

UNIX
Programming

UNIX Processes, Memory Management,
Process

Communication, Networking, and Shell
Scripting

Dr. Vineeta Khemchandani
Dr. Darpan Anand

Dr. K.K. Mishra
Dr. Sandeep Harit

www.bpbonline.com

http://www.bpbonline.com/

Copyright © 2022 BPB Online

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the publisher,
except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information
presented. However, the information contained in this book is sold without warranty, either express
or implied. Neither the author, nor BPB Online or its dealers and distributors, will be held liable for
any damages caused or alleged to have been caused directly or indirectly by this book.

BPB Online has endeavored to provide trademark information about all of the companies and
products mentioned in this book by the appropriate use of capitals. However, BPB Online cannot
guarantee the accuracy of this information.

Group Product Manager: Marianne Conor
Publishing Product Manager: Eva Brawn
Senior Editor: Connell
Content Development Editor: Melissa Monroe
Technical Editor: Anne Stokes
Copy Editor: Joe Austin
Language Support Editor: Justin Baldwin
Project Coordinator: Tyler Horan
Proofreader: Khloe Styles
Indexer: V. Krishnamurthy
Production Designer: Malcolm D'Souza
Marketing Coordinator: Kristen Kramer

First published: June 2022

Published by BPB Online
WeWork, 119 Marylebone Road
London NW1 5PU

UK | UAE | INDIA | SINGAPORE

ISBN 978-93-55510-402

www.bpbonline.com

http://www.bpbonline.com/

Dedicated to
Parampita - Paramatama

The lord Shiva and Goddess of Knowledge Maa Swarswati
The inspiration and source of all the possible knowledge

About the Authors
Prof. (Dr.) Vineeta Khemchandani is a Doctorate (Ph.D) in Computer
Science, Post Graduate in Computer Applications and ‘Diploma in Banking
Technology” from Indian Institute of Banking and Finance, Mumbai.
Overall experience of around 23 years in the field of IT in various
organizations. The experience spans from software development, Corporate
Training , System Administration, Academics, Administration and
Research, in various capacities. She significantly contributed with guiding
several B.Tech/ MCA projects, M.Tech dissertations and PhDs. Publications
of 30 research papers in journals of repute, 6 book chapters and authored 3
books. She filed three patents. She is part of review committee for Journal
of King Saud University, INDERSCIENCE Journal of Electronic
Government and Science Publishing Group, USA.
She contributed towards education innovation as members of “board of
studies” of State level universities in Uttar Pradesh. Currently also she
member of board of studies of AKTU, Lucknow for CS, It and MCA
programs. She delivered several talks during International conferences and
TEQIP programmes. She contributed to National and International
professional bodies like IEEE and Computer Society of India as Branch
counselor and management committee member. She was part of jury to
judge “SMART INDIA HACKTHON”, an initiative of AICTE and
Ministry of Human Resource Development (Govt of India) for four
consecutive years. Her research work over the past several years has been
focused on different aspect of information security and algorithms. Brief
areas of research include cryptography, Digital watermarking, visual
cryptography, stenography, multi- dimensional data structures, and e-
Governance projects.

Prof. (Dr.) Darpan Anand is presently working as Professor in the
Department of Computer Science Engineering Department at Chandigarh
University, India with more than 18 years of experience in teaching,
industry, and research. He is currently a member of the Board of Studies, a
Member of the research Degree Committee, and Outcome Based Education

Coordinator, ABET Accreditation Coordinator, Research Coordinator, and
the Coordinator of Projects in the Department of Computer Science,
Chandigarh University. He has guided several Ph.D. and PG Dissertations.
He is an author/co-author of more than 50+research papers (indexed in SCI,
ESCI, Scopus, etc.), 1 Textbook, 6 book chapters (IET, Springer, and
Elsevier), 4 patents, SWAYAM MOOC courses, etc. In addition to it, he has
reviewed many publications for SCI and Scopus indexed journal. He is also
a member of various esteemed research associations as IEEE, ACM,
IAENG, TAEI, CSI, AIS, CSTA, etc.

Dr. K. K. Mishra is presently working as Assistant Professor in
Department of Computer Science and Engineering, MNNIT Allahabad,
Prayagraj. He has successfully organized around 6 IEEE conferences in
India (ICCCT Series) as a conference secretary and worked as a program
chair for many other conferences. He has worked as PC members for many
conferences in India and abroad and has successfully organized some
special issues in highly index journals. He is a regular reviewer of Journal
of Supercomputing (Springer), Applied Intelligence, Applied Soft
Computing, IEEE Transaction on Cybernetics, IEEE System Journal,
Neural computing and application and IETE journals. In addition to it, he
has reviewed many publications for SCI and Scopus indexed journal.

Dr. Sandeep Harit started his formal education from BIET Jhansi with
B.Tech program completed, Postgraduate and PhD from MNNIT
Allahabad. He is presently working as faculty at department of Computer
Science and engineering at Punjab Engineering College Chandigarh, He
supervised more than thirty M.Tech Thesis and two PhD thesis. Since last
20 years in profession, he has been involved in various Academic,
administrative and research activities. He has published 40+ quality
research article in leading journals and conferences of international
standards including SCI and Scopus, and IEEE Indexed, with good number
of citations as well. He possess great acumen for research and have
inquiring spirit with his desire to keep expanding the boundaries of his
knowledge. Apart from cognitive abilities, he is also proficient in
implementing theoretical concepts into practices.

About the Reviewer
Dr. Akash Punhani is currently working as Associate Professor at SRM
Institute of Science and Technology, Delhi NCR campus, Modinagar,
Ghaziabad, India. He is the part of academics since 2007. He has done his
Ph.D. on Interconnection Networks titled “On Improving throughput and
latency of mesh interconnection networks” in year 2018 from Jaypee
University of Information technology, Solan Himachal pradesh, India.
During his Ph.D. he proposed the routing algorithms and topologies that can
be used on chips and help in improving communication on System on
Chips. He has published the articles in the various reputed journals and
conferences. His area of research includes Network on chips, Machine
learning and Optimization Algorithms. He is also an active reviewer of
various journals of high impact factors. Apart from the research, he has
good command over the various programming languages C, Python,
Matlab. He also has worked simulators like NS2, OMNET++ and NOXIM.
He has guided 2 M. Tech. Thesis and over 20 B. Tech. Projects. Akash
Punhani has on going mission for the developing and implementing ideas
for exploring, improving and optimizing the utilization of the resources in
the society and education.

Akash Punhani,
Ph.D. Computer Science & Engineering

Acknowledgement
From the depth of our heart, we dedicate this work to the supreme teacher
and supreme guide, The God, who has given us the strength and paved the
path to carry this task. We’d also like to thank many people who have
helped us to learn and practice fundamentals and advanced concepts of the
UNIX operating system. We would like to thank our superiors from
industry who have shown confidence in us and given the challenging task
of UNIX server administration.
We would like to thank our colleagues, reviewers, editors and publishers for
adding value to the contents. We’d like to thank our students and scholars
because their enthusiasm always motivates us to give more.
Last but not the least we are very grateful to our family members who are
always supportive in all the work we do.

Preface
Having rich industrial experience of authors to work in UNIX operating
system. We feel very passionate about the subject and enjoy working and
teaching. While working, We consulted various books, journals and articles.
Hence, we are trying to consolidate all material and bring out a book,
which, we are sure will help the readers.
The book is useful for Engineering students and Master’s degree students
for their academic preparations as well as competitive exams. In each
chapter a problem-solving approach has been followed. More emphasis has
been given to develop self-learning and greater thinking skills to understand
the concepts rather than following textual content.
The book fulfills the beginner’s requirements to clear Multi-user OS
concepts with gradual lead to the high-level concepts and programming, so
that it can be used as text book at the university level as well it can be used
to apply the high-level concepts further. The book contains numerous
debugged programming examples to increase understanding of the subject.
Chapter 1 discusses the evolution of the UNIX operating system since its
beginning and its continuing significance as technology and operating
system. The chapter discusses UNIX system architecture, programming
environment and it gives a structured overview of all system resources and
their management. The chapter is organized in such a way that all major
entities and their function should be clear at a glance to enhance further
understanding of the topic when it is covered in details in other sections of
the book.
Chapter 2 discusses the most important function of the UNIX operating
system responsible for all activities in the file, the chapter covers UNIX file
system, Kernel Data structures to perform File I/O, Basic File permissions,
Library functions and UNIX system calls for File input/output.
Chapter 3 will cover more comprehensive and detailed functions required
for process management like process status, process control block, process
control and further also discusses about the accessing of user information.

Chapter 4 will cover Inter process communication which is a method
through which processes share data and information with each other. Inter-
process communication is required to synchronize action between
cooperating processes for uninterrupted sharing of system resources. This
chapter entails the IPC options available in UNIX operating system. The
chapter also discusses the methods of processes synchronization in details.
Chapter 5 Socket programming is a technique which allows two network
nodes to communicate with each other. Socket is used as an interface to
send. Receive messages between networking processes. The chapter
discusses socket data structure, system call for socket communication and
different types of I/O models. Naming and address conversion system calls
are also discussed in this chapter.
Chapter 6 Memory Management is considered as one of the important
resources i.e. memory of the system. This chapter discusses briefly about
the types of memory. Different types of memory management techniques
implemented in the UNIX operating system and functions used to allocate
and de-allocate memory to the program for its efficient use.
Chapter 7 explains, Shell a command-line interface to the Unix system.
Shell provides an environment to execute commands and programs. The
chapter provides comprehensive concepts of shell including its type, modes
of execution, functions of shells and command execution.
Chapter 8 is to explain about the working of the shell which is both an
interactive command language and a scripting language, and is used by the
operating system to control the execution of the system using shell scripts.
Shell scripts are computer programs to execute a series of shell commands
to perform a system task. The chapter all constructs to write a shell script
along with examples.

Coloured Images
Please follow the link to download the

Coloured Images of the book:

https://rebrand.ly/e97caf
We have code bundles from our rich catalogue of books and videos
available at https://github.com/bpbpublications. Check them out!

Errata
We take immense pride in our work at BPB Publications and follow best
practices to ensure the accuracy of our content to provide with an indulging
reading experience to our subscribers. Our readers are our mirrors, and we
use their inputs to reflect and improve upon human errors, if any, that may
have occurred during the publishing processes involved. To let us maintain
the quality and help us reach out to any readers who might be having
difficulties due to any unforeseen errors, please write to us at :
errata@bpbonline.com
Your support, suggestions and feedbacks are highly appreciated by the BPB
Publications’ Family.

Did you know that BPB offers eBook versions of every book
published, with PDF and ePub files available? You can upgrade to
the eBook version at www.bpbonline.com and as a print book
customer, you are entitled to a discount on the eBook copy. Get in
touch with us at: business@bpbonline.com for more details.
At www.bpbonline.com, you can also read a collection of free
technical articles, sign up for a range of free newsletters, and receive

https://rebrand.ly/e97caf
https://github.com/bpbpublications
mailto:errata@bpbonline.com
http://www.bpbonline.com/
mailto:business@bpbonline.com
http://www.bpbonline.com/

exclusive discounts and offers on BPB books and eBooks.

Piracy
If you come across any illegal copies of our works in any form on the
internet, we would be grateful if you would provide us with the
location address or website name. Please contact us at
business@bpbonline.com with a link to the material.

If you are interested in becoming an
author

If there is a topic that you have expertise in, and you are interested in
either writing or contributing to a book, please visit
www.bpbonline.com. We have worked with thousands of developers
and tech professionals, just like you, to help them share their insights
with the global tech community. You can make a general application,
apply for a specific hot topic that we are recruiting an author for, or
submit your own idea.

Reviews
Please leave a review. Once you have read and used this book, why
not leave a review on the site that you purchased it from? Potential
readers can then see and use your unbiased opinion to make purchase
decisions. We at BPB can understand what you think about our
products, and our authors can see your feedback on their book.
Thank you!
For more information about BPB, please visit www.bpbonline.com.

mailto:business@bpbonline.com
http://www.bpbonline.com/
http://www.bpbonline.com/

Table of Contents
1. Fundamental Concepts of UNIX Operating System

Structure
Objectives
History of UNIX
Salient features of UNIX

Portability
Multi-tasking
Multi-user
Device independence
Modularity
Networking
Tools and utilities
Security

The UNIX system architecture
UNIX programming environment

Personal environment
Time-sharing environment
Client-server environment

UNIX process
Process attributes
Process states
Modes of execution of a process
Process context
Process relationship
init process in 4.3 BSD
init process in UNIX system V

Files and directories
File
Pathname
Types of files
UNIX file name convention
File names and meta characters

UNIX file system

Important UNIX directories
Conclusion
Key terms
Test your skills

Answers
Review exercise

2. File Management
Structure
Objectives
File input/output

Kernel data structures for file input/output
System call for UNIX file I/O
BASIC file permission
Real and effective user-IDs and group-IDs
Mounting and unmounting a file system

Directory related system calls
The mkdir system call
The rmdir system call
The chdir() system call

Standard I/O library in UNIX
Stream and FILE object
I/O buffering
Stream buffering operations

Standard data files
/etc/passwd file
/etc/group file
/etc/shadow file

Conclusion
Review Exercise

3. Process Management
Introduction
Structure
Objectives
UNIX process

Process IDs

Executing process in UNIX environment
Modes of execution of a process

Process termination
Normal termination
Abnormal process termination

Command-line arguments and environment variables
Memory layout of a UNIX process
Setting branch into another function
Process states
Process control block
Process control

Process creation
Awaiting process termination
Executing another program

Accessing user information
User details
Group details
Show information of all users logged in

Process groups
Sessions
Signals

Sending a signal to processes
Signal handling

Thread
Conclusion
Review Exercise

4. Inter-Process Communication
Introduction
Structure
Objective
Introduction to IPC

Means of interprocess communication
Pipes and FiFOs
One end closed pipe
The popen() I/O library function
The pclose() I/O function

FIFOs
Server process
Client process
Message queues
Destroying a message queue
Controlling message queue

Shared memory
Creating shared memory
Controlling a shared memory segment
Attaching and detaching a shared memory segment

Process synchronization
Semaphores
Semaphore operations
Semaphore set
Creating semaphore
Controlling semaphore
Semaphore operations semop()
Destroying a semaphore

Conclusion
Review Exercise

5. Socket Programming
Introduction
Structure
Objective
Socket
Types of sockets
Socket data structure
System calls for socket communication

Creating a socket (server and client)
Binding socket to an address (server)
Listening incoming connection
Initiating connection
Accepting the connection from the incoming queue
Sending data through socket (connection-oriented)
Receiving message through socket (connection-oriented)
Receiving message through socket (connectionless)

Closing socket
I/O models

Blocking I/O model
Non-blocking I/O model
I/O multiplexing model
Signal-driven I/O model
Asynchronous I/O model

Name and address conversion
Resource records
The gethostbyname() function
The hostent structure
The gethostbyaddress() function
The getservbyname() and getservbyport() functions

Conclusion
Review Exercise

6. Memory Management
Structure
Objective
Memory management

Use of operating system memory
Memory contents of a running process in UNIX
Swapping
Demand paging

Memory management functions
The malloc() function
The free() function
The calloc() function
The realloc() function
The alloca() function
Setting branch to another function

Conclusion
Multiple choice questions

Answers
Questions

7. UNIX Shell and Custom Environment

Structure
Objectives
Introduction to shell
Execution modes of UNIX shell

Interactive mode
Programming mode
UNIX session customization mode

Shell interpretation cycle
Functions of UNIX shell

Program execution
Input/output redirection
Command pipelining
Environment customization
Shell programming language

Types of shells
The Bourne shell family
The C shell family
Summary of features

Meta character and wild cards
Command standard input/output
Redirection

Output redirection
Safe I/O redirection with noclobber
Input redirection
Redirecting error

Command grouping
Command pipelining
The tee command
UNIX environment variables

PATH variable
HOME variable
Prompt string 1 (PS1) variable
Prompt string 2 (PS2) variable
MAIL variable
CDPATH variable
MAILCHECK variable
MAILPATH variable

User’s profile
Conclusion
Test your skills

Answers
Review Exercises
Lab practice

8. Shell Programming Using Bourne Shell
Structure
Objective
Introduction to shell programming
Writing shell scripts
Variables
Comment
Quoting

Single quotes
Double quotes
The backslash

Command substitution
Special shell variables
The shift command
The set command
Interactive input
Subshell
Exporting variables
Test operator for comparisons
Logical operators with test

The negation operator (!)
The logical AND operator
The logical OR operator

Control commands
Conditional if
Conditional case
The while command
The until command
The for command
The break command

The continue command
Special string operations
Parameter substitution
Functions

Passing arguments to function
Returning from function

Trapping signals
Arrays
Conclusion
Review Exercise

Index

CHAPTER 1
Fundamental Concepts of UNIX

Operating System
UNIX is a powerful operating system, first developed in Bell Labs and has
been under development ever since. It is very popular among scientific,
engineering, and academic communities because of its stability, multi-user,
and multi-tasking environment for servers, desktops, and laptops. The
system is divided into two parts consisting of programs and services that
have made the UNIX system environment so popular. The second part
consists of the operating system, which supports these programs and
services. The two entities files and processes are the main control concepts
in the UNIX system model. This chapter discusses the architecture and
overview of these control entities of the operating system.

Structure
We will cover the following topics in this chapter:

History of UNIX
Salient features of UNIX
Architecture of UNIX operating system
Unix programming environment
Unix process
Handling files and process control entities.
Unix file system

Objectives
After going through this chapter, you will be able to:

Understand salient features of the UNIX operating system to make it a
popular OS.
Get to know about the architecture and functioning of each layer.
Learn about UNIX programming environments.
Understand fundamental concepts of files and processes.

History of UNIX
Bell Laboratories, jointly with MIT and General Electric, developed a new
operating system Multics (Multiplexed Instruction Computing Service), in
1965. The main features included in the operating system were multi-user,
multi-processor, and multi-level (hierarchical) file systems, among its many
forward-looking features.
In the year 1969, a few programmers, Ken Thompson, Dennis Ritchie, and
others working in Multics, designed and implemented the first version of
the UNIX file system on a PDP-7. After including a few more utilities, it
was given the name UNIX by Brian Kernighan. UNIX was written mainly
in assembly language.
In the year 1971, the system was implemented on PDP-11 with 16K bytes
of memory, including 8K bytes for user programs and a 512K byte disk. It
was designed with the following features due to which it caught the interest
of researchers:

Programmers environment.
Simple user interface.
Simple utilities that can be combined to perform powerful functions.
Hierarchical file system.
Simple interface to devices consistent with file format.
Multi-user and multi-process system.
Architecture is independent and transparent to the user.

In the year 1973, it was decided to re-write the UNIX in the C language
developed by Dennis Ritchie. This decision made it easy to port the UNIX
to new machines.

In the year 1974, it finally got recognition from the academic community
when Thompson and Ritchie published a paper in the Communications of
the ACM describing the new UNIX OS.
In the year 1980, Berkeley released the BSD 4.1 (Berkeley Software
Development) version of UNIX.
In the year 1988, AT&T and Sun Microsystems jointly developed System V
Release 4 (SVR4).
In the year 1993, Novell bought UNIX from AT&T.

Salient features of UNIX
UNIX is a very popular operating system due to its special and useful
features, and these are discussed as follows.

Portability
UNIX is considered a portable operating system as a large portion of it is
written in the C language, and only a very small portion of it is written in
assembly language. Because the C program can be easily moved from one
hardware environment to another, provided a standard Compiler is
available, this makes the UNIX code run on different hardware. All this
only requires a standard C compiler.
The application program interface allows many different types of
applications to be easily implemented under UNIX without writing
assembly language. These applications are relatively portable across
multiple vendor hardware platforms.

Multi-tasking
This is managed by dividing the CPU time intelligently between all jobs.
Each job gets a time slot depending on its priority. A user can print a file
and, at the same time, execute a C program. Users do not have to wait for
an application to end before starting another one. A huge file can be sorted
as a background job while working on a foreground job.

Multi-user

The UNIX environment design allows multiple users to work concurrently,
and hence, they can share hardware and software resources of hard disk,
CPU, memory, printer, and file by working on a separate terminal. A
terminal is a keyboard and monitor, which is connected to the main
computer called the host machine, server, or console. In UNIX, every user
gets an equal chance to share resources while preventing the user from
locking other’s resources.

Device independence
In UNIX, input/output devices are treated like ordinary files. Input and
output from the files and devices are handled using a design feature called
indirection (<, >. <<, >>) without going into detail specifications of
devices. Input to a program can come from any file or device, and output
from a program can go to any file or device.

Modularity
UNIX kernel consists of modules, and system administrators can customize
it to include only those modules that are normally required. If a new feature
is required later, the corresponding module can be added to the Kernel, and
it can be reconfigured or rebuilt.

Networking
Originally networking was not incorporated into the UNIX system.
Networking was added after the separation of UNIX between BSD UNIX
and At&T UNIX.
Networking allows a user to log on to the remote system. Once access is
gained to a remote system, users can use system resources using UNIX
commands according to permission granted to him/her. A standard
communication protocol known as TCP/IP is used to access other system
resources. UNIX also supports a network file system, which allows users to
access files on another network too.

Tools and utilities

Productivity of the system is increased with available software utilities and
tools. UNIX is very rich in tools and comes with hundreds of programs or
tools. These tools are either integral utilities that are absolutely necessary
for the operation of the computer, such as command interpreter, and tools
that are not necessary for the operation of the UNIX but provide the user
with additional capabilities such as email, typesetting capabilities such as
troff, nroff, awk, sed, and so on.

Security
UNIX has several levels of security:

Assigning login name and password to individual users provides the
first level of security.
The second level is at a file level, where each file has read, write and
execute permission associated with the owner of the file, group
members, and others, which decide who can read, write, or execute a
file.
The third type of security is that files can be encrypted so that the file
is in an unreadable format, and only you can decrypt it to read it.

The UNIX system architecture
The UNIX system has become quite popular since its inception in 1969,
running on machines of varying processing capacities from microprocess to
the mainframe and providing a common execution environment across
them. The operating system interacts directly with the hardware, providing
common services to the programs and insulating them from the hardware.
UNIX operating system is made up of layers around the hardware layer, as
shown in figure 1.1:

Figure 1.1: UNIX system architecture

It contains:

Hardware layer.
Kernel layer.
Shell layer.
Windowing layer as X—interacts with the shell but can interact with
applications and commands.
Utilities and application programs or tools layer.

Viewing the system as set of layers, the operating system is commonly
called the system kernel or just the Kernel. It emphasizes its isolation from
user programs because programs are independent of the underlying
hardware, and it is easy to move them between UNIX systems running on
different hardware. If the programs do not make an assumption about the
underlying hardware, programs such as the shell and editors shown in the
next layer interact with the Kernel by invoking a well-defined set of system
calls. The system calls to interact with the Kernel to do various operations
for calling the program and exchange data between the Kernel and the
program. Several programs known as commands are above this layer. Other
application programs can build on top of lower-level programs. Let us
discuss them in detail:

Hardware layer: Innermost layer that provides the services for the OS
is called the hardware layer. This includes the terminals, terminal
controllers, disks, tapes, memory, and various device controllers.
Kernel: This is the central part of the operating system, which interacts
directly with the hardware and provides the services to the user
programs. The Kernel is stored in a file called “UNIX”. There is only
one Kernel running on the system. User programs interact with the
Kernel through a set of standard system calls that are a part of the
Kernel and provide the following basic functions of the Kernel:

File system management: This includes management of the
UNIX file system that comprises files and directories. This
includes creating, opening, reading, writing, closing files, and
other file system-related operations and data transfer between the
file system and the hardware.
Memory management: This includes allocation of memory to
programs, sharing of memory spaces, or freeing memory. If the
system is low on free memory, the Kernel frees memory by
writing a program temporarily to secondary memory called a
swap device.
Process management: In UNIX, a process is a program in
execution. Process managing includes scheduling of various
processes to the CPU and execution of processes, including
creating, terminating, or suspension of a process. It also includes
inter-process communication.
Storage management: Allocation of secondary storage disks for
user data and management of free space.
Device management: This includes allowing controlled access to
peripheral devices such as terminals, tape drives, disk drives, and
network devices.

Shell: This is the part of the UNIX that is most visible to the user. It is
the command interpreter that interprets the commands entered by the
user and conveys them to the Kernel, which executes them. The shell
is a program running separately for each user working with UNIX.
The number of shells running in the system is equal to the number of
users working in the system at a time. There are different types of

shells, and the commonly used ones are the Bourne shell, C Shell,
Korn Shell, and so on:

Bourne shell created by Steve Bourne is most popular and
bundled with every UNIX system.
The C shell was popular among UNIX programmers and was
created by Bill Joy at Berkeley. The advantages of the C shell
over Bourne are as follows:

It allows the aliasing of commands; that is, we can rename
command with our alias so that we can use a short alias
name for a long command.
C shell has a command history feature in which previously
typed commands can be recalled.

The Korn Shell is a superset of the Bourne shell and is more
powerful. David Korn of AT and T Bell labs designed it.
Bourne Again Shell (Bash) from the Free Software Foundations
GNU project, based on shell.

Utilities and application programs: There are hundreds of utilities in
UNIX. A utility is a standard UNIX program to provide support to the
user. Most of the UNIX utilities are available as application programs:

File management (rm, cat, ls, rmdir, mkdir).
User management (passwd, chmod, chgrp).
Process management (kill, ps).
Printing (lp, troff, pr).
Program development tools such as sccs, make editors (vi and
ed), and compiler.
UNIX email utility.

Windowing layer: The GUI on UNIX is a separate layer that sits on
top of the core operating system. X window system is an underlying
graphical layer for all modern UNIX operating systems. The X
Window System just facilitates the system to accept input from
devices such as keyboard and mouse and to draw the graphical objects
on display. Drawing ad taking input from devices is the job of

software called a Window manager. There are many Window
managers available for X. Generally, the Window manager is
proprietary software and will only run on a particular type of UNIX.
Some of these are open and will run on any system that has X
installed.

The X Window system has some very unique and useful features. These
things are provided by the X itself and, as such, are common to all X
window managers and all UNIX/X11 systems.

UNIX programming environment
UNIX is a portable operating system basically designed for multi-user and
multi-tasking environments. It contains hundreds of simple, single-purpose
functions that can be combined virtually to do every processing task
imaginable. UNIX system is used in three different programming
environments.

Personal environment
Although UNIX was originally designed for multi-user environments, but
some users install it on their personal computers. This trend is accelerated
with the invention of LINUX, a free UNIX system. In 2001, Apple systems
incorporated UNIX as its Kernel.

Time-sharing environment
UNIX is a multi-user and multi-tasking system that runs in a time-sharing
environment to handle multiple tasks by a single processing unit. The
Kernel maintains a list of current tasks and allots a slot of time to each task,
then to the next, and so on. Normally, Kernel switches from one process to
the next so rapidly that each user has an impression that he has individual
attention.

Figure 1.2: Multi-user environment

Client-server environment
A client/server computing environment divides processing functions
between a server computer and a client computer. In the client/server
model, data processing load is shared between the client computer and more
powerful server computers. The server computer is dedicated to storing and
managing data and fulfills client requests. The server receives structured
requests from the client, processes the requested data, and sends the data
back to the client. His client computers take the user’s input from an
interface, process some information using its CPU, and present the result to
the user.

Note: In the single-user environment, a program may have multiple
instances because the process may be split into two processes by
default, sharing the same code.

UNIX process
A program in execution is a process. In UNIX, a process is a unit of work.
If n users are executing the same program, then there are n processes
executing in the system. A process executes by following a strict sequence
of instructions that is self-contained and does not jump to that of another
process. All the processes execute concurrently with the CPU switching
between the processes.
All the UNIX commands are programmed, and thus, contribute to the
process in the system when they are under execution.

Process attributes
Every process in UNIX is attributed to some properties (as shown in table
1.1), which affect the execution of the process.

Attribute Meaning

PID Process identification is a unique number

PPID Process ID of the Parent

UID User ID of the owner of the process

GID ID of the group to which the owner belongs to

EUID Effective User ID

EGID Effective Group ID

Priority The priority the process run at

Table 1.1: Process attributes

Process states
The lifetime of a process can be modeled by a set of states, and each
process can be in any of the states at one point in time. In UNIX, the
process may undergo a total of nine stages during its lifecycle, as shown in
figure 1.3:

Figure 1.3: UNIX process sates

The description of each process state is shown in table 1.2:

Process states Description

Executing (user mode) Running in user mode.

Executing (Kernel-mode) Running in kernel mode.

Ready in memory Ready to run as soon as kernel schedules it

Ready in swap device Process is ready to run but must be swapped in memory so that
Kernel can schedule it.

Sleeping in memory Unable to execute, waiting for an event to occur.

Sleeping in swap device Process is blocked and awaiting an event in swap device.

Preempted Process is returning from Kernel to user mode, but Kernel preempts
to schedule another process.

Created The newly created process is not yet ready to execute.

Zombie Process just completed but not yet left its resources.

Table 1.2: Process states

In UNIX, processes are executed in two different modes, user mode and
kernel mode (explained in the next section).

Ready to run in memory and preempted are essentially the two same states,
but the distinction is made to just emphasize how the process enters in the
preempted state. When the process executes system calls and interrupts the
handler (clock or I/), it is in kernel mode. When Kernel finishes its job, the
process moves from kernel mode to the user mode. However, Kernel can
preempt such jobs to execute other ready-to-run jobs that have higher
priorities.

Modes of execution of a process
There are two modes of execution of the system as seen by the hardware:

User mode: When the user process executes, it does so in the user
mode. In the user mode, processes can access their own instructions
and data but not kernel instructions and data or those of other
processes.
Kernel mode: When a user process executes a system call, the
execution mode of the process changes from user mode to kernel
mode; the Kernel executes the users’ request. Processes in kernel
mode can access both Kernel and user addresses.

A typical UNIX system consists of a collection of processes: operating
system processes executing system code and user processes executing user
code. System processes run in kernel mode to perform administrative and
housekeeping activities such as allocation of memory, system accounting,
and process scheduling. User processes run in user mode to execute
programs and utilities. User processes move into kernel mode if it invokes a
system call or when an interrupt or exception has occurred.
Note: UNIX is not suitable for real-time processing because preemption can
only occur when the process is about to move from kernel mode to user
mode. When the process is in Kernel mode, it cannot be preempted.

Process context
The process context of the process represents the current operating state of
the process. The context of a process includes its address space, stack space,
virtual address space, register set image, accounting information, associated

kernel data structures, and state information. In general, process context has
the following three components:

1. User-level context: User-level context contains the basic user’s
program generated after compiling the source file. The basic elements
of the program are categorized in text and data. The text holds a read-
only set of instructions for the program. The data area is the shared
memory area accessible by many processes. There is only one shared
memory area, but with the concept of virtual memory, each sharing
process may have a shared memory region in its address space. The
user stack area is used to store parameters that return values and
pointer to function calls.

2. Register context: Register level context stores process status
information in the processor’s registers when the process is not
executing.

3. System-level context: System-level context consists of information
required by the operating system to manage processes. System-level
context has static and dynamic parts. The static part contains an entry
for each process in the process table to store process control
information to be available to the Kernel at all times. The user (U)
area is another part of the static context, which contains additional
control information required by the Kernel when it is executing within
the context of the process. The third part of the static context is the
per-process region table to be used by a memory management system
to swap in and out processes from/to main memory. Finally dynamic
part of the system-level context is the Kernel stack.

Kernel stack is used for processes executing in kernel mode. Kernel stack
stores information required when an interrupt, or procedure call occurs.
Kernel stack is used by a process executing in Kernel mode. Kernel stack
stores information required when an interrupt, or procedure call occurs.
Table 1.3 shows the set of information available under different contexts of
the process currently executing in the system.

User-level context

Process text Executable machine instructions associated with the program.

Process data Data accessible by the program.

User stack Contains local variable, arguments, and pointers to functions
executing in user code.

