

UNIX
The Textbook

T H I R D E D I T I O N

http://taylorandfrancis.com

UNIX
The Textbook

Syed Mansoor Sarwar
Robert M. Koretsky

T H I R D E D I T I O N

CRC Press
Taylor & Francis Group
6000 Broken Sound Parkway NW, Suite 300
Boca Raton, FL 33487-2742

© 2017 by Taylor & Francis Group, LLC
CRC Press is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works

Printed on acid-free paper
Version Date: 20160226

International Standard Book Number-13: 978-1-4822-3358-2 (Hardback)

This book contains information obtained from authentic and highly regarded sources. Reasonable efforts have been
made to publish reliable data and information, but the author and publisher cannot assume responsibility for the valid-
ity of all materials or the consequences of their use. The authors and publishers have attempted to trace the copyright
holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this
form has not been obtained. If any copyright material has not been acknowledged please write and let us know so we may
rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or uti-
lized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopy-
ing, microfilming, and recording, or in any information storage or retrieval system, without written permission from the
publishers.

For permission to photocopy or use material electronically from this work, please access www.copyright.com (http://
www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923,
978-750-8400. CCC is a not-for-profit organization that provides licenses and registration for a variety of users. For
organizations that have been granted a photocopy license by the CCC, a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for
identification and explanation without intent to infringe.

Library of Congress Cataloging‑in‑Publication Data

Names: Sarwar, Syed Mansoor, author. | Koretsky, Robert, author.
Title: UNIX : the textbook / Syed Mansoor Sarwar and Robert M. Koretsky.
Description: Third edition. | Boca Raton : Taylor & Francis, CRC Press, 2016.
| Includes bibliographical references and index.
Identifiers: LCCN 2016009010 | ISBN 9781482233582 (alk. paper)
Subjects: LCSH: UNIX (Computer file) | Operating systems (Computers)
Classification: LCC QA76.774.U64 S37 2016 | DDC 005.4/32--dc23
LC record available at http://lccn.loc.gov/2016009010

Visit the Taylor & Francis Web site at
http://www.taylorandfrancis.com

and the CRC Press Web site at
http://www.crcpress.com

http://www.crcpress.com
http://www.taylorandfrancis.com
http://www.lccn.loc.gov/2016009010
http://www.copyright.com/
http://www.copyright.com
http://www.copyright.com/

To my family

S.M.S.

To my family

R.M.K.

http://taylorandfrancis.com

vii

Contents

Preface to the Third Edition, xxvii

Acknowledgments for the Third Edition, xxxiii

Acknowledgments for the Second and First Editions, xxxv

Personal Acknowledgments, xxxvii

Chapter 1 ◾ Overview of Operating Systems 1
1.1 INTRODUCTION 1

1.2 WHAT IS AN OPERATING SYSTEM? 2

1.3 OPERATING SYSTEM SERVICES 4

1.4 CHARACTER (COMMAND LINE) VERSUS GRAPHICAL USER
INTERFACES 5

1.5 TYPES OF OPERATING SYSTEMS 5

1.6 THE UNIX FAMILY 6

1.7 UNIX SOFTWARE ARCHITECTURE 7

1.7.1 Device Driver Layer 7
1.7.2 UNIX Kernel 7
1.7.3 System Call Interface 9
1.7.4 Language Libraries 9
1.7.5 UNIX Shell 9
1.7.6 Applications 9

1.8 DEVELOPMENT OF THE UNIX OPERATING SYSTEM 10

1.8.1 Beginnings 10
1.8.2 Research Operating System 12
1.8.3 AT&T System V 13
1.8.4 Berkeley Software Distributions 13
1.8.5 History of Shells 13
1.8.6 Current and Future Developments 13

1.9 VARIATIONS IN UNIX SYSTEMS 14

viii ◾ Contents

SUMMARY 15

QUESTIONS AND PROBLEMS 16

Chapter 2 ◾ A “Quick Start” into the UNIX Operating System 19
2.1 INTRODUCTION 19

2.2 THE STRUCTURE OF A UNIX COMMAND 20

2.3 LOGGING ON AND LOGGING OFF 22

2.3.1 Stand-Alone Login Connection to PC-BSD and Solaris 24
2.3.2 Connecting via PuTTY from a Microsoft Windows Computer 25
2.3.3 Connecting via an SSH Client between UNIX Machines 27

2.4 FILE MAINTENANCE COMMANDS AND HELP ON UNIX
COMMAND USAGE 29

2.4.1 File and Directory Structure 30
2.4.2 Viewing the Contents of Files 31
2.4.3 Creating, Deleting, and Managing Files 32
2.4.4 Creating, Deleting, and Managing Directories 36
2.4.5 Obtaining Help with the Man Command 40
2.4.6 Other Methods of Obtaining Help 43

2.5 UTILITY COMMANDS 45

2.5.1 Examining System Setups 45
2.5.2 Printing and General Utility Commands 46
2.5.3 Communications Commands 48

2.6 COMMAND ALIASES 49

2.7 INTRODUCTION TO UNIX SHELLS 52

2.8 VARIOUS UNIX SHELLS 54

2.8.1 Shell Programs 54
2.8.2 Which Shell Suits Your Needs? 56
2.8.3 Ways to Change Your Shell 56
2.8.4 Shell Start-Up Files and Environment Variables 57

2.9 SHELL METACHARACTERS 59

2.10 THE SUDO AND SU COMMANDS 60

SUMMARY 61

QUESTIONS AND PROBLEMS 62

Chapter 3 ◾ Editing Text Files 65
3.1 INTRODUCTION AND QUICK START 65

3.1.1 Quick Start: The Simplest Path through These Editors 65

Contents    ◾    ix

3.1.2 First Comments on UNIX Editors 66
3.1.3 Using Text Editors 67

3.2 USING THE vi, vim, AND gvim EDITORS 68

3.2.1 Basic Shell Script File Creation, Editing, Execution 69
3.2.2 How to Start, Save a File, and Exit 70
3.2.3 The Format of a vi Command and the Modes of Operation 72
3.2.4 Cursor Movement and Editing Commands 75
3.2.5 Yank and Put (Copy and Paste) and Substitute (Search and Replace) 77
3.2.6 vim and gvim 80
3.2.7 Changing vi, vim, and gvim Behavior 88
3.2.8 Executing Shell Commands from within vi, vim, and gvim 91
3.2.9 vi, vim, and gvim Keyboard Macros 91

3.3 THE EMACS EDITOR 96

3.3.1 Launching Emacs, Emacs Screen Display, General Emacs Concepts
and Features 97

3.3.2 How to Use Emacs to Do Shell Script File Creation, Editing, and
Execution 103

3.3.3 Visiting Files, Saving Files, and Exiting 104
3.3.4 Cursor Movement and Editing Commands 105
3.3.5 Keystroke Macros 108
3.3.6 Cut or Copy and Paste and Search and Replace 109
3.3.7 How to Do Purely Graphical Editing with GNU Emacs 112
3.3.8 Editing Data Files 112
3.3.9 How to Start, Save a File, and Exit in Graphical Emacs 114
3.3.10 Emacs Graphical Menus 116
3.3.11 Creating and Editing C Programs 116
3.3.12 Working in Multiple Buffers 119
3.3.13 Changing Emacs Behavior 122

3.4 vi AND EMACS COMMAND TABLES 141

3.5 SUMMARY 141

QUESTIONS AND PROBLEMS 146

Chapter 4 ◾ Files and File System Structure 153
4.1 INTRODUCTION 153

4.2 THE UNIX FILE CONCEPT 154

4.3 TYPES OF FILES 154

x ◾ Contents

4.3.1 Simple/Ordinary File 154
4.3.2 Directory 155
4.3.3 Link File 156
4.3.4 Special (Device) File 156
4.3.5 Named Pipe (FIFO) 156
4.3.6 Socket 157

4.4 FILE SYSTEM STRUCTURE 157

4.4.1 File System Organization 157
4.4.2 Home and Present Working Directories 158
4.4.3 Pathnames: Absolute and Relative 158
4.4.4 Some Standard Directories and Files 160

4.5 NAVIGATING THE FILE STRUCTURE 163

4.5.1 Determining the Absolute Pathname for Your Home Directory 163
4.5.2 Browsing the File System 164
4.5.3 Creating Files 167
4.5.4 Creating and Removing Directories 167
4.5.5 Determining File Attributes 169
4.5.6 Determining the Type of a File’s Contents 171

4.6 STANDARD FILES AND FILE DESCRIPTORS 176

4.7 END-OF-FILE (eof) MARKER 177

4.8 FILE SYSTEM 178

SUMMARY 178

QUESTIONS AND PROBLEMS 179

Chapter 5 ◾ File Security 183
5.1 INTRODUCTION 183

5.2 PASSWORD-BASED PROTECTION 184

5.3 ENCRYPTION-BASED PROTECTION 185

5.4 PROTECTION BASED ON ACCESS PERMISSION 186

5.4.1 Types of Users 186
5.4.2 Types of File Operations/Access Permissions 187
5.4.3 Access Permissions for Directories 189

5.5 DETERMINING AND CHANGING FILE ACCESS PRIVILEGES 189

5.5.1 Determining File Access Privileges 189
5.5.2 Changing File Access Privileges 191

Contents    ◾    xi

5.5.3 Access Privileges for Directories 194
5.5.4 Default File Access Privileges 195

5.6 SPECIAL ACCESS BITS 198

5.6.1 Set-User-ID (SUID) Bit 199
5.6.2 Set-Group-ID (SGID) Bit 201
5.6.3 Sticky Bit 202

SUMMARY 204

QUESTIONS AND PROBLEMS 205

Chapter 6 ◾ Basic File Processing 209
6.1 INTRODUCTION 209

6.2 VIEWING CONTENTS OF TEXT FILES 209

6.2.1 Viewing Complete Files 210
6.2.2 Viewing Files One Page at a Time 212
6.2.3 Viewing the Head or Tail of a File 213

6.3 COPYING, MOVING, AND REMOVING FILES 219

6.3.1 Copying Files 219
6.3.2 Moving Files 221
6.3.3 Removing/Deleting Files 224
6.3.4 Determining File Size 226

6.4 APPENDING TO FILES 228

6.5 COMBINING FILES 229

6.6 COMPARING FILES 231

6.7 LOCATING AND REMOVING REPETITION WITHIN TEXT FILES 234

6.8 PRINTING FILES AND CONTROLLING PRINT JOBS 236

6.8.1 UNIX Mechanism for Printing Files 236
6.8.2 Printing Files 236
6.8.3 Finding the Status of Your Print Requests 239
6.8.4 Canceling Your Print Jobs 240

SUMMARY 242

QUESTIONS AND PROBLEMS 243

Chapter 7 ◾ Advanced File Processing 247
7.1 INTRODUCTION 247

7.2 COMPRESSING FILES 248

7.2.1 The compress Command 248

xii ◾ Contents

7.2.2 The uncompress Command 250
7.2.3 The gzip Command 250
7.2.4 The gunzip Command 251
7.2.5 The gzexe Command 252
7.2.6 The zcat and zmore Commands 253

7.3 SORTING FILES 255

7.4 SEARCHING FOR COMMANDS AND FILES 258

7.5 REGULAR EXPRESSIONS 262

7.6 SEARCHING FILES 264

7.7 CUTTING AND PASTING 269

7.8 ENCODING AND DECODING 273

7.9 FILE ENCRYPTION AND DECRYPTION 276

SUMMARY 280

QUESTIONS AND PROBLEMS 281

Chapter 8 ◾ File Sharing 285
8.1 INTRODUCTION 285

8.2 DUPLICATE SHARED FILES 286

8.3 COMMON LOGINS FOR TEAM MEMBERS 286

8.4 SETTING APPROPRIATE ACCESS PERMISSIONS ON SHARED FILES 286

8.5 COMMON GROUPS FOR TEAM MEMBERS 287

8.6 FILE SHARING VIA LINKS 287

8.6.1 Hard Links 287
8.6.2 Drawbacks of Hard Links 294
8.6.3 Soft/Symbolic Links 296
8.6.4 Pros and Cons of Symbolic Links 300

SUMMARY 301

QUESTIONS AND PROBLEMS 302

Chapter 9 ◾ Redirection and Piping 305
9.1 INTRODUCTION 305

9.2 STANDARD FILES 306

9.3 INPUT REDIRECTION 306

9.4 OUTPUT REDIRECTION 308

9.5 COMBINING INPUT AND OUTPUT REDIRECTION 310

9.6 I/O REDIRECTION WITH FILE DESCRIPTORS 311

9.7 REDIRECTING STANDARD ERROR 311

Contents    ◾    xiii

9.8 REDIRECTING stdout AND stderr IN ONE COMMAND 313

9.9 REDIRECTING stdin, stdout, AND STDERR IN ONE COMMAND 314

9.10 REDIRECTING WITHOUT OVERWRITING FILE CONTENTS
(APPENDING) 316

9.11 UNIX PIPES 318

9.12 REDIRECTION AND PIPING COMBINED 321

9.13 OUTPUT AND ERROR REDIRECTION IN THE C SHELL 322

9.14 RECAP OF I/O AND ERROR REDIRECTION 326

9.15 FIFOS 326

SUMMARY 331

QUESTIONS AND PROBLEMS 332

Chapter 10 ◾ Processes 337
10.1 INTRODUCTION 337

10.2 CPU SCHEDULING: RUNNING MULTIPLE PROCESSES
SIMULTANEOUSLY 338

10.3 UNIX PROCESS STATES 340

10.4 EXECUTION OF SHELL COMMANDS 340

10.5 PROCESS ATTRIBUTES 345

10.5.1 Static Display of Process Attributes 345
10.5.2 Dynamic Display of Process Attributes 357

10.6 PROCESS AND JOB CONTROL 366

10.6.1 Foreground and Background Processes and Related Commands 366
10.6.2 UNIX Daemons 371
10.6.3 Sequential and Parallel Execution of Commands 371
10.6.4 Abnormal Termination of Commands and Processes 376

10.7 PROCESS HIERARCHY IN UNIX 382

SUMMARY 386

QUESTIONS AND PROBLEMS 388

Chapter 11 ◾ Networking and Internetworking 391
11.1 INTRODUCTION 391

11.2 COMPUTER NETWORKS AND INTERNETWORKS 392

11.3 REASONS FOR COMPUTER NETWORKS AND INTERNETWORKS 393

11.4 NETWORK MODELS 393

11.5 THE TCP/IP SUITE 395

11.5.1 TCP and UDP 395

xiv ◾ Contents

11.5.2 Routing of Application Data: The Internet Protocol (IP) 397
11.5.3 Symbolic Names 401
11.5.4 Translating Names to IP Addresses: The Domain Name System 401
11.5.5 Requests for Comments (RFCs) 406

11.6 INTERNET SERVICES AND PROTOCOLS 408

11.7 THE CLIENT–SERVER SOFTWARE MODEL 408

11.8 APPLICATION SOFTWARE 409

11.8.1 Displaying the Host Name 410
11.8.2 Displaying a List of Users Using Hosts on a Network 411
11.8.3 Displaying the Status of Hosts on a Network 412
11.8.4 Testing a Network Connection 413
11.8.5 Displaying Information about Users 415
11.8.6 Remote Login 418
11.8.7 Remote Command Execution 424
11.8.8 File Transfer 427
11.8.9 Remote Copy 430
11.8.10 Secure Shell and Related Commands 432
11.8.11 Interactive Chat 441
11.8.12 Tracing the Route from One Site to Another 443

11.9 IMPORTANT INTERNET ORGANIZATIONS 445

11.10 WEB RESOURCES 445

SUMMARY 445

QUESTIONS AND PROBLEMS 448

Chapter 12 ◾ Introductory Bourne Shell Programming 451
12.1 INTRODUCTION 451

12.2 RUNNING A BOURNE SHELL SCRIPT 452

12.3 SHELL VARIABLES AND RELATED COMMANDS 453

12.3.1 Reading and Writing Shell Variables 457
12.3.2 Command Substitution 459
12.3.3 Exporting Environment 460
12.3.4 Resetting Variables 463
12.3.5 Creating Read-Only Defined Variables 464
12.3.6 Reading from Standard Input 465

12.4 PASSING ARGUMENTS TO SHELL SCRIPTS 467

12.5 COMMENTS AND PROGRAM HEADERS 470

Contents    ◾    xv

12.6 PROGRAM CONTROL FLOW COMMANDS 472

12.6.1 The if-then-elif-else-fi Statement 472
12.6.2 The for Statement 480
12.6.3 The while Statement 483
12.6.4 The until Statement 485
12.6.5 The break and continue Commands 486
12.6.6 The case Statement 487

12.7 COMMAND GROUPING 491

SUMMARY 492

QUESTIONS AND PROBLEMS 493

Chapter 13 ◾ Advanced Bourne Shell Programming 497
13.1 INTRODUCTION 497

13.2 NUMERIC DATA PROCESSING 497

13.3 THE HERE DOCUMENT 503

13.4 INTERRUPT (SIGNAL) PROCESSING 506

13.5 THE exec COMMAND AND FILE I/O 511

13.5.1 Execution of a Command (or Script) in Place of Its Parent Process 511
13.5.2 File I/O via the exec Command 513

13.6 FUNCTIONS IN THE BOURNE SHELL 520

13.6.1 Reasons for Using Functions 520
13.6.2 Function Definition 521
13.6.3 Function Invocation/Call 522
13.6.4 A Few More Examples of Functions 523

13.7 DEBUGGING SHELL PROGRAMS 525

SUMMARY 526

QUESTIONS AND PROBLEMS 527

Chapter 14 ◾ Introductory C Shell Programming 529
14.1 INTRODUCTION 529

14.2 RUNNING A C SHELL SCRIPT 530

14.3 SHELL VARIABLES AND RELATED COMMANDS 531

14.4 READING AND WRITING SHELL VARIABLES 534

14.4.1 Command Substitution 536
14.4.2 Exporting Environment 537
14.4.3 Resetting Variables 540
14.4.4 Reading from Standard Input 541

xvi ◾ Contents

14.5 PASSING ARGUMENTS TO SHELL SCRIPTS 542

14.6 COMMENTS AND PROGRAM HEADERS 546

14.7 PROGRAM CONTROL FLOW COMMANDS 547

14.7.1 The if-then-else-endif Statement 547
14.7.2 The foreach Statement 555
14.7.3 The while Statement 557
14.7.4 The break, continue, and goto Commands 559
14.7.5 The switch Statement 560

SUMMARY 563

QUESTIONS AND PROBLEMS 564

Chapter 15 ◾ Advanced C Shell Programming 567
15.1 INTRODUCTION 567

15.2 NUMERIC DATA PROCESSING 567

15.3 ARRAY PROCESSING 570

15.4 THE HERE DOCUMENT 576

15.5 INTERRUPT (SIGNAL) PROCESSING 578

15.6 DEBUGGING SHELL PROGRAMS 583

SUMMARY 585

QUESTIONS AND PROBLEMS 585

Chapter 16 ◾ Python 587
16.1 INTRODUCTION 587

16.1.1 Python Program Data Model 588
16.1.2 The Ultimate Python Reference 589
16.1.3 Ultimate Reference Glossary 589
16.1.4 Python Standard Type Hierarchy 590
16.1.5 Basic Assumptions We Make 592
16.1.6 Running Python 593
16.1.7 Uses of Python 595

16.2 HOW TO INSTALL PYTHON ON A PC-BSD AND SOLARIS SYSTEM 595

16.2.1 Installing Python on PC-BSD 596
16.2.2 Installing Python on Solaris 596

16.3 BASIC SETUP AND SYNTAX, AND GETTING HELP 597

16.3.1 Printing Text, Comments, Numbers, Grouping Operators, and
Expressions 597

16.3.2 Variables 601

Contents    ◾    xvii

16.3.3 Functions 601
16.3.4 Conditional Execution 603
16.3.5 Determinate and Indeterminate Repetition Structures and Recursion 605
16.3.6 File Input and Output 608
16.3.7 Lists and the List Function 611
16.3.8 Strings, String Formatting Conversions, and Sequence Operations 612
16.3.9 Tuples 617
16.3.10 Sets 618
16.3.11 Dictionaries 619
16.3.12 Generators 620
16.3.13 Coroutines 622
16.3.14 Objects and Classes 624
16.3.15 Exceptions 627
16.3.16 Modules, Global and Local Scope in Functions 629

16.4 PRACTICAL EXAMPLES 630

16.4.1 Another Way of Writing Shell Script Files 631
16.4.2 Basic User File Maintenance 634
16.4.3 Graphical User Interface with Python and Tkinter Widgets 642
16.4.4 Multithreaded Concurrency with Python 657
16.4.5 Talking Threads: The Producer–Consumer Problem Using a

Condition Variable 668
SUMMARY 674

QUESTIONS AND PROBLEMS 679

Chapter 17 ◾ UNIX Tools for Software Development 683
17.1 INTRODUCTION 683

17.2 COMPUTER PROGRAMMING LANGUAGES 684

17.3 THE COMPILATION PROCESS 686

17.4 THE SOFTWARE ENGINEERING LIFE CYCLE 687

17.5 PROGRAM GENERATION TOOLS 688

17.5.1 Generating C Source Files 688
17.5.2 Indenting C Source Code 688
17.5.3 Compiling C, C++, and JAVA Programs 690
17.5.4 Handling Module-Based C Software 694
17.5.5 Building Object Files into a Library 704
17.5.6 Working with Libraries 708
17.5.7 Version Control 710

xviii ◾ Contents

17.6 STATIC ANALYSIS TOOLS 756

17.6.1 Verifying Code for Portability 756
17.6.2 Source Code Metrics 761

17.7 DYNAMIC ANALYSIS TOOLS 761

17.7.1 Source Code Debugging 762
17.7.2 Run-Time Performance 774

17.8 WEB RESOURCES 776

SUMMARY 776

QUESTIONS AND PROBLEMS 779

Chapter 18 ◾ System Programming I: File System Management 783
18.1 INTRODUCTION 784

18.2 WHAT IS SYSTEM PROGRAMMING? 784

18.3 ENTRY POINTS INTO THE OS KERNEL 785

18.4 FUNDAMENTALS OF SYSTEM CALLS 786

18.4.1 What Is a System Call? 786
18.4.2 Types of System Calls 787
18.4.3 Execution of a System Call 787

18.5 FILES: THE BIG PICTURE 788

18.5.1 File Descriptors, File Descriptor Tables, File Tables, and
Inode Tables 789

18.5.2 Why Two Tables? 790
18.6 FUNDAMENTAL FILE I/O PARADIGM 791

18.7 STANDARD I/O VERSUS LOW-LEVEL I/O 791

18.7.1 The C Standard Library 791
18.7.2 File Data I/O Using the C Standard Library 791
18.7.3 Low-Level I/O in UNIX via System Calls 793
18.7.4 System Call Failure and Error Handling 794

18.8 FILE MANIPULATION 794

18.8.1 Opening and Creating a File 794
18.8.2 Closing a File 796
18.8.3 Reading from a File 799
18.8.4 Writing to a File 800
18.8.5 Positioning the File Pointer: Random Access 802
18.8.6 Truncating a File 806
18.8.7 Removing a File 808

Contents    ◾    xix

18.9 GETTING FILE ATTRIBUTES FROM A FILE INODE 810

18.9.1 The stat Structure 811
18.9.2 Populating the stat Structure with System Calls 812
18.9.3 Displaying File Attributes 812
18.9.4 Accessing and Manipulating File Attributes 813

18.10 RESTARTING SYSTEM CALLS 814

18.11 SYSTEM CALLS FOR MANIPULATING DIRECTORIES 815

18.12 IMPORTANT WEB RESOURCES 816

SUMMARY 817

QUESTIONS AND PROBLEMS 817

Chapter 19 ◾ System Programming II: Process Management and Signal
Processing 821

19.1 INTRODUCTION 822

19.2 PROCESSES AND THREADS 822

19.2.1 What Is a Process? 822
19.2.2 Process Control Block 823
19.2.3 Process Memory Image (Process Address Space) 823
19.2.4 Process Disk Image 825
19.2.5 What Is a Thread? 826
19.2.6 Commonalities and Differences between Processes and Threads 829
19.2.7 Data Sharing among Threads and the Critical Section Problem 829

19.3 PROCESS MANAGEMENT CONCEPTS 831

19.3.1 Getting the Process ID and the Parent Process ID 832
19.3.2 Creating a Clone of a Process 833
19.3.3 Reporting Status to the Parent Process 835
19.3.4 Collecting the Status of a Child Process 835
19.3.5 Overwriting a Process Image 838
19.3.6 Creating a Zombie Process 842
19.3.7 Terminating a Process 844

19.4 PROCESSES AND THE FILE DESCRIPTOR TABLE 844

19.4.1 File Sharing between Processes 844
19.4.2 Duplicating File Descriptor 847

19.5 GETTING THE ATTENTION OF A PROCESS: UNIX SIGNALS 850

19.5.1 What Is a Signal? 850
19.5.2 Intercepting Signals 850

xx ◾ Contents

19.5.3 Setting Up an Alarm 851
19.5.4 Sending Signals 855

19.6 IMPORTANT WEB RESOURCES 857

SUMMARY 857

QUESTIONS AND PROBLEMS 858

Chapter 20 ◾ System Programming III: Interprocess Communication 863
20.1 INTRODUCTION 864

20.2 IPC: COMMUNICATION CHANNELS AND COMMUNICATION TYPES 865

20.3 IPC: IMPORTANT SYSTEM AND LIBRARY CALLS, DATA
STRUCTURES, MACROS, AND HEADER FILES 866

20.3.1 Byte Orders 867
20.4 THE CLIENT–SERVER MODEL 870

20.4.1 Simplest Form of Communication 872
20.4.2 Communication via Pipes 872

20.5 COMMUNICATION BETWEEN UNRELATED PROCESSES ON THE
SAME COMPUTER 880

20.6 COMMUNICATION BETWEEN UNRELATED PROCESSES ON
DIFFERENT COMPUTERS 888

20.6.1 Socket-Based Communication 888
20.6.2 Creating a Socket 888
20.6.3 Domains of Socket-Based Communication 890
20.6.4 Types of Communication Using a Socket 891
20.6.5 Socket Address 895
20.6.6 Important Data Structures and Related Function Calls 897
20.6.7 Binding an Address to a Socket 903
20.6.8 Enabling a Server-Side Socket to Listen for Connection Requests

from Clients 905
20.6.9 Sending a Connection Request to Server Process 906
20.6.10 Accepting a Client Request for Connection 908
20.6.11 Closing a Socket 910
20.6.12 Putting it All Together: A Simple Connection-Oriented Client–

Server Software 911
20.7 TYPES OF SOCKET-BASED SERVERS 920

20.8 ALGORITHMS AND EXAMPLES FOR SOCKET-BASED CLIENT–
SERVER SOFTWARE 922

20.8.1 Iterative Connectionless Client–Server Model 922

Contents    ◾    xxi

20.8.2 Iterative Connection-Triggered Client–Server Model 927
20.8.3 Iterative One-Shot Connection-Oriented Client–Server Model 931
20.8.4 Iterative Connection-Oriented Client–Server Model 933
20.8.5 Concurrent Connectionless Client–Server Model 934
20.8.6 Concurrent Connection-Oriented Client–Server Model 935

20.9 SYNCHRONOUS VERSUS ASYNCHRONOUS I/O: THE SELECT()
SYSTEM CALL 940

20.10 THE UNIX SUPERSERVER: INETD 946

20.10.1 Managing inetd on Solaris via Service Management Facility 948
20.11 CONCURRENT CLIENTS 952

20.12 WEB RESOURCES 953

SUMMARY 954

QUESTIONS AND PROBLEMS 954

Chapter 21 ◾ System Programming IV: Practical Considerations 963
21.1 INTRODUCTION 964

21.2 RESTARTING SYSTEM CALLS 964

21.3 THREAD-SAFE SYSTEM CALLS 965

21.4 RUNNING PROCESSES IN BACKGROUND: DAEMONS 966

21.5 IGNORING SIGNALS 968

21.6 CHANGING UMASK 968

21.7 RUNNING A SINGLE COPY OF A PROGRAM 970

21.8 LOCATING A DAEMON 976

21.9 DETACHING THE TERMINAL FROM A DAEMON 976

21.10 CHANGING THE CURRENT WORKING DIRECTORY 977

21.11 CLOSING INHERITED STANDARD DESCRIPTORS AND OPENING
STANDARD DESCRIPTORS 977

21.12 WAITING FOR ALL CHILD PROCESSES TO TERMINATE 978

21.13 COMPLETE SAMPLE SERVER 980

21.14 STRUCTURE OF A PRODUCTION SERVER 984

21.15 WEB RESOURCES 984

SUMMARY 984

QUESTIONS AND PROBLEMS 985

Chapter 22 ◾ UNIX X Window System GUI Basics 989
22.1 INTRODUCTION 989

22.1.1 User–Application Software Interaction Model 990

xxii ◾ Contents

22.2 BASICS OF THE X WINDOW SYSTEM 991

22.2.1 What is the X Window System Similar to and What Advantage(s)
Does it Have? 991

22.2.2 The Key Components of Interactivity: Events and Requests 993
22.2.3 The Role of a Window Manager in the User Interface, and FVWM

for PC-BSD 995
22.2.4 Customizing the X Window System and FVWM 999

22.3 THE KDE4 DESKTOP MANAGER 1010

22.3.1 Logging In and Out 1010
22.3.2 The KDE4 Panel 1013
22.3.3 Adding a Desktop Icon that Launches an Application 1014
22.3.4 KDE4 Window Manager 1015
22.3.5 KDE4 System Settings 1018
22.3.6 KDE4 File Management with Dolphin 1018

22.4 CREATING X WINDOW SYSTEM CLIENT APPLICATION PROGRAMS 1021

22.4.1 Client Application Program Structure and Development Model 1021
22.4.2 Xlib versus XCB 1025
22.4.3 Xlib 1026
22.4.4 Using XCB 1032
22.4.5 Using the Qt Toolkit 1040

SUMMARY 1045

QUESTIONS AND PROBLEMS 1046

Chapter 23 ◾ UNIX System Administration Fundamentals 1051
23.1 INTRODUCTION 1052

23.2 DOING A FRESH INSTALL FROM ISO-CREATED DVD MEDIA AND
PRELIMINARY SYSTEM CONFIGURATION 1054

23.2.1 Preinstallation Considerations 1055
23.2.2 GUI Install of PC-BSD 1056
23.2.3 Postinstall Configuration 1057
23.2.4 GUI Install of Solaris 1057
23.2.5 System Services Administration, Booting and Shutdown Procedures 1059

23.3 USER ADMINISTRATION 1072

23.3.1 Adding and Deleting a User in a Text-Based Interface on PC-BSD 1073
23.3.2 Adding/Deleting and Maintaining Users and Groups in a GUI-

Based Interface on PC-BSD 1080

Contents    ◾    xxiii

23.3.3 Adding/Deleting and Managing Users and Groups in a Text-Based
Interface on Solaris 1084

23.4 ADDING A HARD DISK TO THE SYSTEM 1090

23.4.1 Preliminary Considerations when Adding New Disk Drives 1091
23.4.2 A Quick and Easy Way to Find Out the Logical Device Names of

Disks Actually Installed on Your System 1091
23.4.3 Adding a New Disk to the System 1092

23.5 ADDING A PRINTER TO THE SYSTEM 1100

23.5.1 Researching Your Printer 1100
23.5.2 Adding a Printer 1101
23.5.3 Adding a Printer to Solaris 1101

23.6 FILE SYSTEM BACKUP STRATEGIES AND TECHNIQUES 1101

23.6.1 A Strategic Synopsis and Overview of File Backup Facilities 1102
23.6.2 tar and gtar 1102
23.6.3 Other UNIX Archiving and Backup Facilities 1112

23.7 SYSTEM UPGRADES AND SOFTWARE UPDATES USING A
PACKAGE MANAGER 1121

23.7.1 Upgrading the Operating System in Solaris 1121
23.7.2 Updating the Installed Application Packages and Installing New

Application Packages in Solaris 1123
23.7.3 Upgrading the Operating System in PC-BSD 1125
23.7.4 Updating the Installed Application Packages and Installing New

Application Packages in PC-BSD 1129
23.8 SYSTEM AND SOFTWARE PERFORMANCE MONITORING 1129

23.8.1 Process and Memory Management 1130
23.8.2 Disk Usage and Management 1133
23.8.3 Network Configuration 1136
23.8.4 Practical System Administration Logging and the syslog()

Function 1139
23.9 SYSTEM SECURITY 1144

23.9.1 Password-Based Authentication 1144
23.9.2 Access Control: Discretionary (DAC), Mandatory (MAC), and

Role-Based (RBAC) 1145
23.9.3 Using Access Control Lists (ACLs) in PC-BSD 1147
23.9.4 Intrusion Detection and Intrusion Detection Systems 1168
23.9.5 System Firewall 1168

xxiv ◾ Contents

23.10 VIRTUALIZATION METHODOLOGIES 1173

SUMMARY 1174

QUESTIONS AND PROBLEMS 1174

Chapter 24 ◾ ZFS Administration and Use 1179
24.1 INTRODUCTION 1179

24.1.1 zpool and zfs Command Syntax 1180
24.1.2 ZFS Terminology 1180
24.1.3 How ZFS Works 1181
24.1.4 Important ZFS Concepts 1182

24.2 EXAMPLE ZFS POOLS AND FILE SYSTEMS: USING THE ZPOOL
AND ZFS COMMANDS 1183

24.2.1 A Quick and Easy Way to Find Out the Logical Device Names of
Disks Actually Installed on Your System 1183

24.2.2 Basic ZFS Examples 1184
24.3 ZFS COMMANDS AND OPERATIONS 1208

24.3.1 Command Categories and Basic Definitions 1208
24.3.2 ZFS Storage Pools and the zpool command 1210
24.3.3 ZFS File System Commands and the zfs Command 1215

24.4 FILE SYSTEM BACKUPS USING ZFS SNAPSHOT 1220

24.4.1 Examples of snapshot 1220
24.4.2 zfs rollback 1220
24.4.3 Cloning/Promoting 1220
24.4.4 Renaming a Filesystem 1221
24.4.5 Compression of Filesystems 1221
24.4.6 Bourne Shell Script Example for Incremental ZFS Backups 1221

24.5 USING ACCESS CONTROL LISTS (ACLS) AND ATTRIBUTES FOR
SECURING SOLARIS ZFS FILES 1223

24.5.1 Solaris ACL Model 1223
24.5.2 Setting ACLs on ZFS Files 1229
24.5.3 Setting ACL Inheritance on ZFS Files 1235

SUMMARY 1238

QUESTIONS AND PROBLEMS 1239

Contents    ◾    xxv

Chapter 25 ◾ Virtualization Methodologies 1243
25.1 INTRODUCTION TO VIRTUALIZATION METHODOLOGIES AND

BACKGROUND 1244

25.1.1 Virtualized Network Addresses in PC-BSD and Solaris 1246
25.2 PC-BSD JAILS WITH IOCAGE 1247

25.2.1 iocage Introduction, Overview, and Use 1247
25.2.2 Basic Usage 1249
25.2.3 iocage Networking 1251
25.2.4 Jail Types 1253
25.2.5 Best Practices 1254
25.2.6 Advanced Usage 1255
25.2.7 How to Create and Use Templates 1258
25.2.8 Create a Jail Package 1259
25.2.9 iocage Installation and Worked Examples 1261

25.3 SOLARIS ZONES VIRTUALIZATION METHOD 1267

25.3.1 Nonglobal Zone State Model 1267
25.3.2 Commands That Affect Zone State 1269
25.3.3 Creating a Solaris Zone 1269
25.3.4 Installing a Web Server Application in a Zone 1276

25.4 VIRTUALBOX 1280

25.4.1 Installing and Running VirtualBox on a PC-BSD Host OS 1281
25.4.2 Installing and Running Solaris VirtualBox 1282
25.4.3 Installing a VM Guest 1285
25.4.4 Securing an FTP Server in a VirtualBox Guest 1289
25.4.5 Installing PC-BSD or Solaris as a Guest VM on a LINUX or

Windows Host 1292
SUMMARY 1296

QUESTIONS AND PROBLEMS 1297

GLOSSARY, 1299
INDEX, 1329

http://taylorandfrancis.com

xxvii

Preface to the Third Edition

This third edition of UNIX: The Textbook has many significant changes and additions
incorporated into it, in terms of both the scope and content of the previous editions. It is a
textbook on the modern, twenty-first-century UNIX operating system. It uses an introduc-
tory approach in style, very similar to the style of the previous editions. With the excep-
tion of four chapters on system programming, the book can be used very successfully by a
complete novice, as well as by an experienced UNIX system user, in both an informal and
formal learning environment.

The two UNIX systems that we deploy to illustrate everything in this edition are PC-BSD
and Solaris. There are many things that make these two systems superior to, as well as
very different from, any contemporary, nominally UNIX distribution, and also from other
NIX-like operating systems, such as Linux and OS X. There are many topics covered in this
book that older, more traditional textbook approaches to UNIX could not include, such as
the Zettabyte File System (ZFS) and a highly developed KDE or Gnome GUI desktop envi-
ronment. The traditional text-based command line interface, though, is still a very integral
part of our presentation of UNIX.

CHANGES IN THE THIRD EDITION OF THIS BOOK
Because PC-BSD and Solaris UNIX have had many important functional additions made
to the application user interface since the previous edition came out, and because UNIX is
now an even more widely-dispersed system in the marketplace than previously, we felt that
we needed to add instructional material to the book covering these additions, including:

• Showing desktop KDE PC-BSD and Gnome Solaris as base system implementations
of UNIX.

• Adding methods for customizing vi, vim, and emacs.

• Adding a complete tutorial chapter on the Python programming language and its
use in UNIX.

• Giving a complete tutorial on the git command, and using Github.

• Adding four new, complete chapters on UNIX system programming and the UNIX
API.

xxviii ◾ Preface to the Third Edition

• Revising the chapter on networking and internetworking to bring it in line with cur-
rent standards.

• Complete covering system call interfaces, files, file-related data structures in the
UNIX kernel, file I/O paradigms, and file manipulation API.

• Extensive coverage of UNIX processes and threads, process-related kernel data struc-
tures in the UNIX kernel, process management API, and signal handling.

• Comprehensively covering interprocess communication in UNIX using pipes,
named pipes (FIFOs), and sockets.

• Comprehensively coverage of Internetworking with UNIX TCP/IP: the client–server
software for the Internet services using sockets, including the design and implemen-
tation of concurrent servers using the select system call and the need for concur-
rent clients.

• Providing coverage of important practical considerations in the design and imple-
mentation of production-quality client–server software.

• Completely revising much of the tutorial section on the X Window System to now
include writing Xlib and Xcb code.

• Adding a new, extensive chapter on UNIX system administration that details instal-
lation, maintenance, and updating/upgrading PC-BSD and Solaris systems on your
own PC.

• Adding a complete reference chapter on ZFS, the default file system on PC-BSD and
Solaris.

• Adding a complete chapter on virtualization methodologies that illustrate PC-BSD
jails and iocage, Solaris zones, and installation of various guest operating systems in
popular host systems using VirtualBox.

• Adding many new diagrams, tables, interactive shell sessions, in-chapter tutorials,
in-chapter exercises, and end-of-chapter problems.

• Providing coverage of many new commands and enhancing coverage of existing
commands.

• Providing up-to-date URLs for important Web resources on nearly everything in the
book.

• Enhancing the usability of all shell scripts, Python and C programs, and other pro-
gramming code shown in the printed book, by installing them at a Github repository
for easy download to a local repository.

• Redesigning the text layout to provide a more usable active learner document.

As in the last editions, one very important fact to keep in mind when you look at what
we have included in this edition, and for that matter in the sequencing and presentation

Preface to the Third Edition    ◾    xxix

of all the material in the book, is the fact that we have almost 65 years of practical teach-
ing experience at the college level. Our continuing concept for this book grew out of our
unwillingness to use either the large, intractable UNIX reference sources or the short
“nutshell” guides to teach meaningful, complete, and relevant introductory classes on the
subject. We still feel very strongly that a textbook approach, with pedagogy incorporating
in-chapter tutorials and exercises, as well as useful problem sets at the end of each chapter,
allows us to present all the important UNIX topics for a classroom lecture–laboratory–
homework presentation. We have continued to fine-tune this textbook presentation in a
manner consistent with optimal learning outcomes (i.e., well-thought-out sequencing of
old and new topics, well-developed and timely lessons, online laboratory problems, and
homework exercises/problems synchronized with the sequencing of chapters in the book).
As in the earlier editions, because of the greatly increased depth and breadth of coverage
of the basic and advanced topics we present, anyone interested in furthering their profes-
sional knowledge of the subject matter will also find this textbook useful.

THE PURPOSES OF THIS BOOK IN THE THIRD EDITION
Our primary purpose remains a didactic description of the UNIX application user’s
interface (AUI), and we also try to do this in a way that gives the reader insight into the
inner workings of the system, along with explaining some important UNIX concepts,
data structures, and algorithms. Notable examples of our revealing the inner workings
of the system are the in-depth descriptions of the UNIX file, process, and I/O redirection
concepts.

Our secondary purpose is to extensively describe the UNIX application programmer’s
interface (API) in terms of C/C++ libraries and UNIX system calls. In writing this third
edition, particularly for the system programming chapters, we do assume previous basic to
intermediate knowledge of C/C++ programming on the part of the reader.

The tertiary purpose of this textbook is to describe some important UNIX software
engineering tools for developers of C/C++ software and shell scripts.

THE PRESENTATION FORMAT
The didactic structure of each chapter in this new edition follows one of two similar for-
mats: either the shell session format, or the tutorial format. In the shell session format
(used in all chapters except 3, 16, 22–25), the following outline is used:

• Learning objectives

• Introduction

• Topic discussion and background organized in sections and subsections

• Illustrative commands or topic illustrations presented as shell sessions, where the user
types in commands shown and results are displayed

• In-chapter exercises that reinforce what was discussed on a topic or done interactively
in a shell session

xxx ◾ Preface to the Third Edition

• Summary

• End-of-chapter questions and problems keyed to topics presented

In the tutorial format (used in Chapters 3, 16, 22–25) the following outline is used:

• Learning objectives

• Introduction

• Topics discussions and background organized in sections and subsections

• One or several example sessions or practice session tutorials that illustrate the com-
mands and topics of interest in any particular section or subsection

• Illustrative commands or topic illustrations presented as shell sessions, where the
user types in commands shown and results are displayed

• In-chapter exercises that reinforce what was discussed in an example or practice ses-
sion, on a topic, or done interactively in a shell session

• Summary

• End-of-chapter problems keyed to topics presented

This edition has had many new diagrams and tables added, and there are many new in-
chapter tutorials, interactive shell sessions, in-chapter exercises, and end-of-chapter prob-
lems. We have added more syntax boxes whenever we introduce a new command or utility.
These syntax boxes describe the exact syntax of the command (and any other pertinent
variants of the basic syntax), its purpose, the output produced by the command, and its
useful options and features. In addition, every chapter contains a summary of the material
covered in the chapter. There is also a glossary of terms used in the book.

PATHWAYS THROUGH THE TEXT
If this book is to be used as the main text for an introductory course in UNIX, Chapters 1–15
and 22 should be covered. If the book is to be used as a companion to the main text in an
operating systems concepts and principles course, the coverage of chapters would be dic-
tated by the order in which the main topics of the course are covered but should include
Chapters 4, 9, 10, 18–21, 24, and 25. For use in a C/C++ or shell programming course,
Chapters 1, 4–17 and relevant sections of Chapter 3 would be a great help to students. The
extent of coverage of Chapter 17 would depend on the nature of the course—partial cov-
erage in an introductory and full coverage in an advanced course. For use in a course of
UNIX system administration course, Chapters 4–11, 22, 23, 24, 25, and relevant sections of
Chapters 12–15 should be used. In a system programming course, Chapters 12–16, 18–21,
and relevant portions of Chapters 4–11 and Chapters 24–25 should be covered. Finally, in
a course on UNIX network programming, Chapters 11, 18–21, and relevant portions of
Chapters 12–16 should be used.

Preface to the Third Edition    ◾    xxxi

THE DESIGN OF FONTS
The following typefaces have been used in the book for various types of text items.

Font Text Item

Minion Pro, italic Key terms:
• Whatever directory you are currently in is known as the present working

directory.
Minion Pro, bold Files/directories/symbolic constants/menu paths:

• The directory first and the file myfile2 are now removed.
• Make the Options menu choice Save Options
• Make the pull-down menu choice File>Quit
• A socket with AF_INET address family is known as the Internet domain socket.

Courier Std Commands, program code, output of commands and programs, and options:
• Use the man and whatis commands to find information about the passwd

command.
• The output of the date command is Thu Apr 7 13:53:30 PKT 2016.
• You can use the –l option to display the long listing.
• The following session shows the Bourne shell script in the for_demo1 file
$ cat for_demo1
#!/bin/sh
for people in Debbie Jamie John Kitty Kuhn Shah
do
 echo "people"
done
exit 0
$

Keystrokes:
• <Enter>, <Alt+V>, <F1>, a

Prompts, messages, dialogs, windows:
• A user who runs a write or talk command sees the message Permission
denied.

• The system then displays the login: prompt.
• In the Find file: dialog box that opens…
• Click the OK button in the Save window.

Courier Std,
bold

User input:
• [bob@pcbsd-923] ~% ssh 192.168.0.8
• Password for bob@pcbsd-2467: XXX

SUPPLEMENTS
A variety of supplemental materials are available for all users of this textbook and addi-
tional material only to qualified instructors.

Materials Available to all Users of this Textbook

 1. You can use your web browser and retrieve the materials from the following Github
repository:

 https://github.com/bobk48/unixthetextbook3

https://www.github.com/bobk48/unixthetextbook3

xxxii ◾ Preface to the Third Edition

 2. Or you can use the steps of the following example in the book to prepare and down-
load these materials:

 Example 17.5: Pulling from a GitHub Repository

 3. To access these materials as shown in Example 17.5, pull from the repository using
this git command:
% git pull https://github.com/bobk48/unixthetextbook3 master

 4. In either case, you will find the following in your new local repository:

• Answers to in-chapter exercises.

• Source code for C/C++ programs, Python code, and long shell scripts, arranged by
chapter.

• Updated links to other UNIX resources on the Web.

• Author-maintained Web Resources listing for chapters which do not contain this
in the printed book.

• Updates of version-specific content of PC-BSD and Solaris that severely impact
our printed-book presentations.

• Errata.

 Additional material is available from the CRC website at http://www.crcpress.
com/product/isbn/97814822335832.

Resources Available to Qualified Instructors Only

Contact your CRC Press representative to gain access to this material.
Solutions to problems at the end of each chapter.
We take full responsibility for any errors in the book. You can send your error reports

and comments to us at the above listed Github site. We will incorporate your feedback and
fix any errors in subsequent printings.

http://www.crcpress.com/product/isbn/97814822335832
http://www.crcpress.com/product/isbn/97814822335832

xxxiii

Acknowledgments for
the Third Edition

We started writing this third edition during the fall of 2013 and finished it in the spring of
2016. Completing such a large revision would not have been possible without the help of
many. First and foremost, the authors sincerely thank the editor of the book, Randi Cohen,
for her support, guidance, reassurance, professionalism, and understanding throughout
this project. She is the top of the line. Also, we would like to extend a warm and gra-
cious acknowledgment to Amber Donley and Joette Lynch at CRC Press and Michelle van
Kampen at Deanta Publishing Services for all of their professional diligence and extremely
thorough work on the production of this book.

We convey our sincere thanks to the following reviewers of this edition who gave valu-
able feedback, and numerous accurate and insightful comments. We are particularly grate-
ful to Professor Richard Fox, who meticulously read the manuscript and gave many useful
suggestions that greatly enhanced the final product.

• Hussein Abdel-Wahab Old Dominion University

• Gregory B. Newby Compute Canada

• Richard Fox Northern Kentucky University

http://taylorandfrancis.com

xxxv

Acknowledgments for the
Second and First Editions

Thanks are extended to Marilyn Lloyd of AWL for her many excellent suggestions and out-
standing work in the production phase of this book. We are also grateful to Joyce Wells for
designing a beautiful cover for the book. Thanks also to Katherine Harutunian at AWL for
her many valuable suggestions and support. The work of the whole Addison Wesley team
was excellent! Special thanks to Keith Henry and Alisa Andreola at Dartmouth Publishing
for their excellent copyediting and interior design.

We also thank the following reviewers for reviewing the second edition of the book.

• Robert Albright University of Delaware

• Hussein Abdel-Wahab Old Dominion University

• Dunren Che Southern Illinois University

• C. Michael Costanzo University of California, Santa Barbara

• Robert M. Cubert University of Florida

• James P. Durbano University of Delaware

• Nisar Hundewale Georgia State University

• Mark Hutchenreuther California Polytechnic State University

• Stephen P. Leach Florida State University

• Susan Lincke-Salecker University of Wisconsin Parkside

• Mike Qualls Grossmont Community College

• Daniel Tomasevich San Francisco State University

• Paul Tymann Rochester Institute of Technology

• Troy Vasiga University of Waterloo

We would like to acknowledge Ronald E. Bass, Thomas A. Burns, Chuck Lesko, Toshimi
Minoura, Selmer Moen, Gregory B. Newby, Dr. Marianne Vakalis, and Dr. G. Jan Wilms
for their insightful comments in reviewing this book’s first edition.

http://taylorandfrancis.com

xxxvii

Personal Acknowledgments

Syed Mansoor Sarwar I thank my parents, wife, children, and siblings for their love, sup-
port, and trust. They have all been a positive influence in my life, have helped me in many
ways, and remain my biggest supporters. I can never pay back the grace that they have
extended to me over the years. My mother, a class act in motherhood, has been fighting
serious illnesses for the past several years. I pray for her good health and peace of mind.
My father, an avid reader even at the age of 94, is an icon of wisdom, courage, care, intel-
lect, logical reasoning, and mental toughness, and remains my inspiration for the quest of
knowledge discovery, rational thinking, and service to fellow humans. Without his and
my wife’s continuous encouragement and support, writing this book would not have been
possible.

My wife, Robina, and children Maham, Ibraheem, and Hassan have been extremely
patient and supportive during the course of this project. Thank you for your understand-
ing and support, guys! I could not have done it without you. At the time of writing the
second edition of the book, Hassan and Maham were in middle school, and the then “snug
bug” Ibraheem in prenursery. Now, Hassan is the CEO of infinione (infinione.com), a Los
Angeles-based technology company that he founded when he was a junior at the University
of Southern California (USC). Maham is a merit scholarship holder senior, majoring in
textile design with the Best Designer award under her belt in a national competition.
Several of her designs have already been marketed through well-known fashion women’s
wear brands such as Beechtree. Ibraheem is now a young 6′2″ teenager, with a love for
mathematics and science, and has the goal to become a top-notch scientist as well as a
professional basketball player.

My special thanks to my sisters Rizwana and Farhana, and brothers Aqeel, Nadeem,
Masood, and Nabeel for their friendship and care. I convey my sincere gratitude to them,
my sisters-in-law Maimoona, Sadaf, and Farzana, and brother-in-law Hamid, for taking
care of our father and ailing mother during the hours of their need. Folks, I will forever
remain indebted to you for performing my share of service toward our parents. I hope to
be able to offer a payback in some form someday.

I thank the teachers who taught me the use, administration, internals, and program-
ming of UNIX. They are James Davis, Doug Jacobson, and Arthur Oldehoeft at Iowa State
University, and Jim Binkley at Oregon Graduate Institue and Portland State University.
I wrote this book under the most trying professional circumstances of my career. I thank
my colleagues at the Punjab University College of Information Technology (PUCIT), the

http://www.infinione.com

xxxviii ◾ Personal Acknowledgments

GIS Center, the Institute of Business and Information Technology (IBIT), Institute of
Chemistry, and the Department of Space Science who supported me through thick and
thin. I wish them all peaceful lives and outstanding professional careers. Fellows, you are
the best colleagues one could ever wish for. Thank you for being there!

I also thank my friends, colleagues, teachers, students, and professionals who have played
a positive role in my life. They are in no particular order: R. A. Khan, Mohammad Ishaq, the
late Ghulam us Saqlain Naqvi, Shahid H. Bokhari, Mohammad Ali Maud, Haroon Babri,
Wasif Khan, Norman Scott, Janice Jenkins, Art Pohm, James Davis, Arthur Oldehoeft,
Thomas Piatkowski, Douglas Jacobson, the late James “Jolly” Triska, the late Charlie
Wright, David Schmidt, Terry Smay, Zartash Uzmi, Tariq Jadoon, Sohaib Khan, Aamer
Mahmood, Asim Loan, the late Masood Ahmad, Sohail Aftab, Jahangir Ikram, Tariq Butt,
Asim Rasul, Hamid Ch, Ejaz Ashraf, Shahzad Sarwar, Murtaza Yousaf, Waqar Jaffrey,
Kamran Malik, Sadeeqa Khan, Shahid Farid, Hassan Khan, Sidra Faisal, Zobia Sohail,
Laeeq Aslam, Faisal Bukhari, Waheed Iqbal, Faisal Aslam, Fawaz Bokhari, Nastaeen Fatima,
Muddassira Arshad, Esha Aftab, Fakhra Jabeen, Aisha Khan, Amina Mustanser, Tayyaba
Tariq, Saima Ali, Umair Babar, Imran Farid, Mehvish Poshni, Khurram Shahzad, Zubair
Nawaz, Adeel Nisar, Ahmad Ghazali, Asif Sohail, Muhammad Farooq, Kashif Murtaza,
Nazar Khan, Aasim Ali, Qudsia Hamid, Muhammad Haris, Nida Samad, Zia Afzal, Syed
Muhammad Ali, Samreen Jawed, Anzar Ahmad, Rukhsana Kauser, Madiha Khalid, Mian
Mubasher, Sanam Ahmad, Sarah Riaz, Asim Siddique, Tariq Saeed, Mehwish Khurshid,
Adnan Asif, Saleem Akhtar, Aamir Raza, Mohsin Omer, Saeed Abbasi, Muhammad
Shafiq, Arif Kareem, Muhammad Ajmal, Athar Pasha, Anisul Haq, Shamaila Gull, Javed
Sami, Ahsan Sharif, Shaukat Ali, Aurangzeb Alamgir, the late Saeed Nagra, Shahid Ghazi,
Asghar Iqbal, Fauzia Adeeba, Maryam Nawaz, Khawaja Imran Nazir, Shahzad Shaukat,
Syed Mazahir Ali Akbar Naqvi, Saad Rasool, Anum Azhar, Aitzaz Chaudhary, Aziz Inan,
Zia Yamayee, Shahid Ghazi, Asghar Iqbal, Fauzia Adeeba, Maryam Nawaz, Kitty Tilton,
Jamie Strohecker, Debbie Spear, Lorraine Yoder, Mathew Kuhn, Tanya Crenshaw, Peter
Osterberg, Robert Albright and, last but not least, my mentor at the University of Portland,
the late Tom Nelson.

I thank the many students at the Iowa State University, University of Portland, Portland
Community College, LUMS, and PUCIT who helped me in the development of the mate-
rial for the book. Thanks also to my colleagues at the University of Portland, LUMS, and
PUCIT who helped me with the installation and use of the UNIX systems for the three edi-
tions of the book. They are Kent Thompson, Dale Frakes, Abid Latif “Pasoorri”, Arif Butt,
and Rizwan Malik. My office staff Zubair Siddique, Muhammad Azhar, and Humayun
Ejaz helped me with all the diagrams in this edition of the book. Thank you, gentlemen!

Last but not least, I also thank my coauthor, Bob Koretsky, for his help, encouragement,
and trust. Bob, you were a great support throughout the project. Completing this task was
not possible without you! I look forward to working with you on future projects, including
the second edition of Linux: The Textbook.

Robert M. Koretsky I thank my family, for all of the love and continued support through
the years. Special thanks to my grandsons Victor and Garvey. I also thank Mansoor Sarwar,
for his friendship, intelligence, patience, and continued support and inspiration.

1

C h a p t e r 1

Overview of Operating
Systems

Objectives

• To explain what an operating system is

• To describe briefly operating system services

• To describe character and graphical user interfaces

• To discuss different types of operating systems

• To describe briefly the UNIX operating system

• To give an overview of the structure of a contemporary system

• To describe briefly the structure of the UNIX operating system

• To detail some important system setups

• To describe briefly the history of the UNIX operating system

• To provide an overview of the different types of UNIX systems

1.1 INTRODUCTION
Many operating systems are available today, some general enough to run on any type
of computer (from a personal computer, or PC, to a mainframe), and some specifically
designed to run on a particular type of computer system, including real-time computer
systems used to control the movement of mechanical devices such as robots, tablet com-
puters, and cell phones. In this chapter, we describe the purpose of an operating system
and the different classes of operating systems. Before describing different types of operat-
ing systems and where UNIX fits in this categorization, we present a layered diagram of
a contemporary computer system and discuss the basic purpose of an operating system.

2 ◾ UNIX: The Textbook, Third Edition

We then describe different types of operating systems and the parameters used to classify
them. Then, we identify the class that UNIX belongs to and briefly discuss the different
members of the UNIX family.

The people who use UNIX comprise application developers, systems analysts, program-
mers, administrators, business managers, academicians, and people who just wish to read
their e-mail. From its earliest inception in 1969 as a laboratory research tool, it was further
developed in the academic community, and then endorsed for commercial uses. In its ver-
sion today, UNIX has an underlying functionality that is complex but easy to learn, and
extensible yet easily customized to suit a user’s style of computing. One key to understand-
ing its longevity and its heterogeneous appeal is to study the history of its evolution.

1.2 WHAT IS AN OPERATING SYSTEM?
A computer system consists of various hardware and software resources, as shown in a
layered fashion in Figure 1.1. The primary purpose of an operating system is to facilitate
easy, efficient, fair, orderly, and secure use of these resources. It allows the users to employ
application software—spreadsheets, word processors, Web browsers, e-mail software, and
other programs. Programmers use language libraries, system calls, and program genera-
tion tools (e.g., text editors, compilers, and version control systems) to develop software.
Fairness is obviously not an issue if only one user at a time is allowed to use the computer
system, including single-user desktop systems, laptops, tablet computers, and cell phones.
However, if multiple users are allowed to use the computer system, fairness and security
are two main issues to be tackled by the operating system designers.

Hardware resources include keyboards, touch pads, display screens (may also be touch
screens), main memory (commonly known as random access memory or RAM), disk
drives, network interface cards (NICs), and central processing units (CPUs). Software
resources include applications such as word processors, spreadsheets, games, graphing

UNIX shell, commands, and application programs

Language libraries and system call interface

Operating system kernel

Computer hardware

API

AUI

Users
User 1 User K…

FIGURE 1.1 A layered view of a contemporary computer system.

Overview of Operating Systems    ◾    3

tools, picture- and video-processing tools, and Internet-related tools such as Web browsers.
These applications, which reside at the topmost layer in the diagram, form the application
user interface (AUI). The AUI is glued to the operating system kernel via the language
libraries and the system call interface. The system call interface comprises a set of func-
tions that can be used by the applications and library routines to execute the kernel code
for a particular service, such as reading a file. The language libraries and the system call
interface comprise what is commonly known as the application programmer interface
(API). The kernel is the core of an operating system, where issues like CPU scheduling,
memory management, disk scheduling, and interprocess communication are handled. The
layers in the diagram are shown in an expanded form for the UNIX operating system in
Figure 1.2, where we also describe them briefly.

There are two ways to view an operating system: top down and bottom up. In the
bottom-up view, an operating system can be viewed as a software that allocates and deal-
locates system resources (hardware and software) in an efficient, fair, orderly, and secure
manner. For example, the operating system decides how much RAM space is to be allo-
cated to a program before it is loaded and executed. The operating system ensures that
only one file is printed on a particular printer at a time, prevents an existing file on the disk

Applications: Compilers, word processors, spreadsheets,

UNIX shell: Bourne shell, C shell, Bash, etc.

Language libraries: C, C++, Java, FORTRAN, etc.

UNIX kernel:

File
management

Primary and
secondary

storage
management

Operating
system

Application
programmer

interface
(API)

Application
user

interface
(AUI)

Interprocess
communication

(IPC)

Process
management

CPU
scheduler

Device drivers: Mouse driver, printer driver, CD-ROM driver,

Hardware: Wires, capacitors, resistors, transistors, ICs,

hard disk driver, etc.

mouse, display monitor, keyboard, CPU, RAM,
hard disk, CD-ROM, printer, USB, etc.

System call interface (entry points into kernel)

FTP, SSH, Web browsers, etc.

FIGURE 1.2 Software architecture of the UNIX operating system.

4 ◾ UNIX: The Textbook, Third Edition

from being accidentally overwritten by another file, and further guarantees that, when the
execution of a program given to the CPU for processing has been completed, the program
relinquishes the CPU so that other programs can be executed. Thus the operating system
can be viewed as a resource manager.

In the top-down view, which we espouse in this textbook, an operating system can
be viewed as a piece of software that isolates you from the complications of hardware
resources. You therefore do not have to deal with the extremely difficult (and sometimes
impossible for most users) task of interacting with these resources. For example, as a user
of a computer system, you don’t have to write the code that allows you to save your work as
a file on a hard disk, use a mouse as a point-and-click device, use a touch screen or touch
pad, or print on a particular printer. Also, you do not have to write new software for a
new device (e.g., mouse, disk drive, or DVD) that you buy and install in your system. The
operating system performs the task of dealing with complicated hardware resources and
gives you a comprehensive machine with a simple, ready-to-use interface. This machine
allows you to use simple commands to retrieve and save files on a disk, print files on a
printer, and play movies from a DVD. In a sense, the operating system provides a virtual
machine that is much easier to deal with than the physical machine. You can, for example,
use a command such as cp memo letter to copy the memo file to the letter file on the
hard disk in your computer without having to worry about the location of the memo and
letter files on the disk, the structure and size of the disk, the brand of the disk drive, and
the number or name of the various drives (floppy, CD-ROM, and one or more hard drives)
on your system.

1.3 OPERATING SYSTEM SERVICES
An operating system provides many ready-made services for users. Most of these services
are designed to allow you to execute your software, both application programs and pro-
gram development tools, efficiently and securely. Some services are designed for house-
keeping tasks, such as keeping track of the amount of time that you have used the system.
The major operating system services therefore provide mechanisms for following secure
and efficient operations and processes:

• Execution of a program

• Input and output operations performed by programs

• Communication between processes

• Error detection and reporting

• Manipulation of all types of files

• Management of users and security

A detailed discussion of these services is outside the scope of this textbook, but we dis-
cuss them briefly when they are relevant to the topic being presented.

Overview of Operating Systems    ◾    5

1.4 CHARACTER (COMMAND LINE) VERSUS
GRAPHICAL USER INTERFACES

In order to use a computer system, you have to give commands to its operating system. An
input device, such as a keyboard, is used to issue a command. If you use the keyboard to
issue commands to the operating system, the operating system has a character user inter-
face (CUI), commonly known as the command line interface. If the primary input device
for issuing commands to the operating system is a point-and-click device, such as a mouse,
a touch screen, or a touch pad, the operating system has a graphical user interface (GUI).
Most, if not all, operating systems have both character and graphical user interfaces, and
you can use either. Some have a command line as their primary interface but allow you
to run software that provides a GUI. Operating systems such as DOS and UNIX have
CUIs, whereas Mac OS, OS/2, and Microsoft Windows primarily offer GUIs but have the
capability to allow a user to enter a DOS- or UNIX-like terminal screen. Although UNIX
comes with a CUI as its basic interface, it can run software based on the X Window System
(Project Athena, MIT) that provides a GUI interface. Moreover, most UNIX systems now
have a state-of-the-art X-based GUI. Mac OS X (Darwin), running on Apple products, is
the most well-known GUI-based UNIX system. We discuss the UNIX GUI in Chapter 23.

Although a GUI makes a computer easier to use, it gives you an automated setup with
reduced flexibility. A GUI also presents an extra layer of software between you and the task
that you want to perform on the computer, thereby making the task slower. In contrast, a
CUI gives you ultimate control of your computer system and allows you to run applica-
tion programs any way you want. A CUI is also more efficient because a minimal layer of
software is needed between you and your task on the computer, thereby enabling you to
complete the task faster. It is also malleable and gives the user more control. Because many
people are accustomed to the graphical interfaces of popular gizmos and applications such
as Nintendo and Web browsers, the character interface presents an unfamiliar and some-
times difficult style of communicating commands to the computer system. However, com-
puter science students are usually able to meet this challenge after a few hands-on sessions.

1.5 TYPES OF OPERATING SYSTEMS
Operating systems can be categorized according to the number of users who can use the
system at the same time and the number of processes (executing programs) that the system
can run simultaneously. These criteria lead to three types of operating systems:

• Single-user, single-process system: These operating systems allow only one user at a
time to use the computer system, and the user can run only one process at a time.
Such operating systems are commonly used for PCs. Examples of these operating sys-
tems are earlier versions of Mac OS, DOS, and many of Microsoft’s Windows operat-
ing systems.

• Single-user, multiprocess system: As the name indicates, these operating systems
allow only a single user to use the computer system, but the user can run multiple
processes simultaneously. These operating systems are also used on PCs. Examples

6 ◾ UNIX: The Textbook, Third Edition

of such operating systems are OS/2, Windows XP Workstation, and batch operating
systems. Batch processing is still commonly used in mainframe computers, and most
modern operating systems including UNIX, Microsoft Windows, Linux, and Mac OS
perform some tasks in batch mode. Even smartphone operating systems including
Android and iOS perform tasks in batch mode.

• Multiuser, multiprocess system: These operating systems allow multiple users to use
a computer system simultaneously, and every user can run multiple processes at the
same time. These operating systems are commonly used on computers that support
multiple users in organizations such as universities and large businesses. Examples of
these operating systems are UNIX, Linux, Windows NT Server, MVS, and VM/CMS.

Multiuser, multiprocess systems are used to increase resource utilization in the computer
system by multiplexing expensive resources such as the CPU. This capability leads to increased
system throughput (the number of processes finished in unit time). Resource utilization
increases because, in a system with several processes, when one process is performing input
or output (e.g., reading input from the keyboard, capturing a mouse click, or writing to file on
the hard disk), the CPU can be taken away from this process and given to another process—
effectively running both processes simultaneously by allowing them both to make progress
(one is performing input/output [I/O] and the other is using the CPU). The mechanism of
assigning the CPU to another process when the current process is performing I/O is known as
multiprogramming. Multiprogramming is the key to all contemporary multiuser, multiprocess
operating systems. In a single-process system, when the process using the CPU performs I/O,
the CPU sits idle because there is no other process that can use the CPU at the same time.

Operating systems that allow users to interact with their executing programs are known
as interactive operating systems, and the ones that do not are called batch operating systems.
Batch systems are useful when programs are run without the need for human intervention,
such as systems that run payroll programs. The VMS operating system has both interac-
tive and batch interfaces. Almost all well-known contemporary operating systems (UNIX,
Linux, DOS, Windows, etc.) are interactive. UNIX and Linux also allow programs to be
executed in batch mode, with programs running in the background (see Chapter 10 for
details of “background process execution” in UNIX). Multiuser, multiprocess, and inter-
active operating systems are known as time-sharing systems. In time-sharing systems, the
CPU is switched from one process to another in quick succession. This method of opera-
tion allows all the processes in the system to make progress, giving each user the impres-
sion of sole use of the system. Examples of time-sharing operating systems are UNIX,
Linux, and Windows NT Server.

1.6 THE UNIX FAMILY
Years ago the name UNIX referred to a single operating system, but it is now used to refer
to a family of operating systems that are offshoots of the original in terms of their user
interfaces. Éric Lévénez (www.levenez.com/unix) lists names of over 270 UNIX flavors at
the time of writing this book. Some of the members of this family are AIX, BSD, DYNIX,

http://www.levenez.com/unix

Overview of Operating Systems    ◾    7

FreeBSD, HP-UX, Linux, MINIX, NetBSD, SCO, Solaris, OpenSolaris, SunOS, System V,
XENIX, PC-BSD, OpenBSD, Mac OS X (Darwin), and XINU. In Section 1.8, we give a brief
history of some of the most popular and developmentally influential UNIX systems.

1.7 UNIX SOFTWARE ARCHITECTURE
Figure 1.2 shows a layered diagram for a UNIX-based computer system, identifying the
system’s software components and their logical proximity to the user and hardware. We
briefly describe each software layer from the bottom up.

1.7.1 Device Driver Layer

The purpose of the device driver layer is to interact with various hardware devices. It con-
tains a separate program for interacting with each device, including the hard disk driver,
floppy disk driver, CD-ROM driver, keyboard driver, mouse driver, touch pad driver, and
display driver. These programs execute on behalf of the UNIX kernel when a user com-
mand or application needs to perform a hardware-related operation such as a file read that
translates to one or more disk reads. The user doesn’t have direct access to these programs
and therefore can’t execute them as commands.

1.7.2 UNIX Kernel

The UNIX kernel layer contains the actual operating system. Some of the main functions
of the UNIX kernel, listed in Figure 1.2, are described in this section. In addition, the ker-
nel performs several other tasks for fair, orderly, and safe use of the computer system. These
tasks include managing the CPU, printers, and other I/O devices. The kernel ensures that
no user process takes over the CPU forever, that multiple files are not printed on a printer
simultaneously, and that a user cannot terminate another user’s process.

1.7.2.1 Process Management
This part of the kernel manages processes in terms of creating, suspending, resuming,
and terminating them, and maintaining their states. It also provides various mechanisms
for processes to communicate with each other and schedules the CPU to execute multiple
processes simultaneously in a time-sharing system. Interprocess communication (IPC) is
the key to the client–server-based software that is the foundation for Internet applications,
including Web browsing (HTTP), file transfer (FTP), and remote login (SSH). The UNIX
system provides three primary IPC mechanisms/channels:

• Pipe: Two or more related processes running on the same computer can use a pipe as
an IPC channel. Typically, these processes have a parent–child or sibling relationship.
A pipe is a temporary channel that resides in the main memory and is created by the
kernel, usually on behalf of the parent process.

• Named pipe: A named pipe, also known as a FIFO, is a permanent communication
channel that resides on the disk and can be used for IPC by two or more related or
unrelated processes running on the same computer.

8 ◾ UNIX: The Textbook, Third Edition

• BSD socket: A BSD socket is also a temporary channel that allows two or more
processes in a network (or on the Internet) to communicate, although processes on
the same computer can also use them. Sockets were originally a part of the BSD
UNIX only, but they are now available on almost every UNIX system. Internet soft-
ware such as Web browsers, File Transfer Protocol (FTP), Secure Shell (SSH), and
electronic mailers are implemented by using sockets. AT&T UNIX has a similar
mechanism called the Transport Layer Interface (TLI).

We discuss these mechanisms of IPC in detail under “UNIX System Programming” in
Chapters 18 through 21.

1.7.2.2 File Management
This part of the kernel manages files and directories, also known as folders. It performs all
file-related tasks, including file creation and removal, directory creation and removal, set-
ting access privileges on files and directories, and maintaining their attributes, such as file
size. A file operation usually requires manipulation of a disk. In a multiuser system, a user
must never be allowed to manipulate a disk directly because it contains files belonging to
other users, and user access to a disk poses a security threat. Only the kernel must perform
all file-related operations, such as file removal. Also, only the kernel must decide where and
how much space to allocate to a file.

1.7.2.3 Main Memory Management
This part of the kernel allocates and deallocates RAM in an orderly manner so that each
process has enough space to execute properly. It also ensures that part or all of the space
allocated to a process does not belong to some other process. The space allocated to a pro-
cess in the memory for its execution is known as its address space. The kernel ensures that
no process accesses an area of memory that does not belong to its address space. The kernel
maintains areas in the main memory that are free to be allocated to processes. The kernel
code that performs this task is called the free space manager. When a program is to be
loaded in the main memory, the free space manager allocates adequate space for it and the
loader loads the program into this space. The kernel also records where all the processes
reside in the memory so that, when a process tries to access main memory space that does
not belong to it, the kernel can terminate the process and give a meaningful message to the
user. When a process terminates, the kernel deallocates the space allocated to the process
and puts it back in the free space pool so that it can be reused.

1.7.2.4 Disk Management
The kernel is also responsible for maintaining free and used disk space and for the
orderly and fair allocation and deallocation of disk space. It decides where and how
much space to allocate to a newly created file. The kernel code that performs this task is
known as the disk storage manager. Also, the kernel performs disk scheduling, deciding
which request to serve next when multiple requests for file read, write, and so on, arrive
for the same disk.

Overview of Operating Systems    ◾    9

1.7.3 System Call Interface

The system call interface layer contains entry points into the kernel code. Because the ker-
nel manages all system resources, any user or application request that involves access to
any system resource must be handled by the kernel code. But user processes must not be
given open access to the kernel code for security reasons. So that user processes can invoke
the execution of kernel code, UNIX provides several openings, or function calls, into the
kernel, known as system calls. There are numerous system calls that deal with the manipu-
lation of processes, files, and other system resources. These calls are well tested, and most
of them have been used for several years, so their use poses much less of a security risk than
if any user code were allowed to perform the task.

1.7.4 Language Libraries

A language library is a set of prewritten and pretested functions in a programming language
available to programmers for use with the software that they develop. The availability and
use of libraries saves time because programmers do not have to write these functions from
scratch. This layer contains libraries for several languages, including C, C++, C#, Java, Perl,
and Python. For the C language, for example, there are several libraries, including a string
library (which contains functions for processing strings, such as a function for comparing
two strings) and a math library (which contains functions for mathematical operations,
such as finding the cosine of an angle).

As we stated earlier in this chapter, the libraries and system call interface form what is
commonly known as the API. In other words, programmers who write software in a lan-
guage such as C can use in their code the prewritten functions available in the various C
libraries and system calls.

1.7.5 UNIX Shell

The UNIX shell is a program that starts running when you log on and interprets the com-
mands that you enter. The most popular shells are the Bourne shell (sh), Bourne Again
shell (bash), C shell (csh), TC shell (tcsh), and Korn shell (ksh). We show the usage
of shell commands and shell scripts (see Chapters 12 through 15) in Bourne and C shells.

1.7.6 Applications

The applications layer contains all the applications (tools, commands, and utilities) that
are available for your use. A typical UNIX system contains hundreds of applications; we
discuss the most useful and commonly used applications throughout this textbook. When
an application that you’re using needs to manipulate a system resource (e.g., reading a
file), it needs to invoke some kernel code that performs the task. An application can find
the appropriate kernel code to execute in one of two ways: (1) by using a proper library
function and (2) by using a system call. Library calls constitute a higher-level interface
to the kernel than system calls, which makes library calls a bit easier to use. However, all
library calls eventually use system calls to begin execution of the appropriate kernel code.
Therefore, the use of library calls in software results in slightly slower execution. A detailed
discussion of language libraries and system calls is, generally, beyond the scope of this

10 ◾ UNIX: The Textbook, Third Edition

textbook. However, we discuss and show the use of several library calls and system calls in
Chapter 16 on Python and Chapters 18 through 21 on UNIX system programming.

The user can use any command or application that is available on the system. As we
mentioned earlier in this chapter, this layer is commonly known as the AUI.

1.8 DEVELOPMENT OF THE UNIX OPERATING SYSTEM
How has UNIX achieved the status and position in the marketplace it has now? Because
it is a multiuser, multiprocess operating system that can run on the X86 architectures of
very small- to very large-scale hardware used by most computer users in the world. That
means it is used by casual, individual users on their home computers, all the way up to 60
processor servers in a cloud configuration at a commercial facility. It can link your home
computer to the Internet with a standard browser like Opera or Firefox. Also, the vast
majority of Internet servers run on UNIX or Linux machines.

What really are the differences between the three major families of UNIX? Basically, the
kernels and their APIs, the file systems, the device driver bases, and to some extent the desk-
top management systems they use. And accordingly, in reality there are only two true UNIX
operating system families now: the BSD family, exemplified in our book by the FreeBSD off-
shoot named PC-BSD, and the Solaris family. Both families have the distinguishing feature
of booting from and including the Z File system (ZFS) in their kernel. At the time of writing
this book, none of the other NIX-like systems (Linux, OS X) have this feature.

The people who use the UNIX operating system are application developers, systems
analysts, web programmers, system administrators, business managers, academicians, and
people who just want to read their e-mail. From its earliest inception in 1969 as a labora-
tory research tool, it was further developed in the academic community and then endorsed
for commercial uses. Today’s UNIX has an underlying functionality that is complex but
easy to learn because of its GUI, and extensible yet easily customized to suit a user’s style
of computing. The GUI is comparable to those on Windows or OS X machines. One of the
primary keys to understanding its longevity, and its heterogeneous appeal, is to study the
history of its evolution, which follows.

1.8.1 Beginnings

Before we describe the evolution of UNIX, first we have to ask, why is this operating system
so “friendly” and accommodating? Part of the answer is that this ever-evolving operating
system, which is accepted and used throughout the world, was developed in response to
the needs and activities of a very heterogeneous community of computer users. It grew,
changed, and improved because of the work and cooperation of many diverse, and some-
times opposing, individuals and groups.

UNIX continuously grew, changed, and improved alongside the development of com-
puter hardware, software applications, networking, and other components of the “com-
puter revolution.” The UNIX project started as a personal and subjective endeavor but
exploded into a universal and generic technical tool. Thus its various audiences must have
found some basic advantages in this tool—particularly the largest audience, common
users. Separating the influences of these various user groups in the development of UNIX

Overview of Operating Systems    ◾    11

is difficult. Moreover, because the system is fundamentally an open software system—that
is, the source code is freely distributed among the community of users—its evolution has
been shaped to some extent by a populist mindset. For example, development resource and
source code repositories such as GitHub expedite this development model in the twenty-
first century. It will continue to be shaped as such in the future, thanks to organizations
like the Open Software Foundation, and because of the pervasive use of the Internet in
social life, academic settings, and in business and professional settings.

It is the underlying core functionality of UNIX that brings together its diverse audi-
ences into a community—not so much in the sociological sense, but more in an indepen-
dent, DIY, intellectual sense. As you delve into the subject matter of this textbook, you
might wonder where you fit into the UNIX community and how its functionality might be
adapted for your uses. Essentially, it is the style of your interaction with the computer that
will be the most important, invigorating, and critical aspect of your work with the UNIX
operating system.

The development of other contemporary operating systems is motivated and informed
by completely different forces and bases (primarily commercialization) than those that
motivated the inception and development of UNIX (primarily a user-friendly, text-based
operating system). The history of UNIX is a record of how a system should be devel-
oped, regardless of how you believe that system should be structured, how you think it
should function (whatever your user perspective), and who you believe should control that
development.

Figure 1.3 describes the three main branches of UNIX systems as they were developed
from 1969 to the present. The approximate dates of the development of milestone versions
in each of the branches are shown on the left.

The UNIX Support Group (USG), UNIX System Development Laboratory (USDL),
and UNIX System Laboratories (USL) were commercial spin-offs of AT&T. The UNIX
Programmer’s Work Bench (PWB) was distributed initially through the USG.

In the mid-1960s, Bell Laboratories began a collaborative effort to develop a multiuser
operating system known as MULTICS. One of the biggest drawbacks inherent in the
functionality of this new operating system was the complexity of the software and hard-
ware required to accomplish simple tasks for multiple users. Following the failure of the
MULTICS project, Ken Thompson, Dennis Ritchie, and others at Bell Laboratories devel-
oped a multiuser operating system called UNIX, which first ran on a DEC PDP-7 computer
and later was ported to a PDP-11 computer. One of the features of UNIX that distinguished
it from MULTICS was that it allowed processes to be created easily by a single user.

The most important historical development in the early 1970s was the recoding of most of
the operating system in the high-level programming language, C. At that time, most oper-
ating system programs were written in a low-level programming language, known as an
assembly language, which was specifically tailored to the architecture of the processor that a
particular make of computer used. Thus, an operating system written in a low-level language
was not portable between computers with different processors made by different manufac-
turers. Written in C, UNIX was very portable. Also, C, as well as other high-level languages,
is much easier to program with than assembly language, which is characteristically difficult.

12 ◾ UNIX: The Textbook, Third Edition

1.8.2 Research Operating System

Bell Laboratories controlled the research systems versions of UNIX, known as versions 1
through 6. These versions had three important characteristics:

 1. The UNIX system was continually developed and written in C, with only a small
subset of the code tailored to a target processor.

 2. Releases were distributed as C source code, which could be easily modified and
improved upon to add functionality by those who obtained any of the research ver-
sions of the system.

First edition

USG, USDL,
and USL

1969

1980

1990

2000

2006

2008

2010

2014

Bell labs BSD

Sixth edition

Xenix

UnixWare

PWB

System III

System V

Linux

UnixWare 7.x

Open
solaris Solaris 10

Solaris 2.1 to 9

Solaris 2

Solaris

Sun OS

FreeBSD 3.2

4.4 BSD

4 BSD

1 BSD

Solaris 11.1

FreeBSD
3.3 to
10.02

NetBSD
1.3 to

6.x

OpenBSD
2.3 to

5.x

PC-BSD
10.2

Mac OS X
10.0 to 10.9.x

(Darwin)

SCO UNIX

Open server 6.0

Linux 2.0.x

Linux 3.x

FIGURE 1.3 Schematic UNIX time line.

Overview of Operating Systems    ◾    13

 3. The design of the system allowed users to run multiple processes concurrently and
to connect these processes with IPC channels, including pipes, FIFOs, and sockets,
as discussed in Section 1.7.2. We present the implementation of this design aspect in
Chapter 9.

1.8.3 AT&T System V

In response to the changing business environment in the early 1980s, Bell Laboratories/AT&T
licensed further releases of UNIX as System III and finally as System V, starting in 1983. This
main branch of UNIX continued to be developed, as shown in Figure 1.3, through System
V, Release 4 (SVR4), when it again diverged and evolved to survive as SCO UNIX in the
mid- to late 1990s. Currently, there are four major System V–based UNIX systems: AIX 7.x,
OpenServer 6.x, UnixWare 7.x, Solaris 11.x, OpenSolaris and its variants, and HP-UX 11i v3.

1.8.4 Berkeley Software Distributions

The University of California at Berkeley initiated and maintained the development of
UNIX along its second main branch throughout the 1980s and into the 1990s. Contractual
agreements made the operating system freely available to universities, so these releases
contributed in large part to the popularization of UNIX. These versions were released
as Berkeley Software Distributions (BSD), 3BSD, and 4BSD–4.4BSD. Most recently, BSD
UNIX survives as FreeBSD, and its offshoot PC-BSD, OpenBSD, and NetBSD. Today, the
most popular variants of BSD UNIX are FreeBSD 10.x, OpenBSD 5.x, NetBSD 6.x, and
Mac OS X 10.9.x (Darwin).

In this book, we show example commands primarily under PC-BSD. Where appropri-
ate, we also discuss features of Solaris.

1.8.5 History of Shells

The development of the shell as a UNIX utility parallels the development of the system itself.
Steven R. Bourne wrote the first commercially available shell, the Bourne shell. Available in
the seventh edition in 1979, it is the default shell on many System V versions. The C shell,
written in the late 1970s primarily by Bill Joy, was made available soon after in 2BSD. When
introduced, it provided a C program–like programming interface for writing shell scripts.
Following the development of the C shell, the Korn shell was introduced officially in SVR4
in 1986. Written by David Korn of Bell Laboratories, it included a superset of Bourne shell
commands but had more functionality. It also included some useful features of the C shell.
We discuss the development history of the UNIX shell in a bit more detail in Chapter 2.

The three major shells have slightly different features and command sets. In this text-
book, we discuss common features and command sets for all UNIX shells and versions.
Whenever we discuss a feature or command that is particular to a shell or version, we state
that specifically.

1.8.6 Current and Future Developments

Probably the most exciting and challenging current UNIX development for all other fla-
vors of UNIX (besides Solaris and FreeBSD) focuses on the incorporation of the ZFS into

14 ◾ UNIX: The Textbook, Third Edition

the kernel, and having the boot disk use ZFS. ZFS was developed by Sun Microsystems in
the years prior to its incorporation into the Solaris family in 2006. It is now the standard
file system in only Solaris (and its noncommercial equivalent, OpenIndiana) and FreeBSD
(and its offshoot PC-BSD). Since the purchase of Sun by Oracle, the source development of
ZFS has proceeded basically along two branches: the Oracle Solaris branch and the open
branch.

Another major challenge on the horizon for UNIX systems is the incorporation of sys-
temd into the kernel. Currently, systemd is a suite of system management daemons, librar-
ies, and utilities designed as a central management and configuration platform for Linux.
systemd is used on a majority of the current implementations and official releases of the
Linux kernel. It is a Linux init system (the process called on by the Linux kernel to initialize
the user space during the Linux startup process and manage all processes afterwards), thus
replacing the UNIX System V and BSD-style init daemon. The name systemd adheres to
the convention of making daemons easier to distinguish by having the letter d as the last
letter of the filename. Whether or not systemd will be incorporated into the UNIX kernel
remains to be seen.

Finally, the replacement of the X Window System protocol by various other software
systems promises to yield a smaller, more effective GUI system. Wayland is a protocol that
specifies the communication between a display server (called a Wayland compositor) and
its clients, as well as a reference implementation of the protocol in C.

1.9 VARIATIONS IN UNIX SYSTEMS
As shown in Figure 1.3, the development of the UNIX systems proceeded along three
main branches from a single core. Many of the branches’ divergences and similarities
were caused by the Bell Laboratories and AT&T legal licensing arrangements during
the 1970s and 1980s. The primary advantage of the divergences was a command- and
function-rich operating system in each of the branches. The early Bell Labs releases were
copied and distributed freely as source code, which academic and commercial users could
easily modify to suit their hardware and software. Such adaptations led to a proliferation
of ways in which various aspects of the operating system evolved. Even the later releases
of System V and BSD could be modified easily via accommodations provided by the ven-
dor of the operating system version, even if the source code was not available. Many of
the later releases were compatibility releases meant to provide uniformity between any
particular implementation and its perceived competitors. The important contribution
of these compatibility releases and their offshoots is a helpful amount of homogeneity,
regardless of whether you use a modern derivative of SVR4, Solaris, 4.4BSD, Linux, or
Apple OS X.

Divergence has the drawback that programs and even commands that work on one ver-
sion fail to work on another, thus defeating the inherent strength of user-friendliness of
the system itself. Attempts have been made to standardize UNIX—for example, via the
IEEE Portable Operating System Interface (POSIX). This software standard not only cov-
ers UNIX, but also in particular specifies program operation and user interfaces, leaving
their implementations to the developer. Several standards have been adopted, and more

Overview of Operating Systems    ◾    15

have been proposed. For example, adopted POSIX standards specify the shell and utility
standardization.

By far the most inclusive and wide-ranging standardization mechanism is the Single
UNIX Specification (SUS). This is a family of standards for computer operating systems,
compliance with which is required to qualify for the name UNIX. The core specifications
of the SUS are developed and maintained by the Austin Group, which is a joint working
group of IEEE, ISO/IEC JTC 1/SC 22, and the Open Group.

SUMMARY
An operating system is software that runs on the hardware of a computer system to man-
age its hardware and software resources. It also gives the user of the computer system a
simple, virtual machine that is easy to use. The basic services provided by an operating sys-
tem offer efficient and secure program execution, I/O operations, communication between
processes, error detection and reporting, and file manipulation.

Operating systems are categorized by the number of users that can use a system at the
same time and the number of processes that can execute on a system simultaneously:
single-user single-process, single-user multiprocess, and multiuser multiprocess operating
systems. Furthermore, operating systems that allow users to interact with their executing
programs (processes) are known as interactive systems, and those that do not are called
batch systems. Multiuser, multiprocess interactive systems are known as time-sharing sys-
tems, of which UNIX is a prime example. The purpose of multiuser, multiprocess systems
is to increase the utilization of system resources by switching them among concurrently
executing processes. This capability leads to higher system throughput, or the number of
processes finishing in unit time.

In order to use a computer system, the user issues commands to the operating system.
If an operating system accepts commands via the keyboard, it has a CUI. If an operating
system allows users to issue commands via a point-and-click device such as a mouse, it has
a GUI. Although UNIX comes with a CUI as its basic interface, it can run software based
on the X Window System (Project Athena, MIT) that provides a GUI. Most UNIX systems
now have both interfaces. Mac OS X (Darwin), running on Apple products, is the most
well-known GUI-based UNIX system.

A computer system consists of several hardware and software components. The software
components of a typical UNIX system consist of several layers: applications, shell, language
libraries, system call interface, UNIX kernel, and device drivers. The kernel is the main part
of the UNIX operating system and performs all the tasks that deal with allocation and deal-
location of system resources. The shell and applications layers contain what is commonly
known as the AUI. The language libraries and the system call interface contain the API.

The historical development of UNIX is characterized by an open systems approach,
whereby the source code was freely distributed among users. Development of many versions
of UNIX progressed along three main branches. Two of these branches, Oracle Solaris and
FreeBSD, can best be characterized as commercial and academic. Compatibility releases
of various versions have been aimed at standardizing the system. The POSIX and the SUS
are related standardization efforts. Two exciting and challenging new developments in the

16 ◾ UNIX: The Textbook, Third Edition

future of true UNIX systems are incorporation of ZFS into the kernel, and the replacement
of the X Window System protocol with systems such as Wayland.

QUESTIONS AND PROBLEMS

 1. What is an operating system?

 2. What are the three types of operating systems? How do they differ from each other?

 3. What is a time-sharing system? Be precise.

 4. What are the main services provided by a typical contemporary operating system?
What is the basic purpose of these services?

 5. List one advantage and one disadvantage each for the CUI and the GUI.

 6. What is the difference between a CUIs and GUIs? What is the most popular GUI for
UNIX systems? Where was it developed?

 7. What comprises the API and the AUI?

 8. What is an operating system kernel? What are the primary tasks performed by the
UNIX kernel?

 9. What is a system call? What is the purpose of the system call interface?

 10. If you access a UNIX system with the ssh command, write down the exact step-
by-step procedure you go through to log on and log off. Include as many descriptive
details as possible in this procedure so that if you forget how to log on, you can always
refer back to this written procedure.

 11. What is a shell? Name the most popular UNIX shells. Log on to your UNIX computer
system and note the shell prompt being used.

 12. How can you tell which variant from the main branches of UNIX (see Figure 1.3) is
being used on the computer system that you log on to?

 13. If you were designing a POSIX standard, what would you include in it? You might
want to research the already adopted and proposed standards before answering this
question.

 14. If you were designing an SUS standard, what would you include in it? You might want
to research the already adopted SUS standards, presented briefly in the chapter and
online, before answering this question.

 15. What system was the immediate predecessor of UNIX? Where was this predecessor
and UNIX itself initially developed, and by whom?

 16. Name the major versions and the three main branches of UNIX development. Which
was the commercial branch? Which was the academic branch?

Overview of Operating Systems    ◾    17

 17. What three important characteristics of UNIX during its early development helped
popularize it? Explain how these characteristics apply to you as a UNIX user, what-
ever your perspective.

 18. Name the two most popular UNIX systems that are the basis of most UNIX systems.
Where were they developed?

 19. Trace the history of UNIX by browsing the Web. How many UNIX systems have
been developed so far? How many non-UNIX systems have been developed? What is
the most popular UNIX system for PCs? Why do you think it is so popular?

 20. Name five popular members of the UNIX family. What is the name of your UNIX
system?

 21. In the late 1960s and early 1970s, the Digital Equipment Corporation (DEC) was a
key player in the development of time-sharing systems. Browse the Web and find an
article on RSTS, an operating system developed at DEC. What was its full name?
What machines did it run on? What were its key features?

http://taylorandfrancis.com

19

C h a p t e r 2

A “Quick Start” into the
UNIX Operating System

Objectives

• To introduce the UNIX character user interface (CUI) and show the generic structure
of UNIX commands

• To describe how to connect and log on to a computer running the UNIX operating
system, particularly PC-BSD and Solaris

• To explain how to manage and maintain files and directories

• To show where to get online help for UNIX commands

• To demonstrate the use of a beginner’s set of utility commands

• To describe what a UNIX shell is

• To describe briefly some commonly used shells

• To cover the basic commands and operators

 alias, biff, cal, cat, cd, chsh, cp, csh, echo, exit, hostname,
login, logout, lp, lpr, ls, man, mesg, mkdir, more, mv, passwd,
PATH, pg, pwd, rm, rmdir, set, ssh, su, sudo, talk, telnet,
unalias, uname, whatis, whereis, who, whoami, write

2.1 INTRODUCTION
To start working productively in UNIX, the beginner needs to know eight sequential top-
ics, in the order presented as follows:

 1. How to type a syntactically correct command on the UNIX command line. One of
the most useful modes of interaction with the UNIX system uses text-based, typed
commands.

20 ◾ UNIX: The Textbook, Third Edition

 2. How to log in and log out of a computer running UNIX, using one of the standard
methods we show. UNIX allows users to enter the operating system autonomously,
do a combination of text- and graphics-oriented operations, and exit gracefully.

 3. How to maintain and organize files in the file structure. Creating a tree-like structure
of folders (also called directories), and storing files in a logical fashion in these fold-
ers, is critical to working efficiently in UNIX.

 4. How to get help on commands and their usage. In the command-based CUI environ-
ment, being able to find out, in a quick and easy way, how to use a command correctly
is imperative to working efficiently.

 5. How to execute a small set of essential utility commands to set up or customize your
working environment. Once a beginner is familiar with the right way to construct file
maintenance commands, adding a set of utility commands makes each session more
productive.

 6. The essential ways to work with UNIX shells, what they are, and how to find out what
shell is running when you log in.

 7. Ways to change your shell, and what shell environmental variables are.

 8. What shell metacharacters are.

To use this chapter successfully as a springboard into the remainder of the book, you
should read and follow the instructions, in the order presented. Each chapter builds on the
information that precedes it, and will give you the concepts, command tools, and meth-
ods to program in the UNIX operating system. In this chapter, the major commands are
defined with an abbreviated syntax description, which will clarify general components for
the remainder of the textbook as follows:

SYNTAX

The exact syntax of how a command, its options, and its arguments are typed on the com-
mand line

Purpose: The specific purpose of the command
Output: A short description of the results of executing the command
Commonly used options/features: A listing of the most popular and useful options and

option arguments

2.2 THE STRUCTURE OF A UNIX COMMAND
Because UNIX is reliant on both a graphical and a text-based CUI, correctly typed syntax
is critical to ensure subsequent correct execution of commands.

After a user successfully logs on to a UNIX computer, a shell prompt, such as the
$ character, appears on the screen. The shell prompt is simply a message from the

A “Quick Start” into the UNIX Operating System    ◾    21

computer system to say that it is ready to accept keystrokes on the command line that
directly follows the prompt. The general syntax, or structure of a single command (as
opposed to a command line that may have multiple commands typed on the same line,
separated with input and output redirection characters) as it is typed on the command
line is as follows:

$ command [[-]option(s)] [option argument(s)] [command argument(s)]

where:
$ is the command line or shell prompt from the computer;
anything enclosed in [] is not always needed;
command is the name of the valid UNIX command for that shell in lowercase letters;
[-option(s)] is one or more modifiers that change the behavior of command;
[option argument(s)] is one or more modifiers that change the behavior of

[-option(s)]; and
[command argument(s)] is one or more objects that are affected by command.

Note the following seven essentials:

 1. A space separates command, options, option arguments, and command arguments,
but no space is necessary between multiple option(s) or multiple option arguments.

 2. The order of multiple options or option arguments is irrelevant.

 3. A space character is optional between the option and the option argument.

 4. Always press the <Enter> key to submit the command for interpretation and
execution.

 5. Options may be preceded by a single hyphen - or two hyphens, --. No space charac-
ter between hyphen(s) and option(s).

 6. A small percentage of commands (like whoami) take no options, option arguments,
or command arguments.

 7. Everything on the command line is case sensitive!

The following are examples of commands typed on the UNIX command line after the
$ prompt, and illustrate some of the variations of the correct syntax for a single command
that may have options and arguments:

$ ls
$ ls -la
$ ls -la m*
$ lpr -Pspr -n 3 proposal.txt

The first example contains only the command. The second contains the command ls
and two options, l and a. The third contains the command ls, two options, l and a, and

22 ◾ UNIX: The Textbook, Third Edition

a command argument, m*. The fourth contains the command lpr, two options, P and n,
two option arguments, spr and 3, and a command argument, proposal.txt.

You must also use the following rule of thumb: If the command executes properly, then
you are returned to the shell prompt; if it does not execute properly, then you get an error
message displayed on the command line, and then you are returned to the shell prompt.
For example, if you type xy on the command line and then press <Enter>, usually you
will get an error message saying that no such command can be found, and you are returned
to the shell prompt so that you can keystroke a valid command.

This rule of thumb does not ensure that what you wanted to achieve by typing the syn-
tactically correct command on the command line will be achieved. That is, you could
execute a command and get no error messages. But the command may not have done the
things you wanted it to do, simply because you used it with the wrong options or command
arguments.

2.3 LOGGING ON AND LOGGING OFF
How can you log on to a UNIX computer and then gracefully leave?

Using one of these general ways, or a hybrid version of them:

• Stand-alone: Use a stand-alone system, such as the PC-BSD or Solaris systems we use
throughout this book, where UNIX is the only operating system on the hardware.

• Remote: Connect to a remote computer running UNIX from a computer running
UNIX or another operating system.

• Virtual: Start UNIX as a guest operating system in a virtual environment, such as
VirtualBox or VMware, while another operating system is the host system.

These general ways are the first step a user takes in a typical UNIX session: gaining
access to a UNIX system properly in an autonomous way.

A more detailed description of these ways follows:

 1. Stand-alone: This way, the most common case and the methodology we deploy in the
rest of this book with PC-BSD and Solaris, involves sitting at a computer that can
function completely on its own. This does not mean that the stand-alone computer is
not hooked up to a local area network (LAN), intranet, or the Internet.

 Rather, the users’ connection to UNIX is dedicated to a single user at a time (or
possibly many autonomous users that log on to the same system individually at dif-
ferent times) sitting at the computer and logging on to use UNIX on that hardware
platform exclusively.

 2. Remote: There are several variations of using this way. Here are just two possible
scenarios:

 a. You sit at a computer that acts like the traditional terminal connected to a main-
frame computer. This could also be a thin client (a minimally configured and

A “Quick Start” into the UNIX Operating System    ◾    23

capable device) connected to a server. It is connected by a high-speed commu-
nications link to another single computer or multiple computers that are all
interconnected with a LAN or the Internet. At the terminal, and the console or
command window that appears on its screen, your interface with the operating
system runs on a single, or even multiple, other computer(s). This is a shared
resource method, where several users on many different terminals can share a
single UNIX system.

 b. You sit at a stand-alone computer, and via software such as PuTTY, Secure Shell
(SSH), or SSH X Windows forwarding (a variant of TCP port forwarding), you
connect to another system over a high-speed telecommunications link. The
PuTTY or SSH software then becomes your graphical connection, allowing you to
log on and use a remote computer or system that is running UNIX. This is usually
a shared resource method, where several users on many different remote comput-
ers can share a single UNIX system.

 3. Virtual: You have a UNIX or NIX-like operating system such as LINUX, OS X, or
another operating system installed and running the computer you are sitting in front
of, and you have installed a virtual environment such as VirtualBox or VMware on
that computer. Then, when you want to use a UNIX system, you simply switch envi-
ronments so that the UNIX system in the virtual environment is what you are using
to interface with the computer hardware.

We do not cover virtual connections in this chapter, but in Chapter 25, “Virtualization
Methodologies,” we cover virtual environments such as VirtualBox.

In the following subsections, we present three practical, useful, easy, and popular ways
of connecting and logging on and off a computer running the UNIX system, as outlined
in Section 2.3.

The three ways we show are:

 1. Stand-alone login and logout for PC-BSD and Solaris.

 2. Remote login via the PuTTY program from a computer running Microsoft Windows
to a UNIX computer running PC-BSD.

 3. Remote login via an SSH client from a UNIX client computer running PC-BSD UNIX
to another remote UNIX host computer.

What is common to all three of these ways is that your first task is to identify yourself
correctly as a valid and autonomous user to the UNIX system. Doing so involves typing in
a valid username, or login name, consisting of a string of valid characters. You then have
to type in a valid password for that username.

Before proceeding with the remainder of this chapter, you should determine which one
of the preceding three ways you will use to log in to a UNIX system, and then select from
the three following sections that give details on how to use that way correctly. If you cannot

24 ◾ UNIX: The Textbook, Third Edition

determine this on your own, get help from your instructor or the system administrator at
your site. Be aware that you may have to use a hybrid way of logging in and out.

2.3.1 Stand-Alone Login Connection to PC-BSD and Solaris

The login and logout procedures shown in this section are standard and vary only slightly
between all UNIX and UNIX-like systems. This way assumes that someone has either logged
out gracefully or rebooted the computer before you got to it, but has not shutdown the system.

In this section, it is assumed that you are logging on to an already-running computer
with PC-BSD UNIX or Solaris as the operating system. As previously stated, when you log
in, identifying yourself to the UNIX system is your first task. Doing so involves typing in a
valid username, or login name, consisting of a string of valid characters. Then you type in
a valid password for that username.

Be aware that when typing on the command line, UNIX is case sensitive!

2.3.1.1 PC-BSD Login and Logout
The login window to PC-BSD is shown in Figure 2.1.

In the login window, you should keystroke your username in the username field, and
then by default keep the desktop manager as KDE. If other window or desktop manage-
ment systems were previously installed on the computer, you can choose one of those in
the login window.

In the password field of the login window, type in your password. Finally, click on the
right-facing arrow as seen in Figure 2.1, and you will be logged in. On PC-BSD, the KDE
desktop management system appears on screen by default.

To gracefully terminate your connection with the computer running PC-BSD, make the
Kickoff Application Launcher menu choices Leave>Log Out.

2.3.1.2 Solaris Login and Logout
The login windows to Solaris are shown in Figures 2.2 and 2.3.

Two sequential login windows appear, allowing you to type in your username in the first
and password in the second. On Solaris, after you log in, the Gnome desktop management
interface appears on screen by default.

To log out, make the pull-down System>Logout menu choice.

FIGURE 2.1 Stand-alone login window on PC-BSD.

A “Quick Start” into the UNIX Operating System    ◾    25

2.3.2 Connecting via PuTTY from a Microsoft Windows Computer

In this section, we make these basic assumptions:

 1. That you are sitting at a computer running Microsoft Windows, and trying to con-
nect and log on to a computer running the UNIX operating system.

 2. On your Microsoft Windows computer, you are connected to the Internet, or an
intranet where you know the Internet Protocol (IP) address of the UNIX computer
you want to log on to.

