically correlate with a given outcome [4]. 

The conventional machine-learning feature-based radiomics workflow differs 
from the deep-learning radiomics approach. The deep learning method uses dif-
ferent neural network architectures, such as convolutional neural networks (CNNs), 
to generate and point out the most valuable features from input data. Autoencoder 
networks, which are an unsupervised type of CNN, aim to compress the image 
information and trace a short and representative of feature vector. Usually, 
deep-learning-based radiomics uses a multilayer system of neural networks trained 
to learn and recognize valuable features for problem classification in imaging data. 
With this technique, it is not necessary to select predefined features. Different 
combinations of the extracted feature vectors were then combined and evaluated to 
generate features with a level of abstraction and complexity even higher. The last 
step is to identify features that could be applied for problem classification by the 
neural network or quit the network and proceed model generation similar to 
feature-based radiomics approaches already described using several classifiers from 
conventional machine learning, such as decision trees, regression models, or sup-
port vector machines. Finally, deep learning-based radiomics functions on seg-
mented and unsegmented images, whereas feature-based radiomics demand 
segmented images for feature extraction [1, 2, 4]. 

Radiogenomics is a field of radiomics that correlates image data with the genetic 
alterations of a lesion and has been shown to be very promising. In the era of 
precision medicine, genetic characterization of lesions has proven to be an efficient 
tool in therapeutic planning, survival prediction, and, in an increasing number of



cases, in the choice of target therapies. Thus, a desirable result is the possibility of 
molecularly characterizing a lesion on diagnostic imaging scans, which will sig-
nificantly contribute to patient counseling and therapeutic planning. 
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The main application of radiogenomics is oncology; almost all cancer patients 
undergo imaging scans, and the ability to extract information on the main genetic 
tumor alterations without biopsy is encouraging. In addition to saving the patient 
from an invasive procedure, with morbidities inherent to any procedure, biopsy 
evaluates only part of a lesion and may often not demonstrate its main mutations. It 
is also important to consider that this type of evaluation is performed by specialist 
pathologists and requires advanced technological resources that are not widely 
available. In addition, this process is time-consuming and expensive. Therefore, 
genetic characterization of the tumor as a whole in a diagnostic scan is an important 
tool in oncology and precision medicine, adding benefits to treatment planning and 
increasing the availability of more specific diagnoses for a larger percentage of the 
population. An example of a radiogenomic pipeline is shown in Fig. 2. 

Image patterns that reflect the physiopathological alteration determined by 
genetic mutation have already been described. A good example is the mismatch 
sign in gliomas. The signal of the T2/FLAIR mismatch corresponds to the hyper-
signal drop in the FLAIR sequence when compared to the T2 sequence on brain 
magnetic resonance imaging (MRI) study and has a good correlation with IDH 
mutation and absence of 1p19q genes codeletion, a finding with almost 100% 
specificity [5]. 

In the clinical context of glioma, this information can be added to the report and 
currently contributes to patient counseling, surgical planning, and histopathological 
and molecular evaluations. Thus, based on this example, we can believe that AI

Fig. 2 Radiogenomic pipeline



models can identify other characteristics, many of which are not perceptible to the 
human eye and reflect some pathophysiological alterations related to genetic 
mutations.
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In addition to tumor molecular characterization at diagnosis, radiogenomics also 
allows for the evaluation of genetic mutations throughout oncological follow-up. 
Once disease progression is characterized (either by tumor growth or changes in its 
characteristics), imaging studies will be able to detect this evolution and reveal 
which new mutations are present. Thus, again, the patient is spared from a new 
invasive procedure, with an impact on the patient’s morbidity, in addition to the 
cost reduction of an already onerous treatment. 

2 Big Data for Oncology Management 

Big data can be defined as “a term that describes large volumes of high-velocity, 
complex, and variable data that require advanced techniques and technologies to 
enable the capture, storage, distribution, management, and analysis of the infor-
mation.” Owing to the complexity of multidimensional data, AI techniques are 
required to extract the necessary information from this source. 