Register context

Program counter Address of next instruction to be executed.

Stack pointer Point to the top of the kernel or user stack depending upon the
operation mode of process.

General-purpose registers Value of these registers depends on implementing hardware.

Processor status register Status of processor at the time of preemption.

System-level context

Process table entry Contains the state of the process.

Per process region table Mapping from virtual to physical addresses and access permission
on the process.

User (U) area Process control information is required for a context switch.

Kernel stack Stack frames for kernel procedures.

Table 1.3: Process contexts

Process relationship
Processes in UNIX have a parent–child relationship, shown in figure 1.4.
Each process has one parent and one or more children. The process ID 0 is
the scheduler process and is called swapper. Swapper is part of the Kernel
and is called the system process. The init process (Process id 1) is the
process dispatcher, which gives birth to the shell, and all processes initiated
by us are children of the shell, and so descendants of the init process. The
init is a normal user process and never dies. UNIX keeps track of all
processes in an internal data structure called a process table.
When the UNIX system is started for normal multi-user operation, then
Kernel invokes the program. etc/init. The init process has Process ID 1 and
runs under super-user privileges (User-ID 0). The operation of init depends
on different UNIX systems.

init process in 4.3 BSD
In 4.3 BSD, to startup the system init executes the shell script /etc/rc. The
file does some bookkeeping and then calls daemon processes. The init then

reads the /etc/ttys process to determine which terminal is activated in a
multi-user environment.

init process in UNIX system V
In system V, to startup the system init read /etc/initab file to put the system
in a different mode (single-user or multi-user) depending on the value of the
run level. For normal multi-user operation /etc.rc file is executed, which
starts various daemon processes.
Regardless of the UNIX system, init process invokes fork copies of itself to
activate terminals. Each child process executes the /etc/getty process to
set the terminal’s speed, display a greeting message, and waits for the user
to enter the login name. The Getty process executes /bin/login program to
check whether login exists in /etc/passwd file or not. If it finds the login
name in ./etc/passwd file, it prompts the user to enter a password. If
rejected, Getty gives three chances to enter your login and password.
The init, Getty, and login processes are executed with the user ID and
effective user ID of the super-user. All these processes run with the same
process ID because the process ID does not change during the exec system
call.

Figure 1.4: Process relationship

Login program
While logging in, the system login program sets the following things:

The current working directory as a login directory using chdir system
call.
The effective group ID and the effective user ID of the login process
in the order specified in the password file entry using setgid and
setuid system calls.
Executes the shell program as specified in the /etc/passwd file, or
/bin/sh if the shell is not specified in the passwd file.

The shell that is invoked by the login program is called login-shell and is
treated as the parent of all processes.

Shell process
The shell process normally waits for the user to enter the command. When
the user enters the command on the command line, the shell forks make a
copy of itself and wait for the child process to terminate. The child shell
process checks the PATH environment variable to search the command file.
Commands in UNIX are generally available in /bin directory.
When the command finishes, it calls an exit system call and exits with its
exit status, which terminates the child process and allows the wait to return
to the parent process.

Network login
In 4.3 BSD, to startup the system, init executes the shell script /etc/rc.
The file does some bookkeeping and then calls daemon processes. One of
the daemons that are started by the shell script is netd. Once the shell script
terminates, the parent process of inetd becomes init. This daemon can be
used by a server that uses either TCP or UDP. This daemon creates sockets
on behalf of a number of services and listens to all of them simultaneously.

Files and directories

The organization of the UNIX files is shown in the following figure:

Figure 1.5: UNIX directory structure

UNIX file system is a hierarchical tree structure of directories and files. The
tree grows or decays dynamically.
The file system tree starts with a single node root /; every non-leaf node is
a directory of files, and leaf nodes are directories, regular files, or special
device files.

File
To UNIX, everything is a file; this means in UNIX data, program files,
directories, devices, and links are considered as files. Each file has a name,
an owner, and access rights. Each file is assigned an inode number that is
unique. All attributes of files are stored in the filesystem in an inode entry.
An inode entry stores everything except the filename. The names are stored
in directories and associated with inode through pointers.
Each inode generally contains the following:

The location of the file’s contents on the disk.
Type of file.
Size of the file in bytes.
The time when file’s inode was last modified.
The time when file’s contents were last modified.
The time when the file was last accessed for reading, writing, and for
other operations.

The reference count, different number of names the file has.
The file’s owner’s ID.
The file’s group ID.
File’s access permission bits.

In UNIX, every file has a nonnegative number associated with it called the
file descriptor. The Kernel uses a file descriptor to identify a file when any
program accesses it. Every file or directory has an associated filename in
the directory entry. Slash and null characters cannot appear in the filename.
Some UNIX systems restrict the filename to 14 characters, and most other
systems allow 256 characters in the filename.
Every directory and file has a corresponding entry in its parent directory.
Directory entry specifies an attribute of the file, such as type of file, size of
the file, owner of the file, and permission on the file. The root directory is
the first directory of the directory tree, and it contains its own information.
Every directory also contains information on two special directory entries,
the current directory and the parent of the current directory.
Note: [Reserved Inode Number]:
0: Deleted files / directories
1: File system Dependent, (file system creation time / bad
block count etc)
2: Refers to the root directory of the file system.

Pathname
Every file or directory is identified by its pathname; the pathname of the file
or directory is either absolute or relative to a location.
The absolute pathname starts with the root (/) and follows the branches of
the directory tree, each separated by /, until the required file is found, for
example, /usr/bin.
A relative pathname specifies the path relative to another, usually the
current working directory. So if the current working directory is /usr/bin
then the path of the file in this current directory is specified as: ../date.
This indicates that is control should move one directory level up, then come
down through the date.

Types of files
UNIX considers everything as a file. There are seven types of files in
UNIX, as shown in the following figure:

Figure 1.6: Types of UNIX files

The UNIX files can be described as follows:

Regular files: These are a sequence of unformatted bytes. A regular
file may contain ASCII or binary characters or a combination of both.
A text file is also considered as a regular file. ALL shell scripts and
programs are written in high-level languages, and even object codes
are also considered as regular files in UNIX. There’s no header, trailer,
label information, or EOF character as part of the file.
Directory files: These are a sequence of formatted bytes and contain
information about other files and subdirectories. A directory contains

information on the name of the file or directory in it and its inode
(index node) number.

For directory files, the output of the ls –l command shows the first
character as d. To change into a directory or list files in a directory, we need
read permission for that directory. To create a file or subdirectory in that
directory, we need write permission.

Special files: This represents physical devices such as keyboards,
tapes, disks, and printers. They are characters, block files, sockets, and
so on. The operating system uses these files to communicate with the
hardware.

We can use the same commands for these special files that we use for
regular files, but the operating system takes care of handling the devices.
The physical devices are represented /dev directory.

PIPES: A type of file used for inter-process communication between
processes. Their implementation allows processes to communicate
even though they do not know what processes are on the other end of
the pipe. Pipes are basically of two types: named pipes and unnamed
pipes.
Sockets: UNIX sockets are used to establish communication between
two processes residing same or different machines. Just like other
types of files, sockets are also associated with a file descriptor.
Symbolic link: A symbolic link is a special type of file that points to
an existing file. It is also call soft link. The file contents can be either
accessed through the file name or through the link name.
FIFO: FIFO that is First In First Out is a file, which that has a
directory entry and is accessed by pathname. It works as a pipe
between two processes.

UNIX file name convention
Every file or directory has an associated filename in the directory entry.
Some UNIX systems restrict the filename to 14 characters, and most other
systems allow 256 characters in the filename. In general, UNIX follows
some naming conventions for files:

File names are case-sensitive.
Almost all characters on the keyboard are allowed in the filename
except.
| ; , ! @ # $ () <> / \ “ ‘ `{} [] + = & ^ <space> <tab>

Character delimiters are used to make file name easy to read.
In UNIX file name does not specify its functionality.

File names and meta characters
The shell expands the filename if it contains *, ?, and [characters. The * in
the file name can be replaced with 0 or more permissible characters, the ?
can be replaced with any single character in the file name, and square
brackets specify a range of particular combinations of characters. The range
of characters is specified using—in the square brackets. If the first character
inside the square bracket in ! sign, the complement of the range of other
characters is used. Table 1.4 shows different patterns and meanings to refer
to a file or set of files.

Pattern Expansion

* All files are in the current directory.

? All files with one character in the file name.

[a-h] One character file name consisting a to d.

[abcdefgh] Same as above.

[a-ef-h] Same as above.

*[0-9] File where the name ends with a number.

?[0-9] Two character file name that ends with a number.

[a-zA-Z0-9] File names that contain a single letter or number.

Table 1.4: Pattern used for file naming

Note: In UNIX, the dot is not a special character. The file name may
or may not contain a dot. Normally file names where the name starts
with a dot are not listed using the ls command.

UNIX file system
Each disk drive is divided into various partitions. Each partition may
contain a file system. A file system consists of a sequence of logical blocks,
each consisting of 512, 1,024, or any other multiple of 512 bytes. The size
of the logical block within the filesystem is the same, but it can vary across
the different file systems.
The file system has the following structure, which is described as follows:

Boot block Super block Inode list Data blocks
The boot block is the first block and contains the bootstrapping code
required to boot the system. Although only one boot block is needed to boot
the system, every file system has an empty boot block.
The superblock describes the state of the system and contains information
including the following:

Size of the file system
Number of free blocks
List of available free blocks
Index of next free block
Size of inode list
Number of free inodes
List of free inode
Flag to check whether the superblock has been modified

The inode list is a list of the inode. It contains entries for every index node
of a file. Inode contains:

File type
Permissions
Number of hard links
Owner user-id
Group id
Size of the file
Time of last access

Time of last modification and
location of data blocks

Finally, data blocks start at the end of the inode list and contain file data and
administrative data. An allocated data block belongs to only one file
system.

Important UNIX directories
Table 1.5 shows important UNIX directories related to administrating the
system resources, including users, files, processes, and devices.

Directory Description

/ Root-kernel.

/etc Files are required to boot the system, communicate, and scripts to
control the boot process.

/etc/config System configuration option files.

/etc/cron.d Cron access files and FIFO.

/etc/rc#.d Operations performed when entering run level # (S,0,1,2,3).

/usr Directories of system files.

/usr/bin System binary files.

/usr/etc Further system communication and administration programs.

/usr/lib Libraries of object files, send mail.

/var Directories for administrative programs and logs.

/var/adm System log and account files.

/var/log System log files.

/var/spool/mail Mail spool directory.

/var/mail Mail spool directory.

/var/spool Directories for cron, logs, and so on.

/dev Devices directory.

/home
/usr/users

User directories.

/usr/local Locally installed files.

/tmp Contains temporary files created in the system.

Table 1.5: Important UNIX directories

Conclusion
The operating system is a special type of system software that manages all
operating resources to facilitate users to perform their work. UNIX is a
multi-user, multi-tasking portable operating system to facilitate text
processing, programming communication, and many other tasks. UNIX
operating system works in various different environments. The major
components of the UNIX system include the Kernel, the shell, and the
Utilities and application program. Among the functionality of the Kernel,
the most important is process and file management. A process is an instance
of a program that can open many files. Each process in the system is
identified by different identifiers. Each process undergoes nine states during
its life cycle. The file management and various file related functions will be
discussed in next chapter. It includes the I/O functions, various system calls
and library functions for handling file operations and many more related
topics.

Key terms
Kernel: Part of the operating system that resides in memory all time
and performs most essential tasks.
Multiprocessing: A technique that allows a single processor to
process multiple programs residing simultaneously in the memory.
Parent process: A job that controls one or many child processes
which it created.
Child process: A process that is created and controlled by the parent
process.
File: Collection of data. File in UNIX typically includes ordinary file,
directory, and device files.
File attributes: Characteristics that describe the file.
init: First non-kernel process, thus, parent of all processes.
Process: Program under execution.

Process ID: Numeric identifier of process.
Directory: Type of file that serves as a container for other files and
directories.

Test your skills
1. Which of the following information is stored in the inode

structure?

a. The file size
b. The name of the owner of the file
c. The access permission for the file
d. All dates since the file was last modified or accessed
e. The number of symbolic links

2. Absolute path begins with the path from the root.

a. TRUE
b. FALSE

3. Which of the following files in the current directory are identified
by the regular expression a?b*.

a. afile
b. aab
c. abb
d. abc
e. axbb
f. abxy

4. Works as a command interpreter.

a. Hardware
b. Kernel
c. Shell
d. CPU

5. The process which terminates before the parent process exits is
called as.

a. Zombie
b. Orphan
c. Child
d. None of the other options listed for this question

6. Context switch means

a. Kernel switches from executing one process to another
b. Process switches from kernel mode to user mode
c. Process switches from user mode to kernel mode
d. None of the other options listed for this question

Answers
1. e
2. a
3. b-c-e
4. c
5. b
6. a

Review exercise
1. What happens if the file mode creation mask is set to 777?
2. Does UNIX have a fundamental limitation on the depth of a directory

tree?
3. Explain absolute and relative pathnames with examples.
4. What do multiprogramming, multi-user, and multi-tasking means?
5. With a neat diagram explain the relationship between the Kernel and

the shell of Unix.
6. Explain the wild cards * and ?

7. Where is the password stored ?
8. Explain standard UNIX file hierarchy
9. What do UID and GID signify?

A

CHAPTER 2
File Management

file is a collection of related information that is recorded on
secondary storage. Or file is a collection of logically related entities.

From user’s perspective, a file is the smallest unit of secondary storage to
provide input and receive output from the computer program. In storage, a
media file is just a sequence of bits, bytes, or records whose logical
meaning is defined by the file owner.
The structure and logical rules to manage files in the data storage are called
a file system. To understand the internal operation of a filesystem, it is
required to know how files and directories are presented externally to the
user and how they are represented internally in the system. A storage
medium may have many file systems existing in different partitions. This
chapter discusses the structure of the UNIX file system and file system-
related system calls to manipulate files.

Structure
We will cover the following topics in this chapter:

System calls and library functions for I/O
Kernel data structures used to handle all opened files
File access permission
Standard files for maintain user passwords and aging information
Structure and operations on the UNIX file system

Objectives
After going through this chapter, you will be able to:

Know how the UNIX operating system organizes files in secondary
storage

Understand the file-related activities such as naming, retrieval, and
sharing
Learn how the file protection policies are implemented in UNIX
operating system

File input/output
File input/output (I/O) is an important function of any operating system,
and file input is performed to provide information to the executing process
to manipulate existing information. File output is performed to permanently
store either first-time created information or updated information through a
UNIX process. UNIX maintains some Kernel data structures to manage
FILE I/O. These data structures store Metadata required to access and
update all files opened in the system. UNIX FILE I/O is performed using
either C standard library functions or UNIX system call. In this section, we
are discussing various system calls to perform UNIX FILE I/O.

Kernel data structures for file input/output
The following three data structures are used to manage opened files in the
UNIX file system:

The Kernel file table: The file table contains an entry for each file
opened by any process. It is a global data structure that keeps track of
bytes offset during read and write operations; each entry in this file
contains flags to indicate read/write access, blocking/no blocking, and
so on, and an entry contains a pointer to the v-node table entry for the
file. The Kernel file table contains a reference count, which shows
how many times the file is opened.
Per-process file descriptor table: It monitors all opened files for a
process. Each entry contains a pointer to the Kernel file table. A file
descriptor used in read, write, and other system calls is an index in this
table. The file descriptor is an unsigned positive number with negative
values being reserved to indicate “no value”, or error conditions.
Values 0, 1, and 2 are reserved for “standard input”, “standard output”,
and standard error, respectively.

The in-core table: The in-core table holds an in-memory copy of the
i-node of each open file.

Figure 2.1: Kernel data structures for files

Whenever a file is opened in any process, a corresponding entry is made in
the file table, the file’s I-node table entry is copied to v-node table, and an
entry is made in the per-process file descriptor table. When a process closes
a file, the Kernel deletes the entry, which refers to the file from the per-
process file table and decrements the reference count in the Kernel file
table. If the reference count becomes zero, the Kernel file table entry is
deleted, and the file is closed.
When a process is forked, a copy of its parent’s per-process file table is
created. The parent and child share the same file pointer.
On the other hand, the same file can be opened more than once by the same
process or different processes. In that case, each open results in a different
entry in the global file table. Each of these has its own current position
pointer. Closing one has no effect on the others.

System call for UNIX file I/O
UNIX provides system calls for basic file I/O, such as for opening, creating,
closing, and reading writing operations.
Kernel refers to all the opened files by file descriptors. The file descriptor is
a unique integer number assigned to all opened files in the operating
system. When an existing file is opened, or a new file is created, Kernel
returns a file descriptor to the process. This file descriptor is further used
for other file operations like read and write.

The open function

The open() is used to open an existing file for reading and writing. If the
file does not already exist, it also creates a new file for further file
operations.
Prototype:
The syntax for the open function is as follows:
int open (char*pathname, int oflag, int mode);

If the file is opened successfully, the open function returns a file descriptor
for the file. (If not, the return value is –1.) All of the other system calls use
a file descriptor (rather than its name) to refer to a file.
The first argument is the name of the file to be opened. oflag contains the
following 1-bit flags to indicate how the file is to be opened:

O_RDONLY /* open for reading only. */
O_WRONLY /* open for writing only. */
O_RDWR /* open for reading and writing. */
O_APPEND /* open in append mode (initializes the position pointer
to the end of the file instead of the beginning). */
O_CREAT . /* create the file if it does not exist. */
O_TRUNC /* if the file exists and is opened for either writing or
read/write, truncate its length to 0. */

The third argument is used only if a file is created. It is used to set the
permission bits for the new file.

Example
#include <stdio.h>

#include <sys/types.h>

#include <sys/stat.h>

Static char msg = “greeting message”;

int main()

{

int fd;

char buffer[80];

fd = open(“dfile.dat”, O_RDWR | O_CREAT | O_EXCL |

S_IREAD S_IWRITE);

if (fd != -1)

{

printf(“datafile opened\n”);

write(fd,msg, sizeof(msg))

close(fd);

}

else

printf(“data file already exists”);

exit(0);

}

In the given example, a file is created to write a greeting message. If the file
already exists, a message or data file that already exists will be printed.

The close function
The process closes a file when it is no longer required. Closeting file
releases all locks on the file that the process may have. Kernel decreases the
reference count of the file in the file table. If the reference count reaches to
0, then Kernel frees the file table entry and releases the in-core memory
allocated at the time of opening the file.
When a process terminates, the Kernel automatically terminates all the
opened files in that process.
Prototype:
The syntax for close function is as follows:
int close(int fd);

Where fd is the file descriptor for the file. It returns 0 on success and –1 on
error.

The creat function
The creat() system call creates a new empty file in the file system. It
creates a file table entry. If a file with the same name already exists, Kernel
releases all the data blocks and sets file size equal to 0 subject to the
suitable access permission. Kernel assigns a new I-node to a newly created
file and creates an entry in the parent directory.

Prototype
int creat(char*pathname, int mode);

Equivalent to:
open(pathname, O_RDWR | O_CREAT | O_TRUNC, mode);

The creat function opens the newly created file in write mode only. It sets
and returns the first unused file descriptor. On failure, it returns -1.

Example:
#include <stdio.h>

#include <sys/types.h>

#include <sys/stat.h>

int main()

{

int fd;

fd = creat(“datafile.dat”, S_IREAD | S_IWRITE);

if(fd != -1)

{

printf(“datafile.dat opened for read/write access\n”);

}

else

printf(“Error in opening datafile.dat\n”);

close(fd);

exit(0);

}

In the given example, a file is created for reading and writing access both.
The newly created file is always opened in WRITE mode. If the error
occurs, the program prints the message Error in opening datafile.dat.

The read function
Read system call is used to read data from an opened file. If the read is
successful, the number of bytes read is written. If the end of the file is
encountered, 0 is written. To begin reading from a file, Kernel sets various
I/O parameters such as I/O mode, a flag to indicate that the I/O will go to
user address space, a count field to indicate the number of bytes to read, the
target address of the user data buffer, and offset field to indicate the byte
offset into the file where the I/O should begin.

Prototype

ssize_t read(int fd, void *buff, size_t nbytes);

Example
#include <cntl.h> /* defines options flags */

#include <;sys/types.h> /* defines types used by

sys/stat.h */

#include <sys/stat.h> /* defines S_IREAD &

S_IWRITE */

static char message[] = “File programming in C”;

int main()

{

int fd;

char buffer[80];

fd = open(“datafile.dat”,O_RDWR | O_CREAT | O_EXCL, S_IREAD

| S_IWRITE);

if (fd != -1)

{

printf(“datafile.dat opened for read/write access\n”);

write(fd, message, sizeof(message));

lseek(fd, 0L, 0); /* go back to the beginning of the

file */

if (read(fd, buffer, sizeof(message)) == sizeof(message))

printf(“ Contents of the datafile are %s\n”, buffer);

else

printf(“Error in reading datafile\n”);

close (fd);

}

else

printf(“\n File already exists\n”);

exit(0);

}

In the given example, it first creates a file both for reading and writing. If
the file is already existing with the same name, it prints a message File
already exists. Once the file is created, the message File programming
in C is written into it. In the next step, the file pointer is set to the
beginning of the file, and the read operation is performed. It checks if the

contents read are the same as the message; it prints the message; otherwise,
an error message is printed.

The write function
The write function writes data from the buffer to the file. The number of
bytes to be written is given as the third argument to the system call. On
success number of bytes written is returned. On error -1 is written.
If the value of the third argument is zero and the file descriptor refers to a
regular file, 0 may be returned, or an error could be detected. For a special
file, the results are not portable.

Prototype:
int write(int fd, void*buffer, int nbytes);

Where:

First argument: fd represents file descriptor.
Second argument: Temporary buffer contains data to write on the file.
Third argument: Size of data in bytes.

The lseek function
The lseek() function sets the current position of the file pointer. If
successful, lseek returns the new position; else, it returns -1.
Prototype
int lseek(int fd, int offset, int whence);

Where fd is the file descriptor of the file in which the file pointer will be
set; offset is the number of bytes by which the pointer will be adjusted;
hence, maybe one of the following:

SEEK_SET offset is from the beginning of the file.
SEEK_CUR offset is from the current position.
SEEK_END offset if from the end of the file.
Whence maybe 0, 1, or 2, respectively, for SEEK_SET, SEEK_CUR, and
SEEK_END.

Example

#include <stdio.h>

#include <fcntl.h>

int main()

{

int fd;

long position;

fd = open(“datafile.dat”, O_RDONLY);

if (fd != -1)

{

position = lseek(fd, 0L, 2); /* seek 0 bytes from end-

of-file */

if (position != -1)

printf(“The length of datafile.dat is %ld bytes.\n”,

position);

else

perror(“lseek error”);

}

else

printf(“can’t open datafile \n”);

close(fd);

}

In the given example, a file is opened in read-only mode. On error, a
message can’t open datafile will be printed. Once the file is opened
successfully, the file pointer is set to the End of the File.

The link() function
The link() system call links an existing file to a new one. Linking a file in
the UNIX system creates a new directory entry (hard link) that contains the
linked filename and the I-node number of the existing file. All linked files
refer to the same data. Changing content in one file is reflected in all links.
In a simple way, we can say that it makes a new name for a file.
Prototype
int link(char*original_name, char * new_name)

On success, it returns 0, and on error -1 is returned. The link() system call
fails if any of the following conditions exist:

Original_name does not exist.
New_name does exist.
Original_name is a directory, and the user is not a superuser.
Try to create a link across the file system.

Example
#include <stdio.h>

int main()

{

if ((link(“file.old”, “file.new”)) == -1)

{

perror(“ERROR“);

exit(1);

}

exit(0);

}

In the given example, a new name file. New is created for a file. If an error
occurs, it prints ERROR.

The unlink system call
The unlink system call removes a hard link and corresponding directory
entry and decreases the link count of the file. If the link count reaches 0, the
contents of the file are also deleted. If the file is opened by any process, the
contents of the file are not deleted till it is closed. When the process closes
the file, the Kernel removes the contents of the file.

Prototype
int unlink(const char *pathname)

Where pathname is the name of the linked file which is to be removed. For
unlink() to be successful, the directory containing the corresponding
directory entry must have write and execute permission. On success, 0 is
returned, and on error, -1 is returned.

Example
#include <stdio.h>

int main()

{

if ((unlink(“file.old”)) == -1)

{

perror(“ERROR “);

exit(1);

}

exit(0);

}

In the given example, on successful unlinking, the directory entry of the file
will be removed, and on error, an ERROR message will be printed.

The dup() system call
The dup() system call duplicates the file descriptor for a file, which points
to the same file table entry as the old file descriptor does. The dup() system
call generates the lowest available file descriptor. Both the file descriptors
share the same file offset and status flags (read, write, and append).

Prototype
int dup(int fd)

This system call returns a new file descriptor for the file. Both file
descriptors can be interchangeably used to edit the file.

Example
#include <stdio.h>

#include <fcntl.h>

#include <sys/types.h>

#include <sys/stat.h>

int main()

{

int fd;

fd = open(“file.dat”,O_WRONLY | O_CREAT, S_IREAD | S_IWRITE

);

if (fd == -1)

{

perror(“FILE already opened”);

exit (1);

}

close(1); /* close standard output */

dup(fd); /* fd will be duplicated */

close(fd); /* close the extra slot */

printf(“Hello\n”);

exit(0); }

In the given example, the file is created in write-only mode. If it already
exists, an error occurs, and FILE already opened message is printed. The
file is duplicated, and both the standard output and original file are closed
afterward. The only opened file is the second one, and Hello message is
printed on this.

The stat and fstat system calls
The stat() and fstat() system calls give the status of files. These system
calls return information such as file owner, i-node number, file type, file
size, access permission, and file access time.

Prototype
int stat(const char *pathname, struct stat *buf);

int fstat(int fd, struct stat *buf);

int lstat(const char *oathname, struct stat *buf);

Where:
buf is the address of the data structure in the user process that contains the
status information of the file. These system calls simply write fields of the
i-node table into the buf.
The fstat system call to obtain information about the file that is already
open on the descriptor fd. A Stat system call gives information about a file
specified in the pathname; lstat system call is the same as a stat system
call.
Stat structure contains following information:
dev_t st_dev /* Device ID of device containing

file. */

ino_t st_ino /* File serial number. */

mode_t st_mode /* Mode of file (see below). */

nlink_t st_nlink /* Number of hard links to the file.

*/

uid_t st_uid /* User ID of file. */

gid_t st_gid /* Group ID of file. */

dev_t st_rdev /* Device ID (if file is

character or block special). */

off_t st_size /* For regular files, the file size

in bytes.

For symbolic links, the length in bytes of the

pathname contained in the symbolic link.

For a shared memory object, the length in bytes.

For a typed memory object, the length in bytes.

For other file types, the use of this field is

unspecified. */

time_t st_atime /* Time of last access. */

time_t st_mtime /* Time of last data modification. */

time_t st_ctime /* Time of last status change. */

blksize_t st_blksize /*A file system-specific preferred I/O

block size for

this object. In some file system types, this may

vary from file to file. */

blkcnt_t st_blocks /* Number of blocks allocated for this

object. */

BASIC file permission
In UNIX, each file can be accessed by different users as per the permission
assigned to them. Each user is identified by a unique number, known as
User_Id. The user who has created the file is the owner of the file. Users
can also belong to a group. All members of the group share the same file
permissions. Users who are neither owners nor belong to the group are
known as others. The file owner can provide the file access permissions to
the group members and other users. The file access permissions may read
(r), write (w), or execute (x). the ls –l command may be used to see the
assigned access permission given to the various files in the directory.

Example
>ls -l /usr/bin/new1

-rwxr-xr-x 1 user1 use1 8632 Sep 19 2021 /usr/bin/new1

In the given example, the file /usr/bin/new1 file is owned by user1. The
file belongs to the group user. -rwxr-xr-x shoes the file access permission
and type of file. The first letter shows that the file type is regular. The next
three letters show permission assigned to the owner. The owner can read,
write, and execute the file. The next three-letter show permission given to
the group members, and the last three letters show the permission given to
the others. The group members and others can only read and execute the
file.
The file access permission is represented as a 9-bit vector, where the first 3
bits are allocated to the owner, the next three bits are allocated to group
members, and the last three bits are allocated to other users. Thus, rw-
corresponds to 110, that is, 4+2+0 = 6 in decimal. Where r-bit corresponds
to decimal 4, the w-bit to decimal 2, and the x-bit to decimal 1.
rwxr-xr-x means 755 in decimal for /usr/bin/new.
Each user in UNIX has different access permission to their files. Every user
has a user-Id, a unique number that identifies her/him. Users also belong to
one or more groups. Groups can be used to restrict access to a number of
people. Access permissions can be set per file for the owner, group, and
others on the basis of read (r), write (w), and execute permissions (x). The
command ls -l is used to see these permissions.
>ls -l /usr/bin/new -rwxr-xr-x 1 root root 8632 Sep 9

2008 /usr/bin/new

The file /usr/bin/new is owned by the user root and belongs to a group
called root. The -rwxr-xr-x shows the file access permissions. This file is
readable(r), writable (w), and executable (x) for the owner. For the group
and all others, it is readable(r) and executable (x).
The permissions are represented as a bit vector with 3 bits each for the
owner, group, and others. Thus r-x corresponds to 101 as a bit pattern or
4+1=5 in decimal. The r-bit corresponds to decimal 4, the w-bit to decimal
2, and the x-bit to decimal 1.

rwx 421 user (owner) rwx 421 group rwx 421 others

Real and effective user-IDs and group-IDs

Each user name and a group name are mapped to a unique unsigned
number, called user and group ID. This mapping is done via the /etc/passwd
and /etc/group files, respectively. The user and group ID 0 are commonly
called root, but that is really just a convention.
Each UNIX process has a user ID and a group ID associated with it, and
when trying to open a file for writing, for instance, these IDs are used to
determine whether the process should be granted access or not. These IDs
constitute the effective privilege of the process because they determine what
a process can do and what it cannot. Most of the time, these IDs will be
referred to as the effective uid and gid.

Set user-ID
Normally, a program executes under the privileges of the normal user. But
there are situations where normal users require special privileges in order to
perform some special tasks such as changing passwords. A hashed
representation of each user’s password is stored in a /etc/passwd file, which
has write permission to superusers only. When a normal user wants to
change his or her password, this file must be updated. But a normal user
does not have write and save permissions for this file. So the program that
changes the password must be running on behalf of the normal user but
with the privileges of the superuser. For such situations, a special bit (set-
user-ID or SUID) is set on the file permissions. When this bit is set, the
program it is applied to does run with the privileges of the file owner. Doing
a long file listing, this bit will show up as “s” instead of an “x” in the owner
permissions. A lowercase s means both the SUID bit and the execute bit are
set. An uppercase S represents a SUID bit without the execute bit.
The SUID bit can also be set on directories. When set on a directory, all the
files and directories created within this directory will have the same owner
as of the SUID directory itself, no matter who has created these files.

Set-group ID
If the user executes a program with this bit set. He/she inherits the file
access permission assigned to the group of the owner of the program. The
SGID bit is represented with a lowercase or uppercase “s” in place of “x”
for the group execute permission bit. This bit is generally set for utilities,
such as mail utility, print utility, and so on. If the SGID bit is set for a

directory, then all subdirectories and files created in it also inherit the group
permission.
When the program is executing with this bit set, the user will automatically
inherit the privileges of the group owning the program. Just like the SUID
bit, the SGID bit is represented with a lowercase or uppercase “s” in place
of “x” for the group execute bit. This usually is used for various utilities of
some subsystems, such as the mail subsystem or the printing subsystem,
and so on. An SGID bit on a directory means that all files and
subdirectories created in the directory inherit the group of the directory.