 3. You have downloaded and installed the PuTTY program on your Microsoft Windows
computer or the system administrator has done so for you. The details of download-
ing this software and installing it are not given here. At the time of writing, the most
current download site for the PuTTY program was:

 http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html.

 4. You are using PuTTY to make an SSH connection to a UNIX computer.

 5. You know a valid username and password pair that will allow you to log in to the
UNIX computer.

Once you execute the PuTTY program, you use the valid username/password pair, and then
you can type commands into a console window or terminal screen. What you type in is shown
as follows in bold text and is always followed by pressing the <Enter> key on the keyboard.

To begin, on the Microsoft Windows computer, double click on the PuTTY program
icon, or from the Start Menu>Programs submenu, and choose PuTTY. When the PuTTY
program first launches, the PuTTY configuration dialog window opens on screen, similar
to Figure 2.4.

FIGURE 2.3 Stand-alone login window #2 on Solaris.

FIGURE 2.2 Stand-alone login window #1 on Solaris.

http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html

26 ◾ UNIX: The Textbook, Third Edition

From the PuTTY configuration window, you can modify several of the parameters that
control your interactive session with a UNIX system. Almost all of these parameters can be
left at their defaults. The only two things that most users will need to do in this configura-
tion window is type the host name (or IP address) of the UNIX computer they are trying to
connect and log in to, and click the protocol button for SSH, as seen in Figure 2.4. The port
number is automatically set at 22 if you click on the SSH button for “Connection type.” You
need to know what the host name or IP address of the UNIX computer you want to log on
to is. Then click on the Open button and a console window will open on screen, as seen in
Figure 2.5, thus allowing you to log in to the UNIX computer.

As previously stated, in the process of logging in, identifying yourself to the UNIX sys-
tem is your first task. Doing so involves typing in a valid username, or login name, consist-
ing of a string of valid characters. You then type a valid password for that username. There
are both valid and invalid characters that you can use in both your username and password.

FIGURE 2.4 PuTTY configuration dialog window.

FIGURE 2.5 PuTTY login window.

A “Quick Start” into the UNIX Operating System    ◾    27

See your system administrator or instructor to find out what these characters are on the
UNIX system you want to log in to, if they have not already told you what they are.

As shown in Figure 2.5, in response to the login: prompt, you type in your user-
name on the UNIX system, and then press <Enter> on the keyboard. In our case the
username is bob, as seen in Figure 2.5. Remember that UNIX is case sensitive. When the
Password: prompt appears, type your password on the UNIX system and then press
<Enter> on the keyboard. Finally, the command line prompt appears on screen, as seen
in Figure 2.5.

To terminate your connection type logout at the command line prompt and then
press <Enter> on the keyboard or on a blank line press <Ctrl+D>—that is, hold down
the <Ctrl> and D keys on the keyboard at the same time. Logging out is somewhat sys-
tem dependent, as well as being an operation that can be tailored to a specific installation
of UNIX by the local system administrator. In the C shell, the logout command is the
default way of leaving the system gracefully.

If you use the Bourne shell or Korn shell, holding down <Ctrl+D> or typing exit will
accomplish the same thing. You will then be logged off the system, the current PuTTY ses-
sion will end, and all PuTTY windows will close.

If you started a new shell during your session and didn’t exit that shell before logging off,
UNIX will prompt Not login shell, and you will not be able to log off immediately.
In this case, press <Ctrl+D> and the new shell will terminate. Also, if you started more
than one shell and haven’t exited from those shells before you log off, you will have to use
<Ctrl+D> to terminate each shell individually. On some systems, you type exit on the
command line to terminate a shell process. In either case, you will then be able to use the
logout procedure previously described to leave the system.

2.3.3 Connecting via an SSH Client between UNIX Machines

This way allows a user on one UNIX computer to remote log in and log out of another
UNIX computer using the SSH protocol. As detailed in Chapter 11, SSH is an encrypted
channel of communication between computers on a LAN or on the Internet.

Before this way can be used, both systems must be able to talk to each other over the SSH
channel, which we show how to do in Chapter 11. Also, as previously stated, the user must
know a valid username/password pair to be able to log in to the remote system!

We show three possible ways this can happen. First, if the user has already logged into
the host successfully from the client before and the authentication keys have not changed.
Second, if the user has never logged into the host successfully before from the client. And
third, if the user has logged into the host before but the authentication key on the host has
changed since the last successful login. These are practical situations one might encounter
any time you use this remote login method.

What the user types in is shown in bold text:

 1. Having logged in before successfully:

[bob@pcbsd-923] ~% ssh 192.168.0.8
Password for bob@pcbsd-2467: XXX

28 ◾ UNIX: The Textbook, Third Edition

Last login: Mon Sep 21 17:20:51 2015 from 192.168.0.13
FreeBSD 10.2-RELEASE-p4 (GENERIC) #0: Tue Aug 18 15:15:36 UTC

2015
Output truncated...
[bob@pcbsd-2467] ~% Execute command line UNIX commands…
[bob@pcbsd-2467] ~% logout
Connection to 192.168.0.8 closed.
[bob@pcbsd-923] ~%

 2. Having never logged in before:

[bob@pcbsd-923] ~% ssh 192.168.0.6
The authenticity of host '192.168.0.6 (192.168.0.6)' can't be

established.
RSA key fingerprint is 47:62:a2:9b:24:9e:5e:51:49:3b:80:aa:91:

a3:fd:de.
No matching host key fingerprint found in DNS.
Are you sure you want to continue connecting (yes/no)? yes
Warning: Permanently added '192.168.0.6' (RSA) to the list of

known hosts.
Password: XXX
Last login: Mon Sep 21 17:06:59 2015 from 192.168.0.13
Oracle Corporation SunOS 5.11 11.2 June 2014
bob@solaris:~$ Execute command line UNIX commands…
bob@solaris:~$ logout
Connection to 192.168.0.6 closed.
[bob@pcbsd-923] ~%

 3. Logged in before but host key has changed:

[bob@pcbsd-923] ~% ssh 192.168.0.8
@@@
@ WARNING: REMOTE HOST IDENTIFICATION HAS CHANGED! @
@@@
IT IS POSSIBLE THAT SOMEONE IS DOING SOMETHING NASTY!
Someone could be eavesdropping on you right now (man-in-the-

middle attack)!
It is also possible that a host key has just been changed.
The fingerprint for the ECDSA key sent by the remote host is
43:e8:cf:33:d5:ed:dd:05:d9:e9:a5:9d:d3:18:1d:2b.
Please contact your system administrator.
Add correct host key in /usr/home/bob/.ssh/known_hosts to get

rid of this message.
Offending ECDSA key in /usr/home/bob/.ssh/known_hosts:2
ECDSA host key for 192.168.0.8 has changed and you have

requested strict checking.
Host key verification failed.
[bob@pcbsd-923] ~% cd /usr/home/bob/.ssh

A “Quick Start” into the UNIX Operating System    ◾    29

[bob@pcbsd-923] ~/.ssh% rm known_hosts
[bob@pcbsd-923] ~/.ssh% cd
[bob@pcbsd-923] ~% ssh 192.168.0.8
The authenticity of host '192.168.0.8 (192.168.0.8)' can't be

established.
ECDSA key fingerprint is 43:e8:cf:33:d5:ed:dd:05:d9:e9:a5:9d:d

3:18:1d:2b.
No matching host key fingerprint found in DNS.
Are you sure you want to continue connecting (yes/no)? yes
Warning: Permanently added '192.168.0.8' (ECDSA) to the list

of known hosts.
Password for bob@pcbsd-2467: XXX
Last login: Sat Sep 19 11:24:47 2015 from 192.168.0.13
FreeBSD 10.2-RELEASE-p4 (GENERIC) #0: Tue Aug 18 15:15:36 UTC

2015
Output truncated...
[bob@pcbsd-2467] ~% Execute command line UNIX commands…
[bob@pcbsd-2467] ~% logout
Connection to 192.168.0.8 closed.
[bob@pcbsd-923] ~%

In all of these scenarios, the user is assumed to have an account with the same user-
name, and possibly password, on both client and host systems.

In 2., the keys are generated on host and client after you type in yes and press <Enter>.
In 3., after the first failed attempt to establish an SSH connection, the error message

indicates that the authentication key has changed on the host. Therefore, a removal of the
offending key in the file /usr/home/bob/.ssh/known_hosts on the client machine [bob@
pcbsd-923] is done by deleting that file. Then a new key is generated, an exchange can take
place, and the login can proceed.

The line in these sessions that reads Execute command line UNIX commands… is where
the user types in any of the valid UNIX commands we show in this chapter and through-
out the rest of this book. Finally, after typing logout, the user cuts the SSH channel con-
nection, and is returned to the command line prompt of the local client system.

2.4 FILE MAINTENANCE COMMANDS AND HELP
ON UNIX COMMAND USAGE

After your first-time login to a new UNIX system using one of the three ways we described,
your first action is to construct and organize your workspace and the files contained in
it. The operation of organizing your files according to some logical scheme is known as
file maintenance. A logical scheme used to organize your files might consist of creating
bins for storing files according the subject matter of the contents of the files, or accord-
ing to the dates of their creation. In the following sections, you will type file creation and
maintenance commands that produce a structure as shown in Figure 2.6. Complete the
operations shown in the following sections in the order they are presented, to get a better
overview of what file maintenance really is. Also, it is critical that you review what was

30 ◾ UNIX: The Textbook, Third Edition

presented in Section 2.2 regarding the structure of a UNIX command, so that when you
begin to type commands for file maintenance, you understand how the syntax of what you
are typing conforms to the general syntax of any UNIX command.

2.4.1 File and Directory Structure

When you first log in, you are working in the home directory, or folder, of the autonomous
user associated with the username and password you used to log in. Whatever directory
you are presently in is known as the current working directory, and there is only one current
working directory active at any given time. It is helpful to visualize the structure of your
files and directories using a diagram. Figure 2.6 is an example of a home directory and
file structure for a user named bobk. In this figure, directories are represented as paral-
lelograms and plain files (e.g., files that contain text or binary instructions) are represented
as rectangles. A pathname, or path, is simply a textual way of designating the location of a
directory or file in the complete file structure of the UNIX system you are working on. For
example, the path to the file myfile2 in Figure 2.6 is /usr1.b/bobk/myfile2. The designation
of the path begins at the root (/) of the entire file system, descends to the folder named
usr1.b, and then descends again to the home directory named bobk.

As shown in Figure 2.6, the files named myfile, myfile2, and renamed_file are stored
under or in the directory bobk. Beneath bobk is a subdirectory named first. In the next
sections, you will create these files, and the subdirectory structure, in the home directory
of the username that you have logged into your UNIX system.

I (root)

usr1.b

bobk

first myfile
renamed_file

myfile2

myfile2

FIGURE 2.6 Example of a file and directory structure.

A “Quick Start” into the UNIX Operating System    ◾    31

2.4.2 Viewing the Contents of Files

To begin working with files, you create a new file by using the cat command. The syntax
of the cat command is as follows:

SYNTAX

cat [options] [file-list]

Purpose: Join one or more files sequentially or display them in the console window
Output: Contents of the files in file-list displayed on the screen, one file at a time
Commonly used options/features:

+E Display $ at the end of each line
-n Put line numbers on the displayed lines
-- help Display the purpose of the command and a brief explanation of each option

The cat command, short for concatenate, allows you to join files. In the example you
will join what you type on the keyboard to a new file being created in the current work-
ing directory. This is achieved by the redirect character >, which takes what you type at
the standard input (in this case the keyboard) and directs it into the file named myfile. As
stated in Section 2.2, this usage involves the command cat but no options, option argu-
ments, or command arguments. It simply uses the command, a redirect character, and a
target, or destination, named myfile, where the redirection will go.

This is the very simplest example of a multiple command typed on the command line, as
opposed to a single command, as shown in Section 2.2. In a multiple command, you can
string together single UNIX commands in a chain with connecting operators, such as the
redirect character shown here.

$ cat > myfile
This is an example of how to use the cat command to add plain text
to a file
<Ctrl+D>
$

You can type as many lines of text, pressing <Enter> on the keyboard to distinguish
between lines in the file, as you want. Then, on a new line, when you hold down <Ctrl+D>,
the file is created in the current working directory, using the command you typed. You can
view the contents of this file, since it is a plain text file that was created using the keyboard,
by doing the following:

This is a simple example of a single UNIX command.

$ more myfile
This is an example of how to use the cat command to add plain text
to a file
$

32 ◾ UNIX: The Textbook, Third Edition

The general syntax of the more command is as follows:

SYNTAX

more [options] [file-list]

Purpose: Concatenate/display the files in file-list on the screen, one screen at a time
Output: Contents of the files in file-list displayed on the screen, one page at a time
Commonly used options/features:

+E/str Start two lines before the first line containing str
-nN Display N lines per screen/page
+N Start displaying the contents of the file at line number N

The more command shows one screen of a file at a time. If the file is several pages long,
you can proceed to view subsequent pages by pressing the <Space> key on the keyboard,
or by pressing the Q key to quit. Solaris has a command named pg that accomplishes the
same thing as the more command.

2.4.3 Creating, Deleting, and Managing Files

To copy the contents of one file into another file, use the cp command. The general syntax
of the cp command is as follows:

SYNTAX

cp [options] file1 file2

Purpose: Copy file1 to file2; if file2 is a directory, make a copy of file1 in this directory
Output: Copied files
Commonly used options/features:

-i If destination exists, prompt before overwriting
-p Preserve file access modes and modification times on copied files
-r Recursively copy files and subdirectories

For example, to make an exact duplicate of the file named myfile, with the new name
myfile2, type the following:

$ cp myfile myfile2
$

This usage of the cp command has two required command arguments. The first argu-
ment is the source file that already exists and which you want to copy. The second argu-
ment is the destination file or the name of the file that will be the copy. Be aware that many
UNIX commands can take plain, ordinary, or regular files as arguments, or can take direc-
tory files as arguments. This can change the basic task accomplished by the command. It
is also worth noting that not only can file names be arguments, but pathnames as well.
This changes the site or location, in the path structure of the file system, of operation of
the command.

A “Quick Start” into the UNIX Operating System    ◾    33

In order to change the name of a file or directory, you can use the mv command. The
general syntax of the mv command is as follows:

SYNTAX

mv [options] file1 file2
mv [options] file-list directory

Purpose: First syntax: Rename file1 to file2
 Second syntax: Move all the files in file-list to directory
Output: Renamed or relocated files
Commonly used options/features:

-f Force the move regardless of the file access modes of the destination file
-i Prompt the user before overwriting the destination

In the following usage, the first argument to the mv command is the source file name,
and the second argument is the destination name.

$ mv myfile2 renamed_file
$

It is important at this point to notice the use of spaces in UNIX commands. What if
you obtain a file from a Windows 10 system that has one or more spaces in one of the file
names? How can you work with this file in UNIX? The answer is simple. Whenever you
need to use that file name in a command as an argument, enclose the file name in double
quotes (“). For example, you might obtain a file that you have detached from an e-mail
message from someone on a Windows 10 system, such as latest revisions october.txt.

In order to work with this file on a UNIX system—that is, to use the file name as an
argument in a UNIX command—enclose the whole name in double quotes. The correct
command to rename that file to something shorter would be:

$ mv “latest revisions october.txt” laterevs.txt
$

In order to delete a file, you can use the rm command. The general syntax of the rm
command is as follows:

SYNTAX

rm [options] file-list

Purpose: Removes files in file-list from the file structure (and disk)
Output: Deleted files
Commonly used options/features:

-f Remove regardless of the file access modes of file-list
-i Prompt the user before removing files in file-list
-r Recursively remove the files in file-list if file-list is a directory; use with caution!

34 ◾ UNIX: The Textbook, Third Edition

To delete the file renamed_file from the current working directory, type:

$ rm renamed_file
$

The most important command you will execute to do file maintenance is the ls com-
mand. The general syntax for the ls command is as follows:

SYNTAX

ls [options] [pathname-list]

Purpose: Sends the names of the files and directories in the directory specified by path-
name-list to the display screen

Output: Names of the files and directories in the directory specified by pathname-list, or
the names only if pathname-list contains file names only

Commonly used options/features:
-F Display a slash character (/) after directory names, an asterisk (*) after binary exe-

cutables, and an “at” character (@) after symbolic links
-a Display names of all the files, including hidden files
-i Display inode numbers
-l Display long list that includes file access modes, link count, owner, group, file size

(in bytes), and modification time

The ls command will list the names of files or folders in your current working direc-
tory or folder. In addition, as with the other commands we have used so far, if you include
a complete pathname specification for the pathname-list argument to the command,
then you can list the names of files and folders along that pathname list. To see the names
of the files now in your current working directory, type the following:

$ ls
Desktop
Mail
XF86Config.new
kdeinit.core
order.asp.html
order.asp_files
myfile
myfile2$

Please note that you will probably not get a listing of the same file names as we did here,
because your system will have placed some files automatically in your home directory, as in
the example we used, aside from the ones we created together named myfile and myfile2.
Also note that this file name listing does not include the name renamed_file, because we
deleted that file.

The next command you will execute is actually just an alternate or modified way of exe-
cuting the ls command, one that includes the command name and options. As shown in

A “Quick Start” into the UNIX Operating System    ◾    35

Section 2.2, a UNIX command has options that can be typed on the command line along
with the command to change the behavior of the basic command. In the case of the ls com-
mand, the options l and a produce a longer listing of all ordinary and system (dot) files, as
well as providing other attendant information about the files. Don’t forget to put the space
character between the s and the dash. Remember again from Section 2.2 that spaces delimit,
or partition, the components of a UNIX command as it is typed on the command line.

Now, type the following command:

$ ls -la
drwxr-xr-x 10 bobk wheel 1024 Oct 11 13:42 .
drwxr-xr-x 17 bobk wheel 512 Sep 20 16:30 ..
lrwxr-xr-x 1 bobk wheel 32 Oct 11 13:13
-rw------- 1 bobk wheel 197 Oct 11 13:13 .ICEauthority
-rw------- 1 bobk wheel 105 Oct 11 13:13 .Xauthority
-rw-r--r-- 2 bobk wheel 797 Jan 16 2004 .cshrc
-rw-r--r-- 2 bobk wheel 251 Jan 16 2004 .profile
drwxr-xr-x 2 bobk wheel 512 Apr 15 15:11 .qt
-rwxr-xr-x 1 bobk wheel 14 Apr 15 08:06 .xinitrc
-rwxr-xr-x 1 bobk wheel 14 Apr 15 08:06 .xsession
drwx------ 3 bobk wheel 512 Sep 20 16:29 Desktop
drwx------ 7 bobk wheel 512 Apr 15 16:40 Mail
-rw-r--r-- 1 bobk wheel 2798 Apr 17 16:07 XF86Config.new
-rw------- 1 bobk wheel 7360512 Sep 20 16:29 kdeinit.core
-rw-r--r-- 1 bobk wheel 35394 Apr 17 15:23 order.asp.html
drwxr-xr-x 2 bobk wheel 1024 Apr 17 15:23 order.asp_files
-rw-r--r-- 2 bobk wheel 797 Jan 16 2004 myfile
-rw-r--r-- 2 bobk wheel 797 Jan 16 2004 myfile2
$

As you see in this screen display (which shows the listing of files in our home directory
and will not be the same as the listing of files in your home directory), the information
about each file in the current working directory is displayed in eight columns. The first
column shows the type of file, where d stands for directory, l stands for symbolic link,
and – stands for ordinary or regular file. Also in the first column, the access modes to that
file for user, group, and others is shown as r, w, or x. In the second column, the number
of links to that file is displayed. In the third column, the username of the owner of that
file is displayed. In the fourth column, the name of the group for that file is displayed. In
the fifth column, the number of bytes that the file occupies on disk is displayed. In the
sixth column, the date that the file was last modified is displayed. In the seventh column,
the time that the file was last modified is displayed. In the eighth and final column, the
name of the file is displayed. This way of executing the command is a good way to list more
complete information about the file. Examples of using the more complete information
are (1) so that you can know the byte size and be able to fit the file on some portable stor-
age medium, or (2) to display the access modes, so that you can alter the access modes to a
particular file or directory.

36 ◾ UNIX: The Textbook, Third Edition

You can also get a file listing for a single file in the current working directory by using
another variation of the ls command, as follows:

$ ls -la myfile
-rw-r--r-- 1 bobk wheel 797 Jan 16 2015 myfile
$

This variation shows you a long listing with attendant information for the specific file
named myfile. A breakdown of what you typed on the command line is 1) ls, the command
name, 2) -la , the options, and 3) myfile, the command argument.

What if you make a mistake in your typing and misspell a command name or one of the
other parts of a command? Type the following on the command line:

$ lx -la myfile
lx: not found
$

The lx: not found reply from UNIX is an error message. There is no lx com-
mand in the UNIX operating system, so an error message is displayed. If you had typed
an option that did not exist, you would also get an error message. If you supplied a file
name that was not in the current working directory, you would get an error message,
too. This makes an important point about the execution of UNIX commands. If no error
message is displayed, then the command executed correctly and the results might or
might not appear on screen, depending on what the command actually does. If you get
an error message displayed, you must correct the error before UNIX will execute the
command as you type it. Typographic mistakes account for about 98% of the errors that
beginners make.

2.4.4 Creating, Deleting, and Managing Directories

Another critical aspect of file maintenance is the set of procedures and the related UNIX
commands you use to create, delete, and organize directories in your UNIX account on a
computer. When moving through the file system, you are either ascending or descending
to reach the directory you want to use. The directory directly above the current working
directory is referred to as the parent of the current working directory. The directory or
directories immediately under the current working directory are referred to as the chil-
dren of the current working directory. For more information on file system structure, see
Chapter 4. The most common mistake for beginners is misplacing files. They cannot find
the file names listed with the ls command because they have placed or created the files in
a directory either above or below the current working directory in the file structure. When
you create a file, if you have also created a logically organized set of directories beneath
your own home directory, you will know where to store the file. In the following set of
commands, we create a directory beneath the home directory and use that new directory
to store a file.

A “Quick Start” into the UNIX Operating System    ◾    37

To create a new directory beneath the current working directory, you use the mkdir
command. The general syntax for the mkdir command is as follows:

SYNTAX

mkdir [options] dirnames

Purpose: Creates directory or directories specified in dirnames
Output: New directory or directories
Commonly used options/features:

-m MODE Create a directory with given access modes
-p Create parent directories that don’t exist in the pathnames specified in dirnames

To create a child, or subdirectory, named first under the current working directory, type
the following:

$ mkdir first
$

This command has now created a new subdirectory named first under, or as a child of,
the current working directory. Refer back to Figure 2.6 for a graphical description of the
directory location of this new subdirectory.

In order to change the current working directory to this new subdirectory, you use the
cd command. The general syntax for the cd command is as follows:

SYNTAX

cd [directory]

Purpose: Change the current working directory to directory or return to the home direc-
tory when directory is omitted

Output: New current working directory

To change the current working directory to first by descending down the path structure
to the specified directory named first, type the following:

$ cd first
$

You can always verify what the current working directory is by using the pwd com-
mand. The general syntax of the pwd command is as follows:

SYNTAX

pwd

Purpose: Displays the current working directory on screen
Output: Pathname of current working directory

38 ◾ UNIX: The Textbook, Third Edition

You can verify that first is now the current working directory by typing the following:

$ pwd
/usr1.b/bobk/first
$

The output from UNIX on the command line shows the pathname to the current
working directory or folder. As previously stated, this path is a textual route through the
complete file structure of the computer that UNIX is running on, ending in the current
working directory. In the this example of the output, the path starts at /, the root of the file
system. Then it descends to the directory usr1.b, a major branch of the file system on the
computer running UNIX. Then it descends to the directory bobk, another branch, which
is the home directory name for the user. Finally, it descends to the branch named first, the
current working directory.

On some systems, depending on the default settings, another way of determining what
the current working directory is can be done by simply looking at the command line
prompt. This prompt may be prefaced with the complete path to the current working direc-
tory, ending in the current working directory.

You can ascend back up to the home directory, or the parent of the subdirectory first,
by typing the following:

$ cd
$

An alternate way of doing this is to type the following, where the tilde character (~)
resolves to, or is a substitute for, the specification of the complete path to the home directory:

$ cd ~
$

To verify that you have now ascended up to the home directory, type the following:

$ pwd
/usr1.b/bobk
$

You can also ascend to a directory above your home directory, sometimes called the
parent of your current working directory, by typing the following:

$ cd ..
$

In this command, the two periods (..), represent the parent, or branch above the cur-
rent working directory. Don’t forget to type a space character between the d and the first

A “Quick Start” into the UNIX Operating System    ◾    39

period. To verify that you have ascended to the parent of your home directory, type the
following:

$ pwd
/usr1.b
$

To descend to your home directory, type the following:

$ cd
$

To verify that there are two files in the home directory that begins with the letters my,
type the following command:

$ ls my*
myfile myfile2

$

The asterisk following the y on the command line is known as a metacharacter, or a
character that represents a pattern; in this case, the pattern is any set of characters. When
UNIX interprets the command after you press the <Enter> key on the keyboard, it
searches for all files in the current working directory that begin with the letters my and
end in anything else.

Another aspect of organizing your directories is movement of files between directories,
or changing the location of files in your directories. For example, you now have the file
myfile2 in your home directory, but you would like to move it into the subdirectory named
first. See Figure 2.6 for a graphic description to change the organization of your files at this
point. To accomplish this, you can use the second syntax method illustrated for the mv
file-list directory command to move the file myfile2 down into the subdirectory
named first. To achieve this, type the following:

$ mv myfile2 first

$

To verify that myfile2 is indeed in the subdirectory named first, type the following:

$ cd first
$ ls
myfile2

$

You will now ascend to the home directory, and attempt to remove or delete a file with
the rm command. Caution: you should be very careful when using this command, because

40 ◾ UNIX: The Textbook, Third Edition

once a file has been deleted, the only way to recover it is from archival backups that you or
the system administrator have made of the file system.

$ cd
$ rm myfile2
rm: myfile2: No such file or directory
$

You get the error message because in the home directory, the file named myfile2 does
not exist. It was moved down into the subdirectory named first.

Directory organization also includes the ability to delete empty or nonempty directo-
ries. The command that accomplishes the removal of empty directories is rmdir. The
general syntax of the rmdir command is as follows:

SYNTAX

rmdir [options] dirnames

Purpose: Removes the empty directories specified in dirnames
Output: Removes directories
Commonly used options/features:

-p Remove empty parent directories as well
-r Recursively delete files and subdirectories beneath the current directory

To delete an entire directory below the current working directory, type the following:

$ rmdir first
rmdir: first: Directory not empty
$

Since the file myfile2 is still in the subdirectory named first, first is not an empty direc-
tory, and you get the error message that the rmdir command will not delete the direc-
tory. If the directory was empty, rmdir would have accomplished the deletion. One way
to delete a nonempty directory is by using the rm command with the -r option. The -r
option recursively descends down into the subdirectory and deletes any files in it before
actually deleting the directory itself. Be cautious with this command, since you may inad-
vertently delete directories and files with it. To see how this command deletes a nonempty
directory, type the following:

$ rm -r first
$

The directory first and the file myfile2 are now removed from the file structure.

2.4.5 Obtaining Help with the Man Command

A very convenient utility available on UNIX systems is the online help feature, achieved
via the use of the man command. The general syntax of the man command is as follows:

A “Quick Start” into the UNIX Operating System    ◾    41

SYNTAX

man [options][-s section] command-list
man -k keyword-list

Purpose: First syntax: Display UNIX Reference Manual pages for commands in command-
list one screen at a time

 Second syntax: Display summaries of commands related to keywords in keyword-list
Output: Manual pages one screen at a time
Commonly used options/features:

-k keyword-list Search for summaries of keywords in keyword-list in a database
and display them

-s sec-num Search section number sec-num for manual pages and display
them

To get help by using the man command, on usage and options of the ls command, for
example, type the following (shown for PC-BSD):

$ man ls

LS(1)) FreeBSD General Commands Manual LS(1)
NAME
 ls - list directory contents
SYNOPSIS
 ls [-ABCFGHLPRTWZabcdfghiklmnopqrstuwx1] [file ...]
DESCRIPTION
 For each operand that names a file of a type other than
directory, ls displays its name as well as any requested,
associated information. For each operand that names a file of type
directory, ls displays the names of files contained within that
directory, as well as any requested, associated information.
If no operands are given, the contents of the current directory
are displayed. If more than one operand is given, non-directory
operands are displayed first; directory and non-directory operands
are sorted separately and in lexicographical order.
 The following options are available:
Press <SPACE> to continue, or q to quit q
$

This output from UNIX is a UNIX manual page, or man page, which gives a synopsis
of the command usage showing the options, and a brief description that helps you under-
stand how the command should be used. Typing q after one page has been displayed, as
seen in the example, returns you to the command line prompt. Pressing the space key on
the keyboard would have shown you more of the content of the manual pages, one screen
at a time, related to the ls command.

To get help in using all the UNIX commands and their options, use the man man com-
mand to go to the UNIX reference manual pages.

42 ◾ UNIX: The Textbook, Third Edition

The pages themselves are organized into eight sections, depending on the topic
described and the topics that are applicable to the particular system. Table 2.1 lists the
sections of the manual and what they contain. Most users find the pages they need in
Section 2.1. Software developers mostly use library and system calls and thus find the
pages they need in Sections 2.2 and 2.3. Users who work on document preparation get
the most help from Section 2.7. Administrators mostly need to refer to pages in Sections
2.1, 2.4, 2.5, and 2.8.

The manual pages comprise multipage, specially formatted, descriptive documentation
for every command, system call, and library call in UNIX. This format consists of seven
general parts: name, synopsis, description, list of files, related information, errors, warn-
ings, and known bugs. You can use the man command to view the manual page for a com-
mand. Because of the name of this command, the manual pages are normally referred to as
UNIX man pages. When you display a manual page on the screen, the top-left corner of the
page has the command name with the section it belongs to in parentheses, as with LS(1),
seen at the top of the output manual page.

The command used to display the manual page for the passwd command is:

$ man passwd

The manual page for the passwd command now appears on the screen, but we do not
show its output. Because they are multipage text documents, the manual pages for each
topic take up more than one screen of text to display their entire contents. To see one screen
of the manual page at a time, press the space bar on the keyboard. To quit viewing the
manual page, press the Q key on the keyboard.

There is no -k option listed on a PC-BSD system, but there is one on a Solaris system.
And the -k option works on both systems!

Now type this command:

$ man pwd

If more than one section of the man pages has information on the same word and you
are interested in the man page for a particular section, you can use the -S option (in Solaris

TABLE 2.1 Sections of the UNIX Manual

Section What It Describes

1 User commands
2 System calls
3 Language library calls (C, FORTRAN, etc.)
4 Devices and network interfaces
5 File formats
6 Games and demonstrations
7 Environments, tables, and macros for troff
8 System maintenance–related commands

A “Quick Start” into the UNIX Operating System    ◾    43

it is lowercase s). The following command line therefore displays the man page for the read
system call and not the man page for the shell command read.

$ man -S2 read

The command man -S3 fopen fread strcmp sequentially displays man pages
for three C library calls: fopen, fread, and strcmp.

On a Solaris system, using the man command includes typing the command with the
-k option, thereby specifying a keyword that limits the search. The search then yields
useful man page headers from all the man pages on the system that contain just the key-
word reference. For example, the following session yields the on-screen output on a Solaris
system:

% man -k passwd
1. passwd(4) /usr/share/man/man4/passwd.4
passwd - password file
2. passwd(1openssl) /usr/share/man/man1openssl/passwd.1openssl
passwd - compute password hashes
3. passwd(1) /usr/share/man/man1/passwd.1
passwd - change login password and password attributes
4. slapd-passwd(5oldap) /usr/share/man/man5oldap/
slapd-passwd.5oldap
slapd-passwd - /etc/passwd backend to slapd
5. getpw(3c) /usr/share/man/man3c/getpw.3c
getpw - get passwd entry from UID
6. vino-passwd(1) /usr/share/man/man1/vino-passwd.1
vino-passwd - change vino login password
7. pwconv(1m) /usr/share/man/man1m/pwconv.1m
pwconv - installs and updates /etc/shadow with information from /
etc/passwd
8. SSL_CTX_set_default_passwd_cb(3openssl) /usr/share/man/
man3openssl/SSL_CTX_set_default_passwd_cb.3openssl
SSL_CTX_set_default_passwd_cb,
SSL_CTX_set_default_passwd_cb_userdata
- set passwd callback for encrypted PEM file handling
9. SSL_CTX_set_default_passwd_cb_userdata(3openssl) /usr/share/
man/man3openssl/SSL_CTX_set_default_passwd_cb_userdata.3openssl
SSL_CTX_set_default_passwd_cb,
SSL_CTX_set_default_passwd_cb_userdata
- set passwd callback for encrypted PEM file handling

2.4.6 Other Methods of Obtaining Help

To get a short description of what any particular UNIX command does, you can use the
whatis command. This is similar to the command man -f. The general syntax of the
whatis command is as follows:

44 ◾ UNIX: The Textbook, Third Edition

SYNTAX

whatis keywords

Purpose: Search the whatis database for abbreviated descriptions of each keyword
Output: Prints a one-line description of each keyword to the screen

The following is an illustration of how to use whatis.
The output of the two commands are truncated.

$ whatis man
…
man(1) -format and display the online manual pages
…
$

You can also obtain short descriptions of more than one command by entering multiple
arguments to the whatis command on the same command line, with spaces between
each argument. The following is an illustration of this method:

$ whatis login set setenv
…
login(1) -sign on
…
set(1) -set runtime parameters for session
…
setenv(1) -change or add an environment variable
…
$

The following in-chapter exercises ask you to use the man and whatis commands to
find information about the passwd command. After completing the exercises, you can use
what you have learned to change your login password on the UNIX system that you use.

EXERCISE 2.1

Use the man command with the -k option (in both PC-BSD and Solaris) to display abbre-
viated help on the passwd command. Doing so will give you a screen display similar to
that obtained with the whatis command, but it will show all apropos command names
that contain the characters passwd.

EXERCISE 2.2

Use the whatis command (in both PC-BSD and Solaris) to get a brief description of the
passwd command shown in Exercise 2.1, and then note the difference between the com-
mands whatis passwd and man -k passwd.

A “Quick Start” into the UNIX Operating System    ◾    45

2.5 UTILITY COMMANDS
There are several major commands that allow the beginner to be more productive when using
the UNIX system. A sampling of these kinds of utility commands is given in the following
sections, and is organized as system setups, general utilities, and communications commands.

2.5.1 Examining System Setups

The whereis command allows you to search along certain prescribed paths to locate util-
ity programs and commands, such as shell programs. The general syntax of the whereis
command is as follows:

SYNTAX

whereis [options] filename

Purpose: Locate the binary, source, and man page files for a command
Output: The supplied names are first stripped of leading pathname components and

extensions, then pathnames are displayed on screen
Commonly used options/features:

-b Search only for binaries
-s Search only for source code

For example, if you type the command whereis csh on the command line, you will
see a list of the paths to the C shell program files themselves. Note that the paths to a built-
in, or internal, command cannot be found with the whereis command. We provide more
information about internal and external shell commands in Chapter 10.

When you first log on, it is useful to be able to view a display of information about your
userid, the computer or system you have logged on to, and the operating system on that
computer. These tasks can be accomplished with the whoami command, which displays
your userid on the screen. The general syntax of the whoami command is as follows:

SYNTAX

whoami

Purpose: Displays the effective user id
Output: Displays your effective user id as a name on standard

The following shows how our system responded to this command when we typed it on
the command line.

$ whoami
bobk
$

The following in-chapter exercises give you the chance to use whereis, whoami, and
two other important utility commands, who and hostname to obtain important infor-
mation about your system.

46 ◾ UNIX: The Textbook, Third Edition

EXERCISE 2.3

On a PC-BSD system, use the whereis command to locate binary files for the Korn shell,
the Bourne shell, the Bourne Again shell, the C shell, and the Z shell. Are any of these shell
programs not available on your system?

EXERCISE 2.4

Use the whoami command to find your username on the system that you’re using. Then
use the who command to see how your username is listed, along with other users of the
same system. What is the on-screen format of each user’s listing that you obtained with
the who command? Try to identify the information in each field on the same line as your
username.

EXERCISE 2.5

Use the hostname command to find out what host computer you are logged on to. Can
you determine from this list whether you are using a stand-alone computer or a networked
computer system? Explain how you can know the difference from the list that the host-
name command gives you.

2.5.2 Printing and General Utility Commands
2.5.2.1 For PC-BSD
A very useful and common task performed by every user of a computer system is the print-
ing of text files at a printer. The command to perform printing on a PC-BSD system is lpr.
The general syntax of the lpr command is as follows:

SYNTAX

lpr [options] filename

Purpose: Send files to the printer
Output: Files sent to the printer queue as print jobs
Commonly used options/features:

-P printer Send output to the named printer
-# copies Produce the number of copies indicated for each named file

The following lpr command, when using PC-BSD, accomplishes the printing of the
file named order.eps at the printer designated on our system as spr. Remember from
Section 2.2 that no space is necessary between the option (in this case -P) and the option
argument (in this case spr).

$ lpr -Pspr order.eps
$

The following lpr command, when using PC-BSD, accomplishes the printing of the file
named memo1 at the default printer.

A “Quick Start” into the UNIX Operating System    ◾    47

$ lpr memo1
$

The following multiple command combines the man command and the lpr command,
and ties them together with the UNIX pipe (|) redirection character, to print the man
pages describing the ls command at the printer named hp1. This will work when using
PC-BSD.

$ man ls | lpr -Php1
$

2.5.2.2 For Solaris
The following shows how to perform printing tasks on Solaris using the lp command.

The general syntax of the lp command for Solaris is as follows:

SYNTAX

lp [options][option arguments] file(s)

Purpose: Submit files for printing on a designated system printer, or alter pending print
jobs

Output: Printed files or altered print queue
Commonly used options/features:

-d destination Print to the specified destination
-P pagelist Print selected pages as specified in pagelist

In the first command, the file to be printed is named file1. In the second command, the
files to be printed are named sample and phones. Note that the -d option is used to specify
which printer to use. The option to specify the number of copies is -n for the lp command.

$ lp -d spr file1
request id is spr-983 (1 file(s))
$ lp -d spr -n 3 sample phones
request id is spr-984 (2 file(s))
$

Among the most useful of the general purpose, personal productivity utility commands,
the cal command displays a calendar for a year or a month. The general syntax of the cal
command is as follows:

SYNTAX

cal [[month]year]

Purpose: Displays calendar on screen as text
Output: Displays a calendar of the month or year

48 ◾ UNIX: The Textbook, Third Edition

The optional parameter month can be between 1 and 12, and year can be 0–9999. Just
like the UNIX system, the cal command is Y2K compliant. If no argument is specified,
the command displays the calendar for the current month of the current year. If only one
parameter is specified, it is taken as the year. Thus the cal 3 2005 command displays
the calendar for March 2005. The command cal 1969 displays the calendar for the year
1969, the year the UNIX operating system was born.

2.5.3 Communications Commands

The write command is used to send a message to another user who is currently logged on
to the system. The syntax and a brief description of the command is as follows:

SYNTAX

write username [terminal]

Purpose: Write on the terminal screen or console window of the user with login name
username; the user must be logged on to the system, and the user’s terminal must have
write access privilege given by the mesg command.

Output: Message on another user’s console window.

The example shown in the following command line dialog session illustrates the use of
this command. The prerequisite for executing the write command is execution of the
mesg y command by both sender (in anticipation of a reply) and receiver to allow writ-
ing to their respective terminal screens or console windows. The who command is used to
determine whether the person to whom you want to write is logged on. In this case, both
sender (sarwar) and receiver (bobk) are logged on to the computer upibm7, sarwar at
terminal ttyp0 and bobk at terminal ttyC2. The receiver’s screen is garbled with the mes-
sage, but no harm is caused to any work that the user is doing. Under the shell, pressing
<Enter> performs the trick of resetting the screen, and inside the vi editor (discussed
in Chapter 3), the screen can be reset by pressing the <Ctrl> and R keys on the keyboard
at the same time. Notice also that the sending of the message is accomplished by holding
down the <Ctrl> and D keys on the keyboard at the same time.

Sender’s (sarwar) screen
$mesg y
$who
bobk upibm7:ttyC2 Oct12 13:47 :34
sarwar upibm7:ttyp0 Oct12 14:20 :15

$write bobk ttyC2
Bob,
How are the new chapter revisions coming along?
Take care,
Mansoor
<Ctrl+D>

Receiver’s (bobk) screen

A “Quick Start” into the UNIX Operating System    ◾    49

$mesg y
$
Message from sarwar@upibm7.egr.up.edu on ttyp0 at 14:26
Bob,
 How are the new chapter revisions coming along?
Take care,
Mansoor
EOF

The mesg command enables or disables real-time one-way messages and chat requests
from other users with the write and talk commands, respectively. The mesg y com-
mand permits others to initiate communication with you by using the write or talk
command. If you think that you are bothered too often with write or talk, you can
turn off the permission by executing the mesg n command. When you do so, a user
who runs a write or talk command sees the message Permission denied. When
the mesg command is used without an argument, it returns the current value of permis-
sion, n or y.

The biff command lets the system know whether you want to be notified immediately
of an incoming e-mail message. The system notifies you by sounding a beep on your ter-
minal. You can use the command biff y to enable notification and biff n to disable
notification. When the biff command is used without an argument, it displays the cur-
rent setting, n or y.

2.6 COMMAND ALIASES
The alias command can be used to create pseudonyms, or nicknames, for commands.
The alias command has one syntax in the Bourne, Korn, and Bourne Again (Bash; the
default shell in Solaris) shells, and another in the C shell (the default shell for PC-BSD);
both forms are illustrated in the following example. The general syntax for the alias
command is as follows:

SYNTAX

alias [name [=string] ...]in Bourne, Korn, Bash shells
alias [name [string]]in C shell

Purpose: Create pseudonym string for the command name
Output: Pseudonyms that can be used for commands

Nicknames are usually created for commands, but they can also be used for other items,
such as naming e-mail groups. Both C shell and Bash allow you to create aliases from the
command line one at a time, or put them multiply in the resource file for the particular
shell.

Command aliases can be placed in the .profile file or the .login file, but they are typi-
cally placed in the .bashrc file (for the Bash shell in Solaris) and the .cshrc file (for the C

50 ◾ UNIX: The Textbook, Third Edition

shell in PC-BSD). The .profile or .login file executes when you log on, and the .cshrc or
.bashrc file executes every time you start a C or Bourne shell.

Table 2.2 lists some useful aliases to put in one of these files. If set in your environment
by any of the these means, the aliases in the session below allow you to use the names dir,
rename, spr, ls, ll, and page as commands, substituting them for the actual com-
mands given in quotes. Thus when you type dir unixbook, the shell executes the ls
-la unixbook command.

When you use the alias command without any argument, it lists all the aliases cur-
rently set by default.

The following session illustrates the use of this command with a Bourne, Korn, or Bash
shell.

The aliases shown are those found on our PC-BSD system, and may not be the same as
the ones defined by default on your system.

$ alias
dir='ls -la'
rename='mv'
spr='lpr -Pspr'
ls='ls -C'
ll='ls -ltr'
page='more'
$

Running the same command with the C shell produces the following output:

% alias
dir ls -la
rename mv
spr lpr -Pspr
ls ls -C
ll ls -ltr
page more
%

You can use the unalias command to remove one or more aliases from the alias
list.

TABLE 2.2 Some Useful Aliases for Various Shells

Bourne, Korn, and Bash Shells C Shell

alias dir='ls -la\!*' alias dir 'ls -la\!*'
alias rename='mv\!*' alias rename 'mv\!*'
alias spr='lpr -Pspr\!*' alias spr 'lpr -Pspr\!*'
alias ls='ls -C' alias ls 'ls -C'
alias ll='ls -ltr' alias ll 'ls -ltr'
alias page='more' alias page 'more'

A “Quick Start” into the UNIX Operating System    ◾    51

In Solaris, while in the Bash shell, you can use the unalias -a option to remove all
aliases from the alias list. You can also use unalias -a in PC-BSD if you are in the Bash
shell. You cannot use unalias -a in the C shell by default in PC-BSD or Solaris, you
must unalias each alias one at a time.

In the following PC-BSD/Solaris/Bash session, the first of the two unalias commands
removes the alias for ls, and the second removes all of the aliases from the alias list.
Note that the output of the first alias command does not contain an alias for the ls
command after the unalias ls command has been executed. Use of the second alias
command produces no output because the unalias -a command removes all the aliases
from the alias list.

$ unalias ls
$ alias
dir='ls -la'
rename='mv'
spr='lpr -Pspr'
ll='ls -ltr'
page='more'
$ unalias -a
$ alias
$

In the following in-chapter exercises, you will use the write, alias, and unalias
commands to practice their syntax and gain more insight into their utility. You will also
examine a system file that keeps track of users that can log in.

EXERCISE 2.6

Use the write command to communicate with a friend who is logged on to the system.

EXERCISE 2.7

Use the alias command to display the nicknames (aliases) of commands in your system,
if there are any. If there aren’t any, create a few useful ones for yourself according to what
you might use frequently and beneficially as a nicknamed command. Then, in PC-BSD use
unalias to remove one or more of them. In Solaris use unalias -a to remove all of the
aliases. After you have unaliased all the defaults or defined aliases, how do you reinstate
them?

EXERCISE 2.8

Display the contents of the /etc/passwd file on your system to determine how many users
can log on to the system.

Table 2.3 shows some useful commands for beginners.

52 ◾ UNIX: The Textbook, Third Edition

2.7 INTRODUCTION TO UNIX SHELLS
When you log on and enter a CUI using a console window or terminal, the UNIX system
starts running a program that acts as an interface between you and the UNIX kernel. This
program, called a UNIX shell, executes the commands that you have typed on the key-
board. When a shell starts running, it gives you a prompt and waits for your commands.
When you type a command and press <Enter>, the shell interprets your command and
executes it. If you type a nonexistent command, the shell tells you this, then redisplays
the prompt and waits for you to type the next command. Because the primary purpose
of the shell is to interpret your commands, it is also known as the UNIX command line
interpreter.

TABLE 2.3 Useful Commands for the Beginner

Command What It Does

<Ctrl+D> Terminates a process or command
alias Allows you to create pseudonyms for commands
biff Notifies you of new e-mail
cal Displays a calendar on screen
cat Allows joining of files
cd Allows you to change the current working directory
cp Allows you to copy files
exit Ends a shell that you have started
hostname Displays the name of the host computer that you are logged on to
login Allows you to log on to the computer with a valid username/password pair
lpr or lp Allows printing of text files
ls Allows you to display names of files and directories in the current working directory
man Allows you to view a manual page for a command or topic
mesg Allows or disallows writing messages to the screen
mkdir Allows you to create a new directory
more Allows viewing of the contents of a file one screen at a time
mv Allows you to move the path location of, or rename, files
passwd Allows you to change your password on the computer
pg Solaris command that displays one screen of a file at a time
pwd Allows you to see the name of the current working directory
rm Allows you to delete a file from the file structure
rmdir Allows deletion of directories
talk Allows you to send real-time messages to other users
telnet Allows you to log on to a computer on a network or the Internet
unalias Allows you to undefine pseudonyms for commands
uname Displays information about the operating system running the computer
whatis Allows you to view a brief description of a command
whereis Displays the path(s) to commands and utilities in certain key

directories
who Allows you to find out login names of users currently on the system
whoami Displays your username
write Allows real-time messaging between users on the system

A “Quick Start” into the UNIX Operating System    ◾    53

A shell command can be internal/built-in or external. The code to execute an internal
command is part of the shell process, but the code to process an external command resides
in a file in the form of a binary executable program file or a shell script. (We describe in
detail how a shell executes commands in Chapter 10.) Because the shell executes com-
mands entered from the keyboard, it terminates when it finds out that it cannot read any-
thing else from the keyboard. You can inform your shell of this by pressing <Ctrl+D> at
the beginning of a new line. As soon as the shell receives <Ctrl+D>, it terminates and logs
you off the system. The system then displays the login: prompt again, informing you
that you need to log on again in order to use it.

The shell interprets single UNIX commands that are structured according to
Section 2.2—that is, by assuming that the first word in a command line is the name of the
command that you want to execute. It assumes that any of the remaining words starting
with a hyphen (-) are options (possibly followed by option arguments) and that the rest are
the command arguments.

After reading your command line, it determines whether the command is an internal or
external command. It processes all internal commands by using the corresponding code
segments that are within its own code. To execute an external command, it searches sev-
eral directories in the file system structure (see Chapter 4), looking for a file that has the
name of the command. It then assumes that the file contains the code to be executed and
runs the code.

The names of the directories that a shell searches to find the file corresponding to an
external command are stored in the shell variable named PATH (or path in the C shell).
Directory names are separated by colons in the Bourne, Korn, and Bash shells and by
spaces in the C shell. The directory names stored in the PATH variable form what is known
as the search path for the shell. You can view the search path for your variable by using the
echo $PATH command in the Bourne, Korn, Bash, and C shells.

The following are two sample sessions run with this command in the login shell, first
the Bourne shell and then second the C shell. Note that in the Bourne shell the search path
contains the directory names separated by colons and that in the C shell the directory
names are separated by spaces.

$ echo $PATH
/usr/sbin:/usr/X11/include/X11:.:/users/faculty/sarwar/bin:/usr/
ucb
:/bin:/usr/bin:/usr/include:/usr/X11/lib:/usr/lib:/etc:/usr/etc:/
usr
/local/bin:/usr/local/lib:/usr/local/games:/usr/X11/bin
$
% echo $path
/usr/sbin /usr/X11/include/X11 . /users/faculty/sarwar/bin /usr/
ucb /bin
/usr/bin /usr/include /usr/X11/lib /usr/lib /etc /usr/etc /usr/
local/bin /usr/local/lib /usr/local/games /usr/X11/bin
%

54 ◾ UNIX: The Textbook, Third Edition

The PATH (or path) variable is defined in a hidden file (also known as a dot file) called
.profile (Solaris) or .login (PC-BSD). If you can’t find this variable in one of those files, it
is in the start-up file (also a dot file) specific to the shell that you’re using. You can change
the search path for your shell by changing the value of this variable. To change the search
path temporarily for your current session only, you can change the value of PATH at the
command line. For a permanent change, you need to change the value of this variable in
the corresponding dot file.

In the following Bash shell example, the search path was augmented by two directories,
~/bin and . (current directory). Moreover, the search starts with ~/bin and ends with the
current directory.

Be careful when editing or changing the PATH variable, so that you don’t lose any com-
ponent of the default search path set by the system administrator for all users of the system.

$ PATH=~/bin:$PATH:.
$

You can determine your login shell by using the echo $SHELL command, as described
in Section 2.8.3. Each shell has several other environment variables set up in a hidden file
associated with it. We describe these files in Section 2.8.4 and present a detailed discussion
of UNIX files in Chapter 4.

2.8 VARIOUS UNIX SHELLS
Every UNIX system comes with a variety of shells, with the Bash and C shells (the default
shells in our base systems, Solaris and PC-BSD) being the most common. The Bourne,
Korn, TC, and Z shells are less popular, but offer advantages for certain applications and
ways of working with the UNIX system. When you log on, one particular type of shell
starts execution. This shell is known as your login shell, and it is determined by the system
administrator of your UNIX system. If you want to use a different shell, you can do so by
running a corresponding command available on your system. For example, if your login
shell is Bash, but you want to use the C shell, you can do so by using the csh command.

2.8.1 Shell Programs

Essentially the shell program itself, which is implemented in the C programming lan-
guage, allows you to do interpreted programming (as opposed to compiled program-
ming). It does this in two senses: firstly, so you can employ simple, single or complex,
multiple UNIX commands connected by redirection operators and/or utilities such as
sed, awk or grep, to do common tasks, and secondly via user-written script files, coded
in the shell interpreted language, that automate and simplify those common, perhaps
highly repetitive, tasks. This interpreted language has all the features of any other struc-
tured, high-level programming language, such as Perl, Tcl, or Python. The shell language
is just not as complex as the other common scripting languages. This fact should tell you
why there are so many different shells, just as there are many different high-level pro-
gramming and scripting languages.

A “Quick Start” into the UNIX Operating System    ◾    55

Programming languages have a tendency to evolve and grow with time, depending on
the needs of users, and shell programs are typical of this evolution. Table 2.4 contains a list
of the most common shells, their location on a PC-BSD system, and the program names
of those shells.

The locations shown in Table 2.4 are typical for most UNIX systems. Consult your
instructor or system administrator if you can’t find the location shown for a shell on your
system or if you can’t use the whereis command, as shown in Section 2.5.1.

Figure 2.7 traces the development of various shell families, and indicates the increasing
functionality of each family as it appears higher in the hierarchy. The Bourne shell (sh) is
the grandmother of the main shell families and has nearly the least level of functionality.
Near the top of the hierarchy is the Korn shell (ksh), which includes all the functionality of
the Bourne shell and much more. The rc and zsh shells are outliers that cannot be readily
associated with any of the primary shell families.

TABLE 2.4 Shell Locations and Program Names

Shell Location on PC-BSD System Program (Command) Name

rc NA rc

Bourne shell /bin/sh sh

C shell /bin/csh csh

Bourne Again shell /usr/local/bin/bash bash

Z shell NA zsh

Korn shell NA ksh

TC shell /bin/tcsh tcsh

ksh

sh

bash
zsh

Functionality

rc

tcsh

csh

FIGURE 2.7 Shell families and their relative functionalities.

56 ◾ UNIX: The Textbook, Third Edition

2.8.2 Which Shell Suits Your Needs?

Most shells perform similar functions, and knowing the details of how they do so is impor-
tant in deciding which shell to use for a particular task. Also, using more than one shell
during a session is a common practice, especially among shell script file programmers.
For example, you might use the Bourne or Korn shell for their programming capabilities
and use the C shell to execute individual commands. We discuss this example further in
Section 2.8.3. The similarities of major shell functions are summarized in Table 2.5.

2.8.3 Ways to Change Your Shell

You can easily determine what your default shell is by typing echo $SHELL on the com-
mand line when you first log on to your computer system.

The question is: Why would you want to change your default shell, or for that matter,
even use an additional shell? The answer is that you want the greater, or in some sense
qualitatively different, functionality of another shell.

For example, your default shell might be the C shell (csh). A friend of yours offers you
a neat and useful Bourne shell script that allows you to take advantage of the Bourne shell
script programming capabilities, a script that wouldn’t work if it ran under the C shell.
You can use this script by running the Bourne shell at the same time you are running the
default C shell. Because UNIX is a multiprocess operating system, more than one com-
mand line interpreter at a time can be active. That doesn’t mean that a single command will
be interpreted multiply; it simply means that input, output, and errors are “hooked” into
whatever shell process has control over them currently. (See Chapter 10 for more informa-
tion about process and shell command input/output.)

You can change your shell in one of two ways:

 1. Changing to a new default for every subsequent login session on your system, and

 2. Creating additional shell sessions running on top of, or concurrently with, the default
shell.

The premise of both methods is that the shell you want to change to is available on your
system.

To change your default shell, after you have logged on, type chsh and then press
<Enter>. Depending on your system, you will be prompted for the name of the shell you
want to change to.

On a PC-BSD system, you are prompted for the superuser password in order to accom-
plish the chsh command. There is no chsh command available in Solaris.

TABLE 2.5 Shell Similarities

Function Description

Execution The ability to execute programs and commands
I/O handling The control of program and command input and output
Programming The ability to execute sequences of programs and commands

A “Quick Start” into the UNIX Operating System    ◾    57

Type the location of the shell you want to change to—for example, /usr/bin/sh to change
to the Bourne shell. If this method doesn’t work on your system, consult your instructor or
system administrator for more help.

To create or run additional shells on top of your default shell, simply type the name
of the shell program (see Table 2.4) on the command line whenever you want to run that
shell. The following session illustrates the use of this method to change a default Bash shell,
which uses the $ as the shell prompt, to a C shell, which shows the % as the shell prompt.

$ echo $SHELL
/usr/bin/bash
$ csh
%

The first command line allows you to determine your default shell. In this case, the sys-
tem shows you that the default setting is the Bash shell. The second command line allows
you to run the C shell. The fourth line shows that you have been successful, because the
default C shell prompt appears on your display. If the C shell was not available on your sys-
tem or was inaccessible to you, you would get an error message after the third line. If your
search path does not include /usr/bin, you either have to type /usr/bin/csh in place
of csh, or include /usr/bin in your shell’s search path and then use the csh command.

To terminate or leave this new, temporary shell and return to your default login shell,
hold down <Ctrl+D> on a blank line. If this way of terminating the new shell doesn’t
work, type exit on the command line and then press <Enter>. By doing so, you halt
the running of the new shell, and the default shell prompt appears on your display. If you
have opened a console or terminal window on your desktop, typing exit also closes this
console or terminal window.

The following in-chapter exercises ask you to determine whether various shells are avail-
able on your system by using the whereis command and, for those that are available, to
read the manual pages for them by using the man command.

EXERCISE 2.9

Using the whereis command illustrated in Section 2.5.1, verify the locations of the vari-
ous shells listed in Table 2.4. Are all these shells available on your system? Where are they
located if you do not find them at the locations shown in Table 2.4?

EXERCISE 2.10

Using the man command illustrated in 2.4.5, read the manual pages for each shell listed in
Table 2.4 that is on your system.

2.8.4 Shell Start-Up Files and Environment Variables

The actions of each shell, the mechanics of how it executes commands and programs, how
it handles the command and program I/O, and how it is programmed, are affected by the
setting of certain environment variables.

58 ◾ UNIX: The Textbook, Third Edition

Each UNIX system has an initial system start-up file, usually named .profile in Solaris
and .login in PC-BSD. This file contains the initial settings of important environment
variables for the shell and some other utilities. In addition, hidden files for specific shells
are executed when you start a particular shell. Known as the shell start-up files, they
are .cshrc for C shell and .bashrc for Bash. These hidden files are initially configured
by the system administrator for secure use by all users. Table 2.6 lists some important
environment variables common to Bash, Bourne, Korn, and C shells; the C shell variable
name, where applicable, is in lowercase following the Bash, Bourne, and Korn shell vari-
able name. Note that your system administrator may not have set some of these variables,
such as ENV.

The following in-chapter exercises let you view the settings of your environment vari-
ables. They assume that you are initially running the Bourne or Korn shells. If you aren’t,
run either of those shells as described in Section 2.8.3 and then do the exercises.

EXERCISE 2.11

At the default login shell prompt for your system, type set | more and then press
<Enter>. What is displayed on your screen? Identify and list the settings for all the envi-
ronment variables shown in Table 2.6.

EXERCISE 2.12

At the shell prompt, type csh or bash depending on your default system login shell, and
then press <Enter>. Next, type setenv | more and then press <Enter>. Identify and
list the settings for all the environment variables shown in Table 2.6.

In addition to the shells, several other programs have their own hidden files. These files
are used to set up and configure the operating environment within which these programs
execute. We discuss some of these hidden files in Chapters 4 and 5. They are called hid-
den files because when you list the names of files contained in your home directory—for
example, with the ls -l command and option (see Chapter 4)—these files do not appear
on the list. The hidden file names always start with a period (.), such as .login.

TABLE 2.6 Shell Environment Variables

Environment Variable What It Affects

CDPATH, cdpath The alias names for directories accessed with the cd command
EDITOR The default editor used in programs such as the e-mail program Elm
ENV The path along which UNIX looks to find configuration files
HOME, home The name of the user’s home directory when the user first logs on
MAIL, mail The name of the system mailbox file
PATH, path The directories that a shell searches to find a command or program
PS1, prompt The shell prompt that appears on the command line
PWD, cwd The name of the current working directory
TERM The type of console terminal being used

A “Quick Start” into the UNIX Operating System    ◾    59

2.9 SHELL METACHARACTERS
Most of the characters other than letters and digits have special meaning to the shell. These
characters are called shell metacharacters and, therefore, cannot be used in shell commands
as literal characters without specifying them syntactically in a particular way. Thus, try not
to use them in naming your files. Also, when these characters are used in commands, no
space is required before or after a character. However, you can use spaces before and after
a shell metacharacter for clarity. Table 2.7 contains a list of the shell metacharacters and
their purposes.

TABLE 2.7 Shell Metacharacters

Metacharacter Purpose Example

<New Line> To end a command line
<Space> To separate elements on a command line ls /etc

<Tab> To separate elements on a command line ls /etc

To start a comment # This is a comment line

" To quote multiple characters but allow
substitution

"$file" bak

$ To end line and dereference a shell
variable

$PATH

& To provide background execution of a
command

command &

' To quote multiple characters '$100,000'

() To execute a command list in a subshell (command1; command2)

* To match zero or more characters chap*.ps

[] To insert wild cards [a-s] or [1,5-9]

^ To begin a line and negation symbol [^3-8]

' To substitute a command PS1='command'

{ } To execute a command list in the
current shell

{command1; command2}

| To create a pipe between commands command1 | command2

; To separate commands in sequential
execution

command1; command2

< To redirect input for a command command < file

> To redirect output for a command command > file

? To substitute a wild card for lab.? exactly one character
/ To be used as the root directory and /usr/bin as a component separator in a

pathname
To escape/quote a single character; n command arg1\used to quote <New
Line> character arg2 arg3 to allow continuation of a shell \? command on the
following line

C and Korn Shells Only
! To start an event specification in the

history list and the current event
!!, !$

% The C shell prompt, or the starting
character for specifying a job number

 % or %3

~ To name home directory ~/.profile

60 ◾ UNIX: The Textbook, Third Edition

The shell metacharacters allow you to specify multiple files in multiple directories in
one command line. We describe the use of these characters in subsequent chapters, but
we give some simple examples here to explain the meanings of some commonly used
metacharacters:

• *

• ?

• ~

• []

The ?.txt string can be used for all the files that have a single character before .txt,
such as a.txt, G.txt, @.txt, and 7.txt. The [0-9].c string can be used for all the files in a
directory that have a single digit before .c, such as 3.c and 8.c. The lab1/c string stands
for lab1/c. Note the use of backslash (\) to quote (escape) the slash character (/).

The following command prints the names of all the files in your current directory that
have two-character file names and an .html extension, with the first character being a digit
and the second being an uppercase or lowercase letter. The printer on which these files are
printed is spr.

$ lpr -Pspr [0-9][a-zA-Z].html
$

Note that [0-9] means any digits from 0 through 9 and [a-zA-Z] means any lower-
case or uppercase letter. The following command displays the names of all six-character-
long files with .c extension in your current directory, with the first three characters being
lab, the fourth being a digit, and the remaining being any two characters.

$ ls lab[0-9]??.c
lab11a.clab1a1.c lab123.clab4ab.c
$

2.10 THE SUDO AND SU COMMANDS
The sudo command allows a permitted user to execute a command as the superuser,
or to assume the role of another user, as specified by security policy. The su command
allows an ordinary user to switch user roles or to also simulate being the superuser on
the system. The superuser has file permission and access privileges to everything on the
system.

In many of the operations shown in the following chapters, particularly in Chapter 23
on system administration, it will be necessary to execute the su command in order to
accomplish the tasks shown. In order to use this command, it is necessary to know the root
or superuser password.

A “Quick Start” into the UNIX Operating System    ◾    61

We give a more complete explanation of the sudo command in Chapter 23,
Section 23.9.3.1.

An example of using the su command on a PC-BSD system is as follows:

[bob@pcbsd-923]% su
Password: XXX
[bob@pcbsd-923] /usr/home/bob#

SUMMARY
The UNIX operating system is most famous for its text-based command execution, but in the
twenty-first century it has a competitively developed GUI environment as well. This chapter
serves to familiarize you with the basic structure of a CUI UNIX command. It also shows
you how to log in via three popular and typical login methods, and how to gracefully log off.

A beginner must be able to do basic file maintenance, and a core set of CUI file mainte-
nance commands and their options are introduced in this chapter. These commands will
be useful throughout the rest of this book. Finally, we illustrate and give examples of some
basic utility commands—most importantly, the commands and their options that allow
you to print files and the alias command.

When you log on to a UNIX computer, the system runs a program called a shell that
gives you a prompt and waits for you to type commands, either as single commands or
as multiple commands connected by redirection or piping operators. The shell program,
coded in C, is an interpreter, and as such has the same structured programming capa-
bilities of high-level languages. When you type a command and press <Enter>, the shell
interprets and tries to execute the command, assuming that the first word in the command
line is the name of the command. A shell command can be built-in or external. The shell
has the code for executing a built-in command, but the code for an external command is in
a file. To execute an external command, the shell searches several directories, one by one,
to locate the file that contains the code for the command. If the file is found, it is executed if
it contains code (binary or shell script). The names of the directories that the shell searches
to locate the file for an external command form are known as the search path. The search
path is stored in a shell variable called PATH (for the Bourne, Korn, and Bash shells) or
path (for the C shell). You can change the search path for your shell by adding new direc-
tory names in PATH or by deleting some existing directory names from it.

Several shells are available for you to use. These shells differ in terms of convenience
of use at the command line level and features available in their programming languages.
The most commonly used shells in a UNIX-based system are the Bash and C Shells. The
Bourne shell is the oldest and has a good programming language. The C shell has a more
convenient and rich command-level interface. The Korn shell has some good features of
both and is a superset of the Bourne shell.

Certain characters, called shell metacharacters, have special meaning to the shell.
Because the shell treats them in special ways, they should not be used in file names. If you
must use them in commands, you need to quote them for the shell to treat them literally.

62 ◾ UNIX: The Textbook, Third Edition

QUESTIONS AND PROBLEMS

 1. Create a directory called UNIX in your home directory. What command line did you
use to do this?

 2. Give a command line for displaying the files lab1, lab2, lab3, and lab4. Can you give
two more command lines that do the same thing? What is the command line for dis-
playing the files lab1.c, lab2.c, lab3.c, and lab4.c? (Hint: use shell metacharacters.)

 3. Give a PC-BSD command line for printing all the files in your home directory that
start with the string memo and end with .ps on a printer called upmpr. What com-
mand line did you use to do this?

 4. Give the command line for nicknaming the command who -H as W. Give both
Bourne and C shell versions. Where would you put it if you want it to execute every
time you start a new shell?

 5. Type the command man ls > ~/UNIX/ls.man on your system. This command
will put the man page for the ls command in the ls.man file in your ~/UNIX direc-
tory (the one you created in Problem 1). Give the command for printing two copies
of this file on a printer in your lab. What command line would you use on PC-BSD
to achieve this printing? What command would you use on Solaris to achieve this
printing?

 6. What is the mesg value set to for your environment? If it is on, how would you turn
off your current session? How would you set it off for every login?

 7. What does the command lpr -Pqpr [0-9]*.jpg do in PC-BSD? Explain your
answer.

 8. Use the passwd command to change your password. If you are on a network, be
aware that you might have to use the yppasswd command to modify your network
login password. Also, make sure you abide by the rules set up by your system admin-
istrator for coming up with good passwords!

 9. Using the correct terminology (e.g., command, option, option argument, and
command argument), identify the constituent parts of the following UNIX single
commands.

 ls -la *.exe
 lpr –Pwpr file27
 chmod g+rwx *.*

 10. View the man pages for each of the useful commands listed in Table 2.3. Which part
of the man pages is most descriptive for you? Which of the options shown on each of
the man pages is the most useful for beginners? Explain.

 11. How many users are logged on to your system at this time? What command did you
use to discover this?

A “Quick Start” into the UNIX Operating System    ◾    63

 12. Determine the name of the operating system that your computer runs. What com-
mand did you use to discover this?

 13. Give the command line for displaying manual pages for the socket, read, and con-
nect system calls on a PC-BSD system. What will be the command line for a Solaris
computer?

 14. What is a shell? What is its purpose?

 15. What are the two types of shell commands? What are the differences between them?

 16. Give names of five UNIX shells. Which are the most popular? What is a login shell?
What do you type in to terminate the execution of a shell? How do you terminate the
execution of your login shell?

 17. What shells do you think are supersets of other shells? In other words, which shells
have other shells’ complete command sets plus their own? Can you find any com-
mands in a subset shell that are not in a superset shell? Refer to Figure 2.7.

 18. What is the search path for a shell? What is the name of a shell variable that is used
to maintain it for the Bourne, C, and Korn shells? Where (i.e., in which file) is this
variable typically located?

 19. What is the search path set to in your environment? How did you find out? Set your
search path so that your shell searches your current and your ~/bin directories while
looking for a command that you type. In what order does your shell search the direc-
tories in your search path? Why?

 20. What are hidden files? What are the names of the hidden files that are executed when
you log on to System V and BSD UNIX systems?

 21. What is a shell start-up file? What is the name of this file for the C shell? Where (i.e.,
in which directory) is this file stored?

 22. What important features of each shell, as discussed on the manual pages for that
shell, seem to be most important for you as a new, intermediate, or advanced user of
UNIX? Explain the importance of these features to you in comparison with the other
shells available and their features.

 23. Suppose that your login shell is a C shell. You receive a shell script that runs with the
Bourne shell. How would you execute it? Clearly write down all the steps that you
would use.

http://taylorandfrancis.com

65

C h a p t e r 3

Editing Text Files

Objectives

• To explain the general utility of editing text files on a UNIX system

• To show the basic capabilities of vi, vim, and gvim, and how to customize them

• To show the basic capabilities of GNU emacs and how to customize it

• To cover the commands and primitives

 cp, emacs, gvim, ls, pwd, sh, vi, vim, who

3.1 INTRODUCTION AND QUICK START
In this chapter, we use the following editors that are commonly available in both of our
base modern UNIX systems, PC-BSD and Solaris: vi, vim, gvim, and GNU emacs.

3.1.1 Quick Start: The Simplest Path through These Editors

To stress how the keyboard keys are used in these editors, we provide the following refer-
ence to the keys used to execute commands or change modes:

 1. Pressing the Escape key is signified as <Esc>

 2. Pressing the Enter key is signified as <Enter>

 3. Pressing the <Ctrl> key in combination with another single key is signified as
<Ctrl+X>, where you hold down the <Ctrl> key and press the X key (or any valid
key for that combination) at the same time.

 4. Pressing the Alt key in combination with another single key is signified as <Alt+X>,
where you hold down the <Alt> key and press the x key (or any valid key for that
combination) at the same time.

66 ◾ UNIX: The Textbook, Third Edition

 5. A variant of 3. and 4. is shown as <Ctrl+X> a [b], where you first press and release
<Ctrl> and x simultaneously, then press the a key, and optionally press the b key
(or any valid combination of single keys or strings of characters).

 6. In GNU emacs for PC-BSD and Solaris, the Meta key that is referred to in much of
the literature on GNU emacs is the <Alt> key.

What you type or hold down on the keyboard is shown in bold text.

3.1.1.1 For vi, vim, and gvim

• At the shell prompt, run the program by typing vi file1 then press <Enter>.

• Type A.

• Type some text.

• Press <Esc>.

• Type : (colon).

• Type wq then press <Enter>.

You now have a file in your default directory named file1 with the text you typed in it.
If GNU emacs is not installed on your system, skip ahead to the next subsection for

general instructions on how to install it. Then do the following:

3.1.1.2 For GNU emacs

• At the shell prompt, run the program by typing emacs file2 then press <Enter>.

• Type some text.

• Hold down <Ctrl+U>, then <Ctrl+X>, then <Ctrl+C>.

You now have a file in your default directory named file2 with the text you typed in it.

3.1.2 First Comments on UNIX Editors

As you can see from Section 3.1.1, with vi, vim, and gvim, you can’t immediately begin to
enter text into the file you are editing. You have to be in Insert mode to do that; that’s what
typing A as the second step is doing. Vi, vim, and gvim have modes.

In GNU emacs, you can start typing text into the file immediately. Emacs is a modeless
editor.

We present the tutorial information in this chapter using typed commands, and by
using graphical modes of input and editing.

It is very important to realize that vi, vim, and gvim all generally use the same com-
mands and have basically the same functionality. But vim and gvim are not only more

Editing Text Files    ◾    67

graphical—allowing you to work more efficiently in GUI environments such as those on
our base modern UNIX systems, PC-BSD and Solaris—but they also have an improved
and expanded command structure. This will become more evident to you, for example, in
Section 3.2.9, where vim has special improved macro-writing capabilities that vi does not.

At the time of writing, both PC-BSD and Solaris have vi, vim, and gvim preinstalled if
you have done a basic installation of the system as detailed at the beginning of Chapter 23.
But GNU emacs is not preinstalled. Therefore, you must look ahead to Chapter 23,
Section 23.7, “System Updates and Software Upgrades by Using a Package Manager.” In
that section, you will be shown how to use the appropriate package management facili-
ties to obtain GNU emacs for your system. In the App Café in PC-BSD, you must browse
Categories>Editors for Emacs and install it. From the Solaris IPS repository, you must
browse Development>Editors, and install gnu-emacs.

We will not cover the details of the installation of any of the editors we demonstrate
here. In addition, if you are logging into a UNIX system via a terminal window, such as
with PuTTY from a Windows machine, many of the graphical modes and techniques
shown in this chapter will not be available to you. But that does not prevent you from using
the traditional typed commands and keyboard edits that we show.

3.1.3 Using Text Editors

Modern UNIX uses both a GUI, with powerful window management systems like Gnome
and KDE, and a CUI. Therefore, to do useful things such as execute multiple commands
from within a script file, write e-mail messages, or create C language programs, you must
be familiar with one or perhaps multiple ways of entering text into a file. In addition, you
must also be familiar with how to edit existing files efficiently—that is, to change their
contents or otherwise modify them in some way. Text editors allow you to view a file’s
contents, similar to the more command, so that you can identify the key features of the
file, and then read and utilize the information contained in it. For example, a file without
any extension, such as foo (rather than foo.txt) might be a text file that you can view with
a text editor.

The editors that we consider here are all considered full-screen display editors. That is,
on the display screen or monitor that you are using to view or edit a file, you are able to
see a portion of the file, which fills most or all of the window allocated to the text editor
screen display. You are also able to move the cursor, or point, to any of the text you see in
this full-screen display, with either the arrow keys on the keyboard or with a mouse. That
text material is usually held in a temporary storage area in computer memory called the
editor buffer. If your file is larger than one screen, the buffer contents change as you move
the cursor through the file. The difference between a file, which you edit, and a buffer is
crucial. For text-editing purposes, a file is stored on disk as a sequence of data. When
you edit that file, you edit a copy that the editor creates, which is in the editor buffer. You
make changes to the contents of the buffer—and can even manipulate several buffers at
once—but when you save the buffer, you write a new sequence of data to the disk, thereby
saving the file.

68 ◾ UNIX: The Textbook, Third Edition

Another important operational feature of all the editors discussed in this chapter is that,
traditionally, their actions are based on keystroke commands, whether they are a single
keystroke or combinations of keys pressed simultaneously or sequentially. Because one of
the primary input devices in UNIX is the keyboard, using the correct syntax of keystroke
commands is mandatory. But the keyboard method of input, once you have become accus-
tomed to it, is as efficient or, for some users, even more efficient than mouse/GUI input.
Keystrokes also are more flexible, giving you more complete and customizable control over
editing actions. Generally, you should choose the editor you are most comfortable with,
in terms of the way you prefer to work with the computer. However, your choice of edi-
tor also depends on the complexity and quantity of text creation and manipulation that
you want to do. Practically speaking, editors such as vi, vim, gvim, and GNU emacs are
capable of handling complex editing tasks in multiple windows on multiple files, and pro-
vide you with a visual software development environment, as well as document produc-
tion and management capability. But to take advantage of that power, you have to learn
the mechanics of the commands that are needed to perform those tasks and how they are
implemented either graphically or by typing them—and retain that knowledge. The basic
functions common to the text editors that we cover here are listed in Table 3.1, along with
a short description of each function.

3.2 USING THE vi, vim, AND gvim EDITORS
The vi, vim, and gvim UNIX text editors have almost all the features of a word processor
and have tremendous flexibility in creating text files. They are complex to learn, but their
advantages give you the ability to create, manipulate, and use the kinds of text files that
the full range of UNIX users, from absolute novice to seasoned veteran, commonly work
with. We will proceed in the following section and subsections by demonstrating vi as a

TABLE 3.1 Basic Text-Editing Functions

Function Description

Cursor movement Moving the location of the insertion point or
current position in the buffer

Cut or copy, paste “Ripping out” text blocks or duplicating text
blocks, reinserting ripped or duplicated blocks

Deleting text Deleting text at a specified location or in a
specified range

Inserting text Placing text at a specified location
Opening, starting Opening an existing file for modification,

beginning a new file
Quitting Leaving the text editor, with or without saving

the work done
Saving Retaining the buffer as a disk file
Search, replace Finding instances of text strings, replacing

them with new strings

Editing Text Files    ◾    69

text-only interface editor, then move to a more graphical interface approach with vim and
gvim.

Buffers: As we mentioned in Section 3.1, the notion of a buffer as a temporary storage
facility for the text that you are editing is very useful and important in vi, vim, and gvim.
The main buffer, sometimes referred to as the editing buffer or the work buffer, is the main
repository for the body of text that you are trying to create or to modify from some pre-
vious permanently archived file on disk. The general purpose buffer is where your most
recent “ripped-out” (cut/copied) text is retained. Indexed buffers allow you to store more
than one temporary string of text.

3.2.1 Basic Shell Script File Creation, Editing, Execution

Shell Script File: Practice Session 3.1 shows how to create a script file, or collection of
UNIX commands that are executed in sequence, and then execute the script. We pres-
ent more about shell programming and script files in Chapters 12 through 15. For this
example, we assume that you are running the Bourne shell. If you are running some
other shell by default, go back to Chapter 2, Section 2.8, and review how to identify and
change shells.

In PC-BSD, to run an interactive shell, such as the Bourne shell shown in Practice
Session 3.1, on top of your login shell (which is the C shell by default in that system), at the
C shell prompt you type sh and press <Enter>.

If you are using Solaris, do Practice Session 3.1 for the Bourne Again (Bash) shell, which
is the default shell in that system, and don’t change shells.

And do not worry too much if you make an error in Steps 2, 3, and 4; you can go through
the rest of the script file discussion and then come back to this example after you have
learned some of the editing commands and become more familiar with them.

3.2.1.1 Practice Session 3.1

Step 1: At the shell prompt, start vi by typing vi firscrip and then pressing <Enter>.
The vi screen appears on your display.

Step 2: Type A. Then type ls -la and then press <Enter>.

Step 3: Type who and then press <Enter>.

Step 4: Type pwd and then press the <Esc> key. At this point, your screen should look
like that shown in Figure 3.1.

Step 5: Type :wq and then press <Enter>.

Step 6: At the shell prompt, type sh firscrip and then press <Enter>.

Step 7: Note the results. How many files do you have in your present working directory?
What are their names and sizes? Who else is using your computer system? What is
your present working directory?

70 ◾ UNIX: The Textbook, Third Edition

In Practice Session 3.1, you accomplished these things:

• At Step 2, typing A took vi out of Command mode (which is what vi starts in by
default) and placed it in one of the forms of Insert mode. In other words, anything
that you typed at the keyboard was appended as text on the first line in the text area
of the editor.

• When you pressed the <Esc> key in Step 4, vi was taken out of Insert mode and put
back into Command mode.

• When you typed : in Step 5, that was a valid Command mode prefix character for the
two commands that followed, and put vi in Last Line mode.

• When you typed wq after the :, vi interpreted those commands in Last Line mode as
write out or save the file, and quit the editor.

• Step 6 executes the Bourne shell script file.

3.2.2 How to Start, Save a File, and Exit

When you need to do UNIX text editing that gives you as much functionality as a typical
word processor, you can use the vi text editor. To start vi from the command line, use the
following general syntax (anything enclosed in square brackets [] is optional):

FIGURE 3.1 File firscrip after Step 4.

Kind
Kind
Kind

Editing Text Files    ◾    71

SYNTAX
vi [options] [file(s)]

Purpose: Allows you to edit a new or existing text file(s)
Output: With no options or file(s) specified, you are placed in the vi program and can

begin to edit a new buffer
Commonly used options/features:

+n Begin to edit file(s) starting at line number n
+/exp Begin to edit at the first line in the file matching string exp

The operations that you perform in vi fall into two general categories: Command mode
operations, which consist of key sequences that are commands to the editor to take certain
actions, and Insert mode operations, which allow you to input text.

The general organization of the vi text editor and how to start, exit, and switch modes
are illustrated in Figure 3.2. The general organization of vim and gvim, and how to start,
exit, and switch modes in those editors, is the same as shown for vi in Figure 3.2.

For example, to change from Command mode, which you are in when you first enter
the editor, to Insert mode, type a valid command, such as A to append text at the end of
the current line. Certain commands that are prefixed with the :, /, ?, or :! characters are
echoed or shown to you on the last line on the screen and must be terminated by pressing
<Enter>. Last Line mode, sometimes called ex mode because it is derived from the ex edi-
tor, allows you to execute certain commands and leave the editor. To change from Insert
mode to Command mode, press the <Esc> key.

InsertiCommand mode

Start vi

Enter :

Enterq

Enter!

Enterq

q z z

w

?

/

Esc

I

Appenda A

Openo O

Replacer R

Changec C

Last line
mode

Insert modeOther
commands

End vi

FIGURE 3.2 General organization of vi, vim, and gvim.

72 ◾ UNIX: The Textbook, Third Edition

The keystroke commands that you execute in vi are case sensitive; for example, upper-
case A appends new text after the last character at the end of the current line, whereas
lowercase a appends new text after the character the cursor is on.

To start vi, at the shell prompt, type vi (and optionally designate some option[s] and file
name[s]) and then press <Enter>. You are now in Command mode. To enter Insert mode,
type A and you are now able to insert text on the first line of the file.

After entering text, you can press the <Esc> key to enter Command mode.
At any point in your creation or manipulation of text, you can press the u key on the

keyboard to undo the last operation.
From Command mode, you can save the text that you just inserted into the buffer to

a file on disk by typing :w filename and pressing <Enter>, where filename is the
name of the file you want to save the text to. To quit the editor, type :q.

3.2.3 The Format of a vi Command and the Modes of Operation

In Command mode, the generic syntax of keystrokes is:

[#1] operation [#2] target

where:

anything enclosed in [] is optional;

#1 is an optional number, such as 5, specifying how many operations are to be done;

operation is what you want to accomplish, such as deleting lines of text;

#2 is an optional number, such as 5, specifying how many targets are affected by the
operation; and

target is the text that you want to do the operation on, such as an entire line of text.

Note that if the current line is the target of the operation, the syntax for specifying the
target is the same as the syntax of the operation; for example, dd deletes the current line.
Also, a variation on this generic syntax is the cursor movement command, whereby you
can omit the numbers and operation and simply move the cursor by word, sentence, para-
graph, or section. Table 3.2 lists some specific examples of this generic syntax and varia-
tions used in Command mode.

As previously stated, when you start vi, it is in Command mode. When you want to be in
Insert mode instead of Command mode, press a valid key to accomplish the change. Some
of these keys are shown in Table 3.3.

After inserting text, you can edit the text, move the cursor to a new position in the buf-
fer, and save the buffer and exit the editor—all from within Command mode. When you
want to change from Insert mode to Command mode, press the <Esc> key.

To save the buffer and exit the editor, press the : key (colon) to enter Last Line mode.
The general commands that are useful in Last Line mode are shown in Table 3.4.

Editing Text Files    ◾    73

TABLE 3.2 Examples of Vi Command Syntax

Command Action

cw Change word.
cc Change line.
c$ Change text from current position to end of line.
C Same as c$.
dd Delete current line.
7 dd Delete 7 lines.
d$ Delete text from current position to end of line.
D Same as d$.
5dw Delete 5 words.
d7,14 Delete lines 7 through 14 in the buffer.
d} Delete up to next paragraph.
d^ Delete back to beginning of line.
d/ pat Delete up to first occurrence of pattern.
dn Delete up to next occurrence of pattern.
df x Delete up to and including x on current line.
dt x Delete up to (but not including) x on current line.
dL Delete up to last line on screen.
dG Delete to end of file.
gqap Reformat current paragraph to text width (vim and gvim).
g~w Switch case of word (vim and gvim).
guw Change word to lowercase (vim and gvim).
gUw Change word to uppercase (vim and gvim).
p Insert last deleted or yanked text after cursor.
gp Same as p, but leave cursor at end of inserted text (vim and gvim).
gP Same as P, but leave cursor at end of inserted text (vim and gvim).
]p Same as p, but match current indention (vim and gvim).
[p Same as P, but match current indention (vim and gvim).
P Insert last deleted or yanked text before cursor.
r x Replace character with x. Does not require the use of <Esc>!
R text Replace with new text (overwrite), beginning at cursor. <Esc>

ends replace mode.
s Substitute character. <Esc> ends substitute mode.
4s Substitute four characters. <Esc> ends substitute mode.
S Substitute entire line. <Esc> ends substitute mode.
u Undo last change.
<Ctrl+R> Redo last change (vim and gvim).
U Restore the current line, if you have not moved off of it.
x Delete current cursor position.
X Delete back one character.
5X Delete previous 5 characters
. Repeat last change.

Change case and move cursor right.
<Ctrl+A> Increment number at the cursor (vim and gvim).
<Ctrl+X> Decrement number at the cursor (vim and gvim).

74 ◾ UNIX: The Textbook, Third Edition

For now, we recommend that you use the arrow keys on the keyboard to move the cur-
sor around in the buffer. It is possible to also use the h, j, k, and l keys on the keyboard to
move the cursor. In gvim, you can use the mouse and its buttons!

The following practice session introduces you to some of the commands presented in
Tables 3.2 through 3.4:

3.2.3.1 Practice Session 3.2

Step 1: At the shell prompt, type vi firstvi and then press <Enter>.

Step 2: Type A, then type This is the first line of a vi file. and then
press <Enter>.

TABLE 3.3 Important Keys to Switch from Command Mode to Insert Mode

Key Action

a Appends text after the character the cursor is on
A Appends text after the last character of the current line
c Begins a change operation, allowing you to modify text
C Changes from the cursor position to the end of the current line
i Inserts text before the character the cursor is on
I Inserts text at the beginning of the current line
o Opens a blank line below the current line and puts the cursor on that line
O Opens a blank line above the current line and puts the cursor on that line
R Begins overwriting text
s Substitutes single characters
S Substitutes whole lines

TABLE 3.4 Important Commands for Command Mode

Command Action

: n, m w file Write lines n to m to new file.
: n, m w >> file Append lines n to m to existing file.
:r filename Reads and inserts the contents of the file filename at the current

cursor position
:wq Saves the buffer and quits
:w Saves the current buffer and remains in the editor.
:w filename Saves the current buffer to filename
:w! filename Overwrites filename with the current text
:w! Write file (overriding protection).
:w! file Overwrite file with current text.
:w %.new Write current buffer named file as file.new.
:q Quit vi (fails if changes were made).
:q! Quit vi without saving the buffer.
:Q Quit vi and invoke ex.
:vi Return to vi after Q command.
ZZ Quits vi, saving the file only if changes were made since the last save
% Replaced with current filename in editing commands.
Replaced with alternate filename in editing commands.

Editing Text Files    ◾    75

Step 3: Type This is the line of a vi file. and then press <Enter>.

Step 4: Type is the 3r line of a vi.

Step 5: Press the <Esc> key.

Step 6: Type :w and then press <Enter>.

Step 7: Use the arrow keys on the keyboard to position the cursor on the character l in
the word line on the second line of the file.

Step 8: Type i and then 2nd.

Step 9: Press the <Esc> key.

Step 10: Use the arrow keys to position the cursor anywhere on the third line of the file.

Step 11: Type I and then This.

Step 12: Press the <Esc> key.

Step 13: Use the arrow keys on the keyboard to position the cursor on the character r
in 3r on this line.

Step 14: Type a and then d.

Step 15: Press the <Esc> key.

Step 16: Type A and then file.

Step 17: Press the <Esc> key on the keyboard. Your screen display should look similar
to Figure 3.3.

Step 18: Type :wq. You will be back at the shell prompt.

The following in-chapter exercise asks you to apply some of the operations you learned
about in the previous practice session.

EXERCISE 3.1
With vi you begin editing a file that you created yesterday. You want to save a copy of it
with a different filename while still in vi, but you don’t want to quit this editing session.
How do you accomplish this result in vi?

EXERCISE 3.2
What happens if you accomplish five operations in vi and then type 5u when in Command
mode?

3.2.4 Cursor Movement and Editing Commands

In Command mode, several commands accomplish cursor movement and text-editing
tasks. Table 3.5 lists important cursor movement and keyboard editing commands. As

76 ◾ UNIX: The Textbook, Third Edition

we have already noted, character-at-a-time or line-at-a-time moves of the cursor can be
accomplished easily with the arrow keys, or alternatively with the h, j, k, and l keys on
the keyboard.

The following practice session lets you continue editing the file you created in Practice
Session 3.2 by using commands presented in Table 3.5.

FIGURE 3.3 File firstvi.

TABLE 3.5 Cursor Movement and Keyboard Editing
Commands

Command Action

1G Moves the cursor to the first line of the file
G Moves the cursor to the last line of the file
0 (zero) Moves the cursor to the first character of the

current line
<Ctrl+G> Reports the position of the cursor in terms of

line # and column #
$ Moves the cursor to the last character of the

current line
w Moves the cursor forward one word at a time
b Moves the cursor backward one word at a time
x Deletes the character at the cursor position
dd Deletes the line at the current cursor position
u Undoes the most recent change
r Replaces the character at the current cursor

location with what is typed next

Honest and trustworthy Honest and trustworthy
Honest and trustworthy Honest and trustworthy
Honest and trustworthy Honest and trustworthy

Editing Text Files    ◾    77

3.2.4.1 Practice Session 3.3

Step 1: At the shell prompt, type vi firstvi and then press <Enter>.

Step 2: Type G. The cursor moves to the last line of the file.

Step 3: Hold down the <Ctrl> and g keys at the same time. On the last line of the
screen display, vi reports the following:

 "firstvi" line 3 of 3 - - 100%-- col 1

This is a report of the buffer that you are editing, the current line number, the total num-
ber of lines in the buffer, the percentage of the buffer that this line represents, and the
current column position of the cursor.

Step 4: Type o. A new line opens below the third line of the file

Step 5: Type This is the 5th line of a vi file. Type <Esc>.

Step 6: Type 0 (zero). The cursor moves to the first character of the line you just typed in.

Step 7: Type $. The cursor moves to the last character of the current line.

Step 8: Type O. A new line opens above the current fourth line.

Step 9: Type This is the 44th line of a va file. Type <Esc>.

Step 10: Use the arrow keys to position the cursor over the first 4 in 44 on this line.

Step 11: Type x.

Step 12: Use the arrow keys to position the cursor over the a in va on this line.

Step 13: Type r and then type i.

Step 14: Type dd.

Step 15: Type :wq to go back to the shell prompt.

Step 16: At the shell prompt, type more firstvi and then press <Enter>. How
many lines with text on them does more show in this file?

3.2.5 Yank and Put (Copy and Paste) and Substitute (Search and Replace)

Every word processor is capable of copying and pasting text and also of searching for old
text and replacing it with new text. Copying and pasting are accomplished with the vi
commands yank and put. In general, you use yank and put in sequence and move the
cursor (with any of the cursor movement commands or methods) only between yank-
ing and putting. Some examples of the syntax for yank and put are given in Table 3.6.

The simple vi forms of search and replace are accomplished using the substitute
command. This command is executed when vi is in Last Line mode, where you preface the

78 ◾ UNIX: The Textbook, Third Edition

command with the : character and terminate the command by pressing <Enter>. The
format of the substitute command as it is typed on the status line is:

:[range]s/pattern/string[/option(s)][count]

where:

anything enclosed in [] is not mandatory;

: is the colon prefix for the Last Line mode command;

range is a valid specification of lines in the buffer (or the current line is the range);

s or substitute is the syntax of the substitute command;

/ is a delimiter for searching;

pattern is the text or objects you want to replace;

/ is a delimiter for replacement;

string is the new text or objects;

TABLE 3.6 Examples of Syntax for the Yank and Put Commands

Command Syntax What It Accomplishes

y2W Yanks two words, starting at the current cursor position,
going to the right

4yb Yanks four words, starting at the current cursor position,
going to the left

yy or Y Yanks the current line
p Puts the yanked text after the current cursor position
P Puts the yanked text before the current cursor position
5p Puts the yanked text in the buffer five times after the current

cursor position
Y Copy current line
yy Copy current line
" x yy Copy current line to register x
ye Copy text to end of word
yw Like ye, but include the whitespace after the word
y$ Copy rest of line
" x dd Delete current line into register x
" x d Delete into register x
" x p Put contents of register x
y]] Copy up to next section heading
J Join current line to next line
gJ Same as J, but without inserting a space (vim and gvim)
:j Same as J
:j! Same as gJ

Editing Text Files    ◾    79

/option(s) is a modifier, usually g for global, to the command; and

count is the number of lines to execute the command on from the current position.

The grammar of pattern and string can be extremely explicit and complex, and
may take the form of a regular expression. (We present more information on the forma-
tion of regular expressions in Chapter 7, Section 7.2.) Some examples of the syntax for the
substitute command, including vim/gvim-only constructions, are given in Table 3.7.

Practice Session 3.4 shows you how to use the vi commands yank and put to copy and
paste. It also allows you to do individual and multiple searches and replace text with the vi
substitute command.

3.2.5.1 Practice Session 3.4

Step 1: At the shell prompt, type vi multiline and then press <Enter>.

Step 2: Type A and then type Windows is the operating system of choice
for everyone.

Step 3: Press the <Esc> key. You have left Insert mode and are now in Command mode.

Step 4: Press the 0 (zero) key. The cursor moves to the first character of the first line.

Step 5: Type yy. This action yanks, or copies, the first line to a special buffer.

Step 6: Type 7p. This action puts, or pastes, the first line seven times, creating seven new
lines of text containing the same text as the first line. The cursor should now be on
the first character of the eighth line.

TABLE 3.7 Examples of Syntax for the Substitute Command

Command Syntax What It Accomplishes

:s/john/jane/ Substitutes the word jane for the word john on the
current line, only once.

:s/john/jane/g Substitutes the word jane for every word john on the
current line.

:1,10s/big/small/g Substitutes the word small for every word big on lines
1–10.

:1,$s/men/women/g Substitutes the word women for every word men in the
entire file.

:'<,'>s/this/that/g Select the range in Command mode first by typing
<Ctrl+V> and using the arrow keys. Then type :. The
word that will be substituted for the word this (vim,
gvim only).

:s/ \<tim\>/tom/ Substitutes only the whole word tim with the word tom,
not the partial match of tim in any string.

:%s/terrible/wonderful/gc Interactive substitution using c option of the word
terrible with the word wonderful (vim, gvim only).

:%s/^/ \=line(".") . ". "/g Makes the line numbers of all lines in the buffer
permanently part of each line (vim, gvim only).

80 ◾ UNIX: The Textbook, Third Edition

Step 7: Type 1G. This action puts the cursor on the first character of the first line in the
buffer.

Step 8: Hold down the <Shift> and ; keys at the same time. Doing so places a : in the
status line at the bottom of the vi screen display, allowing you to type a command.

Step 9: Type s/everyone/students/ and then press <Enter>. The word every-
one at the end of the first line is replaced with the word students.

Step 10: Use the arrow keys to position the cursor on the first character of the second
line.

Step 11: Type :s/everyone/computer scientists/ and then press <Enter>.

Step 12: Repeat Steps 8–10 on the third through eighth lines of the buffer, substituting
the words engineers, system administrators, web servers, scien-
tists, networking, and mathematicians for the word everyone on each of
those six lines.

Step 13: Type :1,$s/Windows/UNIX/g and then press <Enter>. You have glob-
ally replaced the word Windows on all eight lines of the file with the word UNIX.
Correct?

Step 14: Type :wq. You have now saved the changes and exited from vi.

3.2.6 vim and gvim

Vim and gvim are two examples among many of enhanced, “improved” versions of vi. The
following subsections illustrate some of the advantages of using vim and gvim over the
traditional vi editor.

3.2.6.1 Vim Enhancements
The following capabilities of vim that enhance vi functionality, particularly the first one
shown, are suggestions that you can use to expedite your editing tasks with vim and gvim
over and above the capabilities of vi:

 * vimrc

 If you want to enable any of the improved facilities of vim and gvim, you should cre-
ate a ~/.vimrc file. Even if this file is empty, it will enable the facilities that we illus-
trate in this section!

 * Help

 In vim Last Line mode, type help or press the F1> function key.

 Vim opens a help buffer that gives you extensive help on its facilities. In Last Line
mode, when in the help buffer, type q to exit help.

 * Multiple Windows

Editing Text Files    ◾    81

 The Last Line mode command split splits the current window in two. You can
then move the cursor up to a window with <Ctrl+W> j and down a window with
<Ctrl+W> k. For example, the Last Line mode command split new.c splits the
window and begins editing the file named new.c. To close a window, use the normal
vim exit commands ZZ or :q!.

 * Multiple Levels of Undo

 Unlike vi, you can use the undo command to undo several steps back in the com-
mand history. For example, typing u in Command mode undoes the last action in
vim, and typing 3u in Command mode undoes the last three actions you did in
vim. The undo level is set by default to 1000. You can redo multiply as well, using
<Ctrl+R>. For example, 3 <Ctrl+R> redoes the last 3 actions that were undone
with u.

 * Visual Mode

 Typing v causes vim to enter Visual mode. You can then highlight a block of text
and execute a vim Command mode operation on it. The v command selects text by
character. The <Ctrl+V> command selects text as a block. The V command selects
the current line. See Section 3.2.6.2 for more details on this facility in vim.

 * The incsearch and hlsearch Environmental Options (Incremental Search
and Highlight Search)

For the incremental search, by default, searching starts after you enter the string. With
the option:

 :set incsearch

 incremental searches will be done. The vim editor will start searching when you type
the first character of the search string. As you type in more characters, the search is
refined.

 For the highlight search option, setting the option turns on search highlighting. This
option is enabled by the command:

 :set hlsearch

 After the option is enabled, any search highlights the string matched by the search.

 * The cindent Environmental Option and the = Command Option

 Like vi autoindent, the vim editor does a more specific form of indentation. The cin-
dent option is set with the command:

 :set cindent

 This turns on C style indentation. Each new line will be automatically indented the
correct amount according to the C indentation standard.

82 ◾ UNIX: The Textbook, Third Edition

 * The :make Command

 To compile a C program with an accompanying make file, and correct the errors, you
can type this command in Last Line mode:

 make

 This runs the make command and captures the output. When the command finishes
the editor starts editing the first file. The next step is to fix the error. After that you
need to go to the line causing the next error. This is done using the command:

 cn

 This command will go to the location of the next error even if it is in another file.

 You can continue fixing problems and using cn until all your problems are over or
you want to do a recompile. If you want to see the current error message again, use
the command:

 cc

 * Last Line Mode Command History

 When you are in Last Line mode, you can use the <Up> arrow key to recall an older
command line entry, and then can use the <Down> arrow key to go forward to newer
commands. Then, when you press <Enter> after you have indexed to that previous
command in the history, that previous command is executed again.

There are four histories you can utilize in vim, but the two most important ones are for:

• Last Line mode command history

• / and ? search command history

Your search history is most useful to you, particularly because if you type complex
search criteria, you do not want to have to retype them every time you want to repeat that
search!

The two other histories are for expressions and input lines for the input() function.
As an example, you have done a Last Line mode command, typed five more Last Line

mode commands, and then want to repeat the first command again. To do this, in Last
Line mode press the <Up> arrow key five times. Another way of doing this is to type the
first few letters of the Last Line mode command you want to return to.

The <Up> key will use the text typed so far and compare it with the lines in the history.
Only matching lines will be used.

If you do not find the line you were looking for, use the <Down> arrow key to go back
to what you typed and correct that. You can also type <Ctrl+U> to start all over again.

To see all the lines in your Last Line mode command history, while in Last Line mode,
type:

Editing Text Files    ◾    83

 history

 You will then see a complete history of the Last Line mode commands for this session
at the bottom of the screen display.

 Your entire search history for this session is displayed by typing history/ in Last
Line mode.

 <Ctrl+P> will work like the <Up> arrow key, except that it doesn’t matter what you
already typed. <Ctrl+N> works like the <Down> arrow key.

 * The Last Line Mode Command Line Window

Typing any text in the Last Line mode command history to modify a previous com-
mand and then execute it is possible but difficult.

A better way to use a modified form of a Last Line mode command from the history is
to open the command line window while in Command mode by typing:

 q:

Vim now opens a small utility window at the bottom of the screen. It contains the com-
mand line history and an empty line at the end, similar to this illustration:

+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+
|other window |
|~ |
|first.c=============================|
|:w second.c |
|:w third.c |
|:w fourth.c |
|:w fifth.c |
|:w sixth.c |
|:history
|: |
|command−line=========================|
| |
~/project.c
+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+

In the buffer in this small utility window, you are in Insert mode, and can use Insert
mode commands to modify text and also move commands. You can use the arrow keys to
move around.

For example, move up the history tree with the <Up> arrow key to the :w third.c
line.

Change the word third to thirteenth.

84 ◾ UNIX: The Textbook, Third Edition

Now press <Enter> when on that line, and this command will be executed. The com-
mand line window will then close. The <Enter> command will execute the line under the
cursor. This works if vim is in Insert mode or in Command mode.

Unfortunately, changes you make in the command line window are lost! They do not
result in any changes in the command history itself, but the command you execute when
you are in the command line window will be added at the end of the history, similar to all
other executed commands. Also, only one command line window can be open at a time.

The command line window is very useful when you want to see your old command his-
tory, index to a particular command, edit it, and execute it.

A search command in your history can be used to find something new if you index to
it and modify it. For example, if in the command line window one of the lines contained
:s/everyone/computer scientists/, you could index to it in the command line
window and modify and execute it.

* Word Completion
When you are typing and you enter a partial word, you can cause vim to search for

a completion by using <Ctrl+P> (search for previous matching word) and <Ctrl+N>
(search for next match).

* Record and Playback
The . (period) command repeats the previous change in Command mode. To accom-

plish multiple, complex changes in vim Command mode, you can use the record and play-
back facility. There are three steps in record and playback:

 1. The q(register) command starts recording keystrokes into the key named reg-
ister. The register name must be a letter of the alphabet.