There are various methods for generating big data in medicine, including 
genomics, proteomics, or metabolomics. Radiomic processes produce a large 
amount of data (features) that can be evaluated individually or together and require 
complex technology for storage, organization, and interpretation. In addition to this 
information, there are demographic, clinical, and laboratory data, as well as lifestyle 
and cultural data, which can be evaluated as a group. Thus, a complex and essential 
field for the development of radiomics is the ability to deal with big data, which 
encompasses the systematic collection and organization of data and its correct 
interpretation. This set of high-dimensional information (big data) has great 
applications in oncology to establish relationships between available data and 
possible outcomes [2]. In addition, we can use data extracted from wearable 
devices, laboratory exams, medical reports, family history, social media, and 
geographic and demographic status to serve as input for machine learning algo-
rithms to help the user improve and prevent diseases (including cancer). 

3 Areas of Radiomics/Radiogenomics 

Oncology benefits directly from the development of radiomics and radiogenomics. 
As previously mentioned, almost all patients with cancer underwent imaging scans. 
Thus these data can be used for early tumor detection, diagnosis, and treatment 
follow-up, through objective data, without the need for subjective interpretation [2].
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Tumor detection is a field of extensive exploration in oncology, with the main 
objective of detecting lesions as early as possible. For the most part, small lesions 
have simpler therapeutic proposals, with less morbidity and generally longer sur-
vival. Most neoplasm staging criteria (TNM) include lesion dimensions as part of 
their classification. RECIST 1.1 establishes injury size as the main feature to 
include a lesion as a target injury. Therefore, the size of the tumor has a direct 
relationship with treatment response and survival, and all patients benefit from 
earlier detection of their disease. Models of AI that can detect small, potentially 
oncological abnormalities (computer-aided detection (CAD)) contribute to the 
screening of patients with risk factors or that fit epidemiologically in a specific risk 
group, such as in the evaluation of pulmonary nodules in a smoker group or the 
mammographic screening of patients with a familial history of breast cancer. 

As soon as a lesion is detected, it must be characterized to narrow the differential 
diagnosis and help in therapeutic planning. Radiogenomic evaluation will con-
tribute to this step, since detected lesions may already have their main molecular 
changes characterized in the diagnostic study itself, allowing for better treatment 
planning. In addition to molecular characterization, models of stratification of the 
risk of recurrence, treatment response pattern (if the profile evaluated indicates a 
good response to radiotherapy/chemotherapy or surgery only), early recurrence risk, 
and survival can be applied. This information helps the doctor and patient, allowing 
therapy decisions to be made in a reasoned manner and with greater awareness, 
statistically evaluating the risks, benefits, and costs. 

Finally, AI models can also perform image follow-up, making comparative 
studies through volumetric measurements of lesions and changes in image patterns, 
or detection of disease distance progression. This evaluation could be challenging 
when small changes are observed between the two examinations and often cannot 
be detected by the human eye. Using volumetric measurements and textural anal-
ysis, models that compare lesions over time can characterize slight changes and thus 
detect tumor progression in an earlier and more objective way. In this context, 
rescue therapies can be applied earlier with a potential impact on survival. Exam-
ples of radiomics utilization in oncology are summarized in Fig. 3. 

Therefore, radiomics can significantly contribute to decision-making in cancer 
patients from diagnosis until follow-up after treatment. There are numerous 
radiomics and radiogenomics research initiatives in all areas of oncology. Efforts 
are being made to deepen the knowledge and generalize the results to incorporate 
this technology into the daily workflow, adding benefits to the treatment of cancer 
patients. 