Sticky-bit permission
The sticky bit is primarily used on public directories. It is useful for shared
directories such as /var/tmp and /tmp. All the users should be able to
create files, read, and execute files of other users in these temporary
directories. If the sticky bit is applied to a directory, a file in that directory
can only be deleted or renamed if the user has to write permission to the
directory itself, and in addition to this, he is either the owner of the file, the
owner of the directory itself or the superuser (root). Users are not allowed
to remove files owned by other users. So the sticky bit makes files stick to
the owner and prevents users to delete and rename other users’ files in
publicly writable directories.

User and group IDs of new files
The user ID of a new file is set to the effective user ID of the process of
creating the file. The group ID of a new file is either:

The effective group ID of the process of creating the file.
The group ID of the directory in which the file is created.

Effective user and group IDs
For most processes, Effective User ID (EUID) is the same as User ID
(UID), and Effective Group ID (EGID) is the same as Group ID (GID).
When the executable file that contains the image that is executed by the
process has the Set-UID or Set-GID bit set, then the process’ EUID/EGID
is set to the UID/GID of the executable file, not of the user executing the
process! This is UNIX’s mechanism to grant users well-defined and limited

access to a resource that would otherwise be inaccessible. For example,
changing the password requires writing to /etc/passwd. Ordinary users, of
course, do not have write access to this file. But the Set-UID root program
/bin/passwd provides a well-defined gateway.

File Access Permission Mask
The st_mode member of stat structure contains file permissions:
st_mode mask – owner, group, other

#define S_IRWXU 00700 /* read, write, execute: owner */

#define S_IRUSR 00400 /* read permission: owner */

#define S_IWUSR 00200 /* write permission: owner */

#define S_IXUSR 00100 /* execute permission: owner */

#define S_IRWXG 00070 /* read, write, execute: group */

#define S_IRGRP 00040 /* read permission: group */

#define S_IWGRP 00020 /* write permission: group */

#define S_IXGRP 00010 /* execute permission: group */

#define S_IRWXO 00007 /* read, write, execute: other */

#define S_IROTH 00004 /* read permission: other */

#define S_IWOTH 00002 /* write permission: other */

#define S_IXOTH 00001 /* execute permission: other */

User file creation mode—umask() call
The UNIX uses a four-digit octal number umask to determine the file
permission for newly created files. Every process has its own umask,
inherited from its parent process.
The umask() sets the process’s file creation mask and returns the previous
value of the mask. The low-order 9 bits of mask are used whenever a file is
created. To set default access permission for regular file
UNIX Kernel sets the default permission 666 for a regular file at the time of
the creation and 777 for a directory. When the file or a directory is created
using open(), mkdir(), and other system calls, the UNIX kernel subtracts
the set umask value from the default access permission to set the resulting
access permission for a file or directory.

Example

Let the set umask value is 044. To assign access permission to a regular file
that has default access permission 666, the Kernel subtracts 044 from 666
(666-044) and sets 622 as the resulting access permission.
Clearing corresponding bits in the file access permissions restricts the
default access to a file.

Prototype
Mode_t umask(mode_t cmask)

The cmask argument is formed as bitwise OR of any of the nine constants
from st_mode mask.

Example
#include <sys/types.h>

#include <sys/stat.h>

main()

{

int fd;

int old_mask;

old_mask = umask(0);

fd = open(“f1”, O_WRONLY | O_CREAT | O_TRUNC, 0666);

close(i);

printf(“created f1: 0666\n”);

fd= open(“f2”, O_WRONLY | O_CREAT | O_TRUNC, 0200);

close(i);

printf(“created f2: 0200\n”);

umask(022);

fd = open(“f4”, O_WRONLY | O_CREAT | O_TRUNC, 0777);

close(i);

printf(“created f4: %o\n”, 0777 & ~022 & 0777);

fd = open(“f5”, O_WRONLY | O_CREAT | O_TRUNC, 0200);

close(i);

printf(“created f5: %o\n”, 0200 & ~022 & 0777);

}

In the given example, umask is set to 0, so all files created will take access
permission given in open() function. The umask is set to 022. To set final
access permission, the umask will be subtracted from the access permission
in the open() function.

The access () function
The access() system call checks the accessibility of the file named by the
pathname argument for the access permissions indicated by the mode
argument. The value of mode is either the bitwise- inclusive OR of the
access permissions to be checked (R_OK for read permission, W_OK for write
permission, and X_OK for execute/search permission) or the existence test
(F_OK).

Prototype
int access (const char *pathname, int mode);

Upon successful completion, the access() returns value 0; otherwise, it
returns value -1, and the global variable errno is set to indicate the error.

Changing owner and changing mode
Changing the owner and mode of a file are operations on the i-node. The
process owner executing system calls to change owner or mode must be
either superuser or owner of the file.

Prototype
int chmod(const char *pathname, mode_t mode);

int fchmod(int fd, mode_t mode);

int chown(const char *pathname, uid_t owner, gid_t group);

After the change of ownership, the old owner losses owner access rights to
the file. The mode is bitwise OR of constants in st_mode member of the stat
structure.

Mounting and unmounting a file system
The mount system call connects the file system in a specified partition of a
disk to the existing file system hierarchy. The mount system call thus allows
users to access data in a disk section as a file system instead of a sequence
of disk blocks.

Prototype
int mount (const char * source , const char * target , const

char * filesystemtype , unsigned long mountflags , const void

* data);

The mount() attaches the filesystem specified by the source (which is often
a device name but can also be a directory name or a dummy) to the
directory specified by the target.
The umount system call disconnects a file system and frees the hierarchy.

Prototype
int umount(const char *target);

The umount2() removes the attachment of the (topmost) filesystem
mounted on the target.

Directory related system calls
Like file-related system calls, the UNIX Kernel also defines a set of system
calls for performing directory-related operations as in UNIX; everything is
considered as a file. These system calls are used to create, remove, and
manipulate directory contents.

The mkdir system call
The mkdir() function is used to create a new directory named by the
pathname pointed by the path.

Prototype
int mkdir(const char *path, mode_t mode);

The mode of the new directory is initialized from mode. The protection part
of the mode argument is modified by the process’s file creation mask.
The directory’s owner ID is set to the process’s effective user ID. The
directory’s group ID is set to the process’s effective group ID, or if the
S_ISGID bit is set in the parent directory, then the group ID of the directory
is inherited from the parent. The S_ISGID bit of the new directory is
inherited from the parent directory.
If path names a symbolic link, mkdir() fails and sets errno to EEXIST.
The newly created directory is empty with the exception of entries for itself
(.) and its parent directory (..).

Upon successful completion, the system call returns 0. Otherwise, it returns
-1, no directory is created, and errno is set to indicate the error.

The rmdir system call
The rmdir() system call to remove a directory file whose name is given by
path. The directory must not have any entries other than “.” and “..”.

Prototype
int rmdir(const char *path);

The rmdir() function returns the value 0 if successful; otherwise, it returns
a value -1, and the global variable errno is set to indicate the error.
If the link count of the directory becomes 0 with this call and no other
process has the directory opened, then the space occupied by this directory
is freed.

The chdir() system call
The chdir() system call is used to change the current directory pointed by
the argument path. The process executing chdir() system call must have to
execute access permission on the directory.

Prototype
int chdir(const char *path);

Upon successful completion, chdir() returns a value of 0. Otherwise, it
returns a value of -1, and errno is set to indicate the error.

Standard I/O library in UNIX
In UNIX standard I/O library is used to provide a stream I/O interface to the
program. The stream I/O interface is the simple and efficient way to provide
input to the program and write the produced output.
Three streams, standard input, standard output, and standard error, are by
default opened and provided to the program whenever it starts executing.

Stream and FILE object

Streams are a portable way of reading and writing data.
A stream can be a file or a physical device (for example, a printer or
monitor). All streams are defined by an internal C data structure, FILE. The
FILE data structure is declared in stdio.h, which is manipulated with a
pointer to the stream. To perform I/O with stream, it is simply required to
refer to the FILE structure in C programs.
A stream must be opened before doing any I/O to access it, and it must be
closed after use.

I/O buffering
Buffering is used to minimize the number of read and write calls. I/O
buffering can be of basically three types, as discussed in the following
sections.

Fully/blocked buffered
When a stream is a block buffered, many characters are saved up and
written as a block. Normally, all files are block buffered. Actual I/O occurs
when the buffer is filled up. When the first I/O operation occurs on a file,
malloc(3) is called, and an optimally sized buffer is obtained.
The term flush describes the writing of a standard I/O buffer. A buffer can
be flushed automatically by the standard I/O routines (such as when a buyer
fills) or by using the function fflush explicitly.
Standard input and standard output are fully buffered streams unless they
are not referred to as interactive devices.

Line buffered I/O
When streams are line-buffered, characters are saved up until a newline (\n)
is output or input is read from any stream attached to a terminal device
(typically stdin). This allows us to output a single character at a time (for
example, with fputc), knowing that actual I/O will take place only when
we finish writing each line. Line buffering is typically used on a stream
when it refers to a terminal (for example, standard input and standard
output).

Unbuffered I/O
The standard I/O library does not buffer the characters. When an output
stream is unbuffered, information appears on the destination file or terminal
as soon as written. For instance, by using the discussed write(2) call, the
standard error stream is normally unbuffered. Any error messages are
displayed as quickly as possible (regardless of whether they contain a
newline or not).

Stream buffering operations
UNIX provides buffer operation to buffer information to avoid frequent
access to external storage devices. The buffering makes data reading and
writing less time-consuming.

setbuf(3), setvbuf(3)
Functions must be called after the stream has been opened and before any
other operation is performed on the stream. The setbuf(3) is used to turn
to buffer on and off.

Prototype
void setbuf (FILE * stream , char * buf);

To enable buffering, buf must point to a buffer of length BUFSIZ. To disable
buffering, buf is set to NULL.
setvbuf() may be used to alter the buffering behavior of a stream.

Prototype
int setvbuf (FILE * stream , char *buf , int mode , size_t

size);

The mode parameter must be one of the three macros following. The size
parameter may be given as zero to obtain deferred:
define _IOFBF 0 /* setvbuf should set fully buffered */

define _IOLBF 1 /* setvbuf should set line buffered */

define _IONBF 2 /* setvbuf should set unbuffered */

Flushing a stream

When fflusg() function is called, all data buffered for given output is
forcefully written to the FILE object pointed out by stream argument. The
steam is remained open. Stream argument is set to NULL, and then all
opened output streams are fflushed. The second function fpurge() deletes
all input or output buffered in the given stream
The fflush() forces a write of all buffered data for the given output or
update stream via the stream’s underlying write function. The open status of
the stream is unaffected. If the stream argument is NULL, fflush() flushes
all open output streams. fpurge() erases any input or output buffered in the
given stream.
int fflush (FILE * stream);

int fpurge (FILE * stream);

Opening a stream
The fopen() function is used to open the file whose name is given in the
string pointed to by pathname and associates a fully buffered stream with it.
It also clears the error and end-of-file indicators for the stream.

Prototype
FILE * fopen (const char *path , const char * mode);

The freopen() function first attempts to flush the stream and close any file
descriptor associated with a stream, but the success or failure to flush or
close the file descriptor is ignored. It clears the error and end-of-file
indicators for the stream.
The freopen() function opens the file whose name is in the string pointed
to by pathname and associates the stream pointed to by stream with it. The
mode argument shall be used just as in fopen.

Prototype
FILE * freopen (const char *path , const char *mode , FILE *

stream);

The fdopen() function associates a stream with a file descriptor.

Prototype
FILE * fdopen (int fildes , const char * mode);

Following are the different modes to open a stream:

Mode Description

R Opens file for reading

r+ Opens for reading and writing

W Truncates file to zero length or creates text file for writing

w+ Opens for reading and writing. The file is created if it does not exist;
otherwise, it is truncated.

a Opens for writing. The file is created if it does not exist.

a+ Opens for reading and writing. The file is created if it does not exist.

Table 2.1: Stream opening modes

Following are the restrictions on opening a stream:

Restriction r w a r+ w+ a+

File must already exist x x

Previous contents of file are discarded x x

Stream can be read x x x x

Stream can be written x x x x x

Stream can be written only at end x x

Table 2.2: Opening restrictions on a stream

Closing a stream
The fclose() function closes a file and disassociates the named stream
from it. If the stream was being used for output, any buffered data is written
first, using fflush(3). If the standard library had automatically allocated a
buffer, that buffer is released.

Prototype
int fclose (FILE * stream);

Reading and writing a stream
Once a stream is opened, three different types of unformatted I/O can be
performed:

Character-at-a-time: Read and write one character at a time, with the
standard I/O functions handling all the buffering (if the stream is
buffered).
Line-at-a-time: To read or write a line at a time using fgets(3) and
fputs(3) functions. Each line is terminated with a newline character.
Direct: The fread(3) and fwrite(3) functions read or write some
number of objects, respectively, where each object is of specified size.

Reading one character at a time
The following are the prototypes for reading a character:
int fgetc (FILE * stream);

int getc (FILE * stream);

int getchar (void);

int getw (FILE * stream);

Here, fgetc() function takes the next input character (if present) from the
stream pointed at by the stream argument or the next character pushed back
on the stream via ungetc(3). getw() takes the next int (if present) from the
stream pointed at by stream.

Writing one character at a time
The following are the prototypes for writing a character:
int fputc (int c, FILE * stream);

int putc (int c, FILE * stream);

int putchar (int c);

int putw (int w, FILE * stream);

fputc() writes one character (converted to an unsigned char) to the output
stream pointed to by a stream such as a monitor. It may evaluate the stream
more than once, so arguments given to putc() should not be expressions
with potential side effects. putw() writes the specified integer to the named
output stream.

Reading one line-at-a-time
The following are the prototypes for reading a line:

char * fgets (char *str , int size , FILE * stream);

char * gets (char * str);

The fgets() and gets() functions are used to read line from the stdin or
specified stream, respectively, into the buffer.

Writing one line at a time
The following are the prototypes for writing a line:
int fputs (const char *str , FILE * stream);

int puts (const char * str);

The fputs() and puts() are used to write the string pointed to by str to
the stream and stdout, respectively.

Direct I/O
Direct I/O functions are used to read and write objects from/on the FILE
*stem object. The size of the object is given by the size parameter.
Prototypes
size_t fread (void *ptr , size_t size , size_t objs , FILE *

stream);

size_t fwrite (const void *ptr , size_t size , size_t objs ,

FILE * stream);

Here, the fread() reads a number of objects from the stream pointed to by
stream and stores them at the location given by ptr. The size of each object
read is given by size_t in bytes.
The fwrite() writes the objects stored at the location pointed by ptr to the
stream pointed to by stream argument.

Standard data files
UNIX maintains some standard data files to store data to manage
users’ file access permissions. These files can only be accessed with
root privileges. These files contain information corresponding to each
user, group, and life span of the password. All these files are stored
in/etc directory.

/etc/passwd file
The /etc/passwd file is an ASCII file that contains an entry for each user.
Each entry defines the basic attributes applied to a user. The /etc/passwd
file is updated when a new user is added to the system using mkuser
command.
An entry in the /etc/passwd file has the following form: Attributes in an
entry are separated by a: (colon).
Name:Password: UserID:PrincipleGroup:Gecos:

HomeDirectory:Shell

The are defined as follows:

Name Specifies the user’s login name. The login name must be a unique
string of 8 bytes or less containing numerals. Alphabet and special
characters.

Password An x character indicates that the encrypted password is stored in
/etc/shadow file.

UserID Specifies the user’s unique numeric ID. The User ID is a decimal
integer.

PrincipleGroup Specifies the user’s principal group ID. This must be the numeric ID
of a group in the user database or a group defined by a network
information service. The value is a unique decimal integer.

Gecos Specifies general information about the user that is not needed by
the system.

HomeDirectory Specifies the full pathname of the user’s home directory. If the user
does not have a defined home directory, the home directory of the
guest user is used. The value is a character string.

Shell Specifies the initial program or shell that is executed after a user
invokes the login command or su command. If a user does not have
a defined shell, /usr/bin/sh, the system shell, is used. The value is
a character string that may contain arguments to pass to the initial
program.

Table 2.3: File attributes with description

/etc/group file
The /etc/group file is an ASCII file that contains records for system
groups. Each entry contains basic group attributes. Each entry has the

following format:
Name:Password:ID :User-List

Attributes are separated by a colon. Records are separated by newline
characters. The attributes in a record have the following values:

Name Specifies a group name that is unique on the system. The name is a string
of 8 bytes or less.

Password Not used.

ID Specifies the group-ID. The value is a unique decimal integer string.

User-List Identifies a list of one or more users. Each user is separated by commas.
Each user must already be defined in the local database configuration
files.

Table 2.4: Group’s Attributes with description

/etc/shadow file
The /etc/shadow file stores the actual password in encrypted format for the
user’s account with additional properties related to the user password. It
contains one entry per line for each user listed in /etc/passwd file,
generally. Each entry has the following format:
smithj:Ep6mckrOLChF.:10063:0:99999:7:::

Each field is separated by a colon (:) symbol:

User name Specifies user’s login name.

Password Specifies encrypted password. The password must be minimum 6–8
characters long, including special characters/digits.

Last password change
(lastchanged):

Days since Jan 1, 1970, the password was last changed.

Minimum The minimum number of days required between password changes, that
is, the number of days left before the user is allowed to change his/her
password.

Maximum The maximum number of days the password is valid (after that user is
forced to change his/her password).

Warn The number of days before the password is to expire the user is warned
that his/her password must be changed.

Inactive The number of days after the password expires, that account is disabled.

Expire Days since Jan 1, 1970, that account is disabled, that is, an absolute date
specifying when the login may no longer be used.

Table 2.5: Fields in shadow record with description

The last six fields provide password aging and account lockout features
(you need to use the change command to set up password aging). According
to the man page of shadow—the password field must be filled. The
encrypted password consists of 13–24 characters from the 64 character
alphabet a through z, A through Z, 0 through 9, \. and /. Optionally it can
start with a $ character. This means the encrypted password was generated
using another (not DES) algorithm. For example, if it starts with 1 it
means the MD5-based algorithm was used.

Conclusion
UNIX provides a number of methods to perform input/output operations.
The two most dominating methods are I/O system calls and library
functions. The library function, when executed at the Kernel level, they are
also converted into a corresponding system call. UNIX Kernel maintains
various data structures to manage all open files. How to access the file by
user’s process is controlled by file access permission provided to the user
by the administrator. To manage file access, users are divided into three
categories, namely, owner, group members, and others. The owner can
provide access to all other types of users. All group members share the
same access permissions. UNIX also provides library functions to buffer
data for both reading and writing. I/O buffers are maintained to avoid
frequent access to external devices and to speed up input and output
operation. After completing the two major components, process and file-
management, in Chapters 1 and 2, respectively, the upcoming chapter will
discuss the UNIX shell environment and provide the user interface for
functioning with processes and files.

Review Exercise
1. Implement setbuf-using setvbuf.
2. What happens if the file mode creation mask is set to 777?
3. How can you set only one of the two times?

4. Does UNIX have a fundamental limitation on the depth of a directory
tree? To find out, write a program that

5. What exactly is stored in data block of the UNIX File system?
6. Can two processes open a file at a time? Justify your answer.
7. What is password aging?
8. Write a program that gives the user the opportunity to remove any or

all of the files in a current working directory. The name of the file
should appear, followed by a prompt as to whether it should be
removed.

CHAPTER 3
Process Management

Introduction
The Kernel performs various primitive operations on behalf of user
processes. These operations include controlling the execution of processes
by allowing their creation, termination, or suspension and communication.
Scheduling processes fairly for execution on the CPU. Allocating main and
secondary memory for executing processes. Protecting processes’ address
spaces. The Kernel also controls access to peripheral devices such as
terminals and other devices. UNIX maintains a parent–child relationship
among different processes executed in the system. The UNIX Kernel
maintains this process tree through different process IDs to keep control of
process creation, execution, and termination. This chapter discusses all
these primitive operations to perform effective process management.

Structure
We will cover the following topics in this chapter:

Processes and their relationships
Processes related operations
Process control and execution
Memory allocation to the executing process.
Process communication

Objectives
After going through this chapter, you will be able to:

Understand fundamental concepts of process management
Learn how processes are identified in the UNIX system

.

Get to know the process related operations such as creation, execution,
termination, and suspension
Understand how processes communicate with each other
Understand how UNIX controls process execution and switching

UNIX process
A program in execution is a process. In UNIX, a process is a unit of work.
The system consists of a collection of processes: operating system
processes executing system code and user processes executing user code.
All the processes execute concurrently with the CPU switching between the
processes.
A process executes by following a strict sequence of instructions that is
self-contained and does not jump to that of another process.

Process IDs
Each process has an identification number called process id that identifies it
uniquely. The getpid() function is used to get the process id of a process.
Processes in UNIX have a parent–child relationship. Each process has one
parent and one or more children.
The process ID 0 is the scheduler process and is called swapper. Swapper is
part of the Kernel and is called a system process.
The init process (process ID 1) is the process dispatcher, which gives birth
to the shell, and all processes initiated by us are children of the shell and so
descendants of init process. Init is a normal user process and never dies.
UNIX keeps track of all processes in an internal data structure called a
process table. The process ID of a parent can be obtained by the function
getppid() as follows:
main()

{

printf(“In child process pid is %d \n”,getpid());

printf(“In child process parents pid is %d \n”,getppid());

}

Executing process in UNIX environment
Process in UNIX is a C program. Whenever a C program executes, it calls
the main function.

Prototype:
int main(int argc, char * argv);

Here, argc is the number of command-line arguments, and agrv is the
pointer to command line arguments.
The Kernel starts executing a C program through the exec function, which
calls a special start-up routine specified as starting address by the
executable program file. The starting routine takes command-line
arguments from the Kernel and calls the main function.

Modes of execution of a process
There are the following two modes of execution of the system as seen by
the hardware:

1. User mode: When the user process executes, it does so in the user
mode. In the user mode, processes can access their own instructions
and data but not Kernel instructions and data or those of other
processes.

2. Kernel mode: When a user process executes a system, call the
execution mode of the process changes from user mode to Kernel
mode; the Kernel executes the users’ request. Processes in Kernel
mode can access Kernel and user addresses.

Process termination
When a process terminates, the operating system deallocates all resources
allocated to the process, updates statistics related to the process, and
intimate all processes about the process termination. UNIX process
terminates either normally or abnormally. When a process terminates, it
goes into a zombie state, that is, it does not release the process ID; rather, it
waits for the parent process to acknowledge that child is terminated and
PID is released.

Normal termination
Normal termination of the process is done by returning from the main
function or calling exit() or _exit() functions.
The exit() function performs a cleanup function before exiting from the
process. It closes all open files and flushes all buffers.

Prototype:
void exit(int status);

The _exit() function does not perform any cleanup operation before
exiting.

Abnormal process termination
A process terminates abnormally if any or more of the following conditions
occur:

Resource usage of the process exceeds
The task no longer needed
If the parent process is exiting

Another reason for abnormal process termination is calling abort()
function in some other process, especially by the parent. This function
sends the SIGABRT signal to the caller.
For abnormal termination, the Kernel generates the termination status. The
termination status is obtained by the parent process using the wait() system
call.

Command-line arguments and environment
variables
The main() function in C has two standard arguments argc and argv called
command-line arguments. argc specifies the number of arguments counting
the command name as an argument itself.
argv is an array of pointers to strings. The first member of argv, that is,
argv[0], points to the command name, and the second one argv[1], points
to the first argument of the command.

Because argv exists, the program can react to command line parameters
entered by the user fairly easily. For example, you might have your program
to detect the word help as the first parameter following the program name
and dump a help file to stdout. File names can also be passed in and used in
your open statements. Any input too can be passed as command-line
arguments, and avoid using I/O statements to read input.
The envp gives the program’s environment variables represented as an array
of strings as VAR=value. For example, PATH=/bin;/usr/bin. The last
element of the array is a null pointer. This gives C programmers access to
the shell’s global environment.
In addition to the envp vector, it is possible to access the environment
variables through the call getenv(). This is used as follows; suppose we
want to access the shell environment variable $HOME.
char *string;

string = getenv(“HOME”);

The getenv() gets the value of $HOME variable and stores it to the string.
Example:
/* myprog.c*/

#include <stdio.h>

int main(int argc, char *argv[], char* envp[])

{

int I;

printf(“The program %s has %d arguments\n”, argv[0], argc);

printf(“The first two arguments are %s and %s \n”, argv[1],

argv[2]);

for (I=0; envp[I]; I++)

printf(“%s\n”,envp[I]);

}

In the given example, the program is executed as follows:
$myprog this is good

The output is:
The program myprog has 4 arguments
The first two arguments are this and is

The argc = 4 while argv[0] points to myprog, argv[1] points to this,
argv[2] to is and argv[3] to good. After this, it displays the environment

variables.

Memory layout of a UNIX process
The memory area allocated to a program will usually be split into several
sub-areas for particular:

The code area: This is known as the text area in UNIX and simply
contains the executable code of the program. If there are several
processes running the same program, there will still only be one code
area as it is identical for all processes. The text area is usually read-
only to prevent a program from modifying its instructions.
The data area: This holds the data being processed by the program.
This section contains both initialized and non-initialized data
variables.
The stack area: This is automatically created, and its size is adjusted
at run time. It consists of logical stack frames that are pushed when
calling a function and popped when returning. It contains parameters
to a function, local variables, and data. A process has one stack for
user mode and another for Kernel mode.
Heap: This part of the virtual address space contains the dynamically
allocated variables to be used by the process.

Setting branch into another function
C program does allow to jump to the label set in another function. To
branch the control to another function setjump and longjump C library
macros are used. Generally, these kinds of jumps should be avoided because
it is not considered as a good programming practice.

Prototype
int setjmp(jmp_buf env); void longjmp(jmp_buf env, int val);

The setjmp() macro saves the current environment in the variable env.
This macro returns more than once. The first time it always returns 0; the
second time, when it returns from longjmp(), it returns the value set for the
second argument of longjmp(). Here it is represented by val.
Let us see an example:

include <setjmp.h>

#include <stdio.h>

jmp_buf ebuf;

void f(void);

int main(void)

{

int i;

printf(“1 “);

i = setjmp(ebuf);

if(i == 0) {

f();

}

printf(“%d”, i);

return 0;

}

void f(void)

{

printf(“2 “);

longjmp(ebuf, 3);

}

In the given example, the output is as follows:
1
2
3

The first time when setjmp()_ is called, it returns 0 to the variable I, and
the control jumps to the function f(). In function f() 2 will be printed, and
the return value of setjmp is set to 3 as it is passed as the second argument
of the longjmp() macro.

Process states
The lifetime of a process can be modeled by a set of states, and each
process can be in any of the states at one point in time. These states can be
shown by a state transition diagram shown in figure 3.1, which is a directed
graph whose nodes represent the states a process can enter and whose edges

represent the events that cause the process to move from one state to
another.

Figure 3.1: Process transition diagram

UNIX process undergoes into following different states throughout its
lifetime:

Executing: The process executes in two different modes user and
Kernel mode.
Ready: Process is ready to execute as soon as Kernel schedules it, or
process is in a ready state in secondary memory.
Sleeping: Process is in sleeping state in main memory, or swapper has
swapped the process in the secondary memory to swap in other
processes in the main memory.
Created: Process is just created. It is neither in a ready state nor in a
sleeping state.
Zombie: Process has just executed the exit() system call. The
process does not exist but leaves the exit code.
Returning to Kernel mode: Process is preempted by Kernel until it is
scheduling another process.

Process control block
Each process is represented in the operating system by a Process Control
Block (PCB). This contains information associated with a process such as:

Process state: New, running, waiting, and so on.

Program counter: Indicates the address of the next instruction to be
executed for this process.
CPU registers: Includes accumulators, index registers, stack pointers,
and general-purpose registers.
CPU scheduling information: Like process priority, pointers to
process scheduling queues, and other scheduling parameters.
Memory management information: Like the value of base and limit
registers, page tables.
Accounting information: Like the amount of time for which the CPU
is used.
I/O status information: Like a list of I/O devices allocated to this
process, a list of open files.

The context of a process includes the value of CPU registers, process state,
and memory management information. The context of the process contains
(1) User-Level context, (2) CPU registers, and (3) Kernel level context.
The user-level context contains the memory layout of the virtual address
space of the process, such as text, data, user stack, and shared memory.
The CPU registers consist of the following information:

The Program Counter contains the address of the next instruction to be
executed.
The Program Status Register contains various flags to indicate the
result of the recent computation, the subfield that shows the current
execution mode to determine whether the process can run in privileged
instructions, and the subfields that show the current processor
execution level.
The Stack Pointer points to the next free entry or last used in the
Kernel or user stack.
The General-Purpose Registers contain intermediate data generated
during the execution of the process.

The Kernel-level context of a process contains one static part and a variable
number of dynamic parts throughout its lifetime. The components of
system-level context are as follows:

The Process Table entry contains state of process and control
information.
The u area contains process control information that needs to be
accessed only once.
Pregion entries, region table, and page table provide text, data, stack,
and other regions of the process.
Kernel Stack contains a stack of Kernel functions when the process
executes in the Kernel mode. The Kernel stack is empty when the
process executes in user mode.
The Dynamic part contains several system-level context layers where
each layer contains information about the previous layer.

Process control
Process control handles all operations related to the process, including the
creation of the child process, changing context from one process to another
while executing cooperating or independent processes, and terminating the
process in a normal and normal manner.

Process creation
Processes are initiated in UNIX using the fork() function. The fork()
function creates one child process identical to the parent, and both parent
and child processes are running. Both parent and child share the same real
and effective user and group ID, current working directory, root directory,
file creation mask, and so on.
The fork() returns the value of the PID of the child to the parent, and the
return value in a child is 0. Kernel increments file and inode table counters
for files associated with the process. If the child process cannot be created
due to (A) there are too many processes in the system.
(B) limit on the number of processes for real-user ID of the parent process
exceeds, then return value of parent process is –1.
Let us see an example:
main()

{

int pid;

pid = fork();

if (pid < 0)

printf(“Fork failed \n”);

else

{

if (pid == 0)

{

printf(“In child process pid is %d \n”,getpid());

printf(“In child process parents pid is %d \n”,getppid());

}

else

{

printf(“In parent process pid is %d \n”,getpid());

printf(“In parent process parents parent pid is %d

\n”,getppid());

}

}

}

File locks set in the parent process are not inherited in the child process. In
the given example, if fork() is successful, it returns either 0 to the newly
created child or the process ID of the newly created child to the parent
process in which fork() is called. Both the processes execute one after
another as scheduled by the CPU. If fork() is unsuccessful, it returns a
negative number.

Awaiting process termination
The simple way of a process to acknowledge the death of a child process is
by using the wait() system call. When wait() is called, the process is
suspended until one of its child processes exits, and then the call returns
with the exit status of the child process. If it has a zombie child process, the
call returns immediately, with the exit status of that process.
A call to wait() function does a number of things. A check is made to
verify if the parent process has any children. If it does not, a –1 is returned
by wait(). If a parent process has a child that is terminated (zombie), the
child’s PID is returned, and it is removed from the process table.

However, if a parent process has a child or children that have not
terminated, the parent process is suspended till it receives a signal. The
signal is received as soon as the child dies.
The wait() can also tell us in what manner the child process was
terminated. For this, we need to pass an integer variable to wait(). If the
process was terminated normally, the high order 8 bits of the integer
variable passed to the wait() will be updated, whereas the lower order 8
bits will be initialized to 0.
On the other hand, if it has been terminated abnormally, the lower-order 8
bits are updated, and higher-order 8 bits are initialized to 0.
In case of a core dump error, the wait returns an integer whose 7th bit is put
on.
Let us see an example:
/* example of wait() */

main()

{

int i, pid, exitstat, status;

pid = fork();

if (pid == 0)

{

printf(“Enter exit stat:”);

scanf(“%d”, &i);

exit(i);

}

else

{

wait(&status);

if ((status & 0xff) != 0) /* abnormal exit */

{

printf(“Signal interrupted\n”);

}

else /* normal exit */

{

exitstat = (int) status/256 ;

printf(“Exit status from %d was %d\n”, pid, exitstat);

}

}

}

Here in the child process, the user enters an exit code, and the process exits
with this exit code. The parent process receives this exit code in the status
variable. We can check the status variable to know the type of exit.
fork() creates a duplicate of all variables in the child process, so even
global variables are duplicated. If we change the value in one process, it is
not reflected in the other. Even the value of location pointed to by pointer
variable is different for different processes.