 2. Type the commands you want to record in the register.

 3. To end recording, press q.

You can now execute the macro by typing the command @register. For example, you
have a list of filenames in a buffer that looks like this:

stdio.h

fcntl.h

unistd.h

stdlib.h

And what you want is the following:

#include "stdio.h"

#include "fcntl.h"

Editing Text Files    ◾    85

#include "unistd.h"

#include "stdlib.h"

You start by moving to the first character of the first line. Next, in Command mode, you
execute the following commands:

qa

^

i#include "<Esc>

$

a"<Esc>

j

q

These commands do the following:

 1. Start recording a macro in register a.

 2. Move to the beginning of the line.

 3. Insert the string #include " at the beginning of the line.

 4. Move to the end of the line.

 5. Append the double quotation mark (") character to the end of the line.

 6. Go to the next line.

 7. Stop recording the macro.

Now that you have done the work once, you can repeat the change by typing the com-
mand "@a" three times.

The "@a" command can be preceded by a count, which will cause the macro to be
executed that number of times. In this case you would type: "3@a".

EXERCISE 3.3
How would you open a unique history window for the / and ? commands?

EXERCISE 3.4
Where does the cursor have to be positioned in the buffer if you want to execute a modified
version of the substitute command :s/everyone/computer scientists/ correctly?

86 ◾ UNIX: The Textbook, Third Edition

EXERCISE 3.5
Can you include Last Line mode commands, such as substitute, or write to a file, in a
record and playback session?

3.2.6.2 Vim Visual Mode
Because vi does not have a graphical, or “visual,” method of selecting and operating on
blocks of text, we use vim Visual mode. In vim, Visual mode is the graphical and easy way
to select a block of text in order to use a prescribed operator on it. The following will briefly
describe Visual mode’s features and give a simple example. Vim Visual mode allows you
to apply commands to blocks of text that can be selected graphically, even though you may
not be in a GUI environment. In general, all of the vi commands and operating modes
shown previously work in both vim and gvim.

Using Visual mode is done in three steps:

Step 1: Move the cursor to the start of the text block, mark the start of the block with
"v" (character mode), "V" (line mode), or <Ctrl+V> (blockwise mode). The char-
acter under the cursor will be used as the start of the block.

Step 2: Depending on what kind of functionality is provided in the terminal or console
window you are working in, move to the end of the text block, either with the arrow
keys on the keyboard, with the h, j, k, or l keys on the keyboard, or with the mouse
and mouse button(s). The text from the character where you start Visual mode, up
to and including the character under the cursor, is highlighted. Generally v and V
modes allow definition of nonrectangular blocks, whereas <Ctrl+V> allows defini-
tion of only rectangular blocks.

Step 3: Type a prescribed operator command. The highlighted characters from Step 2
will be operated upon depending on the nature of the prescribed operator listed.

You can use <Esc> to stop the definition of a block any time before you use a prescribed
operator.

A simple example that illustrates how you can copy and paste using Visual mode follows:

Step 1: At the shell prompt type vim visualtest1, then press <Enter> on the
keyboard.

Step 2: Type three or four arbitrary lines of text of uneven length (five to ten words each) into
the buffer that opens on screen. Put some spaces at the beginning of some of the lines.

Step 3: Position the cursor on the first character of the first line of the buffer.

Step 4: Type v. On the last line display you will be notified that you have entered Visual
mode! Now you can define the block that will be all or possibly only a portion of Step
2 text.

Editing Text Files    ◾    87

Step 5: Expand the highlighted area by using the input device of your choice until all the
text you typed in Step 2 is highlighted. If you make a mistake in defining the block,
use <Esc> to stop the block definition and begin highlighting again at the first char-
acter in the buffer until you get the block definition you desire.

Step 6: Type y.

Step 7: On the last line display you will see a report of how many lines you just yanked.

Step 8: Position the cursor anywhere on the last line of the buffer.

Step 9. Type o. A new line opens below the last line in the buffer. Press <Esc>.

Step 10: Type p. The yanked block from Step 6 is put back in the buffer, starting on the
new line you opened in Step 9 and proceeding downward. Save the file if you want to.

3.2.6.3 Using Gvim to Cut and Paste between Multiple Open Buffers
To illustrate the speed and efficiency of using gvim as a modern graphical UNIX text edi-
tor, and to describe some of gvim’s functions, the following practice session allows you
use gvim to create text in two different files, open buffers into those files in two different
windows, and copy and paste between those buffers.

In general, all of the vi commands and operating modes shown previously work in both
vim and gvim.

3.2.6.4 Practice Session 3.5

Step 1: At the shell prompt, type gvim gvim1 and then press the <Enter> key.

Step 2: Type A and then type This is the first line of text. Then press
the <Enter> key twice.

Step 3: Type This is the third line of text. Then press the <Enter> key.

Step 4: From the gvim pull-down menu, make the choice Window>Split. You now
are looking into two windows on the same buffer.

Step 5: From the gvim pull-down menu, make the choice File>Save. Click the OK
button in the Save window. The buffer is saved to the file gvim1.

Step 6: Use the mouse and click anywhere in the lower window with the left mouse but-
ton. You are now working in the lower buffer.

Step 7: From the gvim pull-down menu, make the choice File>Save As. In the Name
box, change the name of the file to gvim2, and then make the Save button choice. The
buffer is saved as gvim2, and you are looking into the buffer through two windows.

Step 8: The active buffer is still seen in the lower window. Use the mouse and <Delete>
key on the keyboard to change the word first to the word second, and the word
third to the word fourth in the lower window.

88 ◾ UNIX: The Textbook, Third Edition

Step 9: Click anywhere in the top window.

Step 10: Make the gvim pull-down menu choice File>Open. Scroll down and open
gvim1 in the current directory by selecting it and making the OK button choice. You
should now be seeing gvim1 in the upper window, and gvim2 in the lower window.

Step 11: Click anywhere in the bottom window.

Step 12: Use the mouse and left mouse button to highlight the text This is the
second line of text. Make sure the cursor is flashing on the period as you
finish selecting that line.

Step 13: Make the gvim pull-down menu choice Edit>Copy. You have “yanked” a line
of text in the lower buffer graphically.

Step 14: Click on the second blank line in the upper window buffer.

Step 15: Make the gvim pull-down menu choice Edit>Paste. The line This is the
second line of text. is now on the second line of the upper window buffer.
You can use the gvim pull-down menu choice Edit>Undo to correct mistakes in
copying and in pasting.

Step 16: Repeat Steps 11 through 15 to copy and paste the line This is the fourth
line of text. from the lower window buffer to the upper window buffer. When
you are done, your screen display should look similar to Figure 3.4.

Step 17: While the active window buffer is the upper window, make the gvim pull-down
menu choice File>Save-Exit.

Step 18: At the shell prompt, type more gvim1. What appears on screen? Do the same
for the file gvim2. What appears on screen?

3.2.7 Changing vi, vim, and gvim Behavior

In general, all of the environment options commands shown in this section work in vi,
vim, and gvim. Note that, because vim stands for vi improved, vim and gvim have many
more environmental options. As previously suggested, you can create an empty version
of the ~/.vimrc file to enable many of the behavioral changes we show here. We also sug-
gest you modify both your ~/.exrc and ~/vimrc files to accomplish the behavioral changes

FIGURE 3.4 File gvim1 after Step 16.

Editing Text Files    ◾    89

illustrated, depending on which editor you want the changes to be implemented in. If you
put a vim-specific behavior-changing option in the .exrc file, when you run vi, you will
probably get a warning message in vi, but not a fatal error message.

You can modify any of several environment options to customize the behavior of the
vi, vim, and gvim editors, either when you are in the editor at a given time, or for every
editor session. These options include, for example, specifying maximum line length and
automatically wrapping the cursor to the next line, displaying line numbers as you edit a
file, and displaying the mode that the editor is in. You can use full or abbreviated names
for most of the options. Some of the most important and useful options and their abbrevia-
tions are summarized in Table 3.8. Also see Table 3.9 for a summary of the use of the set
command.

The set command in Last Line mode changes environmental options. There are two
types of environmental options that can be modified with the set command: toggle
options, which are either “on” or “off,” and options that require the use of an argument.

For example, after typing :set showmode, you have toggled the mode display “on,”
and the editor displays the current mode at the bottom of the screen. If you then type :set
noshowmode, you have toggled the mode display “off.” Similarly, after typing :set nu,
vi displays the line numbers for all the lines in the file. To turn “off” the line number dis-
play, type :set nonu. When the :set ai command has been executed, the next line
is aligned with the beginning of the previous line. This useful feature allows you to easily
indent source codes that you compose with vi. Pressing <Ctrl+D> on a new line moves
the cursor to the previous indentation level.

TABLE 3.8 Important Environmental Options for Vi, Vim, and Gvim

Option Abbreviation Purpose

autoindent ai Aligns the new line with the beginning of the previous
line.

ignorecase ic Ignores the case of a letter during the search process (with
a / or the ? command).

list list Displays invisible characters, such as ^I for <Tab> and a
$ for end-of-line characters.

nolist nolist Turns off the display of invisible characters.
noignorecase noic Instructs cases to be case sensitive.
number nu Displays line numbers when a file is being edited; line

numbers are not saved as part of the file.
nonumber nonu Hides line numbers.
scroll Sets the number of lines to scroll when the <Ctrl+D>

command is used to scroll the vi screen up.
set Displays all the vi variables that are set.
all Displays all set vi variables and their current values.
showmode smd Displays the current vi mode in the bottom right corner

of the screen.
noshowmode nosmd Turns off the mode of operation display.
wrapmargin wm Sets the wrap margin in terms of the number of

characters from the end of the line, assuming a line
length of 80 characters.

90 ◾ UNIX: The Textbook, Third Edition

To see a listing of what all environment options in the editor are (the ones you have
modified and the defaults) at any time, type :set all.

To see a listing of what environment options you have modified, either for this session
only, or for all sessions, type :set.

When you use set to modify the environment options within an editor session, the
options are set for that session only!

If you want to customize your environmental options for all vi, vim, and gvim sessions,
you need to put your options in the .exrc file in your home directory. You can use the set
command to modify one or more options in the .exrc file as follows (typing the two key-
board keys <Ctrl+C> terminates the creation of the cat command):

$ cat > .exrc

set wm=5 showmode nu ic

<Ctrl+C>

$

TABLE 3.9 Last Line Mode Syntax

Last line mode syntax What it does

abbr command
:ab in out Use in as abbreviation for out in Insert mode.
:unab in Remove abbreviation for in.
:ab List abbreviations.
map!, map commands
:map string sequence Map characters string as sequence of commands. Use

#1, #2, etc., for the function keys.
:unmap string Remove map for characters string.
:map List character strings that are mapped.
:map! string sequence Map characters string to input mode sequence.
:unmap! string Remove input mode map (you may need to quote the

characters with <Ctrl+V>).
:map! List character strings that are mapped for input mode.
qx Record typed characters into register specified by

letter x (vim and gvim).
q Stop recording (vim and gvim).
@x Execute the register specified by letter x. Use @@ to

repeat the last @ command.
set command
:set x Enable boolean option x, show value of other options.
:set nox Disable option x.
:set x=value Give value to option x.
:set Show changed options.
:set all Show all options.
:set x? Show value of option x.

Editing Text Files    ◾    91

The wm=5 option sets the wrap margin to 5, and is an example of a set command that
requires an argument. That is, each line will be up to 75 characters long. The ic option
allows you to search for strings without regard to the case of a character. Thus, after this
option has been set, the /Hello/ command searches for strings hello and Hello.

EXERCISE 3.6
After examining Tables 3.8 and 3.9, select a few of the environment options that most
appeal to you and then place them in your ~/.exrc file. Test them by running vi.

EXERCISE 3.7
If you haven’t already done so, place the set showmode environment setting in your
~/.exrc and in your ~/.vimrc file. Run vim and then gvim. Do various operations in both
those editors. Does the mode you are in appear in the mode line in both editors?

3.2.8 Executing Shell Commands from within vi, vim, and gvim

At times you will want to execute a shell command without quitting vi and then restarting
it. You can do so in Command mode by preceding the command with :!. Thus, for exam-
ple, typing :! pwd would display the pathname of your current directory, and typing :!
ls would display the names of all the files in your current directory. After executing a shell
command, the editor returns to Command mode.

3.2.9 vi, vim, and gvim Keyboard Macros

Vi, vim, and gvim offer a variety of macro facilities; a macro is a keystroke construction
that uses one or more compact set keystrokes to represent another larger number of key-
strokes that are substituted for the single or compact set. Macros are used in vi, vim, and
gvim for the following reasons:

 1. During Insert mode, to construct an abbreviation. For example, in a text file where
you use often-repeated blocks of the same text.

 2. In Command mode, vi, vim, and gvim commands can be associated or mapped to
other keys, such as the function keys at the top of the keyboard.

 3. Complex commands and their arguments can be triggered by a single keystroke or a
shorter sequence of keystrokes.

Here is a brief summary description of the various vi, vim, and gvim macro operations,
two of which are covered in the indicated subsections below:

Text abbreviation (Section 3.2.9.1), which operates in Insert mode. An abbreviation
works only in vi, vim, and gvim Insert mode.

Keystroke mapping (Sections 3.2.9.2 and 3.2.9.3), which can operate either in Insert
mode or in Command mode, and uses the map! and map Last Line mode commands.

92 ◾ UNIX: The Textbook, Third Edition

Once defined, a map! sequence is triggered only in Insert mode, and a map sequence
is triggered only in vi, vim, and gvim Command mode.

Text-buffer execution, which operates only in Command mode. Once text has been
placed in any of the named text buffers, that text can be executed as if it were a
sequence of vi, vim, and gvim commands.

In the following sections, we will describe and give examples of some of the vi, vim,
and gvim macro facilities, and also give an additional example of a specialized vim macro
feature that can be used in gvim as well. Table 3.9 summarizes the uses of the abbr, map!,
and map commands.

3.2.9.1 Text Abbreviation Macros Used in Insert Mode
To save keystrokes while entering text, in Last Line mode, use the abbr(eviate) or just ab
command.

It has the following general syntactic form:

:ab[br] [abbreviation abbreviated]

where:

: gets you into Last Line mode;

[] designates optional components;

ab or abbr is the command for creating an abbreviation;

abbreviation is a valid string of contiguous (no spaces allowed) characters; and

abbreviated is the substitute text you want to be placed in the buffer.

Text abbreviations can be canceled with the Last Line mode unabbr command, fol-
lowed by typing the abbreviation you want to cancel. Also, if you just type abbr in Last
Line mode, you get a listing of all the abbreviations that are active.

To use the abbreviation, when you are in Insert mode, whenever you type the string that
represents abbreviation and precede as well as follow it by a nonalphanumeric charac-
ter, the substitution will take place.

The editor will examine the character before and the next character after you type the
abbreviation to see if it’s nonalphanumeric or underscore, and if so, abbreviation
will be erased and the string that represents abbreviated will be substituted for it. Also,
you are no longer in Insert mode.

For example, in Last Line mode, if you type ab kts Know this stuff! and then
press <Enter>, kts is the abbreviation. Then anywhere in Insert mode, when you type
sts and precede it and follow it by pressing the space key, the left or right arrow keys (all of
which yield nonalphanumeric characters and are not the underscore keys on the keyboard

Editing Text Files    ◾    93

for our system), the string Know this stuff! will be substituted on that line, and you
will no longer be in Insert mode.

Note: With abbr, your text appears as you type it, and no substitution is performed
on abbreviation until you type nonalphanumeric characters before it and after it. As
shown in the next section, this is different from keystroke mapping using the map! or map
commands.

The following are some useful abbreviations for Python program file creation.

:ab 1 #!/usr/local/bin/python

:ab 2 from Tkinter import *

:ab 3 import os

:ab 4 import sys

3.2.9.2 Keystroke-Mapping Macros Used in Insert Mode
map, shown in the next subsection, works on characters that are typed in Command mode,
and map!, shown in this subsection, works on characters that are typed in Insert mode.

As shown in the previous section, abbr won’t substitute text until you type a nonal-
phanumeric before and after the abbreviation string. Notice the editor echoes each
character of the abbreviation as you type it, just in case you really want the string of
characters that represents abbreviation to be an actual string of characters that you
want in your text. Keystroke mapping works in a more keystroke- and time-dependent
way. Keystroke mapping used in Insert mode is handled by the Last Line mode map! com-
mand, which takes the following general form:

:map! [substitution substituted]

where:

: gets you into Last Line mode;

[] designates optional components;

map is the command for creating a keyboard mapping;

substitution is a valid string of contiguous (no spaces allowed) characters; and

substituted is the substitute text you want to be placed in the buffer.

For example, in Last Line mode, if you type map! ts This will save you
time! and then press <Enter>, ts is the substitution. Then, anywhere in Insert
mode, when you type ts in a short amount of time (under approximately half a second),
the string This will save you time! will be substituted on that line and you will
still be in Insert mode. If you type more slowly, the literal string ts will be inserted.

94 ◾ UNIX: The Textbook, Third Edition

The keystroke sequence <Ctrl+V> will let you escape the mapping, as long as you pre-
cede the macro with it. So no matter how fast you type in <Ctrl+V> ts, you get the literal
string ts inserted.

Remapping abbreviations can be canceled with the Last Line mode unmap! command,
followed by typing the substitution you want to cancel. Also, if you just type map! in
Last Line mode, you get a listing of all the mappings that are active. You will see that the
editor already has several mappings defined by default.

3.2.9.3 Keystroke-Remapping Macros Used in Command Mode
Command mode remapping is accomplished with the map Last Line mode command.

The general form of the map command is as follows.

:map [substitution substituted]

where:

: gets you into Last Line mode;

[] designates optional components;

map is the command for creating a keyboard mapping;

substitution is a valid string of contiguous(no spaces allowed) characters; and

substituted is the substitute text you want to be placed in the buffer.

Some editor command keys cannot be remapped in Command mode. Two examples of
these keys are : (colon) and u.

Remapping substitutions can be canceled with the Last Line mode unmap command,
followed by typing the remapping you want to cancel. Also, if you just type map in Last
Line mode, you get a listing of all the mappings that are active. You will see that the editor
already has several mappings defined by default.

As an example, in Last Line mode, if you type map #8: wq<Ctrl+V><Ctrl+Enter>and
then press <Enter>, the function key F8> at the top of your keyboard is the substitu-
tion. The substituted is the command to write the buffer to a file and quit the editor.
The <Ctrl+V> and <Ctrl+Enter> keystrokes are the way to enter control characters on
the command line, in this case the <Enter> key at the end of the command. After this
mapping is done, anytime you are in Command mode, when you press the function key
<F8>, the buffer will be written to the default file and you will exit the editor.

Another interesting and useful example is the following map command, which can be
placed in your .exrc file, so that you can use the function key <F3> during editor sessions
to generate a skeleton C program construct:

map #3 [̂i#include stdio.h ^Mmain(argc, argv) ^M int argc;̂ M
char #argv[];̂ Ml{̂ M}̂ M [̂

Editing Text Files    ◾    95

where:

[̂ stands for pressing <Ctrl+V> and then <Esc>; and

^M stands for pressing <Ctrl+V> and then the <Enter> key

The relative number of spaces in this map command definition controls the indentation
of the skeleton construct. Also, the ^M entries put each of the skeleton construct compo-
nents on a new line.

3.2.9.4 Vim/Gvim Macro Example
Here is a repeat of Practice Session 3.4, slightly enlarged, that uses a vim-specific macro
command sequence to accomplish the same thing that Practice Session 3.4 did, but in
another way.

3.2.9.5 Practice Session 3.6

Step 1: From the shell prompt, type vim unixos2 and then press <Enter> on the
keyboard.

Step 2: In vim, type A and then type the following 10 lines of text, each on its own line:

 computer scientists

 students

 hackers

 systems analysts

 newbies

 UNIX gurus

 computer programmers

 systems administrators

 network administrators

 LINUX users

Step 3: Press <Esc>, then place the cursor anywhere on the first line of text.

Step 4: Type q a. This puts you in record mode and associates the macro you are about
to record with the a key.

Step 5: Type I. The cursor is now at the start of the first line in Insert mode.

Step 6: Type UNIX is the operating system of choice for with a single
space after the r in the word for. Press <Esc>.

96 ◾ UNIX: The Textbook, Third Edition

Step 7: Place the cursor anywhere on the second line of text.

Step 8: Type q. This ends record mode.

Step 9: Type a@9. This “plays back” the macro defined with the a key nine times, once
on each of the lines below the first line, inserting the text string UNIX is the
operating system of choice for.

Step 10: Save the file, print it out, and memorize its contents.

3.3 THE EMACS EDITOR
The emacs editor is the most complex and customizable of the UNIX text editors, and
it gives you the most freedom, flexibility, and control over the way you edit text files.
It can format text for very specific technical applications, such as program source code
development, more effectively than a word processor. Its use in that application makes
the process of program development more efficient. In addition, from within the emacs
program, in multiple windows, you can accomplish a wide variety of personal produc-
tivity and operating system tasks, such as sending e-mail and executing shell com-
mands and scripts. But along with more control, specificity, and capabilities comes
some additional learning in terms of a more complex keystroke command structure.
This complexity can be offset in part for some users, and totally for others, by using the
graphical forms of input and command execution that we will emphasize in the sec-
tions that follow.

To stress how the keyboard keys are used in GNU emacs, we repeat the following note
shown at the beginning of this chapter here:

 1. Pressing the Escape key is signified as <Esc>

 2. Pressing the Enter key is signified as <Enter>

 3. Pressing the <Ctrl> key in combination with another single key is signified as
<Ctrl+X>, where you hold down the <Ctrl> key and press the X key (or any valid
key for that combination) at the same time.

 4. Pressing the <Alt> key in combination with another single key is signified as
<Alt+X>,

 where you hold down the <Alt> key and press the X key (or any valid key for that
combination) at the same time.

 5. A variant of 3. and 4. is shown as <Ctrl+X> a [b], where you first press and release
<Ctrl> and X simultaneously, and then press the a key, and optionally press the b
key (or any valid combination of single keys or strings of characters.

 6. In GNU emacs for PC-BSD and Solaris, the Meta key that is referred to in much of
the literature on GNU emacs, is the <Alt> key.

Editing Text Files    ◾    97

It is important to realize before you begin that there are some common terms used in vi,
vim, and gvim (the editors from the previous section) and emacs that describe the facilities
of each editor, but the terms do not have the same meaning between the two major families
of editor.

As you saw in Section 3.1.2, with vi, vim, and gvim, you can’t immediately begin to enter
text into the file you are editing. You have to be in Insert mode to do that, that’s what typ-
ing A as the second step is doing. Vi, vim, and gvim have modes. In GNU emacs, you can
start typing text into the file immediately. Emacs is a modeless editor.

Vi, vim, and gvim operate in three distinct modes: Command mode, Insert mode, and
Last Line mode. Emacs is a modeless editor in the sense that, when you launch emacs, you
do not have to switch modes to immediately type characters on the keyboard and enter text
into a buffer, or change modes to save the buffer to a file.

For example, emacs does have major modes of operation, such as Lisp mode, Python
mode, and C mode, but they are for the special formatting of text and for specialized opera-
tions when editing files for use in those language applications. This is different from allow-
ing you to switch between significant forms of action in the editor, as the vi, vim, and gvim
Command, Insert, and Last Line modes do, as seen in the previous section. The keystroke
command syntax itself in emacs is different and more complex than in vi, involving use of
the <Ctrl> and <Alt> prefix characters, as previously noted. The emacs concepts of point
and the cursor location are also more refined and specific than in vi. In emacs, the point is
the location in the buffer where you are currently doing your editing; the point is assumed
to be at the left edge of the cursor, or always between characters or white space (what you
enter into a text file when you press the space bar). This difference becomes an important
issue when you want to use the cut/copy/paste operations. In vi, yanking removes text from
the main buffer, much like cutting/copying, whereas in emacs yanking is more like pasting
into the main buffer. The concept of a buffer is very important in emacs, and is very much
the same in emacs as it is in vi.

Currently, there is one major “brand” of emacs for UNIX: GNU emacs. We use the
graphical form of GNU emacs version 24.3.1 in both PC-BSD and Solaris, running in its
own frame, in the following illustrations, exercises, practice sessions, and problems.

If you cannot run a graphical emacs because you are working in a text-only console or
terminal, you can still gain access to the Menu Bar at the top of the emacs screen by press-
ing <Esc> on the keyboard and then pressing the single back quote (̀) key. You can then
descend through the menu bar choices by pressing the letter key of the menu choice you
want to make. For example, pressing the f key gives you access to the File pull-down menu
choices, and then pressing the s key allows you to save the current buffer. Unfortunately,
you cannot access the speed button bar menu choices from within a text-only display of
emacs. A summary of emacs commands is given in Table 3.10.

3.3.1 Launching Emacs, Emacs Screen Display, General Emacs Concepts and Features

The general syntax for launching the emacs program from the command line in a console
window is as follows (anything enclosed in square brackets [] is optional):

98 ◾ UNIX: The Textbook, Third Edition

SYNTAX
emacs [options][file(s)]

Purpose: Allows you to edit a new or existing file(s)
Output: With no options or file(s) specified, emacs runs and begins or opens on the

Welcome Screen buffer
Commonly used options/features:

+n Begin to edit file(s) starting at line number n
-nw Run emacs without opening a window, useful in an

elementary GUI environment
emacs file1 file2 file3 Open three buffers in emacs on three different files at

the same time

For example, if you run the emacs program by typing emacs alien in a termi-
nal window in our base PC-BSD system, emacs launches and shows the Welcome Screen
buffer.

To close the Welcome Screen buffer display that opens in the bottom window of the
emacs frame, while the cursor is flashing in the top window, make the emacs pull-down

TABLE 3.10 Summary of emacs Commands

Command Action

<Ctrl+X> <Ctrl+F> Visit a file (find-file)
<Ctrl+X> <Ctrl+R> Visit a file for viewing, without allowing changes to it

(find-file-read-only)
<Ctrl+X> <Ctrl+V> Visit a different file instead of the one visited last

(find-alternate-file)
<Ctrl+X> 4 f Visit a file, in another window

(find-file-other-window)
<Ctrl+X> 5 f Visit a file, in a new frame

(find-file-other-frame)
<Alt+X> find-file-literally Visit a file with no conversion of the contents (shows you

control characters, etc.)
<Ctrl+X> <Ctrl+S> Save the current buffer to its file (save-buffer)
<Ctrl+X> s Save any or all buffers to their files

(save-some-buffers)
<Alt+~> Forget that the current buffer has been changed

(not-modified)
<Ctrl+X> <Ctrl+W> Save the current buffer with a specified file name

(write-file)
<Alt+X> set-visited-file-name Change the file name under which the current buffer will

be saved
<Ctrl+R> View the buffer that you are currently being asked about
<Ctrl+H> Display a help message about these options
<Ctrl+X> <Ctrl+C> Exits emacs
<Ctrl+X> <Ctrl+Z> Suspends emacs and exits to the shell

Editing Text Files    ◾    99

menu choice Remove Other Windows. Or you can type <Ctrl+X> 1. In either case, you
will only have one buffer shown in the screen display, similar to Figure 3.5.

A brief description of the major components of the emacs screen display labeled in
Figure 3.5 is as follows (note: items J, A, B, D, and C are found on what is called the mode
line):

 A. Name of the current buffer: This is the name of the entity or “file” you are editing in
this window. In Figure 3.5, the name of the buffer is alien.

 B. Major and minor mode: Different major modes are used to edit different kinds of
files, like C programs, Lisp, or HTML, and special configurations of the major modes
define the minor modes. In Figure 3.5, only the major mode Fundamental is
shown, with no minor mode set.

 C. Percentage of the text shown on screen: This shows how much of the text in the buf-
fer is seen on screen. In Figure 3.5, All of the text in the current buffer is shown on
screen.

 D. Current line number: The line location of the cursor in the current buffer is displayed
here.

 E. Minibuffer: Information and questions/prompts from emacs appear here. In
Figure 3.5, Wrote /usr/home/bob .emacs is shown on screen, because the
help file initial screen display buffer was closed.

 F. Speed button bar: This allows you to do quick, common operations graphically.

 G. Menu bar: This gives you pull-down menus that contain all of the important emacs
operations.

 H. Text: The actual text you are editing appears here.

FIGURE 3.5 First GNU emacs screen display.

100 ◾ UNIX: The Textbook, Third Edition

 I. Scroll bar: The scroll bar allows you to graphically scroll or move through the text.

 J. Status indicator: Two-character codes are used to tell you about your file. In Figure 3.5,
a U- and two hyphens (U---) indicate that the file has not changed in emacs and is
the same as the version saved to disk, and that you can work on the file.

3.3.1.1 Emacs Help
Emacs provides a wide variety of help commands, all accessible through the key sequence
<Ctrl+H> or graphically with the function key <F1>. You can also type <Ctrl+H>
<Ctrl+H> to view a list of help commands. You can scroll the list with <Space> and
, then type the help command you want. To cancel, type <Ctrl+G>. Many help
commands display their information in a special help buffer. In this buffer, you can type
<Space> and to scroll and press <Enter> to follow hyperlinks.

The following are the most general ways of obtaining help on a topic or command:

<Ctrl+H> a topic(s) <Enter>

This searches for commands whose names match the argument topic(s). The argu-
ment can be a keyword, a list of keywords, or a regular expression.

<Ctrl+H> i d m emacs <Enter> i topic <Enter>

This searches for topic in the indices of the emacs Info manual, displaying the first match
found. Press , (comma) to see subsequent matches. You can use a regular expression as a
topic.

<Ctrl+H> i d m emacs <Enter> s topic <Enter>

Similar, but searches the text of the manual rather than the indices.

<Ctrl+H> <Ctrl+F>

This displays the emacs FAQ, using Info.

<Ctrl+H> p

This displays the available emacs packages based on keywords.
A summary of help command syntax is found in Table 3.11.

3.3.1.2 Graphical Features
The most useful graphical features of emacs are the menu bar and speed button bar seen
in Figure 3.5 as F and G. These features incorporate all of emacs’s functionality into a

Editing Text Files    ◾    101

TABLE 3.11 Summary of Help Command Syntax
<Ctrl+H> a
topics <Enter>

Display a list of commands whose names match topics (apropos-command).

<Ctrl+H> b Display all active key bindings—minor mode bindings first, then those of the major
mode, then global bindings (describe-bindings).

<Ctrl+H> c key Show the name of the command that the key sequence key is bound to
(describe-key-briefly). Here c stands for “character.” For more extensive
information on key, use <Ctrl+H> k.

<Ctrl+H> d
topics <Enter>

Display the commands and variables whose documentation matches topics
(apropos-documentation).

<Ctrl+H> e Display the *Messages* buffer (view-echo-area-messages).
<Ctrl+H> f
function press
<Enter>

Display documentation on the Lisp function named function (describe-
function). Since commands are Lisp functions, this works for commands too.

<Ctrl+H> h Display the HELLO file, which shows examples of various character sets.
<Ctrl+H> i Run Info, the GNU documentation browser (info). The emacs manual is available in

Info.
<Ctrl+H> k key Display the name and documentation of the command that key runs

(describe-key).
<Ctrl+H> l Display a description of your last 300 keystrokes (view-lossage).
<Ctrl+H> m Display documentation of the current major mode (describe-mode).
<Ctrl+H> n Display news of recent emacs changes (view-emacs-news).
<Ctrl+H> p Find packages by topic keyword (finder-by-keyword). This lists packages

using a package menu buffer.
<Ctrl+H> P
package <Enter>

Display documentation about the package named package
(describe-package).

<Ctrl+H> r Display the emacs manual in Info (info-emacs-manual).
<Ctrl+H> s Display the contents of the current syntax table (describe-syntax). The syntax

table says which characters are opening delimiters, which are parts of words, and so on.
<Ctrl+H> t Enter the emacs interactive tutorial (help-with-tutorial).
<Ctrl+H> v var
<Enter>

Display the documentation of the Lisp variable var (describe-variable).

<Ctrl+H> w
command <Enter>

Show which keys run the command named command (where-is).

<Ctrl+H> C
coding <Enter>

Describe the coding system coding (describe-coding-system).

<Ctrl+H> C
<Enter>

Describe the coding systems currently in use.

<Ctrl+H> F
command <Enter>

Enter Info and go to the node that documents the emacs command command
(Info-goto-emacs-command-node).

<Ctrl+H> I
method <Enter>

Describe the input method method (describe-input-method).

<Ctrl+H> K key Enter Info and go to the node that documents the key sequence key
(Info-goto-emacs-key-command-node).

<Ctrl+H> L
language-env
<Enter>

Display information on the character sets, coding systems, and input methods used
in language environment language-env
(describe-language-environment).

<Ctrl+H> S
symbol <Enter>

Display the Info documentation on symbol symbol according to the programming
language you are editing (info-lookup-symbol).

<Ctrl+H> Display the help message for a special text area, if the point is in one
(displaylocal-help). (These include, for example, links in *Help* buffers.)

102 ◾ UNIX: The Textbook, Third Edition

graphical style of interaction. When a menu choice is grayed out, that means it is not avail-
able at the current level you are operating at. The following is a brief description of what
tasks each menu bar item accomplishes.

File: Facilities for opening, saving, and closing buffers, files, windows, and frames

Edit: Means to modify text in buffers

Options: Facilities to make configuration changes

Buffers: A pull-down menu listing of the currently open buffers

Tools: File and application functions

Help: Extensive documentation and online manual for emacs

The speed button bar contains single-button presses for (1) file and buffer operations; (2)
common text-editing operations, such as cut and paste; and (3) printing, searching, and
changing preferences.

3.3.1.2.1 Buffers, File, Windows, and Frames The most important concept in emacs is that
of a buffer, or text object that is currently being edited by emacs. This is different from
a file, which is a text object stored on disk. The differentiation is made, in simple terms,
because (1) the object currently being modified and viewed in emacs cannot be the same
object stored on disk as you have not yet saved your edits; and (2) emacs can work on text
objects that are not files and never will be, such as the output from commands typed on
the UNIX command line. When you first launch emacs and specify a file to edit, you are
looking into the buffer created by emacs for that file in what is generally known as an
emacs frame, with a single window open to allow you to see the buffer contents. A frame
consists of one window, or possibly many windows, tiled in it, the pull-down and speed
button bar menus, the mode line, and a minibuffer. In Practice Sessions 3.12, 3.13, and
3.14, you will work with multiple buffers viewed in emacs using multiple windows in one
frame only.

3.3.1.2.2 Point, Mark, and Region The second most important concept in emacs is that of
the point and mark, and the region of text they demarcate. The point is located in the white
space before the character the cursor is highlighting. The mark, set by placing the cursor
over a character and then holding down <Ctrl+Space> or <Ctrl+@>, is also in the
white space before the character the cursor is highlighting. The region or area of text you
want to manipulate in operations such as cutting and copying, is all text between the point
and the mark. For example, in the line of text Now is the time for all good
men, if the cursor is on or highlighting the N in the word Now (the point is in the white
space before the N), and the mark has been set before the character i in the word time by
placing the cursor on the letter i and holding down <Ctrl+Space>, then the region is
defined as Now is the t.

Editing Text Files    ◾    103

To exit from emacs without saving any of the buffers, make the pull-down menu choice
File>Quit or type <Ctrl+X>/<Ctrl+C> on the keyboard.

3.3.2 How to Use Emacs to Do Shell Script File Creation, Editing, and Execution

The following practice session shows how to create a file to define aliases, or command
name substitutes, that allow you to type DOS command names at the UNIX shell prompt
to execute some of the common UNIX file maintenance operations. DOS commands are
similar to UNIX commands but are used in the Windows operating system environment.
As you will see in the practice session, you can use an efficient combination of keyboard
typing and graphical interaction to work with emacs.

In this section, we assume that you are running the C shell, which is the default shell
on our PC-BSD system. On Solaris the default shell is the Bourne Again shell, commonly
referred to as Bash. So in the following steps, substitute the correct syntax for the Bash
alias commands for the C shell alias commands we show. Also, it is assumed in these prac-
tice sessions, exercises, and problems that you are creating and editing files in your home
directory.

3.3.2.1 Practice Session 3.7

Step 1: At the shell prompt, type emacs alien and then press <Enter>.

 The emacs screen appears in your display, similar to Figure 3.5. Close the Welcome
Screen as noted in Section 3.3.1 by holding down <Ctrl+X> and then pressing the 1
numeric key.

Step 2: Type # DOS aliases and then press <Enter>.

Step 3: Type alias del rm and then press <Enter>.

Step 4: Type alias dir ls -la and then press <Enter>.

Step 5: Type alias type more and then press <Enter>.

Step 6: Hold down the <Ctrl+X>, and then hold down <Ctrl+S> to save your file with
the name alien. The display of your text should appear similar to Figure 3.6.

Step 7: Hold down <Ctrl+X>, and then hold down <Ctrl+C> to gracefully exit from
emacs and return to the C shell prompt.

FIGURE 3.6 File alien after Step 6.

104 ◾ UNIX: The Textbook, Third Edition

3.3.3 Visiting Files, Saving Files, and Exiting

UNIX stores data permanently in files, so most of the text you will edit with emacs
comes from a file and is saved in a file. To edit a file while running emacs, you need to
read the file into a buffer and prepare that buffer containing a copy of the file’s text. This
is called visiting the file. (Note: The emacs editing commands work on the text in the
buffer inside emacs. Your changes are written to the file itself only when you save the
buffer to the file.)

In addition to visiting and saving files, emacs can delete, copy, rename, and append to
files, keep multiple versions of them, and operate on file directories.

The following are some of the basic operations you can do to visit files, save them, and
then exit gracefully from emacs:

 * Visiting a New File

 To visit a new file from within emacs, make the pull-down menu choice File>Visit
New File. In the Name bar that appears in the Find File window on screen, type
in a new file name and then make the choice OK. If the only buffer open is the wel-
come window, it will close, and you will be editing a buffer named with the new file
name.

 You can do the same thing by typing <Ctrl+X> <Ctrl+F>. Then in the minibuffer,
type in the file name.

 * Saving to a File without Quitting Emacs

 After you have entered some text into the current buffer, make the pull-down menu
choice File> Save.

 You can do the same thing by typing <Ctrl+X> <Ctrl+S>.

 * Saving to a File with Unsaved Changes and Quitting Emacs:

 If you make unsaved changes to a buffer, and make the pull-down menu choice
File>Quit, emacs puts a Question dialog box on screen asking you the following:

 Save file ? Yes No

 View This Buffer

 View Changes in This Buffer

 Save This but No More

 No for All

You can do any of these, depending on what you want to accomplish. You get the same
choices, although they are less descriptive, when you type <Ctrl+X> <Ctrl+C> for the
unsaved buffer.

Editing Text Files    ◾    105

3.3.4 Cursor Movement and Editing Commands

In addition to general purpose commands, emacs has some important cursor movement
and editing commands that allow you to move quickly and easily around the text and make
changes. Some of the most important of these commands are listed in Tables 3.12 and 3.13.

Practice Session 3.8 illustrates the use of a mixture of keystroke commands and graphi-
cal methods in emacs, and lets you edit the file alien that you created in Practice Session 3.7,

TABLE 3.12 Entities to Move Over

Entity to Move Over Backward Forward

Character <Ctrl+B> <Ctrl+F>

Word <Alt+B> <Alt+F>

Line <Ctrl+P> <Ctrl+N>

Go to line beginning (or
end)

<Ctrl+A> <Ctrl+E>

Sentence <Alt+A> <Alt+E>

Paragraph <Alt+{> <Alt+}>

Page <Ctrl+X> [<Ctrl+X>]

Sexp <Ctrl+Alt+B> <Ctrl+Alt+F>

Function <Ctrl+Alt+A> <Ctrl+Alt+E>

Go to buffer start (or
end)

<Alt+<> <Alt+>>

Scroll to next screen <Ctrl+V>

Scroll to previous screen <Alt+V>

Scroll left <Ctrl+X> <

Scroll right <Ctrl+X> >

Scroll current line to
center, top, bottom

<Ctrl+L>

Go to line <Alt+G> g

Back to indentation <Alt+M>

TABLE 3.13 Entities to Kill

Entity to Kill Backward Forward

Character (delete, not kill) <Ctrl+D>
Word <Alt+Del> <Alt+D>
Line (to end of) <Alt+0><Ctrl+K> <Ctrl+K>
Sentence <Ctrl+X> DEL <Alt+K>
Sexp <Alt+->

<Ctrl+Alt+K>
<Ctrl+Alt+K>

Kill region <Ctrl+W>
Copy region to kill ring <Alt+W>
Kill through next
occurrence of char

<Alt+Z> char

Yank back last thing killed <Ctrl+Y>
Replace last yank with
previous kill

<Alt+Y>

106 ◾ UNIX: The Textbook, Third Edition

so that it may be used as an alias for commands in the C shell. In Practice Session 3.8,
we ask you to insert the file you created in Practice Session 3.7 into your home directory
.cshrc file, so that, upon subsequent logins, these DOS-aliased commands will be available.
Before you begin Practice Session 3.8, do the following (if you are using Solaris, do the fol-
lowing practice session and its preparation for Bash using the correct syntax of the Bash
alias commands; also use the Bash configuration file .bashrc in your home directory, in
place of the C shell .cshrc configuration file shown):

 1. Use the ls -la command to find out if you have a .cshrc file in your home directory.
If you do not, then use emacs to create a new file named .cshrc with nothing in it.

 2. Find out which shell you are currently using by typing echo $SHELL. On our sys-
tem, PC-BSD, the C shell is the default shell. If you are using Solaris, the default shell
is Bash.

If you make a mistake anywhere in the following exercise, you can revert to using the
graphical form of editing using the mouse and pull-down menus, including undo, inside
the emacs window for expediency.

3.3.4.1 Practice Session 3.8

Step 1: At the shell prompt, type emacs alien and then press <Enter>. Close the
Welcome Screen as noted in Section 3.3.1 by holding down <Ctrl+X> and then
pressing the 1 numeric key. The file you created in Practice Session 3.7 is loaded into
the buffer, and your screen display should look similar to the one shown in Figure 3.6.

Step 2: Using the arrow keys, position the cursor to the right of the " character at the
end of the third line.

Step 3: Press <Enter>

Step 4: Type alice dir/w ls

Step 5: Hold down <Ctrl+A>. The cursor moves to the beginning of the line.

Step 6: Hold down <Esc+D>. The word alice has been cut from the buffer.

Step 7: Type alias.

Step 8: Hold down <Alt+B>. The cursor moves to the beginning of the word alias.

Step 9: Position the cursor with the arrow keys on the keyboard at the beginning of the
first blank line, below the line that reads alias type more.

Step 10: Hold down <Ctrl+Y>. The cut word alice has been put back into the buffer
at the start of the line.

Step 11: Use the arrow keys to position the cursor in the space to the right of the word
alice if it is not there already.

Editing Text Files    ◾    107

Step 12: Use the <Delete> or <Backspace> keys to delete the letters c and e from
the word alice.

Step 13: Type as copy cp.

Step 14: Hold down <Ctrl+X> <Ctrl+W>.

Step 15: At the Write file: prompt, erase anything on the line with the <Backspace>
key, and type alien2 and then press <Enter>. Your screen display should now
look similar to the one shown in Figure 3.7.

Step 16: Hold down <Ctrl+H> and then press the a key. The minibuffer area shows a
prompt for you to obtain help. Hold down <Ctrl+G>. Doing so cancels your help
request.

Step 17: Hold down <Ctrl+X> <Ctrl+C> to quit emacs and return to the shell
prompt.

Step 18: From the shell prompt, type emacs .cshrc and then press <Enter>. The
contents of your .cshrc file now appear in the editing buffer.

Step 19: Position the cursor with the arrow keys on the keyboard on any blank line in the
file. Hold down <Ctrl+X> and then press the i key on the keyboard. This will allow
you to insert the contents of a file into the current buffer at the position of the cursor.

Step 20: In the minibuffer, type alien2. The lines of text from alien2’s DOS aliases
should now be inserted into the file .cshrc after and below where you positioned the
cursor in Step 19.

Step 21: From the pull-down menu File, make the choice File>Save (current buffer), or
use <Ctrl+X> <Ctrl+S>.

Step 22: Hold down <Ctrl+X> <Ctrl+C> to quit emacs and return to the shell
prompt.

Step 23: To test your new .cshrc file, log out of the current session using the desktop
logout procedures and then log back in to your UNIX system again.

Step 24: In a terminal or console window, at the shell prompt, type one of the aliased
commands, with its appropriate arguments if necessary, and note the results.

FIGURE 3.7 Display after Step 15.

108 ◾ UNIX: The Textbook, Third Edition

3.3.5 Keystroke Macros

The emacs text editor contains a simple-to-use facility that allows you to define keystroke
macros, or collections of keystrokes that can be recorded and then played back at any time.
This capability allows you to define repetitive multiple keystroke operations as a single
command and then execute that command—as many times as you want. The keystrokes
can include emacs commands and a series of keystrokes. A macro can also be saved with a
name, or even be saved to a file, for use during subsequent emacs editing sessions. Table 3.15
shows a list of some of the most important keyboard macro commands.

For a more complete description and detailed explanation of how to record, edit, list,
and delete keystroke macros, see Section 3.3.13.5.

Practice Session 3.9 lets you create a new text file using some of the commands presented
in Table 3.15.

3.3.5.1 Practice Session 3.9

Step 1: At the shell prompt, type emacs datafile and then press <Enter>.

The emacs screen appears on your display.

Step 2: Hold down <Ctrl+X> <Shift+9>. These actions begin your keyboard macro
definition. If you make a mistake anywhere in subsequent steps, simply hold down
<Ctrl+G> to cancel the current macro definition.

Step 3: Type 1 2 3 4 5 6 7 8 9 10 and then press <Enter>.

Step 4: Hold down <Ctrl+X> <Shift+0>. These actions end your macro definition.

Step 5: Hold down <Ctrl+X> e. Doing so replays the macro that you just defined,
placing another line of the numbers 1 through 10 in the buffer.

Step 6: Repeat Step 5 eight more times so that your display looks similar to that shown
in Figure 3.8.

Step 7: Hold down <Ctrl+X> <Ctrl+S>. These actions save the buffer to the file
datafile.

Step 8: Hold down <Ctrl+X> <Ctrl+C> to exit from emacs.

FIGURE 3.8 Display after Step 6.

Editing Text Files    ◾    109

3.3.6 Cut or Copy and Paste and Search and Replace

As we mentioned previously, every word processor has the capability to cut or copy text
and then paste that text back into the document and to search for old text and replace it
with new text. Because emacs operations can be totally text activated, whereby you use
sequences of keystrokes to execute commands, cutting or copying and pasting are fairly
complex operations. They are accomplished with the Kill Ring, whereby text is held in a
buffer by killing it and is then restored to the document at the desired position by yanking
it. Global search and replace are somewhat less complex and are accomplished by either an
unconditional replacement or an interactive replacement.

The mark is simply a place holder in the buffer. For example, to cut three words from a
document and then paste them back at another position, move the point before the first
word you want to cut and press <Esc+D> three times. The three words are then cut to the
Kill Ring. Because the Kill Ring is a FIFO buffer, you can now move the point to where you
want to restore the three words and press <Ctrl+Y>. The three words are yanked into the
document in the same order, left to right, that they were cut from the document.

To copy three words of text and then paste them back at another position, set the mark
by positioning the point after the three words, and then press <Ctrl+@> at that posi-
tion. Then reposition the point before the three words; you have now defined a region
between the point and the mark. There is only one mark in the document. Press <Esc+W>
to send the text between the point and the mark to the Kill Ring; the text is sent, but it is
not blanked from the screen display. To restore the three words at another position, move
the point there and press <Ctrl+Y>. The three words are restored at the new position.
Table 3.13 gives the important kill and yank commands for emacs.

Global search and replace can be either unconditional, where every occurrence of old text
you want to replace with new text is replaced without prompting, or it can be interactive, where
you are prompted by emacs before each occurrence of old text is replaced with new text. Also,
the grammar of replacement can include regular expressions, which we do not cover here.

For example, to replace the word men unconditionally with the word women from the
current position of the point to the end of the document, press <Esc+X>, type replace-
string, and then press <Enter>. You are then prompted for the old string. Type men
and then press <Enter>. You are then prompted for the new string. Type women and then
press <Enter>. All occurrences are replaced with no further prompts.

To accomplish an interactive replacement, simply press <Esc+X>, type query-
replace, and then press <Enter>. You can then input old and new strings, but you are
given an opportunity at each occurrence of the old string to replace it or not to replace it
with the new string. Table 3.14 shows the actions that you can take while in the midst of an
interactive search and replace. Practice Session 3.10 contains further examples of copying
and pasting and global search and replace, both unconditional and interactive. Your objec-
tive will be to type in one line of text, copy it into the Kill Ring, and then paste it into the
document seven times. Then modify the contents of the original line and each pasted line
by using both interactive search and replace and unconditional search and replace. Upon
completion of Practice Session 3.10, your screen display should look similar to Figure 3.9.

110 ◾ UNIX: The Textbook, Third Edition

3.3.6.1 Practice Session 3.10

Step 1: At the shell prompt, type emacs osfile and then press <Enter>.

Step 2: Type Windows is the operating system of choice for
everyone.

Step 3: Press <Ctrl+@>. The mark is now set at the end of the line you typed in Step 2.
Highlight the whole first line with the graphics cursor and left mouse button. This
will define the region that will be put in the Kill Ring.

Step 4: Press <Esc+W>. This action copies the region to the Kill Ring.

Step 5: Press <Enter> to start a new line in the buffer, which should be blank. The cur-
sor should be positioned at the start of this new line.

TABLE 3.14 Interactive Search and Replace

Search and Replace Action Keystrokes

Search forward <Ctrl+S>

Search backward <Ctrl+R>

Regular expression search <Ctrl+Alt+S>

Reverse regular expression search <Ctrl+Alt+R>

Select previous search string <Alt+P>

Select next later search string <Alt+N>

Exit incremental search <Enter>

Undo effect of last character

Abort current search <Ctrl+G>

Interactively replace a text string <Alt+%>

Using regular expressions <Alt+X> query-replace-regexp

Replace this one, go on to next <Space> or y

Replace this one, don’t move ,

Skip to next without replacing or n

Replace all remaining matches !

Back up to the previous match ^

Exit query-replace <Enter>

Enter recursive edit
(<Ctrl+Alt+C> to exit)

<Ctrl+R>

FIGURE 3.9 Display after Step 21.

Editing Text Files    ◾    111

Step 6: Press <Ctrl+Y>. The first line of text is now pasted into the next blank line from
the Kill Ring.

Step 7: Repeat Steps 5 and 6 six more times so that you now have eight lines of text in
the buffer, all containing the text Windows is the operating system of
choice for everyone.

Step 8: Position the cursor on the W in Windows on the first line of the buffer.

Step 9: Save the buffer at this point with <Ctrl+X> <Ctrl+S>.

Step 10: Press <Esc+X>. Then type query-replace and press <Enter>. These actions
begin an interactive search and replace. The prompt Query replace: appears.

Step 11: Type everyone and then press <Enter>. The prompt with: appears.

Step 12: Type students and then press <Enter>. The prompt Query replacing
everyone with students: (? for help) appears.

Step 13: Pressing <Space> on the keyboard replaces the word everyone on the first line
with the word students, and the prompt Query replacing everyone with
students: (? for help) appears again.

Step 14: Press <Enter>. The prompt Replaced 1 occurrence appears.

Step 15: Position the cursor over the e in the word everyone on the second line of the
buffer.

Step 16: Repeat Steps 10–14, interactively replacing the word everyone each time it
appears with the words computer scientists, engineers, system administrators, web
servers, scientists, networking, and mathematicians on lines 2–8 of
the buffer.

Be sure that the second through eighth times you do Step 16, you always position the
cursor on the previous line to the current line you want to replace text on!

Step 17: Position the cursor on the W in Windows on the first line of the buffer.

Step 18: Press <Esc+X>. Then type replace-string and press <Enter>. These
actions begin an unconditional search and replace. The prompt replace string:
appears.

Step 19: Type Windows and then press <Enter>. The prompt Replace string
Windows with: appears.

Step 20: Type UNIX and then press <Enter>. The prompt Replaced 8 occur-
rences appears. Correct?

Step 21: Save the buffer with <Ctrl+X><Ctrl+S>, print it using the facilities available
on your computer system, and exit emacs with <Ctrl+X> <Ctrl+C>. Your screen
display should appear like Figure 3.9.

112 ◾ UNIX: The Textbook, Third Edition

The following in-chapter exercises ask you to apply some of the operations you learned
about in the previous practice sessions:

EXERCISE 3.8
Run emacs and define keyboard macro commands that automatically delete

 a. every other word in a line of unspecified length,

 b. every other line in a file of unspecified length,

 c. every other word and every other line in a file of unspecified length with lines of
unspecified length.

EXERCISE 3.9
Write a keyboard macro, as shown in Section 3.3.5, to do everything shown in Steps 10–14
of Practice Session 3.10.

To get some further practice with emacs, do Problem 16 at the end of the chapter.

3.3.7 How to Do Purely Graphical Editing with GNU Emacs

Up to this point in our work, it was possible to use emacs in a single text-based terminal
window and obtain the results shown. If you connect to UNIX by using one of the methods
described in Chapter 2 you are likely interfacing with the operating system via an interme-
diary known as the X Window System, which would allow you to do all of your emacs work
in a graphical environment. We present more information on the X Window System and
some of its facilities (e.g., the particular features of the GUI) in Chapter 22. For the pur-
poses of learning emacs—if you are using UNIX and the X Window System—you may be
able to run emacs in its own frame on your screen display or possibly in several frames on
your screen display simultaneously. Be aware that in our base UNIX systems, PC-BSD and
Solaris, the latest version of GNU graphical emacs version is available through the package
management facilities in those systems, as described in Chapter 23.

3.3.8 Editing Data Files

The following practice session demonstrates the use of graphical GNU emacs to do some fur-
ther editing of the datafile created in Practice Session 3.9. The look and feel of GNU emacs,
running under the X Window System using the KDE or Gnome desktop default windowing
environments in PC-BSD and Solaris, is very similar to a word processor or desktop publish-
ing application running under any other operating system that has a GUI, such as Windows
10 or Mac OS X. In the practice sessions that follow, we are using GNU emacs 24.3.1.

3.3.8.1 Practice Session 3.11

Step 1: In a terminal or console window, at the shell prompt, type emacs datafile
and then press <Enter>. Your screen display should look similar to the one shown
in Figure 3.8.

Editing Text Files    ◾    113

Step 2: Use the mouse to position the cursor over the character 1 at the beginning of
the tenth line in the buffer, and then click the left mouse button. The cursor is now
positioned over the character 1.

Step 3: Click and hold down the left mouse button over the character 1, and then drag
the mouse so that the entire tenth line is highlighted, including one character to the
right of the 0 in the number 10 at the end of the line. Release the left mouse button.

The whole first line should be highlighted.

Step 4: Position the cursor with the mouse so that the arrow points to the menu choice
Edit at the top of the emacs screen. Click the left mouse button. A set of pull-down
menu choices appears, similar to that shown in Figure 3.10.

Step 5: Make the Copy menu choice. The text that you highlighted (selected) in Step 3 is
now held in a temporary buffer.

Step 6: Press <Enter>. This opens an eleventh line at the bottom of the buffer.

Step 7: Move the mouse so that the cursor is over the first character position on the
eleventh line, and click the left mouse button. The cursor is now in that position in
the buffer.

Step 8: Make the pull-down menu choice Edit>Paste. You have now pasted the 10 char-
acters from the tenth line in the buffer into the eleventh line in the buffer. Your screen
display should now look similar to Figure 3.11.

Step 9: Make the pull-down menu choice File>Save (current buffer). In the Write
file: dialog box that appears, save the file in your home directory as datafile11,
and then make the pull-down menu choice File>Exit Emacs.

FIGURE 3.10 The emacs Edit pull-down menu.

FIGURE 3.11 Datafile after editing and adding an 11th line.

114 ◾ UNIX: The Textbook, Third Edition

3.3.9 How to Start, Save a File, and Exit in Graphical Emacs

As illustrated in Practice Session 3.11, this text editor gives you exclusive mouse/GUI expe-
diency. This method of working on a text file is most efficient for beginners as well as expe-
rienced users. In doing Practice Session 3.12, which starts by editing the file you created
in Practice Session 3.7, you will be able to compare the speed and ease of operations using
keystroke commands to those of mouse/GUI interaction. Note that, on the pull-down
menu shown in Figure 3.10, keystroke commands also are shown for some of the menu
choices. Clicking the menu choice button or pressing the keyboard keys would accomplish
the same thing. This flexibility adds to the ease of your use of emacs.

Practice Session 3.12 for PC-BSD lets you edit the file alien that you created at the start
of this section in Practice Session 3.7. That practice session allowed you to use emacs to
create a simple C-shell script file of aliases. You will now modify it so that it can be used
as aliases for the Bourne shell. You will also modify the existing file .shrc in your home
directory so that when you log in and are using the Bourne shell, you have the aliased com-
mands in the file alien3 available to you. Before you begin Practice Session 3.12, take the
following preparatory steps (if you are using Solaris, modify the .bashrc file in your home
directory and proceed through this practice session for Bash rather than the Bourne shell):

Preparatory Step 1: Use the ls -la command to find out if you have a .shrc file in your
home directory. If you have no .shrc file in your home directory, then use emacs to create a
new file named .shrc with nothing in it. Then exit emacs, and type chmod u+X .shrc
and press <Enter>.

Preparatory Step 2: Find out which shell you are currently using by typing echo
$SHELL and pressing <Enter>. If you are using the C shell, the system will respond with
/bin/csh. If you are using the Bourne shell, the system will respond /bin/sh.

Preparatory Step 3: If you are not using the Bourne shell as determined in Step 2, switch
to the Bourne shell at the existing shell prompt by typing sh and then pressing <Enter>.

3.3.9.1 Practice Session 3.12

Step 1: At the shell prompt, type emacs alien and then press <Enter>. The file that
you created in Practice Exercise 3.7 is loaded into the buffer, and the contents of the
emacs buffer looks like the one shown in Figure 3.6. Use the cursor and mouse for
cursor positioning and the keyboard keys for text entry and deleting to modify the
file so that it looks like this:

#DOS aliases

alias del="rm"

alias dir="ls -la"

alias type="more"

Step 2: Position the cursor, using the mouse and left mouse button, to the right of the
double-quote character (") at the end of the third line.

Editing Text Files    ◾    115

Step 3: Press <Enter> to open a blank line and put the cursor at the beginning of the
line.

Step 4: Type alice dirw="ls".

Step 5: Position the cursor, using the mouse and left mouse button, at character a in
alice.

Step 6: Hold down the left mouse button and move the mouse so that the word alice
and the following space are highlighted. At the top of the screen, make the Edit pull-
down menu choice Cut to cut the word alice from the buffer.

Step 7: Type alias.

Step 8: Move the mouse so that the cursor is over the second a character in the word
alias. Click the left mouse button.

Step 9: Press the <Down> arrow key on the keyboard twice. The cursor should now be
at the beginning of the blank line below the line that reads alias type="more".

Step 10: From the Edit pull-down menu, choose Paste. The cut word alice has been
put back into the buffer at the start of the line.

Step 11: Use the mouse and left mouse button to position the cursor at the end of the
word alice, after the character e.

Step 12: Use the <Delete> or <Backspace> keys to delete the letters c and e from
the word alice.

Step 13: Type as copy="cp".

Step 14: Continue moving the cursor to the proper positions and add the necessary
characters.

Step 15: From the pull-down menu File, choose Save Buffer As…

Step 16: In the Write file: dialog box that opens on screen, save the file as alien3.

Step 17: From the File pull-down menu, make the choice File>Open File. In the Find
file: dialog box that opens, put a check mark in the box that is for Show Hidden
Files.

Locate and select the .shrc file (which should be in your home directory) and make the
Open choice. A new buffer opens on screen containing the contents of the .shrc file.
Position the cursor anywhere on a blank line in the buffer for the file .shrc.

Step 18: From the File pull-down menu, make the choice File>Insert file… In the dia-
log box that opens, choose alien3 and insert it. The lines of text from alien3’s DOS
aliases should now be inserted into the file .shrc at the location you designated in
Step 17.

116 ◾ UNIX: The Textbook, Third Edition

Step 19: From the pull-down menu File, make the choice File>Save (current buffer).

Step 20: Make the pull-down menu choice File>Exit Emacs to quit emacs and return to
the shell prompt.

Step 21: Test your new .shrc file in a terminal or console window. For PC-BSD, at the
Bourne shell prompt, type . $HOME/.shrc and press <Enter>. Then, test all of
the aliased commands and note the results. For example, if you type dir, you should
get the results of the ls -la command that is executed in the current working direc-
tory. For Solaris, close and then reopen the terminal window to reinitiate the shell,
and test the new aliases.

Since for PC-BSD the Bourne shell run in the practice session is an interactive shell,
not your login shell, in order to make the commands that you placed in your ~/.shrc file
work, you must execute the Step 21 procedure of typing . $HOME/.shrc and pressing
<Enter>!

In Problem 14 at the end of the chapter, we ask you to do a similar set of operations done
in Practice Session 3.12 for Bash, but exclusively for users of PC-BSD.

3.3.10 Emacs Graphical Menus

Figures 3.12 and 3.13 show the contents of another two of the most important pull-down
menus in a graphical emacs: Files and Tools. To the right of each pull-down choice is the
keystroke command equivalent, if there is one.

To get some further practice with a graphical emacs, do Problem 18 at the end of this
chapter.

3.3.11 Creating and Editing C Programs

Besides being a powerful text editor/word processor, emacs can do multiple chores that are
useful to a computer user from within the emacs program itself, such as composing e-mail,
executing shell scripts, Internet work, and program development in C, HTML, and Java.
Since the text for anything more than a trivial program must be generated in a text editor

FIGURE 3.12 The Files pull-down menu.

Editing Text Files    ◾    117

of some sort, it stands to reason that this editor should also be able to compile, link, debug,
and keep a record of source code revisions, as well as execute the program itself. This is
easily done in emacs using some of its built-in capabilities. These kinds of all-in-one capa-
bilities are present because in the days of character-only terminals and consoles, instead of
leaving the editor to accomplish a chore outside of it, you could accomplish common tasks
from within the editor. In modern UNIX, we can now simply switch between windows and
never leave the editor. But it is still very useful to be able to harness some of the multiple
capabilities of the program, mainly for the sake of efficiency.

Practice Session 3.13 allows you to type in the source code of a C program and use the
special facilities of the editor to properly indent the text, compile and link the source code,
and implement revisions according to compile-time errors. You can then execute the pro-
gram in a terminal window to test it. The purpose of the program is to allow the user to
type in an integer, and then another integer, and the first integer will be raised to the power
indicated by the second integer.

A note about paths: If the path for the shell you are executing includes the working
directory where the compiled and linked executable program is saved by emacs, then you
can run the program. Otherwise, you will have to include the path to this directory. For
example, emacs saved the source code and executable files in the current working direc-
tory /root on our system when we did Practice Session 3.13. Before running the program,
since we knew we were running under the C shell, we checked the path variable by typing
echo $PATH. The path display included the current working directory where emacs was
saving our files. See Chapter 2, Sections 2.7 and 2.8, for information on how to view the
path and set the path variable. Also see Chapter 17 for more about UNIX tools for the soft-
ware development process. The source code for the program is as follows.

#include <math.h>
main()
{
 float x,y;
 printf("This program takes x and y values from stdin and
displaysx^y.\n");
 printf("Enter integer x: ");

FIGURE 3.13 The Tools pull-down menu.

118 ◾ UNIX: The Textbook, Third Edition

 scanf("%f", &x);
 printf("Enter integer y: ");
 scanf("%f", &y);
 printf("x^y is: %6.3f\n", pow((double)x,(double)y));
}

3.3.11.1 Practice Session 3.13

Step 1: At the shell prompt, type emacs power.c. Notice that the major mode for
this new buffer is set to C/l mode.

Step 2: Type in the program source code exactly as shown. Use the <Tab> key to pro-
duce the indentation shown in the C source code. Your emacs screen display should
look similar to Figure 3.14.

Step 3: From the pull-down menus, make the choice File>Save (current buffer).

Step 4: From the pull-down menus, make the choice Tools>Compile… In the minibuf-
fer, the prompt Compile command: make -k appears. Use the backspace key to
erase make -k, and then, to replace it, type cc power.c -lm -o power. A new
buffer window appears in the emacs frame, showing the progress of the compilation/
linking process.

Step 5: From the pull-down menus, make the choice Tools>Compile… In the minibuf-
fer, the prompt Compile command: cc power.c -lm -o power should
appear. Press <Enter> to accept this compile/link command.

 If you made mistakes in typing the C code, repeat Steps 2 through 5 until you get no
error messages that prevent compilation and linkage! The bottom buffer window of

FIGURE 3.14 Display after Step 2.

Editing Text Files    ◾    119

Figure 3.14 shows warning messages, but not exceptions that prevented compilation
and linkage.

Step 6: If all syntax errors have been removed from the power.c source code, you
should get a screen display similar to Figure 3.14, which indicates in the bottom buf-
fer window that you have successfully compiled and linked power.c.

Step 7: You can now exit emacs, and in a terminal window test the program by typing
power on the command line. Remember that the path must be set for the current
shell so that executable programs in the directory the file power is in will run.

3.3.12 Working in Multiple Buffers

As seen in previous exercises, it is possible to insert one buffer into another and to open
windows into different buffers, some of which may not even contain text you want to edit,
at the same time. This capability is important when you want to compose the contents of
a buffer or file from perhaps many other buffers or files that you have previously created.
The following practice session shows you how to create, move between, and copy and paste
between several buffers open within one emacs frame.

3.3.12.1 Practice Session 3.14

Step 1: Create a subdirectory under your home directory named multi, and make that
subdirectory the current working directory.

Step 2: At the shell prompt, type emacs newfile. You should now be editing the buf-
fer newfile with a single window.

Step 3: In emacs, make the pull-down menu choice File>New Window Below. The
frame should now be split horizontally, so that you have two windows, one above the
other, both showing the contents of newfile.

Step 4: Click with the mouse in the upper window, and then press <Ctrl+X> 3. The
upper window from Step 3 should now be split vertically into two windows, showing
you a total of three windows into the buffer newfile.

Step 5: Repeat Step 4 in the lower window of the frame. You should now have four
windows showing the contents of the buffer newfile. Your screen display should
look similar to Figure 3.15. If you did Steps 1–4 incorrectly, you can always use the
File>Remove Other Windows pull-down menu choice to return you to a single win-
dow display, and then try again.

Step 6: Click the mouse in the upper-left window and type 1 2 3 4 5. Then make the pull-
down menu choice File>Save As. In the Write file: dialog box that appears on
screen, type firstrow in the Name: box, and then use the Name dialog pane and
double left-click on the folder multi. Then, make the choice OK. A new file named
firstrow is created on disk in the directory named multi, and you are still seeing four
windows into that buffer.

120 ◾ UNIX: The Textbook, Third Edition

Step 7: Click the mouse in the upper-right window, position the cursor at the right after
the 5, and use the <Backspace> or <Delete> keys to erase the numbers 1, 2, 3,
4, and 5. Then type 6 7 8 9 10. Then make the pull-down menu choice File>Save As.
In the Write file: dialog box that appears on screen, type secondrow in the
Name: box. The file will be saved in the folder multi. Then make the choice OK.

Step 8: Click the mouse in the upper-left window. Make the pull-down menu choice
File>Open File. In the Find file: dialog box that appears on screen, highlight
the file firstrow in the Name dialog pane. Then make the choice Open. You now
should have a screen display similar to Figure 3.16, with the upper-left window show-
ing the contents of firstrow, and the remaining three windows showing the contents
of secondrow.

FIGURE 3.15 Display after Step 5.

FIGURE 3.16 Display after Step 8.

Editing Text Files    ◾    121

Step 9: Click the mouse in the lower-left window, position the cursor to the right of the
0, erase 6, 7, 8, 9, and 10, and type 11 12 13 14 15. Then make the pull-down menu
choice File>Save As. In the Write file: dialog box that appears on screen, type
thirdrow in the Name: box. Then make the choice OK.

Step 10: Click in the upper-right window and make the pull-down menu choice
File>Open File. In the Find file: dialog box that appears on screen, highlight the
file secondrow in the Name dialog pane. Then, make the choice Open.

Step 11: Click in the lower-left window, and make the pull-down menu choice File>Open
File. In the minibuffer, type thirdrow. Your screen display should now look simi-
lar to Figure 3.17.

Step 12: Click the mouse in the lower-right window, and make the pull-down menu
choice File>Save As. In the Write file: dialog box, type four in the Name:
box. Make the choice OK. Click in the lower-left window, and make the pull-down
menu choice File>Open File. In the Find file: dialog box that opens, highlight
thirdrow, and open it.

Step 13: Click the mouse in the lower-right window, and use the backspace key to
erase 11, 12, 13, 14, and 15. Then use the pull-down menu choices Edit>Copy and
Edit>Paste to copy 1 2 3 4 5, 6 7 8 9 10, and 11 12 13 14 15 onto the
first three rows of the lower-right window. Your screen display should look similar to
Figure 3.18.

Step 14: Finally, with the lower-right window the current window, make the pull-down
menu choice File>Save As. In the Write file: dialog box, in the Name box, type
four. Overwrite the old buffer four. Then quit emacs without saving any of the
buffers.

FIGURE 3.17 Display after Step 11.

122 ◾ UNIX: The Textbook, Third Edition

3.3.13 Changing Emacs Behavior

This section describes the basic methods of customizing and modifying the behavior of
GNU emacs. This includes the following operations:

• Using the Options menu to modify options.

• Using Custom (a GUI-based interface) to change preferences and options, and in
conjunction with that interface, also using the traditional typed <Alt+X> cus-
tomize command set.

• Writing keystroke abbreviations with abbrev.

• Writing keystroke macro commands, as shown in Section 3.3.5.

• Redefining keyboard keys.

• Writing emacs Lisp (elisp) code to customize the behavior of emacs, and entering that
code directly into your ~/.emacs startup configuration file.

All of these operations can make changes to your ~/.emacs startup configuration file
to give you a more customized and personalized emacs session, one tailored to your
particular needs and methods of entering text for a particular application. Also, as will
be seen, elisp code is generated by what operations you do. But you don’t really need to
know any of the details of how to program in elisp to actually achieve all of the these
operations!

The following subsections describe and give examples of all of the given operations. In
addition, Tables 3.15 and 3.16 give a summary of the important keystrokes that implement
<Alt+X> customize, keystroke abbreviations with abbrev, and writing keystroke
macros.

FIGURE 3.18 Display after Step 13.

Editing Text Files    ◾    123

3.3.13.1 Using the Options Menu
The easiest and quickest way to customize the behavior of emacs is by using the GNU emacs
pull-down menu choices under Options, which is shown in Figure 3.19. For example, if you
put a check mark next to the Highlight Matching Parentheses choice, all matching left
and right parentheses in the buffer will be highlighted as you type them.

This option will only be true for the current session of emacs. If you want to retain this
option for all future sessions of emacs, make the Options menu choice Save Options. The
following valid line of elisp will automatically be written to your ~/.emacs file, under the
custom-set-variables group.

(̀show-paren-mode t)

EXERCISE 3.10
Show the emacs Help facility keystroke sequence you would use to find out what the option
show-paren-mode is. Then, list the first few lines of how the Help facility describes the
show-paren-mode option.

You can also customize by group from the Options menu, if you make the Customize
Emacs choice, and then make any of the subchoices below that. For example, if you make
the Options>Customize Emacs>Top-Level Customization Group choice, a new buffer
opens on screen, and allows you to select from all of the subgroups of custom variables.

The next section shows how to achieve this kind of customization as a typed command.

TABLE 3.15 Some Ways to Change Emacs Behavior

Customization Action Keystrokes

Abbrevs
Add global abbrev <Ctrl+X> a g

Add mode-local abbrev <Ctrl+X> a l

Add global expansion for this abbrev <Ctrl+X> a i g

Add mode-local expansion for this abbrev <Ctrl+X> a i l

Explicitly expand abbrev <Ctrl+X> a e

Expand previous word dynamically <Alt+/>

Macros
Start defining a keyboard macro <Ctrl+X> (or <F3>

End keyboard macro definition <Ctrl+X>) or <F4>

Execute last-defined keyboard macro <Ctrl+X> e or <F4>

Append to last keyboard macro <Ctrl+U> <Ctrl+X> (

Name last keyboard macro <Alt+X> name-last-kbd-macro

Insert Lisp definition in buffer <Alt+X> insert-kbd-macro

Customize variables and faces <Alt+X> customize

Simple customization with <Alt+X> customize
(global-set-key (kbd "<Ctrl+C> g")
'search-forward)
(global-set-key (kbd "<Alt+#>")
'query-replace-regexp)

124 ◾ UNIX: The Textbook, Third Edition

TABLE 3.16 Keystroke Macros

Keystrokes Command Name Action

<Ctrl+X> (kmacro-startmacro Start macro definition.
<F3> kmacro-startmacro-or-

insertcounter
Start macro definition. If pressed
while defining a macro, insert a
counter.

<Ctrl+X>) kmacro-end-macro End macro definition.
<F4> kmacro-end-orcall-

macro
End macro definition (if definition
is in progress) or invoke last
keyboard macro.

<Ctrl+X> e kmacro-end-andcall-
macro

Execute last keyboard macro
defined. Can type e to repeat
macro.

<Ctrl+X> <Ctrl+K> n name-last-kbdmacro Name the last macro you created
(before saving it).

(none) insert-kbd-macro Insert the macro you named into a
file.

(none) macroname Execute a named keyboard macro.
<Ctrl+X> q kbd-macro-query Insert a query in a macro definition.
<Ctrl+u> <Ctrl+X> q (none) Insert a recursive edit in a macro

definition.
<Ctrl+Alt+C> exit-recursive-edit Exit a recursive edit.
<Ctrl+X> <Ctrl+K> b kmacro-bind-tokey Bind a macro to a key (<Ctrl+X>

<Ctrl+K> 0-9 and A-Z are
reserved for macro bindings). Lasts
for current session only.

<Ctrl+X> <Ctrl+K>
Space

kmacro-step-editmacro Edit a macro while stepping
through it.

<Ctrl+X> <Ctrl+K> l kmacro-editlossage Turn the last 100 keystrokes into a
keyboard macro.

<Ctrl+X> <Ctrl+K> e edit-kbd-macro Edit a keyboard macro by typing
<Ctrl+X> e for the last keyboard
macro defined, <Alt+X> for a
named macro, <Ctrl+H> l for
lossage, or keystrokes for a macro
bound to a key.

<Ctrl+X> <Ctrl+K>
Enter

kmacro-editmacro Edit the last keyboard macro.

<Ctrl+X> <Ctrl+K>
<Ctrl+E>

kmacro-editmacro-
repeat

Edit the last keyboard macro again.

<Ctrl+X> <Ctrl+K>
<Ctrl+T>

kmacro-swap-ring Transpose last keyboard macro with
previous keyboard macro.

<Ctrl+X> <Ctrl+K>
<Ctrl+D>

kmacro-deletering-
head

Delete last keyboard macro from
the macro ring.

<Ctrl+X> <Ctrl+K>
<Ctrl+P>

kmacro-cycle-
ringprevious

Move to the previous macro in the
macro ring.

<Ctrl+X> <Ctrl+K>
<Ctrl+N>

kmacro-cycle-ringnext Move to the next macro in the
macro ring.

<Ctrl+X> <Ctrl+K>
<Ctrl+R>

apply-macro-toregion-
lines

Apply this macro to each line in a
region.

Editing Text Files    ◾    125

3.3.13.2 Changing emacs Variables with Custom and the
<Alt+X> customize Command

Emacs has many settings that you can change. Most settings are customizable via affect-
ing the settings of variables, which are also called user options. There is a huge number of
customizable variables, controlling numerous aspects of emacs behavior. A separate class
of settings, which we do not cover here, are the faces, which determine the fonts, colors,
and other attributes of text.

To browse and alter settings (both variables and faces), at the emacs command prompt
type <Alt+X> customize. This creates a customization buffer, which lets you navi-
gate through a logically organized list of settings, edit and set their values, and save them
permanently.

Customization settings are organized into customization groups. These groups are col-
lected into bigger groups, all the way up to a master group called Emacs, shown near the
top of the buffer in Figure 3.20.
<Alt+X> customize creates a customization buffer that looks similar to Figure 3.20.
If you are interested in customizing a particular setting or customization group that

you already know the name of, you can go straight there with the commands <Alt+X>
customize-option, <Alt+X> customize-face, or <Alt+X> customize-group.

FIGURE 3.19 Options menu choices.

FIGURE 3.20 Emacs customization groups.

126 ◾ UNIX: The Textbook, Third Edition

The main part of the buffer in Figure 3.20 shows the “Emacs” customization group,
which contains several other subgroups (“Editing,” “Convenience,” etc.). The contents of
those subgroups are shown in the single line of description for each group.

The state of the group indicates whether the settings in that group have been edited, set
or saved.

Most of the customization buffer cannot be changed, but it includes many editable
fields. For example, at the top of the customization buffer is an editable field for searching
for settings, with a Search button next to it. There are also buttons and links that you
can activate by either clicking with the mouse, or moving the point there and then press-
ing <Enter>. For example, group names like “[Editing]” are links; activating one of these
links brings up another customization buffer for that group.

In any particular customization buffer, you can type <Tab> (widget-forward) to move
forward to the next button or editable field. <Shift+Tab> (widget-backward) moves back
to the previous button or editable field.

3.3.13.2.1 Browsing and Searching for Settings: From the top-level customization buffer cre-
ated by <Alt+X> customize, you can follow the links to the subgroups of the “Emacs”
customization group. These subgroups may contain settings for you to customize; they
may also contain further subgroups, dealing with yet more specialized subsystems of
emacs. As you graphically navigate the hierarchy of customization groups, you will find
some settings that you want to customize according to your own personal preferences, and
according to the nature of the text documents that you are efficiently trying to edit.

3.3.13.2.2 Changing a Variable: Here is an example of what a variable, or user option, looks
like in a specific customization buffer. This variable is accessed by descending down from
the top emacs group through the groups Editing>Killing, and then left-clicking on
the small diamond shape pointing toward the text Kill Ring Max:

Kill Ring Max: 60
[State]: STANDARD.
Maximum length of kill ring before oldest elements are thrown
away.

The first line shows that the variable is named kill-ring-max, formatted as Kill
Ring Max for easier viewing. Its value is 60. On our graphical display, the line after the
variable name indicates the customization state of the variable: in this example, STANDARD
means you have not changed the variable, so its value is the default one. The [State] but-
ton gives a menu of operations for customizing the variable.

Below the customization state is the documentation for the variable. To enter a new
value for Kill Ring Max, just click to the right of the value and edit it. As you begin to
alter the text, the [State] line will change to:
[State]: EDITED, shown value does not take effect until you

set or save it.

Editing Text Files    ◾    127

Editing the value does not make it take effect right away. To do that, you must set the
variable by left-clicking on the [State] button and choosing Set for Current Session.

Then the variable’s state becomes:
[State]: SET for current session only.
At this point, you could have made the menu choice Save for Future Sessions.
Also, you don’t have to worry about specifying a value that is not valid; the Set for

Current Session operation checks for validity and will not install an unacceptable value.
When you set a variable, the new value takes effect only in the current emacs session. To

save the value for future sessions, use the [State] button and select the Save for Future
Sessions operation. Saving custom settings works by writing elisp code to a file, most often
your ~/.emacs file. Future emacs sessions automatically read this file at startup, which
invokes and establishes the customizations again.

You can also restore the variable to its standard value by using the [State] button and
selecting the Erase Customization menu choice. There are four reset operations as follows.

• Undo edits: If you have modified but not yet set the variable, this restores the text in
the customization buffer to match the actual value.

• Reset to saved: This restores the value of the variable to the last saved value, and
updates the text accordingly.

• Erase customization: This sets the variable to its standard value. Any saved value that
you have is also erased.

• Set to backup value: This sets the variable to a previous value that was set in the cus-
tomization buffer in this session. If you customize a variable and then reset it, which
discards the customized value, you can get the discarded value back again with this
operation.

Sometimes it is useful to record a comment about a specific customization. Use the Add
Comment item from the [State] menu to create a field for entering the comment.

3.3.13.2.3 Globally Saving Customizations for a Group: Near the top of any group’s custom-
ization buffer, you can save all customization settings shown in that group buffer by choos-
ing either the [Apply] or [Apply and Save] buttons. [Apply] only saves for the
current session, and [Apply and Save] saves for future sessions by modifying the
~/.emacs file accordingly by putting elisp code in the ~/.emacs file.

3.3.13.2.4 More about Emacs Variables: A variable is an elisp symbol that has a value. The
symbol’s name is the variable name. A variable name can contain any characters that can
appear in a file, but most variable names consist of ordinary words separated by hyphens.

The name of the variable is descriptive of its role in the emacs environment. Most vari-
ables also have a documentation string, which describes what the variable’s purpose is,
what kind of value it should have, and how the value will be used.

128 ◾ UNIX: The Textbook, Third Edition

You can view the documentation for a variable, such as somevariablename, using
the help command <Ctrl+H> v Describe variable: somevariablename in the
minibuffer. To use this facility, type in the command <Ctrl+H> v; the system prompts
you in the minibuffer with Describe variable:; then type in the variable name, such
as somevariablename, and press <Enter>.

Elisp uses variables for internal record keeping, but as noted earlier, the most interesting
variables for a user who will not be writing elisp programs per se are those meant for users
to change—these are called customizable variables or user options.

Elisp allows any variable (with a few exceptions) to have any kind of value. However,
many variables are meaningful only if assigned values of a certain type. For example, as
shown in Section 3.3.13.2.2, only numbers are meaningful values for kill-ring-max,
which specifies the maximum length of the kill ring; if you assign kill-ring-max a
text string as a value, commands such as <Ctrl+Y> (yank) will signal an error. On the
other hand, some variables don’t care about what kind or type of value you assign them;
for instance, if a variable has one effect for nil values and another effect for non-nil values,
then any value that is not the symbol nil induces the second effect, regardless of its type
(by convention, we usually use the value t—a symbol that stands for “true”—to specify
a non-nil value). If you set a variable using the customization buffer, you need not worry
about giving it an invalid type: the customization buffer usually only allows you to enter
meaningful values. When in doubt, use <Ctrl+H> v Describe variable: som-
evariablename to check the variable’s documentation string to see the kind of value
it expects.

3.3.13.2.5 Examining and Setting Variables: The following are some examples of how to
examine and set the values of user options. The first general form of this syntax is:

<Ctrl+H> v variablename <Enter>

This general form uses emacs help function with the v option and displays the value and
documentation for variable variablename.

The second general form achieves the change in the variables value:

<Alt+X> set-variable <ENTER> var <ENTER> value <ENTER>

This changes the value of variable var to value.
It reads a variable name that you supply by typing in the minibuffer, with completion,

and displays both the value and the documentation of the variable. For example:

<Ctrl+H> v fill-column <ENTER>

A new buffer opens and displays the following:

 fill-column is a variable defined in 'C source code'.

Editing Text Files    ◾    129

 Its value is 70

 Automatically becomes buffer-local when set.
 This variable is safe as a file local variable if
its value
 satisfies the predicate 'integerp'.
 Documentation:

 Column beyond which automatic line-wrapping should
happen.
 Interactively, you can set the local value with <Ctrl+X>
f

 You can customize this variable.

Click on the underlined text customize and you can use a buffer to change the value
of this variable.

The most convenient keystroke method to set a specific customizable variable is by typ-
ing <Alt+X> set-variable. This reads the variable name with the minibuffer (with
completion), and then reads an elisp expression for the new value that you type in the
minibuffer a second time (you can insert the old value into the minibuffer for editing via
<Alt+N>). For example:

<Alt+X> set-variable <ENTER> fill-column <ENTER> 75 <ENTER>

sets fill-column to 75.
<Alt+X> set-variable is limited to user options, customizable variables, but you

can set any variable with an elisp expression like this:

(setq fill-column 75)

To execute such an expression, type <Alt+:> (eval-expression) and enter the expression
in the minibuffer. Alternatively, go to the *scratch* buffer, type in the expression, and
then type <Ctrl+J>.

Setting variables this way affects only the current emacs session. The only way to alter
the variable for future sessions is to put the alteration as a Lisp statement in your initializa-
tion file.

3.3.13.3 Init File Syntax
Your GNU emacs system’s init file, ~/.emacs, contains elisp expressions. Each elisp expression
consists of a function name followed by arguments, all surrounded by parentheses. For example:

(setq fill-column 60)

130 ◾ UNIX: The Textbook, Third Edition

calls the function setq to set the variable fill-column to 60.
You can set any Lisp variable with setq, but with certain variables setq won’t work.
The second argument to setq is an expression for the new value of the variable. This

can be a constant, a variable, or a function call expression. In your ~/.emacs file, constants
are used most of the time. They can be:

Numbers: Numbers are written in decimal, with an optional initial minus sign.

Strings: Lisp string syntax is the same as C string syntax with a few extra features. Use
a double-quote character (") to begin and end a string constant.

Characters: Lisp character constant syntax consists of a ? followed by either a character
or an escape sequence starting with \.

True: t stands for “true.”

False: nil stands for “false.”

Other Lisp objects: Write a single quote (') followed by the Lisp object you want.

3.3.13.4 Keystroke Abbreviations or Abbrevs
Just like an ordinary language abbreviation, an abbrev is a word which expands, when you
insert it, into a usually expanded or enlarged string of text. Abbrevs are defined by the user
to expand in specific ways. For example, you might define Bob as an abbrev expanding to
Better off built. Then you could insert Better off built into the buffer by
typing Bob <Space>.

A second kind of abbreviation facility, which we do not show examples of here, is called
dynamic abbrev expansion. You use dynamic abbrev expansion with an explicit command
to expand the letters in the buffer before the point by looking for other words in the buffer
that start with those letters.

Abbrevs expand only when Abbrev mode, a buffer-local minor mode, is enabled.
Disabling Abbrev mode does not cause abbrev definitions to be forgotten, but they do not
expand until Abbrev mode is enabled again. The command <Alt+X> abbrev-mode
toggles Abbrev mode; with a numeric argument, it turns Abbrev mode on if the argument
is positive, off otherwise.

You can define abbrevs interactively during the editing session, irrespective of
whether

Abbrev mode is enabled. You can also save lists of abbrev definitions in files, which
you can then reload for use in later sessions.

3.3.13.4.1 Defining Abbrevs: The following are ways of defining and managing
abbrevs: <Ctrl+X> a g

Define an abbrev, using one or more words before point as its expansion
(add-global-abbrev).

Editing Text Files    ◾    131

<Ctrl+X> a l

Similar, but define an abbrev specific to the current major mode (add-mode-abbrev).

<Ctrl+X> a i g

Define a word in the buffer as an abbrev (inverse-add-global-abbrev).

<Ctrl+X> a i l

Define a word in the buffer as a mode-specific abbrev (inverse-add-mode-abbrev).

<Alt+X> define-global-abbrev <Enter> abbrev <Enter> expres-
sion <Enter>

Define abbrev as an abbrev expanding into an expression.

<Alt+X> define-mode-abbrev <Enter> abbrev <Enter> expression
<Enter>

Define abbrev as a mode-specific abbrev expanding into an expression.

<Alt+X> kill-all-abbrevs

Discard all abbrev definitions, leaving a blank slate.

The usual way to define an abbrev is to enter the text you want the abbrev to expand to,
position the point after it, and type <Ctrl+X> a g. This reads the abbrev itself using the
minibuffer, and then defines it as an abbrev for one or more words before the point. As with
many other emacs commands, you can use a numeric digit argument to specify how many
words before the point should be taken as the expansion. For example, to define the abbrev
Bob, insert the text Better off built and then type <Ctrl+U> 3 <Ctrl+X> a
g Bob <Enter>.

An argument of zero to <Ctrl+X> a g means to use the contents of the region as the
expansion of the abbrev being defined.

To remove an abbrev definition, give a negative argument to the abbrev definition com-
mand, as in one of the following ways:

<Ctrl+U> - <Ctrl+X> a g

<Ctrl+U> - <Ctrl+X> a l

The first way removes a global definition, while the second way removes a mode-specific
definition.
<Alt+X> kill-all-abbrevs removes all abbrev definitions, both global and local.

3.3.13.4.2 Controlling Abbrev Expansion: When Abbrev mode is enabled, an abbrev
expands whenever it is present in the buffer just before the point and when you type a

132 ◾ UNIX: The Textbook, Third Edition

self-inserting whitespace or punctuation character like <Space> or a comma, etc. More
precisely, any character that is not a word constituent expands an abbrev, and any word
constituent character can be part of an abbrev. The most common way to use an abbrev is
to insert it and then insert a punctuation or whitespace character to expand it.

These commands are used to control abbrev expansion.

<Alt+'>

Separate a prefix from a following abbrev to be expanded (abbrev-prefixmark).

<Ctrl+X> a e

Expand the abbrev before the point (expand-abbrev). This is effective even when
Abbrev mode is not enabled.

<Alt+X> expand-region-abbrevs

Expand some or all abbrevs found in the region.

If you expand an abbrev by mistake, you can undo the expansion by typing C-/ (undo).
This undoes the insertion of the abbrev expansion and brings back the abbrev text. You
can also use the command <Alt+X> unexpand-abbrev to cancel the last expansion
without deleting the terminating character.

3.3.13.4.3 Listing and Editing Abbrevs: <Alt+X> list-abbrevs

Display a list of all abbrev definitions. With a numeric argument, list only local abbrevs.

<Alt+X> edit-abbrevs allows you to add, change or kill abbrev definitions by
editing a list of them in an emacs buffer. The buffer of abbrevs is called *Abbrevs*, and is
in Edit>Abbrevs mode. Type <Ctrl+C> <Ctrl+C> in this buffer to install the abbrev
definitions as specified in the buffer, and delete any abbrev definitions not listed.

The commands edit-abbrevs and list-abbrevs are the same except they display
the listing in a window and a buffer, respectively.

3.3.13.4.5 Saving Abbrevs: These commands allow you to keep abbrev definitions between
editing sessions:

<Alt+X> write-abbrev-file <Enter> filename <Enter>

Save to filename describing all defined abbrevs.

<Alt+X> read-abbrev-file <Enter> filename <Enter>

Read from filename and define abbrevs as specified in that file.

<Alt+X> define-abbrevs

Editing Text Files    ◾    133

Define abbrevs from definitions in current buffer.

<Alt+X> insert-abbrevs

Insert all abbrevs and their expansions into current buffer.

<Alt+X> write-abbrev-file reads a file name using the minibuffer and then
writes a description of all current abbrev definitions into that file. This is used to save
abbrev definitions for use in a later session. The text stored in the file is a series of Lisp
expressions that, when executed, define the same abbrevs that you currently have.
<Alt+X> read-abbrev-file reads a file name using the minibuffer and then reads

the file, defining abbrevs according to the contents of the file. The function quietly-
read-abbrev-file is similar except that it does not display a message in the echo area;
you cannot invoke it interactively, and it is used primarily in your init file. If either of these
functions is called with nil as the argument, it uses the file given by the variable abbrev-
file-name, which is ~/.emacs.d/abbrev_defs by default. This is your standard abbrev
definition file, and Emacs loads abbrevs from it automatically when it starts up.

Emacs will offer to save abbrevs automatically if you have changed any of them, when-
ever it offers to save all files (for <Ctrl+X> s or <Ctrl+X> <Ctrl+C >). It saves them
in the file specified by abbrev-file-name. This feature can be inhibited by setting the
variable save-abbrevs to nil.

The commands <Alt+X> insert-abbrevs and <Alt+X> define-abbrevs
are similar to the previous commands but work on text in an emacs buffer. <Alt+X>
insert-abbrevs inserts text into the current buffer after the point, describing all cur-
rent abbrev definitions; <Alt+X> define-abbrevs parses the entire current buffer
and defines abbrevs accordingly.

3.3.13.5 Keystroke Macro Commands
Similar to the brief introduction in Section 3.3.5, in this section we more fully describe
how to record, save, edit, and list a sequence of commands in a macro, so you can repeat it
conveniently later. A keyboard macro is a command defined by an emacs user that repre-
sents, in a shortened form, another sequence of keys. For example, if you discover that you
are about to type three different keystroke combinations 400 times, you can speed your
work by defining a much shorter keyboard macro to do those three different keystroke
combinations and then executing it 399 more times.

You define a keyboard macro by executing and recording the commands which are its
definition. As you define a keyboard macro, the definition is being executed for the first
time. When you close the definition, the keyboard macro is defined and also has been exe-
cuted once. You can then repeat the commands by invoking the macro as many times as
you like.

3.3.13.5.1 Keystroke Macros: Basic Use These are the basic operations in defining and using
keystroke macros.

134 ◾ UNIX: The Textbook, Third Edition

<F3>

Start defining a keyboard macro (kmacro-start-macro-or-insert-counter).

<F4>

Dual-purpose function key. If a keyboard macro is being defined, end the definition; other-
wise, execute the most recent keyboard macro (kmacro-end-or-call-macro).

<Ctrl+U> <F3>

Re-execute last keyboard macro, then append keys to its definition.

<Ctrl+U> <Ctrl+U> <F3>

Append keys to the last keyboard macro without re-executing it.

<Ctrl+X> <Ctrl+K> r

Run the last keyboard macro on each line that begins in the region (apply-macro-to-
region -lines).

To start defining a keyboard macro, type <F3>. From then on, your keys continue to be
executed, but also become part of the definition of the macro. Def appears in the mode
line. When you are finished, type <F4> (kmacro-end-or-call-macro) to terminate
the definition. For example:

<F3> <Alt+F> Mansoor <F4>

defines a macro to move forward a word and then insert Mansoor at the point. <F3>
and <F4> do not become part of the macro.

After defining the macro, it is the most recently defined keyboard macro, and you can
call it with <F4>. In the example, this has the same effect as typing <Alt+F> Mansoor
again.

The two roles of the <F4> command: it ends the macro if you are in the process of defin-
ing one, or calls the last macro otherwise.

You can also supply <F4> with a numeric prefix argument n, which means to invoke the
macro n times. An argument of zero repeats the macro indefinitely, until it gets an error or
you type <Ctrl+G> to terminate it.

After ending the definition of a keyboard macro, you can append more keystrokes to
its definition by typing <Ctrl+U> <F3>. This is equivalent to plain <F3> followed by
retyping the whole definition so far. As a consequence, it re-executes the macro as previ-
ously defined. If you change the variable kmacro-execute-before-append to nil,
the existing macro will not be re-executed before appending to it (the default is t). You can
also add to the end of the definition of the last keyboard macro without re-executing it by
typing <Ctrl+U> <Ctrl+U> <F3>.

Editing Text Files    ◾    135

When a command reads an argument with the minibuffer, your minibuffer input
becomes part of the macro along with the command. So when you replay the macro, the
command

gets the same argument as when you entered the macro. For example:

<F3> <Ctrl+A> <Ctrl+K> <Ctrl+X> b Mansoor <Enter> <Ctrl+Y>
<Ctrl+X> b <Enter> <F4>

defines a macro that kills the current line, yanks it into the buffer Mansoor, then returns
to the original buffer. The command <Ctrl+X> <Ctrl+K> r (apply-macro-to-
region-lines) repeats the last defined keyboard macro on each line that begins in the
region. It does this line by line, by moving the point to the beginning of the line and then
executing the macro.

All defined keyboard macros are recorded in the keyboard macro ring. There is only one
keyboard macro ring, shared by all buffers. The basic keyboard macro ring operations are

<Ctrl+X> <Ctrl+K> <Ctrl+K>

Execute the keyboard macro at the head of the ring (kmacro-end-or-
callmacro -repeat).

<Ctrl+X> <Ctrl+K> <Ctrl+N>

Rotate the keyboard macro ring to the next macro (defined earlier)
(kmacrocycle-ring-next).

<Ctrl+X> <Ctrl+K> <Ctrl+P>

Rotate the keyboard macro ring to the previous macro (defined later)
(kmacrocycle-ring-previous).

Note: The maximum number of macros stored in the keyboard macro ring is deter-
mined by the customizable variable kmacro-ring-max.

3.3.13.5.2 Naming, Saving, and Invoking or Using Keyboard Macros The following are the
ways to name, save, and invoke or use keyboard macros, particularly with regard to retain-
ing them in your ~/.emacs or init file so that they will be available in all future sessions of
emacs (anything below enclosed in [] is optional).

 1. <Ctrl+X> <Ctrl+K> n <Enter> macroname <Enter>

 Gives a command name (for the duration of the current emacs session only) to the most
recently defined keyboard macro (kmacro-name-last-macro). If you wish to save
a keyboard macro for later use, you can give it a name using this syntax. This sequence
reads a name as an argument, by prompting for the name in the minibuffer, and uses
the minibuffer-supplied name and defines that name so that you can execute the last

136 ◾ UNIX: The Textbook, Third Edition

keyboard macro, in its current form, using that name. The macro name is an elisp sym-
bol, and defining it in this way makes it a valid command name for invoking or using it
with <Alt+X>, or for binding a key to it with global-set-key. If you specify a name
that has a prior definition other than a keyboard macro, you get an error.

 2. <Ctrl+X> <Ctrl+K> b <Enter> key <Enter>

 Binds the most recently defined keyboard macro to a key sequence (for the duration
of the current emacs session only) (kmacro-bind-to-key).

 3. <Alt+X> insert-kbd-macro <Enter> [macroname <Enter>]

 Inserts in the current buffer a keyboard macro’s definition as elisp code. If you do not
supply an already-defined macroname, the last keyboard macro defined is inserted
as elisp code.

 4. <Alt+X> macroname <Enter>

 Invokes macroname in the current buffer.

 5. Pressing the function key <F4> invokes the last defined keyboard macro.

3.3.13.5.3 Saving Keyboard Macros for Future Sessions Once a keyboard macro has a name,
you can save its definition in a file, and particularly in the ~/.emacs file or other initializa-
tion file that you may use to initialize emacs at startup. By taking the following steps, it can
be used in all future editing sessions.

The steps to accomplish this are as follows:

 1. Visit the file you want to save the definition in, which becomes the current buffer.
This is usually ~/.emacs.

 2. Use the command <Alt+X> insert-kbd-macro <Enter> macroname
<Enter>

 This uses the macroname you already have previously defined, and inserts equiva-
lent elisp code that the keyboard macro represents, into the current buffer.

 3. Save the current buffer. If the file you save in is your initialization file ~/.emacs, then
the macro will be defined for all future sessions of emacs.

3.3.13.6 Redefining Keyboard Keys
This section describes key bindings, which map keys to commands, and keymaps, which
record key bindings. It also explains how to customize key bindings, which is done by edit-
ing your init file.

3.3.13.5.4 Keys, Commands, and Variables Emacs does not assign meanings to keys directly.
Instead, emacs assigns meanings to named commands, and then gives keys their meanings
by binding them to commands.

Editing Text Files    ◾    137

As you have seen in the previous sections, every command has a name, which is
usually made up of a few words separated by hyphens—for example, insert-kbd-
macro or abbrev-file-name. Internally, each command is an emacs form of a Lisp
function, and the actions associated with the command are performed by running the
function.

The bindings, or mappings, between keys and commands are recorded in tables called
keymaps.

The effect of “<Ctrl+N> moves point down vertically one line” is that the vertical move-
ment of the command next-line is bound to the key sequence <Ctrl+N>. If you rebind
<Ctrl+N> to the command forward-word, <Ctrl+N> will move forward one word
instead. The key is bound to a command.

A variable is a name used to store a value. The variables we described in Section 3.3.13.2
are intended to be customized: some commands or mechanisms in emacs examine the
variable and behave according to the value that you assign to the variable when and if you
customize it.

3.3.13.5.5 Keymaps Emacs commands are elisp functions whose definition provides for
interactive use. Like every elisp function, a command has a function name, which usu-
ally consists of lowercase letters and hyphens. A keystroke (key for short) sequence is a
sequence of input events that have a meaning as a unit. Input events include characters,
function keys, and mouse buttons—all the inputs that you can send to the computer.
A key sequence gets its meaning from its binding, which dictates what command it runs.

The bindings between key sequences and command functions are recorded in
data structures called keymaps. Emacs has many of these, each used on particular
occasions.

The global keymap is the most important keymap because it is always in effect. The
global keymap defines keys for Fundamental mode; most of these definitions are common
to most or all major modes. Each major or minor mode can have its own keymap which
overrides the global definitions of some keys.

For example, a self-inserting character such as g is self-inserting because the global
keymap binds it to the command self-insert-command. The standard emacs editing
characters such as <Ctrl+A> also get their standard meanings from the global keymap.
Commands to rebind keys, such as <Alt+X> global-set-key, work by storing the new
binding in the proper place in the global map.

Most modern keyboards have function keys as well as character keys. Function keys
send input events just as character keys do, and keymaps can have bindings for them.
Key sequences can mix function keys and characters. For example, if your keyboard has a
<Home> function key, emacs can recognize key sequences like <Ctrl+X> <Home>. You
can even mix mouse events with keyboard events, such as S-down-mouse-1.

On text terminals, typing a function key actually sends the computer a sequence of
characters; the precise details of the sequence depends on the function key and on the ter-
minal type. (Often the sequence starts with ESC [). If emacs understands your terminal
type properly, it automatically handles such sequences as single input events.

138 ◾ UNIX: The Textbook, Third Edition

3.3.13.5.6 Prefix Keymaps Emacs stores only single events in each keymap. Interpreting
a key sequence of multiple events involves a chain of keymaps: the first keymap gives
a definition for the first event, which is another keymap that is used to look up the
second event in the sequence, and so on. A prefix key such as <Ctrl+X> or <Esc>
has its own keymap, which holds the definition for the event that immediately follows
that prefix.

A prefix key is usually the keymap to use for looking up the following event. The defini-
tion can also be an elisp symbol whose function definition is the following keymap; the
effect is the same, but it provides a command name for the prefix key that can be used
as a description of what the prefix key is for. Thus, the binding of <Ctrl+X> is the sym-
bol Control-X-prefix, whose function definition is the keymap for <Ctrl+X> com-
mands. The definitions of <Ctrl+C>, <Ctrl+X>, <Ctrl+H>, and <Esc> as prefix keys
appear in the global map, so these prefix keys are always available.

Some prefix keymaps are stored in variables with names.

ctl-x-map is the variable name for the map used for characters that follow
<Ctrl+X>.

_ help-map is for characters that follow <Ctrl+H>.

_ esc-map is for characters that follow <Esc>. Thus, all metacharacters are actually
defined by this map.

_ ctl-x-4-map is for characters that follow <Ctrl+X> 4.

_ mode-specific-map is for characters that follow <Ctrl+C>.

3.3.13.5.7 Local Keymaps So far, we have explained the ins and outs of the global map.
Major modes customize emacs by providing their own key bindings in local keymaps. For
example, C mode overrides <Tab> to make it indent the current line for C code. Minor
modes can also have local keymaps; whenever a minor mode is in effect, the definitions in
its keymap override both the major mode’s local keymap and the global keymap. In addi-
tion, portions of text in the buffer can specify their own keymaps, which override all other
keymaps.