4 Neuroradiology Applications 

Historically, neuroradiological development has been intrinsically connected to 
technological innovations, as we could see in the past few years, the practical 
application of new and advanced MRI sequences such as dynamic susceptibility



contrast (DSC), spectroscopy, diffusion tensor imaging (DTI), and function, which 
enable the assessment of the physiological behavior of several central nervous 
system (CNS) injuries. 
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Fig. 3 Uses of 
radiomic/radiogenomic in 
oncology 

Neuro-oncology has already been incorporated into clinical practice for the 
interpretation of advanced MRI sequences in the assessment of CNS tumors, and 
currently, the advancement of radiogenomics research points to the assimilation of 
this technology in the near future. 

In 2021, the World Health Organization published the 5th edition of the primary 
CNS tumor classification system [6]. The glioma category was reorganized with 
guidance to classify these tumors in combination with their genetic and histological 
changes. These advances have resulted in a better understanding of the impact of 
genetic changes on tumorigenesis, treatment response, and survival. 

Isocitrate dehydrogenase (IDH) plays a central role in the classification and 
prognosis of patients with diffuse glioma. IDH protects cells against oxidative stress 
[7]. 

Diffuse low-grade (grade II) gliomas are usually IDH-mutated, and most patients 
with high-grade gliomas are wild-type (not mutated) and have a worse prognosis. 
These tumor types are classified as grade IV astrocytomas when they are



IDH-mutated (with a better prognosis and response to treatment compared to 
GBM-WT). Due to their important prognostic role, diffuse gliomas should be 
classified as mutated or IDH wild-type, with better tumor characterization, as well 
as helping therapeutic planning, once patients with gliomas IDH WT are treated 
more aggressively. 
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Imaging studies can already graduate glioma in low and high grades, based on its 
characteristics in conventional and advanced MRI sequences, thus having a good 
contributing to the glioma phenotype. This information is important, but the current 
scenario is insufficient [7]. It is necessary to follow the progress of the WHO 2021 
classification and, therefore, to study which image patterns (phenotypes) may be 
related to molecular changes (genotypes). 

Recent studies have evaluated AI models of patients with GBM to classify IDH 
status with promising results, but they still require external validation [8, 9]. 

Codelection of genes 1p and 19q associated with the IDH mutation is the genetic 
signature of oligodendrogliomas (grades II and III) [6]. Its presence is diagnostic of 
oligodendrogliomas and is associated with longer survival and a better response to 
treatment. A recent systematic review of AI techniques applied to classify 
low-grade gliomas based on IDH mutations and codeletion of 1p19q genes has 
demonstrated good results. Some groups have achieved high specificity and sen-
sitivity, especially those associated with conventional radiomics using convolu-
tional neural network-derived features [10]. 

Other molecular changes can also be evaluated to better characterize gliomas and 
for prognostic evaluation. The P53 genes, EGFR amplification, VEGF mutation, 
MGMT gene methylation, CDKN2A/B homozygosity, and H3K27m and H3.G34 
histone mutations are some of the main molecular changes that may have an impact 
on survival and response to treatment. These are targets of studies in 
radiomics/radiogenomics, with promising results, but still require validation [11]. 

This information is important, but the current scenario is insufficient [7]. It is 
necessary to follow the progress of the WHO 2021 classification and, therefore, to 
study which image patterns (phenotypes) may be related to molecular changes 
(genotypes). 

In addition to their role in the characterization of gliomas, in the era of precision 
medicine, these molecular changes can also guide treatment, aiming to develop and 
apply targeted therapy. 

The BRAF oncogene can undergo two main changes: BRAF fusion and the 
BRAF V600E mutation. BRAF fusion manifests when the gene mixes with other 
mutations, resulting in the upregulation of several downstream pathways. 
The BRAF V600E mutation activates BRAF, damaging the mitogen-activated p. 
V600E protein kinase (MAPK) pathway. Low-grade gliomas in children or cir-
cumscribed gliomas with BRAF V600E mutation may have a more aggressive 
disease course if they cannot be surgically resected. 