Executing another program
An existing process can call another process by executing exec system call.
The process ID of the running process does not change because exec()
function does not create new process rather it calls an existing process. The
various function prototypes of exec() function are as follows:

int execl(const char *path, const char *arg, …);

int execlp(const char *file, const char *arg, …);

int execle(const char *path, const char *arg,…, char *

const envp[]);

int execv(const char *path, char *const argv[]);

int execvp(const char *file, char *const argv[]);

path or file contains the filename being invoked, arg is a pointer to
character string passed as an argument to invoked file. The first argument,
by convention, should point to the filename associated with the file being
executed. The list of arguments must be terminated by a NULL pointer.
The functions execlp() and execvp() will duplicate the actions of the shell
in searching for an executable file if the specified filename does not contain
a slash (/) character. The search path is the path specified in the
environment by the PATH variable. If this variable is not specified, the
default path :/bin:/usr/bin’ is used. In addition, certain errors are treated
specially.
The new process inherits the following properties from the old process such
as process ID and parent process ID, real user ID and real group ID, session

ID, current working directory, root directory, file mode creation mark, and
so on.
Effective IDs of the invoked process may change depending on the status of
the set-user-ID and set-group-Id bits. If the set-user-ID bit of the new
program is set, then the effective user-ID will become the owner ID of the
program.

Accessing user information
There are a number of functions and system calls that let us access
information about UNIX users.

User details
The passwd structure in the pwd.h header file contains the user information
similar to /etc/passwd directory:
#include <pwd.h>

struct passwd {

char *pw_name; /* name of the user */

char *pw_passwd; /* password */

uid_t pw_uid; /* user id*/

gid_t pw_gid; /* group id */

time_t pw_change; /* validity and

char *pw_class; password class */

char *pw_gecos; /* full user name */

char *pw_dir; /* login directory */

char *pw_shell; /* user login shell */

time_t pw_expire; /* password expiry date*/

};

The passwd structure is returned by the getpwnam() and getpwuid()
functions. It provides information about a user account. The getpwnam()
and getpwuid() function searches the user database for an entry with a
matching name or UID.
The getuid() gets the user id of the logged-in user.
Example of a program that prints details about the user is as follows:
#include <pwd.h>

main()

{

struct passwd *pass;

int uid;

uid = getuid();

pass = getpwuid(uid);

printf(“Login name: %s\n”, pass->pw_name);

printf(“Encrypted Password: %s\n”, pass->pw_password);

printf(“User ID: %d\n”, pass->pw_uid);

printf(“Group ID: %d\n”, pass->pw_gid);

printf(“ Password Age: %s\n”, pass->pw_age);

printf(“Comment: %s\n”, pass->pw_comment);

printf(“Login Dir %s\n”, pass->pw_pw_dir);

printf(“Shell: %s\n”, pass->pw_shell);

}

Group details
The group structure in grp.h header file contains group information as in
the following:
/etc/grpup:
#include <grp.h>

struct group {

char *gr_name; /* group name */

char *gr_passwd; /* group password */

gid_t gr_gid; /* group id*/

char **gr_mem; /* pointer to group member names */

};

The getgid() gets the group id of the user, whereas getgrgid() populates
the group structure.
The following is the example to print group information:
#include <grp.h>

main()

{

int I;

struct group *grp;

grp = getgrgid(getgid());

printf(“Group Name %s\n”. grp->gr_name);

printf(“Group Password %s\n”. grp->gr_passwd);

printf(“Group ID %s\n”. grp->gr_gid);

printf(“Group Members :”);

for (I = 0; grp->gr_mem[I];I++)

printf(“\n: %s”, grp->gr_mem[I];

}

Show information of all users logged in
Struct utmp in utmp.h header file has information of logged in users as
/etc/utmp, as shown following. We can populate this structure by reading
logged in user information from /etc/utmp file:
struct utmp {

char ut_user[8]; /* User login name */

char ut_id[4]; /* /etc/inittab id(usually line 2 char

ut_line[12]; /* device name (console, lnxx) */

short ut_pid; /* short for compat. - process id short

ut_type; /* type of entry */

struct exit_status ut_exit; /* The exit status of a process

*/

time_t ut_time; /* time entry was made */

};

The following is a program to display information of logged in users:
#include <sys/types.h>

#include <stdio.h>

#include <utmp.h>

#include <pwd.h>

#define UTMP “/etc/utmp”

#define NAMELEN 8

main()

{

FILE *fp;

struct utmp u;

struct passwd *p;

char temp[NAMELEN+1];

fp = fopen(UTMP,”r”);

while (!feof(fp))

{

fread(&u,sizeof(u),1,fp);

if (u.ut_name == NULL) continue;

strncpy(temp, u.ut_name, NAMELEN);

p = getpwnam(temp);

if (p == NULL) continue;

printf(“%-10.8s %-10.8s %-30.30s %s\n”,u.ut_name, u.ut_line,

p->pw_gecos, ctime(&u.ut_time));

} /*The ctime() converts time to ascii format.*/

fclose(fp);

exit(0);

}

Process groups
Processes (under UNIX, at least) are organized into process groups,
generally corresponding to an entire job. When a single shell command
consists of a series of filter commands that pipe data from one to the other,
those processes (and their child processes) all belong to the same process
group. Each process group has a process group header and a process group
number corresponding to the process number of the process group leader.
Process group header can create a process group and processes in the group.
The process group exists as long as there is at least one process in the
group, regardless of whether the process group header terminates. The time
when the process group is created to the time when the last remaining
process in the group leaves the group is called the process group lifetime.
The last process in the group can terminate or can enter into some other
group.
A process joins an existing group or creates a new process group using
setpgid() function.

Prototype:
int setpgid(pid_t pid, pid_t pgid);

A process can set the process group ID of only itself or one of its children.

Sessions
A session is a collection of one or more process groups. A new session can
be established by a process using the setsid() function.

Prototype:
Pid_t setsid(void);

It returns an error if the process is already a process group header. If the
process is not a process group header, then the process becomes both
session and group header, and the process group ID is set to the process ID
of the process.
Let us see an example:
#include <sys/types.h>

#include <unistd.h>

#include <stdio.h>

void main()

{

pid_t pid;

printf(“The process group ID is %d\n”, (int) getpgrp());

setsid();

printf(“The new process group ID is %d\n”, (int) getpgrp());

}

Signals
Signals are asynchronous software interrupts that indicates that an event has
occurred. Signals are identified by their names and specified in the header
file <signal.h>. Signals are sent by the following:

One process to another (or itself)
The Kernel to a process

Table 3.1 shows the free signal available in the BSD system:

Signal name Signal number Signal description

SIGHUP 1 Terminal line hangup

SIGINT 2 Interrupt program

SIGQUIT 3 Quit program

SIGILL 4 Illegal instruction

SIGTRAP 5 Trace trap

SIGABRT 6 Abort

SIGEMT 7 Emulate instruction executed

SIGFPE 8 Floating-point exception

SIGKILL 9 Kill program

SIGBUS 10 Bus error

SIGSEGV 11 Segmentation violation

SIGSYS 12 Bad argument to the system call

SIGPIPE 13 Write on a pipe with no one to read it

SIGALRM 14 Real-time timer expired

SIGTERM 15 Software termination signal

SIGURG 16 Urgent condition on I/O channel

SIGSTOP 17 Stop signal, not from terminal

SIGTSTP 18 Stop signal from terminal

SIGCONT 19 A stopped process is being continued

SIGCHLD 20 Notification to parent on child stop or exit

SIGTTIN 21 Read on a terminal by a background process

SIGTTOU 22 Write to terminal by a background process

SIGIO 23 I/O possible on a descriptor

SIGXCPU 24 CPU time limit exceeded

SIGXFSZ 25 File-size limit exceeded

SIGVTALRM 26 Virtual timer expired

SIGPROF 27 Profiling timer expired

SIGWINCH 28 Window size changed

SIGINFO 29 Information request

SIGUSR1 30 User-defined Signal 1

SIGUSR2 31 User-defined Signal 2

SIGTHR 32 Thread interrupt

Table 3.1: BSD signals

Sending a signal to processes
The kill system call is used to send a signal from one process to another
process or to itself. To send a signal, the sending process and receiving
process must have the same effective user ID, or sending process must be a
superuser.

Prototype:
int kill(int pid, int sig);

If pid argument is 0, signal is sent to all processes in the group. If pid
argument is –1 and the user is not a superuser, the signal is sent to all
processes whose real user ID is the same as the effective user ID of the
sending process. If pid argument is –1 and the user is superuser, the signal
is sent to all processes except system processes. If pid argument is negative
but not –1, then the signal is sent to all processes whose process group ID
equals the absolute value of pid. If pid argument is 0, error checking is
done, but no signal is sent.
Another way of sending signals to processes is to use a certain keypress that
is interpreted as a request to send a signal to the running process. A few
examples are as follows:

Ctrl + C: Pressing C on the keyboard with the Ctrl key causes the
system to send an INT signal (SIGINT) to the running process. By
default, this signal causes the process to terminate immediately.
Ctrl + Z: Pressing Z with Ctrl key causes the system to send a TSTP
signal (SIGTSTP) to the running process. By default, this signal
causes the process to suspend execution.
Ctrl + \: Pressing \ with Ctrl key causes the system to send an ABRT
signal (SIGABRT) to the running process. By default, this signal
causes the process to terminate immediately. Note that this redundancy
(that is, Ctrl + \ doing the same as Ctrl + C) gives us some better
flexibility. We will explain that later on.

The kill command is also used for sending signals to processes. The kill
command accepts two parameters: a signal name (or number) and a process
ID.
kill -<signal> <PID>

For example, in order to send the INT signal to process with PID 5342, type:
kill -INT 5342

This has the same effect as pressing Ctrl-C in the shell that runs that
process. If no signal name or number is specified, the default is to send a
TERM signal to the process, which normally causes its termination.
Some hardware conditions also cause signals. For example, floating-point
error, referencing an address outside a process, the specific hardware
condition, and corresponding signals that they generate are different in
different UNIX implementations.

Signal handling
The Kernel has a default action corresponding to each signal. The process
can handle most of the signals in a customized way by writing code in the
program. This custom piece of code is called signal handlers.
Two signals are unable to be redefined by a signal handler. SIGKILL
always stops a process, and SIGSTOP always moves a process from the
foreground to the background. These two signals cannot be caught by a
signal handler.
The signal() system call is used to set a signal handler for a single signal
type. signal() accepts a signal number and a pointer to a signal handler
function and sets that handler to accept the given signal.

Prototype:
void (*signal(int sig, void (*func)(int)))(int);

The first argument sig is the name of the signal. The value of the second
argument is either SIG_DFL or SIG_ING or the address of the signal handler.
SIG_DFL is used to specify the default handling of the signal, and SIG_ING
is used to ignore the signal.
Example: In the given example, after printing the message press del key,
an endless for loop will be executed, but as soon as del key is pressed, an
interrupt signal SIGINT will be sent to the handler function sig_handle.

The function will print the message DEL key is pressed, and the program
will be terminated.
#include <signal.h>

void sig_handle();

void main()

{

printf(“press del key\n”);

signal(SIGINTSIDINT, sig_handle);

for(;;);

}

void sig_handle()

{

printf(“ DEL key is pressed\n”);

}

Table 3.2 shows all possible values of signals for the first parameter of the
signal() system call. These signals are handled either by the signal handler
mentioned as the second parameter of the signal() system call or by the
system if the handler is not mentioned.

Signal Description

SIGALRM A process can set an alarm clock by calling the alarm call.
Unsigned int alarm (unsigned int sec).
The sec argument specifies the number of seconds to elapse before the
Kernel is to send the process a SIGALRM signal. If the argument is zero,
any previous alarm clock for the process is canceled. The sleep function
usually sets a SIGALRM signal, which it catches.

SIGINT This interrupt signal is usually generated when the interrupt key is
pressed on the terminal.

SIGILL This signal is generated by an implementation-dependent hardware
condition.

SIGUSR1 There are two user-defined signals that can be used to communicate
between processes.

SIGUSR2 Same as SIGUSR1.

SIGXFSI This signal is generated if the process exceeds its file size limit.

SIGXCPU If the process exceeds its soft CPU time limit, this signal is generated.

SIGTERM This is the termination signal sent by the kill command.

SIGPWR This signal is generated at the time of power failure. The system
continues running if battery power is available.

SIGPIPE This signal is generated if the writer process continues writing on the
pipeline and the reader process is terminated.

SIGQUIT This signal is generated by the terminal driver when Ctrl \ key is
pressed. This signal is sent to all foreground processes.

SIGTSTP The terminal driver generates this interactive stop signal when Ctrl+D is
pressed. This signal is sent to all foreground processes.

SIGSTOP The terminal driver generates this signal to stop all foreground processes.
This signal cannot be caught and ignored.

SIGORG This signal specifies the process that an urgent condition has occurred.

SIGCHLD This signal is sent to the parent process when the process stops. Usually,
this signal is ignored, so the parent must catch the signal if it wants to be
notified whenever a child’s status changes.

SIGIO This signal occurred at the time of asynchronous IO.

SIGSYS This signal indicates an invalid system call.

Table 3.2: Signal and their descriptions

Thread
A thread is a lightweight process. The threads have different execution
states, and multiple threads share their states. Multiple threads can write and
write the same memory area, whereas different processes cannot access the
same memory area. Each thread still has its own registers and has its own
stack, but other threads can read and write the stack memory.
Typically a process can be viewed as follows:
Process = Thread + Code, Data and Kernel Context

Figure 3.2: Single thread process

A process can have separate threads for different activities. Having a
separate thread for each activity allows the programmer to define the
actions associated with that activity as a single sequence of actions and
events.
Each thread associated with the process has its own logical control flow;
each thread shares the code, data, and Kernel context, and each thread has
its own thread ID.

Figure 3.3: Process with multiple threads

Why allow threads to access the same memory? Because inside OS, threads
must coordinate their activities very closely. Following are the situations
when shared memory and disjoint memory are required by the threads:

If two processes issue read file system calls at close to the same time
must make sure that the OS serializes the disk requests appropriately.
When one process allocates memory, its thread must find some free
memory and give it to the process. It must ensure that multiple threads
allocate disjoint pieces of memory.

Having threads share the same address space makes it much easier to
coordinate activities—can build data structures that represent system state
and have threads read and write data structures to figure out what to do
when they need to process a request.
One complication that threads must deal with asynchrony. Asynchronous
events happen arbitrarily as the thread is executing and may interfere with
the thread’s activities unless the programmer does something to limit the
asynchrony. Examples are as follows:

An interrupt occurs, transferring control away from one thread to an
interrupt handler.
A time-slice switch occurs, transferring control from one thread to
another.
Two threads running on different processors read and write the same
memory.

Asynchronous events, if not properly controlled, can lead to incorrect
behavior. Examples:

Two threads need to issue disk requests. The first thread starts to
program the disk controller (assume it is memory-mapped and must
issue multiple writes to specify a disk operation). In the meantime, the
second thread runs on a different processor and also issues the
memory-mapped writes to program the disk controller. The disk
controller gets horribly confused and reads the wrong disk block.
Two threads need to write to the display. The first thread starts to build
its request, but before it finishes, a time-slice switch occurs, and the
second thread starts its request. The combination of the two threads
issues a forbidden request sequence, and smoke starts pouring out of
the display.

For accounting reasons, the operating system keeps track of how much
time is spent in each user program. It also keeps a running sum of the
total amount of time spent in all user programs. Two threads increment
their local counters for their processes, then concurrently increment
the global counter. Their increments interfere, and the recorded total
time spent in all user processes is less than the sum of the local times.

So, programmers need to coordinate the activities of the multiple threads so
that these bad things do not happen. The key mechanism and
synchronization can be adopted to coordinate the activities of the multiple
threads. These operations allow threads to control the timing of their events
relative to events in other threads. Appropriate use allows programmers to
avoid problems like the ones outlined preceding.

Conclusion
This chapter describes the process subsystem of the UNIX operating
system. The process subsystem manages memory when required by various
processes, schedules processes for execution, and controls other aspects
related to the processes. This chapter described the memory layout of the
process and functions of managing memory. This chapter also described the
context of the UNIX process and how context switching is performed when
a process is either interrupted or the CPU is switched to another process.
This chapter also described how processes inform each other about an
asynchronous event by sending signals with the signal() system call. The
upcoming chapter discusses all methods of inter-process communication in
more detail.

Review Exercise
1. Write a program to ask the user to enter the total number of bytes he or

she wants to allocate. Then, initialize the allocated memory with
consecutive integers, starting from 1. Add all the integers contained by
the memory block and print out the final result on the screen.

2. Write a program that allocates a block of memory space to hold 100
items of the float data type by calling the calloc() function. Then,

reallocate the block of memory in order to hold 50 more items of the
float data type.

3. Write a program to ask the user to enter the total number of float data.
Then use the calloc() and malloc() functions to allocate two
memory blocks with the same size specified by the number and print
out the initial values of the two memory blocks.

4. Write a program to display information about all the users logged in
currently in the system.

CHAPTER 4
Inter-Process Communication

Introduction
Most modern operating systems allow for concurrent execution of multiple
processes in a computer system. The processes can be independent of
cooperating, that is, sharing data with each other or sometimes require to
share event information with each other. An operating system provides
inter-process communication mechanisms to execute cooperating processes
either on the single system or in the networking environment. The IPC can
be either synchronous or asynchronous. This chapter describes IPC and
corresponding techniques used to perform IPC among different processes.

Structure
We will cover the following topics in this chapter:

Interprocess communication and its different methods
Pipes as means of IPC
FIFO as means of IPC
Shared memory and its usage
Sending and receiving messages using the message queue
Process synchronization using semaphores

Objective
After completing this chapter, you will be able to:

Understand the concept of inter-process communication.
Understand how named and unnamed pipes are used to share data
between two cooperating processes.
Understand how to share data directly between cooperating processes.

Understand the functioning of semaphores for process
synchronization.

Introduction to IPC
Two processes can communicate with each other using interposes
communication techniques provided by an operating system. The processes
may need to communicate to share data or to inform about some event. In a
traditional single processing environment, modules within the single
process can communicate with each other using global variables and
function calls. In a multi-processing environment where processes run
under different address spaces, an operating system must provide some
facility for inter-process communication.
The use of IPC is not restricted to multiple processes running on a single
system. Figure 4.1 shows three processes residing in a single system that
can communicate using different modes of IPC.

Figure 4.1: Process communications on a single system

Figure 4.2 shows a network environment where processes are running on
different systems, and they can communicate with each other using means
of interprocess communication.

Figure 4.2: Process communications on multiple systems

Means of interprocess communication
The main methods of sharing data or inter-process communication are using
the following:

Files
Message queues
Pipes
Shared memory
Sockets

The communication between processes is synchronized using signals and
semaphores. The C library functions and system calls are available for
interprocess communication.
In a UNIX environment, the shared information can reside at different
levels. The method of IPC used to share information is dependent on where
information is available. The IPC methods corresponding to the availability
of information are listed following:

If the information to be shared is residing in a file in the file system,
then Kernel system calls such as read(), write(), and so on are used
to share the information between the processes. Some synchronization
is needed when the file is being updated.
If information is residing in the pipes, message queue, and
semaphores, Kernel system calls corresponding to these data
structures are used to share information between cooperative
processes.
Two processes can directly access information if it is available in
shared memory. Once shared memory is set up by the processes, then
for communication, Kernel involvement is not required.
Two processes can share information by residing in a file in the file
system. The Kernel system calls for files that are used to access
information in files. Some synchronization is needed when the file is
being updated.
Two processes can share information that resides within the Kernel.
Pipes, message queues, and semaphores are used to share the
information.

Two processes can refer to a region of shared memory. Once the
shared memory is set up by the processes, two processes can access
information without involving the Kernel at all.

Figure 4.3: Information sharing among processes

Pipes and FiFOs
Through pipes, the output of one process is made the input of another
process, as shown in figure 4.4. One process writes data on the pipe, and at
the same time, the other process reads data from the pipe. The pipe must be
open before use.
The pipe() system call creates a pipe and returns two file descriptors,
fd[0], fd[1], fd[0] is opened for reading, and fd[1] is opened for writing.
pipe() returns 0 on success, -1 on failure and sets errno accordingly.
In the standard programming model, once the pipe has been set up, two (or
more) cooperative processes will be created by a fork, and data will be
passed using read() and write().

Figure 4.4: Reading and writing pipe

After use, pipes should be closed with close(int fd).

Example:
In the given example, a pipe is created using pipe() System call. The
parent process writes the message at one end of the pipe when it is
executed, and the child process reads the same message from the other end
of the pipe:
void main()

{

int fd[2];

pipe(fd);

if (fork() == 0)

{ /* child process*/

close(fd[1]); /* fd[1] is not used in this process*/

printf(“\n read data from parent);

read(fd[0]); /* read from parent */

}

else

{ close(fd[0]); /* not used in this process */

printf(“\n Write data to child process\n”)_;

write(fd[1]);

}

exit(0)

}

One end closed pipe
If a read operation is performed from the pipe whose write end is closed,
the read returns 0 to indicate the end of the file.
If the write operation is done whose read end is closed, then the SIGPIPE is
generated. If we either ignore or catch it and return it from the signal
handler, write returns an error with the errno set to EPIPE.

The popen() I/O library function

The popen() is a standard I/O library function that creates a pipe and forks
another process to read from or write in the pipe.

Prototype:
FILE *popen(char *cmd, char *type);

The cmd is the shell command. The function popen forks and executes the
cmd command and returns a FILE pointer that is used for either input or
output depending upon the character string type.
If the value of type is r, then the calling process reads the standard output of
the command. If the value of type is w, then the calling process writes to the
standard input of the command. In case of failure, popen() returns NULL.

The pclose() I/O function
The pclose() function closes the I/O stream created by the popen()
function. It returns an exit status of the command executed or –1 if the
stream is not created.

Prototype:
int pclose(FILE *stream);

Example:
In the given example, popen() function executes the who command, and the
output is written in the file pointed by fp pointer. The fgets() function
reads the file and stores the data in the character string user. The contents of
the user string are printed on the standard output using printf() function,
and then the pipe is closed using pclose() function.
include <stdio.h>

main()

{

FILE *fp;

char user[130]; /* line of data from unix command*/

fp = popen(“who”, “r”); /* Issue the command. */

/* Read a line file pointed by fp*/

while (fgets(user, sizeof (user), fp))

{

printf(“%s”, user);

}

pclose(fp);

}

FIFOs
A FIFO i.e. First In First Out is named pipe. A UNIX FIFO allows one-way
data flow between processes; however, with FIFO, a name is also
associated. A FIFO allows unrelated processes to access a single FIFO.
FIFO is a file that has a directory entry and is accessed by pathname. It
permanently exists in the file system hierarchy.

Creating FIFO
A FIFO is created using mknode() system call, which is generally reserved
for a superuser to create a directory entry, but any user can create FIFO
using mkfifo system call.

Prototype:
int mkfifo(const char *pathname, node_t node);

Where pathname is the UNIX pathname name of the fifo. The node contains
open permission on the file specified in the pathname.
The mkfifo() returns an error EEXIST if FIFO already exists. Once FIFO
is created, it must be opened for reading or writing using either open()
system call or standard I/O library function fopen().

Example:
In the given example, a FIFO named fifo is created with read and write
permission from the owner. An abnormal termination occurs if FIFO
already exists; otherwise, the program is terminated normally.
#include <stdlib.h>

main()

{

int rc;

int fifo_fds;

char data[100];

rc = mkfifo(“fifo”, S_IRUSR | S_IWUSR);

if (rc != 0) {

perror(“mkfifo failure”);

exit(1);

}

exit(0); /* EXIT_SUCCESS */

}

Interprocess communication using FIFO
A FIFO is named pipe, and it is used for inter-process communication
between two cooperating processes compared to the pipe, which is used to
communicate between parent and child. The two processes communicating
with each other are treated as server and client processes, as shown in figure
4.5.

Figure 4.5: Data transfer using FIFOs

Server process
A FIFO is created and opened in the server process to accept client
requests. The client request is read using the read function.
In the server process, FIFO should be opened for both reading and writing
because if the client terminates, server’s read will return 0 to show end-of-
file, the server has to close FIFO and open it again in O_RDONLY mode,
and the server will block until the next client request arrives. In the case of
FIFO, which is always open for reading and writing, server read will never
return 0.
Instead, the server will just block in a call to read, waiting for the next client
request.

Example:
In the given example, a FIFO with the name fifo is created both for reading
and writing. If fifo already exists, it returns an error, and an error message
FIFO already exists will be printed. The server process waits to read a
request from the client. If the client terminates in between, an error message

read failed will be printed; otherwise, a message from fifo will be printed
on the screen.
#include <fcntl.h>

#include <stdio.h>

#include <errno.h>

#define MSGSIZ 100

char *fifo = “fifo”;

int main(int argc, char **argv){

int fd;

char msg_buf[MSGSIZ+1];

if (mkfifo(fifo, 0666) == -1){

if (errno != EEXIST)

printf(“\n FIFO already exists \n”);

}

if ((fd = open(fifo, O_RDWR)) < 0)

printf (“\nfifo open failed\n”);

for(;;)

{

if (read(fd, msg_buf, MSGSIZ+1) <0)

printf (“\n message read failed \n”);

printf (“message received:%s\n”, msgbuf);

}

}

exit(0);

}

Client process
FIFO created in server process is opened in client process in O_WRONLY
mode. The server’s reply is read from the FIFO and written to standard
output. The client’s FIFO is then closed and deleted.

Example:
In the given example, the client process opens the FIFO in write-only mode.
If FIFO open operation is successful, it checks if messages passed for
printing on FIFO are having length than the buffer created to temporally

hold the messages, then all the messages are copied to the buffer msg_buf,
and one by one, they are written to the fifo.
include <fcntl.h>

#include <stdio.h>

#include <errno.h>

#define MSGSIZE 100

char *fifo = “fifo”;

int main (int argc, char **argv){

int fd, j, nwrite;

char msg_buf[MSGSIZ+1];

if (argc < 2){

printf (“No message passed. \n”);

exit(1);

}

if ((fd = open(fifo, O_WRONLY | O_NONBLOCK)) < 0)

printf(“\n fifo open failed\n”);

for (j = 1; j < argc; j++)

{

if (strlen(argv[j]) > MSGSIZ)

{

printf (“message is long er than buffer %s\n”, argv[j]);

continue;

}

strcpy (msg_buf, argv[j]);

if ((nwrite = write(fd, msg_buf, MSGSIZ+1)) == -1)

printf(“\n message write failed \n”);

}

exit (0);

}

Message queues
The message queue is the Kernel resident means of the IPC. Message
queues are stored within the Kernel in the form of a linked list. An identifier
identifies each message queue. Processes read and write messages to
arbitrary queues. It is possible for a process to write some messages on the

queue and exit and have the messages read by another process at a later
time.
Each message on a queue has the following attributes:

Long integer type message queue identifier.
Length of the data portion of the message.
Data.

Kernel maintains a data structure msqid_ds for every message queue, as
follows:
/* one msqid structure for each queue on the system */

struct msqid_ds {

struct ipc_perm msg_perm;

struct msg *msg_first; /* first message on queue */

struct msg *msg_last; /* last message in queue */

time_t msg_stime; /* last msgsnd time */

time_t msg_rtime; /* last msgrcv time */

time_t msg_ctime; /* last change time */

struct wait_queue *wwait;

struct wait_queue *rwait;

ushort msg_cbytes;

ushort msg_qnum;

ushort msg_qbytes; /* max number of bytes on queue */

ushort msg_lspid; /* pid of last msgsnd */

ushort msg_lrpid; /* last receive pid */

}

Let us discuss some of them as follows:

msg_perm: Object of the ipc_perm structure defined in linux/ipc.h.
This holds the permission information for the message queue,
including the access permissions and information about the user who
created the message queue (uid).
msg_first: Contains a pointer to the first message in the message
queue (the head of the list).
msg_last: Contains a pointer to the last message in the message queue
(the tail of the list).
msg_stime: Timestamp (time_t) of the last message sent to the queue.

msg_rtime: Timestamp of the last message retrieved from the queue.
msg_ctime: Timestamp of the last “change’’ made to the queue.
wwait and rwait: Pointers into the Kernel’s wait queue. They are used
when an operation on a message queue deems the process to go into a
sleep state (that is, the queue is full, and the process is waiting for an
opening).
msg_cbytes: Total number of bytes residing on the queue (sum of the
sizes of all messages).
msg_qnum: Total number of messages currently in the message queue.
msg_qbytes: Maximum number of bytes that can reside on the
message queue.
msg_lspid: The process ID of the process sent the last message.
msg_lrpid: The PID of the process retrieved the last message.

Creating and opening a message queue
A process can create a new message queue, or it can connect to an existing
message queue. The msgget() function is used for both creation and
connection.

Prototype
int msgget(key_t key, int msgflg);

The key is a system-wide unique queue identifier describing the queue. The
process of creating the message queue generates a key identifier, and other
processes use this key to connect to the queue. The msgflg argument is a
flag that contains read-write permission, which can be bitwise OR with
IPC_CREAT or IPC_EXCT to create a new message queue or connect to an
existing message queue.
Following members of msgid_ds structure are initialized when a new
message queue is created:

msg_qbytes: Set to the system limit.
msg_ctime: Set to the current time.
msg_perm.mode: Contain read-write permission from msgflg
argument.

msg_qnum: Set to 0.
msg_lspid: Set to 0.
msg_lrpid: Set to 0.
msg_stime: Set to 0.
msg_rtime: Set to 0.
msg_perm.uid and msg_perm.cuid: Set to the effective user ID of the
process.
msg_perm.gid and msg_perm.cgid: Set to the effective group ID of
the process.

msgget() returns the message queue ID on success or −1 on failure

Sending a message to the queue
The msgsnd() function is used to send a message to the message queue.

Prototype:
int msgsnd(int msqid, const void *msgp, size_t msgsz, int

msgflg);

msqid is the message queue identifier returned by msgget(). The pointer
msgp is a pointer to the message to put on the queue. Message is defined in
sys/msg.h file in the form of structure msgbuf, as follows:
struct msgbuf {

long mtype;

char mtext[[1];

}

There is no limit on the length of the mtext at compile time; rather, the limit
is set by the system administrator. msgsz is the size in bytes of the message.
msgflg is set to either 0 or IPC_NOWAIT.
The function returns as follows:

If too many messages are available.
If the number of bytes on the message queue exceeds the msg_qbyte
limit.

If msgflg is set to IPC_NOWAIT, then the function returns the error EAGAIN,
and if msgflg is not set to IPC_NOWAIT, then the thread is put to sleep.

Example:
In this given example, the process creates a message queue for writing a
message. If message queue is not created an error message will be printed
and program exits abnormally. Once message queue is created successfully,
a message is read from keyboard and sent to the queue. In case of error
message queue will be destroyed:

#include <stdio.h>

#include <stdlib.h>

#include <errno.h>

#include <sys/types.h>

#include <sys/ipc.h>

#include <sys/msg.h>

struct msgbuf {

long mtype;

char mtext[200];

};

int main(void)

{

struct msgbuf buf;

int msqid;

key_t key= 100;

if ((msqid = msgget(key, 0644 | IPC_CREAT)) == -1) {

perror(“msgget”);

exit(1);

}

printf(“Get message from keyboard\\\\n”);

buf.mtype = 1; /* we don’t really care in this case */

while(gets(buf.msg_text), !feof(stdin)) {

if (msgsnd(msqid, (struct msgbuf *)&buf, sizeof(buf), 0)

== -1)

perror(“message not sent properly”);

}

if (msgctl(msqid, IPC_RMID, NULL) == -1) {

perror(“message queue destroyed”);

exit(1);

}

return 0;}

Receiving a message from the queue
The msgrcv() function is used to read a message from the message queue.