A local keymap can redefine a key as a prefix key by defining it as a prefix keymap. If
the key is also defined globally as a prefix, its local and global definitions (both keymaps)
effectively are combined: both definitions are used to look up the event that follows the
prefix key. For example, if a local keymap defines <Ctrl+C> as a prefix keymap, and that
keymap defines <Ctrl+Z> as a command, this provides a local meaning for <Ctrl+C>
<Ctrl+Z>. This does not affect other sequences that start with <Ctrl+C>; if those
sequences don’t have their own local bindings, their global bindings remain in effect.

Another way to think of this is that emacs handles a multievent key sequence by looking
in several keymaps, one by one, for a binding of the whole key sequence. First it checks the
minor mode keymaps for minor modes that are enabled, then it checks the major mode’s
keymap, and then it checks the global keymap.

Editing Text Files    ◾    139

3.3.13.5.8 Changing Key Bindings Interactively The way to redefine an emacs key is to change
its entry in a keymap. You can change the global keymap, in which case the change is effective
in all major modes (except those that have their own overriding local bindings for the same
key), or you can change a local keymap, which affects all buffers using the same major mode.

The following describes how to rebind keys for the current emacs session (see Section
3.3.13.5.9 for a description of how to make key rebindings affect future emacs sessions by
putting them in your ~/.emacs file):

 1. <Alt+X> global-set-key <Enter> key command <Enter>

 Defines key globally to run command.

 2. <Alt+X> local-set-key <Enter> key command <Enter>

 Defines key locally (in the major mode now in effect) to run command.

 3. <Alt+X> global-unset-key <Enter> key

 Makes key undefined in the global map.

 4. <Alt+X> local-unset-key <Enter> key

Makes key undefined locally (in the major mode now in effect).
For example, the following binds <Ctrl+Z> to the shell command, replacing the nor-

mal global definition of <Ctrl+Z>:

<Alt+X> global-set-key <Enter> <Ctrl+Z> shell <Enter>

The global-set-key command reads the command name after the key. After you
press the key, a message like this appears so that you can confirm that you are binding the
key you want:

Set key <Ctrl+Z> to command:

You can redefine function keys and mouse events in the same way; just type the func-
tion key or click the mouse when it’s time to specify the key to rebind. You can rebind a key
that contains more than one event in the same way. Emacs keeps reading the key to rebind
until it is a complete key (that is, not a prefix key). Thus, if you type <Ctrl+F> for the key,
that’s the end; it enters the minibuffer immediately to read the command. But if you type
<Ctrl+X>, since that’s a prefix, it reads another character; if that is 4, another prefix char-
acter, it reads one more character, and so on. For example:

<Alt+X> global-set-key <Enter> <Ctrl+X> 4 $ spell-other-win-
dow <Enter>

redefines <Ctrl+X> 4 $ to run the (fictitious) command spell-other-window.

140 ◾ UNIX: The Textbook, Third Edition

You can remove the global definition of a key with global-unset-key. This makes
the key undefined; if you type it, emacs will just beep. Similarly, local-unset-key
makes a key undefined in the current major mode keymap, which makes the global defini-
tion (or lack of one) come back into effect in that major mode.

If you have redefined (or undefined) a key and you subsequently wish to retract the
change, undefining the key will not do the job; you need to redefine the key with its stan-
dard definition.

To find the name of the standard definition of a key, go to a Fundamental mode buffer in
an emacs session that you have not done any key remappings in, and type <Ctrl+H> c. So,
if you want to prevent yourself from invoking a command by mistake, it is better to disable
the command than to undefine the key!

3.3.13.5.9 Rebinding Keys in Your Init File If you have a set of key bindings that you
like to use all the time, you can specify them in your initialization file by writing elisp
code. There are several ways to write a key binding using elisp. The simplest is to use
the kbd function, which converts a text representation of a key sequence, similar to
how we have written key sequences up to this point, into a form that can be passed as
an argument to global-set-key. For example, here’s how to bind <Ctrl+Z> to the
shell command.

(global-set-key (kbd "C-z") 'shell)

The single quote (') before the shell command name designates it as a constant symbol
rather than a variable. If you omit the quote, emacs tries to evaluate shell as a variable.

3.3.13.5.10 Examples Here are some additional examples, including binding function
keys and mouse events:

(global-set-key (kbd "<Ctrl+C> y") 'clipboard-yank)

(global-set-key (kbd "<Ctrl ><Alt+Q>") 'query-replace)

(global-set-key (kbd "<f5>") 'flyspell-mode)

(global-set-key (kbd "<Ctrl ><f5>") 'linum-mode)

(global-set-key (kbd "<Ctrl ><right>") 'forward-sentence)

(global-set-key (kbd "<mouse-2>") 'mouse-save-then-kill)

EXERCISE 3.11

 a. Use the emacs Help function via keyboard keystrokes only to find out what the
commands that are being bound to each of the keys sequences in the six examples

Editing Text Files    ◾    141

accomplish. So, for forward-sentence, what explanation does Help supply?
Make a list of the answers that the Help function supplies.

 b. What are the default key sequence bindings, if any, for the commands in the six
examples? Make a list of the default key sequence bindings for commands that have
them.

EXERCISE 3.12
Place all six examples of key sequences bound to commands in your ~/.emacs file and test
them according to your findings in Exercise 3.10.

3.4 vi AND EMACS COMMAND TABLES (TABLES 3.17 AND 3.18)

3.5 SUMMARY
In this chapter, we covered vi/vim and emacs, the two most useful families of text edi-
tors that UNIX offers. We achieved this in both a command line, text-based way, and in
a graphical way, for both families of editor. The editors are useful because modern UNIX
is both a text-driven and GUI-based operating system. Common operations done by an
ordinary user, such as editing script files, writing e-mail messages, or creating C language
programs, are done with text editors. A full-screen display editor shows a portion of a file
that fills most or all of the screen display. The cursor, or point, can be moved to any of the
text shown in the screen display. Editing a file involves editing a copy that the editor cre-
ates, called a buffer. Keystroke commands are one of the primary ways of interacting with
these editors. Using a GUI to interact with both families of editor is time efficient and easy
to learn. The editor(s) used should fit the user’s personal criteria.

We showed how to modify any of several environment options to customize the behav-
ior of the vi, vim, and gvim editors, either when you are in the editor for one session only
or for every editor session. These vi, vim, and gvim user options include specifying maxi-
mum line length and automatically wrapping the cursor to the next line, displaying line
numbers as you edit a file, and displaying the mode that the editor is in. We showed how to
use full or abbreviated names for most of the options.

We described the basic methods of customizing and modifying the behavior of GNU
emacs. This included the following customization procedure operations: using the emacs
Options menu to modify options; using Custom (a GUI-based interface) to change prefer-
ences and options, and in conjunction with that interface, also using the traditional typed
<Alt+X> customize command set; writing keystroke abbreviations with Abbrev; writ-
ing keystroke macro commands; how to redefine keyboard keys; and placing emacs Lisp
(elisp) code to customize the behavior of emacs directly into your ~/.emacs startup con-
figuration file.

The most important functions that are common to these UNIX text editors are cursor
movement, cut/copy and paste, deleting text, inserting text, opening an existing file, start-
ing a new file, quitting, saving, and search and replace.

142 ◾ UNIX: The Textbook, Third Edition

TABLE 3.17 vi, vim, gvim Summary

Vi Syntax

Command Action
cw Change word.
cc Change line.
c$ Change text from current position to end of line.
C Same as c$.
dd Delete current line.
7 dd Delete seven lines.
d$ Delete text from current position to end of line.
D Same as d$.
5dw Deletes five words.
d7,14 Deletes lines seven through fourteen in the buffer.
s Substitute character. <Esc> ends substitute mode.
4s Substitute four characters. <Esc> ends substitute mode.
S Substitute entire line. <Esc> ends substitute mode.
u Undo last change.
<Ctrl+R> Redo last change (vim and gvim).
U Restores the current line, if you have not moved off of it.
x Delete current cursor position.
X Delete back one character.
5X Delete previous five characters
. Repeat last change.
~ Change case and move cursor right.
<Ctrl+A> Increment number at the cursor (vim and gvim).
<Ctrl+X> Decrement number at the cursor (vim and gvim).

Vi Mode Keys
Key Action
a Appends text after the character the cursor is on.
A Appends text after the last character of the current line.
c Begins a change operation, allowing you to modify text.
C Changes from the cursor position to the end of the current line.
i Inserts text before the character the cursor is on.
I Inserts text at the beginning of the current line.
o Opens a blank line below the current line and puts the cursor on that line.
O Opens a blank line above the current line and puts the cursor on that line.

Vi Command Mode
Command Action
:wq Saves the buffer and quits.
:w Saves the current buffer and remains in the editor.
:w filename Saves the current buffer to filename
:q Quit vi (fails if changes were made).
:q! Quit vi without saving the buffer.
:Q Quit vi and invoke ex.
:vi Return to vi after Q command.
ZZ Quits vi, saving the file only if changes were made since the last save.

Editing Text Files    ◾    143

TABLE 3.17 (Continued) vi, vim, gvim Summary

Vi Cursor Movement
Command Action
1G Moves the cursor to the first line of the file.
G Moves the cursor to the last line of the file.
0 (zero) Moves the cursor to the first character of the current line.
<Ctrl+G> Reports the position of the cursor in terms of line # and column #.
$ Moves the cursor to the last character of the current line.
w Moves the cursor forward one word at a time.
b Moves the cursor backward one word at a time.
x Deletes the character at the cursor position.
dd Deletes the line at the current cursor position.
u Undoes the most recent change.
r Replaces the character at the current cursor location with what is typed next.

Vi Yank and Put
Command Syntax What It Accomplishes
y2W Yanks two words, starting at the current cursor position, going to the right.
4yb Yanks four words, starting at the current cursor position, going to the left.
yy or Y Yanks the current line.
p Puts the yanked text after the current cursor position.
P Puts the yanked text before the current cursor position.
Vi Substitute
Command Syntax What It Accomplishes
:s/john/jane/ Substitutes the word jane for the word john on the current line, only once.
:s/john/jane/g Substitutes the word jane for every word john on the current line.

Vi Environment
Options

Last Line Mode Syntax What it does
abbr command
:ab in out Use in as abbreviation for out in Insert mode.
:unab in Remove abbreviation for in.
:ab List abbreviations.
map!, map
commands
:map List character strings that are mapped.
:map! string
sequence

Map characters string to input mode sequence.

:unmap! string Remove input mode map (you may need to quote the characters with
<Ctrl+V>).

:map! List character strings that are mapped for input mode.

set command
:set x Enable boolean option x, show value of other options.
:set Show changed options.
:set all Show all options.
:set x? Show value of option x.

144 ◾ UNIX: The Textbook, Third Edition

TABLE 3.18 emacs Summary

Emacs Commands

Command Action
<Ctrl+X> <Ctrl+F> Visit a file (find-file)
<Ctrl+X> <Ctrl+R> Visit a file for viewing, without allowing changes to it

(find-file-read-only)
<Ctrl+X> <Ctrl+V> Visit a different file instead of the one visited last

(find-alternate-file)
<Ctrl+X> <Ctrl+S> Save the current buffer to its file (save-buffer)
<Ctrl+X> s Save any or all buffers to their files

(save-some-buffers)
<Alt+~> Forget that the current buffer has been changed

(not-modified)
<Ctrl+X> <Ctrl+W> Save the current buffer with a specified file name

(write-file)
<Ctrl+H> Display a help message about these options
<Ctrl+X> <Ctrl+C> Exits emacs
<Ctrl+X> <Ctrl+Z> Suspends emacs and exits to the shell

Emacs Help Command
<Ctrl+H> a topics <Enter> Display a list of commands whose names match

topics (apropos-command).
<Ctrl+H> b Display all active key bindings—minor mode bindings

first, then those of the major mode, then global
bindings (describe-bindings).

<Ctrl+H> c key Show the name of the command that the key sequence
key is bound to (describe-key-briefly). Here
c stands for “character.” For more extensive
information on key, use <Ctrl+H> k.

<Ctrl+H> d topics <Enter> Display the commands and variables whose documentation
matches topics (apropos-documentation).

<Ctrl+H> e Display the *Messages* buffer
(view-echo-area-messages).

<Ctrl+H> f function <Enter> Display documentation on the Lisp function named
function (describe-function). Since
commands are Lisp functions, this works for
commands too.

<Ctrl+H> r Display the emacs manual in Info
(info-emacs-manual).

<Ctrl+H> s Display the contents of the current syntax table
(describe-syntax). The syntax table says which
characters are opening delimiters, which are parts of
words, and so on.

<Ctrl+H> t Enter the emacs interactive tutorial (help-with-tutorial).
<Ctrl+H> K key Enter Info and go to the node that documents the key

sequence key (Info-goto-emacs-key-
command -node).

<Ctrl+H> Display the help message for a special text area, if the
point is in one (display-local-help). (These
include, for example, links in *Help* buffers.)

Editing Text Files    ◾    145

TABLE 3.18 (Continued) emacs Summary

Emacs Cursor Movement
Entity to Move Over Backward Forward
Character <Ctrl+B> <Ctrl+F>
Word <Alt+B> <Alt+F>
Line <Ctrl+P> <Ctrl+N>
Go to line
beginning (or end)

<Ctrl+A> <Ctrl+E>

Sentence <Alt+A> <Alt+E>
Paragraph <Alt+{> <Alt+}>
Page <Ctrl+X> [<Ctrl+X>]
Entity to Kill Backward Forward
Character (delete,
not kill)

 <Ctrl+D>

Word <Alt+Del> <Alt+D>
Line (to end of) <Alt+0>

<Ctrl+K>
<Ctrl+K>

Sentence <Ctrl+X> DEL <Alt+K>
Kill region <Ctrl+W>
Copy region to kill
ring

<Alt+W>

Yank back last thing
killed

<Ctrl+Y>

Emacs Interactive Search and Replace
Search and Replace Action Keystrokes
Search forward <Ctrl+S>
Search backward <Ctrl+R>
Regular expression search <Ctrl+Alt+S>
Reverse regular expression search <Ctrl+Alt+R>
Select previous search string <Alt+P>
Select next later search string <Alt+N>
Exit incremental search <Enter>
Undo effect of last character
Abort current search <Ctrl+G>
Interactively replace a text string <Alt+%>
Using regular expressions <Alt+X>

query-replace-regexp

Replace this one, go on to next <Space> or y
Replace this one, don’t move ,

Skip to next without replacing or n
Replace all remaining matches !

Back up to the previous match ^

Exit query-replace <Enter>
Enter recursive edit (<Ctrl+Alt+C> to exit) <Ctrl+R>

(Continued)

146 ◾ UNIX: The Textbook, Third Edition

QUESTIONS AND PROBLEMS

Vi, Vim, Gvim
 1. Despite the availability of fancy and powerful word processors, why is text editing

still important?

 2. List 10 commonly used text-editing operations.

 3. What are the four most popular text editors in UNIX? Which one is your favorite?
Why?

 4. What is an editor buffer?

 5. This problem assumes you are using the C shell on PC-BSD, and will execute the file
you will create from your home directory on the system. If you are running Solaris,
make the appropriate changes in the following sheller script file to make it work in
Bash. Be aware that there is no /etc/shells file in Solaris, so you can omit that line
from your sheller script file.

 a. How do you make sure that your search path includes the directory you are sav-
ing the following script file to, and that you have execute privileges on the file?

 Use vi on your system and create a C shell script file that contains the lines:

 #!/bin/csh

TABLE 3.18 (Continued) emacs Summary

Changing Emacs Behavior
Customization Action Keystrokes

Abbrevs
add global abbrev <Ctrl+X> a g
add mode-local abbrev <Ctrl+X> a l
add global expansion for this abbrev <Ctrl+X> a i g
add mode-local expansion for this abbrev <Ctrl+X> a i l
explicitly expand abbrev <Ctrl+X> a e
expand previous word dynamically <Alt+/>

Macros
Start defining a keyboard macro <Ctrl+X> (or <F3>
End keyboard macro definition <Ctrl+X>) or <F4>
Execute last-defined keyboard macro <Ctrl+X> e or <F4>
Append to last keyboard macro <Ctrl+U> <Ctrl+X> (
Name last keyboard macro <Alt+X> name-last

-kbd-macro

Insert Lisp definition in buffer <Alt+X> insert-kbd-macro
Customize variables and faces <Alt+X> customize

Editing Text Files    ◾    147

 echo $SHELL

 cat /etc/shells

 Then save the file as sheller and quit vi. At the C shell prompt, type sheller and
then press <Enter>.

 b. What appears on your screen? In particular, what shells are available?

 6. Run vi on your system. Create and edit a block of text that you want to be the body
of an e-mail message explaining the basic capabilities of the vi editor. For example,
part of your message might describe the difference between the Insert and Command
modes. This file should be at least one page (45 to 50 lines of text) long. Then save the
file as vi_doc.txt. Insert the body of text in an e-mail message and send it to yourself.

 7. Run vi on your system and create a file of definitions in your own words, without
looking at the textbook, for:

 full-screen display editor

 modeless editor

 file versus buffer

 keystroke commands

 substitute versus search

 text file versus binary file

 Then refer back to the relevant sections of this chapter to check your definitions.
Make any necessary corrections or additions. Re-edit the file in vim to incorporate
any corrections or additions that you made, and then print out the file using the print
commands available on your system.

 8. Edit the file you created in Problem 7, and change the order of the text of your defini-
tions to (d), (a), (c), and (b), using the yank, put, and D or dd commands. Print out
the file using the print commands available on your system.

 9. In Section 3.2.7, you changed the behavior of vi, vim, and gvim by adding or modify-
ing entries in your ~/.exrc or ~/.vimrc files, so that the changes were persistent across
all sessions of the editors. You can also customize vi, vim, and gvim by changing the
shell environment variable named EXINIT. This can be achieved in the C shell by
giving value(s) to the SETENV variable. Do the following:

 a. Refer to Chapter 14 for the C shell to find the exact syntax and use of the SETENV
command in the C shell. Then, add or modify the shell environment variable set-
ting for the shell variable EXINIT so that the showmode user option is turned
on. What is the syntax of the command you used to do this?

148 ◾ UNIX: The Textbook, Third Edition

 b. How would you test that this environment variable is actually implementing the
user option change, and not what is in the ~/.exrc or ~/.vimrc files?

 c. What syntax would you use for the SETENV command to change more than one
user option in the editors?

 d. Are these changes in the EXINIT variable persistent through all vi, vim, and
gvim sessions? If you log out and log back in to the system, does EXINIT still
contain the changes and additions you made to it? Why or why not?

 10. Give the exact syntax of a vi substitute command line that only replaces every
instance of the discrete word ate on all the lines of a file with the word ion, where
the file has some words that end in the string ate.

 11. Give the exact syntax of a vim substitute command line that interactively
searches and substitutes the word cool for the word cold on all the lines of a file,
where there are several widely separated instances of the word cold in the file.

 12. Take the following map command for creating a skeleton C program template, and
place it in your ~/.exrc file:

 map #3 [̂i#include stdio.h ^Mmain(argc, argv) ^M int argc;̂ M
char #argv[];̂ M{̂ M}̂ M [̂

 where:

 [̂ stands for pressing <Ctrl+v> and then <Esc>

 ^M stands for pressing <Ctrl+v> and then the <Enter> key

 As stated in the text, the relative number of spaces in the map command definition
controls the indentation of the skeleton construct. Also, the ̂ M entries put each of the
skeleton construct components on a new line.

 a. Make sure that the relative indentation of the header components and other parts
of the skeleton is correct.

 b. Add #include <stderr.h>, #include <stdlib.h>, and #include
<string.h> as header information to the skeleton.

 c. Run the map command in a blank vi buffer and test it.

 13. To practice with the command line window to reuse any previous searches in your
search history, use vim to edit the file multiline you created in Practice Session 3.4.
Then search for the words engineers, system administrators, web serv-
ers, scientists, networking, and mathematicians, one search at a time,
starting at the first character in the buffer. Open a command line window on your
search history. Modify the search commands in the history of searches for sci-
entists, networking, and mathematicians to be commands that substitute

Editing Text Files    ◾    149

the words people, homeserver gurus, and UNIX students for the words
scientists, networking, and mathematicians. Save the file.

GNU Emacs

 14. This problem assumes that you are running PC-BSD and you can interactively start
up a new shell, the Bourne Again shell, or Bash, which is already installed by default
on that system. To do this, at the C shell prompt just type bash and press <Enter>.
If a ~/.bashrc exists, before you begin, be sure to back up your existing ~/.bashrc file
by using the cp command. To do so, type cp .bashrc .bashrc _ bak and then
press <Enter>. If for any reason you destroy the contents of the ~/.bashrc file while
doing this problem, you can restore the original by typing cp .bashrc _ bak
.bashrc and then pressing <Enter>.

 This problem is not meant for Solaris.

 If there is no .bashrc file in your home directory, use emacs to create one and save it
in your home directory as an empty file (with nothing in it). Also, type chmod u+X
.bashrc and press <Enter>.

 Use emacs to edit the ~/.bashrc file in your home directory, and then use the
<Ctrl+x> I command to insert the file alien3 that you created in Practice Session
3.12 into the buffer. Save the buffer, exit emacs, and log off your computer system. Log
on to your computer system again, start up a new Bash shell interactively by typing
bash at the command line (so that the new ~/.bashrc is in effect), and test each of the
DOS aliases that are in alien3 by typing them at the shell prompt, with their proper
arguments (if necessary). They should give you the same results as when you ran the
Bourne shell aliases in Step 21 of Practice Session 3.12.

 What other way can you invoke the ~/.bashrc file immediately in this interactive ses-
sion without logging off the system?

 15. As you saw in the practice sessions, you can be editing more than one file at a time in
emacs, where each of the files’ contents are being held in different buffers. Experiment
by first using the cp command at the shell prompt to make a copy of the file datafile
that you created in Practice Session 3.9. Name this copy datafile2. Use emacs to open
both files, datafile and datafile2, with the command <Ctrl+x><Ctrl+f>. You can
switch between buffers with <Ctrl+x> b. Then edit both of them at the same time
and cut and paste three or four lines of each between the two, using <Ctrl+@>,
<Ctrl+w>, and <Ctrl+y>.

 Don’t save your changes to the file datafile!

 16. Write a keyboard macro, as described in Section 3.3.13.4, to do everything shown in
Steps 10–16 of Practice Session 3.10.

 17. Try working with emacs in a text-only window, and use only keystroke commands.

150 ◾ UNIX: The Textbook, Third Edition

 To do this, you will have to launch emacs from a console or terminal window by typ-
ing emacs -nw newfile. The -nw option specifies that emacs will run in non-
graphical mode. Then, in the console or terminal window, a nongraphical emacs will
open on the buffer newfile. As stated in Section 3.3, you can still gain access to the
menu bar menus at the top of the emacs screen by pressing the escape <Esc> key on
the keyboard and then pressing the single back quote (̀) key. You can then descend
through the menu bar choices by pressing the letter key of the menu choice you want
to make. For example, pressing the f key on the keyboard gives you access to the File
pull-down menu choices, and then pressing the s key on the keyboard allows you to
save the current buffer.

 18. To compare keystroke to graphical emacs, repeat Problem 15, using purely graphical
emacs—that is, with no keystroke commands allowed. This time, make two copies of
datafile named datafilex and datafilexx at the UNIX shell prompt with the cp com-
mand. Open all three files and, using the multiple-buffer and multiple-window capa-
bilities of an X Window emacs, cut and paste among the files using only the mouse.
Again, as in Problem 15, don’t save your changes to the file datafile.

 19. Use emacs’s capability of sending e-mail while you’re in emacs. Send an e-mail mes-
sage to one of your friends, composing the message body and sending from within
emacs.

 20. Use the <Alt+X> customize facility in emacs to find the values of the following:
Global Mark Ring Max, Tab Width, Fill Column, Standard Indent, Undo Limit, and
provide a list of the values you find for each.

 21. What emacs command toggles Abbrev mode? What emacs command removes all
abbrev definitions, including global ones?

 22. Define the following abbreviations as global abbreviations in emacs with Abbrev
using the word on the left of the equal sign (=) as the abbreviation, and list the com-
mands and keystrokes you used to create the abbreviations, and invoke them:

 now = Now is the time for all good women to come to the aid of their country.

 BSD = PC-BSD

 SUN = Oracle Solaris

 23. Define a GNU emacs keyboard macro that, when invoked, automatically enters all 26
lowercase letters of the alphabet, with a single space between each letter, at the point.
Name the macro le and bind it to the key 1 (the numeric number 1) for use only dur-
ing this session of emacs. Give the exact steps, commands, and typed input you use to
accomplish defining this macro and invoking it.

 24. Define a GNU emacs keyboard macro that, when invoked, automatically enters the
integers 1 through 10, with a single space in between each number, at the point. Name
that macro row and bind it to the key r so that both the name and the key binding

Editing Text Files    ◾    151

can be used in every subsequent emacs session. Give the exact steps, commands, and
typed input you use to accomplish defining this macro and invoking it.

 25. Define a line of elisp code that will designate the second mouse button on your mouse
to issue a command to split the current buffer window horizontally and place it in
your ~/.emacs file.

http://taylorandfrancis.com

153

C h a p t e r 4

Files and File System
Structure

Objectives

• To explain briefly the UNIX file system structure and the ZFS file system

• To explain the UNIX file concept

• To discuss various types of files supported by UNIX

• To describe attributes of a file

• To explain the notion of pathnames

• To explain the user view of the UNIX file system

• To describe the user interface to the UNIX file system—browsing the file system

• To discuss representation of a file inside the UNIX system

• To describe how a UNIX file is stored on the disk

• To explain the concept of standard files in UNIX

• To cover the commands and primitives

 ~, ., .., /, PATH, cd, echo, file, getconf, ls, mkdir, pwd,
rmdir

4.1 INTRODUCTION
Most computer users work with the file system structure of the computer system that they
use. While using a computer system, a user is constantly performing file-related opera-
tions: creating, reading, writing/modifying, or executing files. Therefore, the user needs
to understand what a file is in UNIX, how files can be organized and managed, how they

154 ◾ UNIX: The Textbook, Third Edition

are represented inside the operating system, and how they are stored on the disk. In this
chapter, the description of file representation and storage is simplified, due to the scope
of this textbook. More details on these topics are available in books on operating system
concepts and principles and in books on UNIX internals.

4.2 THE UNIX FILE CONCEPT
One of the many remarkable features of the UNIX operating system is its concept of files.
This concept is simple, yet powerful, and results in a uniform view of all system resources.
In UNIX, a file is a sequence of bytes. Period. Thus, everything, including a network inter-
face card, a disk drive, a USB flash drive, a keyboard, a printer, a simple/ordinary (text,
executable, etc.) file, or a directory, is treated as a file. As a result, all input and output
devices are treated as files in UNIX, as described under file types and file system structure.

4.3 TYPES OF FILES
UNIX supports seven types of files:

• Simple/ordinary file

• Directory

• Symbolic (soft) link

• Character special file

• Block special file

• Named pipe (FIFO)

• Socket

You can use the ls –l command to display the type of a file, as shown in Table 4.3.

4.3.1 Simple/Ordinary File

Simple/ordinary files are used to store information and data on a secondary storage device,
typically a disk. An ordinary file can contain a source program in C, C++, C#, Java, PHP,
ROR, Python, Perl, LISP, and so on; an executable program that you have created by compil-
ing (and linking) a source program or applications such as compilers, database tools, desktop
publishing tools, graphing software, and so on; PostScript code, pictures, audio, graphics,
and so on. UNIX does not treat any one of these files differently from another. It does not give
a structure or attach a meaning to a file’s contents, because every file is simply a sequence of
bytes. Meanings are attached to a file’s contents by the application that uses/processes the file.
For example, a C program file is no different to UNIX from an HTML file for a Web page or
a file for a video clip. However, a C compiler (e.g., cc or gcc), a Web browser (e.g., Firefox), and
a video player (e.g., RealPlayer) treat these files differently.

You can name files by following any convention that you choose to use; UNIX does
not impose any naming conventions on files of any type. File names can have as many

Files and File System Structure    ◾    155

as 14 letters in System V and 255 letters in Berkeley Software Distributions (BSD). Most
contemporary UNIX systems comply with the BSD naming scheme. You can use the
getconf command on your PC-BSD system to display the maximum size of a file name
in number of characters, as follows:

$ getconf _XOPEN_NAME_MAX
255
$

If you get an error message, then you can use the getconf NAME _ MAX command.
Although you can use any characters for file names, we strongly recommend that non-

printable characters, white spaces (spaces and tabs), and shell metacharacters (described
in Chapter 2) not be used because they are difficult to deal with as part of a file name. You
can give file names any of your own or application-defined extensions, but the extensions
mean nothing to the UNIX system. For example, you can give an .exe extension to a docu-
ment and a .doc extension to an executable program. Some applications require exten-
sions, but others do not. For example, all C compilers require that C source program files
have a .c extension, but not all Web browsers require an .html extension for files for Web
pages. Even so, extensions should be used—it helps keep track of which files are for what
purposes. Some commonly used extensions are given in Table 4.1.

4.3.2 Directory

A directory contains the names of other files and/or directories (the terms directory and
subdirectory are used interchangeably). In some systems, terms such as folder, drawer, or
cabinet are used for a directory. A directory file in any operating system consists of an
array of directory entries, although the contents of a directory entry vary from one system
to another. In UNIX, a directory entry has the structure shown in Figure 4.1.

The inode number is four bytes long and is an index value for an array on the disk. An
element of this array, known as an index node, more commonly called an inode, contains
the attributes of a file such as file size (in bytes). When you create a new file, the UNIX
kernel allocates an inode to it. Thus, every unique file in UNIX has a unique inode (and

TABLE 4.1 Commonly Used Extensions
for Some Applications

Extension Contents of File

.bmp, .jpg, jpeg, .gif Graphics

.c C Source code

.C, .cpp, .cc C++ Source code

.java Java source code

.class Java class file

.html, .htm File for a Web page

.o Object code

.ps Postscript code

.Z, .gz Compressed

156 ◾ UNIX: The Textbook, Third Edition

inode number). The details of an inode and how the kernel uses it to access a file’s contents
on disk are discussed in Section 4.6.

4.3.3 Link File

A file of type link “points to” an existing file. The content of a link file is the pathname of
the existing file. Thus, a link file allows you to access an existing file through another path
in the file system structure and share it without duplicating its contents. The concept of a
link in UNIX is fully discussed in Chapter 8. But, for now, a file of type link is created by
the system when a symbolic link is created to an existing file. Symbolic links are a creation
of BSD UNIX but are currently available on almost all versions of UNIX.

4.3.4 Special (Device) File

A special file, also known as a device node, is a means of accessing hardware devices,
including the keyboard, disks, tape drive, graphic cards, network cards, and printers. Each
hardware device is associated with at least one special file—and a command or an applica-
tion accesses a special file to access the corresponding device. Special files are divided into
two types: character special files and block special files. Character special files correspond to
character-oriented devices, such as a keyboard, and block special files correspond to block-
oriented devices, such as a disk. Special files are typically placed in the /dev directory (see
Section 4.4 for more details).

Applications and commands read and write peripheral device files in the same way that
they read or write an ordinary file. That capability is the main reason that input and output
in UNIX is said to be device independent. Various special devices simulate physical devices
and are, therefore, known as pseudodevices. These devices allow you to interact with a
UNIX system without using the devices that are physically connected to it. These devices
are becoming more and more important, because they allow use of a UNIX system via a
network or modem, or with virtual terminals in a window system such as the X Window
System (see Chapter 23).

4.3.5 Named Pipe (FIFO)

UNIX has several tools that enable processes to communicate with each other. These tools,
which are the key to the ubiquitous client–server software paradigm, are called interprocess
communication (IPC) mechanisms (commonly known as IPC primitives or IPC channels).
These primitives are called pipes, named pipes (also called FIFOs), and sockets (systems that
are strictly System V–compliant have a mechanism called transport layer interface [TLI]).
These primitives are discussed in detail under “System Programming” in Chapters 18
through 21. Here, we briefly mention the purpose of each so that you can appreciate the
need for each mechanism and understand the need for FIFOs.

Inode number File name

FIGURE 4.1 Structure of a directory entry.

Files and File System Structure    ◾    157

A pipe is an area in the kernel memory (a kernel buffer) that allows two processes to
communicate with each other, provided the processes are running on the same computer
system and are related to each other; typically, the relationship is parent–child or sibling.
A FIFO is a file (of named pipe type) that allows two processes to communicate with each
other if the processes are on the same computer; however, the processes do not have to be
related to each other through a parent–child or sibling relationship. We illustrate the use of
pipes and FIFOs at the command level in Chapter 9.

4.3.6 Socket

A socket can be used by processes on the same computer or on different computers to com-
municate with each other; the computers can be on a network (intranet) or on the Internet.
Sockets can belong to different address families, each specifying the protocol suite to be
used by processes to communicate. For example, the application layer protocols such as the
HyperText Transfer Protocol (HTTP) use sockets of address family AF_INET in the TCP/
IP protocol suite for communication (see Chapter 11 for a detailed discussion on TCP/IP).
A socket with address family AF_INET is also known as the Internet domain socket, which
means that processes running on computers on the Internet can use sockets of this domain
to communicate with each other. A socket with address family AF_UNIX can be used for
communication between processes that run on the same machine under a UNIX operating
system. This kind of socket is also known as a UNIX domain socket. On a System V UNIX
computer, a socket file type means a UNIX domain socket.

4.4 FILE SYSTEM STRUCTURE
Three issues are related to the file system structure of an operating system. The first is how
files in the system are organized from the user’s point of view. The second is how files are
stored on the secondary storage (usually, a hard disk). The third is how files are manipu-
lated (read, written, etc.). In this chapter, we will address the first issue, that is, the user
view of files and directories in a UNIX system. As has been the case so far, our focus will
be on PC-BSD UNIX.

4.4.1 File System Organization

The UNIX file system is structured hierarchically and is treelike, but upside-down, with the
root at the top. Thus, the file system structure starts with one main directory, called the
root directory, and can have any number of files and subdirectories under it, organized in
any desired way. This structure leads to a parent–child relationship between a directory
and its subdirectories/files. A typical UNIX system contains hundreds of files and directo-
ries. For our PC-BSD system, the files and directories under the root directory, denoted as
/ in UNIX terminology, are shown in the following session:

$ ls -l /
total 46
-r--r--r-- 1 root root 6142 Feb 25 01:20 COPYRIGHT
drwxr-xr-x 2 root root 47 Feb 25 01:19 bin

158 ◾ UNIX: The Textbook, Third Edition

drwxr-xr-x 8 root root 43 Aug 14 14:43 boot
drwxr-xr-x 3 root root 3 Jul 9 19:00 compat
drwxr-xr-x 3 root root 3 Jul 9 19:10 data
dr-xr-xr-x 8 root root 512 Aug 14 14:43 dev
-rw------- 1 root root 4096 Aug 14 14:43 entropy
drwxr-xr-x 21 root root 116 Aug 8 09:42 etc
lrwxr-xr-x 1 root root 9 Jul 9 19:05 home -> /usr/home
drwxr-xr-x 3 root root 50 Feb 25 01:20 lib
drwxr-xr-x 3 root root 5 Jul 9 18:57 libexec
drwxr-xr-x 2 root root 2 Feb 25 01:19 media
drwxr-xr-x 2 root root 2 Feb 25 01:19 mnt
dr-xr-xr-x 1 root root 0 Aug 16 13:44 proc
drwxr-xr-x 2 root root 142 Feb 25 01:20 rescue
drwxr-xr-x 7 root root 17 Jul 9 14:33 root
drwxr-xr-x 2 root root 134 Jul 9 19:05 sbin
lrwxr-xr-x 1 root root 11 Feb 25 01:21 sys -> usr/src/sys
drwxrwxrwt 22 root root 37 Aug 16 09:46 tmp
drwxr-xr-x 20 root root 20 Jul 9 19:10 usr
drwxr-xr-x 25 root root 25 Aug 14 14:43 var
$

Note that the root directory contains 46 files and directories, with 42 directories, two
ordinary files, and two symbolic links (see Chapter 8). In addition, there are the current
directory (.) and parent of the current directory (..). You can display the long listing of all
the files, including directories as well as the other dot files using the –al options. The big-
picture user view of our system’s files and directories is shown in Figure 4.2.

4.4.2 Home and Present Working Directories

When you log on, the UNIX system puts you in a specific directory, called your home/
login directory. For example, the directory called sarwar in Figure 4.2 is the home direc-
tory for the user with the login sarwar. While using the C, tcsh, Bash, or Korn shell, you
can specify your home directory by using the tilde (~) character. The directory that you are
in at any particular time is called your present working directory (also known as your cur-
rent directory). The present working directory is also denoted as . (pronounced “dot”). The
parent of the present working directory is denoted as .. (pronounced “dot dot”).

Later in this chapter, we describe the commands you can use to determine your home
and present working directories. We also identify commands you can use to interact with
the UNIX file system in general.

4.4.3 Pathnames: Absolute and Relative

A file or directory in a hierarchical file system is specified by a pathname. Pathnames can
be specified in three ways: (1) starting with the root directory, (2) starting with the pres-
ent working directory, and (3) starting with the user’s home directory. When a pathname
is specified starting with the root directory, it is called an absolute pathname because it

Files and File System Structure    ◾    159

can be used by any user from anywhere in the file system structure. For example, /home/
faculty/sarwar/courses/ee446 is the absolute pathname for the ee446 directory under the
user sarwar’s home directory. The absolute pathname for the file called mid1 under sar-
war’s home directory is /home/faculty/sarwar/courses/ee446/exams/mid1.

Pathnames starting with the present working directory or a user’s home directory are
called relative pathnames. When the user sarwar logs on, the system puts him into his
home directory, /home/faculty/sarwar. While in his home directory, sarwar can specify
the file mid1 (see Figure 4.2) by using a relative pathname, ./courses/ee446/exams/mid1 or
courses/ee446/exams/mid1. The user sarwar (or anyone else) in the directory ee446 can
specify the same file with the relative pathname exams/mid1. The owner (or anyone logged
on as the owner) of the mid1 file can also specify it from anywhere in the file structure
by using the pathname ~/courses/ee446/exams/mid1 or $PATH/courses/ee446/exams/
mid1. Or, you could specify ee446 from your personal directory as ../courses/ee446.

A typical UNIX system has several disk drives that contain user and system files, but, as
a user, you do not have to worry about which disk drive contains the file that you need to
access. In UNIX, multiple disk drives and/or disk partitions can be mounted on the same
file system structure, allowing their access as directories and not as named drives A:, B:,
C:, and so on, as in MS-DOS and Microsoft Windows. You can access files and directories
on these disks and/or partitions by specifying their pathnames as if they are part of the file
structure on one disk/partition. Doing so gives a unified view of all the files and directories
in the system, and you do not have to worry about remembering the names of drives and
the files and directories they contain.

root

bin

cat chmod sh

kernel modules

group passwd

admin

bobk sarwar

courses

ee231 ee446

exams labs

solutions

midl

Directory file

Nondirectory file

mid2

letter taxes15

personal

home students spool tmp……

…

…

…

…

…

………

boot dev etc lib tmp usr var

FIGURE 4.2 Typical UNIX file structure.

160 ◾ UNIX: The Textbook, Third Edition

4.4.4 Some Standard Directories and Files

Every UNIX system contains a set of standard files and directories. The standard directories
contain some specific files. In this section, we discuss some of the important directories.
You may like to browse through the first website listed in Web Resources (Table 4.4) to
know more about the FreeBSD (and PC-BSD) directory hierarchy.

Root directory (/): The root directory is at the top of the file system hierarchy and is
denoted as a slash (/). It contains some standard files and directories and, in a sense, is the
master cabinet that contains all drawers, folders, and files.

/bin: Also known as the binary directory, the /bin directory contains binary (i.e., exe-
cutable) images of most UNIX programs/commands that are fundamental to starting and
repairing single-user and multiuser environments. These commands include cat, chmod,
cp, csh, date, echo, kill, ln, ls, mkdir, mv, pgrep, ps, pwd, rm, rmdir, sh,
stty, sync, tar, tcsh, test, and unlink. The superuser and ordinary users may use
these programs.

On BSD, the /usr/bin directory is different from /bin. On Solaris, the /usr and /usr/
bin directories are one and the same thing because /bin is a symbolic link to /usr/bin. On
BSD, the /usr/bin directory contains hundreds of executable programs that are not needed
for starting or repairing the system. A few of the most commonly used are CC, awk, cal,
clear, diff, du, env, file, find, finger, gdb, gunzip, gzip, head, join, last,
less, locate, man, nl, pstree, quota, spell, ssh, sudo, tail, time, top, uniq,
vi, w, wc, which, who, whoami, zcat, zdiff, and zgrep. On our BSD, /usr/bin con-
tains 486 files and on Solaris it contains 1205 files.

/boot: This directory contains the programs and configuration files that are used dur-
ing the bootstrap process of your system. The /boot/loader file is the system loader, that
is, the program that actually loads the kernel into the memory and make it runnable. The
/boot/defaults directory contains the standard configuration files for bootstrapping. On
some systems, it may only contain the loader.conf file. The /boot/kernel directory con-
tains over 1500 kernel executable modules to be loaded into the memory at boot time. The
/boot/modules directory contains third-party modules that can be loaded into the kernel
at runtime.

/dev: The /dev directory, which is also known as the device directory, contains files
corresponding to the devices connected to the computer, including terminals, disk drives,
CD-ROM drive, tape drives, modems, graphics cards, network cards, printers, and so on.
These files, called special files, were described in Section 4.3.4.

This directory contains at least one file for every device connected to the computer.
Each device has a name and a number, and the special file representing the device
reflects both. Some example files in the /dev directory are as follows: ada0 is the first
serial advanced technology attachment (SATA) hard drive, kbd0 represents the key-
board, cd0 is for compact disc 0, cdrom for CD-ROM (which is a symbolic link to cd0,
as is dvd), pp0 represents a parallel port, lpt0 is for a printer, tty’s for (teletype) termi-
nals, and usb for Universal Serial Bus ports. The /dev/pts directory is used to manage
pseudoterminals.

Files and File System Structure    ◾    161

A system may have several devices of each type—for example, 10 hard disks or partitions,
20 terminals, 100 pseudoterminals, two solid state disks (SSDs), and so on. Our PC-BSD
based system contains a total of 124 files in the /dev directory. This directory may con-
tain several hundred—even over 1000—files in a network-based UNIX environment in a
medium-to-large-sized organization.

/etc: The /etc directory contains commands, files, and scripts needed for system configu-
ration and administration. A typical user is generally not allowed to use the commands and
files in this directory. Some of the files and directories in this directory include crontab, csh.
cshrc, csh.login, csh.logout, group, inetd.conf, login.access, login.conf, passwd, printcap,
profile, rc.d, rcp, shells, services, ssh, ssl, and termcap. Discussion of most of the files in this
directory is beyond the scope of this textbook. However, we briefly discuss the /etc/passwd
file toward the end of this section. We discuss a few more files in this directory under “System
Programming” in Chapters 18 through 21 and in Chapter 22 on “System Administration.”

/lib: The library directory contains a collection of related files for a given language in
a single file called an archive. A typical UNIX system today contains libraries for C and
C++. The archive file for one of these languages can be used by applications developed in
that language. The /lib directories contains libraries that are critical for the executable
programs in the /bin and /sbin directories. The /usr/lib directory contains the shared and
archive-type libraries (created by the ar command).

/tmp: Used by several commands and applications, the /tmp directory contains tempo-
rary files. You can use this directory for your own temporary files as well. All the files in
this directory are deleted periodically so that the disk (or a partition of the disk) does not
get filled with temporary files. The life of a file in the /tmp directory is set by the system
administrator and varies from system to system, but it is usually only a few minutes. Files
in /tmp may or may not exist when a system is rebooted.

/usr: The /usr directory contains subdirectories that hold, among other things, most of
the utilities, system daemons (see Chapter 10), applications, programming tools, standard
C include files, shared and archive-type language libraries, manual pages and other impor-
tant documents, and source code (BSD and third-party). Two of the most important sub-
directories in this directory are bin and lib, which contain binary images of most UNIX
commands (utilities, tools, etc.) and language libraries, respectively.

/usr/home: Organized in some fashion, the /usr/home directory is normally used to
hold the home directories of all the users of the system. For example, the system admin-
istrator can create subdirectories under this directory that contain home directories for
certain types of users. For instance, the diagram in Figure 4.2, which shows a university-
like setup, has one subdirectory each for the home directories of members of the adminis-
tration, faculty, staff, students, and so on. These subdirectories are labeled admin, faculty,
and students. Our system administrator created a symbolic link (see Chapter 8) called /
home that points to /usr/home, as shown in the following session.

% ls -ld /home
lrwxr-xr-x 1 root root 9 Jul 9 19:05 /home -> /usr/home
%

162 ◾ UNIX: The Textbook, Third Edition

This means that if a user, say john, changes the directory to his/her home directory and
runs the pwd command, the command output would be /usr/home/john and not /home/
john. We discuss links in UNIX, including symbolic links, in Chapter 8.

/var: The /var directory contains multipurpose log, temporary, and spool files. Among
several other directories, the /var/mail directory contains files for receiving and holding
incoming e-mail messages of users. When you read your new e-mail, it comes from a file in
this directory. The /var/spool/mqueue directory contains the undelivered mail queue and
the /var/spool/output directory contains the line printer spooling directories. The /var/
tmp directory contains temporary files that are kept between system reboots.

/etc/passwd: The /etc/passwd file contains one line for every user on the system and
describes that user. Each line has seven fields, separated by colons. The following is the
format of the line.

login_name:password:user_ID:group_ID:user_info:home_
directory:login_shell

The login _ name is the login name by which the user is known to the system and is
what the user types to log in. The password field contains the dummy password x or * in
newer systems (starting with System V Release 4—SVR4) and the encrypted version of the
password in older systems. The newer versions store encrypted passwords in the /etc/mas-
ter.passwd file. Only the superuser (i.e., root) has read and write access permissions for the
master password file; nobody else can even read it. POSIX requires user _ ID (UID) to
be an integer type. Usually, the superuser is assigned a UID of 0. Several other login names
are also assigned UIDs that are known (or from a known range). Typically, UIDs 1–499
or 1–999 are reserved. Depending on the UNIX system that you use, UIDs 1,000–32,767
or 1,000–65,536 are assigned to “normal” users like you and I. In systems that use 32-bit
UIDs, this range is 1,000–4,294,967,296. The group _ ID identifies the group that the
user belongs to, and it also is an integer between 0 and 65,535 with, usually, integers 0–99
reserved. The user _ info field contains information about the user, typically the user’s
full name. The home _ directory field contains the absolute pathname for the user’s
home directory. The last field, login _ shell, contains the absolute pathname for the
user’s login shell. The command corresponding to the pathname specified in this field is
executed by the system when the user logs on. Back-to-back colons mean that the field
value is missing, which is sometimes done with the user _ info field. The following ses-
sion shows the line from the /etc/passwd file on our system for the user sarwar:

% cat /etc/passwd | grep "sarwar"
sarwar:*:1004:1008:Mansoor Sarwar:/home/sarwar:/bin/csh
%

In this line, the login name is sarwar, the password field contains *, the user ID is 1004,
the group ID is 1008, the personal information is the user’s full name (Mansoor Sarwar),
the home directory is /home/sarwar, and the login shell is /bin/csh, or the C shell. We usu-
ally work under the Bourne shell by running the /bin/sh command after login.

Files and File System Structure    ◾    163

The following in-chapter exercises give you practice in browsing the file system on your
UNIX machine and help you understand the format of the /etc/passwd file.

EXERCISE 4.1
Go to the /dev directory on your system and identify one character special file and one
block special file.

EXERCISE 4.2
View the /etc/passwd file on your system to determine your user ID.

4.5 NAVIGATING THE FILE STRUCTURE
Now, we describe some useful commands for browsing the UNIX file system, creating files
and directories, determining file attributes, determining the absolute pathname for your
home directory, determining the pathname for the present working directory, and deter-
mining the type of a file. The discussion is based on the file structure shown in Figure 4.2
and the user name sarwar.

4.5.1 Determining the Absolute Pathname for Your Home Directory

When you log on, the system puts you in your home directory. You can find the full path-
name for your home directory by using the echo and pwd commands.

With no argument, the echo command displays a blank line on the screen. You can
determine the absolute pathname of your home directory by using the echo command,
as follows:

$ echo $HOME
/home/sarwar
$

where HOME is a shell variable (a placeholder) in the Bourne shell. The shell uses this vari-
able to keep track of the absolute pathname of your home directory. In the C shell, the vari-
able is home. We discuss shell variables and the echo command in detail in Chapters 12
through 15.

Another way to display the absolute pathname of your home directory is to use the
pwd command. You use this command to determine the absolute pathname of the
directory you are currently in, that is, your present working directory, also known as
the current directory. This command does not require any arguments. When you log
on, the UNIX system puts you in your home directory. You can use the pwd com-
mand right after logging on to display the absolute pathname of your home directory,
as follows:

$ pwd
/home/sarwar
$

164 ◾ UNIX: The Textbook, Third Edition

If you are using the C shell, the same command would display /usr/home/sarwar as the
absolute pathname of your home directory. However, the ls –ld commands in the fol-
lowing session with /usr/home/sarwar and /home/sarwar as arguments produce the same
result, as follows:

% pwd
/usr/home/sarwar
% ls -ld /usr/home/sarwar
drwxr-xr-x 26 sarwar faculty 47 Aug 15 11:49 /usr/home/sarwar
% ls -ld /home/sarwar
drwxr-xr-x 26 sarwar faculty 47 Aug 15 11:49 /home/sarwar
%

This is so because /home is a symbolic link to /usr/home.

4.5.2 Browsing the File System

You can browse the file system by going from your home directory to other directories in
the file system structure and displaying a directory’s contents (files and subdirectories in
the directory), provided that you have the permissions to do so. We cover file security and
access permissions in detail in Chapter 5. For now, we show how you can browse your own
files and directories by using the cd (change directory) and ls (list directory) commands.
The following is a brief description of the cd command.

SYNTAX

cd [directory]

Purpose: Change the present working directory to directory, or to the home directory if
no argument is specified

The shell variable PWD is set after each execution of the cd command. The pwd com-
mand uses the value of this variable to display the present working directory. After getting
into a directory, you can view its contents (the names of files or subdirectories in it) by
using the ls command. The following is a brief description of this command. The cd and
ls commands are two of the most heavily used UNIX commands.

SYNTAX

ls [option] [pathname-list]

Purpose: Send the names of the files in the directories and files specified in pathname-list
to the display screen

Output: Names of the files and directories in the directory specified by pathname-list, or
the names only if pathname-list contains file names only

Files and File System Structure    ◾    165

Commonly used options/features:
-F Display / after directories, * after binary executables, and @ after symbolic links
-a Display names of all files, including hidden files ., .., and so on.
-i Display inode number and file name
-l Display long list that includes access permissions, hard link count, owner, group,

file size (in bytes), and modification time

If the command is used without any argument, it displays the names of files and direc-
tories in the present working directory. The following session illustrates how the ls and
cd commands work with and without parameters. The pwd command displays the abso-
lute pathname of the current directory. With the exception of hidden files, the ls com-
mand displays the name of all the files and directories in the current directory. The cd
courses command is used to make the courses directory the current directory. The cd
ee446/exams command makes ee446/exams the current directory. The ls ~ and ls
$HOME commands display the names of the files and directories in your home directory.
The cd command without any argument puts you in your home directory. In other words,
it makes your home directory your current directory.

$ pwd
/home/sarwar
$ ls
Desktop Downloads Images Videos personal
Documents GNUstep Music courses unix3e
$ cd courses
$ ls
ee231 ee446
$ cd ee446/exams
$ pwd
/home/sarwar/courses/ee446/exams
$ ls
mid1 mid2
$ ls ~
Desktop Downloads Images Videos personal
Documents GNUstep Music courses unix3e
$ ls $HOME
Desktop Downloads Images Videos personal
Documents GNUstep Music courses unix3e
$ cd
$ ls
Desktop Downloads Images Videos personal
Documents GNUstep Music courses unix3e
$

We demonstrate the use of the ls command with various options in the remainder of this
chapter and other chapters of the book. We use the terms flag and option interchangeably.

166 ◾ UNIX: The Textbook, Third Edition

In a typical UNIX system, you are not allowed to access all the files and directories in
the system. In particular, you are typically not allowed to access many important files and
directories related to system administration and files and directories belonging to other
users. However, you have permissions to read a number of directories and files. The fol-
lowing session illustrates that we have permissions to go to and list the contents of, among
many other directories, the / and /usr directories.

$ cd /usr
$ ls
bin home jails lib32 libexec obj ports share swap
games include lib libdata local pbi sbin src tests
$ cd /
$ ls
COPYRIGHT compat entropy lib mnt root tmp
bin data etc libexec proc sbin usr
boot dev home media rescue sys var
$ cd
$ ls /usr
bin home jails lib32 libexec obj ports share swap
games include lib libdata local pbi sbin src tests
$

Without any option, the ls command does not show all the files and directories; in
particular, it does not display the names of hidden files. Examples of these files include .,
.., .bash_history, .bashrc, .config, .cshrc, .history, .login, .mailrc, .profile, .rhosts, .shrc,
.ssh, and .xsession. We have already discussed the . and .. directories. The purposes of
some of the more important hidden files are summarized in Table 4.2.

You can also display the names of all the files and directories in a directory, including
the hidden files, by using the ls command with the –a option. In the following session, the
cd command places you in your home directory and the ls –a command displays all the
files and directories, including the hidden files, in your home directory.

$ cd
$ ls -a
. .gnome2 .lesshst .shrc Downloads
.. .gtkrc-2.0 .login .ssh GNUstep
.bash_history .history .login_conf .windowlab Images
.cinnamon .i3 .mail_aliases .xprofile Music
.config .icewm .mailrc .xscreensaver Videos
.cshrc .icons .profile .xsession courses
.fluxbox .ideskrc .ratpoisonrc .zshrc personal
.fvwm-crystal .idesktop .rhosts Desktop unix3e
.gconf .kde4 .screenrc Documents
$

You can use shell metacharacters in specifying multiple files or directory parameters
to the ls command. For example, the command ls /usr/*.c displays the names of all

Files and File System Structure    ◾    167

C program files in the /usr directory. We discuss the use of metacharacters and regular
expressions in detail in later in this chapter and in Chapters 6 and 7.

4.5.3 Creating Files

While working on a computer system, you need to create files and directories: files to store
your work and directories to organize your files more efficiently. You can create files by
using various tools and applications, such as editors, and create directories by using the
mkdir command. In Chapter 3, we discussed text editors vim and emacs that you can use
to create files containing plain text. You can create nontext files by using various applica-
tions and tools, such as a compiler, that translates source code in a high-level language (e.g.,
C) and generates a file that contains the corresponding executable code.

4.5.4 Creating and Removing Directories

We briefly discussed the mkdir and rmdir commands in Chapter 2. Here, we cover these
commands fully. You can create a directory by using the mkdir command. The following
is a brief description of this command.

SYNTAX

mkdir [option] directory-names

Purpose: Create directories specified in directory-names

TABLE 4.2 Some Important Hidden Files and Their Purposes

File Name Purpose

. Present working directory

.. Parent of the present working directory

.bash_history Contains the history of commands executed under
bash

.bashrc Setup for the Bash shell

.cshrc Setup for the C shell

.exrc Setup for vi

.login Setup for shell if C or tcsh shells are the login shells;
executed at login time

.mailrc Setup and address book for mail and mailx

.profile Setup for shell if Bourne or Korn shell is the login
shell; executed at login time

.rhosts Domain names of the trusted hosts (see Chapter 11
for details)

.shrc Setup for shell if Bourne shell is the login shell;
executed at login time

.ssh Keys of the servers on which you would be allowed
to login using the ssh command. Keys are stored
when you try to establish the session on a server
for the first time

.xsession Customized X session script

168 ◾ UNIX: The Textbook, Third Edition

Commonly used options/features:
-m MODE Create directories with the access permissions specified in MODE in octal

(see Chapter 5)
-p Create parent directories that do not exist in the pathnames specified in

directory-names

Here, directory-names are the pathnames of the directories to be created. When you
log on, you can use the following command to create a subdirectory, called memos, in your
home directory. Access permissions for the newly created directories are determined by
the current value of umask (see Chapter 5). You can confirm the creation of this directory
by using the ls –ld memo command, as in:

$ mkdir memos
$ ls -ld memo
drwxr-xr-x 2 sarwar faculty 68 Aug 15 07:42 memo
$

Similarly, you can create a directory called test_example in the /tmp directory by using:

$ mkdir /tmp/test_example
$

While in your home directory, you can create the directory professional and a subdi-
rectory letters under it by using the mkdir command with the -p option, as in:

$ mkdir -p professional/letters
$

You can use the rmdir command to remove an empty directory. If a directory is not
empty, you must remove the files and subdirectories in it before removing it. To remove
nonempty directories, you need to use the rm command with the -r option (see Chapter 6).
The following is a brief description of the rmdir command.

SYNTAX

rmdir [option] directory-names

Purpose: Remove the empty directories specified in directory-names
Commonly used options/features:

-p Remove empty parent directories also

The following command removes the letters directory from the present working direc-
tory. If letters is not empty, the rmdir command displays the error message rmdir:
letter: Directory not empty on the screen. If letters is a file, the command
displays the error message rmdir: letters: Not a directory.

Files and File System Structure    ◾    169

$ rmdir letters
$

The following command removes the directory letters from your present working direc-
tory and memos from your home directory.

$ rmdir letters ~/memos
$

If the ~/personal directory contains only one subdirectory, called diary, and it is empty,
you can use the following command to remove both directories.

$ rmdir -p ~/personal/diary
$

4.5.5 Determining File Attributes

You can determine the attributes of files by using the ls command with various options.
The options can be used together, and their order does not matter. For example, you can
use the -l option to get a long list of a directory that gives the attributes of files, such as the
owner of the file, as follows:

$ ls -l
total 5
drwxr-x--- 2 sarwar faculty 512 Jan 23 09:37 courses
drwxr----- 2 sarwar faculty 12 May 01 13:22 memos
drwx------ 2 sarwar faculty 163 May 05 23:13 personal
$ ls –l ~/courses/ee446/exams
-rwxr--r-- 1 sarwar faculty 1512 Mar 12 11:10 mid1
-rwxr--r-- 1 sarwar faculty 1485 May 19 14:34 mid2
drwxrwxrwx 2 sarwar faculty 63 May 12 13:44 solutions
$

The information displayed by the ls -l command is summarized in Table 4.3.
In the preceding two uses of the ls -l command, courses, memos, personal, and

solutions are directories, and mid1 and mid2 are ordinary files. As stated earlier, we dis-
cuss access permissions and user types in Chapter 5. The owner of the files is sarwar, who
belongs to the group faculty. The values of the remaining fields are self-explanatory.

You can use the ls command with the -i option to display the inode numbers of files
and directories. To display the inode number of a directory, you need to use the ls –id
command. The following examples of its use show that the inode number for the greeting
file is 6278611, and for the directories courses, memos, and personal, they are 6555603,
6555456, and 6555324, respectively.

$ ls -i greeting
6278611 greeting

170 ◾ UNIX: The Textbook, Third Edition

$ ls -id courses memo personal
6555603 courses 6555456 memo 6555324 personal
$

The ls -al command displays the long list of all the files in a directory, as follows:

$ ls -al ~/courses/ee446/exams
total 66
drwxr-xr-x 26 sarwar faculty 47 Aug 10 11:49 .
drwxr-xr-x 10 sarwar faculty 10 Aug 8 09:42 ..
-rw-r--r-- 1 sarwar faculty 84 Aug 13 10:19 mid1
-rw-r--r-- 1 sarwar faculty 68 Aug 13 11:49 mid2
drwxr-xr-x 2 sarwar faculty 12 Aug 14 22:55 solutions
$

You can use the -F option to identify directories, executable files, and symbolic links.
The ls -F command displays an asterisk (*) after an executable file, a slash (/) after a
directory, and an “at” symbol (@) after a symbolic link (discussed in Chapter 8), as follows:

$ ls -F /
COPYRIGHT compat/ entropy lib/ mnt/ root/ tmp/
bin/ data/ etc/ libexec/ proc/ sbin/ usr/
boot/ dev/ home@ media/ rescue/ sys@ var/
$

Note that there is no executable file in the root directory. The output of the ls –F /
bin command would show that all the files in the /bin directory are executable. You are

TABLE 4.3 Summary of the Output of the ls -l Command (fields
listed left to right)

Field Meaning

First letter of first field File type:
- ordinary file
b block special file
c character special file
d directory
l link
p named pipe (FIFO)
s socket

Remaining letters of first field Access permissions for owner,
group, and others

Second field Number of hard links
Third field Owner’s login name
Fourth field Owner’s group name (can also be a

number)
Fifth field File size in bytes
Sixth, seventh, and eighth field Date and time of last modification
Ninth field File name

Files and File System Structure    ◾    171

encouraged to read the online manual pages for the ls command on your system, or see
the Command Appendix at the CRC Press website for this book for a detailed description
of the command.

By using the shell metacharacters and regular expressions, you can specify a particular
set of files and directories in the file system structure, or a particular set of strings in files
or directories. For example, the following command can be used in the C shell to display
the long lists for all the files in the ~/courses/ee446 directory that have the .c extension and
start with the string lab followed by zero or more characters, with the condition that the
first of these characters cannot be 5.

$ ls -l ~/courses/ee446/lab[^5]*.c
...
$

Similarly, the following command can be used to display the inode numbers and names
of all the files in your current directory that have four-character names and an .html exten-
sion. The file names must start with a letter, followed by any two characters, and end with
a digit from 1 through 5.

$ ls -i [a-zA-Z]??[1-5].html
...
$

The following command under the C shell displays the names of all the files in your
home directory that do not start with a digit and that end with .c or .C. In other words, the
command displays the names of all the C and C++ source program files that do not start
with a digit. Under the Bourne shell, you may replace the ^ character with the ! character.
Thus, the ls ~/[!0-9]*.[c,C] command would produce the same results.

$ ls ~/[^0-9]*.[c,C]
...
$

4.5.6 Determining the Type of a File’s Contents

Because UNIX does not support file extensions, you can use any extension name for any
file. This means that you can use the .jpg extension for an executable program file. Thus,
you cannot determine the type of content of a file by simply looking at its name. Since many
software tools require the use of extensions and the user may rely on extensions, extension
names are, therefore, still significant. In UNIX, you can find the type of a file’s contents
by using the file command. Mostly, this command is used to determine whether a file
contains text or binary data. Doing so is important because text files can be displayed on a
terminal screen, whereas displaying the contents of a binary file shows “garbage” on your
terminal screen and can also freeze your terminal, as it may interpret some of the binary
values as control codes. The command has the following syntax.

172 ◾ UNIX: The Textbook, Third Edition

SYNTAX

file [option] file-list

Purpose: Attempt to classify files in file-list
Commonly used options/features:

-f FILE Use FILE as a file of file-list

The following session shows a sample run of the command. In this case, the types of the
contents of all the files in the root directory are displayed.

$ file /*
/COPYRIGHT: ASCII text
/bin: directory
/boot: directory
/compat: directory
/data: directory
/dev: directory
/entropy: regular file, no read permission
/etc: directory
/home: symbolic link to ‘/usr/home’
/lib: directory
/libexec: directory
/media: directory
/mnt: directory
/proc: directory
/rescue: directory
/root: directory
/sbin: directory
/sys: broken symbolic link to ‘usr/src/sys’
/tmp: sticky directory
/usr: directory
/var: directory
$

The following session shows a few more types of files.

$ cd /bin
$ file cat freebsd-version rcp sh
cat: ELF 64-bit LSB executable, x86-64, version 1

(FreeBSD), dynamically linked (uses shared libs),
for FreeBSD 10.0 (1000510), stripped

freebsd-version: POSIX shell script, UTF-8 Unicode text executable
rcp: setuid ELF 64-bit LSB executable, x86-64, version

1 (FreeBSD), dynamically linked (uses shared
libs), for FreeBSD 10.0 (1000510), stripped

Files and File System Structure    ◾    173

sh: ELF 64-bit LSB executable, x86-64, version 1
(FreeBSD), dynamically linked (uses shared libs),
for FreeBSD 10.0 (1000510), stripped

$

The executable and linkable format (ELF) is a common standard file format for exe-
cutable code, object code, shared libraries, and core dumps. UNIX creates a core dump
in a file, called core, when a program crashes. Programmers can use this file to identify
what caused the program to crash. It contains the program state at the time of crash:
data that the crashed program was accessing at the time it crashed, the state of the pro-
gram stack, and the location of the program statement that caused the crash. You can
use the file core command to determine the name of the program that produced
the core dump.

The cat and sh files contain ELF 64-bit executable codes, the rcp file contains set-
UID ELF 64-bit executable code, and freebsd-version contains a POSIX shell script.
Some more classifications that the file command displays are English text, C pro-
gram text, Bourne shell script text, empty, nroff/troff, Perl command text, Python
text, PostScript, sccs, and setgid executable. You should read the manual page for the
command to learn more about the file command. The terms SUID and SGID are
explained in Chapter 5.

The following in-chapter exercises familiarize you with the echo, cd, ls, and file
commands and the formats of their output.

EXERCISE 4.3
Right after you log on, run echo ~ to determine the full pathname of your home directory.

EXERCISE 4.4
Use the cd command to go to the /usr/bin directory on your system and run the
ls -F command. Identify two symbolic links and five binary files.

EXERCISE 4.5
Run the ls -l command in the same directory and write down sizes (in bytes) of the
find and sort commands.

EXERCISE 4.6
Run the file /etc/* command to identify types of all the files in this directory.

4.5.6.1 File Representation and Storage in UNIX
As stated earlier, the attributes of a file are stored in a data structure on the disk, called an
inode. At the time of its creation, every file is allocated a unique inode from a list (array)
of inodes on the disk, called the i-list. The index value of the inode in the i-list is called the
inode number for the inode allocated to the file, and is known as the file’s inode number.

174 ◾ UNIX: The Textbook, Third Edition

The UNIX kernel also maintains a table of inodes, called the inode table, in the main mem-
ory for all open files. When an application opens a file, an inode is allocated from the inode
table and the contents of the file’s inode on the disk are copied into it. The inode number is
used to index the inode table, allowing quick access to the attributes of an open file. When
a file’s attributes (e.g., file size) change, the inode in main memory is updated; disk copies
of inodes are updated at fixed intervals. For files that are not open, their inodes reside on
the disk. Some of the contents of an inode are shown in Figure 4.3.

The “link count” field specifies the number of different names the file has within the
system. This count is also known as the hard link count (see Chapter 8 for details on links).
The “file mode” field specifies what the file was opened for (read, write, etc.). The “user ID”
is the ID of the owner of the file. The “access permissions” field specifies who can access
the file for what type of operation (discussed in more detail in Chapter 5). The file’s location
on disk is specified by a number of direct and indirect pointers to disk blocks containing
file data.

A typical computer system has several disk drives. Each drive consists of a number of
platters with two surfaces (top and bottom). Each surface is logically divided into concen-
tric circles called tracks, and each track is subdivided into fixed size portions called sectors.
Tracks at the same position on both surfaces of all platters comprise a cylinder. Disk input/
output (I/O) takes place in terms of one sector, also called a disk block. For this reason,
disks are known as block devices. Traditionally, the sector size for hard disks has been 512
bytes. Newer hard disks use 4K-byte (i.e., 4096-byte) sector sizes. CD-ROMs and DVD-
ROMs use 2K-byte (i.e., 2048-byte) sector sizes.

A sector may be addressed by using a four-dimensional address comprising <disk #,
cylinder #, surface #, and sector #>. This four-dimensional address is translated to a lin-
ear (one-dimensional) block number, and most of the software in UNIX deals with block
addresses because they are relatively easy to deal with. These blocks start with the sector
numbered as 0 on the outermost cylinder on the topmost surface (i.e., the topmost track
of the outermost cylinder), which is assigned block number 0. The block numbers increase
through the rest of the tracks in that cylinder, through the rest of the cylinders on the disk,
and then through the rest of the disks. The diagram shown in Figure 4.4 is a logical view of

Link count
File mode
User ID

Time created
Time last updated

Access permissions

File’s location on disk

•

•

•

FIGURE 4.3 Contents of an inode.

Files and File System Structure    ◾    175

a disk system consisting of an array of disk blocks. File space is allocated in clusters of two,
four, or eight disk blocks.

Figure 4.5 shows how an inode number for an open file can be used to access a file’s
attributes, including the file’s contents, from the disk. It also shows contents of the direc-
tory ~/courses/ee446/labs and how the UNIX kernel maps the inode of the file lab1.c to its
contents on disk. As previously discussed, and as shown in the diagram, a directory con-
sists of an array of entries <inode #, filename>. Accessing (reading or writing) the contents

Sector

Track Cluster/block
Physical view: tracks, sectors, and clusters/blocks Logical view: disk blocks

Disk drive

FIGURE 4.4 Physical and logical views of a disk drive in terms of tracks, sectors, clusters, and disk
blocks.

1076
..

lab2.c
lab1.c

lab3.c

Contents of the directory
~/courses/ee446/labs

2083
13059
17488
18995

Number of links
File mode

User ID
Time created

Time last updated

Location on disk

Inode table
Inode for lab1.c Disk drive

Contents
of lab1.c

.

•
•
•

•
•
•

•
•
•

FIGURE 4.5 Relationship between the file lab1.c in a directory and its contents on a disk.

176 ◾ UNIX: The Textbook, Third Edition

of lab1.c requires the use of its inode number to index the in-memory inode table to get to
the file’s inode. The inode, as previously stated, contains, among other things, the location
of lab1.c on the disk.

The inode contains the location of lab1.c on the disk in terms of the numbers of the disk
blocks that contain the contents of the file. The details of how exactly a UNIX file’s loca-
tion is specified in its inode and how it is stored on the disk are beyond the scope of this
textbook. These details are available in any book on UNIX internals.

4.6 STANDARD FILES AND FILE DESCRIPTORS
When an application needs to perform an I/O operation on a file, it must first open the
file and then issue the file operation (read, write, seek, etc.). UNIX automatically opens
three files for every command it executes. The command reads input from one of these
files and sends its output and error messages to the other two files. These files are called
standard files: standard input (stdin) files, standard output (stdout) files, and standard
error (stderr) files. By default, these files are attached to the terminal on which the com-
mand is executed. That is, the shell makes the command input come from the terminal
keyboard, and its output and error messages go to the terminal (or the console win-
dow in case of an ssh session or an xterm in a UNIX system running the X Window
System, as discussed in detail in Chapter 23). These default files can be changed to other
files by using the redirection operators: < for input redirection and > for output and
error redirection.

A small integer, called a file descriptor, is associated with every open file in UNIX. The
integer values 0, 1, and 2 are the file descriptors for stdin, stdout, and stderr, respectively,
and are also known as standard file descriptors. The kernel uses file descriptors to perform
file operations (e.g., file read), as illustrated in Figure 4.6. The kernel uses a file descriptor to
index the per-process file descriptor table to obtain a pointer to the system-wide file table.
The file table, among other things, contains a pointer to the file’s inode in the inode table.
Once the inode for the file has been accessed, the required file operation is performed by

File
descriptor

0
1
2
3
4
5

Per-process file
descriptor table

System-wide
file table

System-wide
inode table

Inode for lab1.c
Disk drive

Contents
of lab1.c

Number of links
File mode
User ID

Time created
Time last updated

Location on disk
•
•
•

•
•
•

•
•
•

•
•
•

•
•
•

•
•
•

•
•
•

FIGURE 4.6 Relationship between file descriptors and the contents of files on disk.

Files and File System Structure    ◾    177

accessing appropriate disk block(s) for the file by using the direct and indirect pointers, as
described in Section 4.6.

Recall that every device, including a terminal, is represented by a file in UNIX. The
diagram shown in Figure 4.7 depicts the relationship between a file and its file descriptor.
Here, we assume that files lab1.c and lab2.c are open for some file operations (say, file read)
and have descriptors 3 and 4, respectively, that the kernel assigned to the files when they
were opened. We have described the details of this relationship in the preceding paragraph
and in Section 4.6, in terms of a file table, inode table, and the storage of the file on disk;
also see Figures 4.5 and 4.6.

The UNIX system allows standard files to be changed to alternate files for a single execu-
tion of a command, including a shell script. This concept of changing standard files to
alternate files is called input, output, and error redirection. We address input, output, and
error redirection in detail in Chapter 9. We have briefly mentioned the standard files and
file descriptors here because most UNIX commands that explicitly require input from an
outside source get it from standard input, unless it comes from a file (or list of files) that is
passed to the command as a command line argument. Similarly, most UNIX commands
that produce output send it to standard output. This information is important for proper
understanding and use of commands in the remaining chapters.

4.7 END-OF-FILE (eof) MARKER
Every UNIX file has an end-of-file (eof) marker. The commands that read their input from
files read the eof marker when they reach the end of a file. For files that can be stored, the
value of the eof marker is not a character; it is usually a small negative integer such as -1.
The <Ctrl-D> on a new line is the UNIX eof marker when the input file is attached to a
keyboard. That is why commands such as cat while reading input from the keyboard (see
Chapter 6) terminate when you press <Ctrl-D> on a new line.

File
descriptor

Per-process file
descriptor table

Keyboard

Display screen

lab1.c

lab2.c

0
1
2
3
4
5

•
•
•

•
•
•

FIGURE 4.7 Logical view of the relationship between file descriptors and the corresponding files.

178 ◾ UNIX: The Textbook, Third Edition

4.8 FILE SYSTEM
A file system is a directory hierarchy with its own root stored on a disk or disk parti-
tion, mounted under (glued to) a directory. The files and directories in the file system are
accessed through the directory under which they are mounted. All references to a file sys-
tem in this textbook are to the local file system. The description of the UNIX network file
system (NFS) is beyond the scope of this textbook, but it is briefly mentioned in Chapter 11.

PC-BSD and Solaris use the ZFS file system, which was first released by Oracle for Solaris
in June 2006. It became part of FreeBSD in April 2007. It is a POSIX-compliant file system
that is reliable, flexible, and scalable, with built-in compression and advance features for
file system backup and restoration. However, the hallmark of ZFS is its focus on maximum
data integrity that protects user data against all sorts of errors, including those caused by
decaying storage media, electric current spikes, accidental disk writes, and so on. It achieves
such data integrity by using several techniques, including data replication. The ZFS file sys-
tem’s features and issues are discussed in more detail under “System Administration” in
Chapter 23. Browse through the relevant websites listed in “Web Resources” (Table 4.4) to
find out more about the ZFS file system.

SUMMARY
In UNIX, a file is a sequence of bytes. This simple, yet powerful, concept and its imple-
mentation lead to nearly everything in the system being a file; users and processes are not.
UNIX supports seven types of file: ordinary file, directory, symbolic link, character special
file, block special file, named pipe (also known as FIFO), and socket. No file extensions are
supported for files of any type, but applications running on a UNIX system can require
their own extensions.

Every file in UNIX has several attributes associated with it, including file name, owner’s
name, date last modified, link count, and the file’s location on disk. These attributes are
stored in an area on the disk called an inode. When files are opened, their inodes are
copied to a kernel area called the inode table for faster access of their attributes. Every file
in a directory has an entry associated with it that comprises the file’s name and its inode

TABLE 4.4 Web Resources for UNIX File Systems

URL Description

http://www.freebsd.org/doc/en_
US.ISO8859-1/books/handbook/
dirstructure.html

This website contains a comprehensive description of the
FreeBSD directory hierarchy.

http://en.wikipedia.org/wiki/ZFS This website describes the ZFS file system.
http://www.bsdnow.tv/tutorials/zfs
http://www.freebsd.org/doc/en_
US.ISO8859-1/books/handbook/
filesystems-zfs.html

These websites contain very good tutorials on the ZFS file
system, describing the installation of ZFS and
administration of its various features.

http://www.princeton.edu/~unix/
Solaris/troubleshoot/zfs.html

This website discusses the management of the ZFS file
system.

http://2007.asiabsdcon.org/papers/
P16-paper.pdf

This website contains a paper that describes porting ZFS
to FreeBSD.

http://www.2007.asiabsdcon.org/papers/P16-paper.pdf
http://www.princeton.edu/~unix/Solaris/troubleshoot/zfs.html
http://www.freebsd.org/doc/en_US.ISO8859-1/books/handbook/filesystems-zfs.html
http://www.bsdnow.tv/tutorials/zfs
http://www.en.wikipedia.org/wiki/ZFS
http://www.freebsd.org/doc/en_US.ISO8859-1/books/handbook/dirstructure.html
http://www.freebsd.org/doc/en_US.ISO8859-1/books/handbook/dirstructure.html
http://www.freebsd.org/doc/en_US.ISO8859-1/books/handbook/dirstructure.html
http://www.freebsd.org/doc/en_US.ISO8859-1/books/handbook/filesystems-zfs.html
http://www.freebsd.org/doc/en_US.ISO8859-1/books/handbook/filesystems-zfs.html
http://www.princeton.edu/~unix/Solaris/troubleshoot/zfs.html
http://www.2007.asiabsdcon.org/papers/P16-paper.pdf

Files and File System Structure    ◾    179

number. The kernel accesses an open file’s attributes, including its contents, by reading the
file’s inode number from its directory entry and indexing the inode table with the inode
number.

The UNIX file structure is hierarchical with a root directory and all the files and direc-
tories in the system under it. Every user has a directory called the user’s home directory,
which he or she is placed when logging on to the system. Multiple disk drives and/or disk
partitions can be mounted on the same file system structure, allowing their access as
directories, and not as named drives A:, B:, C:, and so on, as in MS-DOS and Microsoft
Windows. This approach gives a unified view of all the files and directories in the system,
and users do not have to worry about remembering the names of drives and the files (and
directories) that they contain.

Directories (primarily) can be created and removed under the user’s home directory.
The file structure can be navigated by using various commands (mkdir, rmdir, cd, ls,
etc.). You can specify a file in the system by using the file’s absolute or relative pathname.
An absolute pathname starts with the root directory, and a relative pathname starts with a
user’s home directory or present working directory.

UNIX automatically opens three files for every command for it to read input
from and send its output and error messages to. These files are called standard input
(stdin), standard output (stdout), and standard error (stderr). By default, these files
are attached to the terminal on which the command is executed; that is, the command
input comes from the terminal keyboard, and the command output and error mes-
sages go to the terminal’s screen display. The default files can be changed to other files
by using redirection primitives: < for input redirection, and > for output and error
redirection.

The kernel associates a small integer with every open file. This integer is called the file
descriptor. The kernel uses file descriptors to perform operations (e.g., read) on the file. The
file descriptors for stdin, stdout, and stderr are 0, 1, and 2, respectively.

Every UNIX file has an end-of-file (eof) marker, which is a small negative integer such as
−1. The eof marker is <Ctrl-D> if a command reads input from the keyboard.

QUESTIONS AND PROBLEMS

 1. What is a file in UNIX?

 2. Does UNIX support any file types? If so, name them. Does UNIX support file
extensions?

 3. What is a directory entry? What does it consists of?

 4. What are special files in UNIX? What are character special and block special files?
Run the ls /dev | wc -w command to find the number of special files your
system has.

 5. What is meant by interprocess communication? Name three tools that UNIX pro-
vides for interprocess communication.

180 ◾ UNIX: The Textbook, Third Edition

 6. Draw the hierarchical file structure, similar to the one shown in Figure 4.2, for your
UNIX machine. Show files and directories at the first two levels. Also show where
your home directory is, along with files and directories under your home directory.

 7. Give three commands that you can use to list the absolute pathname of your home
directory.

 8. Write down the line in the /etc/passwd file on your system that contains information
about your login. What are your login shell, user ID, home directory, and group ID?
Does your system contain the encrypted password in the /etc/passwd or /etc/shadow
file?

 9. What would happen if the last field of the line in the /etc/passwd file were replaced
with /usr/bin/date? Why?

 10. What are the inode numbers of the root and your home directories on your machine?
Give the commands that you used to find these inode numbers.

 11. Create a directory in your home directory, called memos. Go into this directory and
create a file called memo.james by using one of the editors such as vi. Give three
pathnames for this file.

 12. Give a command for creating a subdirectory called personal under the memos direc-
tory that you created in Problem 11.

 13. Make a copy of the file memo.james and put it in your home directory. Name the
copied file temp.memo. Give two commands for accomplishing this task.

 14. Draw a diagram like that shown in Figure 4.5 for your memos directory. Clearly
show all directory entries, including inode numbers for all the files and directories
in it.

 15. Give the command for deleting the memos directory. How do you know that the
directory has been deleted?

 16. Why does a shell process terminate when you press <Ctrl-D> at the beginning of a
new line?

 17. Give a command to display the types of all the files in your ~/unix directory that start
with the word chapter, are followed by one of the digits 1, 2, 6, 8, or 9, and end with
.eps or .prn.

 18. Give a command line to display the types of all the files in the personal directory in
your home directory that do not start with letters a, k, G, or Q and the third letter in
the name is not a digit and not a letter (uppercase or lowercase).

 19. Use the ls –i command to display inode numbers for the /, /usr, and ~ directories
on your system. Show outputs of your commands and identify the inode numbers for
these directories.

Files and File System Structure    ◾    181

 20. Display the absolute pathnames of your home directory by using two different meth-
ods in the Bourne and C shells. Does your system use any symbolic links in the /
directory? If so, display those symbolic links by using a shell command.

 21. What are the basic characteristics of the ZFS file system? When did it first become
part of Solaris and which version? When did FreeBSD adopt it?

 22. What is the maximum size (in bytes/characters) of the file name in your UNIX
system? What command did you use to obtain your answer?

 23. Browse through the following directories and identify five commonly used com-
mands, tools, utilities, and daemons in them: /bin, /sbin, /usr/bin, /usr/sbin, /usr/
local/bin, and /usr/local/sbin. Clearly state the purpose of each command, tool, util-
ity, or daemon and the name of the directory in which it is found.

http://taylorandfrancis.com

183

C h a p t e r 5

File Security

Objectives

• To show the three protection and security mechanisms that UNIX provides

• To describe the types of users of a UNIX file

• To discuss the basic operations that can be performed on a UNIX file

• To explain the concept of file access permissions/privileges in UNIX

• To discuss how a user can determine access privileges for a file

• To describe how a user can set and change permissions for a file

• To cover the commands and primitives

 ?, ~, *, chmod, groups, ls -l, ls -ld, umask, umask –S

5.1 INTRODUCTION
As we pointed out earlier, a time-sharing system offers great benefits. However, it poses the
main challenge of protecting the hardware and software resources in it. These resources
include the input/output (I/O) devices, central processing unit (CPU), main memory, and
the secondary storage devices that store user files. The CPU runs user and kernel processes,
the main memory stores user processes and important operating system code and data
structures while the system is running, and the secondary storage devices store user files
and operating system code on a permanent basis. We limit this chapter to a discussion
about the protection of a user’s files from unauthorized access by other users. UNIX pro-
vides three mechanisms to protect your files.

The most fundamental scheme to protect user files is to give every user a login name
and a password, allowing a user to use a system (see Chapter 2). To prevent others from
accessing your files, keep the password for your computer account strictly confidential. The
second scheme protects individual files by converting them to a form that is completely

184 ◾ UNIX: The Textbook, Third Edition

different from the original version by means of encryption. This technique is used to protect
your most important files, so that the contents of these files cannot be understood even if
someone somehow gains access to them on the system. The third file protection scheme
allows you to protect your files by associating access privileges with them, so that only
a subset of users can access these files for a subset of file operations. In other words, the
owner of the files can decide to whom to grant access to these files. All three mechanisms
are described in this chapter, with emphasis on the third scheme.

5.2 PASSWORD-BASED PROTECTION
The first mechanism that allows you to protect your files from other users is the login
password scheme. Every user of a UNIX-based computer system is assigned a login name
(a name by which the user is known to the UNIX system) and a password. Both the login
name and password are assigned by the system administrator and are required for a user
to enter and use a UNIX system. All login names are public knowledge and can be found
in the /etc/passwd file. A user’s password, however, is given to that user only. This scheme
prevents users from accessing each other’s files. Users are encouraged to change their pass-
words frequently by using the passwd command (see Chapter 2). On some networked
systems, you may have to use the yppasswd or nispasswd command to change your
password on all the network’s computer systems. PC-BSD has the yppasswd command
and you can browse through its manual page to learn about it. Consult your instructor
about the command that you need to use on your particular system. Usually, only the sys-
tem administrator can change login names. Under some UNIX installations, users are also
allowed to change their usernames.

The effectiveness of this protection scheme depends on how well protected a user’s pass-
word is. If someone knows your password, that person can log on to the system and access
your files. There are, primarily, three ways of discovering a user’s password.

 1. You, as the owner of an account, inform others of your password.

 2. A user’s password can be guessed by another user.

 3. A user’s password can be guessed by “brute force.”

Never let anyone else know your password under any circumstances. As a safety mea-
sure, you should change your password regularly. Always choose passwords that would be
difficult for others to guess. A good password is one that is a mixture of letters, digits, and
punctuation marks—but it must be easy for you to memorize. Never write your password
on a piece of paper, and never use birthdays or the names of relatives, friends, famous
sportspersons, or favorite movie actors as passwords. Also, avoid using words as passwords.

By using “brute force,” someone tries to learn your password by trying all possible com-
binations of characters until the user’s password is found. Guessing someone’s password
is a time-consuming process and is commonly used by hackers. The brute force method
can be made more time-consuming for an infiltrator if the password is long and consists
of letters, digits, and punctuation marks. To illustrate the significance of using a more

File Security    ◾    185

complex password, consider a system in which the password is exactly eight characters
consisting of decimal digits only. This would allow a maximum of 108 (100 million) pass-
words that the brute force method would have to go through, in the worst-case analysis.
If the same system requires passwords to consist of a mixture of digits and uppercase let-
ters (a total of 36 symbols: 10 digits and 26 uppercase letters), the password space would
comprise 368 (about 2.8 trillion) passwords. If the system requires passwords that consist
of a mixture of digits, uppercase letters, and lowercase letters, the password space would
comprise 628 (about 218 trillion) passwords. Imagine the size of the password space if
passwords could include punctuation marks too! Many systems force a short (e.g., 5 s)
delay after an invalid password is entered before the next login prompt, to make the infil-
trator’s job even harder.

The following in-chapter exercise asks you to figure out how to change your password
on your system.

EXERCISE 5.1
In some UNIX systems you are not allowed to change your password. Does your system
allow you to change your password? If so, change your password. What command did you
use?

Note: Be sure to memorize your new password, because if you forget it you will have
to request your system administrator to reset your password to a new value, unless your
system allows you to change your password back to the previous password.

5.3 ENCRYPTION-BASED PROTECTION
In the second protection scheme, a software tool is used to convert a file to a form that is
completely different from its original version. The transformed file is called an encrypted
file, and the process of converting a file to an encrypted file is called encryption. The same
tool is used to perform the reverse process of transforming the encrypted file to its original
form, called decryption. You can use this technique to protect your most important files
so that their contents cannot be understood even if someone else gains access to them.
Figure 5.1 illustrates the encryption and decryption processes.

The UNIX command crypt can be used to encrypt and decrypt your files. You can
learn more about this command by running the man crypt command. This command
is discussed in detail in Chapter 7.

Original file Original file

Encryption/
decryption

software

Decryption/
encryption

software
Encrypted

file

FIGURE 5.1 Process of encryption and decryption.

186 ◾ UNIX: The Textbook, Third Edition

5.4 PROTECTION BASED ON ACCESS PERMISSION
The third type of file protection mechanism prevents users from accessing each other’s files
when they are not logged on as a file’s owner. As file owner, you can attach certain access
rights to your files that dictate who can and cannot access them for various types of file
operations. This scheme is based on the types of users, the types of access permissions, and
the types of operations allowed on a file under UNIX. Without this protection scheme,
users can access each other’s files because the UNIX file system structure (see Figure 4.2)
has a single root from which all the files in the system hang. We use the terms access per-
missions, access privileges, and access rights synonymously throughout the book.

5.4.1 Types of Users

Each user in a UNIX system belongs to a group of users, as assigned by the system admin-
istrator when a user is allocated an account on the system. A user can belong to multiple
groups, but a typical UNIX user belongs to a single group. All the groups in the system
and their memberships are listed in the file /etc/group (see Figure 4.2). This file contains
one line per group, with the last field of the line containing the login names of the group
members. A user of a file can be the owner of the file, a user who belongs to the same group
as the owner, or everyone else who has an account on the system. These, respectively, com-
prise the three types of users of a UNIX file: user, group, and others. As the owner of a file,
you can specify who can access it. The group name of a file is known as the group owner
of the file.

Once a user of a system has logged in, he/she is known to the UNIX system by an inte-
ger number, known as the user ID (UID), and not by the user’s login name. Every UNIX
system has one special user who has access to all of the files on the system, regardless of the
access privileges on the files. This user manages (administers) your UNIX system and is
commonly known as the superuser or system administrator. The login name for the super-
user is root, and the user ID is 0.

You can see the list of all user groups on your system by displaying the /etc/group file,
shown as follows.

$ more /etc/group
root::0:root,davis
other::1:
bin::2:root,bin,daemon
sys::3:root,bin,sys,adm
adm::4:root,daemon,adm
uucp::5:root,uucp
mail::6:root
tty::7:root,tty,adm
lp::8:root,lp,adm
nuucp::9:root,nuucp
staff::10:
daemon::12:root,daemon
sysadmin::14:davis

File Security    ◾    187

nobody::60001:
noaccess::60002:
nogroup::65534:
utadmin::100:
faculty::101:
ra::102:
courses::103:zartash
student::104:ank
...
$

There is one line in this file for every group on the system, each line having four colon-
separated fields. The first field specifies the group name, the second specifies some infor-
mation about the group, the third specifies the group ID as a number, and the last specifies
a comma-separated list of users who are members of the group. For example, the bin group
has group ID 2 and its members are users root, bin, and daemon. If the membership list in
a line is missing (e.g., the faculty group), this means that its membership is specified in the
/etc/passwd file. The system administrator makes a user part of a group at the time of add-
ing the user to the system. This group is known as a user’s default group. The default group
membership of a user is specified in the user’s entry in the /etc/passwd file. The system
administrator can make a user part of another group (in addition to his/her default group)
by placing his/her username in the comma-separated list of members for the group. You
can use the groups command to display which groups on your system a user is a member
of. The following session shows that sarwar is a member of the faculty group only; zartash
belongs to the groups faculty and courses; davis is a member of three groups: faculty, root,
and sysadmin; and root is a member of 11 groups: other, root, bin, sys, adm, uucp, mail,
tty, lp, nuucp, and daemon.

$ groups sarwar
faculty
$ groups zartash
faculty courses
$ groups davis
faculty root sysadmin
$ groups root
other root bin sys adm uucp mail tty lp nuucp daemon
$

5.4.2 Types of File Operations/Access Permissions

In UNIX, three types of access permissions/privileges can be associated with a file: read
(r), write (w), and execute (x). The read permission on a file allows you to read the file,
the write permission allows you to write to or remove the file, and the execute permission
allows you to execute/run the file. The execute permission should be set for executable files
only, i.e., files containing binary code (i.e., executable code generated by a compiler) or

188 ◾ UNIX: The Textbook, Third Edition

shell scripts, as setting it for any other type of file does not make any sense. We discuss the
purpose of execute permission on a directory in Section 5.4.3.

With three categories of file users and three types of permissions for each user type, a
UNIX file has nine types of permissions associated with it, as shown in Table 5.1. Note that
permissions are read across row by row. As stated in Chapter 4, access privileges are stored
in a file’s inode.

The value of X can be 1 (permission granted) or 0 (permission not granted). Thus, one bit
is needed to represent a permission type and a total of three bits are needed to indicate file
permissions for one type of user. In other words, a user of a file can have one of the eight (23)
possible types of permissions for a file at a given time. Octal numbers can represent these eight
three-bit access permission values from 0 to 7, as shown in Table 5.2. Access permissions 0
(binary 000) and 7 (binary 111) mean no access permissions and all permissions, respectively.

The nine bits needed to express permissions for the three types of file users result in the
possible access permission values of three-digit octal numbers 000–777 for file permissions.
The first octal digit specifies permissions for the owner of the file, the second digit specifies
permissions for the group that the owner of the file belongs to, and the third digit specifies
permissions for everyone else. In the output of the ls –l command, a bit value of 0 for
a permission is displayed as a dash (-), and a value of 1 is displayed as r, w, or x, depend-
ing on the position of the bit according to the table. Thus a permission value of 0 in octal
(no permissions granted) for a user of a file can be written as ––– and a permission of 7 (all
three permissions granted) can be denoted as rwx. The outputs of the ls –l commands in
the following session show that the /etc/passwd file is read-only for everyone on the system

TABLE 5.1 Summary of File Permissions in
UNIX

Permission Type

User Type Read (r) Write (w) Execute (x)

User (u) X X X
Group (g) X X X
Others (o) X X X

TABLE 5.2 Possible Access Permission Values for a File for a User,
Their Octal Equivalents, and Their Meanings

r w x
Octal Digit for

Permission Meaning

0 0 0 0 No permission
0 0 1 1 Execute-only permission
0 1 0 2 Write-only permission
0 1 1 3 Write and execute permissions
1 0 0 4 Read-only permission
1 0 1 5 Read and execute permissions
1 1 0 6 Read and write permissions
1 1 1 7 Read, write, and execute

permissions

File Security    ◾    189

except root, who has read and write permissions. The client.c file has read and write per-
missions for the owner (sarwar) and group (faculty), and read-only permission for others.

$ ls -l /etc/passwd
-rw-r--r-- 1 root sys 33020 Jul 10 15:47 /etc/passwd
$ ls -l client.c
-rw-rw-r-- 1 sarwar faculty 1277 Dec 19 07:30 client.c
$

Because a user can be in many groups, you can expand access to your files to accom-
modate different users through groups.

5.4.3 Access Permissions for Directories

Next, we will look at what the read, write, and execute permissions mean for directories.
The read permission for a directory allows you to read the contents of the directory; recall
that the contents of a directory are the names of files and directories in it. Thus, the ls
command can be used to list its contents. The write permission for a directory allows you
to create a new directory or a file in it or to remove an existing entry from it. The execute
permission for a directory is permission to search the directory but not to read from or
write to it. Thus, if you do not have execute permission for a directory, you cannot use
the ls -l command to list its contents or use the cd command to make it your current
directory. The same is true if any component in a directory’s pathname does not contain
execute permission. We demonstrate these aspects of the search permission on directories
in Section 5.5.2.

5.5 DETERMINING AND CHANGING FILE ACCESS PRIVILEGES
The following sections describe how you can determine the access privileges for files and
directories and how you can change them to enhance or limit someone’s access to your
files.

5.5.1 Determining File Access Privileges

You can use the ls command with the -l or -ld option to display access permissions for a
list of files and/or directories. The following is a brief description of the ls command with
the two options.

SYNTAX
ls -l [file-list]
ls -ld [directory-list]

Purpose: First syntax: Display the long list of files and/or directories in the space-separated
file-list on the display screen; in the case where file-list contains directories, display
long list of all the files in these directories

 Second syntax: Display the long list of directories in directory-list on the display screen.

190 ◾ UNIX: The Textbook, Third Edition

If no file-list is specified, the command gives long lists for all the files (except hidden
files) in the present working directory. Add the -a option to the command line to include
the hidden files in the display. Consider the following session.

$ ls -l
drwxr-x--- 2 sarwar faculty 512 Jul 29 17:35 courses
-rwxrwxrwx 1 sarwar faculty 12 May 01 13:22 labs
-rwxr--r-- 1 sarwar faculty 163 May 05 23:13 temp
$

File type
and access
permissions

Link
count

Owner Owner’s
group

Date Time File nameFile
size in
bytes

The leftmost character in the first field of the output indicates the file type (d for a direc-
tory and — for an ordinary file). The remaining nine characters in the first field show the
file access privileges for user, group, and others, respectively. The second field indicates the
number of hard links (discussed in Chapter 8) to the file. The third field shows the owner’s
login name. The fourth field shows the file’s group owner. The fifth field displays the file’s
size (in bytes). The sixth, seventh, and eighth fields display the date and time of file’s cre-
ation (or last update). The last field is the file’s name. Table 5.3 shows who has what type of
access privileges for the three files in this session: courses, labs, and temp.

If an argument of the ls -l command is a directory, the command displays the long lists of
all the files and directories in it. You can use the ls -ld command to display the long lists of
directories only. When executed without an argument, this command displays the long list for
the current directory, as shown in the first command of the following session. The second and
third commands show that when the ls -ld command is executed with a list of directories
as its arguments, it displays the long lists for those directories only. If an argument to the ls
-ld command is a file, the command displays the long list for the file. The fourth command,
ls -ld pvm/*, displays the long lists for all the files and directories in the pvm directory.

$ ls -ld
drwx--x--x 2 sarwar faculty 11264 Jul 8 22:21 .
$ ls -ld ABET
drwx------ 2 sarwar faculty 512 Dec 18 1997 ABET
$ ls -ld ~/Images courses/ee446
drwx------ 3 sarwar faculty 512 Apr 30 09:52 courses/ee446

TABLE 5.3 Permissions for Access to the Files courses, labs, and temp for the Three
Types of Users

File Name User Group Other

courses Read, write, search Read and search No permission
labs Read, write, execute Read, write, execute Read, write, execute
temp Read, write, execute Read Read

File Security    ◾    191

drwx--x--x 2 sarwar faculty 2048 Dec 18 1997 /home/sarwar/
Images
$ ls -ld pvm/*
drwx------ 3 sarwar faculty 512 Dec 18 1997 pvm/examples
drwx------ 2 sarwar faculty 1024 Oct 27 1998 pvm/qsort
-rw------- 1 sarwar faculty 1606 Jun 19 1995 pvm/Book_PVM
-rw------- 1 sarwar faculty 7639 Sep 11 1998 pvm/Jim_Davis
$

5.5.2 Changing File Access Privileges

You can use the chmod command to change access privileges for your files. The following
is a brief description of the command.

SYNTAX
chmod [options] octal-mode file-list
chmod [options] symbolic-mode file-list

Purpose: Change/set permissions for files in file-list
Commonly used options/features:

-R Recursively descend through directories changing/setting permissions for all the
files and subdirectories under each directory

-f Force specified access permissions; no error messages are produced if you are the
owner of the file

The symbolic mode, also known as mode control word, has the form <who><operator>
<privilege>, with possible values for “who,” “operator,” and “privilege” shown in
Table 5.4. This table also shows the use of + and – operators in the chmod command to
add and remove a permission.

Note that u, g, or o can be used as a privilege with the = operator only. Multiple val-
ues can be used for “who” and “privilege,” such as ug for the “who” field and rx for the

TABLE 5.4 Values for Symbolic Mode Components

Who Operator Privilege

u User + Add privilege r Read bit
g Group – Remove privilege w Write bit
o Other = Set privilege x Execute/search bit
a All u User’s current privileges
ugo All g Group’s current privileges

o Others’ current privileges
l Locking privilege bit
s Sets user or group ID mode bit
t Sticky bit

192 ◾ UNIX: The Textbook, Third Edition

“privilege” field. Some useful examples of the chmod command and their purposes are
listed in Table 5.5.

The following session illustrates how access privileges for files can be determined and
set. The chmod command is used to change (or set) access privileges, and the ls -l (or
ls -ld) command is used to show the effect of the corresponding chmod command.
After the chmod 700 courses command has been executed, the owner of the courses
file has read, write, and execute access privileges for it, and nobody else has any privilege.
The chmod g+rx courses command adds read and execute access privileges to the
courses file for the group; the privileges of the owner and others remain intact. The chmod
o+r courses command adds the read access privilege for the courses file for others.
The chmod a-w * command takes away the write access privilege from all users for all
the files in the current directory. The chmod 700 [l-t]* command sets the access per-
missions to 700 for all the files that start with letters “l” through “t,” as illustrated by the
output of the last ls -l command, which shows access privileges for the files labs and
temp changed to 700.

$ cd
$ ls -l
drwxr-x--- 2 sarwar faculty 512 Apr 23 09:37 courses
-rwxrwxrwx 1 sarwar faculty 12 May 01 13:22 labs
-rwxr--r-- 1 sarwar faculty 163 May 05 23:13 temp
$ chmod 700 courses
$ ls -ld courses
drwx------ 2 sarwar faculty 512 Apr 23 09:37 courses

TABLE 5.5 Examples of the chmod Command and Their Purposes

Command Purpose

chmod 700 * Sets access privileges for all files, including directories, in the current
directory to read, write, and execute for the owner, and provides no
access privilege to anyone else

chmod 740 courses Sets access privileges for courses to read, write, and execute for the
owner and read-only for the group, and provides no access for others

chmod 751 ~/courses Sets access privileges for ~/courses to read, write, and execute for the
owner, read and execute for the group, and execute-only permission
for others

chmod 700 ~ Sets access privileges for the home directory to read, write, and execute
(i.e., search) for the owner, and no privileges for anyone else

chmod u=rwx courses Sets owner’s access privileges for courses to read, write, and execute
and keeps the privileges of group and others at their present values

chmod ugo-rw sample or
chmod a-rw sample

Does not let anyone read or write sample

chmod a+x sample Gives everyone execute permission for sample
chmod g=u sample Makes sample’s group privileges match its user (owner) privileges
chmod go= sample Removes all access privileges to sample for group and others

File Security    ◾    193

$ chmod g+rx courses
$ ls -ld courses
drwxr-x--- 2 sarwar faculty 512 Apr 23 09:37 courses
$ chmod o+r courses
$ ls -ld courses
drwxr-xr-- 2 sarwar faculty 512 Apr 23 09:37 courses
$ chmod a-w *
$ ls -l
dr-xr-x--- 2 sarwar faculty 512 Apr 23 09:37 courses
-r-xr-xr-x 1 sarwar faculty 12 May 01 13:22 labs
-r-xr—r--- 1 sarwar faculty 163 May 05 23:13 temp
$ chmod 700 [l-t]*
$ ls -l
dr-xr-x--- 2 sarwar faculty 512 Apr 23 09:37 courses
-rwx------ 1 sarwar faculty 12 May 01 13:22 labs
-rwx------ 1 sarwar faculty 163 May 05 23:13 temp
$

The access permissions for all the files and directories under one or more directories
can be set by using the chmod command with the -R option. In the following session, the
first command sets access permissions for all the files and directories under the directory
called courses to 711, recursively. The second command sets access permissions for all the
files and directories under ~/personal/letters to 700, recursively. “Recursively” means by
traversing all subdirectories under the specified directories, i.e., courses and ~/personal/
letters in these examples.