Thus, a target drug with action in the mitogen-activated protein kinase pathway 
was developed and could be used to treat pediatric patients with low-grade gliomas 
refractory to first-line chemotherapy with promising results. A recent study used 
radiomics to characterize BRAF mutations in low-grade gliomas in children. In



addition to the benefits already discussed, this finding is especially important in this 
group of diseases because some tumors are located in eloquent areas, which 
increases biopsy procedure morbidity [12]. 
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This information is valuable for therapeutic planning and could assist pathologist 
interpretation. In addition, it should be considered that in the future, this type of 
information may lower the costs of assessing the molecular profile of tumors, which 
can be characterized based on imaging findings. 

In addition to gliomas, medulloblastomas are targets for radiogenomic research, 
with a good correlation between imaging findings and molecular profiles. The 
molecular classification of medulloblastoma is important and has an impact on 
survival. They can be classified into wingless (WNT), sonic hedgehog (SHH), 
group 3, and group 4, the latter with a worse prognosis, which may also be the 
target of more aggressive treatment and, in the future, of targeted therapy. Perreault 
et al. evaluated 47 pediatric patients. There was a good correlation between the 
lesion topography and molecular profile: those located in the midline next to the IV 
ventricle had groups 3 and 4 mutations, those located in the cerebellar hemisphere 
were of the SHH type, and those located in the middle cerebellar peduncle had the 
WNT mutation [13]. These phenotype-genotype correlations could enable us to 
make a better and more precise diagnosis, making it possible to rule out biopsy in 
some cases in the near future. 

5 Breast Imaging Applications 

Breast cancer is one of leading cause of cancer-related death in the world. Breast 
cancer screening using mammography is considered effective in reducing breast 
cancer-related mortality. Early diagnosis is a fundamental strategy that results in 
more effective treatment and increased survival. Thus, patients with small 
non-metastatic primary lesions can be treated more efficiently, with the potential for 
longer survival of 5 years. In addition, the early detection and treatment of breast 
cancer also impact the quality of life, as these women undergo less invasive surgical 
procedures. Many countries have adopted mammography as a screening tool for the 
entire population, aiming for early diagnosis with consequent mortality reduction 
[14]. 

However, a large number of examinations and the use of double reading in some 
countries result in a high workload for radiologists, reducing efficiency and 
increased cost. Specially, it is important to decrease missing and interpretation 
mistakes of detectable lesions on mammography, which accounts to approximately 
25% of detectable cancers not diagnosed at screening exams [15]. 

The need to improve the accuracy of mammography, tomosynthesis, and MRI 
has spurred several studies in this area. Some researchers have investigated the 
application of radiomics to distinguish benign mammary lesions from normal 
mammary parenchyma and malignant lesions. In general, these studies demon-
strated radiomic improvements in diagnostic accuracy in breast imaging [14].
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In a large multicenter study, the performance of an AI model for diagnosing 
breast cancer in digital mammograms was superior to radiologists [16]. 

Researchers have shown that radiologists have improved diagnostic accuracy for 
breast cancer detection in mammography when applying an AI computer system for 
assistance, increasing the reading time. Radiologists with less experience benefited 
the most from this tool [16]. 

Another promising area for radiomic applications is the automatic identification 
of normal mammograms in breast cancer screening studies to reduce the workload 
for radiologists [14]. 

In current radiological practice, tumor evaluation on mammography, ultrasound, 
or magnetic resonance studies is broadly qualitative, including subjective assess-
ments, such as the aspect of the tumor (e.g., spiculated, rounded, with cysts or 
necrosis, microcalcification), density, enhancement pattern and anatomical rela-
tionship with surrounding tissues in to propose further treatment. As in other areas 
of oncology, breast cancer treatment has evolved, and in addition to early diagnosis, 
personalized treatment based on specific characteristics of each tumor and indi-
vidual characteristics of the patient has a direct impact on disease therapy planning 
and survival. In this scenario, the systematic evaluation of medical data and images 
is a necessary step in personalized medicine [15]. 