Prototype
int msgrcv(int msqid, void *msgp, size_t msgsz, long msgtyp,

int msgflg);

The msqid is the message identifier, msgp is the pointer to the buffer to store
the read message, msgsz is the length of the data part of the buffer storing
the message, and messages are received from the queue depending on the
msgtyp parameter. The following table shows which message will be read
based on the value of msgtyp parameter:

msgtyp Effect on msgrcv()

Zero Retrieves the next message on the queue, regardless of its mtype.

Positive Retrieves the next message with mtype equal to the specified msgtyp.

Negative Retrieves the first message on the queue whose mtype field is less than or
equal to the absolute value of the msgtyp argument.

Table 4.1: Working of msgrcv()

If the message of the specified type is not there in the message queue, then
the action will be decided based on the value of msgflg parameter.
If msgflg is set to IPC_NOWAIT, the function returns immediately with the
error ENOMSG, and the caller process is blocked until:

The message queue is destroyed.
A message of specified type ids arrived at the message queue.
The calling thread is interrupted; in this case, the function returns with
the error EINTR.

If msgflg is set with an additional bit MSG_NOERROR, the function does not
return an error if the length of the actual message is greater than the msgsz
parameter; instead, it truncates an extra portion of the message.

Example

In the given example, the receiver process connects to the message queue; if
the message queue does not exist, an error will be generated, and the
process terminates abnormally. Otherwise, all messages are read and printed
to the screen till the end of the message queue.

#include <stdlib.h>

#include <errno.h>

#include <sys/types.h>

#include <sys/ipc.h>

#include <sys/msg.h>

struct msgbuf {

long mtype;

char mtext[200];

};

int main(void)

{

struct msgbuf buf;

int msqid;

key_t key = 41;

if ((msqid = msgget(key, 0644)) == -1) { /* connect to

the queue */

perror(“message queue does not exist “);

exit(1);

}

printf(“Receiving messages from message queue \n”);

for(;;)

{ if (msgrcv(msqid, (struct msgbuf *)&buf,

sizeof(buf), 0, 0) == -1) {

perror(“msgrcv”);

exit(1);

}

printf(“%s”\n”, buf.mtext);

}

return 0;

}

Destroying a message queue

The message queue is destroyed using msgctl() function.

Prototype
int msgctl(int cmd, struct msqid, int msqid_ds *buf);

Here, msqid is the queue identifier obtained from msgget(). The cmd
argument is set to IPC_RMID to destroy a queue.
This cmd can only be executed by a process that has an effective user ID
equal to either that of a superuser or to the value of either msg_perm.uid or
msg_perm.cuid in the data structure associated with msqid.

Controlling message queue
The msgctl() system call is used to perform control operations on a
message queue.

Prototype
int msgctl (int msgqid, int cmd, struct msqid_ds *buf);

Where msqid is a unique positive integer identifying a message queue, and
cmd specifies a message control operation. cmd can take the following
values:

IPC_STAT: Returns the current message queue structure msqid_ds for
the specified message queue ID.
IPC_SET: Sets msg_perm.uid, msg_perm.gid, msg_perm.node,
msg_qbytes members of the msqid_ds structure from the buf
argument.
IPC_RMID: Removes the message queue identifier specified by msqid
from the system and destroys the message queue and data structure
associated with it.

The buf points to a structure used for message queue data manipulation
operations. On success, the function returns 0. Otherwise, it returns -1, and
an errno is set.

Shared memory
The problem with pipes, message queues, and FIF is that for two processes
to exchange information, and the information has to go through the Kernel.

Shared memory is the form of IPC that allows processes to communicate by
writing onto a memory area that is shared among them. Processes need to
coordinate the use of shared memory segments to exchange information. If
one process is reading a shared segment, the other processes have to wait.

Creating shared memory
The shmget() is used to obtain access to a shared memory segment.

Prototype
int shmget(key_t key, size_t size, int shmflg);

The key argument is an access value associated with the shared memory.
The size argument is the size in bytes of the requested shared memory. The
shmflg argument specifies the initial access permissions and creation
control flags.
When the call succeeds, it returns the shared memory segment ID. This call
is also used to get the ID of an existing shared segment (from a process
requesting sharing of some existing memory portion).

Controlling a shared memory segment
The shmctl() function is used to alter the permissions and other
characteristics of a shared memory segment.

Prototype
int shmctl(int shmid, int cmd, struct shmid_ds *buf);

The process must have an effective shmid of the owner, creator, or
superuser to perform this command. The cmd argument is one of the
following control commands:

SHM_LOCK: Locks the specified shared memory segment in memory.
The process must have the effective ID of the superuser to perform
this command.
SHM_UNLOCK: Unlocks the shared memory segment. The process must
have the effective ID of the superuser to perform this command.
IPC_STAT: Returns the status information contained in the control
structure and places it in the buffer pointed to by buf. The process

must have read permission on the segment to perform this command.
IPC_SET: Sets the effective user and group identification and access
permissions. The process must have an effective ID of owner, creator,
or superuser to perform this command.
IPC_RMID: Removes the shared memory segment.

The buf is the structure of type struct shmid_ds, which is defined in
<sys/shm.h>.

Attaching and detaching a shared memory
segment
The shmat() and shmdt() are used to attach and detach shared memory
segments to the address space of the calling process.
Prototypes
void *shmat(int shmid, const void *shmaddr, int shmflg);

int shmdt(const void *shmaddr);

The shmat() function attaches the shared memory segment associated with
the shared memory identifier, shmid; it reruns a pointer, shmaddr, to the
head of the shared segment associated with a shmid.
The shmdt() detaches the shared memory segment located at the address
indicated by shmaddr.

Example
In the given example, a shared memory segment is created for reading and
writing. The created segment is attached to the current program, and string
str is written onto it. After writing, the process goes into a sleep state until
some other process reads the string and puts *’*’ onto the memory
segment.

Server program
#include <sys/types.h>

#include <sys/ipc.h>

#include <sys/shm.h>

#include <stdio.h>

#define SHMSIZE 100

#define SHM_KEY 1267

main()

{

char *str;

int shmid;

key_t key;

char *shm, *s;

key = SHM_KEY;

/* * Create the segment. */

if ((shmid = shmget(key, SHMSZ, IPC_CREAT | 0666)) < 0) {

printf(“Segment not created successfully”);

exit(1);

}

/* Now we attach the segment to our data space */

if ((shm = shmat(shmid, NULL, 0)) == (char *) -1) {

perror(“shmat”);

exit(1);

}

s = shm;

scanf(“%s”,&str);

strcpy(s,str);

*s = NULL;

/* Process goes in sleep state until some other process read

shared segment and put * */

while (*shm != ‘*’)

sleep(1);

exit(0);

}

In the client program, the memory segment is accessed and attached to the
client process, If successfully attached, the string from memory segment is
read and printed to the screen until NULL character found. Once memory
segment is empty, the client process puts a ‘*’ onto the segment. Server
process terminates as soon as it find ’*’.
#include <sys/types.h>

#include <sys/ipc.h>

#include <sys/shm.h>

#include <stdio.h>

#define SHMSIZE 100

#define SHM_KEY 1267

main()

{

int shmid;

key_t key;

char *shm, *s;

if ((shmid = shmget(SHM_KEY, SHMSIZE, 0666)) < 0) {

printf(‘\n Memory segment not created successfully \n”);

exit(1);

}

if ((shm = shmat(shmid, NULL, 0)) == (char *) -1) {

perror(“shmat”);

exit(1);

}

/* Now read what the server put in the memory */

for (s = shm; *s != NULL; s++)

putchar(*s);

putchar(‘\n’);

/*After reading characters from the shared memory. put * at

the first location */

shm = ‘’;

exit(0);

}

Process synchronization
Two concurrent processes must be synchronized while sharing resources
with each other to avoid system deadlock. The UNIX uses semaphores to
control access to the shared resource between two processes.

Semaphores
A semaphore is not exactly a form of IPC; it is a variable to control access
to the shared resource among multiple processes.
A semaphore is a resource that contains an integer value and allows
processes to synchronize by testing and setting this value in a single atomic

operation. This means that the process that tests the value of a semaphore
and sets it to a different value (based on the test) is guaranteed no other
process will interfere with the operation in the middle.
A process needs to perform testing before getting access to the shared
resource. The access to the shared resource is controlled by a semaphore.
The following steps are performed to check the value of the semaphore
before using the resource as follows:

1. Process tests the semaphore that controls access to the resource.
2. If the value of the semaphore is positive, then only the process can use

the resource. As soon as the process gets access to the resource, it
decrements the value of the semaphore by 1 to indicate that it has used
one unit of resource.

3. If the value of the semaphore is 0, the process goes into a sleep state;
when the process wakes up, it again checks the value of the
semaphore.

4. After finishing the use of the resource, the value of the semaphore is
incremented by 1 to give access to any other process that is in the
sleep state.

Figure 4.6: Semaphore

Semaphore operations
Two types of operations are carried on a semaphore: wait and signal. The
wait operation first checks if the semaphore’s value equals some number. If
it does, it decreases its value and returns. If it does not, the operation blocks
the calling process until the semaphore’s value reaches the desired value.

A signal operation increments the value of the semaphore, possibly
awakening one or more processes that are waiting for the semaphore.

Semaphore set
A semaphore set is a structure that stores a group of semaphores together
and possibly allows the process to commit a transaction on part or all of the
semaphores in the set together. A transaction means that we are guaranteed
that either all operations are done successfully or none is done at all.
Kernel maintains a structure for every semaphore set:
struct semid_ds {

struct ipc_perm sem_perm; /* permissions .. see

ipc.h */

time_t sem_otime; /* last semop time */

time_t sem_ctime; /* last change time */

struct sem *sem_base; /* ptr to first semaphore

in array */

struct wait_queue *eventn;

struct wait_queue *eventz;

struct sem_undo *undo; /* undo requests on this

array */

ushort sem_nsems; /* no. of semaphores in

array */

};

Let us discuss them in detail:

ipc_perm: ipc_perm structure contains access permissions for a
particular semaphore.
sem_otime: Time of the last semop() operation (more on this in a
moment).
sem_ctime: Time of the last change to this structure (mode change).
sem: The sem structure is an internal structure used by the Kernel to
maintain the set of values for the semaphore.
sem_undo: Number of undo requests in this array.
sem_nsems: Number of semaphores in the semaphore set.

wait_queue: A wait_queue is a circular list of pointers to task
structures.

Creating semaphore
A semaphore is created, or an existing semaphore can be accessed using
semget() system call, which returns the semaphore ID.

Prototype
int semget(key_t key, int nsems, int semflg);

Key is a unique identifier that is used by different processes to identify this
semaphore set. The next argument, nsems, is the number of semaphores that
should be created in the new semaphore set; the semflg argument specifies
what permissions should be on the new semaphore set.
If the value of senflg is IPC_CREAT alone, it returns an identifier for a
newly created semaphore set or an identifier for an already existing
semaphore set with which the key argument matches. If IPC_CREAT is used
along with IPC_EXCL, then it creates the new set or returns –1 if the
semaphore set already exists.

Controlling semaphore
After the semaphore set is created, the whole set or a particular semaphore
is controlled using semctl() system call.

Prototype
int semctl (int semid, int semnum, int cmd, union semun arg

);

The semid is the key identifier of the semaphore set, and the semnum
argument is an index of semaphore in the semaphore set, which is targeted
for control operation. The cmd argument controls the semaphore operation,
and it has the following values:

IPC_STAT: Retrieves the semid_ds structure for a set and stores it in
the address of the buf argument in the semun union.
IPC_SET: Sets the value of the ipc_perm member of the semid_ds
structure for a set. Takes the values from the buf argument of the

semun union.
IPC_RMID: Destroys the set from the Kernel.
GETALL: Gives values of all semaphores in a set. The integer values are
stored in an array of unsigned short integers pointed to by the array
member of the union.
GETNCNT: Returns the number of processes currently waiting for
resources.
GETPID: Returns the PID of the process which performed the last
semop call.
GETVAL: Returns the value of a single semaphore within the set.

Semaphore operations semop()
The semop() system call is used to perform atomically a user-defined set of
semaphore operations on the semaphores set.

Prototype
int semop(int semid, struct sembuf *sops, unsigned int nsops);

The argument semid is the number obtained from the call to semget() to
identify the semaphore set, and the next argument sops is a pointer to a
user-defined array of the struct sembuf that is filled with semaphore
commands; the third argument nsops specifies the number of semaphore
operation structures.

struct sembuf {

ushort sem_num;

short sem_op;

short sem_flg;

};

The sem_num is the number of the semaphore in the set that is targeted for
manipulation, and the sem_op defines the operation on the semaphore. This
takes on different meanings, depending on whether sem_op is positive,
negative, or zero. Let us have a look at them:

sem_op What happens

Positive The value of sem_op is added to the semaphore’s value. This is how a program
uses a semaphore to mark a resource as allocated.

Negative If the absolute value of sem_op is greater than the value of the semaphore, the
calling process will block until the value of the semaphore reaches that of the
absolute value of sem_op. Finally, the absolute value of sem_op will be
subtracted from the semaphore’s value. This is how a process releases a
resource guarded by the semaphore.

Zero This process will wait until the semaphore in question reaches 0.

Table 4.2: Values of sem_op variable

The sem_flg is set to IPC_NOWAIT and SEM_UNDO. If an operation asserts
SEM_UNDO, it will be undone when the process exits.

Destroying a semaphore
The semaphore set is destroyed using semctl() system call. The cmd
argument is set to IPC_RMID, which tells semctl() to remove this
semaphore set. The two parameters semnum and arg have no meaning in the
IPC_RMID context and can be set to anything.

Example:
Assume the semaphore in our set whose id is semset_id was initialized to 1
initially:
/* this function updates the contents of the file with the

given path name. */

void update_file(char* file_path, int number)

{

/* structure for semaphore operations. */

struct sembuf sem_op;

FILE* file;

/* wait on the semaphore, unless it’s value is non-negative.

*/

sem_op.sem_num = 0;

sem_op.sem_op = -1; /* <-- Comment 1 */

sem_op.sem_flg = 0;

semop(sem_set_id, &sem_op, 1);

/* Comment 2 */

/* we “locked” the semaphore, and are assured exclusive

access to file. */

/* manipulate the file in some way. for example, write a

number into it. */

file = fopen(file_path, “w”);

if (file) {

fprintf(file, “%d\n”, number);

fclose(file);

}

/* finally, signal the semaphore - increase its value by

one. */

sem_op.sem_num = 0;

sem_op.sem_op = 1; /* <-- Comment 3 */

sem_op.sem_flg = 0;

semop(sem_set_id, &sem_op, 1);

}

This code needs some explanations, especially regarding the semantics of
the semop() calls, which are as follows:

Comment 1: Before we access the file, we use semop() to wait on the
semaphore. Supplying -1 in sem_op.sem_op means: If the value of the
semaphore is greater than or equal to 1, decrease this value by one and
return to the caller. Otherwise (the value is 1 or less), block the calling
process until the value of the semaphore becomes 1, at which point we
return to the caller.
Comment 2: The semantics of semop() assures us that when we
return from this function, the value of the semaphore is 0. Why? It
could not be less, or else semop() will not return. It could not be more
due to the way we, later on, signal the semaphore.
Comment 3: After we are done manipulating the file, we increase the
value of the semaphore by 1, possibly waking up a process waiting on
the semaphore. If several processes are waiting on the semaphore, the
first that got blocked on it is wakened and continues its execution.

Now, let us assume that any process that tries to access the file does it only
via a call to our update_file function. As you can see, when it goes
through the function, it always decrements the value of the semaphore by 1
and then increases it by 1. Thus, the semaphore’s value can never go above
its initial value, which is 1. Now, let us check two scenarios:

No other process is executing the update_file concurrently. In this
case, when we enter the function, the semaphore’s value is 1. After the
first semop() call, the value of the semaphore is decremented to 0, and
thus, our process is not blocked. We continue to execute the file
update, and with the second semop() call, we raise the value of the
semaphore back to 1.
Another process is in the middle of the update_file function. If it
already managed to pass the first call to semop(), the value of the
semaphore is “0”, and when we call semop(), our process is blocked.
When the other process signals the semaphore with the second
semop() call, it increases the value of the semaphore back to 0, and it
wakes up the process blocked on the semaphore, which is our process.
We now get into executing the file handling code, and finally, we raise
the semaphore’s value back to 1 with our second call to semop().

Conclusion
Interprocess communication is an important mechanism that allows two
processes to communicate with each other. IPC is either used to share data
among cooperating processes or through this one process can control
activities in other processes; IPC is used to communicate between two
threads in a single process, two processes residing in a single system, or
processes residing in a distributed environment. We discussed the concepts
of IPC, including all methods used for IPC. This also discussed the concept
of semaphores for process synchronization to avoid deadlock situations
while sharing the shared resource by two concurrent processes. The
upcoming chapter discusses another inter-process communication method
based on socket between client and server residing in or across the network.

Review Exercise
1. How does a semaphore provide access to a shared object to multiple

processes?
2. Define function calls in UNIX for implementing semaphores.
3. Write a program to create a message queue and send some data to it.

4. Write a program to destroy a message queue after receiving data
available on it.

5. A shared memory segment is a memory area that can be attached to
multiple processes. Write a client and server program that passes data
back and forth.

6. Write a program to show race conditions between client and server
programs.

7. What happens if the argument to open is a non-existent command?
8. Write a program to send and receive data between parent and child

processes through pipes.

CHAPTER 5
Socket Programming

Introduction
Socket programming is the method through which a server can
communicate to the client. A client creates a connection with the server on
a particular port. The server listens to the client’s request for connection.
The server can communicate with multiple clients at a time and serves these
clients in a synchronous manner. This chapter discusses the socket as a
communication interface between client and server to send and receive
information.

Structure
We will cover the following topics in this chapter:

Socket
Types of sockets
Socket data structure
System calls for socket communication
I/O models
Name and address conversion

Objective
After reading this chapter, you will be able to:

Understand concepts and types of sockets for communication between
server and client.
Understand execution of various system calls involved in socket
communication.
Understand I/O models to facilitate socket communication.

Understand system calls used for the name to address calculation.

Socket
The socket is an interface between an application process and the transport
layer. The socket is a medium through which an application process can
send/receive messages to/from another local or remote application process.
This type of communication is commonly used between server processes
and client processes.
In UNIX, sockets are called UNIX domain sockets because sockets can be
used to communicate between processes residing on a single host only. In
UNIX, a socket is defined by a file descriptor—an integer associated with
an open file. In contrast, Internet domain sockets support various
communication protocols. Sockets can be supported by the Kernel or as a
library that translates calls to the native network API. The following figure
illustrates the socket diagram:

Figure 5.1: Socket

Types of sockets
While creating the socket, the program needs to specify the address domain
and the type of socket to be created, and two processes are allowed to
communicate with each other only if the socket through which they are
communicating is in the same domain and has the same socket type.

The two widely used socket address domains are the UNIX domain and the
Internet domain. In the UNIX domain, the processes sharing a common file
system can communicate with each other, while in the Internet domain, the
processes are not necessarily in the same file system; rather, they can reside
on any hosts on the Internet to communicate with each other. Both the
domain types have their own address formats. In the UNIX domain, the
address has an entry in the file system and is represented by a character
string. In the Internet domain, the socket address is represented by the 32-
bit IP address of a host machine on the Internet. In the Internet domain
socket also need a port number to represent a 16-bit unsigned integer.

Socket data structure
Information about the socket is stored in a data structure named as
sockaddr. The sockaddr structure contains two elements sa_family and
sa_data. The sa_family element stores the protocol addresses.
struct sockaddr {

unsigned short sa_family; //address family AF_xxx

unsigned short sa_data[14]; //14 bytes of protocol addr

}

System calls for socket communication
Socket communication is established on the client-side by the following:

Creating a socket with the socket() system call.
Connecting the newly created socket to the address of the server using
the connect() system call.
Sending and receiving data with read() and write() system calls.

Socket communication is established on the server-side by the following:

Creating a socket with the socket() system call
Binding the newly created socket to an address using the bind()
system call. For a server socket on the Internet, an address consists of
a port number on the host machine.
Listening for connections with the listen() system call.

Accepting a connection request from a client with the accept()
system call. This call typically blocks until a client connects with the
server.
Sending and receiving data with the read() and write() calls.

Table 5.1 shows the set of functions used for communication between
server and client through sockets in both TCP and UDP protocols.

Protocol type Client Server

Connection-oriented

TCP

socket() socket()

connect() bind()

Listen()

TCP

accept()

send() recv()

recv() send()

connectionless

UDP

socket() socket()

bind()

sendto() recvfrom()

recvfrom() sendto()

Table 5.1: Different socket related system calls

Creating a socket (server and client)
The socket() system call creates the socket and returns a unique file
descriptor for the socket. The socket can either be a stream (TCP) socket or
a datagram (UDP) socket depending on the input arguments.

Prototype:
int socket(int domain, int type, int protocol);

The domain argument is set to AF INET or PF INET, the type argument
specifies the kind of socket and is set to SOCK STREAM for TCP streams
(telnet, HTTP, and so on) or to SOCK DGRAM for UDP datagrams; the
protocol takes value 0 to automatically select the correct protocol based on

type or IPPROTO TCP to select TCP protocol or IPPROTO UDP to select
UDP protocol.

Binding socket to an address (server)
The bind() system call is used to associate socket sockfd with a port on the
local machine. This function only needs to be called for incoming
connections on the server. It returns -1 if there is an error.

Prototype:
int bind(int sockfd, struct sockaddr *addr, int addrlen);

The first argument sockfd is the value of the descriptor returned by the
socket() system call, and the addr is the sockaddr in the data structure
containing the IP address and port number on the local machine, addrlen is
the size of the sockaddr in the data structure.

Listening incoming connection
The listen() system call listens for incoming connections. It only needs to
be called by the server for connection-oriented (TCP) sockets. The function
returns −1 on an error.

Prototype:
int listen(int sockfd, int backlog);

The sockfd is the value returned by the socket() function call, and the
backlog is the maximum number of connections allowed to wait in the
incoming queue. Incoming connections remain in the queue until it is
accepted by the server.

Initiating connection
The client calls connect() system call to initiate a connection to a server. It
is used for connection-oriented (TCP) sockets. The system call returns −1
on an error.

Prototype:
int connect(int sockfd, struct sockaddr *addr, int addrlen);

The sockfd is the value returned by the socket() function call, addr is the
sockaddr containing the IP address and port number of the server, and
addrlen is the size of the sockaddr.

Accepting the connection from the incoming
queue
The server uses accept() system call to accept a connection from the
incoming queue associated with the socket sockfd. It is used for
connection-oriented (TCP) sockets. The system call returns a new socket
file descriptor, which can be used to send and receive information on the
connection. The system call returns -1 on an error.

Prototype:
int accept(int sockfd, void *addr, int *addrlen);

The sockfd is the socket descriptor for the socket that is listening for
connections. addr is a pointer to a local sockaddr containing the IP address
and port number of the incoming connecting client. This data structure is
different from the one that contains the IP address and port number of the
server; addrlen is the size of the preceding sockaddr in the data structure.

Sending data through socket (connection-
oriented)
Once a connection has been established, the client and server use the
send() system call to send information from client to server or from server
to client. If the client is using send(), the server should be using recv() or
vice-versa. This function either returns the number of bytes sent out or
returns –1 if there is an error.

Prototype:
int send(int sockfd, const void *msg, int len, int flags);

The sockfd is the socket file descriptor for the socket being used to send
the data. On the client-side, sockfd is the same socket used when calling
connect(). On the server-side, sockfd is the socket returned from
accept(), msg is a pointer to the data that is being sent, len is the length of
the data in bytes, flags are set to 0.

Receiving message through socket (connection-
oriented)
The recv() system call is used to receive data that has been sent over the
socket. The function returns the number of bytes actually received; in case
of an error, it returns -1 or returns 0 if the other end has closed the
connection.

Prototype
int recv(int sockfd, void *buf, int len, unsigned int flags);

The sockfd is the socket descriptor for the socket from which the data is
being read. On the client-side, sockfd is the same socket used when calling
connect(). On the server-side, sockfd is the socket returned from
accept(), buf is a pointer to the buffer that will hold data after reading, len
is the maximum length of the buffer in bytes, flags are set to 0.

Receiving message through socket (connectionless)
This function is similar to send(); however, it is used for connectionless
datagrams rather than connection-oriented communications.

Prototype
int sendto(int sockfd, const void *msg, int len, unsigned int

flags, const struct sockaddr

*toaddr, int addrlen);

The sockfd is the socket descriptor for the socket being used to send the
data, msg is a pointer to the data that is being sent, len is the length of the
data in bytes, flags are set to 0, toaddr is the sockaddr containing the IP
address and port number to which the data is being sent, addrlen is the size
of the preceding sockaddr in the data structure.

Closing socket
The close() system call is used to close the socket.

Prototype
void close(sockfd);

Let us see an example of the client and server programs.

Client program
The following is the code for the client side:
#include <stdio.h>

#include <sys/types.h>

#include <sys/socket.h>

#include <netinet/in.h>

#include <netdb.h>

#include <string.h>

#define PORT 5000

#define HOST “uptu.ac.in”

#define DIRSIZE 8000

main(argc, argv)

int argc; char **argv;

{

char hostname[100];

char dir[DIRSIZE];

int sd;

struct sockaddr_in sin;

struct sockaddr_in pin;

struct hostent *hp;

strcpy(hostname,HOST);

if (argc>2)

{ strcpy(hostname,argv[2]); }

if ((hp = gethostbyname(hostname)) == 0) {

perror(“gethostbyname”);

exit(1);

}

/* fill in the socket structure with host information */

memset(&pin, 0, sizeof(pin));

pin.sin_family = AF_INET;

pin.sin_addr.s_addr = ((struct in_addr *)(hp->h_addr))-

>s_addr;

pin.sin_port = htons(PORT);

/* grab an Internet domain socket */

if ((sd = socket(AF_INET, SOCK_STREAM, 0)) == -1) {

perror(“socket”);

exit(1);

}

/* connect to PORT on HOST */

if (connect(sd,(struct sockaddr *) &pin, sizeof(pin)) == -1)

{

perror(“connect”);

exit(1);

}

/* send a message to the server PORT on machine HOST */

if (send(sd, argv[1], strlen(argv[1]), 0) == -1) {

perror(“send”);

exit(1);

}

/* wait for a message to come back from the server */

if (recv(sd, dir, DIRSIZE, 0) == -1) {

perror(“recv”);

exit(1);

}

printf(“%s\n”, dir);

close(sd);

}

Server program
Following is the code for the server side:
#include <stdio.h>

#include <sys/types.h>

#include <sys/socket.h>

#include <netinet/in.h>

#include <netdb.h>

#include <string.h>

#define PORT 5000

#define DIRSIZE 8000

main()

{

char dir[DIRSIZE]; /* used for incoming dir name,

and

outgoing data */

int sd, sd_current, cc, fromlen, tolen;

int addrlen;

struct sockaddr_in sin;

struct sockaddr_in pin;

/* get an internet domain socket */

if ((sd = socket(AF_INET, SOCK_STREAM, 0)) == -1) {

perror(“socket”);

exit(1);

}

/* complete the socket structure */

memset(&sin, 0, sizeof(sin));

sin.sin_family = AF_INET;

sin.sin_addr.s_addr = INADDR_ANY;

sin.sin_port = htons(PORT);

/* bind the socket to the port number */

if (bind(sd, (struct sockaddr *) &sin, sizeof(sin)) == -1) {

perror(“bind”);

exit(1);

}

/* show that we are willing to listen */

if (listen(sd, 5) == -1) {

perror(“listen”);

exit(1);

}

/* wait for a client to talk to us */

addrlen = sizeof(pin);

if ((sd_current = accept(sd, (struct sockaddr *) &pin,

&addrlen)) == -1) {

perror(“accept”);

exit(1);

}

/* if you want to see the ip address and port of the client,

uncomment the next two lines */

/*

printf(“Hi there, from %s#\n”,inet_ntoa(pin.sin_addr));

printf(“Coming from port %d\n”,ntohs(pin.sin_port));

*/

/* get a message from the client */

if (recv(sd_current, dir, sizeof(dir), 0) == -1) {

perror(“recv”);

exit(1);

}

/* get the directory contents */

read_dir(dir);

/* strcat (dir,” DUDE”);

*/

/* acknowledge the message, reply w/ the file names */

if (send(sd_current, dir, strlen(dir), 0) == -1) {

perror(“send”);

exit(1);

}

/* close up both sockets */

close(sd_current); close(sd);

/* give client a chance to properly shutdown */

sleep(1);

}

I/O models
There are normally two distinct phases for an input operation:

Waiting for the data to be ready.
Copying the data from the Kernel’s buffer to the process.

Blocking I/O model
When the socket is in blocking mode, Kernel puts the process in the wait
state until there is data to read or data is fully written. If data is not
available, wait till data is ready and block the process. As shown in figure
5.2, the application is asking for data from Kernel in blocking mode. In this
case, Kernel puts the application in a wait state till data is available. Once
data is available and written to the application, it resumes execution.

Figure 5.2: Block diagram of I/O model (blocking)

Non-blocking I/O model
When the socket is in non-blocking mode, the Kernel does not put the
process in a sleep state but returns with an error EWOULDBLOCK.
The non-blocking I/O model looks as shown in figure 5.3:

Figure 5.3: Block diagram of I/O model (non-blocking)

To receive data, the application repeatedly calls recvfrom. During a call, if
data is not available, then a Kernel returns an error of EWOULDBLOCK. If data
is available during recvfrom, it is copied to the application’s buffer, and the
function returns successfully. This process is called polling, where the
application is continuously polling the Kernel to see if some data is ready.
In this process, there is a wastage of CPU time, but this model is
occasionally encountered, normally on systems dedicated to one function.

I/O multiplexing model
The process is blocked in select() or poll() if one of these systems calls
instead of blocking on the actual I/O itself. On return, the socket is
readable; that is, data is ready on any of the descriptors, and process calls
recvfrom() to get the actual data.
The advantage of this model is that process can wait for more than one file
descriptor to be ready. As shown in figure 5.4, the application executes
select() system call; if data is not ready at the server end, the application

blocks the system call, but the application itself will be in running mode.
Once data is available, the application executes recefrom() function to
receive data from the Kernel and immediately returns.

Figure 5.4: Block diagram of multiplexing I/O model

A disadvantage of this model is that it requires two system calls instead of
one.

Signal-driven I/O model
In this model, Kernel notifies the process that data is available by sending
the SIGIO signal. As shown in figure 5.5, the application enables signal
handler using sigaction() function. After enabling, the application keeps
on executing. Once data is available at the Kernel end, Kernel sends a
SIGIO signal to the application. SIGIO signal is handled by the signal
handler at the application end. Now, the application call receivfrom()
function to receive data from Kernel, and when data is completely written,
it starts executing.

Figure 5.5: Block diagram of signal-driven I/O model

Initially, the socket is made enabled for signal-driven I/O. The sigaction()
system call is executed to install a signal handler for handling I/O. Once a
handler is installed, the system calls to return and does not block the
process. Once the datagram is ready, the Kernel sends a SIGIO signal to the
process. The process then reads the datagram either from the signal handler
by calling recvfrom() system call, or the main function of the process can
also read the datagram.
In this mode, the process is not blocked while waiting for the datagram to
arrive; rather, it continues executing. Once the datagram is ready to arrive,
the process is notified by the signal handler.