$ chmod -R 711 courses
$ chmod -R 700 ~/personal/letters
$

If you specify access privileges with a single octal digit in a chmod command, it is used
by the command to set the access privileges for “others”; the access privileges for “user”
and “group” are both set to 0 (i.e., no access privileges). If you specify two octal digits in a
chmod command, the command uses them to set access privileges for “group” and “oth-
ers”; the access privileges for “user” are set to 0. In the following session, the first chmod
command sets “others” access privileges for the courses directory to 7 (rwx) and 0 (---)
for owner and group. The second chmod command sets “group” and “others” access privi-
leges for the personal directory to 7 (rwx) and 0 (---), respectively, and no access rights
for the file owner. The ls -l command shows the results of these commands.

$ chmod 7 courses
$ chmod 70 personal
$ ls –l
d------rwx 2 sarwar faculty 512 Nov 10 09:43 courses
d---rwx--- 2 sarwar faculty 512 Nov 10 09:43 personal
drw------- 2 sarwar faculty 512 Nov 10 09:43 sample
$

194 ◾ UNIX: The Textbook, Third Edition

5.5.3 Access Privileges for Directories

As previously stated, the read permission on a directory allows you to read the contents
of the directory (recall that the contents of a directory are the names of files and direc-
tories in it), the write permission allows you to create a file in the directory or remove an
existing file or directory from it, and the execute permission for a directory is permission
for searching the directory. It is important to note that read and write permissions on
directories are not meaningful without the search permission. So, you must have both
read and execute permissions on a directory to be able to list its contents. Similarly, you
must have both write and execute permissions on a directory to be able to create a file
in it.

In the following session, the write permission for the directory courses has been turned
off. Thus, you cannot create a subdirectory ee345 in this directory by using the mkdir
command or copy a file foo into it. Similarly, as you do not have search permission for the
directory personal, you cannot use the cd command to enter (change directory to) this
directory. If the directory sample had a subdirectory, say foobar, for which the execute
permission was turned on, you still could not change directory to foobar, because search
permission for sample is turned off. Finally, as read permission for the directory personal
is turned off, you cannot display the names of files and directories in it by using the ls
command, even though search permission on it is turned on.

$ chmod 600 sample
$ chmod 500 courses
$ chmod 300 personal
$ ls -ld courses personal sample
dr-x------ 2 sarwar sarwar 512 Aug 4 06:36 courses
d-wx------ 2 sarwar sarwar 62 Aug 4 06:36 personal
drw------- 2 sarwar sarwar 88 Aug 4 06:36 sample
$ mkdir courses/ee345
mkdir: courses/ee345: Permission denied
$ cp foo courses
cp: courses/foo: Permission denied
$ cd sample
cd: sample: Permission denied
$ ls -l personal
total 0
ls: personal: Permission denied
$

The next session shows that simply having read or write permission on a directory is
not sufficient to read its contents (e.g., display them with the ls command) or create a
file or directory in it. For example, the directory dir1 has write permission turned on, but
you cannot copy the prog1.cpp file into it, because search permission on it is turned off.
Similarly, you cannot remove the file f1 from dir2. After you turn on its search permission
with the chmod u+x dir2 command, you can remove the file f1.

File Security    ◾    195

$ ls -ld dir?
d-w------- 2 sarwar sarwar 2 Aug 4 06:59 dir1
d-w------- 2 sarwar sarwar 3 Aug 4 06:59 dir2
$ cp prog1.cpp dir1
cp: dir1/prog1.cpp: Permission denied
$ rm dir2/f1
rm: dir2/f1: Permission denied
$ chmod u+x dir2
$ ls -ld dir2
d-wx------ 2 sarwar sarwar 3 Aug 4 06:59 dir2
$ rm dir2/f1
$

The following in-chapter exercises ask you to use the chmod and ls -ld commands
to see how they work, and to enhance your understanding of UNIX file access privileges.

EXERCISE 5.2

Create three directories called courses, sample, and personal by using the mkdir com-
mand. Set access permissions for the directory sample so that you have all three privileges,
users in your group have read access only, and the other users of your system have no
access privileges. Show your work.

EXERCISE 5.3

Use the chmod o+r sample command to allow others read access to the directory
sample. Use the ls -ld sample command to confirm that read permission for sample
has been enabled for others.

EXERCISE 5.4

Use the session preceding these exercises to understand fully how the read, write, and exe-
cute permissions work for directories. Run the session on your system and verify results.

5.5.4 Default File Access Privileges

When a new file or directory is created, UNIX sets its access privileges based on the cur-
rent mask value. On UNIX systems, the default access privileges for the newly created files
and directories are 777 for executable files and directories and 666 for text files. However,
these default permissions may be different depending on the value of the mask set on your
system. If a mask bit is 1, the corresponding permission will be disabled, and if it is 0, the
permission will be determined by the system using a Boolean logic expression involving
the current value of the mask and the default permissions. We describe this expression
later in this section.

You can display the current mask value or set it to a new value by using the umask com-
mand. The following is a brief description of the command.

196 ◾ UNIX: The Textbook, Third Edition

SYNTAX
umask [-S] [mask]

Purpose: Set access permission bits for newly created files and directories to 0, if the cor-
responding bit in the mask is set to 1. Other permission bits are determined by using
a Boolean logic expression involving the values of the mask and default permissions.
Without any argument, the command displays the current value of the mask. With the
–S option, the command displays the mask value in a symbolic form (see the following
paragraphs).

When the command is executed without an argument, it displays the current value of
the bit mask in octal, as in shown in the first command of the following session. The right-
most nine bits (i.e., the rightmost three octal digits) are for user, group, and others, and
the leftmost three bits (i.e., the leftmost octal digit) are for special access bits described
in Section 5.6 below. The umask -S command displays the symbolic value of the mask,
showing the access privileges that will be set for a newly created directory or executable file
for user, group, and others.

$ umask
0022
$ umask -S
u=rwx,g=rx,o=rx
$

When used with a mask as an argument, the umask command can be used to set the
mask value. The mask value may be specified as a three-digit or four-digit octal number. In
the following session, we show how the umask command can be used without and with
the –S option.

$ umask 077
$ umask
0077
$ umask -S u=rwx,g=,o=
$ umask
0077
$

The umask command is normally placed in the system startup file ~/.profile in System
V UNIX and the ~/.login or ~/.cshrc file in BSD UNIX, so that it executes every time you
log on to the system.

The argument of umask is a bit mask, specified in octal, that identifies the permission
bits that are to be turned off when a new file is created. The values of other access permis-
sion bits are computed by the Boolean expression

File Security    ◾    197

A = B AND C' = BC'

Here, A is the file access permissions assigned to a newly created file or directory, B is the
default access permission (777 for a directory or executable file and 666 for a text file), and
C is the current mask value. C’ (pronounced “NOT C” or “C prime”) is called negation,
or 1’s complement of C. The 1’s complement of a binary number is obtained by replacing 1s
with 0s and vice versa. For example, the 1’s complement of the four-bit binary number 1011
is 0100. The bitwise Boolean function AND of two binary variables returns 1 if and only if
both the bits are 1; it returns 0 otherwise. While computing A in the above equation, the
AND function compares the respective bits in B and C’ and returns a 1 if and only if both
bits are 1; otherwise it returns 0.

We now show a few examples how UNIX assigns file access permissions to newly cre-
ated files and directories for a given mask. We determine the access permissions for a newly
created directory or executable file for the mask value 022 by using the above Boolean
expression.

C = 022 = 000 010 010
C' = 111 101 101
B = 777 = 111 111 111
A = B AND C' = 111 101 101 = 755 (octal) = 111101101 (binary)
 rwxr-xr-x (symbolic)

Thus, file access permissions are 755 (read, write, execute for user, read and execute for
group and others). For a text file, B is 666. Thus, access permissions for a newly created text
file would be 644, as follows:

C' = 111 101 101
B = 666 = 110 110 110
A = B AND C' = 110 100 100 = 644 (octal) = 110100100 (binary)
 rw-r--r-- (symbolic)

The access permissions for a newly created text file for the mask value 077 would be 600,
as follows:

C = 077 = 000 111 111
C' = 111 000 000
B = 666 = 110 110 110
A = B AND C' = 110 000 000 = 600 (octal) = 110000000 (binary)
 rw------- (symbolic)

We now do a Bourne shell session to verify the above results. Note that with the mask set to
022, the permissions for the newly created directory (labs) and executable file (hello) are 755
(rwx1-xr-x), and are 644 (rw-r--r--) for the newly created text file, tempfile, as calculated
above. With the mask set to 077, the permissions for the directory (lectures) and executable
file (greeting) are 700 (rwx------), and are 600 (rw-------) for the text file (textfile).

198 ◾ UNIX: The Textbook, Third Edition

$ umask 022
$ mkdir labs
$ cc hello.c -o hello
$ cat > tempfile
date
pwd
$ ls -ld labs hello tempfile
-rwxr-xr-x 1 sarwar sarwar 6945 Aug 5 22:27 hello
drwxr-xr-x 2 sarwar sarwar 2 Aug 5 22:26 labs
-rw-r--r-- 1 sarwar sarwar 9 Aug 5 22:30 tempfile
$ umask 077
$ mkdir lectures
$ cc hello.c -o greeting
$ cat > testfile
date
echo "Hello, world!"
$ ls -ld lectures greeting testfile
-rwx------ 1 sarwar sarwar 6945 Aug 5 22:28 greeting
drwx------ 2 sarwar sarwar 2 Aug 5 22:27 lectures
-rw------- 1 sarwar sarwar 26 Aug 5 22:29 testfile
$

The authors prefer a mask value of 077 so that their new files are always created with full
protection in place, that is, files have full access permissions for the owner and no permis-
sions for anyone else. This mask allows you to have a completely private system, not allow-
ing other users to read, write, or execute your files or read, write, or search your directories.
Recall that you can change access privileges for files on an as-needed basis by using the
chmod command. Another common umask value is 027, which gives default privileges to
group members and no permissions to others.

The following in-chapter exercise asks you to use the umask command to determine
the current file protection mask.

EXERCISE 5.5
Run all the shell sessions shown and discussed in this section to make sure that they
work on your system too and to understand the use of the umask command works and
how the UNIX system decides about the access permissions on newly created files and
directories.

5.6 SPECIAL ACCESS BITS
In addition to the nine commonly used access permission bits described in this chapter,
three additional bits are of special significance. These bits are known as the set-user-ID
(SUID) bit, set-group-ID (SGID) bit, and sticky bit.

File Security    ◾    199

5.6.1 Set-User-ID (SUID) Bit

We have previously shown that the external shell commands have corresponding files that
contain binary executable codes or shell scripts. The programs contained in these files are
not special in any way in terms of their ability to perform their tasks. Normally, when a
command executes, it does so under the access privileges of the user who issues the com-
mand, which is how the access privileges system described in this chapter works. However,
a number of UNIX commands need to write to files that are otherwise protected from
users who normally run these commands. An example of this file is /etc/passwd, the file
that contains a user’s login information (see Chapter 4). Only the superuser is allowed
to write to this file to perform tasks such as adding a new login and changing a user’s
group ID. However, UNIX users are normally allowed to execute the passwd command
to change their passwords. Thus, when a user executes the passwd command, the com-
mand changes the user password in the /etc/passwd file on behalf of the user who runs this
command. The problem is that we want users to be able to change their passwords, but at
the same time they must not have write access to the /etc/passwd file to keep information
about other users in this file from being compromised. Note that, on Solaris, it is the non-
readable master password file /etc/shadow that changes.

As previously stated, when a command executes, it runs with the privileges of the user
running the command. Another way of stating the same thing is that, when a command
runs, it executes with the effective user ID of the user running the command. UNIX has an
elegant mechanism that solves the problem stated in the preceding paragraph—and many
other similar security problems—by allowing commands to change their effective user ID
and become privileged in some way. This mechanism allows commands such as passwd
to perform their work, yet not compromise the integrity of the system. Every UNIX file
has an additional protection bit, called the SUID bit, associated with it. If this bit is set for
a file containing an executable program, the program takes on the privileges of the owner
of the file when it executes. Thus, if a file is owned by root and has its SUID bit set, it runs
with superuser privileges. This bit is set, for example, for the passwd command. So, when
you run the passwd command, it can write to the /etc/passwd file (replacing your existing
password with the new password), even though you do not have access privileges to write
to the file.

Several other UNIX commands require root ownership and the SUID bit set because
they access and update operating system resources (files, data structures, etc.) that an aver-
age user must not have permissions for. Some of these commands are lp, mail, mkdir,
mv, and ps. The authors of computer game software that maintains a scores file can make
another use of the SUID bit. When the SUID bit is set for such software, it can update the
scores file when a user plays the game, although the same user cannot update the scores file
by explicitly writing to it.

The SUID bit is enabled if the execute bit for the owner is s (or S). If both SUID and
execute bits are enabled, the bit is displayed as s in the output of the ls –l command. If
SUID bit is enabled but execute bit is disabled, the bit is displayed as S by the ls –l com-
mand. The following session shows an example of each case.

200 ◾ UNIX: The Textbook, Third Edition

$ ls -l cp.new foo
-rwSr--r-- 1 sarwar faculty 14 Aug 4 23:38 cp.new
-r-sr-xr-x 1 sarwar faculty 30 Aug 5 05:27 foo
$

The chmod command with the following syntax may be used to set the SUID bit.

SYNTAX
chmod 4xxx file-list
chmod u+s file-list

Purpose: Change/set the SUID bit for files in file-list

Here, xxx is the octal number that specifies the read, write, and execute permissions for
user, group, and others, and the octal digit 4 (binary 100) is used to set the SUID bit. When
the SUID bit is set, the execute bit for the user is set to s (lowercase) if the execute permis-
sion is already set for the user; otherwise, it is set to S (uppercase). The following session
illustrates the use of these command syntaxes. The first, the ls -l cp.new command,
is used to show that the execute permission for the cp.new file is set. The chmod 4710
cp.new command is used to set the SUID bit and other nine bits of permission to octal
710. The second, the ls -l cp.new command, shows that the x bit value has changed
to s. The two subsequent chmod commands are used to set the SUID and execute bits to
0. The ls -l cp.new command is used to show that execute permission has been taken
away from the owner. The chmod u+s cp.new command is used to set the SUID bit
again, and the last ls -l cp.new command shows that the bit value is S (uppercase)
because the execute bit was not set prior to setting the SUID bit.

$ ls -l cp.new
-rwx--x--- 1 sarwar faculty 14 Aug 4 23:26 cp.new
$ chmod 4710 cp.new
$ ls -l cp.new
-rws--x--- 1 sarwar faculty 14 Aug 4 23:26 cp.new
$ chmod u-s cp.new
$ chmod u-x cp.new
$ ls -l cp.new
-rw---x--- 1 sarwar faculty 14 Aug 4 23:26 cp.new
$ chmod u+s cp.new
$ ls -l cp.new
-rwS--x--- 1 sarwar faculty 14 Aug 4 23:26 cp.new
$

Although the idea of the SUID bit is sound, it can compromise the security of the system
if not implemented correctly. For example, if the permissions of any set-UID program are

File Security    ◾    201

set to allow write privileges to others, you can change the program in this file or overwrite
the existing program with another program. Doing so would allow you to execute your
(new) program with superuser privileges.

5.6.2 Set-Group-ID (SGID) Bit

The SGID bit works in the same manner in which the SUID bit does, but it causes the
access permissions of the process to take the group identity of the group to which the
owner of the file belongs. This feature is not as dangerous as the SGID feature, because
most privileged operations require superuser identity, regardless of the current group ID.
The SGID bit is enabled if the execute bit for the group is s (or S). If both SGID and execute
bits are enabled, the bit is displayed as s in the output of the ls –l command. If SGID bit
is enabled but the execute bit is disabled, the bit is displayed as S by the ls –l command.
The following session shows an example of each case.

$ ls -l cp.new foo
-rw-r-Sr-- 1 sarwar faculty 14 Aug 4 23:38 cp.new
-r-xr-sr-x 1 sarwar faculty 30 Aug 5 05:27 foo
$

Using either of the following two command syntaxes can set the SGID bit.

SYNTAX
chmod 2xxx file-list
chmod g+s file-list

Purpose: Change/set the SGID bit for files in file-list

Here, xxx is the octal number specifying the read, write, and execute permissions for
the files in file-list, and the octal digit 2 (binary 010) specifies that the SGID bit is to be set
for the same files. The following session on PC-BSD illustrates the use of these command
syntaxes. The command chmod 2751 cp.new sets the SGID bit for the cp.new file and
sets its access privileges to 751 (rwxr-x--x). The rest of the commands are similar to
those in Section 5.6.1.

$ ls -l cp.new
-rwxr-x--x 1 sarwar faculty 14 Aug 4 23:26 cp.new
$ chmod 2751 cp.new
$ ls -l cp.new
-rwxr-s--x 1 sarwar faculty 14 Aug 4 23:26 cp.new
$ chmod g-s cp.new
$ chmod g-x cp.new
$ ls -l cp.new
-rwxr----x 1 sarwar faculty 14 Aug 4 23:26 cp.new

202 ◾ UNIX: The Textbook, Third Edition

$ chmod g+s cp.new
$ ls -l cp.new
-rwxr-S--x 1 sarwar faculty 14 Aug 4 23:26 cp.new
$

You can set or reset the SUID and SGID bits by using a single chmod command. Thus,
the command chmod ug+s cp.new can be used to perform this task on the cp.new file.
You can also set the SUID and SGID bits along with the access permissions bits (read, write,
and execute) by preceding the octal number for access privileges by 6 because the leftmost
octal digit 6 (110) specifies that both the SUID and SGID bits be set. Thus, the command
chmod 6754 cp.new may be used to set the SUID and SGID bits for the cp.new file and
its access privileges to 754.

5.6.3 Sticky Bit

The last of the 12 access bits, the sticky bit, is on if the execute bit for others is t (or T), as
in the case /tmp shown below.

$ ls -l / | grep tmp
drwxrwxrwt 66 root root 86 Aug 5 05:56 tmp
$

The sticky bit can be set for a directory to ensure that an unprivileged user cannot
remove or rename files of other users in that directory. You must be the owner of a direc-
tory or have appropriate permissions to set the sticky bit for it. Some systems do not allow
nonsuperusers to set the sticky bit. It is commonly set for shared directories that contain
files owned by several users.

The output of the above command shows that the /tmp directory, owned by root, has
the sticky bit on. It has read, write, and execute permissions for everyone. It means that any
user can create a file or directory in /tmp. However, because the sticky bit is on, no user
(other than the superuser) can remove a file or directory that he/she does not own. Thus,
UNIX allows you to remove any files in /tmp that you own, but no other file or directory,
because you are not the owner of those files and directories.

Originally, this bit was designed to inform the kernel that the code segment of a pro-
gram is to be shared or kept in the main memory or the swap space owing to the fre-
quent use of the program. Thus, when this bit is set for a program, the system tries to keep
the executable code for the program (the code segment only) in memory after it finishes
execution—the processes literally “stick around” in the memory. If, for some reason, mem-
ory space occupied by this program is needed by the system for loading another program,
the program with the sticky bit on is saved in the swap space (a special area on the disk
used to save processes temporarily). That is, if the sticky bit is set for a program, the code
segment of the program is either kept in memory or in the swap space after it finishes its
execution. When this program is executed again, with the program in memory, its execu-
tion starts right away. If the program is in the swap space, the time needed for loading it is
much shorter than if it were stored on disk as a UNIX file. The advantage of this scheme,

File Security    ◾    203

therefore, is that if a program with the sticky bit on is executed frequently, it is executed
much more quickly.

This facility is useful for programs such as compilers, assemblers, editors, and commands
such as ls and cat, which are frequently used in a typical computer system environment.
However, care must be taken that not too many programs have this bit set. Otherwise,
system performance will suffer because of the lack of free space, with more and more space
being used by the programs whose sticky bit is set. This historical use of the sticky bit is
no longer needed in newer UNIX systems (starting with 4.4BSD) because virtual memory
systems use page replacement algorithms that do not remove recently used program pages/
segments. Thus, PC-BSD does not allow you to set the sticky bit on nondirectory files, as
shown in the shell session at the end of this section.

Either of the following syntaxes may be used to set the sticky bit.

SYNTAX
chmod 1xxx file-list
chmod +t file-list

Purpose: Change/set the sticky bit for files in file-list

Here, xxx is the octal number specifying the read, write, and execute permissions, and
the octal digit 1 (binary 001) specifies that the sticky bit is to be set. When the sticky bit is
set, the execute bit for others is set to t if others already has execute permission; otherwise,
it is set to T. The following session on PC-BSD illustrates the use of these command syn-
taxes. The command chmod 1751 cp.new tries to set the sticky bit for the cp.new file
and set its access privileges to 751, but fails. Similarly, the command chmod +t cp.new
tries to set the sticky bit for the cp.new file, but fails. As the outputs of these commands
show, PC-BSD does not allow you to enable the sticky bit for a nondirectory file. It does
allow you to set this bit for dir1, a directory, with the command chmod +t dir1.
Solaris, on the other hand, would allow you to set the sticky bit for nondirectory files as
well as directories. The explanations for the lowercase t and uppercase T in the following
session are the same as for the lowercase s and uppercase S for SUID and SGID bits.

$ ls -l cp.new
-rw-rw-rw- 1 sarwar sarwar 14 Aug 4 23:38 cp.new
$ ls -ld dir1
drwxr-xr-x 2 sarwar sarwar 2 Aug 5 07:59 dir1
$ chmod 1751 cp.new
chmod: cp.new: Inappropriate file type or format
$ chmod +t cp.new
chmod: cp.new: Inappropriate file type or format
$ chmod +t dir1
$ ls -ld dir1
drwxr-xr-t 2 sarwar sarwar 2 Aug 5 07:59 dir1

204 ◾ UNIX: The Textbook, Third Edition

$ chmod o-x dir1
$ ls -ld dir1
drwxr-xr-T 2 sarwar sarwar 2 Aug 5 07:59 dir1
$

EXERCISE 5.6
Run all the shell sessions shown and discussed in this section to make sure that they work
on your system too and to understand how the chmod command is used to set and reset
special access permission bits (SUID, SGID, and sticky) on your UNIX system. Also, find
out if the SGID and sticky bit may be set on your system for both files and directories.

SUMMARY
A time-sharing system has to ensure protection of one user’s files from unauthorized (acci-
dental or malicious) access by other users of the system. UNIX provides several mecha-
nisms for this purpose, including one based on access permissions. Files can be protected
by informing the system of the type of operations (read, write, and execute) that are per-
mitted on the file by the owner, group (the users who are in the same group as the owner),
and others (everyone else on the system). UNIX allows a user to be part of multiple groups.
Only the system administrator, also known as the superuser in UNIX jargon, can add you
to a group or remove you from a group. You can display the groups you (or any user) are
a member of by using the groups command. These nine commonly used access permis-
sions are represented by bits. This information is stored in the inode of the file. When a
user tries to access a file, the system allows or disallows access based on the file’s access
privileges stored in the inode.

Access permissions for files can be viewed by using the ls -l command. When used
with directories, this command displays attributes for all the files in the directories. The
ls -ld command can be used to view access permissions for directories. The owner of
a file can change access privileges on it by using the chmod command. The umask com-
mand, which is usually placed in the ~/.profile file for System V UNIX and the ~/.login or
~/.profile file for BSD UNIX, allows the user to specify a bit mask that informs the system
of access permissions that are disabled for the user, group, and others. When a file is cre-
ated by the UNIX system, it sets access permissions for the file according to the bit mask
and the default access permissions for directories, executable files, and text files. File access
permissions assigned to newly created files (A) are given by the expression A=B AND C',
where B is the default privileges for the file, C is the value of the bit mask, and AND is the
Boolean function for bitwise AND. In a typical system, the mask is set to 022 for default
permissions on newly created files and directories. For a fully secure system, it should be
set to 077. You can use the umask command to display the value of current flag in octal
and umask –S command to display the flag in a symbolic form.

UNIX also allows three additional bits—the set-user-ID (SUID), set-group-ID (SGID),
and sticky bit—to be set. The SUID and SGID bits allow the user to execute commands,
including passwd, ls, mkdir, and ps, which access important system resources to which

File Security    ◾    205

access is not allowed otherwise. The sticky bit can be set for a directory to ensure that an
unprivileged user cannot remove or rename files of other users in that directory. Only the
owner of a directory, or someone else having appropriate permissions, can set the sticky
bit for the directory. It is commonly set for shared directories that contain files owned by
several users, such as /tmp is the UNIX file system structure. Historically, the sticky bit
has served another purpose. It can be set for frequently used utilities so that UNIX keeps
them in the main memory or on a fixed area on the disk, called the swap space, after their
use. This feature makes subsequent access to these files much faster than if they were to
be loaded from the disk as normal files. However, due to the implementation of virtual
memory systems using advanced algorithms of demand paging, demand segmentation,
and paged segmentation on most modern multiuser time-sharing systems, the use of the
sticky bit to keep a program memory or swap space resident is no longer required. Its use
for directories remains useful and necessary. Therefore, all modern UNIX systems support
the sticky bit for directories, but support for the sticky bit for files is no longer maintained
across the board. For example, PC-BSD does not provide support for the sticky bit for non-
directory files, but Solaris does.

The final format of the 12 access permissions bits, as used in the chmod command, is
shown in Figure 5.2.

QUESTIONS AND PROBLEMS

 1. What are the three basic file protection schemes available in UNIX?

 2. List all possible two-letter passwords comprising digits and punctuation letters.

 3. If a computer system allows six-character passwords comprising a random combi-
nation of decimal digits and punctuation marks, what is the maximum number of
passwords that a user will have to try with the brute force method of breaking into a
user’s account? Why?

 4. What is the maximum number of passwords that can be formed if a system allows
digits, uppercase and lowercase letters, and punctuation marks to be used? Assume
that passwords must be 12 characters long.

 5. Suppose that a hacker is trying to guess a password—consisting of eight characters—
using uppercase letters, lowercase letters, and digits. Further, suppose that the system
forces a 5 s delay after each password guess. How long will it take the hacker to guess

Bit: 12 11 10 9 8 7 6 5 4 3 2 1

SUID SGID Sticky r w x r w x r w x

Bits for special access
privileges

Owner’s access
privileges

Group’s access
privileges

Others’ access
privileges

FIGURE 5.2 Position of access privilege bits for UNIX files as specified in the chmod command.

206 ◾ UNIX: The Textbook, Third Edition

the password in the worst-case analysis? Repeat the exercise if we are allowed to use
five punctuation marks as characters in a password. Why? Show all your work.

 6. How does file protection based on access permissions work? Base your answer on
various types of users of a file and the types of operations they can perform. How
many permission bits are needed to implement this scheme? Why?

 7. How do the read, write, and execute permissions work in UNIX? Illustrate your
answer with some examples.

 8. How many user groups exist on your system? How did you get your answer? What
groups are you a member of and what is your default group? How many groups is
root a member of on your system? How did you obtain your answer? If you used any
commands, show the commands and their outputs.

 9. Create a file test1 in your present working directory and set its access privileges to
read and write for yourself, read for the users in your group, and none to every-
one else. What command did you use to set privileges? Give another command that
would accomplish the same thing.

 10. The user sarwar sets access permissions to his home directory by using the command
chmod 700 $HOME. If the file cp.new in his home directory has read permissions
of 777, can anyone read this file? Why or why not? Explain your answer.

 11. What is the effect of each command? Explain your answers.

 a. chmod 776 ~/lab5

 b. chmod 751 ~/lab?

 c. chmod 511 *.c

 d. chmod 711 ~/*

 e. ls –l

 f. ls –ld

 g. ls –l ~/personal

 h. ls –ld ~/personal

 12. What does the execute permission mean for a directory, a file type for which the
execute operation makes no sense? Explain with an example.

 13. Create a file dir1 in your home directory and use cp /etc/passwd dir1/
mypasswd command to copy the /etc/passwd file into it. Use the chmod command
to have only the search permission on for it and execute the following commands.
What is the result of executing these commands? Do the results make sense to you?
Explain.

File Security    ◾    207

 a. cd dir1

 b. ls

 c. rm dir1/mypasswd

 d. cp /etc/passwd dir1

 14. What umask command should be executed to set the permissions bit mask to 037?
With this mask, what default access privileges are associated with any new file that
you create on the system? Why? Where would you put this command so that every
time you log on to the system this mask is effective?

 15. Give a command line for setting the default access mode so that you have read, write,
and execute privileges, your group has read and execute permissions, and all others
have no permission for a newly created executable file or directory. How would you
test it to be sure that it works correctly?

 16. Give chmod command lines that perform the same tasks as the mesg n and mesg
y commands. (Hint: Every hardware device, including your terminal, has an associ-
ated file in the /dev directory.)

 17. What are the purposes of the set-user-ID (SUID), set-group-ID (SGID), and sticky
bits?

 18. Give one command line for setting all three special access bits (SUID, SGID, and
sticky) for the file cp.new. (Hint: Use octal mode.)

 19. In a UNIX system, the cat command is owned by root and has its SUID bit set. Do
you see any problems with this setup? Explain your answer.

 20. Some UNIX systems do not allow users to change their passwords with the passwd
command. How is this restriction enforced? Is it a good or bad practice? Why?

 21. Calculate the file access permissions assigned to newly created directories, executable
files, and text files for bit mask 027. Show all your work.

 22. Describe briefly the purpose of each of the following commands. Run these com-
mands on your system after creating ~/prog1 (a file) and ~/dir1 (a directory) on it and
show the outputs of the commands to verify your answers. If your system does not
support any command on your system, explain why you think it does so.

 a. chmod 4776 ~/prog1

 b. chmod 1776 ~/prog1

 c. chmod 6776 ~/prog1

 d. chmod g+s ~/prog1

 e. chmod +t ~/prog1

208 ◾ UNIX: The Textbook, Third Edition

 f. chmod +t ~/dir1

 g. chmod ugo-r ~/prog1

 h. chmod a-rw ~/prog1

 i. chmod ug+x ~/dir1

 j. chmod go= ~/dir1

 k. chmod u=rwx ~/prog1

 l. chmod g=o ~/dir1

 m. chmod o-wx ~/dir1

209

C h a p t e r 6

Basic File Processing

Objectives

• To discuss how to display contents of a file

• To explain copying, appending, moving/renaming, and removing/deleting files

• To describe how to determine the size of a file

• To discuss commands for comparing files

• To describe how to combine files

• To discuss printer control commands

• To cover the commands and primitives

	 	>, >>, ^, , [], *, ?, cancel, cat, cp, diff, head, lp, lpc,
lpq, lpr, lprm, lpstat, lptest, less, ls, more, mv, nl, pg,
pr, rm, tail, uniq, wc

6.1 INTRODUCTION
This chapter describes how some basic file operations can be performed in UNIX. These opera-
tions are primarily for nondirectory files, although some are applicable to directories as well;
we previously discussed the most commonly used directory operations in Chapter 4. When
discussing the file operations in this chapter, we also describe related commands and give
examples to illustrate how these commands can be used to perform the needed operations.
Remember, complete information on a particular command is available via the man command.

6.2 VIEWING CONTENTS OF TEXT FILES
You view files to identify their contents. You can use several UNIX commands to display
contents of text files on the display screen. These commands differ from each other in
terms of the amount of the file content displayed, the portion of file contents displayed

210 ◾ UNIX: The Textbook, Third Edition

(initial, middle, or last part of the file), and whether the file’s contents are displayed one
screen or one page at a time. Recall that you can view only those files for which you have
the read permission. In addition, you must have the execute (search) permissions for all
the directories involved in the pathname of the file to be displayed. Viewing does not mean
edit, write, or update—just view.

6.2.1 Viewing Complete Files

You can display the complete contents of one or more files on screen by using the cat
command. However, because the command does not display file contents one screen or
one page at a time, you see only the last page of a file that is larger than one page (i.e., one
screen) in size. The following is a brief description of the cat command.

SYNTAX
cat [options] [file-list]

Purpose: Concatenate/display the files in file-list on standard output (screen by default),
one after another

Output: Contents of the files in file-list displayed on the screen, one file at a time
Commonly used options/features:

-e Display $ at the end of each line; works in conjunction with the –v option
-n Put line numbers with the displayed lines
-t Display tabs as ^I and form feeds as ^L
-v Display nonprintable characters, except for the tab, form feed, and newline

characters

Here, file-list is an optional argument that consists of the pathnames for one or more
files, separated by spaces. For example, the following command displays the contents of the
student_records file in the present working directory. If the file is larger than one page, the
file contents quickly scroll off the display screen.

% cat student_records
Jonh Doe ECE 3.54
Pam Meyer CS 3.61
Jim DAVIS CS 2.71
Jason Kim ECE 3.97
Amy Nash ECE 2.38
%

The following command displays the contents of files lab1 and lab2 in the directory ~/
courses/ee446/labs. The command does not pause after displaying the contents of lab1.

$ cat ~/courses/ee446/labs/lab1 ~/courses/ee446/labs/lab2
[contents of lab1 and lab2]
$

Basic File Processing    ◾    211

As discussed in Chapter 4, shell metacharacters can be used to specify file names. The
contents of all the files in the current directory can be displayed by using the cat * com-
mand. The cat exam? command displays contents of all the files in the current directory
starting with the string exam and followed by one character such as exam1. The contents
of all the files in the current directory starting with the string lab can be displayed by using
the cat lab* command.

As indicated by the command syntax, file-list is an optional argument. Thus, when the
cat command is used without any arguments, it takes input from standard input, one
line at a time, and sends it to standard output. Recall that, by default, standard input for a
command is the keyboard, and standard output is the display screen. Therefore, when the
cat command is executed without an argument, it takes input from the keyboard and
displays it on the screen one line at a time. The command terminates when the user presses
<Ctrl+D>, the UNIX end-of-file (EOF), on a new line. As is the case throughout the book,
the text typed by the user is shown in bold.

% cat
This is a test.
This is a test.
In this example, the cat command takes input from stdin (keyboard)
In this example, the cat command takes input from stdin (keyboard)
and sends it to stdout (screen), one line at a time.
and sends it to stdout (screen), one line at a time.
However, this is not a typical use of this commend. It is normally
However, this is not a typical use of this commend. It is normally
used to display contents of a file, one line at a time, until it
used to display contents of a file, one line at a time, until it
encounters the end-of-file marker. When the cat command reads
input from stdin,
encounters the end-of-file marker. When the cat command reads
input from stdin,
<Ctrl+D> is the end-of-file marker, as shown below.
<Ctrl+D> is the end-of-file marker, as shown below.
<Ctrl+D>
%

At times, you need to view a text file with line numbers. You typically need to do so
when, during the software development phase, a compilation of your source code results
in compiler errors having line numbers associated with them. The UNIX utility nl allows
you to display lines of text files with line numbers. Thus, the nl student _ records
command displays the lines in the student_records file with line numbers, as shown in
the following session. The cat -n student _ records command can also perform
the same task.

% nl student_records
1 Jonh Doe ECE 3.54

212 ◾ UNIX: The Textbook, Third Edition

2 Pam Meyer CS 3.61
3 Jim DAVIS CS 2.71
4 Jason Kim ECE 3.97
5 Amy Nash ECE 2.38
%

Also, if you need to display files with a time stamp and page numbers, you can use the pr
utility. It displays file contents as the cat command does, but it also partitions the file into
pages and inserts a header for each page. The page header contains today’s date, current time,
file name, and page number. The pr command, like the cat command, can display multiple
files, one after the other. The following session illustrates a simple use of the pr command.

% pr student_records

Aug 25 19:49 2014 student_records Page 1

Jonh Doe ECE 3.54
Pam Meyer CS 3.61
Jim DAVIS CS 2.71
Jason Kim ECE 3.97
Amy Nash ECE 2.38

<Blank lines until the end of page>

%

You can print files with line numbers and a page header by connecting the nl, pr, and
lp (or lpr) commands. This method is discussed in Chapter 9.

6.2.2 Viewing Files One Page at a Time

If the file to be viewed is larger than one page, you can use the more command, also
known as the UNIX pager, to display the file a screenful at a time. The following is a brief
description of the command.

SYNTAX
more [options] [file-list]

Purpose: Concatenate/display the files in file-list on standard output a screenful at a time
Output: Contents of the files in file-list displayed on the screen, one page at a time
Commonly used options/features:

+/str Start two lines before the first line containing str
-nN Display N line per screen/page
+N Start displaying the contents of the file at line number N

When run without file-list, the more command, like the cat command, takes input
from the keyboard one line at a time and sends it to the display screen. If a file-list is given
as an argument, the command displays the contents of the files in file-list one screen at a

Basic File Processing    ◾    213

time. To display the next screen, press <Space>. To display the next line in the file, press
<Enter>. At the bottom left of a screen, the command displays the percentage of the
file that has been displayed up to that point. In order to display the next line, you press
<Space>. To return to the shell, you press the q or Q key.

The following command displays the sample file in the present working directory a screen-
ful at a time. Running this command is equivalent to running the cat sample | more
command. We discuss the | operator, known as the pipe operator, in detail in Chapter 9.

$ more sample
[contents of sample]
$

The following command displays contents of the files sample, letter, and memo in the
present working directory a screenful at a time. The files are displayed in the order they
occur in the command.

$ more sample letter memo
[contents of sample, letter, and memo]
$

The following command displays the contents of the file param.h in the directory /usr/
include/sys one page at a time with 10 lines per page after fully displaying the first page.

$ more –n10 /usr/include/sys/param.h
[contents of /usr/include/sys/param.h]
$

The following command displays, one page at a time, the contents of all the files in the
present working directory that have the .c extension (i.e., files containing C source codes).

$ more ./*.c
[contents of all .c files in the current directory]
$

The less command can also be used to view a file page by page. It is similar to the
more command but is more efficient and has many features that are not available in more.
It has support for many of the vi and vim Command mode commands. For example, it
allows forward and backward movement of file contents one or more lines at a time, redis-
playing the screen, and forward and backward string search. It also starts displaying a file
without reading the whole file, which makes it more efficient than the more command or
the vi or vim editor for large files.

6.2.3 Viewing the Head or Tail of a File

Having the ability to view the head (some lines from the beginning) or tail (some lines from
the end) of a file is useful in identifying the type of data stored in the file. For example,
the head operation can be used to identify a PostScript file or a uuencoded file, which have

214 ◾ UNIX: The Textbook, Third Edition

special headers, and the tail information could be used to inspect status information at the
end of a log file or error file. (We discuss encoding and decoding of files in Chapter 7.) The
UNIX commands for displaying the beginning lines or ending lines of a file are head and
tail. The following is a brief description of the head command.

SYNTAX
head [option] [file-list]

Purpose: Display the initial portions (i.e., heads) files in file-list; the default head size is
10 lines

Output: Heads of the files in file-list displayed on the monitor screen
Commonly used options/features:

-N Display first N lines

Without any option and the file-list argument, the command takes input from stan-
dard input (the keyboard by default). The following session illustrates use of the head
command. The cat sample command is used to display the contents of the sample file.
The head sample command displays the first 10 lines of the sample file. The head -5
sample command displays the first 5 lines of sample.

$ cat sample
Ann
Ben
Chen
David
Eto
Fahim
George
Hamid
Ira
Jamal
Ken
Lisa
Mike
Nadeem
Oram
Paul
Queen
Rashid
Srini
Tang
Ursula
Vinny
Wang
X Window System

Basic File Processing    ◾    215

Yen
Zen
$ head sample
Ann
Ben
Chen
David
Eto
Fahim
George
Hamid
Ira
Jamal
$ head -5 sample
Ann
Ben
Chen
David
Eto
$

You can display heads of multiple files by specifying them as arguments of the head
command. For example, the head sample memo1 phones command displays the
first 10 lines each of the sample, memo1, and phones files. The head of each file is preceded
by ==> filename <== at the top left.

The following command, which displays the first 10 lines of the file otto, shows that the
file is a PostScript file. The output of the command gives additional information about the
file, including the name of the software used to create it, the total number of pages in the file,
and the page orientation. All of this information is important to know before the file is
printed.

$ head otto
%!PS-Adobe-3.0
%%BoundingBox: 54 72 558 720
%%Creator: Mozilla (Firefox) HTML->PS
%%DocumentData: Clean7Bit
%%Orientation: Portrait
%%Pages: 1
%%PageOrder: Ascend
%%Title: Otto Doggie
%%EndComments
%%BeginProlog
$

Similarly, the following command shows that data is a uuencoded file and that, when
uudecoded (see Chapter 7), the original file will be stored in the file data.99.

216 ◾ UNIX: The Textbook, Third Edition

$ head -4 data
begin 600 data.99 M.0I$3T4L($IO92!#.B`@,#`P.3`P.3H@0T4Z("`@("`@
("!34CH@9&]E,4!S M;6EL92YC;VTZ(#4P,RXR,C(N,C(R,CH@-
3`S+C,S,RXS,S,S"E-A<G=A<BP@ M4WEE9"!-.C`P,#$P-34Z144Z4U(Z<V%R=V%R0
’5P+F5D=3HU,#,N,3$Q+C$R
$

The tail command is used to display the last portion (tail) of one or more files. It is use-
ful to ascertain, for example, that a PostScript file has a proper ending or that a uuencoded
file has the required end on the last line. The following is a brief description of the command.

SYNTAX
tail [option] [file-list]

Purpose: Display the last portions (i.e., tails) of files in file-list; the default tail size is 10
lines

Output: Tails of the files in file-list displayed on the monitor screen
Commonly used options/features:
-f Follow growth of the file after displaying its tail, and display lines as they are

appended to the file. The tail command run with this option is terminated with
<Ctrl+C>.

±n Start n lines from the beginning of the file for +n, and n line (or n units) before
the end of the file for –n; by default, n is 10

-n N Display first N lines
-r Display lines in the reverse order (last line first)

Like the head command, the tail command takes input from standard input if no
file-list is given as an argument. The following session illustrates how the tail command
can be used with and without options. We use the same sample file that we used for the
head command. The tail sample command displays the last 10 lines (the default tail
size) of the sample file, and the tail -5 sample displays the last five lines of the sample
file. The tail +12 sample command displays the tail of the file starting with line num-
ber 12 (not the last 12 lines). Finally, the tail -5r sample command displays the last
5 lines of the sample file in reverse order.

$ tail sample
Queen
Rashid
Srini
Tang
Ursula
Vinny
Wang
X Window System
Yen

Basic File Processing    ◾    217

Zen
$ tail -5 sample
Vinny
Wang
X Window System
Yen
Zen
$ tail +12 sample
Lisa
Mike
Nadeem
Oram
Paul
Queen
Rashid
Srini
Tang
Ursula
Vinny
Wang
X Window System
Yen
Zen
$ tail -5r sample
Zen
Yen
X Window System
Wang
Vinny
$

The following commands show that files otto and data have proper PostScript and
uuencoded tails.

$ tail -5 otto
8 f3
() show
pagelevel restore
showpage
%%EOF
$ tail data
M;W4@:&%V90IN;W0@=’)I960@;W5T(&9O<B!L;VYG(‘1I;64N("!(;W=E=F5R
M+"!T;R!B92!S=6-C97-S9G5L+"!Y;W4@;75S="!T<@I(96QL;RP@5V]R;&0A
"(0H`
`
end
$

218 ◾ UNIX: The Textbook, Third Edition

The -f option of the tail command is very useful if you need to see the tail of a file
that is growing. This situation occurs quite often when you run a simulation program that
takes a long time to finish (several minutes, hours, or days) and you want to see the data
produced by the program as it is generated. It is convenient to do so if your UNIX system
runs the X Window System (see Chapter 22). In an X environment, you can run the tail
command in an xterm (a console window) to monitor the newly generated data as it is gen-
erated and keep doing your other work concurrently. The following command displays the
last 10 lines of the sim.data file and displays new lines as they are appended to the file. You
can terminate the command by pressing <Ctrl+C>.

$ tail -f sim.data
... last 10 lines of sim.data ...
... more data as it is appended to sim.data ...

Sometimes, while identifying problems in a UNIX system, the system administrator
needs to display files in the /var directory that keep growing because the kernel and appli-
cations keep appending new messages to them, including files in the /var/spool, /var/mail,
and /var/log directories. The system administrators are able to view these files as they are
appended using the tail –f command, as in the following session to display the last 10
lines in the /var/log/messages file and to continue to show new messages from the kernel
and applications as they are appended to this file.

$ tail -f /var/log/messages
... last 10 lines of /var/log/messages ...
... more data as it is appended to /var/log/messages ...

In the following in-chapter exercises, you are asked to use the cat, head, more, pr,
and tail commands for displaying different parts of text files, with and without page
titles and numbers.

EXERCISE 6.1

Insert the student_records file used in Section 6.2.1 in your current directory. Add to
it 10 more students’ records. Display the contents of this file by using the cat stu-
dent _ records and cat -n student _ records commands. What is the differ-
ence between the outputs of the two commands?

EXERCISE 6.2

Display the student_records file by using the more and pr commands. What command
lines did you use?

EXERCISE 6.3

Display the /etc/passwd file two lines before the line that contains your login name. What
command line did you use?

Basic File Processing    ◾    219

EXERCISE 6.4

Give commands for displaying the first and last seven lines of the student_records file.

6.3 COPYING, MOVING, AND REMOVING FILES
In this section, we describe commands for performing copy, as well as move/rename and
remove/delete operations on files in a file structure. The commands discussed are cp, mv,
and rm.

6.3.1 Copying Files

The UNIX command for copying files is cp. The following is a brief description of the
command.

SYNTAX
cp [options] file1 file2

Purpose: Copy file1 to file2. If file2 is a directory, make a copy of file1 in this directory.
Commonly used options/features:

-f Force copying if there is no write permission on file2
-i If file2 exists, prompt before overwriting
-p Preserve file attributes such as owner ID, group ID, permissions, and modification

times
-r Recursively copy files and subdirectories

You must have permission to read the source file (file1) and permission to execute
(search) the directories that contain file1 and file2. In addition, you must have the write
permission for the directory that contains file2 if it does not already exist. If file2 exists,
you don’t need the write permission to the directory that contains it, but you must have
the write permission to file2. If the destination file (file2) exists, by default, it will be
overwritten without informing you if you have permission to write to the file. To be
prompted before an existing file is overwritten, you need to use the -i option. If you
do not have permission to write to the destination file, you will be informed of this. If
you do not have permission to read the source file, an error message will appear on your
screen.

The following cp command line makes a copy of temp in temp.bak. The ls commands
show the state of the current directory before and after execution of the cp command.
Figure 6.1 shows the same information in pictorial form.

$ ls
memo sample temp
$ cp temp temp.bak
$ ls
memo sample temp temp.bak
$

220 ◾ UNIX: The Textbook, Third Edition

The command returns an error message if temp does not exist or if it exists but you do
not have permission to read its content. The command also returns an error message if
temp.bak exists and you do not have permission to write to it. The following session illus-
trates these points. The first error message is reported because the letter file does not exist
in the current directory. The second error message is reported because you do not have
permission to read the sample file. The last command reports an error message because
temp.bak exists and you do not have write permission for it. You can override the absence
of write permission and force copying by using the –f option, as shown in the next com-
mand. The ls –l memo temp.bak command is used to show that the copying has
actually taken place; that is, the data has been copied, but the time stamp for the file is the
current time. If you want to copy both the data and attributes of the source file, you need to
use the cp command with –f and –p options, as in the last cp command that follows. The
last ls –l memo temp.bak command is used to show that both data and file attributes
such as the time stamp have been copied.

% ls -l
total 3
-rwxr----- 1 sarwar faculty 371 Aug 28 07:01 memo
--wxr----- 1 sarwar faculty 164 Jul 25 12:35 sample
-r-xr----- 1 sarwar faculty 792 Aug 28 07:01 temp
-r-xr----- 1 sarwar faculty 792 Aug 28 07:05 temp.bak
% cp letter letter.bak
cp: letter: No such file or directory
% cp sample sample.new
cp: sample: Permission denied
% cp memo temp.bak
cp: temp.bak: Permission denied
% cp -f memo temp.bak
% ls -l memo temp.bak
-rwxr----- 1 sarwar faculty 0 Aug 28 07:01 memo
-rwxr----- 1 sarwar faculty 0 Aug 28 07:22 temp.bak
% cp –fp memo temp.bak
% ls -l memo temp.bak

Before copy

memo sample temp memo sample temp temp.bak

After copy

Your current
directory

Your current
directory

FIGURE 6.1 State of the current directory before and after the temp file has been copied to
temp.bak.

Basic File Processing    ◾    221

-rwxr----- 1 sarwar faculty 0 Aug 28 07:01 memo
-rwxr----- 1 sarwar faculty 0 Aug 28 07:01 temp.bak
%

The following command makes a copy of the .profile file in your home directory and
puts it in the .profile.old file in the sys.backups subdirectory, also in your home directory.
This command works regardless of the directory you are in when you run the command
because the pathname starts with your home directory. You should execute this command
before changing your runtime environment specified in the ~/.profile file, so that you have
a backup copy of the previous working environment in case something goes wrong when
you set up the new environment. The command produces an error message if ~/.profile
does not exist, if you do not have permission to read it, if the ~/sys.backups directory does
not exist or you do not have the execute (search) and write permissions for it, or if .profile.
bak exists but you do not have permission to read it.

% cp ~/.profile ~/sys.backups/.profile.bak
%

The following command copies all the files in the current directory, starting with the
string lab to the directory ~/courses/ee446/backups. The command also prompts you for
overwriting if any of the source files already exist in the backups directory. In this case (in
which multiple files are being copied), if backups is not a directory, or if it does not exist, an
error message is displayed on the screen informing you that the target must be a directory.

% cp -i lab* ~/courses/ee446/backups
%

If you want to copy a complete directory to another directory, you need to use the cp
command with the -r option. This option recursively copies files and subdirectories from
the source directory to the destination directory. It is a useful option that you can use to
create backups of important directories periodically. Thus, the following command recur-
sively copies the ~/courses directory to the ~/backups directory.

$ cp -r ~/courses ~/backups
$

This command creates copies the ~/courses directory, including all the files and direc-
tory hierarchies under the ~/courses directory, and places it under the ~/backups direc-
tory. Figure 6.2 shows the state of your home directory (~) before and after the execution
of the command.

6.3.2 Moving Files

Files can be moved from one directory in a file structure to another. This operation in
UNIX can also result in simply renaming a file if it is on the same file system. The renaming

222 ◾ UNIX: The Textbook, Third Edition

operation is equivalent to creating a hard link (see Chapter 8) to the file, followed by remov-
ing/deleting (see Section 6.3.3) the original file. If the source and destination files are on
different file systems, the move operation results in a physical copy of the source file to the
destination, followed by removal of the source file. The command for moving files is mv.
The following is a brief description of the command.

SYNTAX
mv [options] file1 file2
mv [options] file-list directory

Purpose: First syntax: Move file1 to file2 or rename file1 to file2
 Second syntax: Move all the files in file-list to directory

Commonly used options/features:
-f Force move regardless of the permissions of the destination file
-i Prompt the user before overwriting the destination file

You must have the write and execute access permissions for the directory that contains
the source file (file1 in the description), but you do not need to have the read, write, or
execute permissions for the file itself. Similarly, you must have the write and execute per-
missions for the directory that contains the target/destination file (file2 in the description),
execute permission for every directory in the pathname for the destination file, and write
permission for the destination file if it already exists. If the destination file exists, by default,
it is overwritten without informing you. If you use the -i option, you are prompted before
the destination file is overwritten.

The following command moves temp to temp.moved. In this case, the temp file is
renamed temp.moved. The mv command returns an error message if temp does not
exist, or if you do not have the execute permission for the directory it is in. The command

Before recursive copy After recursive copy

Courses Courses

Courses

Backups Backups

CS301 CS446
CS301 CS446

CS301 CS446

f1 f2
f1 f2

p1.c p2.c p3.c lab1.c lab2.c
p1.c p2.c p3.c lab1.c lab2.c

p1.c p2.c p3.c lab1.c lab2.c

∼ ∼

FIGURE 6.2 Current directory before and after the cp -r ~/courses ~/backups command.

Basic File Processing    ◾    223

prompts you for moving the file if temp.moved already exists, but you do not have write
permission for it.

$ mv temp temp.moved
$

The following command moves temp to the backups directory as the temp.old file.
Figure 6.3 shows the state of your current directory before and after the temp file is moved.

$ mv temp backups/temp.old
$

The following command is a sure move; you can use it to force the move, regardless of
the permissions for the target file, temp.moved.

$ mv -f temp temp.moved
$

The following command moves all the files and directories (excluding hidden files)
in dir1 to the dir2 directory. The command fails, and an error message appears on your
screen, if dir2 is not a directory, if it does not exist, or if you do not have the write and
execute permissions for it.

$ mv dir1/* dir2
$

After the command is executed, dir1 contains the hidden files only. You can use the
ls -a command to confirm the status of dir1.

Before move After move

Your current
directory

Your current
directory

Backups Backups
memo memotemp

memo temp temp. oldmemo temp

FIGURE 6.3 Current directory before and after the mv temp backups/temp.old command.

224 ◾ UNIX: The Textbook, Third Edition

6.3.3 Removing/Deleting Files

When files are not needed anymore, they should be removed from a file structure to free
up disk space to be reused for new files and directories. The UNIX command for removing
(deleting) files is rm. The following is a brief description of the command.

SYNTAX
rm [options] file-list

Purpose: Removes the files in file-list from the file structure (and disk)
Commonly used options/features:

-f Force remove regardless of the permissions for file-list
-i Prompt the user before removing the files in file-list
-r Recursively remove the files in the directory, which is passed as an argument. This

removes everything under the directory, so be sure you want to do so before using
this option.

If files in file-list are pathnames, you need the read and execute permissions for all the
directory components in the pathnames and the read, write, and execute permissions for
the last directory (that contains the file or files to be deleted). You must also have write
permission for the files themselves for their removal without prompting you. If you run the
command from a terminal and do not have write permission for the file to be removed, the
command displays your access permissions for the file and prompts you for your permis-
sion to remove it.

The following command lines illustrate use of the rm command to remove one or more
files from various directories.

$ rm temp
$ rm temp backups/temp.old
$ rm -f phones grades ~/letters/letter.john
$ rm ~/dir1/*
$

The first command removes temp from your current directory. The second command
removes the temp file from your current directory and the temp.old file from the backups
directory in your current directory. Figure 6.4 shows the semantics of this command. The
third command removes the phones, grades, and ~/letters/letter.john files, regardless of
their access permissions. The fourth command removes all the files from the ~/dir1 direc-
tory; the directories are not removed.

Now, consider the following commands that use some shell metacharacter features (see
Chapter 7).

$ rm [kK]*.prn
$ rm [a-kA-Z]*.prn
$

Basic File Processing    ◾    225

The first command removes all the files in current directory that have the .prn extension
and names starting with k or K. The second command removes all the files in the current
directory that have the .prn extension and names starting with a lowercase letter from a
through k or an uppercase letter.

In Chapter 4, we talked about removing directories and showed that the rmdir com-
mand can be used to remove only the empty directories. The rm command with the -r
option can be used to remove nonempty directories recursively. Thus, the following com-
mand recursively removes the OldDirectory in your home directory. This command
prompts you if you do not have the permission to remove a file. If you do not want the sys-
tem to prompt you and you want to force remove the ~/OldDirectory recursively, then use
the rm –rf ~/OldDirectory command. This command is one of the commands that
you must never execute unless you really know its potentially catastrophic consequences:
the loss of all the files and directories in a complete directory hierarchy. But the command
is quite useful if you want to free up some disk space.

$ rm -r ~/OldDirectory
$

You should generally combine the -i and -r options to remove a directory (~/OldDirectory
in this case) recursively, as shown in the following command. The -i option is for interactive
removal, and when you use this option, the rm command prompts you before removing a
file. This way you can ensure that you do not remove an important file by mistake.

$ rm -ir ~/OldDirectory
rm: examine files in directory /home/sarwar/OldDirectory (y/n)? y
rm: remove /home/sarwar/OldDirectory/John.11.14.2013 (y/n)? y
rm: remove /home/sarwar/OldDirectory/Tom.2.24.2011 (y/n)?
...
$

Before remove

Your current
directory

Your current
directory

Backups Backups
memo memotemp

memo temp temp.old memo temp

After remove

FIGURE 6.4 Current directory before and after execution of rm temp backups/temp.old
command.

226 ◾ UNIX: The Textbook, Third Edition

6.3.4 Determining File Size

You can determine the size of a file by using one of several UNIX commands. The two com-
mands commonly used for this purpose that are available in all UNIX versions are ls -l and
wc. We described the ls -l command in Chapter 5, where we use it to determine the access
permissions for files. We revisit this command here in the context of determining file size.

As we mentioned before, the ls -l command displays a long list of the files and direc-
tories in the directory (or directories) specified as its argument. You must have the read and
execute permissions for a directory to be able to run the ls command on it successfully; no
permissions are needed on the files in the directory to be able to see the list. The command
gives output for the current directory if none is specified as an argument. The output of this
command has nine fields, and the fifth field gives file sizes in bytes (see Section 5.5). In the
following command, the size of the lab2 file is 709 bytes.

$ ls -l lab2
-rw-r--r-- 1 sarwar faculty 709 Apr 5 11:23 lab2
$

This command also displays the size of directory files. You can also use it to get the sizes
of multiple files by specifying them in the command line and separating them by spaces.
For example, the following command shows that sizes of the lab1 and lab2 files are 163
bytes and 709 bytes, respectively.

$ ls -l lab1 lab2
-rw-r--r-- 1 sarwar faculty 163 Jul 9 16:47 lab1
-rw-r--r-- 1 sarwar faculty 709 Apr 5 11:23 lab2
$

The following command uses the shell metacharacter * to display the long listings for all
the files in the ~/courses/ee446 directory.

$ ls -l ~/courses/ee446/*
... output of the command ...
$

Whereas ls -l is a general-purpose command that can be used to determine many of the
attributes of one or more files, including their sizes in bytes/characters, wc is a special purpose
command that displays only file sizes. The following is a brief description of the wc command.

SYNTAX
wc [options] file-list

Purpose: Display sizes of the files in file-list as number of lines, words, and characters
Commonly used options/features:

-c Display only the number of characters
-l Display only the number of lines
-w Display only the number of words

Basic File Processing    ◾    227

% wc sample
 4 44 227 sample
%

	 	 	
Line
count

Word
count

Byte
count

File
name

% wc letter sample test
 44 250 1687 letter
 4 44 227 sample
 2 12 90 test
 50 306 2004 total
% wc -c letter sample test
 1687 letter
 227 sample
 90 test
 2004 total
% wc -lw letter sample test
 44 250 letter
 4 44 sample
 2 12 test
 50 306 total
%

The first command displays the number of lines, words, and characters in the sample
file in the present working directory. The size of sample is 4 lines, 44 words, and 227 bytes.
The second command displays the same information for the files letter, sample, and test
in the present working directory. The last line in the output of this command also displays
the total line count, word count, and byte count for all three files. The third command dis-
plays the number of characters in letter, sample, and test. The last command shows that
multiple options can be used in a single command; in this case, the output is the number
of words and letters for the three files in the command line.

On FreeBSD, the wc command with a directory argument returns three numbers along
with the name of the directory: 0, 1, and the number of directory entries in the directory
including the . (dot) and .. (dotdot) directories, as in:

$ wc /etc
 0 1 116 /etc
$

This only applies to directories that contain regular files and directories as their con-
tents. However, this style of output is not produced for directories that contain device
(character special and block special) files and other types of files.

The wc command can be used with shell metacharacters such as * and ?. The following
command displays sizes of all the files in the directory /usr/include/sys.

228 ◾ UNIX: The Textbook, Third Edition

% wc /usr/include/sys/*
 61 332 2213 /usr/include/sys/_bitset.h
 63 320 2150 /usr/include/sys/_bus_dma.h
 64 397 2626 /usr/include/sys/_callout.h
 56 271 1929 /usr/include/sys/_cpuset.h
...
 52 275 1868 /usr/include/sys/_timeval.h
 115 721 4722 /usr/include/sys/_types.h
 74 346 2396 /usr/include/sys/_umtx.h
 51 303 1918 /usr/include/sys/_unrhdr.h
 208 867 7563 /usr/include/sys/aac_ioctl.h
 125 677 4268 /usr/include/sys/acct.h
 416 1720 14861 /usr/include/sys/acl.h
...
%

6.4 APPENDING TO FILES
Appending to a file means putting new data at the end of the contents of the file. If the
file does not exist, it is created to contain the new data. The append operation is useful
when an application or a user needs to augment a file by adding data to it. The following
command syntax is used to append one or more files, or keyboard input, at the end of
a file.

SYNTAX
cat [file-list] >> destination-file

Purpose: Append the contents of the files in file-list, in the order specified in the com-
mand line, at the end of destination-file

The >> operator is the UNIX append operator. We discuss the >>, <, and > operators in
detail in Chapter 9. That chapter describes how the input of your commands can be read as
input from a file instead of the keyboard, and how the output and error messages of your
commands can be redirected from the terminal (or console widow) to files. In this chapter,
we use these operators only to describe how you can append new data at the end of the cur-
rent contents of a file and how you can combine the contents of multiple files and put them
in one file using the cat command.

The following session illustrates how the append operation works. The cat sample
>> temp command appends the contents of the sample file at the end of the temp
file. The cat commands before and after this command show the contents of the files
involved. The command syntax can be used to append multiple files to a file, as shown
in the command cat memo1 memo2 memo3 >> memos.record. This command

Basic File Processing    ◾    229

appends the contents of the memo1, memo2, and memo3 files at the end of the memos.
record file.

$ cat temp
This is a simple file used to illustrate the working of append
operation. The new data will be appended right below this line.
$ cat sample
These are the new data that will be appended at the end of the
test file.
$ cat sample >> temp
$ cat temp
This is a simple file used to illustrate the working of append
operation. The new data will be appended right below this line.
These are the new data that will be appended at the end of the
test file.
$ cat memo1 memo2 memo3 >> memos.record
$

Without the optional file-list argument (see the command description), the command
can be used to append keyboard input at the end of destination-file. The cat >> test.
letter command below takes input from the keyboard and appends it to a file called test.
letter. The command terminates when you press <Ctrl+D> on a new line.

$ cat test.letter
John Doe
12345 First Lane
Second City, State 98765
$ cat >> test.letter
September 1, 2014
Dear John:
This is to inform you ...
...
<Ctrl+D>
$ cat test.letter
John Doe
12345 First Lane
Second City, State 98765
September 1, 2014
Dear John:
This is to inform you ...
...
$

6.5 COMBINING FILES
The following command syntax can be used to combine multiple files into one file.

230 ◾ UNIX: The Textbook, Third Edition

SYNTAX
cat [file-list] > destination-file

Purpose: Put the contents of the files in file-list, in the order specified in the command
line, and put them in destination-file

The destination-file is overwritten if it already exists. If you do not have the write per-
mission for the destination-file, the command displays an error message informing you
that you do not have permission to write to the file. Without the optional file-list argu-
ment, you can use the command to put keyboard input in destination-file. Thus, this com-
mand syntax can be used to create a new file whose contents are what you enter from the
keyboard until you press <Ctrl+D> on a new line, as is the case with the cat >> test.
letter command in the previous session.

The following session illustrates how this command works with arguments. The ls -l
command is used to view permissions for the files. The wc memo? command displays the
sizes of all the files in the current directory that start with the string memo and have one
or more letters after this string. The third command combines the contents of the memo1,
memo2, and memo3 files and puts them in the memos.y2k14 file in the order they appear
in the command. The wc memos.y2k14 command is used to confirm that the memos.
y2k14 file has the same number of lines, words, and characters as the three memo files
combined. Execution of the cat memo1 memo2 memo3 > memos.2014 command
shows that you do not have permission to write to memos.2014.

% ls -l
-r-xr--r-- 1 sarwar faculty 1687 Jan 10 19:15 memo1
-r-xr--r-- 1 sarwar faculty 1227 Feb 19 14:37 memo2
-r-xr--r-- 1 sarwar faculty 790 Sep 1 19:16 memo3
-r-------- 1 sarwar faculty 9765 Jan 15 22:11 memos.2014
% wc memo?
 44 250 3352 memo1
 34 244 4083 memo2
 12 112 907 memo3
 90 606 3704 total
% cat memo1 memo2 memo3 > memos.y2k14
% wc memos.y2k14
 90 606 3704 memos.y2k14
% cat memo1 memo2 memo3 > memos.2014
memos.2014: Permission denied.
%

You can also do the task of the cat memo1 memo2 memo3 > memos.y2k14 by
using the following command sequence.

$ cat memo1 > memos.y2k14
$ cat memo2 >> memos.y2k14

Basic File Processing    ◾    231

$ cat memo3 >> memos.y2k14
$

The following in-chapter exercises ask you to practice using the cp, mv, ls -l, wc, and
cat commands and the operator for appending to a file.

EXERCISE 6.5

Copy the .profile (or .login in a BSD UNIX-based system) file in your home directory to a
file .profile.old (or .login.old) in a directory called backups, also in your home directory.
Assume that you are in your home directory. What command did you use?

EXERCISE 6.6

Create a directory called new.backups in your home directory and move all the files in the
backups directory to new.backups. What commands did you use?

EXERCISE 6.7

Display the size in bytes of a file lab3 in the ~/ece345 directory. What command did you use?

EXERCISE 6.8

Give a command for appending all the files in the ~/courses/ece446 directory to a file
called BigBackup.ece446 in the ~/courses directory.

6.6 COMPARING FILES
At times, you will need to compare two versions of a program code or some other docu-
ment to find out where they differ from each other. You can use the diff command to per-
form this task. The command compares two files and displays differences between them
in terms of commands that can be used to convert one file to the other. The following is a
brief description of the command.

SYNTAX
diff [options] [file1] [file2]

Purpose: Compare file1 with file2 line by line and display differences between them as a
series of commands/instructions for the ed editor that can be used to convert file1 to
file2 or vice versa; read from standard input if – is used for file1 or file2

Commonly used options/features:
-b Ignore trailing (at the end of lines) white spaces (blanks and tabs), and consider

other strings of white spaces equal
-e Generate and display a script for the ed editor that can be executed to change file1

to file2
-h Do fast comparison (the –e option may not be used in this case)

232 ◾ UNIX: The Textbook, Third Edition

The file1 and file2 arguments can be directories. If file1 is a directory, diff searches it
to locate a file named file2 and compares it with file2 (the second argument). If file2 is a
directory, diff searches it to locate a file named file1 and compares it with file1 (the first
argument). If both arguments are directories, the command compares all pairs of files in
these directories that have the same names.

The diff command does not produce any output if the files being compared are the
same. When used without any options, the diff command produces a series of instruc-
tions for the ed editor that can be used to convert file1 to file2 if the files are different. The
instructions are a (add), c (change), and d (delete) and are described in Table 6.1.

The following session illustrates a simple use of the diff command.

$ cat Fall_OH
Office Hours for Fall 2014
Monday
9:00 - 10:00 A.M.
3:00 - 4:00 P.M.
Tuesday
10:00 - 11:00 A.M.
Wednesday
9:00 - 10:00 A.M.
3:00 - 4:00 P.M.
Thursday
11:00 A.M. - 12:00 P.M.
2:00 - 3:00 P.M.
4:00 - 4:30 P.M.
$ cat Spring_OH
Office Hours for Spring 2015
Monday
9:00 - 10:00 A.M.
3:00 - 4:00 P.M.
Tuesday
10:00 - 11:00 A.M.
1:00 - 2:00 P.M.
Wednesday
9:00 - 10:00 A.M.
Thursday

TABLE 6.1 File Conversion Instructions Produced by diff

Instruction Description for Changing file1 to file2

L1aL2,L3
> lines L 2 through L 3

Append lines L2 through L3 from file2 after
line L1 in file1

L1,L2cL3,L4
< lines L1 through L 2 in file1

> lines L 3 through L4 in file2

Change lines L1 through L2 in file1 to lines
L3 through L4 in file2

L1,L2dL3
< lines L1 through L 2 in file1

Delete lines L1 through L2 from file1

Basic File Processing    ◾    233

11:00 A.M. - 12:00 P.M.
$ diff Fall_OH Spring_OH
1c1
< Office Hours for Fall 2014

> Office Hours for Spring 2015
6a7
> 1:00 - 2:00 P.M.
9d9
< 3:00 - 4:00 P.M.
12,13d11
< 2:00 - 3:00 P.M.
< 4:00 - 4:30 P.M.
$

The instruction 1c1 asks the ed editor to change the first line in the Fall_OH file
(Office Hours for Fall 2014) to the first line in the Spring_OH file (Office
Hours for Spring 2015). The 6a7 instruction asks the ed editor to append line 7
in Spring_OH after line 6 in Fall_OH. The 12,13d11 instruction asks the ed editor to
delete lines 12 and 13 from Fall_OH.

The following session illustrates use of the -e option with the diff command and how the
output of this command can be given to the ed editor in order to make Fall_OH the same as
Spring_OH. The command is used to show you what the output of the command looks like.
The second diff command (with > diff.script) is used to save the command output (the
ed script) in the diff.script file. The cat >> diff.script command is used to convert the
diff.script file into a complete working script for the ed editor by adding two lines contain-
ing w and q. As previously stated, this command terminates with <Ctrl+D>. Finally, the ed
command is run to change the contents of Fall_OH, according to the script produced by the
diff -e command, and make it the same as Spring_OH. The numbers 209 and 177 show
the sizes of the Fall_OH file before and after the execution of the ed command. The last com-
mand, diff Fall _ OH Spring _ OH, is run to confirm that the two files are the same.

$ diff -e Fall_OH Spring_OH
12,13d
9d
6a
1:00 - 2:00 P.M.
.
1c
Office Hours for Spring 2015
.
$ diff -e Fall_OH Spring_OH > diff.script
$ cat >> diff.script
w
q

234 ◾ UNIX: The Textbook, Third Edition

<Ctrl+D>
$ ed Fall_OH < diff.script
209
177
$ diff Fall_OH Spring_OH
$

Most systems have a command called diff3 that can be used to do a three-way com-
parison; that is, three files can be composed.

6.7 LOCATING AND REMOVING REPETITION WITHIN TEXT FILES
You can use the uniq command to remove all but one copy of the successive repeated lines
in a file. The command is intended for files of sorted content although it can work on files
without sorted content, as shown in the example. We discuss sorting in Chapter 7. The fol-
lowing is a brief summary of the command.

SYNTAX
uniq [options] [input-file] [output-file]

Purpose: Remove repetitious lines from the sorted input-file and send unique (nonre-
peated) lines to output-file. The input-file does not change. If no output-file is speci-
fied, the output of the command is sent to standard output. If no input-file is specified,
the command takes input from standard input.

Commonly used options/features:
-c Precede each output line by the number of times it occurs
-d Display the repeated lines
-f N Ignore the first N fields in input lines while doing comparisons
-i Perform case-sensitive comparison of input lines
-s C Ignore the first C characters in input lines while doing comparisons
-u Display the lines that are not repeated

The following session illustrates how the uniq command works. The cat command
is used to show the contents of the sample file. The uniq sample command shows that
only consecutive duplicate lines are considered duplicate. The uniq -c sample com-
mand shows the line count for every line in the file. The uniq -d sample command is
used to output repeated lines only. Finally, the uniq -d sample out command sends
the output of the command to the out file. The cat out command is used to show the
contents of out. Note that the uniq command only works for unsorted files if repeated
lines are adjacent.

$ cat sample
This is a test file for the uniq command.
It contains some repeated and some nonrepeated lines.
Some of the repeated lines are consecutive, like this.
Some of the repeated lines are consecutive, like this.

Basic File Processing    ◾    235

Some of the repeated lines are consecutive, like this.
And, some are not consecutive, like the following.
Some of the repeated lines are consecutive, like this.
The above line, therefore, will not be considered a repeated
line by the uniq command, but this will be considered repeated!
line by the uniq command, but this will be considered repeated!
$ uniq sample
This is a test file for the uniq command.
It contains some repeated and some nonrepeated lines.
Some of the repeated lines are consecutive, like this.
And, some are not consecutive, like the following.
Some of the repeated lines are consecutive, like this.
The above line, therefore, will not be considered a repeated
line by the uniq command, but this will be considered repeated!
$ uniq -c sample
 1 This is a test file for the uniq command.
 1 It contains some repeated and some nonrepeated lines.
 3 Some of the repeated lines are consecutive, like this.
 1 And, some are not consecutive, like the following.
 1 Some of the repeated lines are consecutive, like this.
 1 The above line, therefore, will not be considered a

repeated
 2 line by the uniq command, but this will be considered

repeated!
$ uniq -d sample
Some of the repeated lines are consecutive, like this.
line by the uniq command, but this will be considered repeated!
$ uniq -d sample out
$ cat out
Some of the repeated lines are consecutive, like this.
line by the uniq command, but this will be considered repeated!
$

In the following in-chapter exercises, you will use the diff and uniq commands to
appreciate the tasks they perform.

EXERCISE 6.9

Duplicate the interactive sessions given in Section 6.6 to appreciate how the diff com-
mand works.

EXERCISE 6.10

Give a command to remove all but one occurrence of the consecutive duplicate lines in
a file called phones in the ~/personal directory. Assume that you are not in your home
directory.

236 ◾ UNIX: The Textbook, Third Edition

6.8 PRINTING FILES AND CONTROLLING PRINT JOBS
We briefly discussed the UNIX commands for printing files in Chapter 2. In this section, we
cover file printing fully, including commands related to printing and printer control. These
commands include commands for printing files, checking the status of print requests/jobs
on a printer, and canceling print jobs. We describe commands that are available in both
PC-BSD and Solaris.

6.8.1 UNIX Mechanism for Printing Files

The process of printing files is similar to the process of displaying files; in both cases, the
contents of one or more files are sent to an output device. In the case of displaying output,
the output device is a display screen, whereas in the case of printing output, the output
device is a printer. Another key difference results primarily from the fact that every user
has an individual display screen but that many users may share a single printer on a typical
UNIX (or any time-sharing) system. Thus, when you use the cat or more command to
display a file, the contents of the file are immediately sent to the display screen by UNIX.
However, when you print a file, its contents are not immediately sent to the printer because
the printer might be busy printing some other file (yours or some other user’s). To handle
multiple requests, a first-come first-served (FCFS) mechanism places a print request in a
queue associated with the printer to which you have sent your print request and processes
the request in its turn when the printer is available.

UNIX maintains a queue of print requests, called the print queue, associated with every
printer in the system. Each request is called a job. A job is assigned a number, called the job
ID. When you use a command to print a file, the system makes a temporary copy of your
file, assigns a job ID to your request, and puts the job in the print queue associated with the
printer specified in the command line. When the printer finishes its current job, it is given
the next job from the front of the print queue. Thus, your job is processed when the printer
is available and your job is at the head of the print queue.

A UNIX process called the printer spooler or printer daemon performs the work of
maintaining the print queue and directing print jobs to the right printer. This process is
called lpd. It starts execution in the background when the system boots up and waits for
your print requests. We discuss daemons in Chapter 10, but for now, you can think of a
daemon as a process that runs but you are not aware of its presence while it interacts with
your terminal.

System V and BSD have different command sets for printing and controlling print jobs.
Because many of the contemporary UNIX systems are compatible with both System V and
BSD, they contain both sets of commands. Table 6.2 contains a list of the printing-related
commands for both systems; all are available in PC-BSD and Solaris. The superuser—the
system administrator—normally uses the last two commands, lpc and lptest.

6.8.2 Printing Files

As shown in Table 6.2, you can print files by using the lp command on a System V–
compatible UNIX system and the lpr command on a BSD-compliant UNIX system. It

Basic File Processing    ◾    237

is very important to note that you should never try printing nontext files with the lp or
lpr command, especially files with control characters (e.g., executable files such as a.out).
Doing so will not print what you want printed and will waste many printer pages. Do not
even try testing it. If by accident you do send a print request for a nontext file, turn off the
printer immediately and alert your system administrator that you need assistance.

The following is a brief description of the lp command.

SYNTAX
lp [options] file-list

Purpose: Submit a request to print the files in file-list
Commonly used options/features:
-P page-list Print the pages specified in page-list
-d ptr Send the print request to the ptr printer
-m Send e-mail after printing is complete
-n N Print N copies of the file(s) in file-list; default is one copy
-t title Print title on a banner page
-w Write to user’s terminal after printing is complete

The following session shows how to use the lp command with and without options. The
first command prints the sample file on the default printer. The system administrator sets
the default printer for the users on a system. The job ID for the first print request is cpr-
981, which tells you that the name of the printer is cpr. The second command uses the -d
option to specify that the sample file should be printed on the spr printer. The third com-
mand is for printing three copies each of the sample and phones files on the qpr printer.

% lp sample
request id is cpr-981 (1 file(s))
% lp -d spr sample
request id is spr-983 (1 file(s))
% lp -d qpr -n 3 sample phones
request id is qpr-984 (2 file(s))
%

TABLE 6.2 List of Commands Related to Printing Available in Both PC-BSD and Solaris

System V
Compatible UNIX

BSD Compatible
UNIX Purpose

lp lpr Submits a file for printing
lpstat lpq Shows the status of print jobs for one or more

printers
cancel lprm

lpc
lptest

Removes/purges one or more jobs from the print
queue

Activates the printer control program
Generates ripple pattern for testing the printer

238 ◾ UNIX: The Textbook, Third Edition

As mentioned before, the BSD counterpart of the lp command is the lpr command.
The following is a brief description of this command.

SYNTAX
lpr [options] file-list

Purpose: Submit a request to print the files in file-list
Commonly used options/features:
-# N Print N copies of the file(s) in file-list; default is one copy
-P ptr Send the print request to the ptr printer
-T title Print title on a banner page
-m Send e-mail after printing is complete
-p Format output by using the pr command

The following session shows the BSD versions of the commands that perform the same
print tasks as the lp command. Thus, the first lpr command sends the print request for
printing the sample file on the default printer. The second command sends the request
for printing the sample file on the spr printer. The third command prints three copies of
the sample and phones files on the qpr printer.

% lpr sample
% lpr -P spr sample
% lpr -P qpr -# 3 sample
%

You can use the following command to print the sample file with the header informa-
tion on every page produced by the pr command. The vertical bar (|) is called the pipe
symbol, which we discuss in detail in Chapter 9.

% pr sample | lpr
%

You can perform the same task with the lpr -p sample command. You can print
the sample file with line numbers and a pr header on each page by using the follow-
ing command. You can also perform the same task with the nl sample | lpr -p
command.

$ nl sample | pr | lpr
$

You can enable the lpr command to print a nonstandard text file, such as a TEX file, by
specifying an appropriate flag. For example, you can use the -t option to print a troff file
and the -n option to print an nroff file.

Basic File Processing    ◾    239

6.8.3 Finding the Status of Your Print Requests

In a System V–compatible system, the lpstat command can be used to display the status
of print jobs on a printer. The following is a brief description of the lpstat command.

SYNTAX
lpstat [options]

Purpose: Display the status of print jobs on a printer
Commonly used options/features:

-d Display the status of print jobs sent to the default printer using the
lp command

-o job-ID-list Display the status of the print jobs in job-ID-list; separate job IDs
with spaces and enclose the requests in double quotes for more
than one job

-p printer-list Display the status of print jobs on the printers specified in
printer-list

-u user-list Display the status of print jobs for the users in user-list

Without any option, the lpstat command displays the status of all your print jobs
that are printing or waiting in the print queue of the default printer. The commands in the
following session show some typical uses of the command. The lpstat -p command
shows the status of all printers on the network. The lpstat -p qpr displays the status
of print jobs on the qpr printer. The lpstat -u sarwar displays all print jobs for the
user sarwar. The output of the command shows that there are three print jobs that sarwar
has submitted: two to qpr (job IDs qpr-3998 and qpr-3999) and one to tpr (job ID tpr-203).
Finally, the lpstat -a command displays all the printers that are up and accepting print
jobs.

$ lpstat -p
printer cpr is idle. enabled since Tue Sep 2 10:43:48 GMT 2014.
available. printer mpr faulted. enabled since Mon Sep 1 10:48:29
GMT 2014. available. printer qpr now printing qpr-53. enabled
since Mon Sep 1 10:48:29 GMT 2014. available. printer spr is idle.
enabled since Mon Sep 1 10:48:29 GMT 2003. available.
$ lpstat -p qpr
printer qpr now printing qpr-53. enabled since Mon Sep 1 10:48:29
GMT 2014. available.
$ lpstat -u sarwar
qpr-3998 sarwar 93874 Sep 2 22:05 on qpr
qpr-3999 sarwar 93874 Sep 2 22:05
tpr-203 sarwar 93874 Sep 2 22:05 on tpr
$ lpstat -a
cpr accepting requests since Tue Sep 2 10:43:48 GMT 2014
spr accepting requests since Mon Sep 1 10:48:29 GMT 2014
$

240 ◾ UNIX: The Textbook, Third Edition

The following is a brief description of the BSD counterpart of the lpstat command,
the lpq command.

SYNTAX
lpq [options]

Purpose: Display the status of print jobs on a printer
Commonly used options/features:
-P printer-list Display the status of print jobs on the printers specified in

printer-list
-l Display the long format status of print jobs sent using the lpr

command on the default printer

The most commonly used option is -P. In the following session, the first command is
used to display the status of print jobs on the mpr printer. The output of the command
shows that four jobs are in the printer queue: jobs 3991, 3992, 3993, and 3994. The active
job is at the head of print queue. When the printer is ready for printing, it will print the
active job first. The second command shows that the qpr printer does not have any jobs
to print.

$ lpq -Pmpr
mpr is ready and printing
Rank Owner Job Files Total Size
active sarwar 3991 mail.bob 1056 bytes
1st sarwar 3992 csh.man 93874 bytes
2nd davis 3993 proposal1.nsa 2708921 bytes
3rd tom 3994 memo 8920 bytes
$ lpq -Pqpr
no entries
$

6.8.4 Canceling Your Print Jobs

If you realize that you have submitted the wrong file(s) for printing, you will want to cancel
your print request(s). The System V command for performing this task is cancel. The
following is a brief description of the command.

SYNTAX
cancel [options] [printer]

Purpose: Cancel the print requests sent through the lp command—that is, take these jobs
out of the print queue

Commonly used options/features:
-jobID-list Cancel the print jobs specified in jobID-lsit
-ulogin Cancel all print requests issued by the user login

Basic File Processing    ◾    241

The following commands show how to cancel a print job. You can display the job IDs of
the print jobs on a printer by using the lpstat or lpq command, as shown is Section 6.8.3.
The first command cancels the print job mpr-3991. The second command cancels all print
requests by the user sarwar on all printers. You can cancel your own print jobs only. The
last command, therefore, works only when run by sarwar or the superuser.

$ cancel mpr-3991
request "mpr-3991" canceled
$ cancel -u sarwar mpr
request "mpr-3992" canceled
request "mpr-3995" canceled
$

The BSD counterpart of the cancel command is lprm. The following is a brief descrip-
tion of the command.

SYNTAX
lprm [options] [jobID-list] [user(s)]

Purpose: Cancel the print requests made by using the lpr command—i.e., remove these
jobs from the print queue; the jobIDs in jobID-list are taken from the output of the lpq
command

Commonly used options/features:
- Remove all the print jobs owned by user
-P ptr Specify the print queue for the ptr printer

The following lprm commands perform the same tasks as the cancel commands
described in the previous session.

$ lprm -Pmpr 3991
mpr-3996 dequeued
$ lprm -Pmpr sarwar
mpr-3997 dequeued
mpr-3998 dequeued
$

When run without an argument, the lprm command removes the job that is currently
active, provided it is one of your jobs.

The following in-chapter exercises will give you practice on using the printing-related
commands.

EXERCISE 6.11

How would you print five copies of the file memo on the printer ece_hp1? Give commands
for both System V and BSD UNIX.

242 ◾ UNIX: The Textbook, Third Edition

EXERCISE 6.12

After submitting the two requests, you realize that you really wanted to print five copies
of the file letter. How would you remove the print jobs from the print queue? Again, give
commands for both System V and BSD UNIX.

SUMMARY
The basic file operations involve displaying all or part of a file’s contents, renaming a file,
moving a file to another file, removing a file, determining a file’s size, comparing files,
combining files and storing them in another file, appending new contents (which can come
from another disk file, keyboard, or output of a command) at the end of a file, and print-
ing files. UNIX provides several commands that can be used to perform these operations.

The cat and more commands can be used to display all the contents of a file on the
display screen. The > symbol can be used to send outputs of these commands to other
files, and the >> operator can be used to append new contents at the end of a file. The cat
command sends a file’s contents as continuous text, whereas the more command sends
them in the form of pages. Furthermore, the more command has several useful features,
such as the ability to display a page that contains a particular string. The less command
supports even more features than the more command, including the vi-style forward and
backward searching.

The head and tail commands can be used to display the initial or end portions (head
or tail) of a file. These helpful commands are usually used to find out the type of data con-
tained in a file, without using the file command (see Chapter 4). In addition, the file
command cannot decipher contents of all the files.

A copy of a file can be made in another file or directory by using the cp command. Along
with the > operator, the cat command can also be used to make a file copy, although there
are differences between using the cp and cat > commands for copying files (see Chapter 9).
A file can be moved to another file by using the mv command. However, depending on
whether the source and destination files are on the same file system, its use might or might
not result in actual movement of file data from one location to another. If the source and
destination files are on the same file system, the file data is not moved and the source file
is simply linked to the new place (destination) through a hard link (see Chapter 8) and the
original/source link is removed. If the two files are on different file systems, an actual copy
of the source file is made at the new location and the source file is removed (unlinked) from
the current directory. Files can be removed from a file structure by using the rm command.
This command can also be used to remove directories recursively.

The size of a file can be determined by using the ls -l or wc commands; both give
file sizes in bytes. In addition, the wc command gives the number of lines and words in
the file. Both commands can be used to display the sizes of multiple files by using the shell
metacharacters *, ?, [], and .̂

The diff command can be used to display the differences between two files. The com-
mand, in addition to displaying the differences between the files, displays useful informa-
tion in the form of a sequence of commands for the ed editor that can be used to make

Basic File Processing    ◾    243

the two files the same. The uniq command can be used to remove all but one occurrence
of successive repeated lines. With the -d option, the command can be used to display the
repeated lines.

The lp (System V) or lpr (BSD) command can be used for printing files on a printer.
The lpstat (System V) or lpq (BSD) commands can be used for checking the status of
all print jobs (requests) on a printer (waiting, printing, etc.). The cancel (System V) or
lprm (BSD) commands can be used to remove a print job from a printer queue so that the
requested file is not printed. All of these print commands are available in both PC-BSD
and Solaris.

QUESTIONS AND PROBLEMS

 1. List 10 operations that you can perform on UNIX files.

 2. Give a command line for viewing the sizes (in lines and bytes) of all the files in your
present working directory.

 3. What does the tail -10r ../letter.John command do?

 4. Give a command for viewing the size of your home directory. Give a command for
displaying the sizes of all the files in your home directory.

 5. Give a command for displaying all the lines in the students file, starting with line 25.

 6. Give a command for copying all the files and directories under a directory courses
in your home directory. Assume that you are in your home directory. Give another
command to accomplish the same task, assuming that you are not in your home
directory.

 7. Repeat Problem 6, but give the command that preserves the modification times and
permissions for the file.

 8. What is the difference between the cp –r ~/courses ~/backups and cp –r ~/
courses/ ~/backups commands?

 9. Give an option for the rm command that could protect you from accidently removing
a file, especially when you are using wild cards such as * and ? in the command.

 10. What do the following commands do?

 a. cp -f sample sample.bak

 b. cp -fp sample sample.bak

 c. rm -i ~/personal/memo*.doc

 d. rm -i ~/unixbook/final/ch??.prn

 e. rm -f ~/unixbook/final/*.o

244 ◾ UNIX: The Textbook, Third Edition

 f. rm -f ~/courses/ece446/lab[1-6].[cC]

 g. rm -r ~/NotNeededDirectory

 h. rm -rf ~/NotNeededDirectory

 i. rm -ri ~/NotNeededDirectory

 11. Give a command for moving files lab1, lab2, and lab3 from the ~/courses/ece345
directory to a newlabs.ece345 directory in your home directory. If a file already exists
in the destination directory, the command should prompt the user for confirmation.

 12. Give a command to display the lines in the ~/personal/phones file that are not
repeated.

 13. Refer to In-Chapter Exercise 9. Give a sequence of commands to save the sequence of
commands for the ed editor and use them to make sample and example the same
files.

 14. You have a file in your home directory called tryit&. Rename this file. What com-
mand did you use?

 15. Give a command for displaying attributes of all the files starting with a string prog,
followed by zero or more characters and ending with a string .c in the courses/ece345
directory in your home directory.

 16. Refer to Problem 15. Give a command for file names with two English letters between
prog and .c. Can you give another command line to accomplish the same task?

 17. Give a command for displaying files got|cha and M*A*S*H one screenful at a time.

 18. Give a command for displaying the sizes of files that have the .jpg extension and
names ending with a digit.

 19. What does the rm *[a-zA-Z]??[1,5,8].[^p]* command do?

 20. Give a command to compare the files sample and example in your present working
directory. The output should generate a series of commands for the ed editor.

 21. Give a command for producing 10 copies of the report file on the ece_hp3 printer.
Each page should contain a page header produced by the pr command. Give com-
mands for both System V and BSD UNIX.

 22. Give the command to print the nroff file Chapter 1 by using the lpr command. What
command line would you use to print the troff file sample with the lpr command?

 23. Give a command for checking the status of a print job with job ID ece_hp3-8971. Is
this command for System V or BSD? How would you remove this print job from the
print queue? Give commands for both System V and BSD UNIX.

Basic File Processing    ◾    245

 24. What is the difference between the tail -15 file1 and tail +15 file1 com-
mands? Which of the following commands is equivalent to cat file1: tail -$ file,
tail -1 file1, or tail +1 file1? Why?

 25. What is the purpose of the more –n5 file1?

 26. What are the differences between the more and less commands? Which of the two
is more powerful and user friendly in your opinion and why?

 27. Create a file in your current directory called f1. What is the inode number of the file?
Move the file to your home directory and name it f1.moved. What is the inode num-
ber of the moved file? Move the moved file to the /tmp directory. What is the inode
number of the /tmp/f1.moved file? Why are the inode numbers for f1 and f2 the
same? Why is the inode number of /tmp/f1.moved different from f1 (or ~/f1.moved)?

http://taylorandfrancis.com

247

C h a p t e r 7

Advanced File Processing

Objectives

• To explain file compression and how it can be performed

• To explain the sorting process and how files can be sorted

• To discuss searching for commands and files in the UNIX file structure

• To discuss the formation and use of regular expressions

• To describe searching files for expressions, strings, and patterns

• To describe how database-type operations of cutting and pasting fields in a file can
be performed

• To discuss encoding and decoding of files

• To explain file encryption and decryption

• To cover the commands and primitives

	 	>, ~, compress, crypt, crypto, cut, egrep, fgrep, find, grep,
openssl, paste, pcat, sort, uncompress, uuencode, uudecode,
whereis, which, zcat

7.1 INTRODUCTION
In this chapter, we describe some of the more advanced file-processing operations and
show how they can be performed in UNIX. But before describing these operations, we
discuss the important topic of regular expressions, which are a set of rules that can be used
to specify one or more strings using a sequence of special text characters. While discuss-
ing the operations, we also describe the related shell commands and tools that make use of
regular expressions. We also give examples to illustrate how these commands can be used
to perform the required operations.

248 ◾ UNIX: The Textbook, Third Edition

7.2 COMPRESSING FILES
Reduction in the size of a file is known as file compression, which has both space and time
advantages. A compressed file takes less disk space to store, less time to transmit from one
computer to another in a network or internet environment, and less time to copy. It takes
time to compress a file, but if a file is to be copied or transmitted several times, the time
spent compressing the file could be just a fraction of the total time saved. In addition, if the
compressed file is to be stored on a secondary storage device (e.g., a disk) for a long time,
the savings in disk space can be considerable. Another consequence of compression is that
a compressed file reads as garbage. However, this is not a problem because the process is
fully reversible and a compressed file can be converted back to its original form. If you
can fully recover the original file from its compressed version, the compression is known
as lossless compression. Lossless compression techniques are normally used for text files.
There are lossy compression techniques too. These techniques are used to reduce the size of
a file for storing, handling, and transmitting its content between computers on a network.
Lossy compression techniques are normally used for image files such as JPEGs. In this
chapter, we discuss tools for compressing and decompressing text and executable files. We
also discuss commands for displaying and searching compressed files.

The UNIX operating system has many commands for compressing and decompressing
files and for performing various operations on compressed files. These commands include
the traditional UNIX commands for compressing and decompressing files, compress
and uncompress, and the GNU tools gzexe (compress executable files), gzip (for
compressing files), gunzip (for uncompressing files that were compressed with gzip),
zcat (for displaying compressed files; gzcat does the same), gzcmp (for comparing
compressed files), gzforce (for forcing the .gz extension onto compressed files so that
gzip will not compress them twice), gzmore (for displaying compressed files one page at
a time), and gzgrep (the grep command for compressed files; it searches possibly com-
pressed files for a regular expression). This section will primarily discuss file compression
and decompression. Although the GNU tools (gzip and gunzip) are better than com-
press and uncompress commands, we discuss both sets of commands for completion.

7.2.1 The compress Command

The compress command reads contents of files that are passed to it as parameters, ana-
lyzes their contents for repeated patterns, and then substitutes a smaller number of charac-
ters for these patterns by using adaptive Lempel–Ziv coding. A compressed file’s contents
are altogether different from the original file. The compressed file contains nonprintable
characters, so displaying a compressed file on the screen shows a bunch of control charac-
ters, or garbage. The compress command saves the compressed file in a file that has the
same name as the original file, with an extension .Z appended to it. The file has the same
access permissions and modification date as the original file. The original file is removed
from the file structure.

The following is a brief description of the compress command; the syntax of and
options used in the uncompress command are exactly the same.

Advanced File Processing    ◾    249

SYNTAX
compress [option] file-list

Purpose: Compress files in file-list
Output: The compressed .Z file or standard output if input is from standard input
Commonly used options/features:

-c Write compressed file to the display screen instead of a .Z file
-f Force compression; no prompts
-v Display compression percentage and the names of compressed files

With no file argument or - as an argument, the compress command takes input from
standard input (keyboard by default), which allows you to use the command in a pipeline
(see Chapter 9). We normally use the command with one or more files as its arguments.
In the following session, we use the command with one file, t2, as its argument. The com-
pressed file is stored in the t2.Z file, and the t2 file is removed from the file system.

$ cat t2
This file is being used to test various commands and tools. Long
live UNIX! UNIX rules the networking world!!
$ compress t2
$ cat t2.Z
¨6e@
 !_L¨7g@ÔS
 :o.C
 0rÒ_¨'ÌÂ¸!CP¥EoØÌq7A°Ic'a'I°
 P_3)uÎ 1
$

The following session illustrates the use of compress with the -v (verbose) option
and multiple files. Note that the use of the shell metacharacter ? denotes a single character
and that the output of the compress command with the -v option shows the percentage
of compression performed on the source files. Note that t2 and t3 have been compressed
only a little, but t4 has been compressed to 58% of its original size, from 4083 bytes to 2371
bytes.

% ls -l t?
-rw-r--r-- 1 sarwar faculty 116 Aug 30 19:35 t2
-rw-r--r-- 1 sarwar faculty 99 Aug 30 19:32 t3
-rw-r--r-- 1 sarwar faculty 4083 Aug 30 19:33 t4
% compress -v t2 t3 t4
t2.Z: 93% compression
t3.Z: 90% compression
t4.Z: 58% compression
% ls -l t?.Z

250 ◾ UNIX: The Textbook, Third Edition

-rw-r--r-- 1 sarwar faculty 108 Aug 30 19:35 t2.Z
-rw-r--r-- 1 sarwar faculty 89 Aug 30 19:32 t3.Z
-rw-r--r-- 1 sarwar faculty 2371 Aug 30 19:33 t4.Z
%

7.2.2 The uncompress Command

You can use the uncompress command to uncompress the compressed files and put
them in the corresponding original files (i.e., the names of the compressed files without .Z
extensions). The following session shows the use of the uncompress command. Note that
uncompress ignores the –v option.

% uncompress t1.Z t2.Z t3.Z t4.Z
% ls -l t?
-rw-r--r-- 1 sarwar faculty 116 Aug 30 19:35 t2
-rw-r--r-- 1 sarwar faculty 99 Aug 30 19:32 t3
-rw-r--r-- 1 sarwar faculty 4083 Aug 30 19:33 t4
%

The uncompress -v t?.Z command performs the same task if the current directory
contains only these four file names that start with t followed by one other character and
have the .Z extension. Note that the output of the uncompress command goes into a file
with the original file name.

As given in the command description, multiple files can be displayed by the zcat com-
mand. For example, the command zcat t2.Z t3.Z t4.Z displays the uncompressed
forms of the three files t2.Z, t3.Z, and t4.Z.

7.2.3 The gzip Command

The gzip command is the GNU tool for compressing files. The compressed file is saved as
a file that has the same name as the original, with an extension .gz appended to it. As is the
case with the compress command, the compressed files retain the access/modification
times, ownership, and access privileges of the original files. The original file is removed
from the file structure. With no file argument or with - as an argument, the gzip com-
mand takes input from standard input (keyboard by default), which allows you to use the
command in a pipeline (see Chapter 9). We normally use the command with one or more
files as its arguments. Here is a brief description of the command.

SYNTAX
gzip [option] [file-list]

Purpose: Compress each file in file-list and store it in filename.gz, where filename is the
name of the original file. If no file is specified in the command line or if – is specified,
take input from standard input.

Output: The compressed .gz file or standard output if input is from standard input

Advanced File Processing    ◾    251

Commonly used options/features:
-N Control compression speed (and compression ratio) according to the value of N,

with 1 being fastest and 9 being slowest; slow compression compresses more
-c Send output to standard out; input files remain unchanged
-d Uncompress a compressed (.gz) file
-f Force compression of a file when its .gz version exists, or it has multiple links, or

input file is stdin
-l For the compressed files given as arguments, display sizes of the uncompressed

and compressed versions, compression ratio, and uncompressed name
-r Recursively compress files in the directory specified as arguments
-t Test integrity of the compressed files specified as arguments
-v Display compression percentage and the names of compressed files

7.2.4 The gunzip Command

The gunzip command can be used to perform the reverse operation and bring com-
pressed files back to their original forms. The gzip -d command can also perform this
task. With the gunzip command, the -N, -c, -f, -l, and -r options work just like they
do with the gzip command.

The following session shows the use of the two commands with and without arguments.
We use the man bash > bash.man and man tcsh > tcsh.man commands to save
the manual page for the Bourne Again and TC shells in the bash.man and tcsh.man files,
respectively. The gzip bash.man tcsh.man command is used to compress the bash.
man and tcsh.man files, and the gzip –l bash.man.gz tcsh.man.gz command is
used to display some information about the compressed and uncompressed versions of the
bash.man and tcsh.man files. The output of the command shows, among other things,
the percentage of compression achieved: 71.3% for bash.man and 67.6% for tcsh.man. The
gzip bash.man.gz command is used to show that gzip does not compress an already
compressed file that has a .gz extension. If a compressed file does not have the .gz exten-
sion, gzip will try to compress it again. The gunzip *.man.gz command is used to
decompress the bash.man.gz and tcsh.man.gz files. The gzip –d *.man.gz command
can be used to perform the same task. The ls –l commands have been used to show that
the modification time, ownership, and access privileges of the original file are retained for
the compressed file.

% man bash > bash.man
% man tcsh > tcsh.man
% ls -l *.man
-rw-r--r-- 1 sarwar faculty 367470 Aug 30 21:39 bash.man
-rw-r--r-- 1 sarwar faculty 239996 Aug 30 21:39 tcsh.man
% gzip bash.man
% ls -l bash.man.gz
-rw-r--r-- 1 sarwar faculty 105342 Aug 30 21:39 bash.man.gz
% gzip bash.man.gz
gzip: bash.man.gz already has .gz suffix – unchanged

252 ◾ UNIX: The Textbook, Third Edition

% gunzip bash.man.gz
% gzip bash.man tcsh.man
% gzip -l bash.man.gz tcsh.man.gz
 compressed uncompressed ratio uncompressed_name
 105342 367470 71.3% bash.man
 77715 239996 67.6% tcsh.man
 183057 607466 69.8% (totals)
% gunzip *.man.gz
% ls -l *.man
-rw-r--r-- 1 sarwar faculty 367470 Aug 30 21:39 bash.man
-rw-r--r-- 1 sarwar faculty 239996 Aug 30 21:39 tcsh.man
%

7.2.5 The gzexe Command

The gzexe command can be used to compress executable files. An executable file com-
pressed with the gzexe command remains executable and can be executed by using its
name. This is not the case if an executable file is compressed with the gzip command.
Therefore, an executable file is compressed with the gzexe command in order to save
disk space and network bandwidth if the file is to be transmitted from one computer to
another—for example, via e-mail over the Internet. The following is a brief description of
this command.

SYNTAX
gzexe [options] [file-list]

Purpose: Compress the executable files given in file-list; backup files are created in file-
name~ and should be removed after the compressed files have been successfully
created

Commonly used options/features:
-d Decompress compressed files

The following session illustrates the use of the gzexe command. Note that when you com-
press the executable file sh.temp with the gzexe command, it creates a backup of the origi-
nal file in the sh.temp~ file. After the sh.temp file has been compressed, it can be executed as
an ordinary executable file. The gzexe -d sh.temp command is used to decompress the
compressed file sh.temp. The backup of the compressed version is saved in the sh.temp~ file.

% cp /bin/sh sh.temp
% file sh.temp
sh.temp: ELF 64-bit LSB executable, x86-64, version 1 (FreeBSD),
dynamically linked (uses shared libs), for FreeBSD 10.0 (1000510),
stripped
% gzexe sh.temp

Advanced File Processing    ◾    253

sh.temp: 49.2%
% ls -l sh*
-rwx------ 1 sarwar faculty 71133 Aug 30 21:59 sh.temp
-rwx------ 1 sarwar faculty 139264 Aug 30 21:59 sh.temp~
% gzexe -d sh.temp
49.2%
% ls -l sh*
-rwx------ 1 sarwar faculty 139264 Aug 30 22:00 sh.temp
-rwx------ 1 sarwar faculty 139264 Aug 30 21:59 sh.temp~
%

7.2.6 The zcat and zmore Commands

Converting the compressed file back to the original and then displaying it is a time-
consuming process because file creation requires disk I/O. If you only want to view the
contents of the original file, you can use the UNIX command zcat (the cat command
for compressed files), which displays the contents of files compressed with compress or
gzip. The command uncompresses a file before displaying it. The original file remains
unchanged. The zmore command can be used to display the compressed files one screen-
ful at a time. When no file or - is given as a parameter, these commands read input from
stdin. Both commands allow you to specify one or more files as parameters. Here is a brief
description of the zcat command.