A study conducted in Germany demonstrated higher performance in screening 
mammogram evaluations by radiologists assisted by AI compared to those who did 
not use this tool. This study suggests that the AI system can help evaluate and 
interpret equivocal cases, suggesting its clinical relevance [15]. 

Similar studies are also being conducted for the evaluation of breast MRI, 
suggesting the application of AI in this imaging modality [16]. 

In addition to its application in mammography evaluation, AI can be used to 
assist pathologists in interpreting slides. Digitization of pathology slides for primary 
diagnosis is a rich field that can provide more broadly available and accurate 
diagnosis, classification, and prediction of breast tumor behavior [14]. 

6 Lung Imaging Applications 

Lung cancer is one of the most common types of cancers worldwide. Despite being 
a common disease, it can be a silent, with most patients experiencing unspecific 
symptoms until a late stage, which can lead to poor clinical outcomes. Therefore, it 
is important to scan high-risk populations for early detection of pulmonary cancer 
and provide more treatment options. Meanwhile, new and different therapeutic 
strategies have challenged the selection of eligible patients. This rich field of 
research is aimed at solving practical problems in lung cancer management. 

Recent data revealed a slight increase in the 5-year survival of lung cancer 
patients in the United States, which is a reflection of early detection, more accurate 
diagnosis, and, mainly, in the development of personalized therapies [17].
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The development of artificial intelligence (AI) models that can assist in the early 
diagnosis of lung cancer is a fertile field with potential for population applications. 
CT evaluation during lung cancer screening is extremely challenging and time 
consuming, in which there could be multiple nodules that measure only a few 
millimeters and needed to be analysed. One potential solution is the use of AI. 

A number of computer-aided detection (CAD) systems and radiomic and deep 
learning techniques in the field of pulmonary nodule assessment are already under 
development, with some showing good results. The main problems are still false 
positives and the difficulty of generalization. Therefore, this issue has not yet been 
completely resolved. Among all the methods, radiomics and deep learning appear to 
be the most accurate, and they will probably become robust, sensitive, and accurate 
CAD tools for radiologists [18]. 

In addition to the early diagnosis of lung cancer with the evaluation of pul-
monary nodules on CT scans, a recent review of AI application in patients with lung 
cancer evaluated several studies with good performance in characterization, pre-
diction of response to treatment, and survival [19]. 

Similar findings have also been reported by other authors in the literature, with 
Aerts et al. [19] showing that a radiomic-specific feature evaluated before treatment 
helps predict EGFR mutation-related response to therapy in patients with non-small 
cell lung cancer (NSCLC). 

In 2019, Google AI and collaborators built a deep learning convolutional neural 
network AI model to detect and characterize lung cancer risk using only CT scan 
input [20]. Similarly, a risk prediction model called the lung cancer prediction CNN 
(LCP-CNN) was developed to evaluate lung nodules and predict malignancy risk, 
reaching an AUC of 89.6% [21]. This is a great example of how AI algorithms may 
help not only in early and correct diagnosis, but also in treatment and prognosis. 

7 Gastrointestinal Tract Imaging Applications 

Hepatocellular carcinoma (HCC) is a major complication in patients with chronic 
liver disease (cirrhosis), being the main cause of cancer related death in this pop-
ulation. The prognosis of HCC depends on its stage at the time of diagnosis; 
therefore, screening imaging is critical for early detection and selection of treatment 
strategies. Currently, imaging assessment of HCC is based on a objective feature, 
the tumor size, and other subjective characteristics, which may vary greatly among 
radiologists. 