Asynchronous I/O model
In this mode of I/O, the io_read() function is called defining the
descriptor, buffer pointer, buffer size (same as in read() function) to the
Kernel, file offset, and the method of notification of data arrival. When the
entire operation is complete, the system calls immediately. This does not

require blocking the process while waiting for the I/O to complete. The
system model is illustrated in figure 5.6.

Figure 5.6: Block diagram of asynchronous I/O model

This model is quite different from signal-driven I/O as the signal is
generated until data has been copied into the application’s buffer.

Name and address conversion
DNS is used to map between hostnames and an IP address. The hostname
can be either a simple name (solaris) or a Fully Qualified Domain Name
(FQDN) (solaris.kohala.com).

Resource records
DNS entries are called Resource Records (RRs). It defines all the
information about the domain name, including the type of resource,
protocol family, time in seconds during which a server can cache the RR,
length of the data field, and resource data. The following table describes
different types of resource records.

Resource record type Mapping

A Maps hostname into 32-bit IPv4 address

http://solaris.kohala.com/

AAAA Maps hostname into a 128-bit IPv6 address

PTR Map IP address into a hostname. For IPv4, the 4 bytes are
reversed, and each byte is converted into a decimal ASCII
value (0-255). Then in-addr.arpa is appended.
For an IPv6 address, the 32 4-bit nibbles of the 128-bit
address are reversed. Each nibble is converted to its
corresponding hexadecimal ASCII value (0-9-a-f), and
ip6.int is appended.

MX Mail exchange for the specified host.

CNAME Canonical name, for example, assigns CNAME to
common services such as FTP, WWW, and so on.

Table 5.2: Resource types with their mapping

The gethostbyname() function
The gethostbyname() function takes the hostname of the current host and
returns the corresponding IP address to pass as a parameter to the
connect() function. It performs a query for an A and AAAA records and
returns IPv4 and IPv6 addresses.

Prototype
#include <netdb.h> /* Berkeley */

struct hostent *gethostbyname (const char *hostname);

The argument to the gethostbyname() is a string like www.yahoo.com, and
it returns a struct hostent, which contains a huge amount of information,
including the IP address. Other information is the official hostname, a list of
aliases, the address type, the length of the addresses, and the list of
addresses.

The hostent structure
The hostent structure contains information about host in hosts database. The
elements of the hostent structure are: host name, alternative name of the
host, type of address type IPv4 or IPv6, length of address in bytes, address
vector of hosts.
/* <netdb.h> */

struct hostent { /* structure returned by network */

char *h_name; /* official name of host */

http://www.yahoo.com/

char **h_aliases; /* alias list */

int h_addrtype; /* host address type */

int h_length; /* length of address */

char **h_addr_list; /* list of addresses from name server */

};

/* h_addrtype */ /* always is AF_INET */

/* h_length */ /* always is 4 */

/* h_addr_list[] */ /* for multinode host */

void main()

{

int i;

struct hostent *he;

struct in_addr addr;

// get the addresses of www.yahoo.com:

he = gethostbyname(“www.yahoo.com”);

if (he == NULL) {

herror(“gethostbyname”); // herror(), NOT perror()

exit(1);

}

// print information about this host:

printf(“Official name is: %s\n”, he->h_name);

printf(“IP address: %s\n”, inet_ntoa(*(struct in_addr*)he-

>h_addr));

printf(“\n”);

exit(0);

}

The output is the official name and IP Address of the requested URL.

The gethostbyaddress() function
The gethostbyaddr() returns a hostent structure containing the host’s
name and other information.

Prototype
#include <netdb.h>

struct hostent *gethostbyaddr(const char *addr, int len, int

type);

For TCP/IP, the first argument addr should point to struct in_addr or an
unsigned long integer in network byte order, len is normally the
sizeof(struct in_addr), and type should be AF_INET.
Host information is found either through the resolver or in your system’s
equivalent of the /etc/hosts file.
main()

{

const char *ipstr = “66.94.230.32”;

struct in_addr ip;

struct hostent *hp;

if (!inet_aton(“66.94.230.32”, &addr);

errx(1, “can’t parse IP address %s”, ipstr);

if ((hp = ethostbyaddr(&addr, sizeof addr, AF_INET); ==NULL)

errx(1, “no name associated with %s”, ipstr);

printf(“Host name: %s\n”, hp->h_name);

exit(0);

Resolver
The gethostbyname() and gethostbyaddress() functions use resolver()
library function to get host information. The resolver() function reads the
file /etc/resolv.conf to get the IP address of the DNS server to start
from.

The getservbyname() and getservbyport()
functions
The getservent() functions reads the service database to identify server to
open the connection.
The getservbyname() searches the service database to identify the service
that matches with the name specified and service protocol and opens a
connection if necessary.
The getservbyport() searches the service database to identify the service
with given port and specified protocol and opens the connection if
necessary.

All these three functions search the database in a sequential manner until a
match is found or until EOF occurs.

Prototype
#include <netdb.h>

struct servent *getservbyname (const char *servname, const

char *protname);

struct servent *getservbyport (int port, const char

*protname);

The servent structure is as follows:
struct servent {

char *s_name; /

char **s_aliases;

int s_port;

char *s_proto;

};

The members of this structure are:

s_name: The official name of the service.
s_aliases: A zero-terminated list of alternate names for the service.
s_port: The port number at which the service resides. Port numbers
are returned in network byte order.
s_proto: The name of the protocol to use when contacting the service.

These functions use static data storage; if the data is needed for future use.

Conclusion
The socket is an interface between client and server either residing in a
single system, on a network, or across different networks to send and
receive information. The client program sends a request of data to the server
through connections oriented or a connection less interface. In this chapter,
all concepts related to socket programming have been discussed. These
include different types of sockets, functions to establish a connection, and
sending and receiving messages between client and server. In this chapter,
we discussed about socket programming for communication in a UNIX
environment. There various other environments are also available for the

UNIX platform user may customize these environments. We will discuss
these environments in the upcoming chapter.

Review Exercise
1. From the command line, read (1) the URL from which you can extract

the name of the remote WWW server and the file to retrieve and (2)
the server port number. Create a socket that is connected to the server
machine at the specified port (e.g., HTTP port 80) [getservbyname,
gethostbyname, socket, connect].

2. What information does a process running on one host to identify a
process running on another host use?

3. Does a server program request and receive services from a client
program?

4. Create the socket using socket(), convert the hostname to an IP
address using gethostbyname(), and then issue the connect() call,
passing the relevant structures containing the IP address and port to
connect to.

M

CHAPTER 6
Memory Management

emory is considered as an important resource in computers, and
memory management is the process of managing the computer

memory, which consists of primary memory and secondary memory. The
purpose of memory management is to efficiently allocate the different types
of available memories among processes that are running or residing in the
system. It keeps track of which parts of memory are in use and which parts
are not in use to allocate memory to processes when they need it. The
memory allocated to the running process is deallocated once the process
terminates so that it can be given to another process requesting the memory
resource. UNIX operating system implements swapping and demand paging
techniques to manage the system’s memory. This chapter discusses all
concepts and techniques used for the proper management of memory
resources.

Structure
In this chapter, we will cover the following topics:

Memory management

Use of operating system memory
Memory contents of the running process in UNIX
Swapping
Implementation of memory management functions

Memory management functions

Setting branch to another function

Objective

After reading this chapter, the reader will be able to know how UNIX is
written in C and how UNIX operating system is used extensively for
programming in C. In this section chapter, we will study some UNIX and C
interface concepts such as:

To understand the use of different types of memory resources in the
UNIX operating system.
To understand different memory management techniques such as
swapping and demand paging.
To understand system calls and memory management functions.
To understand context switching during the function call.

System calls and library functions:

Command-line arguments and environment variables.
multitasking in C in UNIX using fork(), exec().
Process synchronization using wait().
Accessing user information using system calls.
Sharing of data and inter-process communication mechanisms.
Socket programming fundamentals.

Memory management
The memory management component of the UNIX Kernel manages the
contents of processor memory. UNIX-like operating systems use
sophisticated memory management algorithms for the efficient use of
memory resources. In UNIX, there are three different types of memory
resources, including main and secondary memory:

Main: Physical memory available on the CPU motherboard is called
main memory. This does not include processor caches, video memory,
or other peripheral memory.
File system: Physical memory, available on the local disk or on the
network and accessible through pathname. This does not include raw
devices, tape drives, swap space, or other storage not addressable via
normal pathnames.

Swap device: A swap device is a physical memory available on the
disk to hold data that is not in RAM or in the file system. A swap
device can be used efficiently when it is on a separate disk or partition.

Use of operating system memory
For efficient management of memory resources, it is kept reserved for both
the operating system’s own functions and for the processes being executed.
Some part of memory is always reserved and cannot be used for users’
processes.

Kernel memory: It is the operating system’s private memory always
available on the main memory.
Cache memory: It is part of the main memory to hold elements of the
file system and I/O operations. Cache memory does not include CPU
cache disk drive.
Virtual memory: Virtual memory includes the total addressable
memory space of all processes running on the machine. The total
address space of the process can be spread over all three types of
memories.

Memory contents of a running process in UNIX
A process on UNIX uses memory to hold its data, stack, and mapped files:

Data segment: This includes allocated memory to hold process data.
Stack segment: This segment of the process holds the execution stack
and is fully managed by the operating system.
Mapped files: This section of the process includes files contents
accessed within the process memory space.

Swapping
Swapping occurs when a running process needs a virtual page in the
physical memory, and there is no free space available in the physical
memory. In this situation, the operating system moves out some of the
pages from the main memory and brings in the required pages from the
swap device. The decision regarding which pages to be swapped in or

swapped out is done by the scheduler (swapper). The scheduler wakes up at
least once every 4 seconds to check which processes can be swapped out. A
process that has been idle in the main for a long time is most likely to be
swapped out. If no such process is there in the main memory, then a large
process is selected for swapping out. A process that has been swapped out
for a long time and small is most likely to be swapped in. To prevent
thrashing, processes that have not been in the main memory for a certain
amount of time are not selected for swapping out. Process pages selected
for swapping out to the location depending on their type. Pages from the
data segment are moved to swap space, pages from the stack segment are
moved to swap space, and pages from the mapped file are moved to the
originating file if changed and shared. The pages from the mapped file are
moved to swap space if changed and private. If pages from mapped files are
unchanged, they are discarded.

Demand paging
Demand paging is a paging policy in which a page is not read into the
memory until it is requested. Demand paging transfers only required
memory pages instead of a process to and from a secondary device.
The Kernel implements a page table to achieve demand paging. Page table
converts logical page address to physical page address. The page table uses
a binary flag to check the page’s validity. A page is valid if it resides in the
main memory and invalid if it currently resides in secondary memory.
When a process needs a page, and the page is not there, a page fault
interrupts to the Kernel occurs. Kernel checks if page reference is valid in
the secondary memory, it schedules disk read operation to swap in the
demanded page. Once the page is in the main memory, it restarts the
interrupted instructions.

Note: Berkeley introduced demand paging to UNIX with BSD
(Berkeley System).

Advantages of the demand paging policy are that it permits greater
flexibility in mapping the virtual address of a process into the physical
memory of a machine, usually allowing the size of a process to be greater

than the amount of availability of physical memory and allowing a greater
number of processes to fit in the main memory simultaneously.
Disadvantages of the demand paging policy are that a single process may
face extra latency when a process requires a page first time. More page
faults may cause thrashing, and the process may face the security risk of a
timing attack.
The mkdir system call
The mkdir() function creates a new directory named by the pathname
pointed to by path.

Prototype:
int mkdir(const char *path, mode_t mode);

The mode of the new directory is initialized from mode. The protection part
of the mode argument is modified by the process’s file creation mask.
The directory’s owner ID is set to the process’s effective user ID. The
directory’s group ID is set to the process’s effective group ID, or if the
S_ISGID bit is set in the parent directory, then the group ID of the directory
is inherited from the parent. The S_ISGID bit of the new directory is
inherited from the parent directory.
If path names a symbolic link, mkdir() fails and sets errno to EEXIST.
The newly created directory is empty with the exception of entries for itself
(.) and its parent directory (..).
Upon successful completion, 0 is returned. Otherwise, -1 is returned, no
directory is created, and errno is set to indicate the error.
The rmdir system call
The rmdir() system call removes a directory file whose name is given by
path. The directory must not have any entries other than “.” and “..”.

Prototype:
int rmdir(const char *path);

The rmdir() function returns the value 0 if successful; otherwise, the value
-1 is returned, and the global variable errno is set to indicate the error.
Before deleting a directory entry, the system checks the link count entry (ls
-l command) to identify whether the directory to be deleted is opened by

some other process or not. The directory is deleted only if the link count of
the directory is 0 with this call and no other process has the directory open,
then the space occupied by this directory is freed.

Memory management functions
Memory to the variables can be allocated and freed dynamically.

The malloc() function
malloc requires one argument - the number of bytes you want to allocate
dynamically.
If the memory allocation is successful, malloc will return a void pointer.
You can assign this to a pointer variable, which will store the address of the
allocated memory.
If memory allocation fails (for example, if you are out of memory), malloc
will return a NULL pointer.

The free() function
Passing the pointer into free will releases the allocated memory. It is good
practice to free memory when you have finished with it.
void free(void *ptr);

Where ptr is the pointer.
Consider the following Example:
#include <stdio.h>

#include <stdlib.h>

int main() {

int number;

int *ptr;

int i;

printf(“How many ints would you like store? “);

scanf(“%d”, &number);

ptr = malloc(number*sizeof(int)); /* allocate memory */

if(ptr!=NULL) {

for(i=0 ; i<number ; i++) {

*(ptr+i) = i;

}

for(i=number ; i>0 ; i--) {

printf(“%d\n”, *(ptr+(i-1))); /* print out in reverse order

*/

}

free(ptr); /* free allocated memory */

return 0;

}

else {

printf(“\nMemory allocation failed - not enough memory.\n”);

return 1;

}

}

The calloc() function
calloc is similar to malloc, but the main difference is that the values stored
in the allocated memory space are zero by default. With malloc, the
allocated memory could have any value.
ptr = (cast_type *) calloc (n, size); calloc requires two
arguments. The first is the number of n variables you had like to allocate
memory for. The second is the size of each variable represented as size.
Like malloc, calloc returns a void pointer ptr if the memory allocation
was successful; else, it returns a NULL pointer.
Consider the following example:
#include <stdio.h>

#include <stdlib.h>

int main() {

float *ptr1;

int i;

ptr1 = calloc(3, sizeof(float));

if(ptr!=NULL) {

for(i=0 ; i<3 ; i++) {

printf(“ptr1[%d] holds %05.5f, “, i, ptr1[i]);

}

free(ptr1);

return 0;

}

else {

printf(“memory not successfully allocated\n”);

return 1;

}

}

The realloc() function
The realloc() function is used to change the size of the already allocated
block of memory without losing data in that memory location.
ptr = realloc (ptr,newsize);

realloc takes two arguments. The first is the pointer referencing the
memory, that is, ptr whose size is needs to be changed. The second is the
total number of bytes that needs to be reallocated, that is, newsize.
Passing zero as the second argument is the equivalent of calling free,
realloc returns a void pointer if successful, else a NULL pointer is
returned.
#include<stdio.h>

#include <stdlib.h>

int main() {

int *ptr;

int i;

int number;

printf(“How many ints would you like store? “);

scanf(“%d”, &number);

ptr = calloc(number, sizeof(int));

if(ptr!=NULL) {

for (int I =0; I<number ;I++)

*(ptr + I) = i;

ptr = realloc(ptr, (number 2)*sizeof(int));

if(ptr!=NULL) {

printf(“Now allocating more memory… \n”);

ptr[number] = 32; /* now it’s legal! */

ptr[number ++1] = 64;

for(i=0 ; i<(number +2); i++) {

printf(“ptr[%d] holds %d\n”, i, ptr[i]);

}

realloc(ptr,0); /* same as free(ptr); - just fancier! */

return 0;

}

else {

printf(“Not enough memory - realloc failed.\n”);

return 1;

}

}

else {

printf(“Not enough memory - calloc failed.\n”);

return 1;

}

}

The alloca() function
The alloca() function allocates space in the stack frame of the caller
function. This temporary space is automatically freed when the function
that is called alloca() returns to its caller. The alloca() function returns a
pointer to the beginning of the allocated space. If the allocation causes stack
overflow, program behavior is undefined.
The alloca() function is machine and compiler-dependent. On many
systems, its implementation is buggy.

Prototype:
#include <alloca.h >

void *alloca(size_t size);

Setting branch to another function
C program does allow to jump to the label set in another function. To
branch the control to another function setjump and longjump functions are
used. Generally, these kinds of jumps should be avoided because it is not
considered as a good programming practice.

Prototype:
int setjmp(jmp_buf env); void longjmp(jmp_buf env, int val);

Consider the following example:
#include <setjmp.h>

#include <stdio.h>

jmp_buf ebuf;

void f(void);

int main(void)

{

int i;

printf(“1 “);

i = setjmp(ebuf);

if(i == 0) {

f();

printf(“This will not be printed.”);

}

printf(“%d”, i);

return 0;

}

void f(void)

{

printf(“2 “);

longjmp(ebuf, 3);

}

Conclusion
Memory is considered as an important resource of the computer system. If
memory is not managed properly, it can degrade the overall performance of
the operating system. The memory management function is used to keep
track that which part of memory is used and how much and which part of
memory is free to assign to the processes requiring memory space. The
memory management function controls both primary and secondary
memory available in the system. The UNIX operating system implements
swapping and demand paging techniques for efficient use of system
memory. The memory can be dynamically allocated and deallocated as and
when required.

Multiple choice questions

1. Which technique allows the execution of processes that may not be
completely in memory?

a. Virtual memory
b. Memory management
c. Physical memory
d. None of the above

2. Which of the following are all UNIX system calls?

a. time(), chdir(), createdir(), execve()
b. chmod(), main(), waitpid(), exit()
c. (c) open(), fork(), delete(), read()
d. lseek(), stat(), link(), kill()

3. The mechanism that brings a page into memory when there is a
page fault.

a. Demand paging
b. Segmentation
c. Fragmentation
d. Page replacement

4. The virtual memory manages the logical address space of a
process.

a. True
b. False

5. Which header file is required to be included to access dynamic
memory allocation functions?

a. stdlib.h
b. stdio.h
c. memory.h
d. alloc.h

6. Which of the following functions is used to modify the size of
dynamically allocated memory?

a. realloc()
b. malloc()
c. free()
d. alloca()

7. Indicate which amongst the following statements are true for
virtual memory.

a. It allows for multiple users to use the system
b. It enhances the scope for multi-programming
c. It extends the address space
d. It reduces external fragmentation as well as internal

fragmentation.

Answers
1. (a)
2. (c)
3. (b)
4. (b)
5. (a)
6. (a)
7. (b)

Questions
1. What is the main goal of memory management?
2. What is the difference between swapping and paging?
3. What are the processes that are not bothered by the swapper? Give

reason.
4. Why UNIX does not allow the paging-out of Kernel memory?

A

CHAPTER 7
UNIX Shell and Custom Environment

s we know, the most visible part of the UNIX operating system is the
shell, and this makes it the most important component to be known to

the users. To perform any task, we must give a command to the shell. If the
command needs a utility or an application program, the shell requests
Kernel to execute it. A shell has two parts; the first is an interpreter, which
takes the user’s command and converts it to the system’s understandable
form. The second component is the shell’s programming capability that
allows us to the right shell script. Another important function performed by
the shell is customizing the environment to work in. In this chapter, we will
closely look at the types, features, and functions of the shell as an
interpreter and environment customizer.

Structure
We will cover the following topics in this chapter:

Functionality and execution modes of UNIX’s shell.
Shell execution cycle
Features provided by an available standard shell in the UNIX
Significance and uses of shell metacharacters
Avoiding interpretation of meta characters using escaping and quoting
Command input/output using three standard files
Manipulating default input and output streams using redirections
Use of noclobber option
Use /dev/null files
Grouping commands together
Significance of pipelining different commands together
Customizing environment using shell environment variables

Understanding and customizing user’s profiles

Objectives
After going through this chapter, you will be able to:

Understand the fundamentals and functionality of shell
Understand different functional modes of the shell
Understand concepts involved in executing shell commands
Understand command grouping and pipelining
Understand user’s profiling

Introduction to shell
A shell is simply a program that acts as an interface UNIX. The shell is
often called as a command interpreter because it allows the system to
understand the user’s commands. There are several shells provided by the
system, each having different features, but all of them affect how
commands are interpreted. The shell provides tools to create the UNIX
environment.
The shell is a utility in UNIX. It is loaded into the memory when the user
logs in to the system. The shell to be executed during the login process is
listed in /etc/passwd file corresponding to the respective entry of the user.
If no shell is specified in the /etc/passwd file, the standard shell
/usr/bin/sh is executed by default.

Execution modes of UNIX shell
UNIX shell is basically executed in the following three mode:

1. Interactive mode
2. Shell programming mode
3. UNIX session customization mode

Interactive mode

In the interactive mode, the shell waits for the user to enter the command,
which is then interpreted by the shell. The command gets executed after
removing all errors. The command may include special symbols to
abbreviate filenames and to redirect input and output.

Programming mode
In the programming mode, the system executes a set of UNIX commands
together in the form of a shell script. Many built-in commands are grouped
together in the form of a shell script. In contrast with the interactive mode,
the script can be preserved and can be executed layer also.

UNIX session customization mode
UNIX shell controls the session behavior through predefined shell
variables. Shell variables are used to set the user’s home directory, prompt
symbol, setting mails, and so on. Some shell variables are automatically set
by the system, whereas the user can set other shell variables in startup files.

Shell interpretation cycle
Shell command processing is generally performed in five steps:

1. The shell displays a prompt symbol on the terminal as soon as it starts.
2. The shell simply waits for the user to enter the command to be

executed.
3. The shell analyzes the command entered by the user.
4. The shell proceeds to carry out the user’s request. If a particular

program is required to be executed, the shell searches the disk to find
the specified program.

5. Once the program is found shell asks the Kernel to initiate the
program execution and goes to sleep until the program execution is
completed. In case the program reads input from the standard input, it
waits for the user to type input on the command prompt during
execution.

Once the program execution is over control again returns to the shell to
execute the next program/command.

Functions of UNIX shell
Figure 7.1 shows the basic functions performed by the shell. Further details
of the functions are given in subsequent sections.

Figure 7.1: Uses of shell

Program execution
Shell initiates the execution of all programs requested from the user
terminals. The program to be executed is given as a command line on the
terminal as follows:

Program-name list-of-arguments
Shell scans the command line and identifies the name of the program to be
executed and the values of parameters passed to execute the program.
Till the first white space, the shell takes everything as the program name;
each argument is also separated by white space. If multiple white spaces are
given between program name and argument, the shell ignores extra white
spaces.

Example:
prog.sh first_arg second_arg

prog.sh: Program name
first_arg second_arg: Argument list

Input/output redirection
Shell takes care of input/output redirection on the command line. During
the execution of the program, the shell scans the input command for special
redirection operators <, >, and >>.
Shell has the ability to redirect input and/or output from and/or to files.
During the execution of the program shell takes care of input/output
redirection on the command using special redirection operators <, >, and
>>. The < operator takes the input to the command from the file given on
the right-hand side. The > redirects the output of the command to a file. The
>> append s output of the command at the end of an existing file.
ls -l > file1

In the preceding example output of ls –l command is redirected to file1. If
file1 already exists, then its contents are replaced by the current output. The
command being executed is not concerned with where the output is
redirected.
Let us consider two exactly same commands:
wc –l file1
output : 10
wc –l < file1
output : 10 file1

In the first case shell determines the command wc to be executed for
counting the number of lines in the file file1; it opens the file file1 and
counts the number of lines.
In the second case, wc executes slightly different. The shell determines the
input redirection operator < when it scans the command line, the word
following < symbol is the name of the file from which input is to be
redirected. The shell executes wc command, redirecting its standard input
from the file file1.

Command pipelining

Like redirection operators shell determines the | symbol while scanning the
command line. For each such symbol, the shell transfers the standard output
of the command preceding | to the command following | symbol.
Let us consider the command:
ls –l | wc -l

The preceding command outputs the total number of files in the current
directories. The command ls –l lists files and directories in the current
directory and writes the result to the standard output, unaware of the |
symbol; the output of the command is then transferred as standard input to
the command wc –l, which, when then executes and determines that there
is the no of files provided as input and calculates a total number of lines on
the standard input.

Environment customization
Shell environment contains a set of predefined variables. These variables
are called environment variables. Shell keeps these variables to control and
configure behavior of utility programs. The value of shell variables is
generally set outside the program by the operating system or through
microservices. In UNIX, there is a large set of environment variables that
includes:

Path to the user’s home directory: (HOME)
Search for shell command (PATH)
Default prompt (PS1)
The terminal type (TERM)
UNIX hostname (HOSTNAME)

Shell provides commands to customize the environment.

Shell programming language
Shell has its own programming language to write shell scripts. In contrast
with other functional programming languages such as C and C++, where
the whole program is compiled and converted into execution code, the shell
programming language is interpreted, which means each statement written

in a shell programming language is interpreted and checked for error once
and executed.
Shell programming involves using the shell commands and shell
programming language to write shell scripts. A shell script is a series of
commands written in plain text commands. The commands may be internal
or external shell commands and shell programming constructs such as if-
then-else construct, loops, case construct, variables, expressions, and so on.

Types of shells
Like most of the operating systems, the UNIX shell does not built-in rather
shell in UNIX is just another program. UNIX shell protects the Kernel as
well as the user from each other. There are several shells provided by the
system, each having different features. Different shells can be considered in
two shell families—the Bourne shell family and the C shell family.

The Bourne shell family
The Bourne shell family consists of three shells the Bourne shell (/bin/ sh)
and the two derivatives of the Bourne shell—Korn shell (/bin/ksh) and
Bourne again shell /bin/bash (BASH)

The Bourne shell
The Bourne shell was developed by Steve Bourne AT&T labs is the oldest
UNIX shell. This comes bundled with almost all UNIX versions. The
unenhanced version of the Bourne shell is BASH, which is used in LINUX.
The Bourne shell commands are algorithm-style programming language
(ALOGOL) style.

The Korn shell
The Korn shell was developed by David G Korn at AT&T labs. It is a
superset of the Bourne shell and has many more capabilities. The Korn shell
incorporates all interactive features of the C shell in the Bourne shell’s
syntax. Korn shell adds the following new features to the Bourne shell:

Arrays

Filename completion
Command aliases
Functions
Command history and substitution

Another variant of the Korn shell is POSIX, available with HP-UX 11.0. In
HP-UXPOSIX is installed in /bin/sh and Bourne shell is installed in
/usr/old/bin/sh.

The BASH (Bourne again) shell
The bash was developed by Brian Fox of the free software foundation. It is
currently maintained by Chester Ramey. The unenhanced version of the
Bourne shell is BASH, which is used in LINUX.
Bash provides the following few additional features to the Korn shell:

An array of unlimited sizes.
Correction of the pathname in cd command.
Integer arithmetic in any base between 2 and 64.
Completion of filename, hostname, and variable name

The C shell family
The C shell family consists of a C shell (/bin/csh) and its derivative tcsh
(/bin/tcsh).
The C shell was developed by BILL joy in Berkeley and contained the
command, which looks like C statements. The compatible version of the C
shell is tcsh, which is used in LINUX. The C-like commands in the C shell
were intended to improve programming because programmers were
familiar with the C language at Berkeley. TENEX/TOP is the new version
of the C shell, which allows scrolling through the command history, and
command listing is possible through arrow keys.
The C shell has become popular for interactive use because of its improved
features:

Command history: Previously executed commands can be recalled
for further execution. These commands can be re-edited before

execution.
Command aliases: Short mnemonic names can be given to the
commands.
Filename completion: C shell automatically completes the filename
by just writing a few characters of the filename.
Job control: The C shell executes multiple processes. The concurrent
processes are controlled using jobs commands.

The C shell is used for writing scripts because of the following reasons:

Lazy interpreter
Lack of functions
Weak input and output

Summary of features
The following table shows the summary of features provided by the
different shells:

Command
history

Command
alias

Shell
scripts

Filename
completion

Command-line
editing

Job
control

Bour
ne

N N Y N N N

C Y Y Y Y* N Y

TC Y Y Y Y Y Y

Korn Y Y Y Y* Y* Y

BAS
H

Y Y Y Y Y Y

Table 7.1: Shell wise features

Meta character and wild cards
Shell metacharacters are special symbols that the shell interprets rather than
passing them to the command.
The list of metacharacters is as follows:

Meta character symbol Meaning

? Filename substitution wild card single character

* Filename substitution wild card multiple characters

[] Filename substitution wild card any character between
brackets

< Input redirection

<< Input redirection (here, document)

> Output redirection

>> Output redirection (append)

Comment

() Command grouping

“cmd” Command substitution

$(Cmd) Command substitution

| Pipe

; Command sequence

& Run command in the background

|| OR logical operator

&& AND logical operator

$ Expand the value of the variable

\ Avoid interpretation of the next character

Table 7.2: Metacharacters for file name substitution

Sometimes it is required not to interpret these symbols by the shell. Shell
provides three different options to prevent the interpretation of these
metacharacters (discussed in the next section).

Command standard input/output
In the UNIX system, a program including many UNIX commands is
aromatically connected to the terminals. Terminals are represented by
generic files. A command takes input from a generic file when no
filename/pathname is specified and sends the output to the generic file
when no filename/pathname is specified. By default generic file (terminal)

through which input is provided is called standard input; the generic file
(terminal) to which the command’s output is displayed is called standard
output and sends any error message to standard error. When the command is
reading input from standard input and writing output to the standard output,
it means that it is reading from the keyboard and writing to the screens, as
shown in figure 7.2.

Figure 7.2: Standard I/O

In UNIX, standard input is accessed by a generic file named stdin, standard
output is accessed by a generic file named stdout, and standard error is
accessed by a generic file named stderr. In UNIX, every file has a number
associated with it. All operations performed on the file are actually
performed on the associated file descriptor. The generic file for standard
output, standard input, and standard error is always open and access to the
command or program that runs. These generic files also have associated file
descriptors to be accessed and modified. The file descriptors reserved for
standard I/O are as follows:

Filename File descriptor

stdin 0 (Keyboard)

stdout 1 (Screen)

stderr 2 (Screen)

Table 7.3: File descriptors for standard files

Note: Some commands do not take input from standard input.

Example: cat file1

Redirection

By default, each command or program is connected to a standard file for
input and output. This default assignment can be changed temporarily using
redirection. Redirection is the process of specifying which file will be used
in place of any of the standard generic files to provide input or to take the
output from the command.

Output redirection
Execution of the program always generates some output on the shell
prompt; however, there are some situations when output is required to be
directed elsewhere, such as:

If output of the program is required to be transferred directly to the
printer.
If the output is required to be used later.
If a lot of output is generated from the program, it is difficult to see all
the output because the screen scrolls very rapidly.

In all these situations, the output can be redirected elsewhere, either to the
file or to the printer.
There are two basic redirection operators for standard output > and >>.
Think > symbol as an arrow pointing output of the command to the file that
is to receive the output. The choice of operator used will be dependent on
how the user wants to handle the output. If the user wants that file should
contain the output of the current command only, the > operator will be used.
In this case, if a file already contains something, that will be replaced by the
output of the current command.

Example:
$ls -l > file1

Symbol > is recognized as the special output redirection, and the word next
to this symbol is treated as the file name.
In the preceding example, the output of ls –l command is redirected to the
file file1. If file1 already exists, then its contents are replaced by the
current output. The command being executed is not concerned with where
the output is redirected.

Note: If file1 does not already exist, UNIX creates the file and copies
the output.

If a user wants to append the output of the current command to the file, the
token for redirection is two >> signs. If the file does not already exist,
UNIX creates the file and redirects the output.
Consider an example of joining two files one after another:
$cat file1 >> file2

In the preceding example, the contents of file1 will be copied to file2.