SYNTAX
zcat [options] [file-list]

Purpose: Concatenate compressed files in their original form and send them to standard
output; if no file is specified, take input from standard input

Commonly used options/features:
-h Display help information
-r Operate recursively on subdirectories
-t Test integrity of compressed files

In the following session, the gzip command is used to compress the bash.man file and
store it in the bash.man.gz file. When the more command is used to display a compressed
file, garbage is displayed on the screen. The zmore command is used to display the con-
tents of the original file. We did not use the zcat command because bash.man is a large,
multipage file.

$ gzip bash.man
$ more bash.man.gz
<8B>^H^HA<FE>T<97><C3>
<DD><A0><CC>◻<AE>j<82><B0>G<FE><EC>o<DC><99>U<DD><8F><AC><"<E3>
<8E>_ƒ<FA><E4><D9>o<8F><F9>O<E4><FF>ƒų<BE><FF><F9><BA><FA><FA>I

254 ◾ UNIX: The Textbook, Third Edition

<F5><E4>w<D5>◻<BE>xO<DE>><AF><FB><AB>x<BF><FA><FA><BB><F8>i<B7>◻
<9B><93>'<97>u<BB><8E><CF>'<DB>,<97><EF><BD><F7><AC>z<F6><A7><EA>O
<F0><C5>o<AA>o<BE><AD><BE><85>?<9F>VO<E1>_<FB>zu^Wu_<F5>W<D5>Uƒ
<D1>m<86><B6>ÿ<F7>/<E3><8B>y<B7>Z<D5><EB><C5>Y?l<DB><F5>e<CF>
p<D1>. <9B><97><EF><BD><F7>Y<F5><8F><A3><FE><BE><FA>=
...
% zmore bash.man.gz
BASH(1) BASH(1)
NAME
 bash - GNU Bourne-Again SHell
SYNOPSIS
 bash ÿoptions¦ ÿcommand_string ƒ file¦
COPYRIGHT
 Bash is Copyright (C) 1989-2013 by the Free Software
Foundation, Inc.
DESCRIPTION
 Bash is an sh-compatible command language interpreter
that executes commands read from the standard input or from a
file. Bash also incor-
...
%

In the following session, the zcat command decompresses the t2.gz file and sends
its output to standard output (the display screen in this case). The file t2.gz remains
intact.

% gzip t2
% zcat t2.gz
This file will be used to test various UNIX and Linux commands and
tools.
UNIX and Linux rule the networking world!
%

As given in this command description, multiple files can be displayed by the zcat
command. For example, zcat t1.Z t2.Z t3.Z may be used to display the uncom-
pressed forms of the three files t1.Z, t2.Z, and t3.Z. The zcat command may also be
used to display the files compressed with the compress command—that is, files with the
.Z extension.

In the following in-chapter exercises, you will use the compress, uncompress,
gzip, gunzip, gzmore, and zcat commands to appreciate their syntax and
semantics.

EXERCISE 7.1

Create the t2 file used in this section. Use the compress command to compress the file.
What command line did you use?

Advanced File Processing    ◾    255

EXERCISE 7.2

Create the bash.man file used in this section. Use the gzip command to compress the file.
What command line did you use?

EXERCISE 7.3

Display the compressed version of the t2 file on the display screen. What command line
did you use?

EXERCISE 7.4

Give the command line for uncompressing the compressed files generated in Exercises 7.1
and 7.2. Where does the uncompressed (original) file go? Also, repeat the shell sessions
shown in Sections 7.2.1 through 7.2.6.

7.3 SORTING FILES
Sorting means ordering a set of items according to some criteria. In computer jargon, it
means ordering a set of items (e.g., integers, a character, or strings) in ascending (the next
item is greater than or equal to the current item) or descending (the next item is less than or
equal to the current item) order. So, for example, a set of integers {10, 103, 75, 22, 97, 52, 1}
would become {1, 10, 22, 52, 75, 97, 103} if sorted in ascending order, and {103, 97, 75, 52, 22,
10, 1} if sorted in descending order. Similarly, words in a dictionary are listed in ascending
order. Thus, the word apple appears before the word apply.

Sorting is a commonly used operation and is also performed in a variety of software
systems. Systems in which sorting is used include

• Words in a dictionary

• Names of people in a telephone directory

• Airline reservation systems that display arrival and departure times for flights sorted
according to flight numbers at airport terminals

• Names of people displayed in a pharmacy with ready prescriptions

• Names of students listed in class lists coming from the registrar’s office

The sorting process is based on using a field, or portion of each item, known as the sort
key. In order to determine the position of each item in the sorted list, you compare the
items in a list (usually two at a time) by using their key fields. The choice of the field used
as the key depends on the items to be sorted. If the items are personal records (e.g., student
employee records), last name, student ID, and social security number are some of the com-
monly used keys. If the items are arrival and departure times for the flights at an airport,
flight number and city name are commonly used keys.

256 ◾ UNIX: The Textbook, Third Edition

The UNIX sort utility can be used to sort items in text (ASCII) files. The following is
a brief description of this utility.

SYNTAX
sort [options] [file-list]

Purpose: Sort lines in the ASCII files in file-list
Output: Sorted files to standard output
Commonly used options/features:

-b Ignore leading blanks
-d Sort according to usual alphabetical order: ignore all characters except let-

ters, digits, and then blanks
-f Consider lowercase and uppercase letters to be equivalent
+n1[-n2] Specify a field as the sort key, starting with +n1 and ending at -n2 (or end

of line if -n2 is not specified); field numbers start with 0
-r Sort in reverse order

If no file is specified in file-list, sort takes input from standard input. The output of the
sort command goes to standard output. By default, sort takes each line, starting with
the first column, to be the key. In other words, it rearranges the lines of the file—that is,
strings separated by the newline character (n)—according to the contents of all the fields,
going from left to right. The following session illustrates the use of sort with and with-
out some options. The students file contains the items (student records, one per line) to
be sorted. Each line contains four fields: first name, last name, e-mail address, and phone
number. Each field is separated from the next by one or more space characters.

% cat students
John Johnsen john.johnsen@tp.com 503.555.1111
Hassaan Sarwar hsarwar@k12.st.or 503.444.2132
David Kendall d_kendall@msnbc.org 229.111.2013
John Johnsen j.johnsen@psu.net 301.999.8888
Ibraheem Sarwar ibraheem@abc.sci.com 222.123.4567
Kelly Kimberly kellyk@umich.gov 555.123.9999
Maham Sarwar smsarwar@k12.st.or 713.888.0000
Jamie Davidson j.davidson@uet.edu 515.001.1212
Nabeel Sarwar n.sarwar@xyz.net 434.555.1212
% sort students
David Kendall d_kendall@msnbc.org 229.111.2013
Hassaan Sarwar hsarwar@k12.st.or 503.444.2132
Ibraheem Sarwar ibraheem@abc.sci.com 222.123.4567
Jamie Davidson j.davidson@uet.edu 515.001.1212
John Johnsen j.johnsen@psu.net 301.999.8888
John Johnsen john.johnsen@tp.com 503.555.1111
Kelly Kimberly kellyk@umich.gov 555.123.9999
Maham Sarwar smsarwar@k12.st.or 713.888.0000

Advanced File Processing    ◾    257

Nabeel Sarwar n.sarwar@xyz.net 434.555.1212
%

Note that the lines in the students file are sorted in ascending order by all characters,
going from left to right (the whole line is used as the sort key). The following command
sorts the file by using the whole line, starting with the last name—the second field (field
number 1)—as the sort key.

% sort +1 students
Jamie Davidson j.davidson@uet.edu 515.001.1212
John Johnsen j.johnsen@psu.net 301.999.8888
John Johnsen john.johnsen@tp.com 503.555.1111
David Kendall d_kendall@msnbc.org 229.111.2013
Kelly Kimberly kellyk@umich.gov 555.123.9999
Hassaan Sarwar hsarwar@k12.st.or 503.444.2132
Ibraheem Sarwar ibraheem@abc.sci.com 222.123.4567
Nabeel Sarwar n.sarwar@xyz.net 434.555.1212
Maham Sarwar smsarwar@k12.st.or 713.888.0000
%

The following command sorts the file in reverse order by using the phone number as the
sort key and ignoring leading blanks (spaces and tabs). The +3 option specifies the phone
number to be the sort key (as phone number is the last field), the -r option informs sort
to display the sorted output in reverse order, and the -b option asks the sort utility to
ignore the leading white spaces between fields.

% sort +3 -r -b students
Maham Sarwar smsarwar@k12.st.or 713.888.0000
Kelly Kimberly kellyk@umich.gov 555.123.9999
Jamie Davidson j.davidson@uet.edu 515.001.1212
John Johnsen john.johnsen@tp.com 503.555.1111
Hassaan Sarwar hsarwar@k12.st.or 503.444.2132
Nabeel Sarwar n.sarwar@xyz.net 434.555.1212
John Johnsen j.johnsen@psu.net 301.999.8888
David Kendall d_kendall@msnbc.org 229.111.2013
Ibraheem Sarwar ibraheem@abc.sci.com 222.123.4567
%

The -b option is important if fields are separated by more than one space and the num-
ber of spaces differs from line to line, as is the case for the students file. The reason is that
the space character is “smaller” (in terms of its ASCII value) than all letters and digits, and
not skipping blanks will generate unexpected output. The sort keys can be combined, with
one being the primary key and others being secondary keys, by specifying them in the
order of preferences (the primary key occurring first). The following command sorts the
students file with the last name as the primary key and the phone number as the second-
ary key.

258 ◾ UNIX: The Textbook, Third Edition

% sort +1 -2 +3 -b students
Jamie Davidson j.davidson@uet.edu 515.001.1212
John Johnsen j.johnsen@psu.net 301.999.8888
John Johnsen john.johnsen@tp.com 503.555.1111
David Kendall d_kendall@msnbc.org 229.111.2013
Kelly Kimberly kellyk@umich.gov 555.123.9999
Ibraheem Sarwar ibraheem@abc.sci.com 222.123.4567
Nabeel Sarwar n.sarwar@xyz.net 434.555.1212
Hassaan Sarwar hsarwar@k12.st.or 503.444.2132
Maham Sarwar smsarwar@k12.st.or 713.888.0000
%

The primary key is specified as +1 -2, meaning that the key starts with the last name
(+1) and ends before the e-mail address field (-2) starts. The secondary key starts at the
phone number field (+3) and ends at the end of line. As no field follows the phone number,
it alone comprises the secondary key. For our file, however, the end result will be the same
as for the command sort +1 students because the first John Johnsen’s e-mail address
is “smaller” than the second’s.

Exercise 7.5

Repeat the above sessions on your system and verify that the sort command works on your
system as expected.

7.4 SEARCHING FOR COMMANDS AND FILES
At times, you will need to find whether a particular command or file exists in your file
structure. Or, if you have multiple versions of a command, you might want to find out
which one executes when you run the command. We discuss three commands that can be
used for this purpose: find, whereis, and which.

You can use the find command to search a list of directories that meet the criteria
described by the expression (see the command description) passed to it as an argument.
The command searches the list of directories recursively; that is, all subdirectories at all
levels under the list of directories are searched. The following is a brief description of the
command.

SYNTAX
find directory-list expression

Purpose: Search the directories in directory-list to locate files that meet the “criteria”
described by the expression (the second argument); the expression comprises one
or more “criteria” (see the examples)

Output: None unless it is explicitly requested in expression

Advanced File Processing    ◾    259

Commonly used options/features:
-exec CMD The file being searched meets the criteria if the command CMD

returns 0 as its exit status (true value for commands that execute
successfully); CMD must terminate with a quoted semicolon (\;)

-inum N Search for files with inode number N
-links N Search for files with N links
-name pattern Search for files that are specified by the pattern
-newer file Search for files that were modified after file (i.e., are newer than

file)
-ok CMD Like -exec except that the user is prompted first
-perm octal Search for files if permission of the file is octal
-print Display the pathnames of the files found by using the rest of the

criteria
-size ±N[c] Search for files of size N blocks; N followed by c can be used to

measure size in characters; +N means size > N blocks, and –N
means size < N blocks

-user name Search for files owned by the user name or ID name
\(expr \) True if expr is true; used for grouping criteria combined with OR

or AND
! expr True if expr is false

More criteria are presented in Appendix A. You can use [-a] or a space to logically
AND, and -o to logically OR two criteria. Note that at least one space is needed before and
after an open bracket ([) or a close bracket (]), and before and after -o. A complex expres-
sion can be enclosed in parentheses, \(and \). We now discuss some illustrative examples.

The most common use of the find command is to search one or more directories for
a file, as shown in the first example. Here, the command searches for the USA.gif and
Pakistan.gif files in your home directory and displays the pathname of the directory that
contains them. If the file(s) being searched for occurs in multiple directories, the path-
names of all the directories are displayed.

$ find ~ \(-name USA.gif –o -name Pakistan.gif \) -print
/home/sarwar/myweb/USA.html
/home/sarwar/myweb/Pakistan.html
$

The following command displays the absolute pathnames of all the files in your home
directory that end in .c and .C.

$ find ~ \(-name '*.c' –o –name '*.C' \) –print
...
$

The next command searches the /usr/include directory recursively for a file named
socket.h and prints the absolute pathname of the file.

260 ◾ UNIX: The Textbook, Third Edition

$ find /usr/include -name socket.h -print
/usr/include/sys/socket.h
$

You might want to know the pathnames for all the hard links (discussed in Chapter 8) to
a file—that is, files that have the same inode number. The following command recursively
searches the /usr and . (the present working directory) directories for all the files that have
inode number 1749 and prints the absolute pathnames of all such files.

$ find /usr/include . -inum 1749 -print
/usr/include/sys/file.h
$

The following command searches the present working directory for files that have the
name core or have extensions .ps or .o, displays their absolute pathnames, and removes
them from the file structure. Parentheses are used to enclose a complex criterion. Be sure
that you use spaces before and after \(, \), and -o. The command does not prompt you for
permission to remove; in order to be prompted, replace -exec with -ok.

$ find . \(-name core -o -name '*.ps' -o -name '*.o' \) -print
-exec rm {} \;
...
$

You can use the whereis command to find out whether your system has a particular
command, and if it does, where it is in the file structure. You typically need to get such
information when you are trying to execute a command that you know is valid but that
your shell cannot locate because the directory containing the executable for the command
is not in your search path (see Chapters 2 and 4). Under these circumstances, you can use
the whereis command to find the location of the command and update your search path.
Although whereis is a BSD command, most UNIX systems today have it because they
have a BSD compatibility package. Depending on the system you are using, the command
not only gives you the absolute pathname for the command that you are searching for, but
it also gives you the absolute pathnames for its manual page and source files if they are
available on your system. The following is a brief description of the command.

SYNTAX
whereis [options] [file-list]

Purpose: Locate binaries (executable files), source codes, and manual pages for the com-
mands in file-list—a space-separated list of command names

Output: Absolute pathnames for the files containing binaries, source codes, and manual
pages for the commands in file-list

Commonly used options/features:
-b Search for binaries (executable files) only
-s Search for source code only

Advanced File Processing    ◾    261

The following examples illustrate use of whereis command. The first command is used
to locate the ftp command. The second command is used to locate the executable file for
the cat command. The last command locates the information for the find, compress,
and tar commands.

$ whereis ftp
ftp: /usr/bin/ftp /usr/share/man/en.UTF-8/man1/ftp.1.gz
$ whereis -b cat
cat: /bin/cat
$ whereis find compress tar
find: /usr/bin/find /usr/share/man/en.UTF-8/man1/find.1.gz
compress: /usr/bin/compress /usr/share/man/en.UTF-8/man1/
compress.1.gz
tar: /usr/bin/tar /usr/share/man/en.UTF-8/man1/tar.1.gz
$

In the outputs of these commands, the directories /usr/bin, /usr/local/bin, /usr/ucb,
and /usr/sbin contain the executables for commands, the directory /usr/man contains
several subdirectories that contain various sections of the UNIX online manual, the file
/etc/tar is a symbolic link to /usr/sbin/tar, and the /usr/include directory contains header
files.

In a system that has multiple versions of a command, the which utility can be used
to determine the location (absolute pathname) of the version that is executed by the shell
you are using when you type the command. When a command does not work according
to its specification, the which utility can be used to determine the absolute pathname of
the command version that executes. A local version of the command may execute because
of the way the search path is set up in the PATH variable (see Chapters 2 and 4). And, the
local version has been broken due to a recent update in the code; perhaps it does not work
properly with the new libraries that were installed on the system. The which command
takes command-list (actually a file-list for the commands) as an argument and returns
absolute pathnames for them to standard output.

In the following in-chapter exercises, you will get practice using the find, sort, and
whereis commands, as well as appreciate the difference between the find and whereis
commands.

Exercise 7.6

Give a command for sorting a file called students by using the whole line starting with the
e-mail address.

Exercise 7.7

Give a command for finding out where the executable code for the traceroute com-
mand is on your system.

262 ◾ UNIX: The Textbook, Third Edition

Exercise 7.8

You have a file called phones somewhere in your directory structure, but you do not remem-
ber the pathname of the directory it is in. What command would you use to locate it?

7.5 REGULAR EXPRESSIONS
A regular expression is a sequence of constants and operator symbols (known as operators)
that represents a set of strings, commonly known as search patterns, used for searching file
contents for the desired strings. Different tools and commands in UNIX support different
sets of operators, but the following operators are supported by almost all UNIX tools that
support regular expressions: (), [], ., ,̂ $, and *. The * operator may be used to specify
zero or more occurrences of the preceding element. For example, a* represents an empty
string, a, aa, aaa, and so on. The regular expression ^a represents a line starting with
a. Similarly, .com represents string Acom, acom, Bcom, bcom, Ccom, ccom, and so on.
The regular expression aa* represents a, aa, aaa, and so on. It is equivalent to the regular
expression a+.

Some of the tools use additional operators like |, ?, and +. The ? operator may be used
to specify zero or one occurrence of the preceding element (a character or a pattern). For
example, a? specifies a string with no characters (an empty string) or a string with only a.
The + operator may be used to specify one or more occurrence of the preceding element.
For example, a+ represents a, aa, aaa, and so on. The | specifies alternatives. For exam-
ple, a|b, pray|prey, or a|b*. The regular expression a|b* represents an empty string,
a, b, bb, bbb, and so on. The () operator is used to specify the scope and precedence of
operators. For example, pr(a|e)y represents pray or prey, and is thus equivalent to
pray|prey.

Some of the commonly used UNIX tools that allow the use of regular expressions are
awk, ed, egrep, grep, sed, vi, and vim, but the level of support for regular expres-
sions isn’t the same for all these tools. Whereas awk and egrep have the best support for
regular expressions, grep has the weakest.

Table 7.1 lists the regular expression operators, their names, example usage, meanings,
and tools that support them. The regular expression operators overlap with shell metacha-
racters, but you can use single quotes around them to prevent the shell from interpreting
them. The word “All” in the last column means that all the tools mentioned support the
corresponding operator. We do not use quotes for strings in the fourth column for brevity.

Table 7.2 lists some commonly used regular expressions in the vim editor and their
meanings. Needless to say, regular expressions are used in the vim commands. We dis-
cuss examples for grep and egrep in Section 7.6. In the regular expression /\.c/, the
backslash character (\) is used to escape the special meaning of dot (.) and take its literal
meaning.

Table 7.3 lists some examples of the vim commands that use regular expressions and
their meaning. Note that these commands are used when you are in vim’s command mode.

In the following in-chapter exercises, you will use regular expressions in the vim editor
to appreciate their power.

Advanced File Processing    ◾    263

TABLE 7.1 Regular Expression Operators and Their Support by UNIX Tools

Name/Function Operator Example Usage Meaning Supported by

Alternation (OR) | x|y|z x, y, or z awk, grep

Any character . .com Acom, acom,
Bcom, bcom,

Ccom, ccom, …

All

Beginning of line ^ ^x A line starting
with x

All

Concatenation (AND) None xyx xyz All
End of line $ x$ A line ending

with x
All

Escape sequence: Cancels
the special meaning of the
metacharacter

that follows it

\ * * ed, sed, vi

Delimiter: Marks the
beginning or end of a
regular expression

/ /L..e/ Love, Live, Lose,
Lase, …

ed, sed, vi

Grouping () or \
(\)

(xy)+ xy, xyxy, xyxyxy,
...

All

Optional ? xy? x, xy awk, egrep

Repetition
(0 or more times)

* xy* x, xy, xyy, xyyy, ... All

Repetition
(1 or more times)

+ xy+ xy, xyy, xyyy, ... awk, egrep

Matches any character
enclosed in brackets.
Matches any character not
enclosed in brackets.

[]
[^]

/[Hh]ello/
/[^A-KM-Z]

ove/

Hello, hello
Love

All

TABLE 7.2 Examples of Regular Expressions for vim and Their Meaning

Regular Expression Meaning Examples

/^Yes/ A line starting with the string Yes Yes…
Yesteryear…
Yesterday…
and so on

/th/ Occurrence of the string th anywhere in a
word

the, there, path, bathing, and so on

/:$/ A line ending with a colon … following:
… below:
… follows:
and so on

/[0-9]/ A single digit 0, 1, …, 9
[a-z][0-9]/ A single lowercase English letter followed

by a single digit
a0, a1, ..., a9, …, b0, b1, …, b9, ..., z0, … z1,
..., z9

/\.c/ Any word that ends with .c (all C source
code files)

lab1.c, program1.c, client.c, server.c, and
so on

/[a-zA-Z]*/ Any string composed of letters (uppercase
or lowercase) and spaces; no numbers
and punctuation marks

All strings without numbers and
punctuation marks such as Hello world

264 ◾ UNIX: The Textbook, Third Edition

Exercise 7.9

Create a file that contains the words “UNIX,” “Linux,” “Windows,” and “DOS.” Be sure that
some of the lines in this file end with those words. Replace the string Windows with UNIX
in the whole document as you edit it with the vim editor. What command(s) did you use?

Exercise 7.10

As you edit the document in Exercise 7.9, in vim, run the command :1,$s/DOS\./
LINUX\./gp. What did the command do to the document?

7.6 SEARCHING FILES
UNIX has powerful utilities for file searching that allow you to find lines in text files that
contain a particular expression, string, or pattern. For example, if you have a large file that
contains the records for a company’s employees, one per line, you might want to search the
file for line(s) containing information on John Johnsen. The utilities that allow file search-
ing are grep, egrep, and fgrep. The following is a brief description of these utilities.

SYNTAX
grep [options] pattern [file-list]
egrep [options] [string] [file-list]
fgrep [options] [expression] [file-list]

Purpose: Search the files in file-list for the given pattern, string, or expression; if no file-
list, take input from standard input

Output: Lines containing the given pattern, string, or expression on standard output
Commonly used options/features:

-c Print the number of matching lines only
-i Ignore the case of letters during the matching process
-l Print only the names of files with matching lines
-n Print line numbers along with matched lines
-s Useful for shell scripts; suppresses error messages (the return status is set to zero for

success and nonzero for no success—see Chapter 10)
-v Print nonmatching lines
-w Search for the given pattern as a string

TABLE 7.3 Some Commonly Used vim Commands Illustrating the Use of Regular Expressions
/ [0-9] / Do a forward search for a single stand-alone digit character in the current file;

digits that are part of strings are not identified.
?\.c[1-7] ? Do a backward search for words or strings in words that end with .c followed by

a single digit between 1 and 7.
:1,$s/:$/./ Search the whole file and substitute a colon (:) at the end of a line with a period

(.).
:.,$s/^[Hh]ello /
Greetings /

From the current line to the end of file, substitute the words “Hello” and “hello”
starting a line with the word “Greetings.”

:1,$s/^ *// Eliminate one or more spaces at the beginning of all the lines in the file.

Advanced File Processing    ◾    265

Of the three, the fgrep command is the fastest but most limited; egrep is the slowest
but most flexible, allowing full use of regular expressions; and grep has reasonable speed
and is fairly flexible in terms of its support of regular expressions. In the following sessions,
we illustrate the use of these commands with some of the options shown in the description.
We use the same students file in these sessions that we used in describing the sort utility
in Section 7.4. We display the file by using the cat command.

% cat students
John Johnsen john.johnsen@tp.com 503.555.1111
Hassaan Sarwar hsarwar@k12.st.or 503.444.2132
David Kendall d_kendall@msnbc.org 229.111.2013
John Johnsen j.johnsen@psu.net 301.999.8888
Ibraheem Sarwar ibraheem@abc.sci.com 222.123.4567
Kelly Kimberly kellyk@umich.gov 555.123.9999
Maham Sarwar smsarwar@k12.st.or 713.888.0000
Jamie Davidson j.davidson@uet.edu 515.001.1212
Sandy Khan sandy.khan@isu.edu 515.101.9009
Nabeel Sarwar n.sarwar@xyz.net 434.555.1212
%

The most common and simple use of the grep utility is to display the lines in a file
containing a particular string, word, or pattern. In the following session, we display those
lines in the students file that contain the string Sarwar. The lines are displayed in the
order they occur in the file.

$ grep Sarwar students
Hassaan Sarwar hsarwar@k12.st.or 503.444.2132
Ibraheem Sarwar ibraheem@abc.sci.com 222.123.4567
Maham Sarwar smsarwar@k12.st.or 713.888.0000
Nabeel Sarwar n.sarwar@xyz.net 434.555.1212
%

The grep command can be used with the -n option to display the output lines with line
numbers. In the following session, the lines in the students file containing the string John
are displayed with line numbers.

% grep -n John students
1: John Johnsen john.johnsen@tp.com 503.555.1111
4: John Johnsen j.johnsen@psu.net 301.999.8888
%

You can use the grep command to search a string in multiple files with regular expres-
sions and shell metacharacters. In the following session, grep searches for the string
“include” in all the files in the present working directory that end with .c (C source files).
Note that the access permissions for server.c were set so that grep couldn’t read it; the
user running the command did not have read permission for the server.c file.

266 ◾ UNIX: The Textbook, Third Edition

$ grep –n include *.c
client.c: 21: #include <stdio.h>
client.c: 22: #include <ctype.h>
client.c: 23: #include <string.h>
lab1.c: 13: #include <stdio.h>
grep: can't open server.c
$

You can also use the grep command with the -l option to display the names of files
in which the pattern occurs. However, it does not display the lines that contain the pat-
tern. In the following session, the ~/States directory is assumed to contain one file for
every US state, and this file is assumed to contain the names of all the cities in the state
(e.g., Portland). The grep command, therefore, displays the names of files that contain the
word “Portland”—that is, the names of states that have a city called Portland.

$ grep -l Portland ~/States
Maine
Oregon
$

Certain characters are treated specially by both shell and grep. Therefore, in order to
make sure that shell passes the desired regular expression to grep, you need to enclose
the regular expression in single or double quotes. You can pass quote a character by using
backslash (\), unless the character is newline (n). A single quote (') quotes every char-
acter except itself. A double quote (") quotes every character except ", $, |, or '. Thus, you
may replace " with ' in any command that uses regular expressions enclosed in " and
the command would work, but not vice versa. In the following sessions, we use single and
double quotes interchangeably. Expressions enclosed in single and double quotes are also
passed verbatim to grep and egrep.

The following command displays the lines in the students file that start with the letters
A through H. In the command, ^ specifies the beginning of a line.

% grep '^[A-H]' students
Hassaan Sarwar hsarwar@k12.st.or 503.444.2132
David Kendall d_kendall@msnbc.org 229.111.2013
%

The following command displays the lines from the students file that contain at least
eight consecutive lowercase letters.

% grep '[a-z]\{8\}' students
Ibraheem Sarwar ibraheem@abc.sci.com 222.123.4567
Maham Sarwar smsarwar@k12.st.or 713.888.0000
Jamie Davidson j.davidson@uet.edu 515.001.1212
%

Advanced File Processing    ◾    267

The character sequence \< is used to indicate the start of a word. Single (or double)
quotes are used to ensure that the shell does not interpret any letter in the pattern as a shell
metacharacter, as in '\<Ke' or in "\<Ke". Thus, the following command displays the
lines that contain a word starting with the string “Ke.”

% grep "\<Ke" students
David Kendall d_kendall@msnbc.org 229.111.2013
Kelly Kimberly kellyk@umich.gov 555.123.9999
%

By using the regular expression "\<K", the output of the grep command displays
lines that contain words starting with the letter K. Thus, the output of the command also
includes the line for Sandy Khan, as follows.

% grep "\<K" students
David Kendall d_kendall@msnbc.org 229.111.2013
Kelly Kimberly kellyk@umich.gov 555.123.9999
Sandy Khan sandy.khan@isu.com 515.101.9009
%

The string \> is the end of the word anchor. Thus, the following command displays the
lines that contain words that end with “net.” If we replace the string net with the string
war, what would be the output of the command?

% grep 'net\>' students
John Johnsen j.johnsen@psu.net 301.999.8888
Nabeel Sarwar n.sarwar@xyz.net 434.555.1212
%

In the following command, the regular expression "Kimberly|Nabeel" is used
to have egrep display the lines, and their numbers, that contain either “Kimberly” or
“Nabeel.” Note that the regular expression uses the pipe symbol (|) to logically OR the
two strings.

% egrep -n "Kimberly\|Nabeel" students
6:Kelly Kimberly kellyk@umich.gov 555.123.9999
10:Nabeel Sarwar n.sarwar@xyz.net 434.555.1212
%

The egrep -v Kimberly\|Nabeel students command would also produce the
same result because the pipe character has been escaped using \|.

You can use the -v option to display the lines that do not contain the string specified
in the command. The following command produces all the lines not containing the words
“Kimberly” and “Nabeel.”

268 ◾ UNIX: The Textbook, Third Edition

% egrep -v Kimberly\|Nabeel students
John Johnsen john.johnsen@tp.com 503.555.1111
Hassaan Sarwar hsarwar@k12.st.or 503.444.2132
David Kendall d_kendall@msnbc.org 229.111.2013
John Johnsen j.johnsen@psu.net 301.999.8888
Ibraheem Sarwar ibraheem@abc.sci.com 222.123.4567
Maham Sarwar smsarwar@k12.st.or 713.888.0000
Jamie Davidson j.davidson@uet.edu 515.001.1212
Sandy Khan sandy.khan@isu.edu 515.101.9009
%

The following command displays the lines in the students file that start with the letter
J. Note the use of ^ to indicate the beginning of a line.

% egrep "^J" students
John Johnsen john.johnsen@tp.com 503.555.1111
John Johnsen j.johnsen@psu.net 301.999.8888
Jamie Davidson j.davidson@uet.edu 515.001.1212
%

The following command displays the lines in the students file that start with the letters
J or K. Note that Ĵ and ^K represent lines starting with the letters J and K.

% egrep "^J|^K" students
John Johnsen john.johnsen@tp.com 503.555.1111
John Johnsen j.johnsen@psu.net 301.999.8888
Kelly Kimberly kellyk@umich.gov 555.123.9999
Jamie Davidson j.davidson@uet.edu 515.001.1212
%

The egrep \̂ J|\̂ K students command could produce the same result. However,
the egrep "^J|̂ K" students command uses simpler syntax. As a rule of thumb, if
you need to escape multiple special characters in a regular expression, enclose the regular
expression in single or double quotes, as the case may be.

In the following in-chapter exercises, you will use the commands of the grep family to
understand their various characteristics.

Exercise 7.11

Give a command for displaying the lines in the ~/Personal/Phones file that contain the
words starting with the string David.

Exercise 7.12

Give a command for displaying the lines in the ~/Personal/Phones file that contain phone
numbers with area code 212. Phone numbers are stored as xxx-xxx-xxxx, where x is a digit
from 0 to 9.

Advanced File Processing    ◾    269

Exercise 7.13

Display the names of all the files in your home directory that contain the word “main”
(without quotes).

7.7 CUTTING AND PASTING
You can process files that store data in the form of tables in UNIX by using the cut and
paste commands. A table consists of lines, each line comprises a record, and each record
has a fixed number of fields. Tabs or spaces usually separate fields, although any field sepa-
rator can be used. The cut command allows you to cut one or more fields of a table in
one or more files and send them to standard output. In other words, you can use the cut
command to slice a table vertically in a file across field boundaries. The following is a brief
description of the command.

SYNTAX
cut -blist [-n] [file-list]
cut -clist [file-list]
cut -flist [-dchar] [-s] [file-list]

Purpose: Cut out fields of a table in a file
Output: Fields cut by the command
Commonly used options/features:
-b list Treat each byte as a column and cut bytes specified in the list
-c list Treat each character as a column and cut characters specified in the list
-d char Use the character char instead of the <Tab> character as field separator
-f list Cut fields specified in the list
-n Do not split characters (used with -b option)
-s Do not output lines that do not have the delimiter character

Here, list is a comma-separated list with - used to specify a range of bytes, characters,
or fields. The following sessions illustrate some of the commonly used options and features
of the cut command. In this section, we use the file student_addresses, whose contents
are displayed by the cat command.

% cat student_addresses
John Doe jdoe@xyz.com 312.111.9999 312.999.1111
Pam Meyer meyer@uop.pk 666.222.1212 666.555.1212
Jim Davis jamesd@aol.org 713.999.5555 713.413.0000
Jason Kim j_kim@up.org 434.000.8888 434.555.2211
Amy Nash nash@state.gov 888.111.4444 888.827.3333
%

The file has five fields numbered 1–5, from left to right: first name, last name, e-mail
address, home phone number, and work phone number. Although we could have used any
character as the field separator, we chose the <Tab> character to give a “columnar” look

270 ◾ UNIX: The Textbook, Third Edition

to the table and the output of the following cut and paste commands. You can display a
table of first and last names by using the -f option. Note that -f1,2 specifies the first and
the second fields of the student_addresses file.

% cut -f1,2 student_addresses
John Doe
Pam Meyer
Jim Davis
Jason Kim
Amy Nash
%

We generate a table of names (first and last) and work phone numbers by slicing the first,
second, and fifth fields of the table in the student_addresses file.

$ cut -f1,2,5 student_addresses
John Doe 312.999.1111
Pam Meyer 666.555.1212
Jim Davis 713.413.0000
Jason Kim 434.555.2211
Amy Nash 888.827.3333
%

To generate a table of names and e-mail addresses, we use the following command.
Here, -f1-3 specifies fields 1–3 of the student_addresses file.

% cut -f1-3 student_addresses
John Doe jdoe@xyz.com
Pam Meyer meyer@uop.pk
Jim Davis jamesd@aol.org
Jason Kim j_kim@up.org
Amy Nash nash@state.gov
%

We recommend that you run this command on your machine to determine whether the
desired output is produced. If the desired output is not produced, you have not used the
<Tab> character as the field separator for some or all of the records. In such a case, correct
the table and try the command again.

In the preceding sessions, we have used the default field separator, the <Tab> character.
Depending on the format of your file, you can use any character as a field separator. For
example, as we discussed in Chapter 4, the /etc/passwd file uses the colon character (:) as
the field separator. You can therefore use the cut command to extract information such
as the login name, real name, group ID, and home directory for a user. Because the real
name, login name, and home directory are the fifth, first, and sixth fields, respectively, the
following command can be used to generate a table of names of all users, along with their

Advanced File Processing    ◾    271

login IDs and home directories. The first two lines of the output are for comments, as they
start with #.

$ cut -d: -f5,1,6 /etc/passwd
$FreeBSD$
#
root:Charlie &:/root
toor:Bourne-again Superuser:/root
daemon:Owner of many system processes:/root
...
sshd:Secure Shell Daemon:/var/empty
smmsp:Sendmail Submission User:/var/spool/clientmqueue
...
sarwar:Syed Mansoor Sarwar:/home/sarwar
...
$

Note that the -d option is used to specify : as the field separator, and it is also displayed
as the field separator in the output of the command. For blank delimited files, use one or
more space characters (blanks) after –d\, as shown in the following example. The cat
sample command is used to display the blank delimited file, called sample, and the cut
–d\ -f1,6 sample command is used to display fields 1 and 6 of this file.

$ cat sample
1 John CS Senior john@net2net.com 3.45
2 Jane CS Junior jane@net2net.com 3.76
3 Sara CS Senior sara@net3net.vom 3.33
$ cut -d -f1,6 sample
1 3.45
2 3.76
3 3.33
$

The paste command complements the cut command; it concatenates files horizon-
tally (the cat command concatenates files vertically). Hence, this command can be used
to paste tables in columns. The following is a brief description of the command.

SYNTAX
paste [options] file-list

Purpose: Horizontally concatenate files in file-list; use standard input if - (i.e., a hyphen)
is used as a file

Output: Files in file-list pasted (horizontally concatenated)
Commonly used options/features:

-d list Use list characters as line separators; <Tab> is the default character

272 ◾ UNIX: The Textbook, Third Edition

Consider the file student_records, which contains student names (first and last), major,
and current GPA.

% cat student_records
John Doe ECE 3.54
Pam Meyer CS 3.61
Jim Davis CS 2.71
Jason Kim ECE 3.97
Amy Nash ECE 2.38
%

We can combine the two tables, student_records and student_addresses_shortened,
horizontally and generate another by using the paste command in the following session.
In order to keep the resultant table small, we have used a shortened version of the origi-
nal student_addresses file called student_addresses_shortened, which contains the first
name, last name, and work phone number only, as shown below. We generated this table
by using the cut -f1,2,5 student _ addresses > student _ addresses _
shortened command. Note that the output of the paste command is displayed on the
display screen and is not stored in a file. The resultant table has seven fields.

% cat student_addresses_shortened
John Doe 312.999.1111
Pam Meyer 666.555.1212
Jim Davis 713.413.0000
Jason Kim 434.555.2211
Amy Nash 888.827.3333
% paste student_records student_addresses_shortened
John Doe ECE 3.54 John Doe 312.999.1111
Pam Meyer CS 3.61 Pam Meyer 666.555.1212
Jim Davis CS 2.71 Jim Davis 713.413.0000
Jason Kim ECE 3.97 Jason Kim 434.555.2211
Amy Nash ECE 2.38 Amy Nash 888.827.3333
%

Suppose that you want to use the student_addresses_shortened and student_records
tables to generate and display a table that has student names, majors, and home phone
numbers. You may do so in one of two ways. When you use the first method, you cut
the appropriate fields of the two tables, put them in separate files with the fields in the
order you want to display them, paste the two tables in the correct order, and remove the
tables. The following session illustrates this procedure and its result. Note that the new
table is not saved as a file when the following commands are executed. If you want to
save the new table in a file, use the paste table1 table2 > students _ table
command. The students_table contains the columns of table1 and table2 (in that order)
pasted together.

Advanced File Processing    ◾    273

% cut -f1-3 student_records > table1
% cut -f4 student_addresses > table2
% paste table1 table2
John Doe ECE 312.111.9999
Pam Meyer CS 666.222.1212
Jim Davis CS 713.999.5555
Jason Kim ECE 434.000.8888
Amy Nash ECE 888.111.4444
% rm table1 table2
%

The procedure just outlined is expensive in terms of space and time because you have
to execute four commands, generate two temporary files (table1 and table2) on disk, and
remove these temporary files after the desired table has been displayed. You can use a dif-
ferent method to accomplish the same thing with the following command.

% paste student_records student_addresses | cut -f1-3,8
John Doe ECE 312.111.9999
Pam Meyer CS 666.222.1212
Jim Davis CS 713.999.5555
Jason Kim ECE 434.000.8888
Amy Nash ECE 888.111.4444
%

Here, you first combine the tables in the two files into one table with nine columns by
using the paste student _ records student _ addresses command and then
displaying the desired table by using the cut -f1-3,8 command. Clearly, this second
method is the preferred way to accomplish the task because no temporary files are created
and only one command is needed. If you want to save the resultant table in the students_
table file, use the command paste student _ records student _ addresses
| cut -f1-3,8 > students _ table.

7.8 ENCODING AND DECODING
E-mail messages are transported in clear (plain) text, and some e-mail systems are fussy
about certain characters contained in the body of the message, such as the tilde character
(~) in the first column for the mail and mailx utilities. This is a serious problem for
mail systems, such as mail, that do not have convenient support for attachments when
you need to attach items such as pictures, videos, or executable programs (binaries). You
can use the UNIX-to-UNIX encode (uuencode) utility to convert such a file into a format
that contains printable ASCII characters only, with a letter in the first column, and then
e-mail this file’s contents as the body of your e-mail message. The receiver can save the
uuencoded contents in the e-mail body into a file and use the uudecode utility to convert
this file to the original format. In this section, we discuss these two utilities, starting with
their brief descriptions.

274 ◾ UNIX: The Textbook, Third Edition

SYNTAX
uuencode [option] [source-file] decode_label
uuencode [-o output-file] [source-file] decode_label

Purpose: Convert source file from binary to ASCII
Output: First syntax: the encoded version of source-file to standard output
Second syntax: the encoded version of source-file to output-file
Commonly used options/features:

-m Use Base64 method of encoding instead of the standard algorithm
uudecode [options] [encoded-file]
Purpose: Decode encoded-file from ASCII to binary
Output: The binary version of encoded-file into a file called decode-label, the second

parameter of the uuencode command
Commonly used options/features:

-i Do not overwrite files
-p Send the decoded (binary) version of the file to standard output
-o output _ file Send the decoded (binary) version of the file to output_file

The uuencode command sends the encoded (ASCII) version of the file to standard
output. The command takes input from standard input if no source-file is specified in the
command. The output has decode_label in the header (first line) of the ASCII version.

The uudecode utility recreates the original file from the uuencoded (ASCII) file and
puts it in a file called decode_label. With the -p option, the command sends the binary
version to standard output. This option uses the uudecode command in a pipeline (see
Chapter 9). Both the uuencode and uudecode commands retain the original files that
they translate. The diagram shown in Figure 7.1 illustrates the process of uuencoding and
uudecoding.

You can redirect the output to a file by using the > symbol, as shown in the uuencode
a.out alarm.out > sarwar.out command in the following session. When you do
so, the encoded output goes to the file sarwar.out with a decode_label of alarm.out.

% cat a.out
ELF >'@@?
 @@@@@@@?@@@@ ''(''?@@00P?@$$Q?t/libexec/ld-elf.
so.FreeBSD>FreeBSD

Binary file Ordinal binary
file

uuencode uuencode

Mail

uuencode
ASSCII file

FIGURE 7.1 The process of uuencoding and uudecoding.

Advanced File Processing    ◾    275

V?g)]i1N?k??|CE??Pv??qX
????
'n???
'C?
u???
'libc++.so.1_Jv_RegisterClasseslibcxxrt.so.1libm.so.5libc.
so.7__prognameenvironprintf_init_tlsatexit_edata__bss_start_
endFBSD_1.09?(z??
'?
'?
'?
'H??g??H???5? ?%? @?%? h??????%? h??????%~ h??????%v h????UH??AWAV
AUATSPI??M?4$Ic?M?|?H?=c uL?=Z I?E??~4I?$H??t+?fffff.?H??H?
?H?????/t??u?'H??t
H???G?????P????'H??????@?(????'?'H)?I??I???I??=I?I??M??t11?fffff.?
H??'H??r
 D??L??
...
% uuencode -o sarwar.out a.out alarm.out
% head sarwar.out
begin 755 alarm.out
M?T5,1@(!'0D'''''''''''('/@'!''''8'5'''''''!'''''''''',@+''''
M'''''''''$''.''('$'''''9''8''''%''''0'''''''''!''$'''''''$''
M0'''''''P'$'''''''#''0''''''''@''''''''''P''''0''''''@''''''
M'''"0''''''''')''''''''5'''''''''!4''''''''''0'''''''''!''''
M!0''''''''''''''''!''''''''''$''''''',0(''''''''Q'@'''''''''
M'"''''''''$''''&''''R'@'''''''#("&''''''',@(8'''''''''('''''
M'''H'@''''''''''(''''''''@''''8'''#P"''''''''/'(8''''''''A@
M''''''"@'0'''''''*'!''''''''"''''''''''$''''!''''!@"''''''''
M&')''''''''8'D'''''''#'''''''''',''''''''''$'''''''''%#E=&0$
% uudecode sarwar.out
% cat alarm.out
ELF >'@@?
 @@@@@@@?@@@@ ''(''?@@00P?@$$Q?t/libexec/ld-elf.
so.FreeBSD>FreeBSD

V?g)]i1N?k??|CE??Pv??qX
????
'n???
'C?
u???
'libc++.so.1_Jv_RegisterClasseslibcxxrt.so.1libm.so.5libc.
so.7__prognameenvironprintf_init_tlsatexit_edata__bss_start_
endFBSD_1.09?(z??
'?
'?
'?

276 ◾ UNIX: The Textbook, Third Edition

'H??g??H???5? ?%? @?%? h??????%? h??????%~ h??????%v h????UH??AWAV
AUATSPI??M?4$Ic?M?|?H?=c uL?=Z I?E??~4I?$H??t+?fffff.?H??H?
?H?????/t??u?'H??t
H???G?????P????'H??????@?(????'?'H)?I??I???I??=I?I??M??t11?fffff.?
H??'H??r
 D??L??
...
% ls -l a.out sarwar.out
-rwxr-xr-x 1 sarwar faculty 7121 Jul 13 12:25 a.out
-rw-r--r-- 1 sarwar faculty 9840 Aug 31 11:17 sarwar.out
%

Note the label alarm.out on the first line of the uuencoded file sarwar.out. The uude-
code command translates the file sarwar.out and puts the original in the file alarm.out.
As expected, a.out and alarm.out contain the same data. If you want to recreate the origi-
nal file in a.out, use a.out as the label in the uuencode command, as in uuencode –o
sarwar.out a.out a.out. The uudecode sarwar.out command produces the
original binary file in the a.out file.

The output generated by uuencode is about 38% larger than the original file. Thus, for
efficient use of the network bandwidth, you should compress binary files before uuencod-
ing them and uncompress them after uudecoding them. Doing so is particularly important
for large picture files or files containing multimedia data, such as videos.

7.9 FILE ENCRYPTION AND DECRYPTION
We briefly described encryption and decryption of files in Chapter 5. Here, we describe
these processes in more detail with the help of the UNIX command crypt.

Recall that encryption is a process by which a file is converted to a form completely dif-
ferent from its original version and that the transformed file is called an encrypted file; the
reverse process of transforming the encrypted file to its original form is known as decryp-
tion. Figures 7.2 and 7.3 illustrate these processes.

You encrypt files to prevent others from reading them. You can also encrypt your e-mail
messages to prevent hackers from understanding your message even if they are able to tap
a network as your message travels through it. On a UNIX system, you can use the crypt
command to encrypt and decrypt your files. The following is a brief description of the
command.

Original file Original file

Encryption/
decryption

software

Decryption/
encryption

software
Encrypted

file

FIGURE 7.2 The process of encryption and decryption.

Advanced File Processing    ◾    277

SYNTAX
crypt [options]

Purpose: Encrypt (decrypt) standard input and send it to standard output
Output: Encrypted (decrypted) version of the input text
Commonly used options/features:

key Password to be used to perform encryption (and decryption)
-k Use the value of the environment variable CRYPTKEY

By default, the crypt command takes input from standard input and sends its output
to standard output. The optional argument key is a password used in the encryption and
decryption processes. The command is used mostly with actual files, not keyboard input,
so the commonly used syntax for the crypt command is:

crypt key < original_file > encrypted_file

To decrypt an encrypted file, the process is reversed according to the syntax:

crypt key < encrypted_file > original_file

Remember that the key must be the same for both commands. The user chooses the
file name after the greater-than symbol (>). Multiple files can be specified as source files,
but the command encrypts only the first file and ignores the remaining files. The seman-
tics of these commands are shown in Figure 7.3. Note that the original file (the file to
be encrypted) remains intact and must be explicitly removed from the system after the
encrypted version has been generated.

The following session illustrates the use of crypt for encrypting and decrypting a file called
memo1. The crypt !hskr45#$ < memo1 > secret _ memo1 command encrypts
memo1 (in the present working directory) by using hskr45#$ as the key and puts the encrypted
version in the file secret_memo1, also in the present working directory. The cat commands
before and after the crypt command show the contents of the original and encrypted files.
Note that the contents of the encrypted file, secret_memo1, are not readable, which is the
objective. Also note that your shell prompt might get messy after the cat secret _ memo1
command has completed its execution. If this happens, you should logout and login again.

Original file Crypt Crypt

Key Key(b)(a)

Original fileEncrypted
file

Encrypted
file

FIGURE 7.3 Encryption and decryption of a file by using the crypt command.

278 ◾ UNIX: The Textbook, Third Edition

$ cat memo1
Dear Jim:
This is to inform you that the second quarter earnings do not
look good. This information will be made public on Monday next
week when The Wall Street Journal reports the company earnings.
Of course, the company stock will take a hit, but we need to keep
the morale of our employees high. I am calling a meeting of the
vice presidents tomorrow morning at 8:00 to talk about this
issue in the main conference room. See you then. Make sure this
information does not get out before time.
Nadeem
$ crypt hskr45#$ < memo1 > secret_memo1
$ cat secret_memo1
.??&??
 ?k7??6??I??<~?eb?'! 'I?w??
]?b?e◻???_??R?y????7xI<???Y-A4?5x?1?#?98
 2GF≠?WF?????$┴◻?V????*┐????┼° ?W??S%?┼??????????
┼C?A??±?"??·◻???? ? ???◻?┼??KOBM?Q┬D┤◻?WF?M *W[O?K???8?┤
 &7????─

□T?≤W?≠*??\T◻0 W['T??├?E??? ??$?? ┤
??\?▒?8M°^????≤??)?\?? W?\??◻K◻? ≤?????2WA???#???┬???S????N?°?

??8?????◻?£≠?4┤?°H??┐ú?.◻?┘?X?≤◻@???[TY?? S?Q?◻
 B?C????N?&????_?◻*?├◻??◻?┐?_ (?<?◻"?@??

...
%

The command for decrypting the file secret_memo1 and putting the original version in
the file original_memo1 is as follows. The cat command confirms that the original file
has been restored.

$ crypt hskr45#$ < secret_memo1 > original_memo1
$ cat original_memo1
Dear Jim:
This is to inform you that the second quarter earnings do not
look good. This information will be made public on Monday next
week when The Wall Street Journal reports the company earnings.
Of course, the company stock will take a hit, but we need to keep
the morale of our employees high. I am calling a meeting of the
vice presidents tomorrow morning at 8:00 to talk about this
issue in the main conference room. See you then. Make sure this
information does not get out before time.
Nadeem
$

Advanced File Processing    ◾    279

Again, the crypt command does not remove the file that it encrypts (or decrypts),
and it is your responsibility to remove the original file after encrypting it. Note also that
the encryption algorithm used by the crypt command is not the same as that used for
encrypting user passwords, as found in the /etc/passwd or /etc/shadow files. Also, even a
superuser cannot decrypt an encrypted file without having the correct key.

The crypt command uses an encryption technique that was used in the German
Enigma machine during World War II, although some of the parameters used in crypt
make the output generated by the command more difficult to decipher than that of the
Enigma machine. However, the methods of attack are well known for such machines. The
level of security provided by crypt is therefore minimal, and the command must not be
used on documents that require an extremely high level of security. However, an average
user is not familiar with these attack methods, and the use of crypt is a fairly decent
method of protecting your files.

If your work requires documentation and communication at higher levels of security,
you should use the openssl tool. It supports the crypto library, which allows you to use
several cryptographic functions, including the following:

• Encryption and decryption with ciphers

• Creation and management of public and private keys

• Public-key cryptographic operations

• Handling of encrypted e-mail

The coverage of openssl and crypto is beyond the scope of this book. You can learn
more about them by using the man openssl and man crypto commands.

The following in-chapter exercises will give you practice using the crypt, cut, paste,
uudecode, and uuencode commands and help you to understand their semantics with
a hands-on session.

Exercise 7.14

Create the student_addresses and student_records files used in Section 7.7. Then run the
cut and paste commands described in this section to see how these commands work.

Exercise 7.15

Copy the executable code for a command from the /usr/bin directory and uuencode it.
Run the ls -l command and report the size of the encoded file. Then uudecode the
encoded file to convert it back to the original file.

Exercise 7.16

Try the sessions for the crypt command given in this section on your system.

280 ◾ UNIX: The Textbook, Third Edition

SUMMARY
Several advanced operations have to be performed on text and nontext files from time
to time. These operations include compressing and uncompressing file contents, sorting
files, searching for files and commands in the file system structure, searching files for cer-
tain strings or patterns, performing database-like operations of cutting fields from a table
or pasting tables together, transforming non-ASCII files to ASCII, and encrypting and
decrypting files. Several tools are available in UNIX for performing these tasks.

Some of these tools have the ability to specify a set of strings by using a single charac-
ter string comprising of constants and operators, called regular expressions. Commonly
known as search patterns, regular expressions are used to search file contents for desired
strings. The utilities that allow the use of regular expressions are awk, ed, egrep, grep,
sed, and vim. In this chapter, we described regular expressions and their use in vim,
egrep, and grep.

The compress and gzip commands can be used to compress and uncompress files,
with gzip being the more flexible of the two. The uncompress, gunzip, and gzip –d
commands can be used to uncompress files compressed with the compress and gzip
commands, respectively. The gzexe command can be used to compress executable files
and the gzexe –d command can be used to uncompress them. Files compressed with
gzexe can be executed without explicitly uncompressing them. The zcat and zmore
commands can be used to display compressed files without explicitly uncompressing them.

The sort command can be used to sort text files. Each line comprises a record with
several fields, and the number of fields in all the lines in the file is the same. Text files can
also be processed like tables by using the cut and paste commands that allow cutting
of columns in a table and pasting of tables, respectively. The sort, cut, and paste com-
mands can be combined via a pipeline (see Chapter 9) to generate tables based on different
sets of criteria.

The find and whereis commands can be used to search the UNIX file system struc-
ture to determine the locations (absolute pathnames) of files and commands. The find
command, in particular, is very powerful and lets you search for files based on several
criteria, such as file size. The which command can be used to determine which version of
a command executes, in case there are several versions available on a system.

UNIX also provides a family of powerful utilities for searching for strings, expressions,
and patterns in text files. These utilities are grep, egrep, and fgrep. Of the three,
fgrep is the fastest but most limited; egrep is the most flexible but slowest of the three;
and grep is the middle-of-the-road utility—reasonably fast and fairly flexible.

The uuencode and uudecode utilities are useful in situations when users want to
e-mail non-ASCII files such as multimedia files, but the mailing system does not allow
attachments. The uuencode utility can be used to transform a non-ASCII file into an
ASCII file, and uudecode can transform the ASCII file back into the original non-ASCII
version. Thus, the sender uses the uuencode command before e-mailing a non-ASCII file
as part of the e-mail body, and the receiver of a uuencoded file uses uudecode to convert
it back to its original form.

Advanced File Processing    ◾    281

In the UNIX system, the crypt command can be used to encrypt and decrypt files that
the user wants to keep secret. The techniques for converting an encrypted file back to original
are well known. However, the average user is not familiar with these techniques, so the use of
crypt results in a fairly good scheme for protecting files. If your work requires higher-level
secure documentation and communication, you should use the openssl and crypto tools.

QUESTIONS AND PROBLEMS

 1. List five file-processing operations that you consider advanced.

 2. What are regular expressions? What do the following regular expressions specify?

 a. a|bc*

 b. (a|b)*

 c. a|(b*)c+

 3. Give the vi command for replacing all occurrences of the string DOS with the string
UNIX in the whole document that is currently being edited. What are the commands
for replacing all occurrences of the strings DOS and Windows with the string UNIX
from the lines that start or end with these strings in the document being edited?

 4. Give the vi command for deleting all four-letter words starting with B, F, b, and f in
the file being edited.

 5. Give the vi command for renaming all C source files in a document to C++ source
code files. Note: C source files end with .c and C++ source files end with .cpp.

 6. What is file compression? What do the terms compressed files and decompressed files
mean? What commands are available for performing compression and decompres-
sion in UNIX? Which are the preferred commands? Why?

 7. Take three large files in your directory structure—a text file, a PostScript file, and
a picture file—and compress them by using the compress command. Which file
was compressed the most? What was the percentage reduction in file size? Compress
the same files by using the gzip command. Which resulted in better compression,
compress or gzip? Uncompress the files by using uncompress and gunzip
commands. Show your work.

 8. What is sorting? Give an example to illustrate your answer. Name four applications
of sorting. Name the UNIX utility that can be used to perform sorting.

 9. Go to http://cnn.com/weather and record the high and low temperatures for the fol-
lowing majors cities in Asia: Kuala Lumpur, Karachi, Tokyo, Lahore, Manila, New
Delhi, and Jakarta. In a file called asiapac.temps, construct an ASCII table compris-
ing one line per city in the order: city name, high temperature, and low temperature.

http://www.cnn.com/weather

282 ◾ UNIX: The Textbook, Third Edition

 The following is a sample line.

 Tokyo 78 72

 Give commands to perform the following operations.

 a. Sort the table by city name.

 b. Sort the table by high temperature.

 c. Sort the table by using the city name as the primary and low temperature as the
secondary key.

 10. For the students file in Section 7.6, give a command to sort the lines in the file by
using last name only as the sort key.

 11. What commands are available for file searching? State the purpose of each.

 12. Give the command that searches your home directory and displays pathnames of all
the files created after the file /etc/passwd.

 13. Give a command that searches your home directory and removes all PostScript and
.gif files. The command must take your permission (prompt you) before removing a
file.

 14. On your UNIX system, how long does it take to find all the files that are larger than
1000 bytes in size? What command(s) did you use?

 15. What does the command grep -n '̂ ' student _ addresses do? Assume
that student_addresses is the same file we used in Section 7.6.

 16. Give the command that displays lines in student_addresses that start with the letter K or
have the letter J in them. The output of the command should also display line numbers.

 17. What do the following commands do?

 a. grep [A-H] students

 b. grep [A,H] students

 18. What would be the alternative of the grep ' \<Ke' students command that
uses only backslash (\) characters only (i.e., no quotes)?

 19. What would be the alternative of the grep ' [̂A-H]' students command that
uses backslashes (\) instead of single (or double) quotes?

 20. What are the equivalent grep commands for the following commands: egrep,
fgrep, zgrep, zegrep, and zfgrep?

 21. What reaches the grep command in the following cases?

 a. grep '<K' students

Advanced File Processing    ◾    283

 b. grep '\<K' students

 c. grep <K students

 22. Give a command that displays names of all the files in your ~/courses/ece446 direc-
tory that contain the word “UNIX.”

 23. Give a command that generates a table of user names for all users on your system,
along with their personal information. Extract this information from the /etc/passwd
file.

 24. Use the tables student_addresses and student_records to generate a table in which
each row contains last name, work phone number, and GPA.

 25. Imagine that you have a picture file campus.bmp that you would like to e-mail to a
friend. Give the sequence of commands that are needed to convert the file to ASCII
form, reduce its size, and encrypt it before e-mailing it.

 26. What is the purpose of file encryption? Name the UNIX command that you can
use to encrypt and decrypt files. Give the command for encrypting a file called ~/
personal/memo7 and store it in a ~/personal/memo_007 file. Be sure that, when
the encrypted file is decrypted, it is put back in the ~/personal/memo7 file. Give the
command to decrypt the encrypted file.

 27. What is the difference between the following:

 a. encryption and encoding?

 b. encoding and compression?

 c. compress and zip?

 28. Store the man pages for bash, sh, and csh in a file called shell_man_pages. Use
the gzip command to compress with different levels of compression. Show your
work and identify the command that does the maximum compression, along with
the compression ratio.

 29. Give an alternative syntax for the following command.

 uuencode -o sarwar.out a.out alarm.out

 Hint: Use output redirection, as discussed in Chapter 6.

 30. Decode the uuencoded sarwar.out file generated by the command given in Problem
25 such that the uudecoded content is saved in a.out and not in alarm.out.

http://taylorandfrancis.com

285

C h a p t e r 8

File Sharing

Objectives

• To explain different ways of sharing files

• To discuss the UNIX schemes and commands for implementing file sharing

• To describe UNIX hard and soft (symbolic) links in detail and discuss their advan-
tages and disadvantages

• To cover the commands and primitives

 *, ~, ln, ln -f, ln -s, ls -i, ls –l

8.1 INTRODUCTION
When a group of people work together on a project, they need to share information. If the
information to be shared is on a computer system, group members have to share files and
directories. For example, authors collaborating on a book or software engineers working
on a software project need to share files and directories related to their project. In this
chapter, we discuss several ways of implementing file sharing in a computer system. The
discussion of file sharing in this chapter focuses on how a file can be accessed from vari-
ous directories by various users in a UNIX system. Under the topic of version control in
Chapter 17, we address how members of a team can work on one or more files simultane-
ously without losing their work.

Several methods can be used to allow a group of users to share files and directories. In
this chapter, we describe duplicate shared files, common logins for members of a team,
setting appropriate access permissions on shared files, common groups for members in a
team, and sharing via links. All these methods can be used to allow a team of users to share
files and directories in a UNIX system. Although we describe each of these techniques,
the chapter is dedicated primarily to a discussion of sharing via links in a UNIX-based
computer system.

286 ◾ UNIX: The Textbook, Third Edition

8.2 DUPLICATE SHARED FILES
The simplest approach to files is to make copies of these files and give them to all team
members. The members can put these copies anywhere in their own accounts (directory
structures) and manipulate them in any way they desire. This scheme works well if mem-
bers of the team are to work on the shared file(s) sequentially, but it has obvious problems
if team members are to work on these files simultaneously. In the former case, team mem-
bers work on one copy of the shared files one by one and complete the task at hand. In the
latter case, because the members modify their own copies, the copies become inconsistent
and no single copy of the shared files reflects the work done by all the team members. This
outcome defeats the purpose of sharing.

8.3 COMMON LOGINS FOR TEAM MEMBERS
In this scheme, the system administrator creates a new user group comprising the mem-
bers of a team and creates for them a new account to which they all have access; that is,
they all know the login name and password for the account. The team owns all the files
and directories created by any team member under this account and everyone has access
to them.

It is a simple scheme that works quite well, particularly in situations in which the num-
ber of teams is small and teams are stable; that is, they stay together for long periods of
time. Such is the case for teams of authors writing a book or programming teams working
on large software projects that take several months to finish. However, this scheme also has
a couple of drawbacks. First, the team’s members have to use a separate account for their
current project and cannot use their regular accounts to access shared files and directories.
Second, the system administrator has to create a new account for every new team formed
in the organization. Having to do so could create a considerable amount of extra work for
the administrator if the duration of projects is short and new teams are formed for every
new project. The scheme could be a real headache for the system administrator in a college-
like environment where student teams are formed to work on class projects, resulting in a
large number of teams every semester or quarter.

8.4 SETTING APPROPRIATE ACCESS PERMISSIONS ON SHARED FILES
In this scheme, the team members decide to put all shared files under one member’s
account, and the access permissions on these files are set so that all team members can
access them. This scheme works well if only this team’s members form the user group
(recall the discussion of owner, group, and others in Chapter 5) because, if the group has
other users in it, they will also have access to the shared files. For example, suppose that
two university professors, Art Pohm and Jim Davis, belong to the user group faculty. They
decide to put their shared files in Davis’s account but set the group access permissions to
read, write, and execute for all shared files. All the professors in the user group faculty
then will have the same access permissions to these files, which will pose security prob-
lems. In particular, if the information to be shared is a small portion of the total amount of
information residing in a member’s account (say, two ordinary files out of tens of files and

File Sharing    ◾    287

directories that the member owns), the risk of opening the door to all users in a group is
too high, and a better technique must be used.

8.5 COMMON GROUPS FOR TEAM MEMBERS
This scheme works just like the preceding one, except that the system administrator creates
a new user group consisting of the members of the team only. All team members get indi-
vidual logins and set access permissions for their files so that they are accessible to other
members of the team. This file-sharing scheme is effective and is used often, particularly in
conjunction with a version control mechanism (see Chapter 17).

In Section 5.6.3, we show how you can set the sticky bit for a directory to allow a group
of users to share files and directories in it, but to ensure that an unprivileged user cannot
remove or rename files of other users in that directory.

8.6 FILE SHARING VIA LINKS
As described in Chapter 4, the attributes of a UNIX file are stored in its inode on disk.
When a file is opened, its inode is copied into the main memory, allowing speedy access
to its contents. In this section, we describe how the use of an inode results in a mechanism
that allows you to access a file by using multiple pathnames. System administrators com-
monly use this scheme to allow access to some files and directories through various other
directories. Thus, for example, the home directories of all the users on the system may be
accessed through /home or /usr/home. As discussed in Chapter 4, on PC-BSD (FreeBSD),
the commands, tools, and utilities for normal users are located in the /bin, /usr/bin, and /
usr/local/bin directories, and commands, utilities, daemons (see Chapter 10), and tools for
systems administration are located in the /sbin, /usr/sbin, and /usr/local/sbin directories.

A link is a way to establish a connection between the file to be shared and the directory
entries of the users who want to have access to this file. Thus, when we say that a file has N
links, we mean that the file has N directory entries somewhere in the file system hierarchy.
The links therefore aid file sharing by providing different access paths to files to be shared.
However, the appropriate setting of access permissions on these files controls the level of
sharing. You can create links to files to which you do not have any access, but that gets
you nowhere. Hence, file sharing via links is accomplished first by creating access paths to
shared files by establishing links to them and then by setting appropriate access permis-
sions on these files.

UNIX supports two types of links: hard links and soft/symbolic links. The ln command
may be used to create both types of links. The remainder of this chapter discusses methods
of creating both types of links and their internal implementation in the UNIX system.

8.6.1 Hard Links

A hard link is a pointer to the inode of a file. When a file is created in UNIX, the sys-
tem allocates a unique inode to the file and creates an entry in the directory in which the
file is created. As we discussed in Chapter 4, the directory entry comprises an ordered
pair (inode number, filename). The inode number for a file is used to access its attributes,
including its contents on the disk for reading or writing (changing) them (see Chapter 4).

288 ◾ UNIX: The Textbook, Third Edition

Suppose that you create a file Chapter3 in your present working directory and the system
allocates inode number 53472 to this file; the directory entry for this file would be (52473,
Chapter3).

If we assume that your present working directory previously contained files Chapter1
and Chapter2, its logical structure is shown in Figure 8.1 (a). The new file has been high-
lighted with a gray shade. Figure 8.1 (b) shows the contents of the disk block that contains
the present working directory. The connection between this directory entry and the file’s
contents is shown in Figure 8.1 (c). The inode number in Chapter3’s directory entry is used

Chapter1 Chapter2 Chapter3
Inode #

1076
2083

13059
17488

52473

..

Chapter1
Chapter2

Chapter3(b)(a)

.

File

Inode 0

Inode 52473

52473

Contents of inode
52473

Contents of
Chapter3

(c)

Chapter3

Directory entry for
Chapter3

Link count
size

date updated
owner

.

.

.
file’s location on

disk

Inode table

.

.

.

.

.

.

FIGURE 8.1 (a) Logical structure of the current directory; (b) contents of the current directory;
(c) relationship between directory entry, inode, and file contents.

File Sharing    ◾    289

to index the inode table in the main memory in order to access the file’s inode. The inode
contains the attributes of Chapter3, including its location on disk.

Here is a brief description of the ln command:

SYNTAX

ln [options] existing-file new-file
ln [options] existing-file-list directory

Purpose: First syntax: Create a link to existing-file and name it new-file
 Second syntax: Create links to the ordinary files in existing-file-list in direc-

tory; links have the same names as the original file
Commonly used options/features:

-f Force creation of link; don’t prompt if new-file already exists
-n Don’t create the link if new-file already exists
-s Create a symbolic link to existing-file and name it new-file

The ln command without any option creates a hard link to a file, provided the user
has execute permission for all the directories in the path leading to the file. The follow-
ing session illustrates how the ln command can be used to create a hard link in the same
directory that contains existing-file. The only purpose of this example is to illustrate how
the ln command is used; it isn’t representative of how you would establish and use hard
links in practice.

$ ls –il
13059 –rwx------ 1 sarwar faculty 398 Mar 11 14:20 Chapter1
17488 –rwx------ 1 sarwar faculty 5983 Apr 17 11:57 Chapter2
52473 –rwx------ 1 sarwar faculty 9352 Aug 20 23:09 Chapter3
$ ln Chapter3 Chapter3.hard
$ ls –il
13059 –rwx------ 1 sarwar faculty 398 Mar 11 14:20 Chapter1
17488 –rwx------ 1 sarwar faculty 5983 Apr 17 11:57 Chapter2
52473 –rwx------ 2 sarwar faculty 9352 Aug 20 23:09 Chapter3
52473 –rwx------ 2 sarwar faculty 9352 Aug 20 23:09 Chapter3.hard
$

The ls -il command shows some of the attributes of all the files in the present
working directory, including their inode numbers. The command ln Chapter3
Chapter3.hard creates a hard link to the file Chapter3; the name of the hard link is
Chapter3.hard. The system creates a new directory entry (52473, Chapter3.hard) for
Chapter3 in the present working directory. Thus, you can refer to Chapter3 by access-
ing Chapter3.hard as well, because both names point to the same file on disk. The
second ls -il command is used to confirm that Chapter3.hard and Chapter3 are
two names for the same file, as both have the same inode number, 52473, and hence
the same attributes. Therefore, when a hard link is created to Chapter3, a new pointer

290 ◾ UNIX: The Textbook, Third Edition

to its inode is established in the directory where the link (Chapter3.hard, in this case)
resides, as illustrated in Figure 8.2.

Note that the output of the ls -il command also shows that both Chapter3 and Chapter3.
hard have link counts of 2 each. Thus, when a hard link is created to a file, the link count for
the file increments by 1. That is, the same file exists in the file structure with two names (i.e.,
two pathnames). When you remove a file that has multiple hard links, the UNIX system decre-
ments by 1 the link count in the file’s inode. If the resultant link count is 0, the system removes

Chapter1 Chapter2 Chapter3
Inode #

1076
2083

13059
17488

52473

..

Chapter1
Chapter2

Chapter3

52473 Chapter3.hard(b)
(a)

.

File
Chapter3.hard

Inode 0
Directory entry for

Chapter3.hard

5247352473 Chapter3 Chapter3.hard

Contents of inode 52473,
the inode for files

chapter3 and
chapter3.hard

Link count
size

date updated
owner

.

.

.
file’s location on

disk

Inode table

.

.

.

.

.

.

Chapter3.hard(c)

Inode 52473

FIGURE 8.2 Establishing a hard link: (a) logical structure of the current directory; (b) contents
of the current directory; (c) hard-link implementation by establishing a pointer to the inode of
the file.

File Sharing    ◾    291

the directory entry for the file, releases the file’s inode and all other kernel resources allocated
to the file so they can be reused, and deallocates disk blocks allocated to the file so that they can
be used to store other files and/or directories created in the future. If the new link count is not
0, only the directory entry for the removed file is deleted; the file contents and other directory
entries for the file (hard links) remain intact. The following session illustrates this point.

$ rm Chapter3
$ ls –il
13059 –rwx------ 1 sarwar faculty 398 Mar 11 14:20 Chapter1
17488 –rwx------ 1 sarwar faculty 5983 Apr 17 11:57 Chapter2
52473 –rwx------ 1 sarwar faculty 9352 Aug 20 23:09 Chapter3.hard
$

This session clearly shows that removing Chapter3 results in the removal of the direc-
tory entry for this file but that the file still exists on disk and is accessible via Chapter3.
hard. This link has the inode number and file attributes that Chapter3 had, except that the
link count, as expected, has been decremented from 2 to 1.

The following ln command can be used to create a hard link called memo6.hard in
the present working directory to a file ~/memos/memo6. The ls -il command is used to
view attributes of the file before the hard link to it is created.

$ ls -il ~/memos/memo6
83476 -rwx------ 1 sarwar faculty 1673 May 29 11:22 /home/
sarwar/memos/memo6
$ ln ~/memos/memo6 memo6.hard
$

After executing the ln command, you can run the ls -il command to confirm that
both files (~/memos/memo6 and memo6.hard) have the same inode number and attri-
butes, as shown in the following session.

$ ls -il ~/memos/memo6
83476 -rwx------ 2 sarwar faculty 1673 May 29 11:22 /home/
sarwar/memos/memo6
$ ls -il memo6.hard
83476 -rwx------ 2 sarwar faculty 1673 May 29 11:22 memo6.
hard
$

The output shows two important things: first, the link count is up by 1; second, both
files are represented by the same inode, 83476. Figure 8.3 shows the hard link pictorially.

In the following session, the ln command creates hard links to all nondirectory files
in the directory called ~/unixbook/examples/dir1. The hard links reside in the directory
~/unixbook/examples/dir2 and have the names of the original files in the dir1 directory.
The second argument, dir2, must be an existing directory, and you must have execute and

292 ◾ UNIX: The Textbook, Third Edition

write permissions to it. Note that the link counts for all the files in dir1 and dir2 are 2. The
-f option is used to force creation of a hard link in case any of the files f1, f2, or f3 already
exist in the ~/unixbook/examples/dir2 directory.

$ cd unixbook/examples
$ more dir1/f1
Hello, World!
This is a test file.
$ ls -l dir1
-rw------- 1 sarwar faculty 35 Jun 22 22:21 f1
-rw------- 1 sarwar faculty 68 May 16 21:03 f2
-rw------- 1 sarwar faculty 94 Jul 11 11:39 f3
$ ln -f ~/unixbook/examples/dir1/* ~/unixbook/examples/dir2
$ ls -l dir1
-rw------- 2 sarwar faculty 35 Jun 22 22:21 f1
-rw------- 2 sarwar faculty 68 May 16 21:03 f2
-rw------- 2 sarwar faculty 94 Jul 11 11:39 f3
$ ls -l dir2
-rw------- 2 sarwar faculty 35 Jun 22 22:21 f1
-rw------- 2 sarwar faculty 68 May 16 21:03 f2
-rw------- 2 sarwar faculty 94 Jul 11 11:39 f3
$ more dir2/f1
Hello, World!
This is a test file.
$

Contents of ~/memos

Contents of
~/memo/memo6

Inode #

1076
2083

83468
…

83476

‥

mem01
…

memo6

… …

.

File
Contents of current directory
Inode #

1076
2083

13059
17488

52473

‥

Chapter1
Chapter2

Chapter3

83476 memo6.hard

.

File

FIGURE 8.3 Pictorial representation of the hard link between ~/memos/memo6 and memo6.
hard in the current directory.

File Sharing    ◾    293

You can run the following command to create a hard link in your home directory to the
file /home/sarwar/unixbook/examples/demo1. The hard link appears as a file demo1 in
your home directory. If demo1 already exists in your home directory, you can overwrite it
with the -f option. If demo1 exists in the home directory and you don’t use the -f option,
an error message is displayed on the screen informing you that the demo1 file exists. You
must have the execute permission for the directories in the pathname /home/sarwar/unix-
book/examples/demo1, and demo1 must be a file.

$ ln -f /home/sarwar/unixbook/examples/demo1 ~
$

The user sarwar can run the following command to create a hard link demo1 in a direc-
tory dir1 in bob’s home directory that points to the file /home/sarwar/unixbook/exam-
ples/demo1. The name of the link in bob’s directory is demo1, the same as the original file.
Figure 8.4 shows the establishment of the link.

$ ln -f /home/sarwar/unixbook/examples/demo1 /home/bob/dir1
$

The user sarwar must have execute permission for bob’s home directory and execute
and write permissions for dir1 (the directory in which the link is created). The user
bob must have proper access permissions for demo1 in sarwar’s directory structure to
access this file. Thus, if sarwar and bob are in the same user group and bob needs to edit
demo1, sarwar must set the group access privileges for the file to read and write. Then,
bob is able to edit demo1 by using, for example, the vim demo1 command from his
home directory.

The following command accomplishes the same task. Remember that sarwar runs this
command.

$ ln -f ~/unixbook/examples/demo1 /home/bob/dir1
$

You can run the following command to create hard links to all nondirectory files in
your ~/unixbook/examples directory. The hard links reside in the unixbook/examples

demo1

…

…… demo1

FIGURE 8.4 A hard link between /home/sarwar/unixbook/examples and /home/bob/dir1.

294 ◾ UNIX: The Textbook, Third Edition

directory in user john’s home directory and have the names of the original files. The user
john must first create the unixbook directory in his home directory and the examples
directory in his unixbook directory. You must have the execute permission for john’s
unixbook directory and execute and write permissions for his examples directory for the
command to run successfully and accomplish the task.

$ ln -f ~/unixbook/examples/* /home/john/unixbook/examples
$

8.6.2 Drawbacks of Hard Links

Hard links are the traditional way of gluing the file system structure in UNIX, which usu-
ally comprises several file systems. Hard links, however, have some problems and limita-
tions that make them less attractive to the average user.

The first problem is that hard links cannot be established between files that are on dif-
ferent file systems. This inability is not an issue if you are establishing links between files
in your own directory structure, with your home directory as the top-level directory, or
with files in another user’s directory structure that is on the same file system as yours.
However, if you want to create a hard link between a file (command) in the /bin directory
and a file in your file structure, it most likely will not work because on almost all systems
the /bin directory and your directory structure reside on different file systems. The fol-
lowing command illustrates this point. In this example, we try to give the name del to
the UNIX command rm that resides in the directory /bin. Because the rm command is in
one file system (/ on our system) and our directory structure is in another (/usr/home on
our system), UNIX doesn’t allow us to create a hard link, del, between a file in the current
directory and /bin/rm.

$ ln /bin/rm del
ln: del: Cross-device link
$

This problem also shows up when a file with multiple links is moved to another
file system. The following session illustrates this point. The ls -il command shows
that Chapter3 and Chapter3.hard are hard links to the same file (note the same inode
number). The mv command is used to move the file Chapter3 to the /tmp direc-
tory, which is a different file system than the one that currently contains Chapter3
(and Chapter3.hard). Note that, after the mv command has been executed, the link
counts for Chapter3.hard and /tmp/Chapter3 are 1 each and that the files have differ-
ent inodes; /tmp/Chapter3 has inode 472 and Chapter3.hard has the same old inode
52473. Note that although the set command fails, the mv command is successful. The
ln command cannot link /tmp/Chapter3 to temp.hard because the two files are in
different file systems.

$ ls -il
total 2

File Sharing    ◾    295

13059 -rw-r--r-- 1 sarwar faculty 398 Mar 11 14:20 Chapter1
17488 -rw-r--r-- 1 sarwar faculty 5983 Jan 17 11:57 Chapter2
52473 -rw-r--r-- 2 sarwar faculty 9352 May 28 23:09 Chapter3
52473 -rw-r--r-- 2 sarwar faculty 9352 May 28 23:09 Chapter3.hard
$ mv Chapter3 /tmp/Chapter3
mv: /tmp/Chapter3: set owner/group (was: 1004/1008): Operation not
permitted
$ ls -il
total 2
13059 -rw-r--r-- 1 sarwar faculty 398 Mar 11 14:20 Chapter1
17488 -rw-r--r-- 1 sarwar faculty 5983 Jan 17 11:57 Chapter2
52473 -rw-r--r-- 2 sarwar faculty 9352 May 28 23:09 Chapter3.hard
$ ls -il /tmp/Chapter3
472 -rw-r--r-- 1 sarwar root 9352 Aug 23 10:03 /tmp/Chapter3
$ ln /tmp/f3 temp.hard
ln: temp.hard: Cross-device link
$

The second problem is that only a superuser can create a hard link to a directory. The
ln command gives an error message when a non-superuser tries to create a hard link to
a directory myweb, as in

$ ln ~/myweb myweb.hard
ln: /home/sarwar/myweb: Is a directory
$

The third problem is that some editors remove the existing version of the file you are
editing and put the new versions in new files. When that happens, any hard links to the
removed file do not have access to the new file, thereby defeating the purpose of linking
(file sharing). Fortunately, none of the commonly used editors do so. Thus, the text editors
discussed in Chapter 3 (vim and emacs) are safe to use.

In the following in-chapter exercises, you will use the ln and ls -il commands to
create and identify hard links, and to verify a serious limitation of hard links.

EXERCISE 8.1

Create a file Ch8Ex1 in your home directory that contains this problem. Establish a hard
link to this file, also in your home directory, and call the link Ch8Ex1.hard. Verify that the
link has been established by using the ls -il command. What field in the output of this
command did you use for verification?

EXERCISE 8.2

Execute the ln /tmp ~/tmp command on your UNIX system. What is the purpose
of the command? What happens when you execute the command? Does the result make
sense? Why or why not?

296 ◾ UNIX: The Textbook, Third Edition

8.6.3 Soft/Symbolic Links

Soft/symbolic links take care of all the problems inherent in hard links and are therefore
used more often than hard links. They are different from hard links both conceptually and
in terms of how they are implemented. They do have a cost associated with them, which we
discuss in Section 8.6.4, but they are extremely flexible and can be used to link files across
machines and networks.

You can create soft links by using the ln command with the -s option. The following
session illustrates the creation of a soft link.

$ ls -il
total 2
13059 -rw-r--r-- 1 sarwar faculty 398 Mar 11 14:20 Chapter1
17488 -rw-r--r-- 1 sarwar faculty 5983 Jan 17 11:57 Chapter2
52473 -rw-r--r-- 2 sarwar faculty 9352 May 28 23:09 Chapter3
52473 -rw-r--r-- 2 sarwar faculty 9352 May 28 23:09 Chapter3.hard
$ ln -s Chapter3 Chapter3.soft
$ ls -il
total 2
13059 -rw-r--r-- 1 sarwar faculty 398 Mar 11 14:20 Chapter1
17488 -rw-r--r-- 1 sarwar faculty 5983 Jan 17 11:57 Chapter2
52473 -rw-r--r-- 2 sarwar faculty 9352 May 28 23:09 Chapter3
52473 -rw-r--r-- 2 sarwar faculty 9352 May 28 23:09 Chapter3.hard
52479 lrwxr-xr-x 1 sarwar faculty 8 Aug 23 13:57 Chapter3.soft
-> Chapter3
$

The ln -s Chapter3 Chapter3.soft command is used to create a symbolic link
to the file Chapter3 in the present working directory, and the symbolic link is given the
name Chapter3.soft. The output of the ls -il command shows a number of important
items that reveal how symbolic links are implemented and how they are identified in the
output. First, the original file (Chapter3) and the link file (Chapter3.soft) have different
inode numbers: 52473 for Chapter3 and 52479 for Chapter3.soft, which means that they
are different files. Second, the original file (Chapter3) is of file type - (ordinary) and the
link file (Chapter3.soft) is of type l (link). Third, the value link count has not changed for
Chapter3 (and Chapter3.hard) and is 1 for Chapter3.soft, which further indicates that
the two files are different. Fourth, the file sizes are different: 9352 bytes for the original file
(Chapter3) and 8 bytes file the link file (Chapter3.soft). Last, the name of the link file is
followed by -> Chapter3, the pathname for the file that Chapter3.soft is a symbolic link
to; the string after the -> sign is specified as the first argument in the ln -s command.
The pathname of the existing file is the content of the link file, which also explains the
size of the link file (8 characters in the word Chapter3). Figure 8.5 shows the logical file
structure of the current directory, directory entries in the current directory, and a diagram
that shows that Chapter3 and Chapter3.soft are truly separate files and that the link file
contains the pathname of the file to which it is a link.

File Sharing    ◾    297

In summary, when you create a symbolic link, a new file of type l is created. This file
contains the pathname of the existing file as specified in the first argument of the ln -s
command. When you make a reference to the link file, the UNIX system sees that the type
of the file is l and reads the link file to find the pathname for the actual file to which you
are referring. For example, for the cat Chapter3.soft command, the system reads the
contents of Chapter3.soft to get the name of the file to display (Chapter3 in this case) and
send its contents to standard output. Hence, you see the contents of Chapter3 displayed.

Chapter1 Chapter2 Chapter3
Inode #

1076
2083

13059
17488

52473

..

Chapter1
Chapter2

Chapter3

52479 Chapter3.soft(b)
(a)

.

File
Chapter3.soft

Inode 0
Directory entry for

Chapter3.hard

Inode 52473

Inode 52479

5247952473 Chapter3 Chapter3.soft

Contents of inode 52479,
the inode for file

Chapter3.soft

Link count
Size

Date updated
Owner

.

.

.
File’s location on

disk

Link count
Size

Date updated
Owner

.

.

.
File’s location on

disk

Inode table

.

.

.

.

.

.

.

.

Chapter3.soft

Contents of Chapter3

(c)

FIGURE 8.5 Establishing a soft link: (a) logical structure of the current directory; (b) contents of
the current directory; (c) soft link implementation by establishing a pointer in the link file to (the
pathname of) the existing file.

298 ◾ UNIX: The Textbook, Third Edition

You can create soft links across file systems. In the following session, we create a sym-
bolic link to the /bin directory. The name of the symbolic link is symlinktobin and it is
placed in the current directory. Note that the inode numbers of /bin and symlinktobin are
different, as expected.

$ ln -s /bin symlinktobin
$ ls -ild symlinktobin /bin
 34 drwxr-xr-x 2 root root 47 Feb 25 2014 /bin
4633 lrwxr-xr-x 1 sarwar faculty 4 Aug 24 15:24 symlinktobin ->
/bin
$

In the following session, we show an example to create a soft link to a file such that the
file and its symbolic link reside in different file systems.

$ cp Chapter3 /tmp
$ ln -s /tmp/Chapter3 temp.soft
$ ls -il /tmp/Chapter3 temp.soft
 473 -rw-r--r-- 1 sarwar faculty 9352 Aug 23 15:38 /tmp/Chapter3
52497 lrwxr-xr-x 1 sarwar faculty 13 Aug 23 15:38 temp.soft -> /
tmp/Chapter3
$

Here, the file Chapter3 is copied from one file system (that contains this file) to another that
contains the /tmp directory. Then, the ln –s /tmp/Chapter3 temp.soft command
is used to create a symbolic link to the copied file. The command works without any problems,
establishing a symbolic link to /tmp/Chapter3 in temp.soft. Note that the inode numbers
of the two files are different, indicating that the two files are distinct; temp.soft contains the
pathname of the file for which it is a symbolic link, /tmp/Chapter3. Recall that in Section 8.6.1
a similar call to establish a hard link between /tmp/Chapter3 and temp.hard failed.

The following session shows how symbolic links can be created to all the files in a directory,
including the directory files. The ln -sf ~/unixbook/examples/dir1/* ~/unix-
book/examples/dir2 command creates soft links to all the files in the directory called
~/unixbook/examples/dir1 and puts them in the directory ~/unixbook/examples/dir2. You
must have execute and write permissions for the dir2 directory, and execute permission to all
the directories in the pathname. The -f option is used to force creation of the soft link in case
any of the files f1, f2, or f3 already exist in ~/unixbook/examples/dir2. On some systems, the
-f and -s options may not work together, in which case you will use only the -s option.

$ cd ~/unixbook/examples
$ more dir1/f1
Hello, World!
This is a test file.
$ ls -l dir1
-rw------- 1 sarwar faculty 35 Jun 22 22:21 f1

File Sharing    ◾    299

-rw------- 1 sarwar faculty 168 Jun 22 22:33 f2
-rw------- 1 sarwar faculty 783 Jun 22 22:35 f3
$ ln -sf ~/unixbook/examples/dir1/* ~/unixbook/examples/dir2
$ ls -l dir2
lrwxr-xr-x 1 sarwar faculty 38 Jun 22 22:54 f1 -> /home/sarwar/
unixbook/examples/dir1/f1
lrwxr-xr-x 1 sarwar faculty 38 Jun 22 22:54 f2 -> /home/sarwar/
unixbook/examples/dir1/f2
lrwxr-xr-x 1 sarwar faculty 38 Jun 22 22:54 f3 -> /home/sarwar/
unixbook/examples/dir1/f3
$ more dir2/f1
Hello, World!
This is a test file.
$

You can run the following command to create a symbolic link in your home directory
to the file /home/sarwar/unixbook/examples/demo1. The soft link appears as a file called
demo1 in your home directory. If demo1 already exists in your home directory, you can
overwrite it with the -f option. If demo1 exists in the home directory and you don’t use
the -f option, an error message is displayed on the screen informing you that the demo1
file exists. You must have the execute permission for the directories in the pathname /
home/sarwar/unixbook/examples/demo1, and demo1 must be a file.

$ ln -sf /home/sarwar/unixbook/examples/demo1 ~
$

The user sarwar can run the following command to create a soft link called demo1
in a directory dir1 in bob’s home directory that points to the /home/sarwar/unixbook/
examples/demo1 file. Figure 8.6 shows how the soft link is established.

$ ln -sf /home/sarwar/unixbook/examples/demo1 /home/bob/dir1
$

demo1

… …

…… demo1

demo1->/home/sarwar/
unixbook/examples/demo1(b)(a)

FIGURE 8.6 A soft link between (a) /home/sarwar/unixbook/examples/demo1 and (b) /home/
bob/dir1.

300 ◾ UNIX: The Textbook, Third Edition

The user sarwar must have execute permission for bob’s home directory, and execute and
write permission for dir1 (the directory in which the soft link is created). The user bob must
have proper access permissions for demo1 in sarwar’s directory structure to access this file.
Thus, if sarwar and bob are in the same user group and bob has to edit memo1, then sarwar
must set the group access privileges on the file to read and write. The user bob can then edit
demo1 by using, for example, the vi demo1 command from his home directory.

The following command accomplishes the same task. Remember that sarwar runs this
command.

$ ln -sf ~/unixbook/examples/demo1 /home/bob/dir1
$

You can run the following ln command to create soft links to all the files, including
directory files, in your ~/unixbook/examples directory. These soft links reside in the
directory called unixbook/examples in john’s home directory and have the names of the
original files. The user john must create the unixbook directory in his home directory and
the examples directory in his unixbook directory. You must have execute permission for
john’s unixbook directory and execute and write permission for his examples directory in
order for the command to run successfully.

$ ln -sf ~/unixbook/examples/* /home/john/unixbook/examples
$

8.6.4 Pros and Cons of Symbolic Links

As previously stated, symbolic links do not have the problems and limitations of hard
links. Thus, symbolic links can be established to directories and between files across file
systems. Also, files that symbolic links point to can be edited by any kind of editor without
any ill effects, provided that the file’s pathname doesn’t get changed—that is, the original
file is not moved.

Symbolic links do have a problem of their own that is not associated with hard links: if
the file that the symbolic link points to is moved from one directory to another, it can no
longer be accessed via the link. The reason is that the link file contains the pathname for
the original location of the file in the file structure. When the file location is changed, the
link becomes dangling; that is, it points to a file that does not exist at the specified (original)
location. You also have a dangling pointer if the original file is deleted. The following ses-
sion illustrates this point.

$ mv /tmp/Chapter3 .
$ cat temp.soft
cat: temp.soft: No such file or directory
$

Suppose that temp.soft is a symbolic link to the file /tmp/Chapter3. The mv command
is used to move /tmp/Chapter3 to the present working directory. The cat command fails

File Sharing    ◾    301

because the soft link still points to the file with pathname /tmp/Chapter3. This result is
quite logical but is still a drawback; in hard links, the cat command would not fail so long
as the moved file stays within the same file system.

Some other drawbacks of the symbolic links are that UNIX has to support an additional
file type (the link type) and a new file has to be created for every link. Creation of the link
file results in space overhead for an extra inode, disk space needed to store the pathname of
the file to which it is a link, and other kernel data structures. Symbolic links also result in
slower file operations because, for every reference to the file, the link file has to be opened
and read in order for you to reach the actual file. The actual file is then processed for read-
ing or writing, requiring an extra disk access to be performed if a file is referenced via a
symbolic link to the file.

In the following in-chapter exercises, you will use the ln -s and ls -il commands
to create and identify soft links, and to verify that you can create soft links across file systems.

EXERCISE 8.3

Establish a soft link to the file Ch8Ex1 that you created in Exercise 8.1. Call the soft link
Ch8Ex1.soft. Verify that the link has been established. What commands did you use to
establish the link and verify its creation?

EXERCISE 8.4

Execute the ln -s /tmp ~/tmp command on your UNIX system. What is the purpose
of the command? What happens when you execute the command? Does the result make
sense? Why or why not?

SUMMARY
Any of several techniques can be used to allow a team of users to share UNIX files and
directories. Some of the most commonly used methods of file sharing are duplicating the
files to be shared and distributing them among team members, establishing a common
account for team members, setting appropriate permissions on the files to be shared, set-
ting up a UNIX user group for the team members, and establishing links to the shared files
in the directories of all team members. File sharing via hard and soft links is the main topic
of this chapter. However, the issue of simultaneous access of shared files by team members
is not discussed here (see Chapter 17).

Hard links allow you to refer to an existing file by another name. Although hard links are
the primary mechanism used by UNIX to glue the file system structure, they have several
shortcomings. First, an existing file and its links must be in the same file system. Second,
only a superuser can create hard links to directories. Third, moving a file to another file
system breaks all links to it.

Soft links can be used to overcome the problems associated with hard links. When a soft
link to a file is created, a new file is created that contains the pathname of the file to which it
is a link. The type of this file is link. Soft links are expensive in terms of the time needed to

302 ◾ UNIX: The Textbook, Third Edition

access the file and the space overhead of the link file. The time overhead during file access
occurs because the link file has to be opened in order for the pathname of the actual file to
be read (or written to, whatever the case may be), and only then does the actual process of
file opening and reading (or writing) take place. The link file that contains the pathname
of the original file causes the space overhead.

Hard and soft links are established with the ln command. For creating soft links, the
-s option is used with the command. The ls -il command is used to identify (or confirm
establishment of) links. The first field of the output of this command identifies the inode
numbers for the files in a directory, and all hard links to a file have the same inode number
as the original file. The first letter of the second field represents file type (l for soft link)
and the remaining letters specify file permissions. The third field identifies the number of
hard links to a file. Every simple file has one hard link at the time it is created. The last field
identifies file names; a soft link’s name is followed by -> filename, where filename is the
name of the original file. The -f option can be used to force the creation of a link—that is,
to overwrite an existing file with the newly created link.

QUESTIONS AND PROBLEMS

 1. What are the five methods that can be used to allow a team of users to share files in
UNIX?

 2. What is a link in UNIX? Name the types of link that UNIX supports. How do they
differ from each other?

 3. What are the problems with hard links?

 4. Remove the file Ch8Ex1 that you created in Exercise 8.1. Display the contents of
Ch8Ex1.hard and Ch8Ex1.soft. What happens? What command did you use for dis-
playing the files? Does the result make sense? Why or why not?

 5. Search the /usr/bin directory on your system and identify three links in it. Write
down the names of these links. Are these hard or soft links? How do you know?

 6. While in your home directory, can you establish a hard and soft link to /etc/passwd
on your system? Why? What commands did you use? Are you satisfied with the
results of the command execution?

 7. Every UNIX directory has at least two hard links. Why?

 8. Can you find the number of hard and soft links to a file? If so, what command(s) do
you need to use?

 9. Suppose that a file called shared in your present directory has five hard links to it.
Give a sequence of commands to display the absolute pathnames of all of these links.
(Hint: Use the find command.)

File Sharing    ◾    303

 10. Create a directory, dir1, in your home directory and three files, f1, f2, and f3, in
it. Ask a friend to create a directory, dir2, in his or her home directory, with dir1.
hard and dir1.soft as its subdirectories. Create hard and soft links to all the files in
your dir1 in your friend’s ~/dir2/dir1.hard and ~/dir2/dir1.soft directories. Give the
sequence of commands that you executed to do so.

 11. For Problem 10, what are the inode numbers of the hard links and soft links? What
command did you use to determine them? What are the contents of the link (both
hard and soft) files? How did you get your answers?

 12. What are the pros and cons of symbolic links?

 13. Clearly describe how file sharing can be accomplished by using links (hard and soft)
in UNIX. In particular, do you need to do anything other than establish links to the
files to be shared?

 14. Suppose you have a collection of data files, say file1.data, …, file9.data, that need
to be shared (read only) among 100 programs in your group. Discuss the overhead
involved for each of the following:

 a. Setting permissions

 b. Creating hard links

 c. Creating soft links

 d. Making individual private copies of each file

 15. Browse through the root (/) directory and its subdirectories. Identify 10 soft links and
write them in a table, along with the name of each link and the directory in which it
is found.

 16. Symbolic links have the dangling pointer problem. What is it? Explain with an
example.

 17. Hard links may not be established between files across file systems. What is the
technical reason for this limitation of hard links? (Hint: Think about inodes and file
systems.)

http://taylorandfrancis.com

305

C h a p t e r 9

Redirection and Piping

Objectives

• To describe the notion of standard files—standard input, standard output, and
standard error files—and file descriptors

• To describe input and output redirection for standard files

• To discuss the concept of error redirection and appending to a file

• To explain the concept of pipes in UNIX

• To describe how powerful operations can be performed by combining pipes, file
descriptors, and redirection operators

• To discuss error redirection in the C shell

• To explain the concept of FIFOs (also known as named pipes) and their command
line use

• To cover the commands and primitives

 &, |, <, >, >>, cat, diff, grep, lp, mkfifo, more, pr, sort,
stderr, stdin, stdout, tee, tr, uniq, wc

9.1 INTRODUCTION
All computer software (commands) performs one or more of the following operations:
input, processing, and output; a typical command performs all three. The question for
the operating system is: Where does a shell command (internal or external) take its input
from, where does it send its output to, and where are the error messages sent to? If the input
to a command is not part of the command code (i.e., data within the code in the form of
constants and/or variables), it must come from an outside source. This outside source is
usually a file, although it could be an input/output (I/O) device such as a keyboard or a

306 ◾ UNIX: The Textbook, Third Edition

network interface card. Command output and error messages can go to a file as well. For a
command to read from or write to a file, it must first open the file.

There are default files where a command reads its input and sends its output and error
messages, called standard input, standard output, and standard error. In UNIX, these files
are known as standard files for a command. The input, output, and errors of a command
can be redirected to other files by using file redirection facilities in UNIX. This allows you to
connect several commands together to perform a complex task that cannot be performed
by a single existing command. We discuss the notion of standard files and redirection of
input, output, and error in UNIX in this chapter.

9.2 STANDARD FILES
In UNIX, three files are automatically opened by the kernel for every command to read
input from and send its output and error messages to. These files are known as standard
files: standard input (stdin), standard output (stdout), and standard error (stderr). By
default, these files are associated with the terminal on which the command executes. More
specifically, the keyboard is standard input, and the display screen (or the console at which
you are logged in) is standard output and standard error. Therefore, every command, by
default, takes its input from the keyboard and sends its output and error messages to the
display screen (or the console window), as shown in Figure 9.1. Recall our explanation of
the per-process file descriptor table in Chapter 4. In the remainder of this chapter, we use the
terms monitor screen, display screen, console window, and display window interchangeably.

9.3 INPUT REDIRECTION
Input redirection is accomplished by using the less-than symbol (<). The following syntax
is used to detach the keyboard from the standard input of command and attach input-file
to it. Thus, if command reads its input from standard input, this input will come from
input-file, not the keyboard attached to the terminal on which the command is run. The

stderr

stdin
File

descriptor

0
1
2
3
4
5
.
.
.

Keyboard

Keyboard

(a) (b)

Screen

Screencommand

stdout

stderr

stdin

Per-process file
descriptor table
for command

stdout

.

.

.

FIGURE 9.1 Standard files and file descriptors: (a) file descriptors; (b) semantics of a command
execution.

Redirection and Piping    ◾    307

semantics of the command syntax are shown in Figure 9.2. Note that the command input
comes from input-file.

SYNTAX

command < input-file

Purpose: Input to command comes from input-file instead of from the keyboard

For example, the command cat < tempfile reads input from tempfile (as opposed to
the keyboard, because the standard input for cat has been attached to tempfile) and sends
its output to the display screen. So, effectively, the contents of tempfile are displayed on the
monitor screen. This command is different from cat tempfile, in which tempfile is
passed as a command line argument to the cat command; the standard input of cat does
not change and is still the keyboard attached to the terminal on which the command is run.

Similarly, in the command grep "John" < Phones, the grep command reads its
input from the Phones file in the current directory, not from the keyboard. The output and
error messages of the command go to the display screen. Again, this command is differ-
ent from grep "John" Phones, in which the Phones file is passed as an argument to
grep; the standard input of grep does not change and is still the keyboard attached to the
terminal on which the command executes. However, the net effect of the grep command
is the same in both cases from a user’s perspective. Similarly, the use of < is not needed in
most cases because the command reads from a file in any case.

The cat and grep commands take input from standard input if they are not passed
file arguments from the command line. The tr command takes input from standard input
only and sends its output to standard output. The command does not work with a file as
a command line argument. Thus, input redirection is often used with the tr command,
as in tr -s ''''< Bigfile. When this command is executed, it substitutes multiple
spaces in Bigfile with single spaces.

stderr

stdin
File

descriptor

0
1
2
3
4
5
.
.
.

input-file

input-file

(a) (b)

Screen

Screencommand

stdout

stderr

stdin

Per-process file
descriptor table
for command

stdout

.

.

.

FIGURE 9.2 Input redirection: (a) file descriptors and standard files for command; (b) semantics
of input redirection.

308 ◾ UNIX: The Textbook, Third Edition

9.4 OUTPUT REDIRECTION
Output redirection is accomplished by using the greater-than symbol (>). The following
syntax is used to detach the display screen from the standard output of command and
attach output-file to it. Thus, if command writes/sends its output to standard output, the
output goes to output-file, not the monitor screen attached to the terminal on which the
command runs. The error messages still go to the display screen, as before. The semantics
of the command syntax are shown in Figure 9.3.

SYNTAX

command > output-file

Purpose: Send output of command to the file output-file instead of to the monitor screen

Consider the cat > newfile command. Recall that the cat command sends its
output to standard output, which is the display screen by default. This command syntax
detaches the display screen from standard output of the cat command and attaches new-
file to it. The standard input of cat remains attached to the keyboard. When this com-
mand is executed, it creates a file called newfile whose contents are whatever you type on
the keyboard until you hit <Ctrl-D> in the first column of a new line. If newfile already
exists, by default it is overwritten.

Similarly, the command grep "John" Phones > Phone_John sends its output
(lines in the Phones file that contain the word "John") to a file called Phone_John, as
opposed to displaying it on the monitor screen. The input for the command comes from
the Phones file. The command terminates when grep encounters the end-of-file (eof)
character in Phones.

In a network environment, the following command can be used to sort the file datafile
residing on the computer that you are currently logged on to (the client computer), on

stderr

stdin
File

descriptor

0
1
2
3
4
5
.
.
.

output-file

Keyboard

Keyboard

(a) (b)

Screen

output-file

Screen

command

stdout

stderr

stdin

Per-process file
descriptor table
for command

stdout

.