The management of HCC patients may positively impact the development of 
radiomics, allowing personalized medicine to be applied to these patients, allowing 
better and earlier diagnosis, minimizing unnecessary surgeries, reducing costs, and 
optimizing available resources. Santos et al., in a recent review, raised several 
studies that demonstrated the potential application of radiomics for HCC patients, 
suggesting that textural features can be related to pathological findings, such as 
microvascular invasion and histological grade, helping in treatment decision and



predicting patient outcome and prognosis. Notably, when radiomic data are com-
bined with clinical information, prediction models are more accurate and precise. 
Recent research has evaluated the application of radiomics in HCC using CT and 
MRI images with promising results [22]. 
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Colorectal cancer (CRC) has a high incidence in the population and can be 
sporadic or hereditary (non-polypoid hereditary CRC, HNPCC/Lynch syndrome). 
The oncogenes involved in CRC of greatest clinical importance are those of the 
RAS family (K-RAS, N-RAS, H-RAS) and BRAF, whose resulting proteins are 
located on the cell membrane and are potential targets for monoclonal antibody 
treatment. In addition, the presence of mutations in these genes has become a 
predictive biomarker of the treatment response to these antibodies. 

Recent research has shown that BRAF mutant colorectal carcinoma can be 
distinguished from BRAF wild type based on values for the derived radiomics 
texture features of standard deviation and mean value of positive pixels. A longer 
5-year overall survival in patients with advanced-stage CRC tumors was associated 
with lower skewness and higher mean values [23]. 

The treatment of patients with CRC is based on neoadjuvant radio/chemotherapy 
and surgery, depending on the stage. Nowadays, the major clinical challenge in 
rectal cancer is to detect a complete response before surgery after neoadjuvant 
chemo/radiotherapy in patients with CRC. MRI is the method of choice for inter-
preting morphological and functional sequences; however, its assessment can be 
challenging, even for an expert radiologist. Horvat et al. evaluated radiomics and 
conventional imaging interpretation and were able to show that diffusion-weighted 
images and T2W radiomics signature performed better than subjective qualitative 
analysis [24]. Similar results were reported in the quantitative assessment of DWI 
and dynamic contrast-enhanced MRI [25]. 

In a recent review of radiomics and CRC, the authors highlighted the importance 
of continuing radiomics studies, as current works already point to promising results 
for outcome assessment/treatment response and radiogenomics [26]. 

Evaluation of patients with esophageal cancer is another important field of 
research in the radiomics of gastrointestinal tumors. Patients with locally advanced 
esophageal squamous cell carcinoma have a poor prognosis owing to late diagnosis 
and limited treatment strategies. The standard of care for patients with advanced 
disease is surgery and chemoradiotherapy (CRT). Predicting outcomes is chal-
lenging. Radiomic evaluation using positron emission tomography with 
fluorodeoxyglucose (PET/CT) preoperatively in this group of patients was per-
formed by a research group and managed to establish a list of patients who did not 
benefit from radio/chemotherapy treatment. Thus, this group of patients could be 
treated with another option. They showed that a pre-therapeutic radiomics signature 
could point out patients at risk of early tumor recurrence or death [27]. 

In these different types of gastrointestinal cancers, we can already see that 
radiomic and radiogenomic may become an essential tool for tumor assessment, 
diagnosis, prognosis, and treatment in the near future.
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8 Radiotherapy Implications 

Planning radiotherapy (RT) treatment is a delicate and time-consuming process. 
Outlining the irradiated lesion can be challenging, and it affects the treatment 
response and related complications. Currently, this process is mainly manual and 
laborious, and may be subject to variability among doctors. Thus, extracting 
objective information from the imaging tests used for diagnosis and radiotherapy 
planning can improve the quality of this task. In addition to the challenge of 
properly delineating the lesion, we must consider the amount of information 
available in the different types of examinations (CT, MRI, PET) that can interfere 
with tumor treatment planning. In addition to tumor extension anatomical data, 
advanced MRI sequences and metabolic information generated by PET can con-
tribute to a better characterization of tumor extension; therefore, it is necessary to 
integrate these data into the treatment planning exam [28]. Therefore, the automated 
extraction of image resources through radiomic processes and their integration may 
help reduce the variability in tumor delimitation, improve the precision of the 
contour, and expand information about its extension [29]. 