Safe I/O redirection with noclobber
The noclobber shell variable in c shell or noclobber option in bash and ksh
prevents accidentally destroying the contents of a file. Reconsider the
redirection example:
$ls –l > file1

In this example, if file1 already exists, its contents are replaced by the
output of the command ls –l. If noclobber option is turned on, it prevents
destroying the contents of the file; instead, it generates an error message.
The command for setting noclobber is as follows:
% set noclobber (C shell)
$ set –o noclobber

Note: If the user explicitly wants to replace an existing file during
redirection, an exclamation (!) is required to be placed after the
output redirection operator.

Example:
% ls – l > ! file1

The following table shows the common standard I/O redirections:

Function Csh sh

Send stdout to file prog > file prog > file

Send stderr to file prog 2> file

Send stdout and stderr to file prog >& file prog > file 2>&1

Take stdin from file prog < file prog < file

Send stdout to end of file prog >> file prog >> file

Send stderr to end of file prog 2>> file

Send stdout and stderr to end of file prog >>& file prog >> file 2>&1

Read stdin from keyboard until c prog << c prog << c

Pipe stdout to prog2 prog | prog2 prog | prog2

Pipe stdout and stderr to prog2 prog |& prog2 prog 2>&1 | prog2

Table 7.4: Common standard I/O redirections

Input redirection
Similar to the output redirection, as a default, input to the program is given
through the keyboard terminal. However, sometimes a large amount of
input is required to execute the program. In this situation, the input can be
stored in the file, and later it can be used as input to the program being
executed. The input redirection operator is less than < symbol. Think of an
arrow pointing to the command.

Example:
$ mail George < mail_file

The preceding command mails the contents of the file mail_file to
George.
Let us consider two exactly same commands:
Case 1: wc –l file1
output: 10
Case 2: wc –l < file1
output: 10 file1

In Case 1, the shell determines the command wc to be executed for counting
the number of lines in the file file1; it opens the file file1 and counts the
number of lines.
In Case 2, wc executes in a slightly different manner. The shell determines
the input redirection operator < when it scans the command line, the word
following < symbol is the name of the file from which input is to be

redirected. The shell executes wc command, redirecting its standard input
from the file file1.

Note: Both input and output redirection cannot be used in a single
command.

Redirecting error
A standard stream to display error generated by a program or command is
by default combined with a standard output stream. Consider an example:
$ls -l file1 file2

Output:
Cannot access file2. No such file or directory
-rwxr-xr-x 1 workshop acs 532 May 2015:31 . file1

Output and the error message are both displayed on the same screen. Users
can redirect standard errors to the file and leave the output on the screen, or
vice-versa is also possible. To do this user needs to specify the file
descriptor along with the redirection operator. Let us reconsider the
preceding example:
$ls –l file file2 1> out_file

Output:
Cannot access file2. No such file or directory
$ cat out_file
-rwxr-xr-x 1 workshop acs 532 May 2015:31 . file1

The error message is shown on the screen to inform us that there is a
problem while executing the command, and the output is redirected to the
file out_file.
Both error message and output can be redirected to the file as follows:
$ls –l file file2 1> out_file 2> err_file
$more err_file
Cannot access file2. No such file or directory
$more out_file
-rwxr-xr-x 1 workshop acs 532 May 2015:31 . file1

Redirecting to the one file

Both STDOUT and STDERR can be redirected to the same file. Consider an
example:
$ls –l 1> out_file 2> &1

Discarding STDOUT or STDERR
Either or both STDOUT and STDERR can be discarded by redirecting to a null
device accessed by a special write-only file /dev/null.

Example:
$ls –l > /dev/null 2>&1

Leftmost redirection sends SDTOUT to /dev/null file, and 2>$1 indicates
that Channel 2 should be redirected to the same file as Channel 1.

Command grouping
Commands may be grouped in the following two ways:

{ command-list ; }
(command-list)

In the first command, list is simply executed. The second form executes the
command list as a separate process. For example, (cd x; rm junk)
executes rm junk in the directory x without changing the current directory
of the invoking shell.
The commands cd x; rm junk has the same effect but leaves the invoking
shell in the directory x.

Command pipelining
Sometimes it is required to execute a series of commands to complete the
task. Consider an example if the user wants to generate a hard copy of the
list of files and directories in the current directory. To generate the list ls –
l command will be used; the output of this command will be stored in some
file using redirection, and then the lpr command will be used to print the
file.
$ls –l > file1
$lpr file1

These two commands can be written as single command combining them
using pipe (|) as follows:
$ ls –l | lpr

When a pipe is set up between two commands, the standard output from the
first command is connected directly to the standard input of the second
command. The output of the first command is not displayed on the screen
because it is piped directly with the second command.
A pipe can be made between the two commands only if the first command
writes its output to the standard output and the second command takes its
input from the standard input.

Note: Pipe is an operator, not a command, which tells the shell to
redirect the output of the first command as input to the second
command.

Consider another example: if a list of files and directories in the current
directory is very large, it scrolls up, and we can only see the last page of the
output of ls –l command. We can use a pipe to see output one page at a
time:
$ls –l | more

The tee command
The tee command copies output of the command or program to the
standard output and, at the same time, copies it to one or more files. The tee
command first creates the file to copy the output, and if the file is already
existing, it overwrites the output. To prevent overwriting to an existing file,
the -a option is used with the tee command. With –a option, the output is
appended instead of overwritten.
Consider the following example:
$ls –l tee file_list

In the preceding example, a long list of files and directories in the current
directory is displayed on the monitor as well it is copied to the file
file_list.

UNIX environment variables

Environment variables are predefined variables. Environment variables
control the user environment. In a shell environment, variables are
commonly used to communicate to and from the shell. For example, setting
a PATH variable tells the shell in which directory to look for the commands;
the shell automatically sets the variable PWD when the current directory is
changed.
Environment variables are managed by the shell and are inherited by all
processes, including the sub-shell. The new process gets its own copy of
these variables. These local copies can be read, modified, and passed on to
the children of the processes.
You can set environment variables with a command like this:
In Bourne and Korn shell:
$ NAME=value

In C shell:
% setend NAME value

PATH variable
The PATH environment variable lists directory searched for commands.
When a command is given at the prompt, the directories listed in the PATH
variable are searched in the order specified.
Syntax for setting PATH variable is as follows:
$ PATH= :/usr/bin

If there are multiple directories, each will be separated by: can be specified
as a search path. An empty string specifies the current directory.

Note : $0 displays the current shell of the user.

The external program “env” prints all the environment variables.

HOME variable
The HOME environment variable is set by the login process. It specifies the
login’s home directory. When cd command is executed without any
argument, it automatically goes to the home directory.

Prompt string 1 (PS1) variable
The variable PS1 is a set of characters specified as a prompt symbol.
Generally, it is a “$” sign. However, this can be changed to anything the
user wants.

Prompt string 2 (PS2) variable
The PS2 is displayed when the system thinks that the new line started
without completing the command. Generally, it is > sign.

MAIL variable
MAIL variable contains the address of the mailbox. MAIL variable is set
during the login process in the user’s profile.

CDPATH variable
When cd command is executed to change the directory, the shell searches
the directory inside the current directory. Variable CDPATH contains the list
of additional directories to be searched to change the directory.
$CDPATH= $HOME

Example:
$cd ch_dir

Shell looks for the directory ch_dir in the current directory; if ch_dir is not
found in the current directory, the shell searches the list of directories
defined in CDPATH variables.

MAILCHECK variable
MAILCHECK variable specifies the time and how often the shell checks for the
mail. The default value of this variable is 10 minutes for the Bourne shell. If
this variable is not set, shell disables the mail checking.

Note: Specifying the current directory as a search path may be
dangerous sometime; consider a condition if somebody creates a

program in the current directory, then this trojan horse will be
executed in place of the actual who command

Note: If MAILCHECK is set to 0, the shell checks the mail whenever
it prints the primary “prompt” symbol.

MAILPATH variable
Bourne shell checks a single directory set in the MAIL variable to provide
mail notification. If the user wants to watch multiple mailboxes, MAILPATH
variable is required to be set. MAILPATH variable consists colon of a separate
list of files or directories to be checked to provide mail notification.
$MAILPATH=/usr/spool/mail/George:/usr/spool/mail/cust_query

NOTE : Shell ignores MAIL variable if MAILPATH variable is set.
Both can’t be used together.

In addition, the login process defines several other environment variables.
TERM defines the terminal type, USER or LOGNAME defines userID, SHELL
defines the default shell, and TZ defines the time zone.

User’s profile
When a user logs in to the UNIX system, the shell displays the prompt
symbol and waits for the user to type the command. However, before
displaying the prompt, symbol shells executes two files.
The first file is /etc/profile, set up by the system administrator. This file
contains system-wide default settings for all the users who login using
Bourne shell (/bin/sh). This file usually performs things such as checking
whether MAIL is set, default file creation mask (umask), and setting
standard exported variables. Command in this file is simple variable
assignments.
A typical /etc/profile file is as follows:
#Set file creation mask

unmask 022

#Tell me where new mail arrives

MAIL=/usr/mail/$LOGNAME

#Add my /bin directory to the shell search sequence

PATH=/usr/bin:/usr/sbin:/etc::

#Set terminal type

TERM=lft

#Make some environment variables global

export MAIL PATH TERM

The second file is .profile, set up by the system administrator and
automatically gets executed in the user’s home directory after the login
process adds LOGNAME and HOME variables to the environment. This file
contains the definition of several shell variables and exports them to
customize the user’s own environment. Because .profile is stored in the
user’s home directory, user can change their .profile to include whatever
commands to be executed when the user logs in. Commands in .profile can
override the settings in the /etc/profile file.
A typical .profile is as follows:
PATH=/usr/bin:/etc:/home/bin1:/usr/lpp/tps4.0/user::
epath=/home/gsc/e3:
export PATH epath
csh

The .profile is simply a shell script that gets executed when the user logs in.
Regular UNIX commands can also be included in the .profile. Modifying
.profile makes a customized UNIX environment for the user.

Note: .profile is not shown in the listing of files and directories in the
home directory because it is a hidden file. To list it, ls –a command is
used.

Conclusion
The shell is an important component of the UNIX operating system. Users
can interact with Kernel through the shell. It acts as a command interpreter
for the UNIX Kernel. In addition to command interpretation, the UNIX
shell also provides programming capabilities in the form of shell scripts.
Most of the system administration tasks are performed using shell scripts.
The shell also controls environment variables. This chapter discusses all
possible features and functions of the UNIX shell. The next chapter

includes the details about shell programming constructs and writing shell
script in detail. The details contains the logics, control and other commands
used to develop programs to solve problems using shell script writing.

Test your skills
1. Which of the following command displays the login shell?

a. $SHELL
b. $0
c. Echo $SHELL
d. Echo $0

2. Which of the following command displays the current shell?

a. $SHELL
b. $0
c. Echo $SHELL
d. Echo $0

3. What is the descriptor of standard output stream?

a. 0
b. 1
c. 2
d. 3

4. What is the descriptor of standard input stream?

a. 0
b. 1
c. 2
d. 3

5. What is the descriptor of standard error stream.

a. 0
b. 1

c. 2
d. 3

6. Which of the following command creates the Bash subshell?

a. Bash
b. bsh
c. Csh
d. None of the above

7. Assuming that dat_file is a text file, what is the error (if any) in
each of the following commands?

a. Date | dat_file
b. Dat_file | date

Answers
1. e
2. a
3. b
4. a
5. c
6. a
7. b

Review Exercises
1. Put a listing of the files in your directory into a file called filelist.

(Then delete it!)
2. Create a text file containing a short story, then use the spell program to

check the spelling of the words in the file.
3. Redirect the output of the spell program to a file called errors.
4. Type the command ls -l and examine the format of the output. Pipe the

output of the command ls -l to the word count program wc to obtain a
count of the number of files in your directory. Create your own bin

subdirectory in your home directory and make it part of the search
PATH.

5. Explain why we cannot use input indirection with cal, date, man, and
which commands.

6. Explain why we cannot use output indirection with the echo
command?

7. If we use the following commands in sequence: Command 1 |
Command2

a. What is the necessary requirement for Command1?
b. What is the necessary requirement for Command2?

8. One of the following commands works, and the other does not. Which
one works, and what is the problem with other commands?

a. date | more
b. more | date

9. Can we use input indirection with vi command?
10. Briefly explain the concept of pipelining here or give reference to the

earlier chapter (if it has already been explained) before proceeding
with the commands.

Lab practice
1. Execute the who command and display the result in the file called

file1. Use more to see the contents of the file.
2. Display the long list of files and directories in the current directory

and send the output to the printer.
3. What is the difference between backslash, a double quote, and a single

quote?
4. How can we make a duplicate of standard output and send them to two

different files?
5. How following two commands are different from each other.

a. cal > out_file
b. cal 1 > out_file

6. Consider the command ls –l | tee

a. Where does the input of the tee command will come from?
b. How many output files will be created?

Environment variables are managed by your shell. The difference between
environment variables and regular shell variables (6.8) is that a shell
variable is local to a particular instance of the shell (such as a shell script),
while environment variables are “inherited” by any program you start,
including another shell (38.4). That is, the new process gets its own copy of
these variables, which it can read, modify, and pass on in turn to its own
children. In fact, every UNIX process (not just the shell) passes its
environment variables to its child processes.

T

CHAPTER 8
Shell Programming Using Bourne

Shell
he UNIX operating system has emerged as a standard operating
system for the development of the application. The essence of the

UNIX operating system exists in its efficient environment for application
development. The strength of UNIX lies in its long and sophisticated list of
more than 200 commands and also the way these commands can be
combined to perform a more useful function in the form of shell scripts.
A shell simply accepts user commands and converts them into a system
understandable form. Shell also provides fundamental programming
concepts to make decisions control the execution of scripts and functions.

Structure
In this chapter, we will cover the following topics:

Introduction to shell
Uses of UNIX shell
Writing shell script
Understanding basic commands used in shell programming
How to control the flow of logic using control commands in shell
programming

Objective
After reading this chapter, you will be able to learn to:

Advanced concepts of the shell as a programming language
Features and mode of execution of shell
Shell programming contracts

Control commands in shell programming

Introduction to shell programming
A shell is simply a program that acts as an interface to UNIX. The shell is
often called as a command interpreter because it allows the system to
understand the user’s commands. There are several shells provided in the
system, each has different features, but all of them affect how commands
are interpreted. The shell provides tools to create the UNIX environment.
The shell functionality includes control flow primitives, variable and string
substitution, and parameter passing.
Shell processing is generally executed in five steps, as discussed in the
previous chapter. The details of these steps are in the forthcoming section.

Writing shell scripts
Shell scripts are used to automate tasks that need to be done regularly. They
are extensively used by the system administrator. Shell scripts save time as
you do not have to type the commands every time and can just store them in
a file as a shell script and run the shell script instead.
A shell script can be written directly on the terminal as follows:
$ ls –l |wc –l

We can write shell programs by creating scripts containing a series of shell
commands into a file using an editor like vi. Later the file can be executed
by the shell.
$vi my.sh

We also need to specify that the script is executable by setting the proper
bits on the file with chmod:
For example:
$ chmod +x my.sh

We can then execute it on the shell prompt as follows:
$ my.sh

Or
$./my.sh

Following is an example of a simple shell script:

$vi my.sh
#my.sh
echo “My first shell script”
echo “Hello $LOGNAME”
echo “Date is `date`”
$chmod +x my.sh
$my.sh

My first shell script:
Hello usha
Date is Wed Feb 22 10:11:37 IST 2006

From the first shell script, we note that:

Within the script, # indicates a comment from that point until the end
of the line.
LOGNAME is an environment variable, and $LOGNAME is accessing its
value.
We can substitute the output of a command using command
substitution by using backquotes as in date. Here the date command is
executed, and its value is substituted in the echo output.

Variables
As in all programming languages, the shell also allows to store values into
variables. We can create our own variables in the shell and assign values.
Conventionally, the shell variable name starts with an alphabet or
underscore (_) character followed by zero or more alphanumeric values or
underscore characters.
$param=value

Where value is any valid string and can be enclosed within quotations,
either single (value) or double (value), to allow spaces within the string
value. When enclosed with backquotes (“value”), the string is first
evaluated by the shell, and the result is substituted. This is often used to run
a command, substituting the command output for value.
The value stored in the shell variable can be displayed using the echo
command. Shell uses a special $ symbol followed by the variable name to
substitute its value, for example:

$ echo $param

Shell first substitutes value stored inside param and then executes the echo
command. Values of more than one variable can be substituted at the same
time:
$ echo $ param $count

In this case, the shell substitutes the value of param and count and then
executes the echo command.
Shell variable can be used anywhere on the command line once it is
declared:
$ my_dir=/users/home
$ ls $my_dir

In the preceding example, ls command will display the contents of directory
users/home through the variable my_dir.
Shell variable can also store command name as value:
$ my_command=cp
$ $my_command file1 file2

In the preceding example, the shell first substitutes cp in place of
my_command and then executes cp command to copy file1 to file2.
If we try to display a variable without assigning any value, the shell does
not give any error message; instead, it displays blank:
$ $var

Followings are the examples of displaying values of different shell
variables:
// Command : $day=”Monday”
$echo $day
Output : Monday
Command : $ day=‘date +%a‘
$ echo $day
Output: : Wed

After the parameter values have been assigned, the current value of the
parameter is accessed using the $param, or ${param} notation.
Some points are required to be considered while assigning values to
variables:

White spaces are not allowed before and after the equal to sign.

In the shell, programming values are not bound to the data type as in
other programming languages. The value of the shell variables is
always considered as a string no matter what type of value is assigned
to it. If Value 12 is assigned to the variable, it is considered as String
12, not Integer 12.
As in other programming languages, the shell variable is not required
to be declared before use because its value is not bound to the data
type.

Comment
The details about the comment are already discussed in the previous chapter
as conventional programming languages shell provides a way to write
remarks inside the program. A special symbol # is provided to write
comments. Whenever # is encountered in the program, the words following
till the end of the line are considered as a comment. If # starts, the line
entire line is treated as a comment.
this line is to write remarks

cp $file1 $file2

Test for the correct argument

Quoting
Strings are quoted to control the way the shell interprets any parameters or
variables within the string. The single (’) and double (″) quotes can be used
to quote strings.

Single quotes
Single quotes are used to keep words together which are otherwise
separated by whitespaces. Single quotes are also used to preserve white
spaces. All special characters are ignored by the shell if they are enclosed
inside single quotes.
As an example, let us consider a file per_data:
$ cat per_data
John miller 34 graduate
Bill Geirge 45 graduate

John Gates 50 graduate

Search the pattern Bill in the file per-data.
$ grep Bill per_data
Output : Bill Geirge 45 graduate

If the search string is John, then:
$grep John per_data

The output of the preceding command will be:
John miller 34 graduate
John Gates 50 graduate

But if Bill Gates is required to be found specifically, then:
The command is:
$ grep Bill Gates per_data

The output is an error.
grep can’t open Gates

grep command takes second words as a file name. To search pattern
containing two or more words, the search pattern must be enclosed in the
single quotes.
$ grep ‘Bill Gates’ per_data

Let us take another example to show whitespace preservation using single
quotes:
$ echo this example is to show use of single quotes
Output : this example is to show use of single quotes

To preserve white spaces, the string is to be displayed should be enclosed
within single quotes:
$ echo ‘this example is to show use of
single quotes ‘
Output : : this example is to show use of
single quotes

Let us take an example to show ignorance of special characters:
$ var=23
$ echo $var

Output : 23 , $var is substituted by value of variable var.
$ echo ‘$var’

Output: $var, the substitution of value is ignored because $var is enclosed
inside the single quotes.

Double quotes
Double quotes work similar to single quotes, but it does not ignore dollar
signs, back quotes, and backslash characters.
As an example, let us use the variable, var, that has been assigned the value
bat, and the constant string, man. If I wanted to combine these to get the
result batman, I might try:
$varman

But this does not work because the shell will be trying to evaluate a variable
called varman, which does not exist. To get the desired result, we need to
separate it by quoting or by isolating the variable with curly braces ({}), as
in:
“$var”man - quote the variable
$var””man - separate the parameters
$var”man” - quote the constant
$var’’man - separate the parameters
$var’man’ - quote the constant
$var\man - separate the parameters
${var}man - isolate the variable

These all work because ″, ’, \, {, and } are not valid characters in a variable
name.
We could not use either of:
’$var’man
\$varman

Because it would prevent the variable substitution from taking place. When
using the curly braces, they should surround the variable only and not
include the $; otherwise, they will be included as part of the resulting string,
for example:
$ echo {$var}man
{bat}man

The backslash

The backslash is used to quote a single character. When a single character is
following a backslash, any special meaning assigned to that character is
ignored.
For example:
$ echo >

In the preceding example, the shell assumes > as the indirection operator
and generates an error because it does not find the corresponding file in
which standard output will be transferred. To ignore special meaning of >
operator, it should be preceded by \ symbol:
$ echo \>
Output : >

As discussed in the previous section, a double quote does not ignore
backslash. This means that \ can be used inside a double quote to ignore the
special meaning of the character, which is otherwise not ignored by double-
quotes.
$ x=23
$ echo ‘\$x”
Output: :$x

Command substitution
Command substitution means inserting the standard output of the command
at any point in the command line.
The shell performs command substitution by enclosing the command in the
backquotes (`).
$ echo current directory : pwd

Output: current directory: pwd; in this command pwd is treated as a
simple string.
$echo current directory; `ped`

Output: current directory: /users/home
When the shell finds a backquote while scanning the command line, it
expects a command following the backquote. If the command is found, it
first executes the command and substitutes the output on the command line.

Special shell variables

There are a number of variables automatically set by the shell when it starts.
These allow you to reference arguments on the command line.

Variable Usage

$# Number of arguments on the command line.

$- Options are supplied to the shell.

$? The exit value of the last command executed.

$$ Process number of the current process.

$! Process number of the last command done in the background.

$n Argument on the command line, where n is from 1 to 9, reading left
to right.

$0 The name of the current shell or program.

$* All arguments are passed to the shell program on the command line
(“$1 $2 … $9”)

$@ All arguments on the command line, each separately

quoted (“$1” “$2” … “$9”)

Table 8.1: Shell Script built-in-parameters with details

We can illustrate these with some simple scripts as follows:
Example:
echo “$#:” $#
echo ‘$#:’ $#
echo ‘$-:’ $-
echo ‘$?:’ $?
echo ‘$$:’ $$
echo ‘$!:’ $!
echo ‘$3:’ $3
echo ‘$0:’ $0
echo ‘$*:’ $*
echo ‘$@:’ $@

When executed with some arguments it displays the values for the shell
variables, for example:
$./variables.sh one two three four five
5: 5

$#: 5
$-:
$?: 0
$$: 12417
$!:
$3: three
$0: ./variables.sh
$*: one two three four five
$@: one two three four five

The shift command
The list of strings typed after shell script names on the command line are
passed as arguments to the shell script. $1, $2–$9 refers to the positional
arguments to the shell script. If the numbers of arguments are greater than
nine, then the shift command is used.
The shift command is used to effectively left shift positional parameters.
The argument $1 is lost; the value of $2 is shifted to $1, and so on. The
inaccessible tenth parameter is available for $9.
Following is the example of a shift command:
vi shift.sh
echo “functioning of shift command’
echo $1
shift
echo $1

Save and execute shift.sh file as follows:
shift.sh shift command

The output of this shell script is as follows:
functioning of shift command
shift
command

The set command
The set command is used to explicitly initialize the values of positional
parameters:

set a b c

The set command will assign values a, b, and c to $1, $2, and $3,
respectively.
Following is the example of the set command:
vi set.sh
set ONE TWO THREE
echo $1
echo $2
echo $3

Save and execute the script:
$ set.sh
Output ONE TWO THREE:
l
EDITOR= /users/bin
HOME=/users/George
LOGNAME=Geore
PATH= /users/bin

The set command is also used to reassign the values of positional
parameters. The positional parameters take values from strings passed on
the command line at the time of execution of the shell script. The only way
to change these values is to use set command during execution.

Interactive input
Shell scripts will accept interactive input to set parameters within the script.
Shell uses the built-in command, read, to read in a line from standard input
and assign whitespace delimited words to variables. If a number of words
are more than the number of variables, then excess words are stored in the
last variable.
The exit status of the read command is zero unless an end-of-file condition
is encountered. If reading is performed from the terminal, the end-of-file is
encountered when Ctrl + D is pressed. If reading is performed from the file,
the end-of-line is encountered when there is no more data in the file.
Consider the following example:
$ vi add.sh

while read v1 v2
do
echo $ ((v1 –v2))
done
When executed:
$ add.sh
23 13
10
25 5
20
Ctrl = d
$

Let us take another example:
$ read age name
39 Bill George
$ echo ‘$age\n $name’
39
Bill George

We can illustrate this with the simple script:
#!/bin/sh
echo “Input a phrase \c” # This is /bin/echo which requires
“\c” to prevent <newline>
read param
echo param=$param

When we run this script, it prompts for input and then echoes the results:
$./read.sh
Input a phrase hello mca01 # I type in hello mca01 <return>
param=hello mca01

Subshell
As discussed earlier, there are multiple shells in the system corresponding
to each terminal. Moreover, the shell creates sub shell whenever a shell
script is executed. A subshell is an entirely new shell for executions of the
program. A new shell runs with its own shell environment and local
variables. A subshell does not have knowledge of local variables assigned
in its parent shell. A subshell cannot change the value of a variable in the

parent shell. A subshell can also not change the values of the built-in
environment variables in the parent shell.
Following is the example of a local variable in subshell:
vi loc_var.sh
echo initialize local variable x in sub shell
x=50
echo $x
$ loc_var.sh execute loc_var.sh
$50 Sub shell terminated
$ echo $x
$

This will display blank because variable x is not assigned any value in the
parent shell.
Following is the example of a subshell with environment variables:
vi shell_vars.sh
echo $PS1
PS!=’=>’

Save and execute the file shell_var.sh:
$ shell_var.sh
$ $
=>

Now again, display PS1 from the parent shell:
$ echo $PS!

$ $

That means changes made in the environment variables of subshell are not
reflected in the parent shell.

Exporting variables
As discussed earlier, a subshell does not have knowledge of local variables
assigned in the parent shell. If local variables in the parent shell are required
to be accessed in the subshell, they must be first exported. Exporting
variables means passing down variables to the subshell.
Following is the example of local variables in sub shell:
$ x=200

$ echo 4x
$ 200
vi exp_var.sh
echo x = $x

Save and execute script exp_var; the output is x.
Since variable x is not available in the subshell to access, the output of the
subshell is x, not 200. To export x to the subshell and to access the value of
x to the subshell, it needs to be exported to the subshell.
Following is the example for exporting local variable:
$ x=200
$ export x
$ exp_var.sh
x=200

This time variable x is exported to the subshell; therefore, this time, the
output is 200.

Test operator for comparisons
The built-in shell command test is used to test logical conditions:

Test expression
The expression represents the logical comparison. The test operator can be
used for numeric comparisons, string comparisons, or file-related
comparisons.
Conditional statements are evaluated for true or false values. This is done
with the test, or its equivalent, the [] operators. If the condition evaluates to
true, a zero (TRUE) exit status is set; otherwise, a non-zero (FALSE) exit
status is set. If there are no arguments, the non-zero exit status is set.

Test operator for files: test [option] filename
Every shell script deals with a file. Due to this reason, test commands
provide a set of options to test various attributes of the files. We can check
whether a file exists, whether it is readable, and so on, using the test
operator.
The options available for the test operator for files include:

-r: True if it exists and is readable.
-w: True if it exists and is writable.
-x: True if it exists and is executable.
-f: True if it exists and is a regular file (or for csh, exists and is not a
directory).
-d: True if it exists and is a directory.
-h or -L: True if it exists and is a symbolic link.
-c: True if it exists and is a character special file (that is, the special
device is accessed one character at a time).
-b: True if it exists and is a block special file (that is, the device is
accessed in blocks of data).
-p: True if it exists and is a named pipe (fifo).
-u: True if it exists and is setuid (that is, has the set-user-id bit set, s
or S in the third bit).
-g: True if it exists and is setgid (that is, has the set-group-id bit set, s
or S in the sixth bit).
-k: True if it exists and the sticky bit is set (a t in bit 9).
-s: True if it exists and is greater than zero in size.

There is a test for file descriptors:

-t [file_descriptor]: True if the open file descriptor (default is 1,
stdin) is associated with a terminal.

All these operators are unary in nature. They take a single argument as the
name of the file, including the directory.
Following is an example of the use of a file:
#check a file

echo “Enter a filename”

read fname

if test –d $fname

then

echo “$fname is a directory”

else

echo “$fname is a file”

fi

Test for strings:
There are tests for strings: we can check if a string has a length of zero or
compare two strings, as shown in the following table:

-z string: True if the string length is zero.
-n string: True if the string length is non-zero.
string1 = string2: True if string1 is identical to string2.
string1 != string2: True if string1 is non identical to string2.
string: True if the string is not NULL.

Following is an example to use string check:
#check if string is null

echo “Enter a file name”

read fname

if test –z $fname

then

echo “Enter a non null filename”

fi

It will ask for the filename. If no filename is given, it will print Enter a
non null filename.
Test for numeric comparisons:
A test operator can be used to compare two numbers. There are integer
comparisons is given as follows:

n1 -eq n2: True if integers n1 and n2 are equal.
n1 -ne n2: True if integers n1 and n2 are not equal.
n1 -gt n2: True if integer n1 is greater than integer n2.
n1 -ge n2: True if integer n1 is greater than or equal to integer n2.
n1 -lt n2: True if integer n1 is less than integer n2.
n1 -le n2: True if integer n1 is less than or equal to integer n2.

Following is an example of a program for numeric comparisons:
#compare.sh

echo “Enter two numbers”

read n1 n2

if test $n1 –eq $n2

then

echo “The numbers are equal”

elif test $n1 –gt $n2

then

echo $n1 is greater than $n2

else

echo $n2 is less than $n1

fi

It will be as two numbers to enter. If both the numbers are equal, it will
print The numbers are equal; otherwise, then it will test the greater number
and print the message accordingly.
The test command can also be represented using [and] without the test
operator.
For example:
if [-d $fname]

then

Echo “$fname is a directory”

else

Echo “$fname is a file”

fi

Logical operators with test
The following logical operators are also available:

The negation operator (!)
The ! unary operator can be used with a test command to negate the result
of the evaluation of any expression.
[! –r /users/home/data]

Condition will evaluate true if directory /user/home/data is not readable.

The logical AND operator

The -a and (binary) operators perform logical AND of two expressions with
test command.
[-f $file1 –a –r $file1]

The preceding condition will evaluate true if variable file1 contains an
ordinary file and it is readable.

The logical OR operator
The -o or (binary) performs logical or of two expressions with test
command.
[-f $file1 –o -r $file1]

The preceding condition will evaluate true if variable file1 contains either
an ordinary file, or it is readable

Control commands
Bourne shell has control commands such as if-then-else construct, case
construct, loops, and expression evaluation.