.

.

FIGURE 9.3 Output redirection: (a) file descriptors and standard files for command; (b) semantics
of output redirection.

Redirection and Piping    ◾    309

the computer called server. The output of the command—that is, the sorted data—is sent
to the display screen of the client computer. Figure 9.4 illustrates the semantics of this
command.

$ ssh server sort < datafile
$

This command is a good example of how multiple computers can be used to perform
various tasks concurrently in a network environment. It is a useful command if your com-
puter (call it client) has a large file, datafile, to be sorted and you do not want to make
multiple copies of the file on various computers on the network to prevent inconsistency
in them. This command allows you to perform the task. Such commands also are useful if
the server has specialized UNIX tools that you are allowed to use but not allowed to make
copies of on your machine. We discuss network-related UNIX commands and utilities in
Chapter 11. We have used this example to illustrate the power of the UNIX I/O redirection
feature, not to digress to computing in a network environment.

The following session shows the contents of the Students file on the local (client)
machine and the output of the sort command executed on a remote (server) machine
198.102.10.20 under sarwar’s login. Since sarwar’s login is password protected, the system
prompted him for a password before running the sort command on the remote computer
and displaying its output on the local computer. Note that we have shown the Internet
Protocol (IP) address of a fictitious ssh server, but the session was executed on a real
remote machine.

$ cat Students
John Doe ECE 3.54 A
Pam Meyer CS 3.61 A
Jim Davis CS 2.71 B
John Doe ECE 3.54 A
Jason Kim ECE 3.97 A
Amy Nash ECE 2.38 C
$ ssh sarwar@198.102.10.20 sort < Students
Password for sarwar@pcbsd-srv:
Amy Nash ECE 2.38 C
Jason Kim ECE 3.97 A
Jim Davis CS 2.71 B

client

datafile
Content of datafile

sort

Running on
server

stderr client

screen

stdout:
Sorted datafile

FIGURE 9.4 Semantics of the ssh server sort < datafile command run on mymachine.

310 ◾ UNIX: The Textbook, Third Edition

John Doe ECE 3.54 A
John Doe ECE 3.54 A
Pam Meyer CS 3.61 A
$

9.5 COMBINING INPUT AND OUTPUT REDIRECTION
Input and output redirections can be used together, according to the syntax given in the
following command description.

SYNTAX

command < input-file > output-file
command > output-file < input-file

Purpose: Input to command comes from input-file instead of the keyboard and output of
command goes to output-file instead of the display screen

When this syntax is used, command takes its input from input-file (not from the key-
board attached to the terminal) and sends its output to output-file (not to the display
screen), as shown in Figure 9.5.

In the cat <lab1 > lab2 command, the cat command takes its input from the lab1
file and sends its output to the lab2 file. The net effect of this command is that a copy of
lab1 is created in lab2. Therefore, this command line is equivalent to cp lab1 lab2,
provided that lab2 does not exist. If lab2 is an existing file, the two commands have differ-
ent semantics. The cat <lab1 > lab2 command truncates lab2 (sets its size to zero and
the read/write pointer to the first byte position) and overwrites it with the contents of lab1.
Because lab2 is not recreated, its attributes (e.g., access permissions and link count) are not
changed. In the case of the cp lab1 lab2 command, not only is the data in lab1 copied
into lab2, but also its attributes from its inode are copied into the inode for lab2. Thus, the
cp command results in a true copy (data and attributes) of lab1 into lab2.

In the following in-chapter exercises, you will practice the use of input and output direc-
tion features of UNIX.

EXERCISE 9.1

Write a shell command that counts the number of characters, words, and lines in a file
called memo in your present working directory and shows these values on the display
screen. Use input redirection.

screen

input-file
output-filestdin

stderr

command

stdout

FIGURE 9.5 Combined use of input and output redirection.

Redirection and Piping    ◾    311

EXERCISE 9.2

Repeat Exercise 9.1, but redirect output to a file called counts.memo. Use I/O redirection.

9.6 I/O REDIRECTION WITH FILE DESCRIPTORS
As described in Section 4.6, the UNIX kernel associates a small integer number with every
open file, called the file descriptor for the file. The file descriptors for standard input, stan-
dard output, and standard error are 0, 1, and 2, respectively. The Bourne, Korn, Bash, and
POSIX shells allow you to open files and associate file descriptors with them; the C shell
does not allow the use of file descriptors. The other descriptors, usually ranging from 3
onward, are used when a process opens files simultaneously. These descriptors are called
user-defined file descriptors. The upper limit of these descriptors (and hence the number
of files that a process may open simultaneously) varies from system to system and may be
determined by running the uname –n command. Each descriptor is used to index a kernel
table, called the per-process file descriptor table, as discussed briefly in Section 4.7. A more
detailed discussion on this topic may be found in Chapters 18 through 21. In the following
sections, we describe I/O and error redirection under the Bourne, Korn, Bash, and POSIX
shells. We discuss the C shell syntaxes and give examples in Section 9.13.

By making use of file descriptors, standard input and standard output can be redirected
in the Bourne, Korn, Bash, and POSIX shells by using the 0< and 1> operators, respec-
tively. Therefore, cat 1> outfile, which is equivalent to cat > outfile, takes
input from standard input and sends it to outfile; error messages go to the display screen.
Similarly, ls -l foo 1> outfile is equivalent to ls -l foo > outfile. The
output of this command (the long listing for foo) goes into a file called outfile, and error
messages generated by it go to the display screen.

The file descriptor 0 can be used as a prefix with the < operator to explicitly specify
input redirection from a file. In the command shown below, the input to the grep com-
mand is the contents of tempfile in the present working directory.

$ grep "John" 0< tempfile
... command output ...
$

9.7 REDIRECTING STANDARD ERROR
The standard error of a command can be redirected by using the 2> operator (i.e., associat-
ing the file descriptor for standard error with the > operator) as follows.

SYNTAX

command 2> error-file

Purpose: Error messages generated by command and, by default, sent to stderr
are redirected to error-file

312 ◾ UNIX: The Textbook, Third Edition

With this syntax, command takes its input from the keyboard, sends its output to the
monitor screen, and any error messages produced by command are sent to error-file. The
semantics of the command syntax are shown in Figure 9.6. Command input may come
from a file passed as a command line argument.

The command grep "John" Phones 2> error.log takes input from the Phones
file, sends output to the display screen, and any error message produced by grep goes to
a file called error.log. If error.log already exists, it is overwritten; otherwise, it is created.
The following example shows how the standard error of ls -l can be redirected to a file.

$ ls -l foo 2> error.log
... long listing for foo if no errors ...
$

The output of ls -l foo goes to the display screen, and error messages go to error.log.
Thus, if foo does not exist, the error message ls: foo: No such file or direc-
tory goes into the error.log file, as shown in the following session. The actual wording
of the message varies from system to system, but it basically informs you that foo does not
exist.

$ ls -l foo 2> error.log
$ cat error.log
ls: foo: No such file or directory
$

Keeping standard error attached to the display screen and not redirecting it to a file is
useful in many situations. For example, when the cat lab1 lab2 lab3 > all com-
mand is executed to concatenate files lab1, lab2, and lab3 into a file called all, you would
want to know whether any of the three input files are nonexistent or if you do not have
permission to read any of them. In this case, redirecting the error message to a file does

stderr

stdin
File

descriptor

0
1
2
3
4
5
.
.
.

error-file

error-file

Keyboard

Keyboard

(a) (b)

screen

screen

command

stdout

stderr

stdin

Per-process file
descriptor table
for command

stdout

.

.

.

FIGURE 9.6 Error redirection: (a) standard descriptors and standard files for command; (b)
semantics of error redirection.

Redirection and Piping    ◾    313

not make much sense because you want to see the immediate results of the command
execution.

9.8 REDIRECTING stdout AND stderr IN ONE COMMAND
Standard output and standard error can be redirected to the same file. One obvious way to
do so is to redirect stdout and stderr to the same file by using file descriptors with the >
symbol, as in the following command.

$ cat lab1 lab2 lab3 1> cat.output 2> cat.errors
$

In this case, the input of the cat command comes from the lab1, lab2, and lab3 files,
its output goes to the cat.output file, and any error message goes to the cat.errors file, as
shown in Figure 9.7. Note that, although not shown in Figure 9.7b, files lab1, lab2, and lab3
have file descriptors assigned to them when they are opened for reading by the cat com-
mand. The command produces an error message if any one of the three “lab” files does not
exist or if you do not have read permission for any of these files.

The following command redirects the stdout and stderr of the cat command to the
cat.output.errors file. Thus, the same file (cat.output.errors) contains the output of the
cat command, along with any error messages that may be produced by the command.

$ cat lab1 lab2 lab3 1> cat.output.errors 2>&1
$

In this command, the string 2>&1 tells the command shell to make descriptor 2 a dupli-
cate of descriptor 1, resulting in the error messages going to the same place that the com-
mand output goes to. Similarly, the string 1>&2 can be used to tell the command shell to
make descriptor 1 a duplicate of descriptor 2. Thus, the following command accomplishes
the same task. Figure 9.8 shows the semantics of the two commands.

stderr

stdin
File

descriptor

0
1
2
3
4
5
.
.
.

Keyboard

Keyboard

(a) (b)

cat.output

cat.output
cat.error

cat.error

cat
lab1

lab2

lab3

stdout

stderr

stdin

Per-process file
descriptor table

for cat

stdout

.

.

.

FIGURE 9.7 Error redirection: (a) file descriptors and standard files for cat lab1 lab2 lab3
1> cat.output 2> cat.errors; (b) semantics of the cat command.

314 ◾ UNIX: The Textbook, Third Edition

$ cat lab1 lab2 lab3 2> cat.output.errors 1>&2
$

The evaluation of the command line content for file redirection is left to right. Therefore,
redirections must be specified in the left-to-right order if one notation is dependent on
another. In the preceding command, first, stderr is changed to the file cat.output.errors,
and then stdout becomes a duplicate of stderr. Thus, the output and errors for the com-
mand both go to the same file, cat.output.errors.

The following command therefore does not have the effect of the two commands just
discussed. The reason is that, in this command, stderr is made a duplicate of stdout before
output redirection. Therefore, stderr becomes a duplicate of stdout (the display screen at
this time) first, and then stdout is changed to the file cat.output.errors. Thus, the output of
the command goes to cat.output.errors and errors go to the display screen. The sequence
shown in Figure 9.9 illustrates the semantics of this command.

$ cat lab1 lab2 lab3 2>&1 1> cat.output.errors
$

Note that Figure 9.9a and b are identical because the execution of cat lab1 lab2
lab3 2>&1 does not make any changes to stdout and stderr—they stay attached to the
display screen before and after the command is executed.

9.9 REDIRECTING stdin, stdout, AND STDERR IN ONE COMMAND
Standard input, standard output, and standard error can be redirected in a single com-
mand according to the following syntax.

stderr

stdin
File

descriptor

0
1
2
3
4
5
.
.
.

Keyboard

Keyboard

(a) (b)

cat.output.errors

cat.output.errorscat
lab1

lab2

lab3

stdout

stderr

stdin

Per process file
descriptor table

for cat

stdout

.

.

.

FIGURE 9.8 Error redirection: (a) file descriptors and standard files; (b) semantics of the cat
lab1 lab2 lab3 1> cat.output.errors 2>&1 and cat lab1 lab2 lab3 2> cat.
output.errors 1>&2 commands.

Redirection and Piping    ◾    315

SYNTAX

command 0< input-file 1> output-file 2> error-file

Purpose: Input to command comes from input-file instead of the keyboard, output of
command goes to output-file instead of the display screen, and error messages gener-
ated by command are sent to error-file instead of the display screen

The file descriptors 0 and 1 are not required because they are the default values for
the < and > operators, respectively. The semantics of this command syntax are shown in
Figure 9.10. Evaluation of the command line content for file redirection is left to right, so
the order of redirection is important. Consider the following command syntaxes. For the
first command, if input-file is not found, the error message is sent to the display screen,
because stderr has not been redirected yet. For the second command, if input-file is not
found, the error message goes to error-file because stderr has been redirected to this file.

stderr

stdin
File

descriptor

0
1
2
3
4
5
.
.
.

Keyboard

screen

(a)

Per-process file
descriptor table

for cat

stdout

.

.

.

stderr

stdin
File

descriptor

0
1
2
3
4
5
.
.
.

Keyboard

screen

(b)

Per-process file
descriptor table

for cat

stdout

.

.

.

stderr

stdinFile
descriptor

0
1
2
3
4
5
.
.
.

Keyboard

screen

(c)

Per-process file
descriptor table

for cat

stdout

.

.

.

cat.output.errors

stdinKeyboard

(d)

stderr

stdout

screen

cat.output.errors
cat

lab1

lab2

lab3

FIGURE 9.9 Output and error redirection: (a) file descriptors and standard files for the cat com-
mand; (b) standard files after cat labl lab2 lab3 2>&1 with no change in stdout and
stderr; (c) standard files after cat labl lab2 lab3 2>&1 1> cat.output.errors; and
(d) command semantics.

316 ◾ UNIX: The Textbook, Third Edition

If error-file exists, the outputs of the first and second commands go to stdout and output-
file, respectively.

command 1> output-file 0< input-file 2> error-file
command 2> error-file 1> output-file 0< input-file

The following sort command sorts lines in a file called students and stores the sorted
file in students.sorted. If the sort command fails to start because the students file does
not exist, the error message goes to the display screen as shown, not to the file sort.error.
The reason is that, at the time the shell determines that the students file does not exist,
stderr is still attached to the console.

$ sort 0< students 1> students.sorted 2> sort.error
cannot open students: No such file or directory
$

For the following command, the error message goes to the sort.error file if the sort
command fails because the students file does not exist. The reason is that the shell pro-
cesses error redirection before it determines that the students file is nonexistent.

$ sort 2> sort.error 0< students 1> students.sorted
$ cat sort.error
cannot open students: No such file or directory
$

9.10 REDIRECTING WITHOUT OVERWRITING
FILE CONTENTS (APPENDING)

By default, output and error redirections overwrite contents of the destination file. To
append output or errors generated by a command to the end of a file, replace the > opera-
tor with the >> operator. The default file descriptor with >> is 1, but file descriptor 2
can be used to append errors to a file. In the following command, the output of ls -l is
appended to the output.dat file, and the error messages are appended to the error.log file.

$ ls -l 1>> output.dat 2>> error.log
$

The following command appends the contents of the files memo and letter to the end
of the file stuff. If the command produces any error message, it goes to the error.log file. If
error.log is an existing file, its contents are overwritten with the error message.

input-file
output-file

error-file

stdin

stderr

command

stdout

FIGURE 9.10 Redirecting stdin, stdout, and stderr in a single command.

Redirection and Piping    ◾    317

$ cat memo letter >> stuff 2> error.log
$

If you want to keep the existing contents of error.log and append new error messages to
it, use the following command. For this command, the previous contents of error.log are
appended with any error message produced by the cat command.

$ cat memo letter >> stuff 2>> error.log
$

The Bourne shell, by default, overwrites a file when the stdout or stderr of a command is
redirected to it, but the Korn, C, and Bash shells have a noclobber option that prevents
you from overwriting important files accidentally. We discuss this option for the C shell in
Section 9.13, but discuss it for the Korn and Bash shells here.

You can set the noclobber option in the Korn and Bash shells by using the set com-
mand with the -o option as shown. Of course, if you want to set this option permanently,
put the command in your ~/.profile file.

$ set -o noclobber
$

In the Bash shell, you can also set the option by using the set -C command. When
you set the noclobber option, you can force overwriting of a file by using the >|
operator.

In the following in-chapter exercises, you will practice the use of input, output, and
error redirection features of UNIX shells (excluding the C shell) in a command line.

EXERCISE 9.3

Write a command that counts the number of characters, words, and lines in a file called
memo in your present working directory and writes these values into a file memo.size.
If the command fails, the error message should go to a file error.log. Use I/O and error
redirections.

EXERCISE 9.4

Write a shell command to send the contents of a file greetings to doe@domain.com by
using the mail command. If the mail command fails, the error message should go to a
file mail.errors. Use input and error redirection.

EXERCISE 9.5

Repeat Exercise 9.2, but append error messages at the end of mail.errors.

mailto:doe@domain.com

318 ◾ UNIX: The Textbook, Third Edition

9.11 UNIX PIPES
The UNIX system allows stdout of a command to be connected to the stdin of another com-
mand. You can make it do so by using the pipe character (|) according to the following syntax.

SYNTAX

command1 | command2 | command3 | … | commandN

Purpose: The standard output of command1 is connected to the stdin of com-
mand2, the stdout of command2 is connected to the stdin of command3, ...,
and the stdout of commandN−1 is connected to the stdin of commandN

Figure 9.11 illustrates the semantics of this command.
Thus, a pipe allows you to send output of a command as input to another command.

The commands that are connected via a pipe are called filters. A filter belongs to a class of
UNIX commands that take input from stdin, manipulate it in some specific fashion, and
send it to stdout. Pipes and filters are frequently used in UNIX to perform complicated
tasks that cannot be performed with a single command. Some commonly used filters are
cat, compress, crypt, grep, less, lp, more, pr, sort, tr, uniq, and wc. If a
command at the output of a pipe processes its input at a rate slower than the command
connected to its input, the pipe stores the excess data and serves it to the command at the
output on a first-in-first-out basis. Thus, if cmd2 in Figure 9.11 processes the incoming
data at a slower rate than the rate at which cmd1 produces data, the excess data produced
by cmd1 is stored in the pipe between cmd1 and cmd2, which serves it to cmd2 on a first-
in-first-out basis. The maximum data that a pipe can store in PC-BSD is dictated by the
symbolic constant _POSIX_PIPE_BUF in /usr/include/limits.h.

For example, in ls -l | more, the more command takes the output of ls -l as its
input. The net effect of this command is that the output of ls -l is displayed one screen
at a time. The pipe really acts like a water pipe, taking the output of ls -l and giving it to
more as its input, as shown in Figure 9.12.

This command does not use a disk to connect the standard output of ls -l to the
standard input of more, because the pipe is implemented in the kernel area of the main
memory. In terms of the I/O redirection operators, the command is equivalent to the fol-
lowing sequence of commands.

$ ls -l > temp
$ more < temp (or more temp)

stdout of
command2

stdin of
commandN

stdin of
command2

stdout of
command1

cmd1 cmd2 cmdNpipe pipe pipe…

FIGURE 9.11 Semantics of a pipeline with N commands.

Redirection and Piping    ◾    319

[contents of temp]
$ rm temp
$

As you can see, not only do you need three commands to accomplish the same task, but
the command sequence is also extremely slow because file read and write operations are
involved. Recall that files are stored on a secondary storage device, usually a disk. On a
typical contemporary computer system, disk operations are about one million times slower
than main memory (random access memory [RAM]) operations. The actual performance
gain in favor of pipes, however, is much smaller, owing to efficient caching of file blocks by
the UNIX kernel and the use of semiconductor disks.

You can use the sort utility discussed in Chapter 7 to sort lines in a file. Suppose that
you have a file called student_records that you want to sort and that the file may have some
repeated lines that you want to appear only once in the sorted file. The sort -u stu-
dent _ records command can accomplish this task. As we discussed in Chapter 6, the
uniq command can also do the task if it is given the sorted version of student_records
with repeated lines in it. One way to perform the task is to use the following commands.
The more command is used to show the contents of student_records.

$ more student_records
John Doe ECE 3.54
Pam Meyer CS 3.61
Jim Davis CS 2.71
John Doe ECE 3.54
Jason Kim ECE 3.97
Amy Nash ECE 2.38
$ sort student_records > student_records_sorted
$ uniq student_records_sorted
Amy Nash ECE 2.38
Jason Kim ECE 3.97
Jim Davis CS 2.71
John Doe ECE 3.54
Pam Meyer CS 3.61
$

The same task can be accomplished in one command line by using a pipe, as follows:

$ sort student_records | uniq
Amy Nash ECE 2.38

stdout
of 1s–1

stdin
of more

pipe more1s–1

FIGURE 9.12 Semantics of the ls -l | more command.

320 ◾ UNIX: The Textbook, Third Edition

Jason Kim ECE 3.97
Jim Davis CS 2.71
John Doe ECE 3.54
Pam Meyer CS 3.61
$

At times, you may need to connect several commands. The following command line
demonstrates the use of multiple pipes, forming a pipeline of commands. In this command
line, we have used the grep and sort filters.

$ who|sort|grep"john"|mail -s "John's Terminal" doe@coldmail.com
$

This command sorts the output of who and sends the lines containing the string “john”
(if any exists) as an e-mail message to doe@coldmail.com, with the subject line “John’s
Terminal”. In terms of input and output redirection, this command line is equivalent to
the following command sequence.

$ who > temp1
$ sort < temp1 > temp2
$ grep "john" temp2 > temp3
$ mail -s "John's Terminal" doe@coldmail.com < temp3
$ rm temp1 temp2 temp3
$

The command with pipes does not use any disk files, but the preceding command
sequence needs three temporary disk files and six disk I/O (read and write) operations.
The number of I/O operations may be a lot higher, depending on the sizes of these files, the
system load in terms of the number of users currently using the system, and the runtime
behavior of other processes running on the system.

A pipe, therefore, is a UNIX feature that allows two UNIX commands (processes) to
communicate with each other. Hence, a pipe provides an interprocess communication
(IPC) mechanism in UNIX. More specifically, it can be used as a channel between two
related processes on the same system to talk to each other. Typically, processes have a
parent–child relationship (see Chapter 10) but processes with a common ancestor (parent,
grandparent, etc.) can also communicate using a pipe. From a programmer’s perspective,
we discuss IPC using pipes in detail in Chapter 19. The communication between processes
is one-way only. For example, in ls | more, the output of ls is read by more as input.
Thus, the one-way communication is from ls to more. For a two-way communication
between processes, at least two pipes must be used. This cannot be accomplished at the
command shell level, but it can be done in C/C++ by using the pipe() system call. We
explore this topic in Chapter 19 also.

I/O redirection and pipes can be used in a single command, as follows:

$ grep "John" < Students | lpr –Pspr
$

mailto:doe@coldmail.com

Redirection and Piping    ◾    321

Here, the grep command searches the Students file for lines that contain the string
“John” and sends those lines to the lpr command to be printed on a printer named spr.
Figure 9.13 illustrates the semantics of this command.

In the following command, egrep takes its input from ee446.grades and sends its
output (lines ending with the character A) to the sort utility, which sorts these lines and
stores them in the file called ee446.As.sorted in the current directory. The end result is
that the names, scores, and grades of those students who have A grades in the ECE446
course are stored in the ee446.As.sorted file in the current directory. Figure 9.14 illustrates
the semantics of this command.

$ egrep 'A$' < ee446.grades | sort > ee446.As.sorted
$

Suppose that, before running the ssh server sort < datafile command in
Section 9.4, you want to be sure that datafile on your local system is consistent with the
updated copy on the server, called ~/research/pvm/datafile.server. You can copy datafile.
server and compare it with your local copy, datafile. But, you will then have three copies,
and if you are not careful you might remove the wrong copy. In this case, you can run the
following command to see the differences between your local copy and the copy on the
server without copying datafile.server on your (local) computer.
$ ssh server cat ~/research/pvm/datafile.server | diff datafile -
$

In this case, the cat command runs on the server side, and its output is fed as input
to the diff command executed on the local machine. The output of the diff command
also goes to the display screen on the local machine. Figure 9.15 illustrates the semantics
of this command.

9.12 REDIRECTION AND PIPING COMBINED
You cannot use the redirection operators and pipes alone to redirect the stdout of a com-
mand to a file as well as connect it to stdin of another command in a single command line.
However, you can use the tee utility to do so. You can use this utility to tell the command
shell to send the stdout of a command to one or more files specified as arguments of tee,

Students grep "John" lpr -Psprpipe

FIGURE 9.13 Semantics of the grep "John" < Students | lpr -Pspr command.

ece446.grades ece446.As.sortedegrep 'A$' pipe sort

FIGURE 9.14 Semantics of the egrep 'A$' < ee446.grades | sort > ee446.As.sorted
command.

322 ◾ UNIX: The Textbook, Third Edition

as well as to another command. The following is a brief description of how the tee utility
is normally used.

SYNTAX

command1 | tee file1 file2 … fileN | command2

Purpose: Standard output of command1 is connected to the stdin of tee, and tee sends
its input to files file1 through fileN as well as the stdin of command2

The semantics of this command syntax are that command1 is executed and its output
is stored in files file1 through fileN as well as sent to command2 as its input. An example
use of the tee utility is given in the following command.

$ cat names students | grep "John Doe" | tee file1 file2 | wc –l
$

This command extracts the lines from the names and students files that contain the
string “John Doe”, pipes these lines to the tee utility, which puts copies of these lines into
file1 and file2 as well as sending them to wc -l, which sends its output to the display
screen. Thus, the lines in the names and students files that contain the string “John Doe”
are saved in file1 and file2, and the line count of such lines is displayed on the monitor
screen. Figure 9.16 illustrates the semantics of this command line. Such commands are
useful in a shell script where different operations have to be performed on file1 and file2
later in the script.

9.13 OUTPUT AND ERROR REDIRECTION IN THE C SHELL
The operators for performing the input, output, and append operations (<, >, >>) work
in the C shell as they do in other shells, as previously discussed. However, file descriptors
cannot be used with these operators in the C shell. Also, error redirection works differently
in the C shell than it does in other shells. In the C shell, the operator for output and error
redirection is >&.

~/research/pvm/datafile.server cat pipe

datafile

diff

stderr

stdout

screen

On server On server

FIGURE 9.15 Semantics of the ssh server cat ~/research/pvm/datafile.server |
diff datafile – command.

Redirection and Piping    ◾    323

SYNTAX

command >& file

Purpose: Redirect stdout and stderr of command to file

For example, the following command redirects output and errors of the ls -l foo
command to the error.log file. The standard input of the command is still attached to the
keyboard. Note that we have used the % sign as the shell prompt, which is the default for
the C shell.

% ls -l foo >& error.log
%

The C shell does not have an operator to redirect stderr alone. However, the stdout and
stderr of a command can be attached to different files, if the command is executed in a

students names

cat

pipe

pipe

tee

wc -1

file1

file2

screen

pipe

grep "John Doe"

FIGURE 9.16 Semantics of the cat names students | grep "John Doe" | tee
file1 file2 | wc -l command.

324 ◾ UNIX: The Textbook, Third Edition

subshell, by enclosing the command in parentheses. The following session illustrates this
point.

% find ~ -name foo -print >& output.error.log
% (find ~ -name foo -print > foo.paths) >& error.log
%

The children of your current shell process, also known as subshells (see Chapter 10),
execute all external shell commands. When the first command executes, the output and
errors of the find command go to the output.error.log file. Because the subshell process
is not created until the whole command line has been processed (interpreted), the stdout
and stderr of the parent shell process are redirected to the error.log file because of the >&
operator. Therefore, the subshell also has its stdout and stderr redirected to the error.log
file.

In the second command line, the find command is executed under a subshell and
inherits the standard files of the parent shell. When the find command in parentheses
executes, it redirects the stdout of the command to the foo.paths file; the stderr of the
command remains attached to error.log. Thus, the output of the find command goes
to the foo.paths file, and the errors generated by the command go to the error.log file.
Figure 9.17 illustrates the semantics of the second find command.

You can use the >>& operator to redirect and append stdout and stderr to a file. For
example, ls -l foo >>& output.error.log redirects the stdout and stderr of the
ls command and appends them to the error.log file.

The C shell also allows the stdout and stderr of a command to be attached to the stdin
of another command with the |& operator. The following is a brief description of this
operator.

SYNTAX

Command1 |& command2

Purpose: Redirect stdout and stderr of command1 to command2, that is, pipe stdout and
stderr of command1 to command2

In the following command, the stdout and stderr of the cat command are attached
to the stdin of the grep command. Thus, the output of the cat command, or any error
produced by it (e.g., owing to the lack of read permission for file1 or file2), is fed as input
to the grep command.

% cat file1 file2 |& grep "John Doe"
%

The I/O redirection and piping operators (| and |&) can be used in a single command, as
shown in the following session. This command is an extension of the previous command,

Redirection and Piping    ◾    325

in which the stdout of the grep command is attached to the stdin of the sort command.
Furthermore, the stdout and stderr of the sort command are attached to the stdin of the
wc -l command. Thus, if the command line completes successfully, it display the number
of lines in file1 and file2 that contain the string “John Doe”.

% cat file1 file2 |& grep "John Doe" | sort |& wc -l
%

In the following in-chapter exercises, you will practice the use of UNIX pipes, the tee
command, and the error redirection feature of the C shell.

EXERCISE 9.6

Write a shell command that sorts a file students.records and stores the lines containing
“Davis” in a file called Davis.record. Use piping and I/O redirection.

stderr

stdin

Parent shell
File

descriptor

0
1
2
3
4
5
.
.
.

Keyboard

screen

(a)

Per-process file
descriptor table

for the parent shell

stdout

.

.

.

stderr

stdin

Child (sub) shell
File

descriptor

0
1
2
3
4
5
.
.
.

Keyboard

(b)

Per-process file
descriptor table
for the subshell

stdout

.

.

.

error.log

stderr

stdin

find
File

descriptor

0
1
2
3
4
5
.
.
.

Keyboard

Keyboard

(c) (d)

Per-process file
descriptor table

for find

stdout

.

.

.

foo.paths

find

error.log

foo.paths

error.logstderr

stdout
stdin

FIGURE 9.17 Step-by-step semantics of the (find ~ -name foo -print > foo.paths)
>& error.log command.

326 ◾ UNIX: The Textbook, Third Edition

EXERCISE 9.7

Write a command to copy a file Scores to Scores.bak and send a sorted version of Scores
to professor@university.edu via the mail command.

EXERCISE 9.8

Write a C shell command for copying a file Phones in your home directory to a file called
Phones.bak (also in your home directory) by using the cat command and the >& operator.

The C shell has a special built-in variable that allows you to protect your files from being
overwritten with output redirection. This variable is called noclobber and, when set,
prevents the overwriting of existing files with output redirection. You can set the variable
by using the set command and unset it by using the unset command. Or, you can place
the set noclobber command in your ~/.cshrc file (or some other startup file).

% set noclobber
[your interactive session]
...
% unset noclobber
%

If the noclobber variable is set, the command cat file1 > file2 generates an error
message if file2 already exists. If file2 does not exist, it is created and the data from file1 is
copied into it. The command cat file1 >> file2 works if file2 exists and noclobber
is set, but an error message is generated if file2 does not exist. You can use the >!, >>!, and
>>&! operators to override the effect of the noclobber variable if it is set. Therefore, even
if the noclobber variable is set and file2 exists, the command cat file1 >! file2
copies data from file1 to file2. For the cat file1 >>! file2 command, if the noclob-
ber variable is set and file2 does not exist, file2 is created and the data from file1 is copied
into it. The >>&! operator works in a manner similar to the >>! operator.

9.14 RECAP OF I/O AND ERROR REDIRECTION
Table 9.1 summarizes the input, output, and error redirection operators in the Bourne,
Korn, and C shells. We did not discuss some of these operators in this chapter; we discuss
them in detail in Chapters 12 through 15 under shell programming. We included these
operators in this table because it seems to be the most appropriate place to show all of them
together. Note that all of the operators that work for the Bourne and Korn shells work for
the Bash shell also.

9.15 FIFOS
FIFOs, also known as named pipes, can also be used for communication between two
processes executing on a system. Whereas processes communicating with pipes must
be related to each other through a common ancestor process that you execute, processes

mailto:professor@university.edu

Redirection and Piping    ◾    327

TABLE 9.1 Redirection Operators and Their Meaning in the Bourne, Korn, and C Shells

Operator Bourne Shell Korn Shell C Shell

< file Input redirection Input redirection Input redirection
> file Output redirection Output redirection Output redirection
>> file Append standard

standard output
Append standard
output

Append
output

0< file Input redirection Input redirection
1> file Output redirection Output redirection
2> file Error redirection Error redirection
1>> file Append standard

output to file
Append standard
output to file

2>> file Append standard
error to file

Append standard
error to file

<&m Attach standard
input to file
descriptor m

Attach standard
input to file
descriptor m

>&m Attach standard
output to file with
descriptor m

Attach standard
output to file with
descriptor m

m>&n Attach file
descriptor m to file
descriptor n

Attach file
descriptor m to file
descriptor n

<&- Close standard
input

Close standard
input

>&- Close standard
output

Close standard
output

m<&- or m>&- Close file
descriptor m

Close file
descriptor m

>& file Output and error redirection
>| file Ignore noclobber

and assign standard
output to file

>>| file Ignore noclobber
and append standard
output to file

>! file Ignore noclobber and
assign standard output to file

>>! file Ignore noclobber and
append standard output to
file; if

file does not exist, create it
>>&! file Ignore noclobber and

append standard output and
standard error to file

cmd1 | cmd2 Connect standard
output of command
cmd1 to standard
input of command
cmd2

Connect standard
output of command
cmd1 to standard
input of command
cmd2

Connect standard output of
command cmd1 to standard
input of command cmd2

(Continued)

328 ◾ UNIX: The Textbook, Third Edition

communicating with FIFOs do not have to have this kind of relationship—they can be
independently executed programs on one system. For the command line use of pipes and
FIFOs, this means that pipes can be used only for communication between commands
connected via a pipeline and FIFOs can be used for communication between separately
run commands. Another difference between pipes and FIFOs is that whereas a pipe is a
main memory buffer maintained by the UNIX kernel and has no name, a FIFO is cre-
ated on disk and has a name like a filename. This means that, like files, FIFOs have to
be created and opened before they can be used for communication between processes.
Thus, accessing a FIFO requires an access to the secondary storage device where it resides.
Pipes are process persistent, which means that they exist as long as the process that creates
them exists. FIFOs on most UNIX systems are filesystem persistent, meaning that they
exist on the system until they are explicitly removed/deleted or the relevant file system is
unmounted (i.e., removed from the system).

You can use the mknod()system call or the mkfifo()library call to create a FIFO in
a program and the mkfifo command to create a file in a shell session. We discuss the
command line use of FIFOs in this section. We discuss the use of FIFOs, pipes, and the
related system calls and library calls in the chapters on system programming (Chapters 18
through 21). Here is a brief description of the mkfifo command.

SYNTAX

mkfifo [option] file-list

Purpose: Create FIFOs with pathnames given in file-list
Output: FIFOs for the pathnames given in file-list are created in the relevant directories
Commonly used options/features:

-m mode Set access permissions for newly created FIFOs to “mode”; the access per-
missions are specified in “mode” as they are with the chmod command, such as
666, meaning read and write permissions for everyone and execute permission for
nobody

In the following session, we use the first command to create a FIFO, called myfifo1, with
default permissions based on the current value of umask (see discussion in Chapter 5). We

TABLE 9.1 (Continued) Redirection Operators and Their Meaning in the Bourne, Korn, and
C Shells

Operator Bourne Shell Korn Shell C Shell

cmd1 |
&cmd2

Connect standard output and
standard error of command
cmd1 to standard input of
command cmd2

(cmd>/dev/
tty)>&file

Redirect standard error of the
cmd command to file.

|& Allow stdout and stderr of a
command to be attached to
stdin of another command

Redirection and Piping    ◾    329

use the second command to create a FIFO, called myfifo2, with read and write permissions for
the owner and no permissions for all other users. We use the ls –al myfifo1 myfifo2
command to display the access permissions of the two FIFOs. Note that the first character in
the long listing of the two FIFOs is “p”, indicating that myfifo1 and myfifo2 are of the FIFO
(named pipe) type.

$ mkfifo myfifo1
$ mkfifo -m 600 myfifo2
$ ls -l myfifo3 myfifo4
prw-r--r-- 1 sarwar faculty 0 Aug 9 08:30 myfifo3
prw------- 1 sarwar faculty 0 Aug 9 08:31 myfifo4
$

The general method by which two commands, cmd1 and cmd2, can communicate with
a FIFO, called myfifo1, is shown in the following command sequence.

cmd1 < myfifo1 &
cmd2 infile | tee myfifo1 | cmd3

Note that we run the first command in the background (see Chapter 10 for background
processes) so that we could run cmd2. When we execute cmd1, it blocks, because myfifo1
is empty. Note that cmd1 blocks and returns immediately if myfifo1 is a file. When the
output of cmd2 is sent to myfifo1 and cmd3 via the tee utility, cmd1 unblocks and
starts processing data in myfifo1. Outputs of commands cmd1 and cmd3 are sent to stan-
dard output (i.e., the display screen). Figure 9.18 shows these semantics with the help of a
diagram.

In the following session, the command sequence displays the status of all the processes
running on the system, the number of daemon processes, and the total number of pro-
cesses running on the system. The two cat commands block until something is written into
myfifo1 and myfifo2. The ps –a command sends the status of all the processes running on
the system to the tee command, which redirects this data to the two FIFOs as well as send-
ing it to the grep command. The grep command extracts all the daemon processes from
its input (i.e., the output of the ps –a command) and sends them to the wc –l command
through a pipe. Thus, the first cat command displays the status of all the processes running

pipe pipe pipecmd2 cmd3

Display screen

cmd1myfifo1

tee

FIGURE 9.18 Semantics of execution of the command sequence cmd1 < myfifol & followed by
cmd2 infile | tee myfifo1 | cmd3.

330 ◾ UNIX: The Textbook, Third Edition

on the system. The output of the second cat command is the number of processes run-
ning on the system and that of the third command (ps –a) is the number of daemons run-
ning on the system. As shown by the last two lines of the output, at the time of running this
command sequence, the system was running 20 processes, of which two were daemons.

$ cat myfifo1 &
$ cat myfifo2 | wc -l &
$ ps -a | tee myfifo1 myfifo2 | grep 'd$' | wc -l
 PID TT STAT TIME COMMAND
 1533 v0- I 0:00.01 /bin/sh /usr/local/sbin/PCDMd
 1548 v0- IN 3:43.82 /bin/sh /usr/local/sbin/pbid
 1790 v0 Is+ 0:00.00 /usr/libexec/getty Pc ttyv0
 1791 v1 Is+ 0:00.00 /usr/libexec/getty Pc ttyv1
 ...
 1797 v7 Is+ 0:00.00 /usr/libexec/getty Pc ttyv7
56478 1 Is 0:00.24 -csh (csh)
57216 1 S 0:00.12 /bin/sh
58002 1 S 0:00.01 cat myfifo1
58045 1 S 0:00.01 cat myfifo2
58046 1 I 0:00.01 wc -l
58089 1 R+ 0:00.02 ps -a
58090 1 S+ 0:00.01 tee myfifo1 myfifo2
58091 1 S+ 0:00.02 grep d$
58092 1 S+ 0:00.01 wc -l
 2
$ 20

The sequence of the output in this session is dependent on the scheduling of the three
commands; the output shown above is what was produced by our system and is the most
likely output. An interesting exercise would be to come up with a sequence of commands
to ensure that the output is always produced in the same order as seen here.

When you no longer need to use a FIFO, you can remove it just like you remove an
ordinary file. This means that you can use the unlink()system call (from within a pro-
cess) or the rm command at the command line for removing a FIFO from your file system
hierarchy. In the following session, we use the rm command for removing the myfifo1 and
myfifo2 FIFOs. The output of the ls command before and after the rm command shows
that the two FIFOs have in fact been removed.

$ ls
myfifo1 myfifo2
$ rm myfifo1 myfifo2
$ ls
$

The following in-chapter exercises are designed to give you practice using the mkfifo
command and help you to understand its semantics with a hands-on session.

Redirection and Piping    ◾    331

EXERCISE 9.9

Create three FIFOs, called fifo1, fifo2, and fifo3, with a single command. Write down the
command that you used to perform the given task.

EXERCISE 9.10

Create a FIFO, called fifo4, with its access privileges set to read and write for owner and
group, and no privileges for others. Show the command that you used to accomplish the
given task.

EXERCISE 9.11

Try the shell session given in this section on your system. Does your system produce out-
put in the same order as shown in our session? If not, show the output produced on your
system.

SUMMARY
UNIX automatically opens three files for every command for it to read input from and
send its output and error messages to. These files are called standard input (stdin), stan-
dard output (stdout), and standard error (stderr). By default, these files are attached to the
terminal on which the command is executed. Thus, the shell makes the command input
come from the keyboard and its output and error messages to go to the monitor screen.
These default files can be changed to other files by using redirection operators: < for input
redirection and > for output and error redirection.

The three standard files can be referred to by using the digits 0 (stdin), 1 (stdout), and
2 (stderr), called the file descriptors for the three standard files. All open files in UNIX are
referred to by similar integers that are used by the kernel to perform operations on these files.
In the Bourne, Korn, Bash, and POSIX shells, the greater-than symbol (>) is used in conjunc-
tion with descriptors 1 and 2 to redirect standard output and standard error, respectively.

The standard output of a command can be connected to the standard input of another
command via a UNIX pipe (|). Pipes are created in the main memory and are used to take
the output of a command and give it to another command without creating a disk file,
effectively making the two commands talk to each other. For this reason, a pipe is called an
interprocess communication (IPC) channel, which allows related commands on the same
machine to communicate with each other at the shell and application levels. The processes
communicating through pipes must be related through a common ancestor; the relation-
ship is usually parent–child or sibling.

The I/O and error redirection features and pipes can be used together to implement
powerful command lines. However, redirection operators and pipes alone cannot be used
to redirect the standard output of a command to a file as well as connecting it to standard
input of another command. The tee utility can be used to accomplish this task, sending
standard output of a command to one or more files as well as to another command. The
commands and tee are connected through pipes.

332 ◾ UNIX: The Textbook, Third Edition

The C shell does not support I/O and error redirection with file descriptors. Also, redi-
recting standard output and standard error of a command to different files is specified
differently in the C shell than it is in the other shells.

FIFOs, also known as named pipes, allow related or unrelated processes on a system to
communicate. Unlike a pipe, which is an in-memory buffer, a FIFO is a file created on a
secondary storage device. For command line use, you can create a FIFO with the mkfifo
command. The mknod()system call or mkfifo()library call may be used to create FIFOs
within processes. When you no longer need a FIFO, you can remove it with the unlink()
system call from within a running program (process) or the rm command at the com-
mand line. We discuss the UNIX system calls and library calls related to pipes and FIFOs
in Chapters 18 through 21 on UNIX system programming.

QUESTIONS AND PROBLEMS

 1. What are standard files? Name them and state their purpose.

 2. Briefly describe input, output, and error redirection. Write two commands of each to
show simple and combined use of the redirection operators.

 3. What are file descriptors in UNIX? What are the file descriptors of standard files?
How can the I/O and error redirection operators be combined with the file descrip-
tors of standard files to perform redirection in the Bourne, Korn, Bash, and POSIX
shells?

 4. Sort a file data1 and put the sorted file in a file called data1.sorted. Give the com-
mand that uses both input and output redirection.

 5. Give the command to accomplish the task in Problem 4 by using a pipe and output
redirection.

 6. Give a set of commands equivalent to the command ls -l | grep "sarwar"
> output.p3 that use I/O redirection operators only. How does the performance
of the given command compare with your command sequence? Explain.

 7. What is the purpose of the tee command? Give a command equivalent to the com-
mand in Problem 6 that uses the tee command.

 8. Write UNIX shell commands to carry out the following tasks.

 a. Count the number of characters, words, and lines in a file called data1 and dis-
play the output on the display screen.

 b. Count the number of characters, words, and lines in the output of the ls -l
command and display the output on the display screen.

 c. Do the same as in part (b), but redirect the output to a file called data1.stats.

Redirection and Piping    ◾    333

 9. Give the command for searching a file datafile for the string “Internet”, sending the
output of the command to a file called Internet.freq and any error message to a file
error.log. Draw a diagram for the command, similar to the ones shown in the chap-
ter, to illustrate its semantics.

 10. Give a command for accomplishing the task in Problem 9, except that both the output
of the command and any error message go to a file called datafile.

 11. Give a command to search for lines in /etc/passwd that contain the string “sarwar”.

 12. Store the output of the command in a file called passwd.sarwar in your current
directory. If the command fails, the error message must also go to the same file.

 13. What is the UNIX pipe? How is pipe different from output redirection? Give an
example to illustrate your answer.

 14. What do the following commands do under the Bourne shell?

 a. cat 1> letter 2> save 0< memo

 b. cat 2> save 0< memo 1> letter

 c. cat 1> letter 0< memo 2>&1

 d. cat 0< memo | sort 1> letter 2> /dev/null

 e. cat 2> save 0< memo | sort 1> letter 2> /dev/null

 15. Consider the following commands under the Bourne shell.

 a. cat memo letter 2> communication 1>&2

 b. cat memo letter 1>&2 2> communication

 Where do output and error messages of the cat command go in each case if

 a. both files (memo and letter) exist in the present working directory, and

 b. one of the two files does not exist in the present working directory?

 16. Send an e-mail message to doe@domain.com, using the mail command. Assume
that the message is in a file called greetings. Give one command that uses input redi-
rection and one that uses a pipe. Any error message should be appended to a file mail.
error.

 17. What happens when the following commands are executed on your UNIX system?
Why do these commands produce the results that they do?

 a. cat letter >> letter

 b. cat letter > letter

mailto:doe@domain.com

334 ◾ UNIX: The Textbook, Third Edition

 18. By using output redirection, send a greeting message “Hello, World!” to a friend’s
terminal.

 19. Give a command for displaying the number of users currently logged on to a system.

 20. Give a command for displaying the login name of the user who was the first to log on
to a system.

 21. What is the difference between the following commands?

 a. grep "John Doe" Students > /dev/null 2>&1

 b. grep "John Doe" Students 2>&1 > dev/null

 22. Give a command for displaying the contents of (the files’ names in) the current direc-
tory, with three files per line.

 23. Give a command that reads its input from a file called Phones, removes unnecessary
spaces from the file, sorts the file, and removes duplicate lines from it.

 24. Repeat Problem 23 for a version of the file that has unnecessary spaces removed from
the file but still has duplicate lines in it.

 25. What do the following commands do?

 a. uptime | cat - who.log >> system.log

 b. zcat secret_memo.Z | head -5

 26. Give a command that performs the task of the following command but with the
diff command running on the machine called server: ssh server cat ~/
research/pvm/datafile.server | diff datafile -

 27. Give a command for displaying the lines in a file called employees that are not
repeated. What is the command for displaying repeated lines only?

 28. Give a command that displays a long list for the most recently created directory.

 29. Create a FIFO, called myfifo1. What are the default access privileges set for it? Create
a FIFO, myfifo2, with read and write access privileges for everyone. Show your com-
mands and their output for performing these tasks.

 30. Give a set of commands for producing the output of the session given in Section 9.15.
Your command sequence should ensure that the order of output is always the follow-
ing: the status of all the processes running on the system, the number of daemons
running on the system, and the total number of processes running on the system.

 31. The number of files a process can open simultaneously on a UNIX system is depen-
dent on the size of the per-process file descriptor table on the system. Use a shell
command with the features discussed in this chapter to display the value of the

Redirection and Piping    ◾    335

_POSIX_OPEN_MAX variable in the /usr/include/limits.h file. Show your com-
mand and its output and explain your answer.

 32. How much data can a pipe store on your system? Use a shell command to obtain your
answer. What command did you use? Show the command and its output. Hint: Look
for a symbolic constant defined in the /usr/include/limits.h file.

 33. What is the output of the following command? Give reasons for your answer.

 cat file1 file2 |& grep "John Doe" | sort |& wc –l

 34. What is the purpose of the following command?

 cat /usr/include/limits.h | nl | grep_POSIX_OPEN_MAX

 35. What do the following commands do?

 a. mail mike@somewhere.org < to_do

 b. cat Phones | sort | uniq | pr | lpr

http://taylorandfrancis.com

337

C h a p t e r 10

Processes

Objectives

• To describe the concept of a process, and execution of multiple processes on a com-
puter system with a single CPU

• To explain how a shell executes commands

• To discuss static and dynamic display of process attributes

• To discuss the main memory image of a UNIX process

• To describe briefly the concept of CPU scheduling and scheduling classes in UNIX

• To explain the concept of foreground and background processes, including a descrip-
tion of a daemon and its uses

• To describe sequential and parallel execution of commands

• To discuss process and job control in UNIX: foreground and background processes,
sequential and parallel processes, suspending processes, moving foreground pro-
cesses into the background and vice versa, and terminating processes

• To describe the UNIX process hierarchy

• To cover the commands and primitives

	 	<Ctrl+C>, <Ctrl+D>, <Ctrl+Z>, <Ctrl+\>, ;, &, (), bg, fg,
jobs, kill, nice, nohup, pagezise, ps, ptree, size, sleep, top

10.1 INTRODUCTION
As we have mentioned before, a process is a program in execution. The program may
be assembly language code, an executable code generated after compiling a source pro-
gram written in a high-level language such as C++, or an interpreted code written in
LISP, JavaScript, Perl, Interpreted C (CINT), or a UNIX shell. The UNIX system creates

338 ◾ UNIX: The Textbook, Third Edition

a process every time you run an external command, and the process is removed from the
system when the command finishes its execution. We use the terms program and command
interchangeably.

Process creation and termination are the only mechanisms used by the UNIX system to
execute external commands. In a typical time-sharing system such as UNIX, which allows
multiple users to use a computer system and run multiple processes simultaneously, hun-
dreds to thousands of processes are created and terminated every day. Remember that the
CPU in the computer executes processes and that a typical system has only one CPU. The
question is, how does a system with a single CPU execute multiple processes simultane-
ously? Even for systems with multiple CPUs or multiple cores in a CPU, the number of pro-
cesses is greater than the number of CPUs or cores. How does a system with the number
of processes larger than the number of CPUs or CPU cores execute these processes simul-
taneously? A detailed discussion of this topic is beyond the scope of this textbook, but we
briefly address it in Section 10.2 and later in Section 10.5.1. Later in the chapter, we discuss
viewing the static and dynamic state of processes, foreground and background processes,
daemons, jobs, process and job attributes, and process and job control. We use the terms
time sharing and multitasking synonymously.

10.2 CPU SCHEDULING: RUNNING MULTIPLE
PROCESSES SIMULTANEOUSLY

On a typical computer system that contains a single CPU and runs a time-sharing oper-
ating system, multiple processes are simultaneously executed by quickly switching the
CPU from one process to the next. That is, one process is executed for a short period
of time, and then the CPU is taken away from it and given to another process. The
new process executes for a short period of time and then the CPU is given to the next
process. This procedure continues until the first process in the sequence gets to use the
CPU again. The time a process is “in” the CPU before it is switched “out” of the CPU
is called a quantum or time slice. The quantum is usually very short: one second or less
for a typical UNIX system. On Solaris, the quantum of a process is dependent on the
priority of a process. For time-sharing user processes, the quantum is 40 milliseconds.
For higher priority processes, the quantum value is larger. For example, the quantum
is 200 milliseconds for priority 0 kernel threads and 160 milliseconds for priority 10
kernel threads. In FreeBSD, the quantum value is 0.1 seconds. When the CPU is free/
idle (i.e., not used by any process) or when the current process has finished its quantum,
the kernel uses an algorithm to decide which process gets to use the CPU next. The
technique used to choose the process that gets to use the CPU is called CPU scheduling.
The kernel code that performs this task is known as the short-term CPU scheduler, or
CPU scheduler.

The process of taking the CPU away from the currently executing process and giving it
to the newly scheduled process is called context switching. This task is performed by another
part of the kernel, known as the dispatcher. In systems with multiple CPUs or CPUs with
multiple cores such as those by Intel, AMD, and other companies, if the number of pro-
cesses on the system is more than the number of CPUs in the system (or the number of

Processes    ◾    339

cores for a single CPU system), CPU scheduling and context switching still happen. Thus,
on a system with multiple users running multiple processes, the scheduler and dispatcher
work in tandem to make you feel as if you are the only one using the system. Although a
focused discussion on CPU-scheduling algorithms is beyond the scope of this book, we
give a brief and simplistic view of how UNIX SV, FreeBSD, and Solaris schedulers work.

In a time-sharing system, a priority value is assigned to every process, and the process
that has the highest priority gets to use the CPU next. Several methods can be used to
assign a priority value to a process. One simple method is based on the time that it enters
the system. In this scheme, typically the process that enters the system first is assigned the
highest priority and gets to use the CPU next; the result is called a first-come, first-serve
(FCFS) scheduling algorithm. Another scheme is to assign a priority value based on the
amount of time a process has used the CPU. Thus, a newly arriving process, or a process
that spends most of its time performing input and/or output (I/O) operations, gets the
highest priority. Processes that spend most of their time performing I/O are known as
I/O-bound processes. An example of an I/O-bound process is a text editor such as vim. In
the round robin (RR) scheduling algorithm, the CPU is given to each process in the queue
of processes for one quantum, one after the other. This algorithm is a natural choice for
time-sharing systems, wherein all users like to see progress by their processes. If you are
interested in other CPU scheduling algorithms, we encourage you to read a book on oper-
ating system principles and concepts. The operating system code that implements the CPU
scheduling algorithm is known as the processor scheduler. The scheduler for most operat-
ing systems, including UNIX, is in the kernel.

The UNIX System V scheduling algorithm is a blend of all of the algorithms mentioned
and more. It uses a simple formula to assign a priority value to every process in the system
that is ready to run. The priority value for every process in the system is recalculated every
second. When it is time for scheduling, the CPU is given to the process with the smallest
priority number. If multiple processes have the same priority number, the decision is made
on the FCFS basis. The formula used to compute the priority value is

 priority value threshold priority nice value recent CPU us= + + aage/2() ,

where threshold priority is an integer usually having a value of 40 or 60, nice value is a
positive integer with a default value of 10 but can be a value from –20 to 19 (20 on some
UNIX systems), and CPU usage is the number of clock ticks (1/60 or 1/50 of a second
on older systems, where 60 or 50 is the frequency of the power line in Hz) for which the
process has used the CPU. On modern UNIX systems, a clock tick is much smaller and is
not calculated based on the power-line frequency. The clock interrupt service routine (ISR)
updates the CPU usage for every process every clock tick, which increases the tick count
for the process currently using the CPU. The clock ISR divides the tick count of every pro-
cess by two before it recalculates the process priorities by using the formula shown. This
division by two is known as applying the decay function because it decreases the impact of
previous CPU usage exponentially. Thus, recent CPU usage by a process has more impact

340 ◾ UNIX: The Textbook, Third Edition

on the priority of a process and historical CPU usage has a diminishing effect. The CPU
usage value therefore increases for the process using the CPU and decreases for all other
processes.

You can assign a higher nice value to your processes by using the nice or renice
command, but the nice value cannot be set to a negative number by a nonsuperuser. A
higher nice value means a higher priority value and, hence, a lower priority. So, when you
increase the nice value of your process, you are being nice to other user processes. The
formula clearly indicates that the higher the recent CPU usage of a process, the higher its
priority value and the lower its priority. Thus, UNIX favors processes that have used less
CPU time in the recent past. A text editor such as vim gets higher priority than a process
that computes the value of pi (π) because vim spends most of the time waiting for I/O—that
is, reading keyboard input, reading/writing to disk, and displaying file data or keyboard
input on the screen. On the other hand, the process that computes π spends most of its
time doing calculations—that is, using the CPU. Recalculating priority values of all the
processes every second causes process priorities to change dynamically (up and down). In
Section 10.5, we further explore the UNIX scheduling concept, particularly with respect
to PC-BSD and Solaris.

10.3 UNIX PROCESS STATES
A UNIX process can be in one of many states, moving from one state to another, eventually
finishing its execution, normally or abnormally, and getting out of the system. A process
terminates normally when it finishes its work and exits the system gracefully. A process
terminates abnormally when it exits the system because of an exception (error condition)
or intervention by its owner or the superuser. The owner of the process can intervene by
using a command or a particular keystroke to terminate the process. We discuss these
commands and keystrokes later in the chapter. The primary states that a process can be in
are shown in the state diagram in Figure 10.1.

The waiting state encompasses several states; we use the term here to keep the diagram
simple. Some of the states belonging to the waiting state are listed under the oval repre-
senting the state. Table 10.1 gives a brief description of these UNIX process states. In the
interest of brevity, and in keeping with the scope of this book, the other states that a UNIX
process can be in are not included in this discussion.

10.4 EXECUTION OF SHELL COMMANDS
A shell command can be internal (built in) or external. An internal/built-in command is
one whose code is part of the shell process. Some of the commonly used internal com-
mands are . (dot command), bg, cd, continue, echo, exec, exit, export, fg,
jobs, pwd, read, readonly, return, set, shift, test, times, trap, umask,
unset, and wait. An external command is one whose code is in a file; contents of the file
can be binary code or a shell script. Some of the commonly used external commands are
grep, more, cat, mkdir, rmdir, ls, sort, ftp, telnet, lp, and ps. A shell creates a
new process to execute a command. While the command process executes, the shell waits
for it to finish. In this section, we describe how a shell (or any process) creates another

Processes    ◾    341

process and executes external commands. You can use the type command to determine
if your command is built in or external, as shown in the following session. Under Bash,
you can use the –a option to display all the locations of a command, as follows. You can
see that the bg command is built in but also has an external version. However, by default,
the built-in version is executed. The Bourne shell may be invoked through two executables
available at two different places in your file system structure.

Swapped

Ready Running

Waiting Zombie

Pending I/O
Child to exit

Sleeping

⋅
⋅
⋅

FIGURE 10.1 UNIX process state diagram.

TABLE 10.1 A Brief Description of the UNIX Process States

State Description

Ready The process is ready to run but does not have the CPU. Based on the scheduling
algorithm, the scheduler decided to give the CPU to another process. Several processes
can be in this state, but on a machine with a single CPU, only one can be executing/
running (i.e., using the CPU).

Running The process is actually running (i.e., using the CPU).
Waiting The process is waiting for an event. Possible events are an I/O operation to complete

(e.g., disk/terminal read or write), a child process to complete (the parent is waiting for
one or more of its children to exit), or the process itself is waiting to be reawakened
having been put to sleep.

Swapped The process is ready to run, but it has been temporarily put on the disk (on the swap
space); perhaps it needs more memory and there is not enough available at this time.

Zombie A dying process is said to be in a zombie state. Usually, when the parent of a process
terminates before it executes the exit call, it becomes a zombie process. The process
finishes and finds that the parent is not waiting. The zombie processes are finished for
all practical purposes and do not reside in the memory, but they still have some kernel
resources allocated to them and cannot be taken out of the system. All zombies and
their live children are eventually adopted by the granddaddy, the init process, which
removes them from the system.

342 ◾ UNIX: The Textbook, Third Edition

$ type bg
bg is a shell builtin
$ type -a bg
bg is a shell builtin
bg is /usr/bin/bg
$ type -a sh
sh is /usr/bin/sh
sh is /usr/sbin/sh
$

A UNIX process can create another process by using the fork() system call, which
creates an exact main memory copy of the original process (i.e., the process that calls
fork()). Both processes continue execution, starting with the statement that follows the
fork. The forking process is known as the parent process, and the created (forked) process
is called the child process, as shown in Figure 10.2. Here, we show a Bourne shell that has
created a child process (another Bourne shell). We discuss the use of fork() and other
system calls needed for the creation of processes and interprocess communication (IPC) in
Chapters 18–21.

For executing an external binary command, a mechanism is needed that allows the
child process to become the command to be executed. The UNIX system call exec() can
be used to do exactly that, allowing a process to overwrite itself with the executable code
for another command. A shell uses the fork() and exec() calls in tandem to execute an
external binary command. Figure 10.3 shows the sequence of events for the execution of an
external command sort, whose code is in a binary file, /usr/bin/sort.

The execution of a shell script (a series of shell commands in a file; see Chapters 12–15)
is slightly different from the execution of a binary command/file. In the case of a shell
script, the current shell creates a child shell and lets the child shell execute commands in
the script file, one by one. Each command in the script file is executed in the same way
that commands from the keyboard are; that is, the child shell creates a child for every

Parent

fork

Child

sh

sh

FIGURE 10.2 Process creation via the fork system call.

Processes    ◾    343

command that it executes. While the child shell is executing commands in the script file,
the parent shell waits for the child to terminate. When the child shell hits the eof marker
in the script file, it terminates. The only purpose of the child shell, like any other shell,
is to execute commands, and eof means “no more commands.” When the child shell
terminates, the parent shell comes out of the waiting state and resumes execution. This
sequence of events is shown in Figure 10.4, which also shows the execution of a find
command in the script file.

Parent

Step 1: Shell uses fork to
 create a child

Step 2: Child uses exec to overwrite itself with
 the executable file corresponding to
 the sort command.

Step 3: sort starts execution while “sh” waits
 for the command to finish. When sort
 finishes, the child process terminates
 and “sh” starts execution again, waiting
 for the user to give it another command
 to execute.

fork fork

exec sort

Child

sh Parentsh

Parentsh

sh

sort

sh

FIGURE 10.3 Steps for execution of a binary program sort by a UNIX shell.

Parent Parent Parent

�ese fork and exec
commands are repeated for

all external commands;
internal commands are

executed by the ‘child’ shell.

Step 1 Step 2 Step 3

sh

sh

sh sh

sh

find

Child Child

exec find

Script
file

fork fork

FIGURE 10.4 Steps for execution of a shell script by a UNIX shell.

344 ◾ UNIX: The Textbook, Third Edition

Unless otherwise specified in the file containing the shell script, the child shell has the
type of the parent shell. That is, if the parent is a Bourne shell, the child is also a Bourne
shell. Thus, by default the shell script is executed by a “copy” of the parent shell. However,
a shell script written for any shell (C, TC, Bourne, Bash, Korn, etc.) can be executed
regardless of the type of the current shell. To do so, simply specify the type of the child
shell under which the script should be executed in the first line of the file containing the
shell script as #!full-path- name-of-the-shell. For example, the following line
dictates that the child shell is C shell, so the script following this line is executed under
the C shell.

#!/bin/csh

Also, you can execute commands in another shell by running that shell as a child of the
current shell, executing commands under it, and terminating the shell. A child shell is also
called a subshell. Recall that the commands to run various shells are sh for the Bourne
shell, csh for the C shell, tcsh for the TC shell, ksh for the Korn shell, and bash for the
Bourne Again shell. To start a new shell process, simply run the command corresponding
to the shell you want to run.

In the following session, the current shell is the C shell and the Bourne shell runs as
its child. The echo command is executed under the Bourne shell. Then a Bash shell is
started, and the echo command is executed under it. The ps command shows the three
shells running. Finally, both the Bash and Bourne shells are terminated when <Ctrl+D>
is pressed in succession, and control goes back to the original shell, the C shell. The first
<Ctrl+D> terminates the Bash shell, giving control back to the Bourne shell. You can
also exit a shell running the exit command. Figure 10.5 illustrates all the steps involved,
showing the parent–child relationship between processes.

csh csh

sh sh sh sh sh

echo

echo echo
under
Bash shell

echo
under
bourne
shell

Bash
shell

Bash
shell

Bash
shell

echo
under
Bash shell

ps

bash bash bash

csh csh csh csh csh

Bourne
shell

Bourne
shell

Login
shell

<Ctrl+D>

<Ctrl+D>

FIGURE 10.5 Execution of commands under the child shells (also called subshells).

Processes    ◾    345

% ps
 PID TT STAT TIME COMMAND
44387 5 Ss 0:00.97 -csh (csh)
45878 5 R+ 0:00.01 ps
% /bin/sh
$ echo "This is Bourne shell."
This is Bourne shell.
$ bash
[sarwar@pcbsd-srv ~]$ echo "This is Bourne Again SHell."
This is Bourne Again SHell.
[sarwar@pcbsd-srv ~]$ ps
 PID TT STAT TIME COMMAND
44387 5 Is 0:00.97 -csh (csh)
45910 5 I 0:00.02 /bin/sh
45935 5 S 0:00.07 bash
46008 5 R+ 0:00.01 ps
[sarwar@pcbsd-srv ~]$ <Ctrl+D>
$ <Ctrl+D>
%

10.5 PROCESS ATTRIBUTES
Every UNIX process has several attributes, including owner ID (called user ID [UID] in
UNIX jargon), process ID (PID), PID of the parent process (PPID), process name, process
state, command executed to start the process, priority of the process, process start time,
percentage of the CPU time consumed by the process, percentage of the main memory
consumed by the process, size of the process in virtual memory, size of the process cur-
rently in main memory, state of the process, the event a process is waiting for (in case it is
not running), and the length of time the process has been running. From the user’s and
programmer’s point of view, one of the most useful of these attributes is the PID, which is
used as a parameter in several process control commands discussed later in this chapter.

UNIX provides several tools that allow you to monitor the attributes of the processes
currently running on your system, change the states of your processes, and perform vari-
ous operations on them, including stopping/restarting them, sending them specific mes-
sages, having them communicate with each other, and terminating them. In this chapter,
we will discuss some of the commands and tools that allow us to monitor the attributes of
processes statically and dynamically, as well as perform various operations on processes
just stated.

10.5.1 Static Display of Process Attributes

The ps command can be used to view a snapshot of the attributes of processes currently
in the system. PC-BSD and Solaris have their own versions of this command with several
options. However, several of these commands are common. First, we discuss the PC-BSD
version of the command in detail and then discuss the additional features of the Solaris
version. The following is a brief description of the PC-BSD version of the ps command.

346 ◾ UNIX: The Textbook, Third Edition

SYNTAX
ps [options]

Purpose: Report static (one shot) information about process status/attributes
Output: A header line and a snapshot of the attributes of processes running on the system
Commonly used options/features:

-G Display information about processes running under user groups specified in the
comma-separated list of group IDs; no space before or after the comma

-H Display information about threads visible to the UNIX kernel
-L Display the list of keywords that may be used with the –O or –o option
-O Display information about the comma- or space-separated keywords after the PID

field in the default output. You can assign the header of your choice for a keyword
by putting an = after the keyword, followed by the header value.

-U Display information about the processes for the users specified in the comma-
separated list of usernames; no spaces before or after the commas

-a Display information about your and other user’s processes
-c Display only the name of the executable file and not the whole pathname
-d Display the hierarchical structure for processes, showing parent–child and sibling

relationships between processes using indentation
-e Display the environmental information for each process
-j Display for each process information about the following keywords: user, pid,

ppid, pgid, sid, jobc, state, tt, time, and command.
-l Display for each process information about the following keywords: uid, pid,

ppid, cpu, pri, nice, vsz, rss, mwchan, state, tt, time, and command.
-m Display information sorted according to memory usage (highest usage first)
-o Similar to –O, except that it does not show the default fields and you can change

header texts for multiple using multiple –o options. If no headers are specified with
keywords, the header line is not displayed.

-p Display information about the processes specified in the list of PIDs
-r Display information sorted according to CPU usage (highest usage first)
-u Display for each process information about the following keywords: user, pid,

%cpu, %mem, vsz, rss, tt, state, start, time, and command.
-v Display for each process information about the following keywords: user,

pid, state, time, sl, re, pagein, vsz, rss, lim, tsiz, %cpu, %mem, and
command.

-x Display information about processes that do not have controlling terminals (includ-
ing daemons)

The output of the ps command is sorted first by the terminals associated with processes
and then by their PIDs. You can change the default sort order by using different options. If
multiple such options are specified, the command exercises the last option. The shell ses-
sions in this section demonstrate the use of the ps command with and without options.
We ran all of them on a PC-BSD machine running the C shell.

The output of the PC-BSD version of the ps command, as shown in the following ses-
sion, displays five fields about processes, whose attributes are displayed one per line: pro-
cess ID (PID), the terminal the process is attached to (TT), process state (STAT), the CPU

Processes    ◾    347

time the process has consumed (TIME), and the command used by the user to run the pro-
cess (COMMAND). The output shows that two processes are attached to terminal 1: -csh
(the login C shell) and ps, and two are attached to terminal 2: -csh (the login C shell) and
vim text editor. The - in front of a shell, as in -csh, indicates that it is the login shell. The
PIDs of the processes attached to terminal 1, -csh and ps, are 37838 and 41626, and have
run for 19 seconds and 1 second each, respectively. Similarly, the PIDs of the processes
running on terminal 2, -csh and vim, are 41496 and 41619, and each has run for 27 and
19 seconds each, respectively.

% ps
 PID TT STAT TIME COMMAND
37838 1 Ss 0:00.19 -csh (csh)
41626 1 R+ 0:00.01 ps
41496 2 Ss 0:00.27 -csh (csh)
41619 2 S+ 0:00.25 vim canleave
%

The state of a process is displayed as a character string—for example, Ss, S+, and R+ in
the previous session. Table 10.2 explains the various characters in the string listed under
the process state (STAT) column.

Thus, the process with the Ss state is a session leader process that is currently sleeping—
that is, waiting for less than 20 seconds. Similarly, the process with the S+ state is a fore-
ground process that has been waiting for less than 20 seconds. Finally, the process with the

TABLE 10.2 A Brief Description of the UNIX Process States Displayed by the ps Command under
PC-BSD

First Character Description
Additional
Character Description

D Process on a disk or other short-
term interruptible wait

+ Foreground process

I Idle process—waiting for > 20 s < Process has raised scheduling
priority

L Process waiting for a lock E Exiting process
R Runnable process waiting to get

CPU
J Process in a “jail”

S Sleeping process—waiting for < 20 s L Process locked in core—for
example, for raw I/O

T Stopped/suspended process N Process has reduced CPU-
scheduling priority

W Idle interrupt process/thread s Session leader process—for
example, login shell

Z Zombie process V Suspended during a vfork(2)
W Swapped-out process
X Process is being traced or

debugged

348 ◾ UNIX: The Textbook, Third Edition

R+ state is a foreground process that is ready to run and is waiting to be scheduled to use
the CPU. We discuss foreground and background processes in detail in Section 10.6.

The ps –u command shows the long listing of all the processes belonging to the user
running the command. VSZ is the virtual size of the process and RSS (resident set size)
is the real size of the process in memory. Both sizes are in kilobytes. Note that sarwar has
logged in on five different terminals with five login C shells running.

% ps -u
USER PID %CPU %MEM VSZ RSS TT STAT STARTED TIME COMMAND
sarwar 37838 0.0 0.1 25548 3900 1 Is+ 6:15AM 0:00.20 -csh
(csh)
sarwar 41937 0.0 0.1 25548 3900 3 Is+ 7:06AM 0:00.20 -csh
(csh)
sarwar 41985 0.0 0.1 25548 3576 4 Is+ 7:07AM 0:00.10 -csh
(csh)
sarwar 44387 0.0 0.1 25548 3940 5 Ss 7:38AM 0:00.50 -csh
(csh)
sarwar 44716 0.0 0.1 16592 2304 5 R+ 7:41AM 0:00.02 ps -u
sarwar 44428 0.0 0.1 25548 3900 6 Is 7:38AM 0:00.18 -csh
(csh)
sarwar 44675 0.0 0.1 16992 2800 6 I+ 7:40AM 0:00.06 /bin/sh
/usr/bin/man
sarwar 44688 0.0 0.1 14788 2632 6 S+ 7:40AM 0:00.03 more
%

You can specify a comma-separated list of UIDs to display the same information about
the processes belonging to them, as in ps –u 1004,1009,1020. As a reminder, UID is the
third field of a line in the /etc/passwd file. Note that the state of the first three processes is
Is+, which means that they are foreground idle session leader processes. In other words,
they are foreground login shell processes that have not used the CPU for over 20 seconds.

You can use the -U option on PC-BSD and Solaris to display the default status of all
the processes belonging to the users whose comma-separated usernames are specified
after the option. In the following example, all the processes belonging to the user sar-
war are displayed. The ps –U john,davis,goldman,ibraheem command displays
the default status of all the processes belonging to the users john, davis, goldman, and
ibraheem.

% ps -U sarwar
 PID TT STAT TIME COMMAND
 4964 - I 0:00.04 sshd: sarwar@pts/1 (sshd)
 8980 - S 0:00.29 sshd: sarwar@pts/2 (sshd)
 4967 1 Is+ 0:00.17 -csh (csh)
 8983 2 Ss 0:00.37 -csh (csh)
 13011 2 R+ 0:00.02 ps -U sarwar
%

Processes    ◾    349

You can also use the comma-separated list of UIDs of the users to display the same
information. Thus, the ps -U 1004 command displays the default status of all the pro-
cesses belonging to the user with UID 1004. Similarly, the ps –U 1004,1005,1001 com-
mand displays the default status of all the processes belonging to the users with UIDs 1001,
1004, and 1005.

You can use the –a and -x options to display information about your processes,
processes belonging to other users, system processes, and processes not attached to
any controlling terminals, such as daemons. You can determine the total number of
processes, including all system processes and daemons, running on a PC-BSD system
by using the ps –ax | wc –l command. The output contains a header line and a line
each for the ps –ax and wc –l processes. Thus, 130 processes are currently running on
our PC-BSD system if we do not count the two processes created due to the command
line itself.

% ps -ax | wc -l
 133
%

You can determine the number of processes running on a Solaris machine by using the
ps -e | wc -l command.

You can use the –H option to display the kernel-visible threads, known as lightweight
processes (LWPs) in Solaris, in the processes running on your system. The output of the
ps –axH | wc –l command shows 506 as its output. Out of these 506 lines, one line is
for the output header and one line each for the ps –axH and wc –l commands each. Thus,
503 kernel-visible threads are running in the 130 processes that are currently running on
the system.

% ps -axH | wc -l
 506
%

Whereas the –j, -l, -u, and -v options allow you to display the values of predeter-
mined keywords in a known order and the standard header information, the –O and
–o options allow you to display customized output: values of the keywords of your
choice, in the order of your liking, and with the header of your taste. In the following
session, we show the use of the ps command with these options. The keywords dsiz,
ssiz, and tsiz are, respectively, the sizes (in kilobytes) of the data, stack, and text/
code segments of the memory image of the process. wchan is the event a process is
waiting for. The last command in the sessions shows how you can customize the header
of the output.

% ps -O dsiz,ssiz,tsiz,vsz,rss,wchan
 PID DSIZ SSIZ TSIZ VSZ RSS WCHAN TT STAT TIME COMMAND

350 ◾ UNIX: The Textbook, Third Edition

34860 172 128 348 25548 3940 pause 1 Ss 0:00.28 -csh
(csh)
35024 16 128 32 16592 2304 - 1 R+ 0:00.00 ps -O
dsiz,ssiz,tsiz,vsz
29019 172 128 348 25548 3976 ttyin 4 Is+ 0:00.31 -csh (csh)
% ps -o dsiz,ssiz,tsiz,lwp,nlwp,wchan,pcpu,pmem,flags,args
DSIZ SSIZ TSIZ LWP NLWP WCHAN %CPU %MEM F COMMAND
 172 128 348 100733 1 pause 0.0 0.1 10004002 -csh (csh)
 16 128 32 100622 1 - 0.0 0.1 10004002 ps -o
dsiz,ssiz,tsiz,lwp,nl
 172 128 348 100690 1 ttyin 0.0 0.1 10004002 -csh (csh)
% ps -o user,pid=SON -o ppid=MOM -o args
USER SON MOM COMMAND
sarwar 34860 34857 -csh (csh)
sarwar 35281 34860 ps -o user,pid=SON -o ppid=MOM -o args
sarwar 29019 29016 -csh (csh)
%

Some of the fields and the corresponding keywords are obvious and we have discussed
a few of them earlier in this chapter. However, some keywords, which we will discuss now,
are new and not obvious. You can display all keywords by using the ps –L command, as
shown:

% ps -L
%cpu %mem acflag acflg args blocked caught class comm command cow
cpu cputime dsiz egid egroup emul etime etimes euid f fib flags
gid group ignored inblk inblock jid jobc ktrace label lim
lockname login logname lstart lwp majflt minflt msgrcv msgsnd
mwchan ni nice nivcsw nlwp nsignals nsigs nswap nvcsw nwchan oublk
oublock paddr pagein pcpu pending pgid pid pmem ppid pri re rgid
rgroup rss rtprio ruid ruser sid sig sigcatch sigignore sigmask sl
ssiz start stat state svgid svuid systime tdaddr tdev tdnam time
tpgid tsid tsiz tt tty ucomm uid upr uprocp user usertime usrpri
vsize vsz wchan xstat
%

Table 10.3 shows some of the commonly used keywords and their meanings. Note that
these fields are displayed in uppercase in the header of the output of the ps command (e.g.,
COMMAND for command and PID for pid).

The data, stack, and text/code segments are part of the memory image of a process.
Three additional sections of the memory image of a UNIX process are: shared libraries,
heap, and environment. Figure 10.6 shows the memory image of a UNIX process. The
environment consists of command line arguments and five shell variables (HOME, PATH,
SHELL, USER, and LOGNAME), accessible through pointers to two arrays of pointers to
null-terminated strings. The stack grows from high memory to low memory and the heap

Processes    ◾    351

TABLE 10.3 A Brief Description of the Commonly Displayed Fields/Keywords of the ps
Command

Field Description Field Description

command Command executed to create
process

ppid Parent’s process ID

dsiz Data size in kilobytes pri Scheduling priority
cpu Short-term CPU usage for

scheduling
rss Real process size (kilobytes) in

memory
flags Flags indicating process

states/events
sid Session ID; PID of the session

leader
lwp Lightweight process (thread)

ID
ssiz Stack size in kilobytes

majflt Total page faults (same as
PAGEIN)

started Time the process was started

mwchan Event or lock of the locked/
blocked process

stat Process state

nlwp Number of threads tied to an
LWP

time Time the process has executed
for

pcpu CPU utilization up to one
previous minute

tsiz Text (code) size in kilobytes

pgid Process group ID tt Terminal the process is attached
to

pid Process ID vsz Virtual size of the process in
kilobytes

pmem Percentage of memory used
by process

wchan Event (or address) on which a
process waits

High memory
environment

Command line arguments and
environment variables

Stack segment Stack segment

Shared libraries

Heap

Data segment
Uninititialized data (bss)

Initialized data

Text/code segment

Low memory

Text/code segment

FIGURE 10.6 Memory image of a UNIX process.

352 ◾ UNIX: The Textbook, Third Edition

grows from low memory to high memory. Text and initialized data portions are read from
the program file by the exec(2) system call, and the uninitialized data (bss) section is
initialized to zero, also by exec(2).

You can also use the size command to display the sizes (in bytes) of text/code, initial-
ized data, and uninitialized data (bss) for an executable program. The following are the
sample runs of the command on PC-BSD and Solaris, respectively, with /usr/bin/sort as
the argument. In both cases, the fourth number is the total size of the text and data sec-
tions (i.e., the sum of first three numbers) in decimal. For the PC-BSD version, the fifth
number is the total size in hexadecimal.

% size /usr/bin/sort
 text data bss dec hexfilename
 52748 2656 468860092 eabc/usr/bin/sort
%
$ size /usr/bin/sort
69657 + 1584 + 44012 = 115253
$

The following syntax box gives a brief description of the Solaris version of the ps
command.

SYNTAX
ps [options]

Commonly used display options/features:
-G Display information about processes with the group IDs (GIDs) given in

the comma-separated list of GIDs; no space before or after the comma
-L Display processes with the number of LWPs (i.e., threads) in each process
-P Display the number of the processor (PSR) on which an LWP is bound

(i.e., executed on)
-c Display information about processes according to their priorities in the

kernel and user groups; the sched process is always listed at the top
-d Display all processes, except the session leaders (the login shells for user

processes and the sched process for the kernel processes)
-e Same as the –A option: display information about all processes, including

session leaders
-f Display a full listing, including process owner ID (UID), process ID (PID),

parent process ID (PPID), C (obsolete), process start time (STIME), TTY,
time executed for (TIME), full command line (CMD)

-l Display a long listing: state (S), UID, PID, PPID, C (obsolete), PRI, NI,
ADDR, SZ, WCHAN, TTY, TIME, CMD

-t Display a list of processes associated with a terminal; for example, con-
sole, pst/4, term/a, and so on

-u or -U Display a list of processes belonging to UIDs or lognames listed in the
comma-separated list

Processes    ◾    353

The Solaris version of the ps command supports the following options of the PC-BSD
version of the command: S, a, e, r, v, w, and x. However, you invoke them without using
a hyphen before them—for example, ps r. Similarly, the –o option also works under
Solaris as it does under PC-BSD, but not with all the keywords listed in Table 10.3 or those
displayed by the ps –L command on PC-BSD. It works with the following keywords, most
of which are common with the ps version on PC-BSD: user, ruser, group, rgroup,
uid, ruid, gid, rgid, pid, ppid, pgid, sid, tasked, ctid, pri, opri, pcpu,
pmem, vsz, rss, osz, nice, class, time, etime, stime, zone, zoneid, f, s, c,
lwp, nlwp, psr, tty, addr, wchan, fname, comm, args, projid, project, pset,
and lgrp.

The output of the ps command on Solaris displays four fields, as shown, where pts/1
is pseudo terminal 1:

$ ps
 PID TTY TIME CMD
 7243 pts/1 0:00 bash
 7247 pts/1 0:00 ps
$

The sample runs in the following session show the use of the ps command with various
options. Note that the output of the ps –l command includes the obsolete fields F and
ADDR, and the old-style (obsolete) PRI (known as opri in the list of keywords shown in
the previous paragraph), where lower PRI value means higher priority. You can use the –y
and –l options together to exclude the columns for the obsolete fields F and ADDR, include
the RSS column, and display the PRI value in vogue.

$ ps -l
 F S UID PID PPID C PRI NI ADDR SZ WCHAN TTY TIME CMD
 0 O 1007 9784 9624 0 40 20 ? 2333 pts/2 0:00 ps
 0 S 1007 9624 9621 0 50 20 ? 2546 ? pts/2 0:00 bash
$ ps -ly
 S UID PID PPID C PRI NI RSS SZ WCHAN TTY TIME CMD
 S 1007 14081 14080 0 50 20 2284 10188 ? pts/5 0:00 bash
 O 1007 14116 14081 0 40 20 1472 9332 pts/5 0:00 ps
$ pagesize
4096
$

The first column, S, shows the state of the process. Process states in Solaris are briefly
described in Table 10.4, along with some fields that are different from the fields displayed
by the ps command on PC-BSD. Note that the ps command is in the running state and
bash is waiting for an event; the event in this case is the termination of its child (i.e.,
the ps command running in foreground). NI shows the nice value of the process; the

354 ◾ UNIX: The Textbook, Third Edition

higher the value, the lower the priority of the process. You can display the priorities of
processes by using the –c option. The SZ field shows the size (in pages) of the process in
virtual memory. You can display the page size on your system by running the pagesize
command. As shown previously, the page size on our system is 4096 (i.e., 4k) bytes. We
have discussed the rest of the fields in the output of the ps –ly command earlier in this
section.

You can appreciate the difference between the old-style and new-style displays of priori-
ties by running the following command. The first column for PRI is for the new style and
the second column is for the obsolete PRI. Note the priority values displayed for the two
processes in the obsolete and new styles.

$ ps -c -o pid,pri,opri,args
 PID PRI PRI COMMAND
20041 59 40 ps -c -o pid,pri,opri,args
20033 49 50 -bash
$

You can use the –t option to display processes associated with a particular terminal, as
shown in the following session. The ps –eLP command displays all the LWPs running in

TABLE 10.4 Brief Description of Some Fields in the Output of the ps Command on
Solaris

Field Meaning

CLS Scheduling class:
 FSS Fair share scheduling
 FX Fixed
 IA Interactive
 RT Real-time
 SYS System
 SDC System duty cycle
 TS Time-sharing

LTIME Execution time for a reported LWP
NI Nice value: The nice value of a process; another parameter used in the

computation of a process’s priority value
S Process state:

 O Currently running on a CPU (or a core)
 R Ready to run but not scheduled yet
 S Sleeping for an event to complete
 T Stopped: background, suspended, or being traced
 W Waiting for the CPU usage to drop below the upper water mark
 Z Zombie process (finished/terminated but is still using some

kernel resources)
STIME Process start time
SZ Size of the process in virtual memory in pages. You can use the

pagesize command to determine the page size on your system.
TTY Terminal: Shows the name of the terminal a process is attached to

Processes    ◾    355

each process as well as the CPU (shown under PSR) on which a thread runs, CPU 0 in our
case. Note that sched has only one thread and the zpool-rp process that processes all
ZFS requests has 141 kernel-visible threads running on our system, as shown in the output
of the ps -eL | grep "zpool" | wc –l command. The output of the ps –eL |
wc –l command shows that 416 LWPs are currently running on the system. The last com-
mand in the session shows how you can use the –o option to display various attributes
about all the processes running on the system.

$ ps -t pts/2
 PID TTY TIME CMD
 9624 pts/2 0:00 bash
$ ps -eLP
 PID LWP PSR TTY LTIME CMD
 0 1 0 ? 0:01 sched
 5 1 0 ? 0:00 zpool-rp
 5 2 0 ? 0:00 zpool-rp
 5 3 0 ? 0:00 zpool-rp
 5 4 0 ? 0:00 zpool-rp
 5 5 0 ? 0:00 zpool-rp
...
14079 1 0 ? 0:00 sshd
14069 1 0 pts/3 0:00 man
14076 1 0 pts/3 0:00 less
14105 1 0 pts/5 0:00 ps
$ ps -eL | grep "zpool" | wc -l
 141
$ ps -eL | wc –l
 416
$ ps -e -o user,uid,pid,ppid,pri,nice,vsz,rss,nlwp,args
 USER UID PID PPID PRI NI VSZ RSS NLWP COMMAND
 root 0 0 0 96 SY 0 0 1 sched
 root 0 5 0 99 SD 0 0 141 zpool-rpool
 root 0 6 0 99 SD 0 0 1 kmem_task
 root 0 1 0 59 20 3084 1964 1 /usr/sbin/init
 root 0 2 0 98 SY 0 0 2 pageout
 root 0 3 0 60 SY 0 0 1 fsflush
 root 0 7 0 60 SY 0 0 1 intrd
 root 0 8 0 60 SY 0 0 5 vmtasks
 root 0 9 0 99 SD 0 0 1 postwaittq
...
 sarwar 1007 9624 9621 49 20 10188 2300 1 -bash
 root 0 9620 516 59 20 16660 3892 1 /usr/lib/ssh/sshd
 sarwar 1007 9523 9522 59 20 19548 5420 1 /usr/lib/ssh/sshd
 sarwar 1007 9838 9624 59 20 9460 1556 1 ps -e -o
$

356 ◾ UNIX: The Textbook, Third Edition

In Section 10.2 we discussed briefly how scheduling worked in UNIX SV. Here, we dis-
cuss how scheduling works in PC-BSD and Solaris. In PC-BSD (i.e., FreeBSD), the priority
values of threads range between 0 and 255. Threshold priority is set to 120. Priorities of
user processes in the system are calculated every four clock ticks (typically 40 millisec-
onds) using the following formula:

 priority value threshold priority nice value recent CPU us= + + aage/2() .

Priority value less than threshold priority is set to 120. This calculation causes the priority
of a process to decrease linearly based on recent CPU usage. A digital decay filter (i.e., the
decay function) is applied every second to the recent CPU usage of every process.

Unlike the older versions of the ps and top commands that reported priorities after
subtracting 84 from them, the newer versions of these commands report the priority
values of threads as they are stored in the kernel data structures associated with them.
Table 10.5 shows the priority classes assigned to the different categories of processes/
threads. Higher priority value means lower priority. The ITHD class is for threads that
handle interrupts.

The priorities of the lower-half kernel threads and real-time user threads are fixed and
do not change. Priorities to the kernel threads are assigned in a manner to cause minimum
delays and prevent infinite blocking. Further, the lower-half (interrupt) threads may not
be interrupted (preempted). Thus, the execution of threads executing under these priority
classes may not be interleaved. However, depending on their recent CPU usage, the priori-
ties of user threads may change (increase or decrease) with time in a manner similar to
what has been described in Section 10.2. This means that user-level threads may move up
and down between queues associated with different priorities. For this reason, we say that
the UNIX uses multilevel feedback queue scheduling. Multiple threads in the highest prior-
ity queue are scheduled on an FCFS basis.

CPU scheduling in Solaris works quite differently and there are multiple schedulers
running simultaneously. Globally, there are 170 priority values; 0 is the lowest and 169 is
the highest. Higher priority value means higher priority. Unlike FreeBSD and most other
UNIX systems, every thread, including a kernel thread, is preemptible and a higher prior-
ity thread may preempt a lower priority thread. This allows high-priority real-time threads

TABLE 10.5 Assignment of Priority Ranges and Priority Classes
to Various Categories of Processes/Threads in FreeBSD

Process/Thread Category
Priority
Range Priority Class

Lower-half kernel (interrupt) 0–47 ITHD

Real-time user 48–79 REALTIME

Top-half kernel 80–119 KERN

Time-sharing user 120–223 TIMESHARE

Idle user 224–255 IDLE

Processes    ◾    357

to preempt kernel threads. Thus, in a single-processor system, no kernel or time-sharing
process runs while a runnable real-time process exists in the system. Table 10.6 shows the
priority classes assigned to different categories of processes/threads in Solaris.

In the following in-chapter exercises, you will use the ps command with and without
options to appreciate the command output.

EXERCISE 10.1
Use the ps command to display the status of processes that are running in your current
session. Can you identify your login shell? What is it?

EXERCISE 10.2
Run the command to display the status of all the processes running on your system. What
command did you run? What are their PIDs? What are the PIDs of the parents of all the
processes?

10.5.2 Dynamic Display of Process Attributes

If you want to monitor the CPU activity and attributes of processes in real time, you can
use the top command. It displays the status of the most CPU-intensive processes on the
system, by default, in terms of the following process attributes: PID, owner’s logname,
number of threads in a process, process priority, nice value of the process, size of the pro-
cess in virtual memory, resident part of the process (i.e., current size of the process in the
main memory), process state, amount of time a process has executed for, percentage of
CPU time used by a process, and command name used to invoke the process. On PC-BSD,
the command also displays the CPU number (or the core number) on which a process (or
thread) runs. The top command continues to run until you press <q> or <Q>, and keeps
updating the status every second or so on PC-BSD and every five seconds on Solaris. The
periodic update time can be specified through a command line option when the top com-
mand is executed or through an interactive command while top runs. The number of
processes whose status is displayed depends on the size of the display screen or window
size on a GUI-based system. On smart displays or windows, it is usually 15–30 lines, one
per process.

The command also displays several other important system statistics in a short header,
comprising 5–8 lines, displayed before the statistics of the processes and/or threads. The
header information depends on the UNIX variant on which the command runs. The

TABLE 10.6 Assignment of Priority Ranges and Priority Classes to Various Categories
of Processes/Threads in Solaris

Process/Thread Category Priority Range Priority Class

Lower-half kernel (interrupt) 160+
Real-time 100–159 RT

System/kernel 60–99 SYS

Interactive, time-sharing, fixed, fair share 0–59 IA, TS, FX, FSS

358 ◾ UNIX: The Textbook, Third Edition

common information in the headers on PC-BSD and Solaris includes load average, time
(days+hours:minutes:seconds) the system has been up and running, current time, num-
ber of processes on the system, number of processes sleeping, number of zombie pro-
cesses, CPU utilization (percentages of idle time, user time, kernel/system time, and
interrupt-handling time), utilization of user area in the main memory (total and free),
and swap space (total and free). The Solaris version additionally displays the following
numbers on a per-second basis: context switches, traps, interrupts, system calls, page
faults, memory (in kilobytes) swapped in and out, and the number of children processes
created through the fork(2) and vfork(2) system calls (discussed in Chapter 19).
The PC-BSD version also displays the last-used PID and the virtual memory (demand
paging) information, including the number of most frequently used (MFU) and least
recently used (LRU) pages. The header of the top command on Mac OS X (Darwin)
also includes information about the resident (in-memory) shared libraries, page faults,
incoming and outgoing network traffic, and disk read/write operations. Table 10.7 shows
the snapshots of the header of the top command on PC-BSD, Solaris, and Mac OS X
(Darwin).

Most of the features of the top command can be selected by an interactive command
while top runs. The following syntax box and Table 10.8 give a brief description of the
top command’s interactive keystrokes on PC-BSD.

TABLE 10.7 Headers of the top Command for PC-BSD and Solaris

PC-BSD Version

last pid: 68271; load averages: 0.05, 0.18, 0.22 up
44+04:02:01 13:45:14
100 processes: 1 running, 98 sleeping, 1 zombie
CPU: 0.0% user, 0.0% nice, 0.3% system, 0.1% interrupt, 99.6% idle
Mem: 32M Active, 671M Inact, 1776M Wired, 1423M Free
ARC: 1232M Total, 465M MFU, 342M MRU, 16K Anon, 142M Header, 283M Other
Swap: 2048M Total, 2048M Free

Solaris Version

load averages: 0.00, 0.00, 0.00; up 4+05:56:55 18:51:51
56 processes: 55 sleeping, 1 on cpu
CPU states: 99.9% idle, 0.0% user, 0.1% kernel, 0.0% iowait, 0.0% swap
Kernel: 222 ctxsw, 523 intr, 51 syscall
Memory: 4060M phys mem, 2980M free mem, 1024M total swap, 1024M free swap

MacOS X (Linux Darwin) Version

Processes: 75 total, 2 running, 73 sleeping, 372 threads 13:50:38
Load Avg: 0.26, 0.23, 0.18 CPU usage: 0.97% user, 1.45% sys, 97.57% idle
SharedLibs: 4164K resident, 15M data, 0B linkedit.
MemRegions: 8959 total, 680M resident, 21M private, 439M shared.
PhysMem: 1220M wired, 965M active, 1142M inactive, 3327M used, 4863M free.
VM: 158G vsize, 1043M framework vsize, 127404(0) pageins, 0(0) pageouts.
Networks: packets: 21688/7786K in, 14229/3289K out.
Disks: 68678/2474M read, 26190/2661M written.

Processes    ◾    359

SYNTAX
top [options]

Purpose: Display and periodically update information about processes currently running
on the system

Output: The various attributes of processes currently running on the system, periodically
updated

Commonly used options/features:
 N Display status of N processes
-H Display statistics for each thread of a multithreaded process, one line

per thread
-I Do not display idle processes
-P Display CPU usage statistics on a per-CPU basis
-S Display/toggle system processes
-U username Display statistics for only those processes belonging to username
-a Display full command line for each process
-o field Sort display by field, a header of a column in output in lowercase—

for example, cpu, pri, res, or time
-s time Update screen every time seconds; default is 5
-t Do not display the top process
-z Do not display idle system processes

The options -a, -H, -I, -P, -S, -t, and -z are really toggles.

The top command on Solaris supports all of the features that its PC-BSD counterpart
supports. In most cases, even the options and interactive keystrokes are the same. In a

TABLE 10.8 Brief Description of the Interactive Keystrokes of
top Under PC-BSD

Command Meaning

H Display/toggle the threads statistics on separate lines
P Display/toggle CPU usage statistics on per-CPU

basis
S Display/toggle system processes
^L Redraw screen
h or ? Display summary of interactive keystrokes
k Kill processes whose space-separated PID-list is

specified
n or # Change the number of processes to display
o Sort the display by cpu, res, size, time, and so

on
r Change the nice value of a list of processes specified

as space-separated PIDs
s Change periodic update time (in seconds)
t Toggle the display of top process
z Toggle the display of idle processes

360 ◾ UNIX: The Textbook, Third Edition

few cases, the interactive command strokes and option letters are different. The following
syntax box and Table 10.9 give a brief description of the interactive keystrokes of the top
command on Solaris.

SYNTAX
top [options]

Commonly used options/features:
 The N, -I, -S, -U, -o, and –s options are common between the PC-BSD and Solaris

versions of top.
-a Display statistics for all processes to the extent possible
-c Display full command line for each process
-t Display statistics for each thread of a multithreaded process, one line per thread

We show some example sessions of the top command primarily under PC-BSD because
most of the options and interactive keystrokes under the two systems are common. Almost
all of the uncommon options and interactive keystrokes use different letters, but provide
the same features. The following is a run of the command without any options. The com-
mand output shows that the system has been up and running for almost 33 days without
crashing. The last PID assigned is 75597. Further, 106 processes are currently in the system,
with one running, 104 sleeping, and one in the zombie state. At the top-right corner is the
current time that is updated when top updates its output. The MySQL daemon (msqld),
owned by the user david, is the second-highest priority process after top. It has 41 threads,
has a size of 207M bytes out of which 43.552M bytes is in the main memory, and has run

TABLE 10.9 Brief Description of the Interactive Keystrokes of top Under
Solaris

Command Meaning

H or t Toggle the display of threads on separate lines.

M Sort the display by memory usage (as if the top –o size
command was executed)

N Sort the display by PID (as if the top –o pid command
was executed)

P Sort the display by CPU usage (as if the top –o cpu
command was executed)

T Sort the display by CPU time (as if the top –o time
command was executed)

h or ? Display summary of interactive keystrokes
k Kill processes whose space-separated PID-list is specified
n or # Change the number of processes to display
r Change the nice value of a list of processes specified as

space-separated PIDs
s Change periodic update time (in seconds)

Processes    ◾    361

for 55 minutes and 45 seconds. You can appreciate other values in the header and attributes
of the processes by using Table 10.10. If you observe the command output for a little while,
you will notice that the processes move up and down as their priorities change. Similarly,
the statistics in the header are also updated periodically.

% top
last pid: 75597; load averages: 0.19, 0.25, 0.22 up
32+21:31:09 07:14:21
106 processes: 1 running, 104 sleeping, 1 zombie
CPU: 0.1% user, 0.0% nice, 2.6% system, 0.2% interrupt, 97.1% idle
Mem: 38M Active, 662M Inact, 1287M Wired, 592K Cache, 1914M Free

TABLE 10.10 Brief Description of Various Fields of the Output of the top Command

Field Meaning

up System up time: Total time (days+hours:minutes:seconds) the system has been running
for without going down

CPU CPU utilization: Percentage of user, nice, system, interrupt processing, and idle times
Mem Physical memory: Active, inactive, wired (including BIO-level data and code), cache, buf

(number of bytes used for BIO-level disk caching), free
ARC Adaptive replacement cache (ARC): A page replacement algorithm with better

performance than the least recently used (LRU) algorithm, MRU (most recently used)
bytes, MFU (most frequently used) bytes, anon (being delivered) bytes, header bytes, and
other miscellaneous bytes

Swap Swap space: Total set aside and free (unused) at this time
PID Process ID: ID of the process
USERNAME Username of the process owner
THR Threads: Number of threads in the process
PRI Priority: Priority value of a process that dictates when the process is scheduled; the smaller

the priority value of a process, the higher its priority
NICE Nice value: The nice value of a process; another parameter used in the computation of a

process’s priority value. The range of this value is –20–19 (20 on Solaris and some other
UNIX systems).

SIZE Size: The size of the memory image of a process (text, data, and stack) in kilobytes
RES Resident memory: Current amount of process memory in kilobytes that resides in physical

memory
STATE Process state: Current state of the process—for example, start, sleep, run (or CPUn, such

as CPU2, on symmetric multiprocessor [SMP] systems), idl, zomb, stop, wait, lock—or
the current event on which the processes waits for—for example, select (waiting for the
select system call to return)

C CPU number: CPU number on which the process runs—for example, 2 means CPU2.
Numbering starts with 0

TIME Process running time: Amount of time (minutes:seconds) a process has run for, excluding
waiting time in the ready queue or waiting for an I/O device

WCPU Weighted CPU usage: Recent CPU utilization, a parameter used in computing a process’s
priority for scheduling purposes

COMMAND Command: Lists the command used to start this process. The -f option is needed to see
the full command in System V UNIX; otherwise, only the last component of the
pathname is displayed.

362 ◾ UNIX: The Textbook, Third Edition

ARC: 931M Total, 374M MFU, 331M MRU, 16K Anon, 139M Header, 86M
 Other
Swap: 2048M Total, 2048M Free

 PID USERNAME THR PRI NICE SIZE RES STATE C TIME
 WCPU COMMAND
75567 sarwar 1 20 0 19772K 2852K CPU2 2 0:00
 0.98% top
2355 david 41 20 0 207M 43552K sbwait 1 55:45
 0.00% mysqld
1445 root 1 20 0 14404K 1812K select 1 51:28
 0.00% powerd
1808 haldaemon 2 20 0 63524K 8148K select 2 29:17
 0.00% hald
1853 root 1 20 0 23264K 2668K select 1 23:43
 0.00% hald-addon-storage
2460 malik 6 39 19 88284K 48720K uwait 0 22:06
 0.00% virtuoso-t
2200 malik 5 52 0 202M 30772K select 1 15:38
 0.00% pc-systemupdatertra
2339 malik 4 49 0 906M 141M select 3 14:12
 0.00% kdeinit4
1496 root 1 27 0 12268K 1720K nanslp 0 9:52
 0.00% swapexd
1442 root 1 20 0 25340K 3652K select 3 7:29
 0.00% ntpd
1742 root 1 20 0 60832K 6068K select 0 1:38
 0.00% sshd
1233 root 1 20 0 14428K 1872K select 1 1:04
 0.00% syslogd
2387 root 2 25 0 192M 28116K select 3 0:55
 0.00% pc-mounttray
2436 malik 1 20 0 449M 68736K select 1 0:41
 0.00% korgac
1745 root 1 20 0 16524K 2072K nanslp 1 0:31
 0.00% cron
1703 root 1 20 0 64328K 13632K select 1 0:29
 0.00% python2.7

You can interact with top while it runs by using various interactive keystrokes. You can
press h to display the various keystrokes that allow you to interact with top. When you
use an interactive command, top prompts you with one or more questions related to the
chore that you want it to perform. For example, when you press n, top prompts you for the
number of processes to display. You input the number and hit the <Enter> key for top to
start displaying information about said number of processes. Similarly, if you want to ter-
minate a process, press k and top prompts you for the PID of the process to be terminated.

Processes    ◾    363

You input the PID of the process to be terminated and hit <Enter> for top to terminate
the process. So, if you want to display the real-time status of the processes owned by the
user bob, you press u and enter the login name of the user. The following output shows the
monitoring of bob’s processes.