An important issue to be considered in cancer treatment is the possible hetero-
geneity of the tumor tissue, which reflects diverse microenvironments and could 
result in different radiotherapy responses within the lesion. Thus, recognizing areas 
that may be more resistant to RT and delivering a higher dose to these regions can 
also be applied in radiomics. The application of radiomic signatures as textural 
features can be of great interest for identifying tumor heterogeneity and guiding 
precise radiation therapy treatment. It will be possible to provide a standard 
heterogeneous dose in areas suspected to be more radioresistant than could be 
identified on functional images such as PET and advanced MRI sequences [29]. 

Advanced RT techniques, such as intensity-modulated radiation treatment 
(IMRT) and stereotactic body radiotherapy (SBRT), allow a higher dose of radia-
tion to be delivered to the tumor with less involvement of the adjacent healthy 
tissues, thus generating less normal tissue damage. Thus, in these treatment 
modalities, which often require more than one radiotherapy session, high precision 
in planning and reproducibility throughout the treatment is necessary, which can 
also be very challenging. Some studies have already used radiomic techniques to 
detect and correct possible errors in positioning and in the delivered dose, cor-
recting the collimator’s position, which can interfere with the treatment result and 
its complications [30]. 

Another potential application of radiomics is to predict possible treatment 
complications, such as actinic pneumonitis and xerostomia secondary to radio-
therapy treatment. In the era of precision and personalized medicine, it will be 
possible to identify the patients most susceptible to such complications and thus 
adjust the planning and dose delivered to the tumor in individuals at high risk of 
toxicity [29].
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The evolution of the biological target volume (which combines anatomical and 
biological information of the tumor based on advanced MRI and PET sequences for 
RT planning) is believed to be the concept of radiomic target volume (193). The 
process involves automatic segmentation of the lesion, supervised by a doctor. The 
radiomic characteristics of the segmented tumor were then automatically extracted. 
Based on radiomic data, it may be possible to identify regions of major and minor 
tumor heterogeneity. Finally, treatment planning can be based on information on 
the histological behavior and radioresistance potential, with an increase in the dose 
for high-risk volumes and a lower dose for low-risk volumes to limit toxicity [28]. 

9 Conclusion 

Oncology will benefit significantly from radiomics/radiogenomics resources. As 
already pointed out, as the vast majority of cancer patients undergo several imaging 
scans and different types of diagnostic evaluations throughout the course of the 
disease, these may provide doctors with a rich source of data that may lead to 
precision medicine. In addition to imaging scans, these patients are subjected to 
laboratory tests, biopsies, and molecular and histological evaluations of their 
lesions, generating an enormous amount of information that can be correlated with 
each other. Therefore, it is clear that part of the development of radiomics involves 
capturing and organizing this enormous amount of information generated, allowing 
the creation of a high-quality database, as well as its curation, to value the data with 
greater relevance–a challenge without a doubt. 

In addition to dealing with this big data, integrating clinical knowledge of the 
disease with technical development and application of AI models is necessary. 
Usually, AI models that integrate a patient’s clinical information in a specific 
context of a given disease have better performance. Recent studies have also shown 
that we can achieve better model results when the doctor has previously selected the 
information to be processed; therefore, when only cases already evaluated by a 
radiologist were subjected to a specific model for a given disease, its accuracy 
would increase, especially in the radiogenomics field and in cases of treatment 
planning and survival evaluation. 

Models that aim to detect abnormalities in tests that a radiologist will evaluate 
also play an important role in population screening tests, such as mammograms for 
women and chest CT for smoking patients. These tools can be of great help, 
especially in services without subspecialist doctors and in places with a large 
workload for radiologists. These models have been shown to increase the detection 
rate, especially when used by physicians with less experience. 