Conditional if
This is the basic control flow mechanism. It uses the if, elif, and else
commands/keywords to control the flow of the process.
if condition1

then

command list if condition1 is true

[elif condition2

then

command list if condition2 is true]

[else

command list if condition1 is false]

fi

The conditions to be tested for are usually done with the test command. The
if and then must be separated, either with a <newline> or a semicolon (;).
Following is an example to check number of command line arguments:
#!/bin/sh

if [$# -ge 2]

then

echo $2

elif [$# -eq 1]; then

echo $1

else

echo No input

fi

There are required spaces in the format of the conditional test, one after
[and one before]. This script should respond differently depending upon
whether there are zero, one, or more arguments on the command line. First
with no arguments:
$./if.sh
No input

Now with one argument:
$./if.sh one
one

And now with two arguments:
$./if.sh one two
two

Conditional case
To choose between a set of string values for a parameter use case in the
Bourne shell:
case parameter in

pattern1[|pattern1a]) command list1;;

pattern2) command list2

command list2a;;

pattern3) command list3;;

*) ;;

esac

You can use any valid filename meta-characters within the patterns to be
matched. The ;; ends each choice and can be on the same line, or following
a <newline>, as the last command for the choice.
Additional alternative patterns to be selected for a particular case are
separated by the vertical bar, |, as in the first pattern line in the preceding

example. The wildcard symbols,: ? to indicate any one character and * to
match any number of characters, can be used either alone or adjacent to
fixed strings.
This simple example illustrates how to use the conditional case statement:
#menu.sh

clear

echo “Press 1 to see directory listing “

echo “Press 2 to see users logged in”

echo “Press 3 to quit”

echo “Enter your choice”

read choice

case $choice in

1)ls

;;

2)who

;;

3)exit

;;

*) echo “Unknown option”

;;

esac

The while command
The while command lets you loop as long as the condition is true. The
condition is tested; if its exit status is zero, the command list enclosed
between doing and done is executed repeatedly till the condition remains
true.
while condition

do

command list

[break]

[continue]

done

The command list enclosed between do and done may never be executed if
the exit status of the condition is non-zero.
A simple script to illustrate a while loop is as follows:

#!/bin/sh

while [$# -gt 0]

do

echo $1

shift

done

This script takes the list of arguments, echoes the first one, then shifts the
list to the left, losing the original first entry. It loops through until it has
shifted all the arguments on the argument list.
$./while.sh one two three
one
two
three

The until command
The until is a control command used for executing a set of statements until
the condition is true. As soon as the condition becomes false, the control
moves out of the until loop.
until condition

do

command list while condition is false

done

The condition is tested at the start of each loop, and the loop is terminated
when the condition is true. The until construct is similar to while only it
executes command list as long as condition after until returns non-zero
status.
A script equivalent to the preceding example is as follows:
#!/bin/sh

until [$# -le 0]

do

echo $1

shift

done

Notice, though, that here, we are testing for less than or equal, rather than
greater than or equal, because the until the loop is looking for a false

condition. Both the until and while loops are only executed if the condition
is satisfied. The condition is evaluated before the commands are executed.
Same as while the command list between do and done might never be
executed if the condition returns zero status the first time it is tested.

The for command
One way to loop through a list of string values is with the for command.
for variable [in list_of_values]

do

command list

done

The list_of_values is optional, with $@ assumed if nothing is specified.
Each value in this list is sequentially substituted for a variable until the list
is emptied. Wildcards can be used and are applied to file names in the
current directory.
Here is a for loop for copying all files ending in old to similar names ending
in .new. In these examples, the basename utility extracts the base part of the
name so that we can exchange the endings.
#!/bin/sh

for file in *.old

do

newf=`basename $file .old`

cp $file $newf.new

done

The break command
The break command is used to make an immediate exit from the loop.
When break command is executed, control immediately switches to the
next statement written just after the loop, and then the program continues as
normal.
Condition status within the loop construct serves no purpose but returns
zero or non-zero depending upon the loop in which the break command is
used.
Following is an example using the break command:

while :

do

read -p “Enter integer number ; ‘ a

if [$a -eq -1]

then

break

fi

done\

echo $a

The continue command
The continue command passes control to the next iteration of the loop
bypassing the remaining command in the loop body.
Following is an example of the shell script to display even numbers:
for number in 1 2 3 4 5 6 7 8

do

case $number in (1| 3|5 |7) continue

esac

echo $number

done

It will give the output 2 4 6 8.

Special string operations
We can also find out the length of the string, extract a substring or locate a
character in a string using the expr operator.
To calculate the string length: use expr with “.*”
$expr “abcdefghijk” : ‘.*’
12

Prints the length of the string.
Use the following to extract a substring:
$expr “abcd” : ‘..\(..\)’
cd

The number of dots corresponds to the number of characters. This means to
retrieve characters cd in the string abcd, we skip the first two characters and

then extract two characters.
Next, let us locate a character in a string:
$expr “abcdefg” : ‘[^d]*d’
4

This command is used to locate the position of character d in the string
abcdefg. The expr command indicates that skip all characters that are not d
till it reaches the character d.

Parameter substitution
You can reference parameters abstractly and substitute values for them
based on conditional settings using the operators defined following. Again
we will use the curly braces ({}) to isolate the variable and its operators.

$parameter: Substitute the value of the parameter for this string
${parameter}: Same as above. The brackets are helpful if there is no
separation between this parameter and a neighboring string.
$parameter=: Sets parameter to null.
${parameter-default}: If a parameter is not set, then use default as
the value here. The parameter is not reset.
${parameter=default}: If the parameter is not set, then set it to
default and use the new value
${parameter+newval): If the parameter is set, then use newval;
otherwise, use nothing here. The parameter is not reset.
${parameter?message}: If the parameter is not set, then display the
message. If the parameter is set, then use its current value.

There are no spaces in the preceding operators. If a colon (:) is inserted
before the -, =, +, or ? then a test if first performed to see if the parameter
has a non-null setting.
To illustrate some of these features, we will use the following test script:
#!/bin/sh

param0=$0

test -n “$1” && param1=$1

test -n “$2” && param2=$2

test -n “$3” && param3=$3

echo 0: $param0

echo “1: ${param1-1}: \c” ;echo $param1

echo “2: ${param2=2}: \c” ;echo $param2

echo “3: ${param3+3}: \c” ;echo $param3

In the script, we first test to see if the variable exists; if so, we set a
parameter to its value. As follows, we report the values, allowing
substitution.
In the first run through the script we will not provide any arguments:
$./parameter.sh
0: ./parameter.sh # always finds $0
1: 1: # substitute 1, but don’t assign this value
2: 2: 2 # substitute 2 and assign this value
3: : # don’t substitute

In the second run through the script, we will provide the arguments:
$./parameter one two three
0: ./parameter.sh # always finds $0
1: one: one # don’t substitute, it already has a value
2: two: two # don’t substitute, it already has a value
3: 3: three # substitute 3, but don’t assign this value

Functions
The Bourne shell has a function facility too. These are somewhat similar to
aliases in the C shell but allow more flexibility. The function is reusable
code that can be later called from UNIX code.
A function has the form:
fcn () { command; }

Where the space after {, and the semicolon (;) are both required; the latter
can be dispensed with if a <newline> precedes the }. Additional spaces and
<newline>’s are allowed.
ls() { /bin/ls -sbF “$@”;}

ll() { ls -al “$@”;}

The first one redefines ls so that the options -sbF are always supplied to
the standard /bin/ls command and acts on the supplied input, “$@”. The
second one takes the current value for ls (the previous function) and tacks
on the -al options. Functions are very useful in shell scripts.

Passing arguments to function
Positional parameters $1, $2, …, $n are used arguments to the function.
White spaced set of strings is used to assign the values to the positional
parameters during the function call. For example:
Shell__fun ()

{

echo $1

echo $2

}

To assign values to $1 and $2, the function will be called as follows:
Shell_fun “hell” World”

Returning from function
Shell function returns the control in four different ways:

Changes the states of the local variables within the function.
Using exit command to terminate shell script.
Using the return command to exit from the function and return a value
to the calling section of the shell script.
echo the output to the terminal.

Following is an example script to explain returning from a function:
fun_ret.sh

fun1_ret()

{

c=`expr $1 = $2’

return

}

Fun1_ret 10 20

ret=$?

echo sum is $ret

Save and execute script fun_ret.sh:
Output is:
Sum is 30

Trapping signals
A process running in UNIX can receive signals and respond to them. For
example, when we give the kill –9 command, we send signal Number 9 to
the process to abort it. UNIX lets you alter the effects of signals using a
trap.

Trap command signal list
Trap waits for the signal given in the signal list. If a signal shows up, it
executes the command.
Consider the following example:
#myfile.sh

file=$1

pat=$2

trap ‘rm –f test.$$’ 1 2 15

if grep $pat $file > test.$$

then

echo “Pattern found”

else

echo “Pattern not found”

fi

rm –f test.$$

So, if we send an interrupt before the program reaches the trap line, the
interrupt will act in the usual way; that is, it will terminate the program. If
the interrupt is sent after the program has read this line, the commands in
the trap will be executed.

Arrays
Bourne and C shell do not support arrays, but bash and Korn shell support
arrays. The array facility provided by Korn shell is limited to one dimension
and can have a maximum of 1,024 elements.
Array elements can be assigned in two ways. One is to use the standard
variable assignment method with the array index operator []. For example:
my_arr [3]= arr3

The value arr3 is assigned to the element of my_arr with Index 3.

The second method to assign values to the array elements is using a variant
of the set command. For example:
set –A my_arr arr1 arr2 arr3---

This will assign arr1 to the variable my_arr[0], arr2 to the variable
my_arr[1], and so on. If the array is not already created, it first creates and
then assigns values to the corresponding array indices.
An array element can be referred to in the same manner as other shell
variables. For example, i-th index of array my_arr can be referred as $
my_arr [i]. Index i can be generated using mathematical expressions. If *
is placed in the place of the index, it will refer to all elements of the array
separated by space. Omitting i will automatically be replaced by index 0.
The shell provides # operator to count total elements in the array. For
example $ { # my_arr [*]} will refer to all the elements of array my-arr.
$ksh invokes the Korn shell.
We can declare and set values to an array as follows:
$myarr={10 23 14 15 16}

To print all the elements of the array:
$echo ${myarr[*]}

Output will be: 10 23 14 15 16.
To print the size of the array:
$echo ${#myarr[*]}

Output: 5.
To assign values to individual elements, use:
$myarr[0]=15; myarr[1]=18

Conclusion
UNIX is a large collection of commands. Users can build their own
complex commands by combining these simple sets of commands. The
notion of software development in UNIX started with the shell at the top
level of the program. The UNIX shell is a full-featured programming
language with a shell environment, shell variable, command-line
arguments, conditional, and control constructs. In addition to the basic tools
of programming, the shell also provides array, functions, and signal

trapping with limited capacity. The bourn shell is considered as a primary
shell for UNIX operating system.

Review Exercise
1. Write a shell script to display a word repeatedly a number of times.

[Command line arguments: word, number]
2. Write a shell script to check for a leap year. [Command line argument:

four digit year]
3. Write a shell script to delete all lines from a file that contains the word

UNIX. [Command line argument: filename]
4. Write a shell script to compare two files and delete the second file if

found equal. [Command line arguments: file1, file2]
5. Write a shell script to find the sum of digits of a number. [Command

line argument: number]
6. Write a shell script to find the factorial of a number.
7. Write a shell script to prefix each line of a file by line number.

[Command line argument: filename]
8. Write a shell script to convert all lower case characters in a file to

upper case. [Command line argument: filename]
9. Write a shell script to copy the date without time into a file.

10. Write a shell script to check whether the given file is a regular file or a
directory.

11. Write a shell script that displays logged-in users after every 15
seconds.

12. Write a shell script to count down from a number to 0. If no arguments
are provided, the starting number should be taken as 10. [Command
line argument: number]

13. Write a shell script to change all uppercase filenames in the current
directory to lowercase.

14. Write a shell script to change the extension of all text files in the
current directory, from .txt to .doc

15. Write a shell script to add a message (c) MCA 2006-2007 at the end of
all text files in the current directory

16. Write a shell script to repeatedly ask for the capital of India. The
program should terminate once the user enters Delhi.

17. Write a shell script to check whether a user is logged in or not.
18. Write a shell script to echo Good Morning or Good Afternoon or Good

Evening according to the time of day.
19. Write a shell script to delete files passed as command-line arguments
20. Write a shell script to count the number of lines in a file that contain a

given word. [Command line arguments: word, filename]
21. What are system and user variables? Discuss any five system

variables.
22. Write a shell script to reverse the digits of an input number n.
23. Explain different shell programming constructs with suitable

examples.
24. Explain the usage of the following variables:

a. $#
b. $*
c. $$
d. (d)$?
e. PS1

25. Write a shell script to identify whether an odd or an even number of
parameters is passed.

Solutions to some of the shell scripts are provided here:
#Shell Script to display a word repeatedly
if [$# -ne 2]

then

echo “Usage: a1 word number”

exit

else

i=1

while [$i -le $2]

do

echo $1

i=`expr $i + 1`

done

fi

#Shell Script to check for a leap year
if [$# -ne 1]

then

echo “Usage: $0 year”

exit

fi

if [`expr $1 % 4` -eq 0 -a \(`expr $1 % 100` -ne 0 -o `expr

$1 % 400`

-eq 0 \)]

then

echo $1 is a Leap Year

else

echo $1 is not a Leap Year

fi

#Shell Script to delete all lines containing the word UNIX
if [$# -ne 1]

then

echo “Usage: $0 filename”

exit

else

grep -v “UNIX” $1 > tmp

mv tmp $1

fi

#Shell Script to compare 2 files and delete the second file if
#found equal
if [$# -ne 2]

then

echo “Usage: $0 file1 file2”

exit

else

cmp -s $1 $2

if [$? -eq 0]

then

rm -f $2

else

echo “Files $1 and $2 are not identical”

fi

fi

Shell Script to find the sum of digits of a number
if [$# -ne 1]

then

echo “Usage: $0 number”

exit

else

sum=0

num=$1

while [$num -ne 0]

do

tmp=`expr $num % 10`

sum=`expr $sum + $tmp`

num=`expr $num / 10`

done

echo The sum of digits is $sum

fi

#Shell Script to find factorial of a number
if [$# -ne 1]

then

echo “Usage: $0 number”

exit

else

fact=1

count=1

while [$count -le $1]

do

fact=`expr $fact * $count`

count=`expr $count + 1`

done

echo “Factorial is $fact”

fi

Shell Script to prefix each line of a file by line number
if [$# -ne 1]

then

echo “Usage: $0 filename”

exit

else

nl $1 > tmp

mv tmp $1

fi

Shell Script to convert all lower case characters to upper
case
if [$# -ne 1]

then

echo “Usage: $0 filename”

exit

else

tr “[a-z]” “[A-Z]” < $1 > tmp

mv tmp $1

fi

#Shell Script to copy date without time in a file
date|cut -d” “ -f1-3,6 >file

cat file

#Shell Script to check for a regular file or directory
if [$# -ne 1]

then

echo “Usage: $0 filename”

exit

fi

if [-d $1]

then

echo It is a Directory

else

if [-f $1]

then

echo It is a Regular File

else

echo It is neither a directory nor any regular file

fi

fi

#Shell Script to display logged in users after every 15
seconds
while :

do

who -H

sleep 15

done

Shell Script to count down from a number to 0
if [$# -eq 0]

then

start=10

else

start=$1

fi

while [$start -ge 0]

do

echo $start

start=`expr $start - 1`

done

#Shell Script to change all uppercase filenames to lowercase
for oldfile in *

do

if [$newfile != $oldfile]

then

mv $oldfile $newfile

fi

done

Shell Script to change all .txt extension to .doc extension
for file in *.txt

do

lname=`basename $file txt`

mv $file ${lname}doc

done

#Shell Script to add a message (c) MCA 2006-2007 at end of all
#text files in current directory
for file in *.txt

do

echo “(C) MCA 2006-2007” >>$file

done

#Shell Script to check capital of India
capital=delhi

ans=empty

while [$ans != $capital]

do

echo “Enter capital of India? “

read ans

done

#Shell Script to check for a logged in user
if [$# -ne 1]

then

echo “Usage: a17 login_name”

exit

fi

who|grep $1 >/dev/null

if [$? -eq 0]

then

echo $1 is currently logged in

else

echo $1 is currently not logged in

fi

#Shell Script to greet a user according to time
h=$(date|cut -c 12-13)

if [$h -ge 4 -a $h -lt 12]

then

echo Good Morning

else

if [$h -ge 12 -a $h -lt 17]

then

echo Good Afternoon

else

echo good Evening

fi

fi

#Shell Script to delete files passed as command line arguments

if [$# -lt 1]

then

echo “Usage: $0 file1 file2…”

exit

fi

max=$#

n=1

while [$n -le $max]

do

rm -r $1

shift

n=`expr $n + 1`

done

#Shell Script to count the number of lines which contain a
word
if [$# -ne 2]

then

echo “Usage: $0 word filename”

exit

fi

grep -c $1 $2

Index
Symbols
/etc/group file

about 51
attributes 52

/etc/passwd file
about 50
attributes 51

/etc/shadow file
about 52, 53
attributes 52

_exit() function 58

A
abnormal process termination

about 58
conditions 58

abort() function 58
access() function 42
alloca() function 141
argc arguments 58
argv arguments 58
arrays 194, 195
asynchronous I/O model 125, 126

B
backslash 174
Bash shell

about 151
features 151

blocked buffered 45
blocking I/O model 122
boot block 20
Bourne Again Shell (Bash) 7
Bourne shell 7, 151
break command 189
buf 36

C
calloc() function 138, 139

chdir() function 44
chdir system call 44
client process 90
close() function

about 29
syntax 29

command grouping 158
command-line arguments 58
command pipelining 159
command substitution 174
comment 171
conditional case 185, 186
conditional if 184, 185
context components

register-level context 12
system-level context 12
user-level context 11, 12

continue command 189
control commands

about 184
break command 189
conditional case 185, 186
conditional if 184, 185
continue command 189
for command 188
until command 187, 188
while command 187

creat() function
about 29, 30
syntax 29

C shell
about 7, 152
advantages 7
features 152

D
data area 60
data segment 135
demand paging

about 136, 137
advantages 136
disadvantages 136

directory related system calls
about 43
chdir system call 44
mkdir system call 43
rmdir system call 44

double quotes 173
dup() function

about 35, 36
syntax 35

E
Effective Group ID (EGID) 40
Effective User ID (EUID) 40
environment variables 59
execution modes

kernel mode 11
user mode 11

exit() function 58

F
fclose() function 48
fflusg() function 46
file access permission mask 40
file input/output

about 26
access permission 36, 38
group-ID (GID) 38
Kernel data structures 26, 27
mount() function 43
system call 27
unmount() function 43
user-ID (UID) 38

file mode
changing 42

file object 45
file owner

changing 42
First In First Out (FIFO)

about 18
creating 87
example 88
interprocess communication 88

fopen() function 47
for command 188
fork() function 64
free() function 137, 138
freopen() function 47
fstat() function

about 36
syntax 36

fully buffered 45
function

about 192
arguments, passing 192
returning 192, 193

G
gethostbyaddress() function 128, 129
gethostbyname() function 127
getpid() function 56
getpwnam() function 68
getpwuid() function 68
getservbyname() function 129, 130
getservbyport() function 129, 130
getservent() function 129
group-ID (GID)

file, setting up 40

H
heap 60
hostent structure 127

I
in-core table 27
input command standard 154
input redirection 157
interactive input 177, 178
interactive mode 147
inter-process communication (IPC)

about 82, 83
client process 90
FIFO 84, 85, 87
message queue 91
message queue, controlling 98
message queue, destroying 97
methods 83
one end closed pipe 86
pclose() function 86
pipe 84, 85
popen() function 86
processes 84
server process 88, 89

I/O buffering
about 45
blocked buffered 45
fully buffered 45
line buffered 45
unbuffered 45

I/O model
about 122
asynchronous I/O model 125, 126
blocking I/O model 122
multiplexing I/O model 123, 124

non-blocking I/O model 123
signal-driven I/O model 124, 125

K
Kernel data structures

for file input/output 26, 27
in-core table 27
Kernel file table 26
per-process file descriptor table 26

Kernel file table 26
Kernel function

device management 6
file system management 6
memory management 6
process management 6
storage management 6

kernel mode 11, 57
Kernel stack 12
Korn shell

about 7, 151
features 151

L
line buffered 45
link() function

about 33
syntax 33

logical AND operator 184
logical operators

about 184
logical AND operator 184
logical OR operator 184
negation operator (!) 184

logical OR operator 184
longjmp() function 60
lseek() function

about 32, 33
syntax 32

M
malloc() function 137
mapped files 135
memory contents

data segment 135
mapped files 135
stack segment 135

memory layout

code area 60
data area 60
heap 60
of UNIX process 60
stack area 60

memory management
about 134
demand paging 136
memory contents, in UNIX 135
operating system memory, need for 135
swapping 135, 136

memory management functions
about 137
alloca() function 141
branch, setting up to function 141
calloc() function 138, 139
free() function 137, 138
malloc() function 137
realloc() function 139

memory resources
file system 134
main memory 134
swap device 135

message queue
about 91
attributes 91
controlling 98
creating 93
destroying 97
msg_cbytes 92
msg_ctime 92
msg_first 92
msg_last 92
msg_lrpid 92
msg_lspid 92
msg_perm 92
msg_qbytes 92
msg_qnum 92
msg_rtime 92
msg_stime 92
opening 93
receiving 95, 96
rwait 92
sending 93, 94
wwait 92

metacharacter
about 153
symbols 153

mkdir() function 43
mkdir system call 43

mount() function 43
multiplexing I/O model 123, 124

N
name and address conversion

about 126
gethostbyaddress() function 128, 129
gethostbyname() function 127
getservbyname() function 129
getservbyport() function 129
hostent structure 127
Resource Records (RRs) 126

named pipes 18
negation operator (!) 184
non-blocking I/O model 123
normal termination 58

O
oflag 28
open() function

about 27, 28
syntax 27

operating system memory
cache memory 135
kernel memory 135
need for 135
virtual memory 135

output command standard 154
output redirection 155

P
parameter substitution 190, 191
per-process file descriptor table 26
pipes 18
pipes types

named pipes 18
unnamed pipes 18

process control
about 64
process creation 64, 65
process termination, awaiting 65, 66
program execution 67

Process Control Block (PCB) 62, 63
process groups 71
process states

about 61
created state 62

executing state 62
kernel mode state 62
ready state 62
sleeping state 62
zombie state 62

process synchronization
about 102
semaphore 102, 103
semaphore, controlling 105
semaphore, creating 104
semaphore, destroying 106-108
semaphore operations (semop) 103, 105, 106
semaphore set 103, 104

process termination
abnormal process termination 58
about 57
normal termination 58

programming mode 147

Q
quoting

about 171
backslash 174
double quotes 173
single quotes 171, 172

R
read() function

about 30, 31
syntax 30

realloc() function 139
redirecting error 157, 158
redirection process

about 155
input redirection 157
I/O redirection, with noclobber option 156
output redirection 155
redirecting error 157, 158

Resource Records (RRs) 126
rmdir() function 44
rmdir system call 44

S
semaphore

about 102, 103
controlling 105
creating 104

semaphore operations (semop) 103, 105, 106
semaphore set 103, 104
server process 88
session customization mode 147
sessions 72
set command 177
set-group-ID (SGID) 39
setjmp() function 60
set-user-ID (SUID) 38, 39
shared memory

about 98
creating 98

shared memory segment
attaching 99
controlling 99
detaching 99
example 100, 101

shell 146
shell interpretation cycle 147
shell programming 168
shell scripts

about 168
writing 168, 169

shell types
about 150
Bourne Again Shell (Bash) 7
Bourne shell 7
Bourne shell family 151
C shell 7, 152
feature summary 152
Korn shell 7

shell variables 175
shift command 176
signal-driven I/O model 124, 125
signals

about 72
examples 74
handling 75, 76
sending, to processes 74
trapping 193, 194

single quotes 171, 172
socket

about 18, 112
types 113

socket communication
client socket, creating 114
connection, accepting from incoming queue 116
connection, initiating 115
data, sending through connection-oriented socket 116
incoming connection, listening 115

message, receiving through connectionless socket 117
message, receiving through connection-oriented socket 117
on client-side 113
on server-side 114
server socket, creating 114, 115
socket, binding to server 115
socket, closing 117-119
system call 113

socket data structure 113
stack area 60
stack segment 135
standard data files

about 50
/etc/group file 51
/etc/passwd file 50
/etc/shadow file 52, 53

stat() function
about 36
syntax 36

sticky-bit permission 39
stream buffering operation

about 46
character-at-a-time, reading 48
character-at-a-time, writing 49
closing 48
Direct I/O 50
flushing 46
line-at-a-time, reading 49
line-at-a-time, writing 49
opening 47
reading 48
writing 48

stream object 45
string operations 190
subshell 179
swapping 135, 136
symbolic link 18
system call

close() function 29
creat() function 29
dup() function 35
for file input/output 27
fstat() function 36
link() function 33
lseek() function 32
open() function 27
read() function 30
stat() function 36
unlink() function 34
write() function 31

system-level context
components 63, 64

T
tee command 159
test operator

for comparisons 180-183
text area 60
thread 77-79

U
umask() call 41
unbuffered 45
unformatted I/O types

character-at-a-time 48
direct 48
line-at-a-time 48

UNIX
history 2, 3

UNIX directories 21
UNIX domain sockets 112
UNIX environment

execution modes 57
process, executing 57

UNIX environment variables
about 160
cdpath variable 161
home variable 161
mailcheck variable 161
mailpath variable 162
mail variable 161
path variable 160
prompt string 1 (PS1) variable 161
prompt string 2 (PS2) variable 161

UNIX features
about 2, 3
device independence 4
modularity 4
multi-tasking 3
multi-user 3
networking 4
portability 3
security 4
tools and utilities 4

UNIX file name convention 18
UNIX files

directory files 18
regular files 18

special files 18
UNIX files and directories

about 15
file 16
file names and meta characters 19
file types 17
pathname 17
UNIX file name convention 18

UNIX file system
about 19
boot block 20
inode list 20
super block 20

UNIX process
about 9, 56
attributes 9
context 11
execution modes 11
init process, in 4.3 BSD 13
init process, in UNIX system V 13, 14
memory layout 60
network login 15
process ID 56
relationship 13
shell process 15
states 10, 11

UNIX programming environment
about 8
client-server environment 8
personal environment 8
time-sharing environment 8

UNIX shell functions
about 148
command pipelining 149, 150
environment customization 150
input/output redirection 149
program execution 148
shell programming language 150

UNIX shell modes
about 146
interactive mode 147
programming mode 147
session customization mode 147

UNIX standard I/O library
about 44
file object 45
I/O buffering 45
stream object 45

UNIX system architecture
about 5

hardware layer 6
Kernel 6
Shell 6
utilities and application programs 7
Windowing layer 7

unlink() function
about 34
syntax 34

unmount() function 43
unnamed pipes 18
until command 187, 188
user-ID (UID)

file, setting up 40
user information

accessing 68
group details 69
logged in, displaying 70
user details 68

user mode 11, 57
user profile 162, 163

V
variables

about 169-171
exporting 180

W
wait() function 65
while command 187
write() function

about 31
syntax 32

	Cover Page
	Title Page
	Copyright Page
	Dedication Page
	About the Authors
	About the Reviewer
	Acknowledgement
	Preface
	Errata
	Table of Contents
	1. Fundamental Concepts of UNIX Operating System
	Structure
	Objectives
	History of UNIX
	Salient features of UNIX
	Portability
	Multi-tasking
	Multi-user
	Device independence
	Modularity
	Networking
	Tools and utilities
	Security

	The UNIX system architecture
	UNIX programming environment
	Personal environment
	Time-sharing environment
	Client-server environment

	UNIX process
	Process attributes
	Process states
	Modes of execution of a process
	Process context
	Process relationship
	init process in 4.3 BSD
	init process in UNIX system V

	Files and directories
	File
	Pathname
	Types of files
	UNIX file name convention
	File names and meta characters

	UNIX file system
	Important UNIX directories

	Conclusion
	Key terms
	Test your skills
	Answers

	Review exercise

	2. File Management
	Structure
	Objectives
	File input/output
	Kernel data structures for file input/output
	System call for UNIX file I/O
	BASIC file permission
	Real and effective user-IDs and group-IDs
	Mounting and unmounting a file system

	Directory related system calls
	The mkdir system call
	The rmdir system call
	The chdir() system call

	Standard I/O library in UNIX
	Stream and FILE object
	I/O buffering
	Stream buffering operations

	Standard data files
	/etc/passwd file
	/etc/group file
	/etc/shadow file

	Conclusion
	Review Exercise

	3. Process Management
	Introduction
	Structure
	Objectives
	UNIX process
	Process IDs

	Executing process in UNIX environment
	Modes of execution of a process

	Process termination
	Normal termination
	Abnormal process termination

	Command-line arguments and environment variables
	Memory layout of a UNIX process
	Setting branch into another function
	Process states
	Process control block
	Process control
	Process creation
	Awaiting process termination
	Executing another program

	Accessing user information
	User details
	Group details
	Show information of all users logged in

	Process groups
	Sessions
	Signals
	Sending a signal to processes
	Signal handling

	Thread
	Conclusion
	Review Exercise

	4. Inter-Process Communication
	Introduction
	Structure
	Objective
	Introduction to IPC
	Means of interprocess communication
	Pipes and FiFOs
	One end closed pipe
	The popen() I/O library function
	The pclose() I/O function
	FIFOs
	Server process
	Client process
	Message queues
	Destroying a message queue
	Controlling message queue

	Shared memory
	Creating shared memory
	Controlling a shared memory segment
	Attaching and detaching a shared memory segment

	Process synchronization
	Semaphores
	Semaphore operations
	Semaphore set
	Creating semaphore
	Controlling semaphore
	Semaphore operations semop()
	Destroying a semaphore

	Conclusion
	Review Exercise

	5. Socket Programming
	Introduction
	Structure
	Objective
	Socket
	Types of sockets
	Socket data structure
	System calls for socket communication
	Creating a socket (server and client)
	Binding socket to an address (server)
	Listening incoming connection
	Initiating connection
	Accepting the connection from the incoming queue
	Sending data through socket (connection-oriented)
	Receiving message through socket (connection-oriented)
	Receiving message through socket (connectionless)
	Closing socket

	I/O models
	Blocking I/O model
	Non-blocking I/O model
	I/O multiplexing model
	Signal-driven I/O model
	Asynchronous I/O model

	Name and address conversion
	Resource records
	The gethostbyname() function
	The hostent structure
	The gethostbyaddress() function
	The getservbyname() and getservbyport() functions

	Conclusion
	Review Exercise

	6. Memory Management
	Structure
	Objective
	Memory management
	Use of operating system memory
	Memory contents of a running process in UNIX
	Swapping
	Demand paging

	Memory management functions
	The malloc() function
	The free() function
	The calloc() function
	The realloc() function
	The alloca() function
	Setting branch to another function

	Conclusion
	Multiple choice questions
	Answers

	Questions

	7. UNIX Shell and Custom Environment
	Structure
	Objectives
	Introduction to shell
	Execution modes of UNIX shell
	Interactive mode
	Programming mode
	UNIX session customization mode

	Shell interpretation cycle
	Functions of UNIX shell
	Program execution
	Input/output redirection
	Command pipelining
	Environment customization
	Shell programming language

	Types of shells
	The Bourne shell family
	The C shell family
	Summary of features

	Meta character and wild cards
	Command standard input/output
	Redirection
	Output redirection
	Safe I/O redirection with noclobber
	Input redirection
	Redirecting error

	Command grouping
	Command pipelining
	The tee command
	UNIX environment variables
	PATH variable
	HOME variable
	Prompt string 1 (PS1) variable
	Prompt string 2 (PS2) variable
	MAIL variable
	CDPATH variable
	MAILCHECK variable
	MAILPATH variable

	User’s profile
	Conclusion
	Test your skills
	Answers

	Review Exercises
	Lab practice

	8. Shell Programming Using Bourne Shell
	Structure
	Objective
	Introduction to shell programming
	Writing shell scripts
	Variables
	Comment
	Quoting
	Single quotes
	Double quotes
	The backslash

	Command substitution
	Special shell variables
	The shift command
	The set command
	Interactive input
	Subshell
	Exporting variables
	Test operator for comparisons
	Logical operators with test
	The negation operator (!)
	The logical AND operator
	The logical OR operator

	Control commands
	Conditional if
	Conditional case
	The while command
	The until command
	The for command
	The break command
	The continue command

	Special string operations
	Parameter substitution
	Functions
	Passing arguments to function
	Returning from function

	Trapping signals
	Arrays
	Conclusion
	Review Exercise

	Index