Finally, the application of radiomics and radiogenomics in daily practice remains 
objective. In addition to the technical difficulties of the models under development 
and ethical issues to be considered, the challenge of generalizing the results is yet to 
be overcome. The vast majority of published studies use their own databases, 
usually with an insufficient number of cases, which can generate results that apply



only to that specific group. Additionally, several studies have developed their own 
models. This type of evaluation often creates conditions for applying this knowl-
edge only under the conditions created in published studies. Therefore, to advance 
the application of radiomics and radiogenomics, the generalization of the results is 
essential. Therefore, the main recommendations for future studies point to the use of 
open-source software, some of which are already available and are in an advanced 
validation stage. Another critical point is the use of public datasets from different 
parts of the world, validated by internationally recognized institutions, attesting to 
the quality of the available information. Finally, collaboration between different 
research institutions with the objective of sharing the database, allowing the models 
to be trained and validated in different populations, as well as the sharing of the 
model’s technology to generalize the results, are essential steps in this research 
field. 
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With the results of the radiomic/radiogenomic models, we could have improved 
not only in cancer diagnosis and treatment, but also in the patients’ prognosis and 
outcome, and even have some progress on prevention and health promotion leading 
to precision medicine (as shown in Fig. 4). 

Fig. 4 Radiomic/radiogenomic for precision medicine
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. Perspectives 

The application of radiomics and radiogenomics in oncology remains a complex 
issue. The benefits of this technology are well known. Advances in medical and 
technological knowledge have accelerated the development of models with appli-
cations in the medical field. It seems to us that the future of clinical practice will be 
the integration between physician and AI models, increasing the performance of 
clinical decisions, with greater availability of molecular diagnostic resources for a 
wide number of patients, allowing the advancement of precision medicine and 
potential for the development of personalized therapies, with a positive impact on 
the quality of life and survival of the oncology population. 
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General Conclusion 

Big Data and Artificial Intelligence (AI) are anticipated as major solutions for 
healthcare advancement. These solutions are already addressing the sector’s needs  
and issues, particularly in light of the Covid-19 crisis. Furthermore, by elevating the 
pandemic threat, these technologies have demonstrated their usefulness in reshaping 
the global e-health environment. As the systems become more efficient, they will 
satisfy the requirements of patients and assist health systems in the administration, 
analysis, and evaluation of their operations. 

The growth in the information provided and collected will lead to an expansion 
in the data collected. Big Data will therefore become more widespread in the health 
sector to manage and optimize this flow of data circulating between players in the 
field. AI can be a solution to collect, analyze, and incorporate large amounts of data, 
while offering treatment suggestions for a patient. AI also makes it possible to 
automate certain diagnostic or decision-making tasks, particularly in terms of 
patient and medical staff orientation. 

The main conclusion that will be raised in this book is to exhibit the crucial 
interest of artificial intelligence and Big Data for medical decision making and data 
analysis in different fields of e-health such as radiology, cancer prevention, 
pharmaceutical discovery, Covid-19 detection, blockchain of Internet of Medical 
Things, cardiac imaging, cybersecurity, and Internet of Medical Things. Big Data 
analytics and AI can use clinical data repositories which can lead to increasingly 
sophisticated informed decisions. When ensuring confidentiality, the security of the 
data, establishing protocols, and good governance, improving technologies will grab 
the attention of this burgeoning field. The challenges of intelligent health depend on 
the opportunities provided by the community of experts to make health systems more 
sustainable. In intelligent healthcare, Big Data is based on massive data collected 
routinely or automatically, and the reusability of this data could include links between 
existing databases to improve the performance and efficiency of the health system. 

Therefore, Big Data and AI will produce significant and accurate results for 
medical decision making while using patient data and clinical history to support 
more personalized medical inference. The potential of intelligent health allows us to 
monitor and control patients with chronic conditions and track their progress during 
therapy. 
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