...
ARC: 931M Total, 374M MFU, 331M MRU, 16K Anon, 139M Header, 86M
Other
Swap: 2048M Total, 2048M Free
Username to show: bob
 PID USERNAME THR PRI NICE SIZE RES STATE C TIME WCPU
 COMMAND
78800 bob 1 20 0 19772K 2876K CPU0 0 0:01 0.59%
 top
73317 bob 1 36 0 25548K 3904K pause 3 0:00 0.00%
 csh
78671 bob 1 20 0 86100K 6948K select 3 0:00 0.00%
 sshd
73450 bob 1 21 0 14788K 2632K ttyin 2 0:00 0.00%
 more

If you want top to display the CPU statistics on a per-CPU basis, you press P. The fol-
lowing output shows the statistics of the four CPUs (or cores) in your system, CPU0–CPU3.

last pid: 80939; load averages: 0.25, 0.29, 0.28 up
32+22:35:07 08:18:19
116 processes: 1 running, 114 sleeping, 1 zombie
CPU 0: 0.4% user, 0.0% nice, 0.7% system, 0.0% interrupt,
 98.9% idle
CPU 1: 0.4% user, 0.0% nice, 8.8% system, 0.0% interrupt,
 90.8% idle
CPU 2: 0.0% user, 0.0% nice, 0.7% system, 0.4% interrupt,
 98.9% idle
CPU 3: 0.0% user, 0.0% nice, 0.7% system, 0.0% interrupt,
 99.3% idle
Mem: 47M Active, 663M Inact, 1289M Wired, 592K Cache, 1902M Free
ARC: 931M Total, 374M MFU, 331M MRU, 16K Anon, 139M Header, 86M
 Other
Swap: 2048M Total, 2048M Free
<P>
 PID USERNAME THR PRI NICE SIZE RES STATE C TIME WCPU
 COMMAND
80921 sarwar 1 20 0 19772K 3032K CPU1 1 0:00 0.78%
 top
 2355 malik 41 20 0 207M 43552K sbwait 1 55:50 0.00%
 mysqld

364 ◾ UNIX: The Textbook, Third Edition

 1445 root 1 20 0 14404K 1812K select 3 51:33 0.00%
 powerd
 1808 haldaemon 2 20 0 63524K 8148K select 2 29:20 0.00%
 hald
 1853 root 1 20 0 23264K 2668K select 3 23:45 0.00%
 hald-addo
...

In the following session, we show that you can display system processes by pressing S.
Note that the kernel process has 170 kernel-visible threads. The idle process runs when
the system has no process to run. The system comes out of the idle state when an interrupt
occurs—for example, a user presses a key on the keyboard or the clock ticks.

...
ARC: 931M Total, 374M MFU, 331M MRU, 16K Anon, 139M Header, 86M
 Other
Swap: 2048M Total, 2048M Free
<S>
 PID USERNAME THR PRI NICE SIZE RES STATE C TIME WCPU
 COMMAND
 11 root 4 155 ki31 0K 64K CPU3 3 3129.1 400.00%
 idle
80921 sarwar 1 20 0 19772K 3032K CPU0 0 0:03 0.59%
 top
 21 root 1 16 - 0K 16K syncer 3 106:34 0.29%
 syncer
 12 root 24 -84 - 0K 384K WAIT 3 384:39 0.00%
 intr
 0 root 170 8 0 0K 2720K - 3 307:24 0.00%
 kernel
 4 root 5 -8 - 0K 96K tx->tx 2 72:46 0.00%
 zfskern
 14 root 1 -16 - 0K 16K - 2 64:36 0.00%
 rand_harv
...

We now show a sample run of top on a Solaris machine. As you can see, the system has been
up and running for about six days and currently has 59 processes with 1 using the CPU and the
remaining 58 sleeping (i.e., waiting for some event to occur). Further, the following kernel events
happened during the last one second: 215 context switches, 187 traps, 500 interrupts, 342 system
calls, and 149 page faults. The CPU, main memory, and swap space statistics are displayed in a
manner similar to the output of the top command on PC-BSD. Finally, note that NLWP in the
third column of the statistics about currently running processes stands for the number of LWPs,
and is equivalent to THD (threads) shown in the output of the top command on PC-BSD. The
Service Management Facility (SVC) master starter daemon (svc.startd) and the SVC configura-
tion daemon (svc.configd) have 12 and 23 LWPs associated with them, respectively.

Processes    ◾    365

$ top
load averages: 0.00, 0.00, 0.00; up 5+23:32:07 12:27:03
59 processes: 58 sleeping, 1 on cpu
CPU states: 99.9% idle, 0.0% user, 0.2% kernel, 0.0%
 iowait, 0.0% swap
Kernel: 215 ctxsw, 187 trap, 500 intr, 342 syscall, 149 flt
Memory: 4060M phys mem, 2970M free mem, 1024M total swap, 1024M
 free swap
 PID USERNAME NLWP PRI NICE SIZE RES STATE TIME CPU
 COMMAND
 15538 sarwar 1 59 0 10M 2292K sleep 0:00 0.01%
 bash
 15548 sarwar 1 59 0 4208K 2460K cpu/1 0:00 0.01% top
 15537 sarwar 1 59 0 19M 5432K sleep 0:00 0.01%
 sshd
 1215 smmsp 1 59 0 7020K 1472K sleep 0:00 0.00%
 sendmail
 13 root 12 59 0 37M 29M sleep 0:06 0.00%
 svc.startd
 86 root 1 59 0 9760K 1060K sleep 0:03 0.00%
 in.mpathd
 15543 sarwar 1 59 0 19M 5448K sleep 0:00 0.00%
 sshd
 567 root 28 59 0 98M 16M sleep 0:06 0.00% fmd
 47 root 9 59 0 4332K 2792K sleep 0:02 0.00%
 dlmgmtd
 845 root 4 59 0 3228K 1408K sleep 0:02 0.00%
 devchassisd
 15 root 23 59 0 20M 19M sleep 0:18 0.00%
 svc.configd
 76 netadm 6 59 0 4476K 2768K sleep 0:07 0.00%
 ipmgmtd
 213 root 6 59 0 13M 3676K sleep 0:02 0.00%
 devfsadm
 1217 root 1 59 0 7016K 1840K sleep 0:03 0.00%
 sendmail
...

You can use the interactive keystrokes listed in Table 10.8 and Table 10.9 to observe their
effect on the command display.

EXERCISE 10.3
Try the previous sessions for the top command on your system. How many processes are
running on your system? What are the priority and nice values for the highest priority
process?

366 ◾ UNIX: The Textbook, Third Edition

10.6 PROCESS AND JOB CONTROL
UNIX is responsible for several activities related to process and job management, includ-
ing process creation, process termination, running processes in the foreground and back-
ground, suspending and resuming processes, and switching processes from foreground to
background and vice versa. As a UNIX user, you can request the process and job control
tasks by using the shell commands discussed in this section.

10.6.1 Foreground and Background Processes and Related Commands

When you type a command and hit <Enter>, the shell executes the command and returns
by displaying the shell prompt. While your command executes, you do not have access to
your shell and therefore cannot execute any commands (i.e., continue work) until the cur-
rent command finishes and the shell returns. When commands execute in this manner, we
say that they execute in the foreground. By default, every process runs in the foreground,
taking input from the keyboard and sending output to the display screen.

UNIX allows you to run a command so that, while the command executes, you get the
shell prompt back and can submit other commands. This capability is called running
the command in the background. You can run a command in the background by ending
the command with an ampersand (&). Of course, in a graphical environment, you can run
a command in one terminal window in the foreground, open another terminal window,
and use the shell in the new terminal window. However, this activity takes time and con-
sumes additional system resources.

Background processes run at lower priorities compared to their foreground coun-
terparts. Thus, they get to use the CPU only when no higher priority process needs
it. When a background process generates output that is sent to the display screen, the
screen looks garbled, but if you are simultaneously using another application, your
work is not altered in any way. You can get out of the application and then get back into
it to obtain a cleaner screen. Some applications such as vim allow you to redraw the
screen without quitting it. In vim (see Chapter 3), pressing <Ctrl+L> in Command
mode allows you to do so.

The syntaxes for executing commands in the foreground and background are as follows.
Note that no space is needed between the command and & but that you can use space for
clarity.

SYNTAX
command (for foreground execution)
command & (for background execution)

Now consider the following command executed under the Bourne shell. It searches the
whole file structure for a file called foo and stores the pathnames of the directories that
contain this file in the file foo.paths. The error messages are sent to the file /dev/null,
which is the UNIX black hole: whatever goes in never comes out. Note that, for the C shell,

Processes    ◾    367

2> should be replaced with >&. This command may take several minutes, perhaps hours,
depending on the size of the file structure, system load (in terms of the number of users
logged on), and the number of processes running on the system. So if you want to do some
other work on the system while the command executes, you cannot do so because the com-
mand executes in the foreground.

$ find / -name foo -print > foo.paths 2> /dev/null
...
$

The find command is a perfect candidate for background execution because, while it
runs, you have access to the shell and can do other work. Thus, the preceding command
should be executed as follows:

$ find / -name foo -print > foo.paths 2> /dev/null &
[1] 23467
$

The number shown in brackets is returned by the shell and is the job number (also called
job ID) for the process; the other number is the PID of the process. Here, the job number
for the find command is 1 and the PID is 23467. A job is a process that is not running
in the foreground and is accessible only at the terminal with which it is associated. Such
processes typically run in the back or are suspended processes.

The commands that perform tasks that do not involve user intervention and take a long
time to finish are good candidates for background execution. Some examples are sorting
large files (sort command), compiling large programs (cc, gcc, CC, make, etc.), compu-
tationally intensive programs such as one that determines if a large integer number is prime,
and searching a large file structure for one or more files (find command). Commands
that do terminal I/O, such as the vim editor, are, of course, not good candidates for back-
ground execution. The reason is that, when such a command executes in the background,
it stops accepting input from the keyboard. The command needs to be brought back to
the foreground before it can start running again. The fg command allows you to bring a
background process to the foreground.

While running a command in the foreground, you might need to suspend it in
order to go back to the shell, do something under the shell, and then return to the
suspended process. For example, say that you are in the middle of editing a C pro-
gram file with vim and need to compile the program to determine whether some
errors have been corrected. You can save changes to the file, suspend vim, compile the
program to view the results of the compilation, and return to vim. You can suspend
a foreground process by pressing <Ctrl+Z>, move a suspended process to the fore-
ground by using the fg command, and move a suspended process to the background
by using the bg command. So you can suspend vim by pressing <Ctrl+Z>, compile
the program to identify any other errors, and resume the suspended vim session by
using the fg command.

368 ◾ UNIX: The Textbook, Third Edition

SYNTAX
fg [%jobid]
bg [%jobid-list]

Purpose: Syntax 1: Resume execution of the process with job number jobid in the fore-
ground or move background processes to the foreground; a jobid starts with %

Syntax 2: Resume execution of suspended processes/jobs with job numbers in jobid-
list in the background; a jobid starts with %

Commonly used options/features:
% or %+ Current job
%- Previous job
%N Job number N
%Name Job beginning with Name
%?Name Command containing Name

If there are multiple suspended processes, the fg command without an argument
brings the current process into the foreground, and the bg command without an argu-
ment resumes execution of the current process in the background. The job using the CPU
at any particular time is called the current job.

You can use the jobs command to display the job numbers of all suspended (stopped)
and background processes and identify which one is the current process. The current pro-
cess is identified by a + and the previous process by a - in the output of the jobs com-
mand. The following is a brief description of the command.

SYNTAX
jobs [option] [%jobid-list]

Purpose: Display the status of the suspended and background processes specified in
jobid-list; with no list, display the status of current job

Commonly used options/features:
-l Also display PIDs of jobs

In the following sessions, we show the use of the fg, bg, <Ctrl+Z>, and jobs com-
mands. We run the sort and cp commands in the background. The jobID and PID
pairs of these processes are [1] 60149 and [2] 60156 for the sort and cp commands,
respectively. The sort bigdata command is in the currently running process/job, as
shown in the output of the jobs and jobs –l commands, as well as the R state of the
process in the output of the ps command. The cp bigdata bigdata1 command has
been swapped on the disk, as indicated by the D state of the process in the output of the
ps command.

% sort bigdata > bigdata.sorted &
[1] 60149

Processes    ◾    369

% cp bigdata bigdata1 &
[2] 60156
% ps
 PID TT STAT TIME COMMAND
56222 1 Ss 0:00.67 -csh (csh)
60149 1 R 0:07.94 sort bigdata
60156 1 S 0:00.00 -csh (csh)
60157 1 D 0:00.34 cp bigdata bigdata1
60164 1 R+ 0:00.00 ps
% jobs
[1] + Running sort bigdata > bigdata.sorted
[2] - Running cp bigdata bigdata1
% jobs -l
[1] + 60149 Running sort bigdata > bigdata.sorted
[2] - 60156 Running cp bigdata bigdata1
%

In the following session, the first fg command brings the current job into the fore-
ground. The fg %2 command brings job number 2 into the foreground. A string that
uniquely identifies a job can also be used in place of a job number. The string is enclosed
in double quotes if it has spaces in it. The third fg command illustrates this convention.
The jobs –l command, as expected, shows both jobs as suspended. The output of the ps
command shows the state of the cp bigdata bigdata1 command as TW, which means
that the process has been suspended and swapped out to disk temporarily. We use the bg
%1 %2 command to start the background execution of the two suspended processes. We
later confirm this status by using the jobs command, which shows both processes as run-
ning, with the sort process currently using the CPU. We also show that the bg command
without argument puts the current (or the only suspended) process into the background.
The ps –p 60149 command shows that the sort process is in the running state and has
been in the system for 11 minutes and 3.78 seconds.

% fg
sort bigdata > bigdata.sorted
<Ctrl+Z>
Suspended
% fg %2
cp bigdata bigdata1
<Ctrl+Z>
Suspended
% fg %"sort"
sort bigdata > bigdata.sorted
<Ctrl+Z>
Suspended
% jobs -l
[1] + 60149 Suspended sort bigdata > bigdata.sorted
[2] - 60156 Suspended cp bigdata bigdata1

370 ◾ UNIX: The Textbook, Third Edition

% ps
 PID TT STAT TIME COMMAND
56222 1 Ss 0:00.96 -csh (csh)
60149 1 T 0:29.29 sort bigdata
60156 1 TW 0:00.00 -csh (csh)
60157 1 TW 0:00.00 cp bigdata bigdata1
61261 1 R+ 0:00.02 ps
% bg %1 %2
[1] sort bigdata > bigdata.sorted &
[2] cp bigdata bigdata1 &
% jobs
[1] + Running sort bigdata > bigdata.sorted
[2] - Running cp bigdata bigdata1
% fg %1
sort bigdata > bigdata.sorted
<Ctrl+Z>
Suspended
% bg
[1] sort bigdata > bigdata.sorted &
% jobs
[1] + Running sort bigdata > bigdata.sorted
[2] - Running cp bigdata bigdata1
% ps -p 60149
 PID TT STAT TIME COMMAND
60149 2 R 11:03.78 sort bigdata
%

As discussed earlier in this section, we discuss the following session as an additional
example to explain the working of the fg and <Ctrl+Z> commands. The gcc -o lab8
lab8.c command is used to compile the C program in the lab8.c file and put the execut-
able in a file called lab8. Understanding what compilation means is not the point here,
and a fuller discussion of the syntax and semantics of the gcc command is presented in
Chapter 17. Here, we are merely emphasizing that processes that take a long time to start
or those that have executed for a considerable amount of time are usually good candidates
for processes to be suspended. The example of suspending the vim command is presented
only as an illustration. This sequence of events is shown in the following session. Note that
the output of the ps command after vim has been suspended shows the status of vim as T,
which means that vim has been suspended/stopped.

% ps
PID TT STAT TIME COMMAND
587 1 Ss 0:00.17 -csh (csh)
616 1 R+ 0:00.00 ps
% vim lab8.c
#include <stdio.h>
#define SIZE 100

Processes    ◾    371

int main (int argc, char *argv[])
{
...
<Ctrl+Z>
Suspended
% ps
 PID TT STAT TIME COMMAND
 587 1 Ss 0:00.41 -csh (csh)
 812 1 T 0:00.13 vim lab8.c
 1035 1 R+ 0:00.02 ps
% gcc -o lab8 lab8.c
% fg %1
#include <stdio.h>
#define SIZE 100
main (int argc, char *argv[])
{
...
:q!
%

In the following in-chapter exercise, you will practice the creation and management of
foreground and background processes by using the bg, fg, and jobs commands.

EXERCISE 10.4
Run the sessions presented in this section on your system to practice foreground and back-
ground process creation and switching processes from the foreground to the background
(with the bg command) and vice versa (with the fg command). Use the jobs command
to display the job IDs of the active and suspended processes.

10.6.2 UNIX Daemons

Although any process running in the background can be called a daemon, in UNIX jargon a
daemon is a system process running in the background. Daemons are frequently used in UNIX
to offer various types of services to users or running software and handle system adminis-
tration tasks. For example, printing, logging, e-mail, web browsing, remote login via Secure
Shell, file transfer, interaction through social networking sites, and finger services are provided
via daemons. Printing services are provided by the printer daemon lpd. Finger services (see
Chapter 11) are handled by the finger daemon fingerd. The inetd daemon, commonly known
as the UNIX superserver, handles various Internet-related services by spawning the relevant
server daemons at system boot time. Access the /etc/inetd.conf file to view the services offered
by this daemon on your system. This file has one line for every service that inetd offers.

10.6.3 Sequential and Parallel Execution of Commands

You can type multiple commands on one command line for the sequential and/or parallel
execution of these commands. The following is a brief description of the syntax for sequen-
tial execution of commands specified in one command line.

372 ◾ UNIX: The Textbook, Third Edition

SYNTAX
cmd1; cmd2; …; cmdN

Purpose: Execute commands cmd1, cmd2, …, cmdN sequentially as separate processes

Note that the semicolon is used as a command separator and, therefore, does not fol-
low the last command. No spaces are needed before and after a semicolon, but you can
use spaces for clarity. These commands execute one after the other, as though each were
typed on a separate line. In the following session, the date and echo commands execute
sequentially as separate processes. The first session is on PC-BSD running C shell and the
second is on Solaris running Bash. Note the difference between the outputs of the date
command on the two systems.

% date; echo Hello, World!
Sat Sep 20 10:27:50 PKT 2014
Hello, World!
%
$ date; echo Hello, World!
Saturday, September 20, 2014 10:29:05 PM PKT
Hello, World!
$

You can specify parallel execution of commands in a command line by ending each
command with an ampersand (&). The commands that end with & also execute in the
background. No spaces are required before or after &, but you can use spaces for clarity.
When you execute a command in the background, the shell displays the following pair as
output: [jobID] PID, where the first job ID is 1, increasing linearly by adding one to the
last-used job ID. Like PIDs, a job ID may be recycled if it has not been assigned to a process
currently. The following is a brief description of the syntax for parallel execution of shell
commands specified in one command line.

SYNTAX
cmd1& cmd2& … cmdN&

Purpose: Execute commands cmd1, cmd2, …, cmdN in parallel as separate processes

The following sessions were executed on PC-BSD under C shell and Solaris under Bash,
respectively. The date and echo commands execute in parallel and in the background,
followed by the sequential execution of the uname and who commands in the foreground.
In general, since the who command executes at the end, its output is always displayed at

Processes    ◾    373

the end. The outputs of the other three commands (date, echo, and uname) may be
displayed in any order. This order is due to the scheduling of processes and the amount of
time each takes to execute. Thus, the same output order may or may not be reproduced if
you execute the command line again. In the following session, the outputs are displayed in
the order echo, uname, date, and who for PC-BSD, and echo, date, uname, and who
for Solaris. The job and process ID pairs of the date and echo commands are [1] 15167
and [2] 15168, respectively, on PC-BSD. Similarly, the job and process IDs for the date and
echo commands on Solaris are [1] 6802 and [2] 6803, respectively.

% date& echo Hello, World!& uname; who
[1] 15167
[2] 15168
Hello, World!
FreeBSD
Sat Sep 20 10:31:51 PKT 2014
malik pts/0 Aug 14 09:45 (:0)
sarwar pts/1 Sep 20 10:27 (static-
host202-147-168-98.link.net.pk)
[2] + Done echo Hello, World!
[1] + Done date
%

$ date& echo Hello, World\!& uname; who
[1] 6802
[2] 6803
Hello, World!
Saturday, September 20, 2014 03:35:57 PM PKT
SunOS
[1]- Done date
[2]+ Done echo Hello, World\!
root console Sep 19 17:13
sarwar pts/1 Sep 20 15:30 (static-
host202-147-168-98.link.net.pk)
$

The last & in a command line puts all the commands since the previous & in one process. In
the following command line, therefore, the date command executes as one process and all the
commands in who; whoami; uname; echo Hello, World!& as another process. The job
and process ID pairs for these processes are [1] 49380 and [2] 49381, respectively, on PC-BSD.

% date & who ; whoami ; uname ; echo Hello, World! &
[1] 49380
[2] 49381
[sarwar@pcbsd-srv] ~/unix3e/ch10% Sat Sep 20 17:49:58 PKT 2014
malik pts/0 Aug 14 09:45 (:0)
sarwar pts/1 Sep 20 17:45 (182.178.199.200)

374 ◾ UNIX: The Textbook, Third Edition

malik pts/2 Sep 20 10:59 (:0)
sarwar
FreeBSD
Hello, World!
<Enter>
[2] Done (who; whoami; uname; echo Hello, World!)
[1] + Done date
%

As shown in the following session, when run on Solaris, the job ID and process ID
pair for the two processes are [1] 7540 and [1] 7544, respectively. Note that whereas job
IDs for the two jobs on PC-BSD are 1 and 2, they are 1 each on Solaris. Further, the pro-
cess IDs for the two processes on PC-BSD are two consecutive numbers, whereas they
are nonconsecutive on Solaris. This means that under PC-BSD, these processes were
created right after each other and were assigned consecutive job IDs and consecutive
process IDs. On the other hand, after the creation of the date process, three other pro-
cesses with process IDs 7541, 7542, and 7543 were created before the second process in
our command line was created. This explains both of our processes getting job ID 1 each.
Note that we replace '! in the echo command with \! in Bash under Solaris. Finally, as
shown in the shaded regions of the two sessions, since the shell prompt returns on both
systems after the two processes (jobs) have been created but before any or some output
has been displayed on the screen, we have to hit the <Enter> key to display the shell
prompt again.

$ date & who; whoami; uname; echo Hello, World\! &
[1] 7540
Saturday, September 20, 2014 10:54:27 PM PKT
root console Sep 19 17:13
sarwar pts/1 Sep 20 22:48 (182.178.199.200)
[1]+ Done date
sarwar
SunOS
[1] 7544
$ Hello, World!
<Enter>
[1]+ Done echo Hello, World\!
$

As will be discussed briefly in Chapter 12, UNIX allows you to group commands and
execute them as one process by separating commands using semicolons and enclosing them
in parentheses. This is called command grouping. Because all the commands in a command
group execute as a single process, they are executed by the same subshell. However, all the
commands execute sequentially, one after the other. The following is a brief description of
the syntax for command grouping.

Processes    ◾    375

SYNTAX
(cmd1; cmd2; …; cmdN)

Purpose: Execute commands cmd1, cmd2, …, cmdN sequentially, but as one process

In the following session, therefore, the date and echo commands execute sequentially,
but as one process.

% (date; echo Hello, World!)
Sat Sep 20 22:14:52 PKT 2014
Hello, World!
%

You can combine command grouping with sequential execution by separating com-
mand groups with other commands or command groups. In the following session, the
date and echo commands execute as one process, followed by the who command exe-
cuting as a separate process.

% (date; echo Hello, World!); who
Sun Sep 21 08:05:55 PKT 2014
Hello, World!
root pts/0 Aug 14 09:45 (:0)
sarwar pts/1 Sep 21 08:05 (39.59.18.169)
malik pts/2 Sep 20 10:59 (:0)
%

Command groups can be nested. Hence, ((date; echo Hello, World!); who) and
((date; echo Hello, World!); (who; uname)) are valid commands and produce
the expected results. Command grouping makes more sense when groups are executed as
separate processes, as shown in the following session.

% (date ; echo Hello, World!)&
[1] 40563
% Sun Sep 21 08:08:42 PKT 2014
Hello, World!
[1] Done (date; echo Hello, World!)
% (date; echo Hello, World)& (who; uname)& whoami
[1] 40936
[2] 40938
Sun Sep 21 08:12:30 PKT 2014
Hello, World
malik pts/0 Aug 14 09:45 (:0)
sarwar pts/1 Sep 21 08:05 (39.59.18.169)

376 ◾ UNIX: The Textbook, Third Edition

malik pts/2 Sep 20 10:59 (:0)
sarwar
[1] - Done (date; echo Hello, World)
FreeBSD
% <Enter>
[2] Done (who; uname)
%

In the second group of commands, (date; echo Hello, World) and (who;
uname) execute in the background and the whoami command executes in the fore-
ground; all three commands execute in parallel. Again, the order of output is dependent
on the scheduling of these commands.

In the following in-chapter exercises, you will practice sequential and parallel execution
of UNIX commands.

EXERCISE 10.5
Run the sessions presented in this section on your system to practice sequential and paral-
lel execution of shell commands.

EXERCISE 10.6
Which of the following commands run sequentially and which run in parallel? How
many of the processes run in parallel? (who; date) & (cat temp; uname &
whoami)

10.6.4 Abnormal Termination of Commands and Processes

When you run a command, it terminates normally after successfully completing its task. A
command (process) can terminate prematurely because of a bad argument that you passed
to it, such as a directory argument as source file to the cp command or because of a run-
time error. At times, you might also need to terminate a process abnormally. The need for
abnormal termination arises when you run a process with a legal but wrong argument
(e.g., a wrong file name to the find command) or when a command is taking too long to
finish, perhaps, due to an infinite loop. Here, we address abnormal termination in relation
to both foreground and background processes.

You can terminate a foreground process by pressing <Ctrl+C> or using the kill
command from another shell. You can terminate a background process in one of two
ways: (1) by using the kill command, or (2) by first bringing the process into the fore-
ground by using the fg command and then pressing <Ctrl+C>. The primary purpose of
the kill command is to send a signal (also known as a software interrupt) to a process.
The UNIX operating system uses a signal to get the attention of a process. You can send
any one of the several signal types supported by your UNIX system to a process that you
own or you have the permission to do so. A process can take one of three actions upon
receiving a signal:

Processes    ◾    377

 1. Accept the default action as determined by the UNIX kernel

 2. Ignore the signal

 3. Intercept the signal and take a user-defined action

For most signals, the default action, in addition to some other events, always results in
termination of the process. Ignoring a signal does not have any impact on the process. A
user-defined action is specified as a program statement (usually a function call) that takes
control to a specific piece of code in the process. In a shell script, you can specify these
actions by using the trap command in the Bourne shell. The C shell provides a limited
handling of signals via the onintr command. In a C program, you can specify these
actions by using the library call signal. We discuss the trap and onintr commands in
detail in Chapters 13 and 15, respectively. We describe the signal(2) system call in detail
in Chapter 19. For a quick look, view its manual page by using the man signal or man
3 signal command on PC-BSD or Solaris system. The man –S3 signal command
can also be used on PC-BSD.

Signals can be generated for various reasons. The processes themselves cause some
of these reasons, whereas others are external to processes. A signal caused by an event
internal to a process is known as an internal signal, or a trap (not to be confused with
the trap command in the Bourne shell). For example, the execution of a divide-by-
zero instruction in a process generates a trap. A signal caused by an event external to a
process or a hardware device in the computer system is called an external signal. If an
external signal is for a hardware device such as a CPU or disk controller, it is called a
hardware interrupt or interrupt. An external event meant to get attention of one or more
processes is known as a software interrupt or signal in the UNIX jargon. For example, an
internal signal is generated for a process when the process tries to execute a non-existing
instruction or access a memory region that it is not allowed to access such as memory
belonging to some other process or the UNIX kernel. You can generate an external sig-
nal by pressing <Ctrl+C>, by logging out, or by using the kill command. The kill
command can be used to send any type of signal to a process. The following is a brief
description of the kill command.

SYNTAX
kill [-s signal_name] proc-list
kill [-signal_name] proc-list
kill [-signal_number] proc-list
kill -l [exit_status]

Purpose: Syntaxes 1–3: Send the signal for signal _ number or symbolic signal _
name to processes whose PIDs or jobIDs are specified in space-separated proc-
list; jobIDs must start with %.

378 ◾ UNIX: The Textbook, Third Edition

Syntax 4: The command kill -l returns a list of all the signals along with their numbers
and names (Solaris); on PC-BSD, only symbolic names without the SIG prefix are dis-
played without numbers. The operand exit _ status specifies a signal number or
the exit status of a terminated or completed process.

Commonly used options/features:
1 HUP (Hang-up)
2 INT (Interrupt: <Ctrl+C>)
3 QUIT (Quit: <Ctrl+\>)
6 ABRT (Abort)
9 KILL (Sure kill: Nonignorable, noninterceptable)
14 ALRM (Alarm clock)
15 TERM (Software termination: the default signal number)

You can use the kill -1 (number one) command to send the default signal to all of
your processes. Only a superuser can send a signal to the processes belonging to other
users. Thus, a superuser can use this command to send signals to all the processes run-
ning on the system. You can use the kill –l (lowercase L) command to display the
signals supported by your UNIX system. The following command executed on PC-BSD
shows that it supports 32 signal types. The manual page for the signal system call shows
that PC-BSD supports 33 signal types. You can use the man signal command to
verify for yourself. The syntax box shows details of some of the more commonly used
signals.

% kill -l
HUP INT QUIT ILL TRAP ABRT EMT FPE KILL BUS SEGV SYS PIPE ALRM
TERM URG STOP
TSTP CONT CHLD TTIN TTOU IO XCPU XFSZ VTALRM PROF WINCH INFO USR1
USR2 LWP
%

Solaris supports 72 signal types, as shown in the following session.

$ kill -l
 1) SIGHUP 2) SIGINT 3) SIGQUIT 4) SIGILL
 5) SIGTRAP 6) SIGABRT 7) SIGEMT 8) SIGFPE
 9) SIGKILL 10) SIGBUS 11) SIGSEGV 12) SIGSYS
13) SIGPIPE 14) SIGALRM 15) SIGTERM 16) SIGUSR1
17) SIGUSR2 18) SIGCHLD 19) SIGPWR 20) SIGWINCH
21) SIGURG 22) SIGIO 23) SIGSTOP 24) SIGTSTP
25) SIGCONT 26) SIGTTIN 27) SIGTTOU 28) SIGVTALRM
29) SIGPROF 30) SIGXCPU 31) SIGXFSZ 32) SIGWAITING
33) SIGLWP 34) SIGFREEZE 35) SIGTHAW 36) SIGCANCEL
37) SIGLOST 38) SIGXRES 39) SIGJVM1 40) SIGJVM2
41) SIGRTMIN 42) SIGRTMIN+1 43) SIGRTMIN+2 44) SIGRTMIN+3
45) SIGRTMIN+4 46) SIGRTMIN+5 47) SIGRTMIN+6 48) SIGRTMIN+7

Processes    ◾    379

49) SIGRTMIN+8 50) SIGRTMIN+9 51) SIGRTMIN+10 52) SIGRTMIN+11
53) SIGRTMIN+12 54) SIGRTMIN+13 55) SIGRTMIN+14 56) SIGRTMIN+15
57) SIGRTMAX-15 58) SIGRTMAX-14 59) SIGRTMAX-13 60) SIGRTMAX-12
61) SIGRTMAX-11 62) SIGRTMAX-10 63) SIGRTMAX-9 64) SIGRTMAX-8
65) SIGRTMAX-7 66) SIGRTMAX-6 67) SIGRTMAX-5 68) SIGRTMAX-4
69) SIGRTMAX-3 70) SIGRTMAX-2 71) SIGRTMAX-1 72) SIGRTMAX
%

Table 10.11 shows some examples of the kill command and their meanings.
The hang-up signal is generated when you log out, the interrupt signal is generated

when you press <Ctrl+C>, and the quit signal is generated when you press <Ctrl+\.
The kill command sends signal number 15 to the process whose PID is specified as an
argument. The default action for this signal is termination of the process that receives it.
This signal can be intercepted and ignored by a process, as can most of the other signals.
In order to terminate a process that ignores signal 15 or other signals, signal number 9,
known as sure kill, has to be sent to it. The kill command terminates all the processes
whose PIDs are given in the proc-list, provided that these processes belong to the user
who is using kill. The following session on PC-BSD presents some instances of how
the kill command can be used. But don’t kill the login shell process because it will log
you out.

% jobs -l
[1] + 14338 Running sort bigdata > bigdata.sorted
[2] - 14667 Running cp biggerdata biggerdata.bak
[3] 14668 Running grep sh biggerdata > lines.sh
% kill 14668
% kill -2 14667
[3] Terminated grep sh biggerdata > lines.sh
% kill -9 14338
[2] Interrupt cp biggerdata biggerdata.bak
% jobs

TABLE 10.11 Some Examples of the kill Command and Their Meanings

Command Meaning

kill 1234 Send the default signal (SIGTERM) to the process with PID
1234

kill -9 1234
kill –s kill 1234
kill –s KILL 1234

Send SIGKILL (guaranteed termination signal) to the
process with PID 1234

kill –9 1234 –1004
kill –s kill 1234 –1004
kill –s KILL 1234 –1004

Send SIGKILL (guaranteed termination signal) to the
process with PID 1234 and to all the processes with process
group ID (PGID) 1004

kill –TERM –1004
kill –– –1004

Send SIGTEM to all the processes with process group ID 1004

380 ◾ UNIX: The Textbook, Third Edition

[1] Killed sort bigdata > bigdata.sorted
% jobs
%

In the first case, the kill command sends signal number 15 to a process with PID 14668.
In the second case, signal number 2 (SIGINT) is sent to a process with PID 14667. In both
cases, because the specified signal numbers are not intercepted, the processes are termi-
nated. The kill command can be used to terminate a number of processes with one com-
mand line. For example, the command kill -9 13586 20581 terminates processes
with PIDs 13586 and 20581.

Process ID 0 can be used to refer to all the processes created during the current login.
Thus, the kill -9 0 command terminates all processes resulting from the current login,
as is shown in the following session. Note that the command has terminated all the pro-
cesses resulting from sarwar’s current login session, including the process that maintains
the Secure Shell login connection with the client. Thus, you see the prompt of the local
machine, a terminal window running Bash on a MacBook Pro under Mac OS X (Darwin),
MacBook-Pro:~ syedsarwar$. This has serious consequences because the order in
which kill terminates processes is not known in this case. Thus, if the login shell and the
process that maintains the Secure Shell connection with the client machine are terminated
first, then the processes executing under the login shell continue to run. You would notice
this when you login again and realize that the ssh command is taking longer than usual to
establish the connection with the remote machine, and once you are connected and have a
login shell running, system response time is poor. The ps command would show that your
background processes from the previous login are still running, as shown in the follow-
ing session in the shaded portions. Note that the statuses of these “leftover” processes are
D (swapped out) and DL (swapped out and locked), and they are not associated with any
terminal (note the negative terminal numbers). You need to terminate these processes in
order to improve the system response time, as shown in the last line of the session.

% ps -U sarwar
PID TT STAT TIME COMMAND
15361 - S 0:00.01 sshd: sarwar@pts/1 (sshd)
15368 1 Ss 0:00.07 -csh (csh)
15424 1 D 0:07.05 sort bigdata
15437 1 D 0:00.60 cp biggerdata biggerdata.bak
15456 1 D 0:01.31 grep sh biggerdata
15521 1 R+ 0:00.00 ps -U sarwar
15158 2- DL 1:58.99 sort bigdata
% kill -9 0
Connection to 192.102.169.10 closed.
MacBook-Pro:~ syedsarwar$ ssh sarwar@192.102.169.10
Password for sarwar@pcbsd-srv:
Last login: Sun Oct 5 10:17:45 2014 from 139.15.192.135

Processes    ◾    381

FreeBSD 10.0-RELEASE-p6 (GENERIC) #0 acf484b(releng/10.0): Mon Feb
24 15:14:38 EST 2014
Welcome to FreeBSD!
...
% ps
 PID TT STAT TIME COMMAND
15424 1- DL 0:23.56 sort bigdata
15437 1- D 0:09.15 cp biggerdata biggerdata.bak
15456 1- D 0:21.06 grep sh biggerdata
15158 2- DL 1:59.38 sort bigdata
15866 3 Ss 0:00.06 -csh (csh)
15913 3 R+ 0:00.00 ps
% kill 15158 15424 15437 15456
%

The kill command also works with job numbers. Hence, the following command can
be used to terminate a process with job number 1. You can terminate multiple processes by
specifying their job numbers in the command line. For example, kill -9 %1 %3 can be
used to terminate processes with job numbers 1 and 3.

$ kill -9 %1
[1] + Killed find / -name foo -print > foo.paths &
$

When you log out, all the processes running in your session get a hang-up signal (signal
number 1) and are terminated per the default action. If you want processes to continue to
run even after you have logged out, you need to execute them so that they ignore the hang-
up signal when they receive it. You can use the UNIX command nohup to accomplish this
task. The following is a brief description of the syntax for this command.

SYNTAX
nohup command [args]

Purpose: Execute command and ignore the hang-up signal

You need to use the nohup command for processes that take a long time to finish, such
as a program sorting a large file containing hundreds of thousands of customer records.
Obviously, you would run this type of program in the background so that it runs at a lower
priority. The following is a simple illustration of the use of the nohup command. Here, the
find command runs in the background and is not terminated when you log out or send
it signal number 1 (hang-up) via the kill command. If output of the command is not
redirected, it is appended to the nohup.out file by default.

382 ◾ UNIX: The Textbook, Third Edition

$ nohup find / -name foo -print 1> foo.paths 2> /dev/null &
[1] 62808
$ kill -1 62808
$ jobs
[1]+ Running nohup find / -name foo -print > foo.paths 2> /dev/
null &
$ kill 62808
$ <Enter>
[1]+ Terminated nohup find / -name foo -print > foo.paths 2>
/dev/null
$ jobs
$

If you separate commands with semicolons, you can run them with nohup. In the fol-
lowing session, GenData generates some data and puts it in a file called employees, and
the sort command sorts the file and stores the sorted version in the employees.sorted
file.

$ nohup GenData > employees ; sort employees > employees.sorted &
[2] 15931
$

In the following in-chapter exercises, you will use the kill command to practice
abnormal termination of processes, and the nohup and ps -a commands to appreciate
how you can run processes that do not terminate when you log out.

EXERCISE 10.7
Give a command for terminating processes with PID 10974 and jobID 3.

EXERCISE 10.8
Run the first of the nohup commands, use ps to verify that the command is executing,
log out, log in again, and use the ps -a command to determine whether the find com-
mand is running.

10.7 PROCESS HIERARCHY IN UNIX
When you turn on your UNIX system, the kernel—after performing some checks and
other household tasks—creates the first process from scratch. In PC-BSD, this process is
called kernel and in Solaris it is called sched. This process, which has no parent, has
PID 0. The PPID of this process is also 0. It then spawns several other processes, which are
meant to handle several important kernel tasks, including tasks related to virtual mem-
ory, file handling, interrupt handling, and performing various tasks at boot time such as

Processes    ◾    383

initializing hardware ports. A list of a few of these processes and their purpose is given in
Table 10.12.

The init process is the granddaddy of all user processes that are created, so long as
the system is up and running. The init process has a PID of 1 and runs with superuser
privileges. The executable binary for the process is in the file /sbin/init under PC-BSD and
in /usr/sbin/init under Solaris. This process, after performing several activities, as given
in the /etc/rc file, reads the /etc/ttys file to determine which I/O (terminal) lines are to be
active. For each active line, init starts a getty process from /etc/getty file. The getty
process, also running in superuser mode, sets terminal attributes, such as baud rate, as
specified in the file /etc/termcap. It then displays the login: prompt, inviting you to log
on to the terminal.

At the login: prompt, when you type your login name and press <Return>, the
getty process forks a child. The child process executes the exec system call to become
a login process with your login name as its parameter. The login process prompts you
for your password and checks the validity of your login name and password. If it finds
both to be correct, the login process execs to become your login shell. If the login pro-
cess does not find your login name in the /etc/passwd file or finds that the password
that you entered does not match the one in the /etc/passwd file, it displays an error
message and terminates. Control goes back to the getty process, which redisplays the
login: prompt. Once in your login shell, you can do your work and terminate the shell
by pressing <Ctrl+D> or running the exit command. When you do so, the shell pro-
cess terminates and control goes back to the getty process, which displays the login:
prompt, and life goes on.

When you login through the ssh command, the sshd daemon (the Secure Shell server
process) on the remote machine creates a child sshd process for you (your private sshd) that
handles communication with your client. The server sshd goes back and looks for more
SSH connection requests from other clients. Your private sshd spawn another sshd process
that overwrites itself with a pseudo terminal pts/1, which prompts you for the password.
When you enter the correct password, it runs the login shell process for you. By default, the
login shell is C shell on PC-BSD and Bash on Solaris. You run your commands under your

TABLE 10.12 Some of the Key Processes Created by kernel (on PC-BSD) and sched (on Solaris)

PC-BSD Solaris Purpose

init init Granddaddy of all user processes; all user-level services,
including all Internet services, and user processes run
under the children of this process.

pagedaemon pageout Read/write pages from/to disk
bufdaemon fsflush Supplies clean pages/buffers by writing dirty pages/buffers

to disk
zfskern zpool-rpool Performs I/O tasks related to ZFS pools
intr intrd Handles all interrupts (lower-half of the kernel)
vmdaemon vmtasks Moves processes from main memory to disk storage

384 ◾ UNIX: The Textbook, Third Edition

login shell. When you press <Ctrl+D> to logout, your login shell terminates along with
your private sshd daemon. You can also logout by running the exit command.

Figures 10.7 and 10.8 show schematically the process hierarchies on Solaris and PC-BSD,
respectively, with logins on a terminal and a pseudo terminal. Two processes, ps and more,
are running under login shells Bash and C shell on Solaris and PC-BSD, respectively.

Thus, when you log on to a UNIX system, the system creates the first process for you,
called your login shell. The login shell interprets/executes your commands by creating pro-
cesses for all the commands that you execute (see Section 10.3 for details of command
execution).

Two UNIX processes exist throughout the lifetime of a system: kernel (PC-BSD) or
sched (Solaris) and init. The getty process, which monitors a terminal line, lives for
as long as the terminal is attached to the system. Your login shell process lives for as long
as you are logged on. All other processes are usually short-lived and stay for as long as a
command or utility executes.

You can use the ptree command on Solaris to display the process tree of the currently
running processes on the system in a graphical form, showing the parent–child relation-
ships. You can display the process tree for a process or for a user. In the following session,
we use the ptree –a davis command to show the process hierarchy for the user davis.

sched

pageout fslush zpool-
rpool

intrd vmtaskskmem-taskinit

bash

inetd cron syslog

sshd

pts/1

-bash

sshdgetty getty

… …

…

getty nscd svc.
started

svc.
configd

ps more

ps more

FIGURE 10.7 UNIX process hierarchy on Solaris with logins on a terminal and a pseudo terminal.

Processes    ◾    385

The output shows that the granddaddy of all of the processes run by davis is, as expected,
the init process. The output further shows that davis is using the system through an SSH
session and is currently using Bash. Without the –a option, the line for the init process,
the parent of process 516 (i.e., the sshd daemon) is not displayed. The ptree -a 'pgrep
sshd' command shows the process hierarchy for the sshd daemon.

$ ptree -a davis
1 /usr/sbin/init
 516 /usr/lib/ssh/sshd
 26087 /usr/lib/ssh/sshd
 26088 /usr/lib/ssh/sshd
 26095 -bash
 26188 ptree -a davis
$ ptree -a 'pgrep ssh'
1 /usr/sbin/init
 516 /usr/lib/ssh/sshd

init

getty getty getty

csh

-csh

pts/1

ps more

ps more

getty getty sshd

sshd
private

crypto crypto
returns

zfskern

kernel

page
daemon

intrvmdaemon

……

FIGURE 10.8 UNIX process hierarchy on PC-BSD with logins on a terminal and a pseudo terminal.

386 ◾ UNIX: The Textbook, Third Edition

 26087 /usr/lib/ssh/sshd
 26088 /usr/lib/ssh/sshd
 26095 -bash
 26192 ptree -a 516 26087 26088
$

Under PC-BSD, you can use the ps –auxd command to display the parent–child rela-
tionship between processes. However, the output for this command is not as complete and
fancy as it is for the ptree command, as can be seen in the following session. You can try
running the ps -auxfd | more command on your system to see the complete process
hierarchy on your system.

% ps -dU sarwar
 PID TT STAT TIME COMMAND
93204 - S 0:00.18 sshd: sarwar@pts/1 (sshd)
93207 1 Ss 0:00.45 - -csh (csh)
96636 1 R+ 0:00.02 `-- ps -dU sarwar
%

On PC-BSD, you can run the ps -aflx | more command to display all the pro-
cesses running on your system and some of their important attributes, including PID,
PPID, priority, nice value, virtual size, size currently in main memory, status, event wait-
ing for, and full command name used to start the process. You can display the usernames,
PIDs, PPIDs, and full command names of all the processes running on Solaris by execut-
ing the ps -e -o user,pid,ppid,comm command. We used the outputs of these
commands to construct the process hierarchies on the two systems, shown in Figures 10.7
and 10.8.

SUMMARY
A process is a program in execution. Being a time-sharing system, UNIX allows execu-
tion of multiple processes simultaneously. On a computer system with one CPU, processes
are executed concurrently by scheduling the CPU time and giving it to each process for a
short time called a quantum. Each process is assigned a priority by the UNIX system, and
when the CPU is available, it is given to the process with the highest priority. The priority
classes and the way priorities are assigned to various categories of processes are different
on PC-BSD and Solaris.

The shell executes commands by creating child processes using the fork and exec system
calls. When a process uses the fork system call, the UNIX kernel creates an exact main
memory image of the process. The shell itself executes an internal command. An external
binary command is executed by the child shell overwriting itself by the code of the com-
mand via an exec call. For an external command comprising a shell script, the child shell
executes the commands in the script file one by one.

Processes    ◾    387

Every UNIX process has several attributes, including process ID (PID), process ID of
the parent (PPID), process name, process state (running, suspended, swapped, zombie,
etc.), the terminal the process was executed on, the length of time the process has run, and
process priority. The ps command may be used to view a static display of these attributes.
The top command may be used to view a dynamic display of the various system statistics
and attributes of the processes running on the system, and permit interactive commands
via various keystrokes.

UNIX processes can be run in the background or the foreground. A foreground process
controls the terminal until it finishes, so the shell cannot be used for anything else while
a foreground process runs. When a process runs in the background, it returns the shell
prompt so that the user can do other work as the process executes. Because a background
process runs at a lower priority, a command that takes a long time is a good candidate for
background execution. The background system processes that provide various services are
called daemons. A set of commands can be run in a group as separate processes or as one
process. Multiple commands can be run from one command line as separate processes
by using a semicolon (;) as the command separator; enclosed in parentheses, these com-
mands can be executed as one process. Commands can be executed concurrently by using
an ampersand (&) as the command separator.

Suspending processes, moving them from the foreground to the background and vice
versa, having the ability to display their status, interrupting them via signals, and termi-
nating them are all known as job control, and UNIX has a set of commands that allow
these actions. Foreground processes can be suspended and moved to the background
pressing <Ctrl+Z> followed by executing the bg command. Suspended and background
processes can be moved to the foreground by using the fg command. Commands that are
suspended or run in the background are also known as jobs. The jobs command can be
used to view the status of all your jobs. You can press <Ctrl+C> to terminate a foreground
process.

The kill command can terminate a process with its PID or job ID. The command can
be used to send various types of signals, or software interrupts, to processes. Upon receipt
of any signal except one, a process can take the default (kernel-defined) action, take a user-
defined action, or ignore it. No process can ignore the kill -9 command, the sure kill
signal, which was put in place by the UNIX designers to make sure that every process run-
ning on a system could be terminated. Commands executed with the nohup command
keep running even after a user logs out. The kill -9 0 command is the sure kill for all
the processes associated with the current login of a user.

You can use the ptree command on a Solaris system running Bash to display tree
structures for your or some other user’s processes. With the –a option, the output dis-
played contains a line for the granddaddy init process. Similarly, you can use the ps –d
command under C shell on PC-BSD to see a less sophisticated version of the parent–child
and sibling relationships between processes on the system. The ps -auxfd command
displays the complete hierarchy of all the processes on the system and the ps –d command
displays the process hierarchy for a particular user.

388 ◾ UNIX: The Textbook, Third Edition

QUESTIONS AND PROBLEMS

 1. What is a process? What is the process ID of a process?

 2. What is CPU scheduling? How does a time-sharing system run multiple processes on
a computer system with a single CPU? Be brief but precise.

 3. Name three famous CPU-scheduling algorithms. Which are parts of the UNIX
scheduling algorithm?

 4. What are the main states that a process can be in? What does each state indicate
about the status of the process?

 5. What is the difference between built-in (internal) and external shell commands?

 6. How does a UNIX shell execute built-in and external commands? Explain your
answer with an example.

 7. Name three process attributes.

 8. What is the purpose of the nice command in UNIX?

 9. What are foreground and background processes in UNIX? How do you run shell
commands as foreground and background processes? Give an example for each.

 10. In UNIX jargon, what is a daemon? Give examples of five daemons.

 11. What are signals in UNIX? Give three examples of signals. What are the possible
actions that a process can take upon receiving a signal? Write commands for sending
these signals to a process with PID 10289.

 12. Give a command that displays the status of all running processes on your system.

 13. Give a command that returns the total number of processes running on your system.

 14. Compute the priority number of a UNIX process with a recent CPU usage of 31, a
threshold priority of 60, and a nice value of 20. Show your work.

 15. Give the sequence of steps (with commands) for terminating a background
process.

 16. Create a zombie process on your UNIX system. Use the ps command to show the
process and its state.

 17. The ps –auxw or ps auxw command is one of the most useful commands. What
does it display? Explain your answer.

 18. Give two commands to run the date command after 10 seconds. Make use of the
sleep command; read the relevant manual page to find out how to use it.

 19. Run a command that would remind you to leave for lunch after one hour by display-
ing the message Time for Lunch!

Processes    ◾    389

 20. Give a command for running the find and sort commands in parallel.

 21. Give an example of a UNIX process that does not terminate with <Ctrl+C>.

 22. Run the following commands on one command line so that they do not terminate
when you log out. What command did you use?

 find / -inum 23476 -print > all.links.hard 2> /dev/null
 find / -name foo -print > foo.paths 2> /dev/null

 23. Run the following sequence of commands under your shell. What are the outputs
of the three pwd commands? Why are the outputs of the last two pwd commands
different?

$ pwd
$ sh
$ cd /usr
$ pwd
...
$ <Ctrl+D>
$ pwd
...
$

 24. Run the top command on your system. What are the priority and nice values of the
highest priority process? Run commands to have top display information about the
top-10 processes and refresh its output every seven seconds. What commands did
you use?

 25. As you monitor the top session, display processes for the user john. What command
did you use? Show your work.

 26. Use the ptree command to display the tree structure for the processes running in
your current session. What command did you use? Which process is the grandpar-
ent of all your processes and what is its process ID? What command will you use to
display the tree hierarchy for the processes that the user kent has run on your system?

 27. What are the names of processes with process IDs 0, 1, 2, and 3 on your UNIX sys-
tem? How did you get the answer to the question? Show your work.

 28. Suppose you are running various programs in a session—ssh, vim, etc.—and the
terminal locks up or the remote login program crashes, causing you to be discon-
nected from the host. Or, perhaps your keyboard or mouse suddenly stops working.
Explain how you could log in from another terminal and use a sequence of UNIX
commands to recover from the situation. Give the sequence of UNIX commands
you would use.

 29. What command would you use to display the hierarchical structure of processes on
your system? What is the name of the process with PID 0? How many children does

390 ◾ UNIX: The Textbook, Third Edition

this process have and what are their names? What is the pathname of the executable
for the init process?

 30. Write commands for displaying the number of threads in the kernel process (the
granddaddy of all processes) and the init process (the granddaddy of all user pro-
cesses). How long has the kernel process been running on your system? How did
you find out?

 31. The ps –U root,bin,goldman,ibraheem command displays the default sta-
tus of all the processes belonging to the users root, bin, goldman, and ibraheem.
However, the output does not show the logname of the process owner. Write down the
command, for both PC-BSD and Solaris, along with a sample run on your machine
that would display the username for each process.

 32. What command line will you use on Solaris to display all the processes running
under the priority class SYS? Show the results of running the command on your sys-
tem. What command will you use to display the total number of processes running
under the TS (time-sharing) priority class?

 33. What is the SDC priority class? Give example of at least one process that runs under
this priority class.

 34. What is the purpose of applying the decay function to the CPU usage of processes
before the priority values of processes are recalculated? Explain with an example.

391

C h a p t e r 11

Networking and
Internetworking

Objectives

• To describe networks and internetworks and explain why they are used

• To discuss briefly the TCP/IP protocol suite, IP addresses, protocol ports, and Internet
services and applications

• To explain what the client–server software model is and how it works

• To discuss various network software tools for electronic communication, remote
login, file transfer, remote command execution, tracing a route in the Internet, and
status reporting

• To describe in detail the Secure Shell and other secure commands

• To cover the commands and primitives

 finger, ftp, ifconfig, host, nslookup, ping, rcp, rlogin, rsh,
ruptime, rwho, scp, sftp, slogin, ssh, talk, telnet, traceroute

11.1 INTRODUCTION
The history of computer networking and the Internet goes back to the late 1960s, when
the Department of Defense’s Advanced Research Projects Agency (ARPA) started funding
networking research. This research resulted in a wide area network, called ARPANET, by
the late 1970s, with five nodes—UCLA, Stanford, UC Santa Barbara, University of Utah,
and BBN. In 1982, a prototype Internet that used Transmission Control Protocol/Internet
Protocol (TCP/IP) became operational and was utilized by a few academic institutions,
industrial research organizations, and the US military. By early 1983, all US military
sites connected to ARPANET were on the Internet, and computers on the Internet num-
bered 562. By 1986, this number had more than quadrupled to 2308. From then on, the size

392 ◾ UNIX: The Textbook, Third Edition

of the Internet doubled every year for the next 10 years, until it served about 9.5 million
computers by 1996. The first Web browser, called Mosaic, was developed at the National
Center for Supercomputer Applications (NCSA) and launched in 1991. As a result, World
Wide Web (shortened to the www, or just the Web) browsing surpassed File Transfer
Protocol (FTP) as the major use of the Internet by 1995. The first website, info.cern.ch, was
launched on August 6, 1991. Since the second edition of this book was written, the social
networking sites have had a major impact on the use of the Internet. Facebook, Flickr,
YouTube, Reddit, Twitter, Tumblr, Dropbox, and Pinterest were born during this period of
time. As of the writing of this book, Facebook and Twitter have over 1.59 billion and over
320 million monthly active users, respectively, generating over 5 billion likes and 500 mil-
lion tweets per day.

Today, the Internet serves over 1.01 billion hosts, around 1 billion websites and over
14.7 billion webpages live on the Internet, 49.5 billion webpages are indexed by Google,
over 1 yottabyte (1024 bytes) of data resides on the Internet, over 40% of the world’s popu-
lation uses the Internet (i.e., over 2.93 billion users), over 1.2 billion domain names are in
use, over 200 billion e-mails are sent per day, and over 259 of 263 countries, colonies or
territories, and disputed territories in the world provide access. It is projected that by 2020,
over 60% (5 billion) of the planet will be connected by the Internet. UNIX has a special
place in the world of networking in general and internetworking in particular because
most of the networking protocols were initially implemented on UNIX platforms. Also,
server processes running on UNIX-based computers provide most of the Internet services.

11.2 COMPUTER NETWORKS AND INTERNETWORKS
When two or more computer hardware resources (computers, printers, scanners, plotters,
etc.) are connected, they form a computer network. A hardware resource on a network or
an internetwork is usually referred to as a host. Figure 11.1 (a) shows a schematic diagram
of a network with six hosts, H1–H6.

Computer networks are categorized as local area networks (LANs), metropolitan area
networks (MANs), and wide area networks (WANs), based on the maximum distance
between two hosts on the network. Networks that connect hosts in a room, building, or
buildings of a campus are called LANs. The distance between hosts on a LAN can be any-
where from a few meters to about one kilometer. Networks that are used to connect hosts
within a city, or between small cities, are known as MANs. The distance between hosts on a
MAN is about 1 to 20 km. Networks that are used to connect hosts within a state or country
are known as WANs. WANs are also known as long-haul networks. The distance between
the hosts on a WAN is in the range of tens of kilometers to a few thousand kilometers.

An internetwork is a network of networks. Internetworks can be used to connect net-
works within a campus or networks that are thousands of kilometers apart. The networks
in an internetwork are connected to each other via specialized devices called routers or
gateways. The Internet is the ubiquitous internetwork of tens of thousands of networks
throughout the world. Figure 11.1 (b) shows an internetwork of four networks. The four
networks, Net1–Net4, are connected via five routers, R1–R5. Not all of the networks are
directly connected, and two networks can be connected to each other via multiple routers.

Networking and Internetworking    ◾    393

In Figure 11.1 (b), for example, Net2 and Net4 are not directly connected and Net3 and
Net4 are connected to each other directly via two routers, R4 and R5. Note that the router
R4 also connects directly Net3 and Net1. Routers such as R4 that can connect more than
two networks are known as multiport routers.

11.3 REASONS FOR COMPUTER NETWORKS AND INTERNETWORKS
There are numerous reasons for using networks of computers as opposed to stand-alone
personal computers, powerful minicomputers, mainframe computers, or supercomputers.
The main reasons include the following:

• Sharing of computing resources: Users of a computer network can share hard-
ware resources including computers, printers, plotters, and scanners, and software
resources such as files (data and software).

• Network as a communication medium: A network is an inexpensive, fast, and reliable
communication medium between people who live far from each other.

• Cost efficiency: For the same price, you get more computing power with a network of
workstations than with a minicomputer or mainframe computer.

• Less performance degradation: With a single powerful minicomputer, mainframe
computer, or supercomputer, the work comes to a screeching halt if anything goes
wrong with the computer, such as a bit in the main memory going bad. With a network
of computers, if one computer crashes, the remaining computers on the network are
still up and running, allowing continuation of work.

11.4 NETWORK MODELS
Various questions arose in the design and implementation of networks, and these ques-
tions dictated the design of the two best-known network models:

 1. The type of physical communication medium, or communication channel, used to
connect hardware resources: It can be a simple RS-232 cable, telephone line, coaxial
cable, fiber-optic cable, microwave link, or satellite link.

R1

R3

R4

R2

Net1 Net2

Net4 Net3
(b)

H2

H5(a)

Network

H1 H3

H4H6

FIGURE 11.1 (a) A network of six hosts; (b) an internetwork of four networks.

394 ◾ UNIX: The Textbook, Third Edition

 2. The topology of the network—that is, the physical arrangement of hosts on a network:
Some commonly used topologies are bus, ring, mesh, and general graph.

 3. The set of rules, called protocols, used to allow a host on a network to access the
physical medium before initiating data transmission.

 4. The protocols used for routing application data (e.g., a Web page) from one host to
another in a LAN or from a host in one network to a host in another network in an
internetwork.

 5. The protocols used for transportation of data from a process on a host to a process on
another host in a LAN or from a process on a host in one network to a process on a
host in another network in an internetwork.

 6. The protocols used by network-based software to provide specific applications such
as ftp.

The two best-known network models are the International Standards Organization’s
Open System Interconnect Reference Model (commonly known as the OSI Seven-Layer
Reference Model) and the TCP/IP Five-Layer Model. The OSI model was proposed in 1981
and the TCP/IP model in the late 1970s. In March 1982, the US Department of Defense
adopted the TCP/IP model as the standard for all military networks. The TCP/IP model,
which has its roots in ARPA, is the basis of the Internet and is, therefore, also known as the
Internet Protocol Model. This model consists of five layers, each having a specific purpose
and a set of protocols associated with it. The diagram in Figure 11.2 shows the two models,
along with an approximate mapping between the two.

Because the TCP/IP model is used in the Internet, this will be our focus. In terms of
the six issues previously listed, the first layer in the TCP/IP model deals with the first two
issues, the second layer deals with the third issue, the third layer deals with the fourth issue,
the fourth layer deals with the fifth issue, and the fifth layer deals with the sixth issue. In
terms of their implementation, the first four layers deal with the details of communication
between hosts, and the fifth layer deals with the details of the Internet services provided by

TCP/IP Task handled

User process: application details

Kernel and hardware:
communications details

ISO

TCP/IPISO

Application

ApplicationPresentation

Session

Transport

Network

Data link

Physical

Transport

Network

Link

Device/physical

7

6

5

4

3

2

1

5

4

3

2

11 and 2

3

4

5

6

FIGURE 11.2 ISO and TCP/IP layered models, mapping between the two, and the general purpose
of a group of layers.

Networking and Internetworking    ◾    395

various applications. Most of the first layer is handled by hardware (type of communication
medium used, attachments of hosts to the medium, etc.). The network interface card (NIC)
in a host handles the rest of the first layer and the second layer. Layer 2 consists of medium
access control (MAC) addresses, network cards, drivers, and switches. Layers 3 and 4 are
fully implemented in the operating system kernel on most existing systems. The first two
layers are network hardware specific, whereas the remaining layers work independently of
the physical network. On newer gigabit Ethernet interfaces where the processing overhead
of the network stack becomes significant, the TCP offload engine (TOE) technology is used
in the NIC to offload processing of the TCP/IP stack to the network controller.

EXERCISE 11.1

Ask your system administrator: How many hosts are connected on your LAN? What type
of computers are they (PCs or workstations)?

EXERCISE 11.2

What is the physical medium for your network (coaxial cable, twisted pair, or glass fiber)?
Ask your instructor or system administrator about the topology of your network (bus,
ring, etc.).

EXERCISE 11.3

Ethernet is the most commonly used link-level protocol for LANs. Does your LAN use
Ethernet? If not, what does it use?

11.5 THE TCP/IP SUITE
Several protocols are associated with various layers in the TCP/IP model. These protocols
result in what is commonly known as the TCP/IP suite, which is illustrated in Figure 11.3.

The description of most of the protocols in the suite is beyond the scope of this textbook,
but we briefly describe the purpose of those that are most relevant to our discussion. As
a user, you see the application layer in the form of applications and utilities that can be
executed to invoke various Internet services. Some of the commonly used applications are
for electronic mail, Web browsing, file transfer, and remote login. We discuss some of the
most useful applications in Section 11.8.

11.5.1 TCP and UDP

The purpose of the transport layer is to transport application data from your machine to
a remote machine and vice versa. This delivery service can be a simple, best-effort ser-
vice that does not guarantee reliable delivery of the application data or one that guaran-
tees reliable and in-sequence delivery of the application data. The User Datagram Protocol
(UDP) provides a best-effort delivery service and the Transmission Control Protocol (TCP)
offers completely reliable, in-sequence delivery. The UDP is a connectionless protocol; that
is, it simply sends the application data to the destination without establishing a virtual

396 ◾ UNIX: The Textbook, Third Edition

connection with the destination before transmitting the data. Hence, the UDP software
on the sender host does not “talk” to the UPD software on the receiver host before send-
ing data. The TCP is a connection-oriented protocol that establishes a virtual connection
between the sender and receiver hosts before transmitting application data, leading to reli-
able, error-free, and in-sequence delivery of data. Of course, the overhead for establishing
the connection makes TCP more costly than UDP. Many well-known Internet applications
such as ftp use TCP. Applications where efficiency of data delivery is more important than
error-free, in-sequence delivery, such as video streaming, use UDP. In Internet jargon, a
data packet transported by TCP is called a segment and a data packet transported by UDP
is called a datagram.

Because multiple client and server processes might be using TCP and/or UDP at any one
time, these protocols identify every process running on a host by 16-bit positive integers
(0–65,535) called port numbers. Port numbers from 0 to 1023 are called well-known ports
and are controlled by the Internet-Assigned Numbers Authority (IANA). Well-known ser-
vices such as http are assigned ports that fall in the well-known range (excluding 0). Most
of these services allow the use of either TCP or UDP, and the IANA tries to assign the
same port number to a given service for both TCP and UDP. For example, the ssh service
is assigned port number 22 and the http (Web) server is assigned port number 80, for both
TCP and UDP. Most clients can run on any port and are assigned a port by the operating
system at the time the client process starts execution. Some well-known clients such as
rlogin and ssh require the use of a reserved port as part of the client–server authentication
protocol. These clients are assigned ports in the range 513–1023.

Applicationhttp, telnet, smtp, ftp, traceroute,
ping, time, daytime, etc.

Transport

Network

Link

Device/physicalDevice/physical

5

4

3 IPv4 IPv6 ICMP IGMP

ARP RARP

Ethernet, token ring,
ATM, etc.2

1

Raw socketsTCP UDP

FIGURE 11.3 The TCP/IP.

Networking and Internetworking    ◾    397

11.5.2 Routing of Application Data: The Internet Protocol (IP)

As we mentioned before, the network layer is responsible for routing application data to
the destination host. The protocol responsible for this is the Internet Protocol (IP), which
transports TCP segments or UDP datagrams containing application data in its own pack-
ets called IP datagrams. The routing algorithm is connectionless, which means that IP
routing is best-effort routing and does not guarantee delivery of TCP segments and UDP
datagrams. Applications that need guaranteed delivery use TCP as their transport-level
protocol or have it built into the application itself. There are two versions of IP: the older
version is IPv4 and the new version is IPv6 (commonly known as IPng or Internet Protocol:
The Next Generation). In this textbook, we primarily discuss IPv4. The discussion on the
actual routing algorithms used by IP is beyond our scope here. However, we describe a key
component of routing on the Internet—the IP addressing (naming) scheme to uniquely
identify a host on the Internet.

The key to routing is the IP assignment of a unique identification to every host on the
Internet. IP does so by uniquely identifying the network the host is on and then uniquely
identifying the host on that network. The ID, a 32-bit positive integer in IPv4 and a 128-bit
positive integer in IPv6, is known as the host’s IP address. Every IP datagram has the send-
er’s and the receiver’s IP address in it. The sender’s IP address allows the receiver to identify
and respond to the sender. Hosts and routers perform routing by examining the destina-
tion IP address on an IP datagram.

In IPv4, the IP address is divided into three fields: address class, network ID, and host
ID. The address class field identifies the class of the address and dictates the number
of bits used in the network ID and host ID fields. This scheme results in five address
classes: A, B, C, D, and E, with classes A, B, and C being the most common. Figure 11.4

24 23 16 15 8 7 031Bit

1 0 Net IDClass B: Host ID

24 23 16 15 8 7 031Bit

1 1 0 Net IDClass C: Host ID

24 23 16 15 8 7 031Bit

1 1 1 0 Multicast addressClass D:

24 23 16 15 8 7 031Bit

1 1 1 1 0 Reserved for future useClass E:

24 23 16 15 8 7 031Bit

0 Net IDClass A: Host ID

FIGURE 11.4 IPv4 address classes.

398 ◾ UNIX: The Textbook, Third Edition

shows the structures of the five address types. The IP addresses belonging to classes D
and E have special use, and their discussion is beyond the scope of this textbook. A cen-
tral authority, the Network Information Center (NIC; www.internic.net), assigns all
IP addresses.

The maximum number of networks of classes A, B, and C that can be connected to the
Internet is given by the expression: 27 + 214 + 221. Here, 7, 14, and 21 are the number of bits
used to specify network IDs in class A, B, and C addresses, respectively. Thus, there are 27
class A networks, 214 class B networks, and 221 class C networks. The sum of these numbers
gives a total of 2,113,664 networks. Similarly, the number of bits used to identify host IDs
in the three classes of addresses can be used to get the maximum number of hosts that
can be connected to the Internet. Thus, there are roughly 224 hosts per class A network, 216
hosts per class B network, and 28 hosts per class C network. The sum of all the hosts on the
three types of networks is a total of 3,758,096,400 hosts. The actual numbers of class A, B,
and C networks and hosts are somewhat smaller than numbers shown, due to some special
addresses (e.g., broadcast and localhost addresses). The broadcast addresses are used to
address all hosts on a network. The localhost address is used by a host to send a datagram
to itself. Hence, an IP datagram with localhost as its destination address is never put on
the network.

In order to slow down the use of IPv4 addresses and to reduce the growth of routing
tables on Internet routers, the Internet Engineering Task Force (IETF; www.ietf.org) intro-
duced Classless Internet-Domain Routing (CIDR) in 1993. Under CIDR, network address
spaces in IPv4 are allocated on any address bit boundary, not necessarily on 8-bit sections.
There are a lot of classless networks on the Internet.

The number of class A addresses is very small, so these addresses are assigned only to
very large commercial organizations, educational institutions, and government agencies,
such as US national laboratories, the Massachusetts Institute of Technology (MIT), the
University of California at Berkeley, Bell Labs, and NASA. The number of class B addresses
is relatively large, and these addresses are assigned to large commercial organizations and
educational institutions. Hence, corporations such as IBM and Oracle, educational institu-
tions such as Iowa State University, and numerous other national and international univer-
sities have been assigned class B addresses. The total number of class C addresses is quite
large, so these addresses are assigned to individuals and small- to medium-sized organiza-
tions, such as local Internet service providers, small consulting and software companies,
community colleges, and universities.

Although the IPv4 addressing scheme can be used to identify a large number of net-
works and hosts, it has not been able to cope with the rapid growth of the Internet. Among
the many advantages of IPv6 is that an extremely large number of hosts can be connected.
With the 128-bit address, the maximum number of hosts on the Internet will increase
to roughly 2128, which is greater than 3.4 × 1038. This number is roughly 6 × 228 times the
present world population. One disadvantage of IPing is that, as the address size is very
large, remembering IPv6 addresses becomes very difficult. However, because most users
prefer to use symbolic names, remembering IPv6 addresses should not present a problem.
Also, some compact notations similar to DDN have been proposed for IPv6 addresses as

http://www.ietf.org
http://www.internic.net

Networking and Internetworking    ◾    399

well. Many large companies and academic institutions have been assigned IPv6 addresses,
including Google, IBM, Intel, Microsoft, MIT, UC Berkeley, and Iowa State University.
You can use the host command to find out if an organization has been assigned an IPv6
address, as in

% host berkeley.edu
berkeley.edu has address 169.229.216.200
berkeley.edu has IPv6 address 2607:f140:0:81::f
berkeley.edu mail is handled by 10 mx.berkeley.edu.
%

Note that IPv6 addresses are displayed in the colon-hex notation. In this notation, two
hexadecimal digits are used to specify every byte of the address. A colon (:) is inserted
between every two bytes—that is, four hex digits—of an address. If a number between two
consecutive colons is not four digits, it represents the least significant nibbles in a two-byte
sequence. For example, 81 in the example address in fact is 0081, 0 is 0000, and f is 000f.
The right-most hex number for the two-byte sequence is for the least significant two bytes
of the 128-bit address. Finally, two consecutive colons between the least significant hex
number and previous hex number represent all zeros. The 128-bit IPv6 address of Berkeley.
com, consisting of 32 nibbles, is therefore represented as follows:

MSD LSD
2 6 0 7 F 1 4 0 0 0 0 0 0 0 8 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 F

Most UNIX commands and tools have been enhanced to handle IPv6 addresses in the
colon-hex notation, as in

% host 2610:130:101:100::9
9.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.1.0.1.0.1.0.0.3.1.0.0.1.6.2.i
p6.arpa domain name pointer thumb.iastate.edu.
%

Here, the hex numbers are shown in the reverse order of significance—that is, least sig-
nificant hex digit first. As you can see, the IPv6 address is for thumb.iastate.edu. A more
detailed discussion on IPv6 addresses, including the purpose of each byte of the address,
is beyond the scope of this book.

11.5.2.1 IPv4 Addresses in Dotted Decimal Notation
Although hosts and routers process IPv4 addresses as 32-bit binary numbers, they are dif-
ficult for people to remember. For this reason, the IPv4 addresses are given in dotted deci-
mal notation (DDN). In this notation, all four bytes of an IPv4 address are written in their
decimal equivalents and are separated by dots. Thus, the 32-bit IP address

11000000 01100110 00001010 00010101

http://www.Berkeley.com
http://www.Berkeley.com
http://www.thumb.iastate.edu

400 ◾ UNIX: The Textbook, Third Edition

is written as

192.102.10.21

in DDN. The ranges of valid IP addresses belonging to the five address classes in DDN are
shown in Table 11.1. Some of the addresses given in the table are special addresses.

The internetwork shown in Figure 11.5 connects four networks via four routers, R1–R4.
Net1 is a class A network, Net3 is a class B network, and Net2 and Net4 are class C
networks. The way to identify the class of a network is to look at the left-most decimal
number in the IP address of a host on the network—in this case, the IP addresses of the
routers. Note that the routers are assigned as many IP addresses as the number of networks
they connect. Here, for example, router R1 connects Net1 and Net2 and has IP addresses
121.1.1.1 and 192.102.10.1. Similarly, R3 is assigned three IP addresses, as it interconnects
three networks Net1, Net3, and Net4.

Of the special addresses, 127.0.0.0 (or 127.x.x.x, where x can be any number between
0 and 255), also known as localhost, is used by a host to send a data packet to itself. It also is
commonly used for testing new applications before they are used on the Internet. Another
special address, in which the host ID field is all 1s, is the directed broadcast address. This
address is used to send a data packet to all hosts on a network—that is, for broadcasting on
a local network whose host is using the address as a destination address.

TABLE 11.1 IPv4 Address Classes and Valid IP Addresses

Address Range of Valid IP Addresses

Class Lowest Highest

A 0.0.0.0 127.255.255.255
B 128.0.0.0 191.255.255.255
C 192.0.0.0 223.255.255.255
D 224.0.0.0 239.255.255.255
E 240.0.0.0 247.255.255.255

R1
121.1.1.1

121.1.2.10
192.102.10.1

192.220.19.2
129.10.1.1

129.220.19.1

129.10.1.2

129.10.1.3

192.102.10.2

R3

R4

R2

Net1 Net2

Net4 Net3

FIGURE 11.5 An internetwork of four networks with one class A, one class B, and two class C
networks.

Networking and Internetworking    ◾    401

11.5.3 Symbolic Names

People prefer to use symbolic names rather than numeric addresses because names are
easier to remember, especially with the transition to the 128-bit-long numeric addresses in
IPv6. Also, symbolic names can remain the same even if numeric addresses change. Like
its IP address, the symbolic name of a host on the Internet must be unique. The Internet
allows the use of symbolic names by using a hierarchical naming scheme. The symbolic
names have the format

hostname.domain_name

where domain _ name is the symbolic name referring to the site and is assigned by
various registrars whose list is maintained by the NIC. The hostname is assigned and
controlled by the site that is allocated the domain _ name. The domain _ name con-
sists of two (or more) strings separated by a period (.). The right-most string in a domain
name is called the top-level domain (TLD). The string to the left of the right-most period
identifies an organization and can be chosen by the organization and assigned to it by the
NIC. If the string has already been assigned to another organization under the same top-
level domain, another string is assigned in order to keep the domain names unique. There
are three types of top-level domains: special TLDs, generic TLDs (gTLDs), and country code
TLDs (ccTLDs). According to the IANA’s Root Domain Database (http://www.iana.org/
domains/root/db), 750 TLDs have been registered at the time of writing. Details of these
domains are given in Table 11.2.

For the domain names that consist of more than two strings, the remaining strings are
assigned by the organization that owns the domain. Some example domain names are:
www.infinione.com, stanford.edu, intel.com, whitehouse.gov, uu.net, omsi.org, cs.berkeley.
edu, amazon.com.jp, pucit.edu.pk, www.beaverton.k12.org.us, www.abc.tv, www.nato.int,
www.darpa.mil, example.info, and bbc.co.uk. The authorities in a country assign strings to
the left of that country’s domain. Figure 11.6 illustrates the domain name hierarchy.

Attaching the name of a host to a domain name with a period between them yields the
fully qualified domain name (FQDN) for the host—for example, cs.stanford.edu, where
cs is the name of a host in the Department of Computer Science at Stanford University.
However, fully qualified domain names for the hosts on the Internet do not always have
three parts. Most organizations allow various groups within the organization to choose
the primary names for the hosts that they control and are responsible for. For example, the
Department of Computer Science at Stanford, which uses the primary name cs.stanford.
edu, uses www.cs.stanford.edu as the FQDN for its HTTP server. The School of Business
Administration at Duke, which uses the primary name fuqua.duke.edu, can use the host
name www.fuqua.duke.edu for its Web server.

11.5.4 Translating Names to IP Addresses: The Domain Name System

Because Internet software deals with IP addresses and people prefer to use symbolic
names, application software translates symbolic names to equivalent IP addresses. This
translation involves the use of a service provided by the Internet known as the Domain

http://www.fuqua.duke.edu
http://www.cs.stanford.edu
http://www.cs.stanford.edu
http://www.cs.stanford.edu
http://www.pucit.edu.pk
http://www.amazon.com.jp
http://www.cs.berkeley.edu
http://www.cs.berkeley.edu
http://www.omsi.org
http://www.uu.net
http://www.whitehouse.gov
http://www.intel.com
http://www.stanford.edu
http://www.bbc.co.uk
http://www.example.info
http://www.fuqua.duke.edu
http://www.cs.stanford.edu
http://www.darpa.mil
http://www.nato.int
http://www.abc.tv
http://www.beaverton.k12.org.us
http://www.infinione.com
http://www.iana.org/domains/root/db
http://www.iana.org/domains/root/db

402 ◾ UNIX: The Textbook, Third Edition

TABLE 11.2 Top-Level Internet Domains

Domain Type Top-Level Domain Assigned to/for

Special ARPA Used exclusively for Internet; currently second-e164.arpa, in-addr.
arpa, ip6.arpa, uri.arpa, urn.arpa

Generic ACCOUNTANTS Knob Town, LLC
ACTOR United TLD Holdco, Ltd.
AERO Reserved for members of air transport industry
AIRFORCE United TLD HoldCo, Ltd.
ARMY United TLD HoldCo, Ltd.
ATTORNEY United TLD HoldCo, Ltd.
BEER Top-Level Domain Holdings Limited
BIKE Grand Hollow, LLC
BIZ Reserved for businesses
BUILDERS Atomic Madison, LLC
CAREERS Wild Corner, LLC
CHRISTMAS Uniregistry, Corp.
CHURCH Holly Fields, LLC
COM Reserved for commercial organizations
COOP Reserved for cooperative associations
EDU Reserved for US postsecondary educational institutions that are

accredited by an agency on the US Department of Education’s list of
Nationally Recognized Accrediting Agencies

GOV Reserved for the US government
INFO First unrestricted top-level domain since .com, so it can be used by

anyone—businesses, marketers, and so on
INT Reserved for organizations established by treaties between

governments
MIL Reserved for the US military
MUSEUM Reserved for museums
NAME Reserved for individuals
NET Intended for internet service providers (ISPs) and telephone service

providers
ORG Intended for noncommercial communities but all are eligible to

register
PRO Restricted to credentialed professionals (this domain is being

established)
…
ZIP Charleston Road Registry, Inc.
ZONE Outer Falls, LLC

Country Code AU Australia
DE Germany (Deutschland)
FI Finland
JP Japan
PK Pakistan
…
UK United Kingdom
US United States of America

http://www.since.com

Networking and Internetworking    ◾    403

Name System (DNS). The DNS implements a distributed database of name-to-address
mappings. A set of dedicated hosts run server processes called name servers that take
requests from application software (also called the client software; see Section 11.7)
and work together to map domain names to the corresponding IP addresses. Every
organization runs at least one name server, often the Berkeley Internet Name Domain
(BIND) program. The applications use resolver functions such as gethostbyname
to invoke the DNS service. The gethostbyname resolver function maps a hostname
(simple or fully qualified) to its IP address, and gethostbyaddr maps an IP address
to its hostname.

An alternative, and old, scheme for using the DNS service is to use a static hosts file,
usually /etc/hosts. This file contains the domain names and their IP addresses, one per
line. The following command displays a sample /etc/hosts file on Solaris.

$ more /etc/hosts
#
Copyright 2009 Sun Microsystems, Inc. All rights reserved.
Use is subject to license terms.
#
Internet host table
#
::1 localhost
127.0.0.1 localhost loghost
202.147.169.197 solarissrv
203.128.0.6 yamsrv1.ece.gatech.edu loghost
203.128.0.1 shahalami
192.168.1.1 suraj-ge0
$

govcom

intel

edu

up

bus egr locis

loc

net

uu

pk

com

ptv

us

or

k12

beavton

FIGURE 11.6 A portion of the Internet domain name hierarchy.

404 ◾ UNIX: The Textbook, Third Edition

There are two problems with this scheme. First, its implementation depends on how the
system administrator configures the system. Second, owing to the sheer size of the Internet
and its current rate of growth, the static file can be extremely large.

You can use the ifconfig command to view and set network interface parameters,
including the IP address, localhost, netmask, broadcast address, and maximum transmis-
sion unit (MTU). The netmask, also known as the subnetmask, is a bit mask used by TCP/
IP to identify whether a host is on a remote network or on a local subnet. A broadcast
address is used by the IP layer in a host to send a datagram to all the hosts on a subnet
or to a remote network. The Ethernet broadcast address is all 1s. The MTU in a TCP/IP
network is the maximum size of an IP datagram (packet) and is dependent on the technol-
ogy used at the data link layer for connection to other hosts. The following is an example
run of the command on Solaris. The command output shows that you are logged on to a
host that has localhost and network interfaces each for IPv4 and IPv6 addresses. For IPv4,
localhost is 127.0.0.1, with MTU 8232 bytes and netmask ff000000; network IP address is
202.147.169.197 with MTU 1500 bytes and netmask ffffffe0; and broadcast IP address is
202.147.169.223. For IPv6, localhost is ::1 with MTU 8252 bytes and IP address for exter-
nal traffic is fe80::dad3:85ff:fe7b:21fe with MTU 1500 bytes. The system administrator can
enable or disable these interfaces or any of its parameters. Further discussion on the output
of the command and its various options for viewing and setting various network param-
eters is beyond the scope of this book.

$ ifconfig -a
lo0: flags=2001000849<UP,LOOPBACK,RUNNING,MULTICAST,IPv4,VIRTUAL>
mtu 8232 index 1 inet 127.0.0.1 netmask ff000000
net0: flags=100001000843<UP,BROADCAST,RUNNING,MULTICAST,IPv4,PHYSR
UNNING> mtu 1500 index 2 inet 202.147.169.197 netmask ffffffe0
broadcast 202.147.169.223
lo0: flags=2002000849<UP,LOOPBACK,RUNNING,MULTICAST,IPv6,VIRTUAL>
mtu 8252 index 1 inet6 ::1/128
net0: flags=120002004841<UP,RUNNING,MULTICAST,DHCP,IPv6,PHYSRUNN
ING> mtu 1500 index 2 inet6 fe80::dad3:85ff:fe7b:21fe/10
$

The ifconfig command is normally located in the /sbin directory on PC-BSD and the
/usr/bin directory on Solaris. If you get an error message such as ifconfig: Command
not found, you should include the relevant directories in your search path and re-exe-
cute the command. You can run the cat/etc/hosts command to display the domain
names and IP addresses of the hosts on your network.

You can use the host command to do the DNS lookup for a host whose domain
name is passed as a command line argument to it. The command allows you to display
IP address(es) for a domain name or vice versa. In the following session, we use the host
command to display the IP addresses of the hosts iastate.edu, berkeley.edu, and face-
book.com, and the domain names corresponding to two IPv6 addresses. The output of

http://www.facebook.com
http://www.facebook.com
http://www.berkeley.edu
http://www.iastate.edu

Networking and Internetworking    ◾    405

the host iastate.edu command displays the IPv4 and IPv6 addresses of iastate.edu
(Iowa State University). It also displays that 10 machines handle e-mail at Iowa State. The
output of the second command shows that the given IPv6 address is for thumb.iastate.
edu. The outputs of the fourth and sixth commands show the IPv4 and IPv6 addresses
for berkeley.edu and facebook.com, as well as the fact that 10 hosts each handle e-mail
for them. Finally, the output of the last command shows that the name server failed to
map the IP address 198.175.96.33 to any domain name, which does not mean that the
domain does not exist.

% host iastate.edu
iastate.edu has address 129.186.1.99
iastate.edu has IPv6 address 2610:130:101:100::9
iastate.edu mail is handled by 10 mailin.iastate.edu.
% host 2610:130:101:100::9
9.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.1.0.1.0.1.0.0.3.1.0.0.1.6.2.i
p6.arpa domain name pointer thumb.iastate.edu.
% host thumb.iastate.edu
thumb.iastate.edu has address 129.186.1.99
thumb.iastate.edu has IPv6 address 2610:130:101:100::9
% host berkeley.edu
berkeley.edu has address 169.229.216.200
berkeley.edu has IPv6 address 2607:f140:0:81::f
berkeley.edu mail is handled by 10 mx.berkeley.edu.
% host 2607:f140:0:81::f
f.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.1.8.0.0.0.0.0.0.0.4.1.f.7.0.6.2
.ip6.arpa domain name pointer wf-web-prod-03.IST.Berkeley.EDU.
% host facebook.com
facebook.com has address 173.252.120.6
facebook.com has IPv6 address 2a03:2880:2130:cf05:face:b00c:0:1
facebook.com mail is handled by 10 msgin.vvv.facebook.com.
% host 198.175.96.33
Host 33.96.175.198.in-addr.arpa not found: 3(NXDOMAIN)
%

On Solaris and some other UNIX systems, you can use the nslookup command to do
the DNS lookup. Here is a sample run of the command.

$ nslookup stanford.edu
Server: 208.67.222.222
Address: 208.67.222.222#53

Non-authoritative answer:
Name: stanford.edu
Address: 171.67.215.200

$

http://www.berkeley.edu
http://www.facebook.com
http://www.thumb.iastate.edu
http://www.thumb.iastate.edu
http://www.iastate.edu
http://www.iastate.edu

406 ◾ UNIX: The Textbook, Third Edition

Similarly, you can use the dig command to do the DNS lookup on Solaris, some other
UNIX systems, and Linux. PC-BSD does not support dig. Here is a sample run of the
command on Solaris.

$ dig stanford.edu

; <<>> DiG 9.6-ESV-R11 <<>> stanford.edu
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 5939
;; flags: qr rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 3, ADDITIONAL: 0

;; QUESTION SECTION:
;stanford.edu. IN A

;; ANSWER SECTION:
stanford.edu. 1800 IN A 171.67.215.200

;; AUTHORITY SECTION:
stanford.edu. 172800 IN NS Argus.stanford.edu.
stanford.edu. 172800 IN NS Atalante.stanford.edu.
stanford.edu. 172800 IN NS Avallone.stanford.edu.

;; Query time: 566 msec
;; SERVER: 202.147.169.201#53(202.147.169.201)
;; WHEN: Sat Oct 24 23:46:22 PKT 2015
;; MSG SIZE rcvd: 112

$

11.5.5 Requests for Comments (RFCs)

The TCP/IP standards are described in a series of documents, known as Requests for
Comments (RFCs). RFCs are first published as Internet Drafts and are made available
to all Internet users for review and feedback by placing them in known RFC reposito-
ries. After the review process is complete, a draft can become a standard. But not all
RFCs are Internet Standards documents; some are for information only and others are
experimental.

An RFC citation has the following format:

Title. Authors (up to three). Issue date. (Format: TXT=size-
in-bytes, PS=size-in-bytes, PDF=size-in-bytes) (Obsoletes
xxx) (Obsoleted by RFC####) (Updates RFC####) (Updated by
RFC####) (Also FYI ####) (Status: ssssss)

where #### is a four-digit decimal number; Format can be TXT (ASCII), PS (PostScript),
and PDF (Portable Document Format); and Status can be UNKNOWN, PROPOSED
STANDARD, DRAFT STANDARD, STANDARD, INFORMATIONAL, EXPERIMENTAL, or
HISTORIC. Here is an example citation:

Networking and Internetworking    ◾    407

1180 TCP/IP tutorial. T.J.
 Socolofsky, C.J. Kale. Jan-
 01-1991. (Format: TXT=65494
 bytes) (Status:
 INFORMATIONAL)

You can view and download an RFC by accessing any of the repositories maintained on ftp
or websites. The most common method of accessing an RFC is to browse the Web page at www.
ietf.org/rfc.html. As of the writing of this chapter, there are 7842 RFCs available in the RFC
index maintained on this Web page, the last one being submitted in April 2016 as an informa-
tional. If you want to be notified of the announcement of a new RFC, you can subscribe to the
following distribution list: http://mailman.rfc-editor.org/mailman/listinfo/rfc-dist.

In order to display the text version of an RFC in your browser, type http://www.ietf.
org/rfc/rfcNNNN.txt into the location field of your browser, where NNNN is the RFC
number. So, in order to display the text version of RFC 2020, type http://www.ietf.
org/rfc/rfc2020.txt into the location field of your browser.

The following in-chapter exercises are designed to enhance your depth of understanding
of your own network environment by way of learning the domain names and IP addresses
of hosts on your network. You will also use the host command to translate domain names
to IP addresses, and vice versa.

EXERCISE 11.4

Give the domain names of some hosts on your LAN. Ask your instructor for help if you
need any. How did you obtain your answer?

EXERCISE 11.5

List the IP addresses of the hosts identified in Exercise 11.4 in DDN. What is the class of
your network (A, B, C, or classless)? How did you find out?

EXERCISE 11.6

Does your network have an IPv6 address? What is its value? Show the command that you
used to obtain your answer to this question.

EXERCISE 11.7

Repeat the shell sessions given in this section demonstrating the host command on your
system. Do you get the same results? If not, how do the outputs of your commands differ
from those shown in this section?

EXERCISE 11.8

Browse the Web page at www.ietf.org/rfc.html, find the citation for RFC1118, and write it
down.

http://www.ietf.org/rfc/rfc2020.txt
http://www.ietf.org/rfc/rfcNNNN.txt
http://www.ietf.org/rfc.html
http://www.ietf.org/rfc/rfc2020.txt
http://www.ietf.org/rfc/rfcNNNN.txt
http://www.mailman.rfc-editor.org/mailman/listinfo/rfc-dist
http://www.ietf.org/rfc.html
http://www.ietf.org/rfc.html

408 ◾ UNIX: The Textbook, Third Edition

11.6 INTERNET SERVICES AND PROTOCOLS
Most users do not understand the intricacies of the Internet protocols and its architecture—
nor do they need to. They access the Internet by using programs that implement the
application-level protocols for various Internet services. Some of the most commonly
used services and the corresponding protocols are listed in Table 11.3. The services are
listed in alphabetic order and not according to their frequency of use. You can display
the /etc/services file on your host to view the Internet services and their well-known port
numbers.

The UNIX operating system has some network-related services that are not necessar-
ily available in other operating systems. They include services for displaying all the users
logged on to the hosts in a LAN, remote execution of a command, real-time chat in a net-
work, and remote copy. We discuss utilities for most of these services in Section 11.8.

11.7 THE CLIENT–SERVER SOFTWARE MODEL
Internet services are implemented by using a paradigm in which the software for a service
is partitioned into two parts. The part that runs on the host that the user is logged on to is
called the client software. The part that handles client requests and usually starts running
when a host boots up is called the server software. On the one hand, the server runs forever,
waiting for a client request to come. Upon receipt of a request, it services the client request
and waits for another request. On the other hand, a client starts running only when a user
runs the program for a service that the client offers. It usually prompts the user for input
(command and/or data), transfers the client’s request to the server, receives the server’s
response, and forwards the response to the user. Most clients terminate with some sort of
“quit” or “exit” command.

Many of the applications are connection-oriented client–server models, in which the
client sends a connection request to the server and the server either accepts or rejects the
request. If the server accepts the request, the client and server are connected through a
virtual connection. From this point on, the client sends user commands to the server as
requests. The server process serves client requests and sends responses to the client, which
sends them to the user in a particular format. Communication between a client and a cor-
responding server—and the client’s interaction with the user—is dictated by the protocol
for the service offered by an application. Figure 11.7 shows an overview of the client–server
software model.

Thus, when you run a program, such as Firefox, that allows you to surf the Web, an http
client process starts running on your host. By default, most clients display the home page

TABLE 11.3 Popular Internet Services and Corresponding Protocols

Service Protocol

Electronic mail SMTP (Simple Mail Transfer Protocol)
File transfer FTP (File Transfer Protocol)
Remote login SSH (Secure Shell) and TELNET
Web browsing HTTP (Hyper Text Transfer Protocol) and HTTPS (HTTP Secure)

Networking and Internetworking    ◾    409

of the organization that owns the host on which the client runs, although it can be set to
any page, including a blank page. When you want to view the Web page of a site, you give
the site’s Uniform Resource Locator (URL) to the client process. For displaying a home
page, the URL has the format:

http://host/page

where host can be the fully qualified domain name or IP address (in DDN) of the com-
puter that has the home page you want to display and page is the pathname for the file
containing the page to be displayed—for example, http://cnn.com, http://www.stroustrup.
com, http://mitadmissions.org/index.php, and http://profiles.stanford.edu/russ-altman.
The client tries to establish a connection with the http server process on the site corre-
sponding to the URL. If the site has the http server running and no security protections
such as a password are in place, a connection is established between the client and server.
The server then sends the Web page to the client, which displays it on the screen, with any
audio or video components sent to appropriate devices. Note that http can be replaced
with ftp if you want to access an ftp site through your browser, or with ssh if you want
to remotely logon via the Secure Shell (SSH) protocol.

You can invoke the client programs for most Internet services by using the correspond-
ing commands, such as ssh for the SSH service and ftp for the FTP service. Most of these
commands permit a domain name or IP address of the host on which the server runs as
an argument in the command. Some commands also allow port number as an argument.
Client software that has such flexibility built in is known as a fully parameterized client.
Such clients are important in terms of the flexibility they offer. They also allow testing of
updated server software by running it on a port that is not well known and contacting
it with the client. A telnet client, discussed in Section 11.8, is a good example of a fully
parameterized client.

11.8 APPLICATION SOFTWARE
Numerous programs that implement the application-level protocols just discussed are
available on networks of UNIX hosts. Of the most commonly used applications described
here, some are available on UNIX- and Linux-based systems only, whereas others are avail-
able to all the hosts on the Internet.

Client
application

Communication between
client and server

Server
application

User’s
host

Internet Remote
host

FIGURE 11.7 Depiction of the client–server software model.

http://www.stroustrup.com
http://www.profiles.stanford.edu/russ-altman
http://www.mitadmissions.org/index.php
http://www.stroustrup.com
http://www.cnn.com
http://www.host/page

410 ◾ UNIX: The Textbook, Third Edition

11.8.1 Displaying the Host Name

Network-based applications use the user@host address format to identify a user on a
network on the Internet. You can use the hostname and uname commands to display
the name of the host you are logged on to. On some systems, the host name is shown in
the short, simple name format, and on others it is displayed in the long, FQDN format.
If you have to identify the host on the network that you are logged on to, you can use the
hostname -s command to display the short format, which is simply the name of the
host (the left-most string in the FQDN format). Some systems do not allow you to use
the -s option unless you are the superuser. You can use the uname -n command to
display the host name of the computer that you are logged on to in the FQDN format. The
uname -a command displays complete information about a host, including the operating
system it is running and the name of the CPU. On Solaris, you can use the –X option to
display the expanded information, one item per line. The following are some examples of
the hostname and uname commands on Solaris.

$ hostname
solarissrv
$ uname -n
solarissrv
$ uname -a
SunOS solarissrv 5.11 11.2 i86pc i386 i86pc
$ uname -X
System = SunOS
Node = solarissrv
Release = 5.11
KernelID = 11.2
Machine = i86pc
BusType = <unknown>
Serial = <unknown>
Users = <unknown>
OEM# = 0
Origin# = 1
NumCPU = 4
$

The following are the sample runs of hostname and uname on PC-BSD.

% hostname
pcbsd-srv
% uname -n
pcbsd-srv
% uname -a
FreeBSD pcbsd-srv 10.0-RELEASE-p6 FreeBSD 10.0-RELEASE-p6 #0
acf484b(releng/10.0): Mon Feb 24 15:14:38 EST 2014 root@avenger:/
usr/obj/root/pcbsd-build-10.0-EDGE/git/freebsd/sys/GENERIC amd64
%

Networking and Internetworking    ◾    411

11.8.2 Displaying a List of Users Using Hosts on a Network

You can use the rwho (remote who) command to display information about the users cur-
rently using machines on your network. The output of this command is like that of the who
command. An output line contains the login name of a user, the computer and terminal
the user is logged on to, and the date and time of login. The last field is blank if the user
is currently typing at the terminal; otherwise, it shows the number of hours and minutes
since the user last typed on the keyboard. You can use the rwho command with the -a
option to include the users who are currently idle. The following session shows a sample
output of the command.

$ rwho | more
bobk upibm7:ttyC4 Jul 26 12:03
dfrakes upibm47:ttyp2 Jul 26 11:49
lulay upsun17:pts/0 Jul 26 10:17
oster upsun17:pts/2 Jul 26 12:28
sarwar upibm7:ttyp2 Jul 26 11:15
$

You can use the rusers (remote users) command to display the names of the users
logged on to the machines on your local network. The login names of the users currently
using a machine are displayed one line per machine. The following is a brief description of
the command.

SYNTAX

rusers [options] [host_list]

Purpose: Display the login names of the users logged on to all the machines on your local
network

Output: Information about the users logged on to the hosts on your local network, one
line per machine

Commonly used options/features:
-a Display a host name even if no user is using it
-l Display the user information in a long format similar to that displayed by the who

command

The rusers command broadcasts a query to all the hosts on the network, asking them
to reply with user information. It collects all the replies and displays the information in the
order received. The following is a simple run of the command. Note that host names are
displayed in a 16-character field, which is why the edu part of the names is not completely
displayed. As shown in the output of the command, the user kent is logged in twice on the
upibm8.egr.up.edu host, sarwar is logged on to upsun29.egr.up.edu, and users kittyt and
deborahs are logged on to upibm6.egr.up.edu, with kittyt logged on twice.

$ rusers | more
upibm48.egr.up.e kent kent

http://www.upibm8.egr.up.edu
http://www.upsun29.egr.up.edu
http://www.upibm6.egr.up.edu

412 ◾ UNIX: The Textbook, Third Edition

upsun29.egr.up.e sarwar
upibm6.egr.up.ed kittyt kittyt deborahs
$

You can display the names of the users logged on to a particular host by specifying the
host as an argument to the rusers command. The following command displays the login
names of the users logged on to the upibm7 host.

$ rusers upibm7
upibm7.egr.up.edu upppp44 upppp upppp26 kathek khnguyen upppp14
leslie sarwar sarwar
$

As shown in the following session, you can use the rusers command with the -a
option to display host names even if no user is logged on to them. Doing so allows you to
find out the names of all the hosts on your network.

$ rusers -a | more
upsun12.egr.up.e
...
upsun27.egr.up.e
upibm48.egr.up.e kent kent
upsun29.egr.up.e sarwar
upsqnt.egr.up.ed
...
upibm3.egr.up.ed
upibm6.egr.up.ed kittyt kittyt deborahs
$

11.8.3 Displaying the Status of Hosts on a Network

You can use the ruptime (remote uptime) command to display the status of all the com-
puters connected to your LAN. Each line of the output has the following format: computer
(host) name, system status (up/down), the amount of time the computer has been up (or
down; the number before the + sign indicates the number of days), the number of users
logged on to each host, and the load factor for each host. The following is a brief description
of the command.

SYNTAX

ruptime [optins]

Purpose: Show status of machines on the LAN
Output: Status of machines, including machine name, up/down status, time a machine

has been up (or down) for (machine uptime), and the number of users logged on the
machine

Networking and Internetworking    ◾    413

Commonly used options/features:
-a Include even those users who have been idle for an hour or more
-l Display output after sorting it by load average
-t Display output after sorting it by up time
-u Display output after sorting it by the number of users

The following sessions demonstrate the use of the ruptime command with and with-
out the –u option.

$ ruptime | more
upibm up 1+09:16, 0 users, load 0.00, 0.00, 0.00
...
upsun29 up 69+23:51, 2 users, load 1.48, 1.35, 1.32
$ ruptime –u | more –u
upibm up 1+09:25, 10 users, load 0.00, 0.00, 0.00
upibm up 12+01:01, 4 users, load 0.10, 0.04, 0.04
upibm up 8:25, 2 users, load 0.00, 0.00, 0.03
upibm up 69+23:57, 1 user, load 1.30, 1.31, 1.31
...
$

Note that upsun29 has been up for almost 70 days.
In the following in-chapter exercises, you will use the ruptime, rwho, and

rusers commands to appreciate their syntax and output. You will also get a feel for what
the Internet is primarily used for.

EXERCISE 11.9

Use the ruptime command on your system to find out how many hosts are connected to
your LAN.

EXERCISE 11.10

Use the rwho and rusers commands to display information about the users who are
currently logged on to the hosts on your network.

EXERCISE 11.11

Ask your friends and fellow students about the two network services they use most often.
Which services are they? Which is the more popular of the two? How many people did you ask?

11.8.4 Testing a Network Connection

You can test the status of a network or a particular host on it by using the ping command.
If the ping command does not work on your system, use the type ping command to
find its location, update your search path, and try the command again. It is normally in the

414 ◾ UNIX: The Textbook, Third Edition

/usr/sbin directory on Solaris and in the /sbin directory on PC-BSD. On PC-BSD, you can
also use the whereis ping command to find the location of command. The following is a
brief description of the command.

SYNTAX

ping [optins] hostname

Purpose: Send IP datagrams to hostname to test whether it is on the network (or Internet);
if the host is alive, it simply echoes the received datagram.

Output: Message(s) indicating whether the machine is alive
Commonly used options/features:

-c count Send and receive count packets
-f Send 100 packets per second or as many as can be handled by the

network; only the superuser can use this option
-s packetsize Send packetsize packets; the default is 56 bytes (plus an 8-byte

header)

The following session on PC-BSD illustrates the use of the ping command with and
without options. The output of the command is different for some systems, with the com-
mand displaying the echoed messages until you press <Ctrl+C>. We used the -c option
in the following session to send and receive three messages. The -c and -s options are used
to send and receive three 32-byte messages plus an 8-byte ICMP header. Note that mes-
sages greater than 56 bytes are not allowed, as shown by the output of the last command.

% ping stanford.edu
PING stanford.edu (171.67.215.200): 56 data bytes
PING stanford.edu (171.67.215.200): 56 data bytes
64 bytes from 171.67.215.200: icmp_seq=0 ttl=231 time=286.052 ms
64 bytes from 171.67.215.200: icmp_seq=1 ttl=231 time=286.336 ms
64 bytes from 171.67.215.200: icmp_seq=2 ttl=231 time=286.038 ms
64 bytes from 171.67.215.200: icmp_seq=3 ttl=231 time=286.395 ms
64 bytes from 171.67.215.200: icmp_seq=4 ttl=231 time=285.864 ms
64 bytes from 171.67.215.200: icmp_seq=5 ttl=231 time=286.047 ms
<Ctrl+C>
--- stanford.edu ping statistics ---
6 packets transmitted, 6 packets received, 0.0% packet loss
round-trip min/avg/max/stddev = 285.864/286.122/286.395/0.185 ms
% ping -c 3 stanford.edu
PING stanford.edu (171.67.215.200): 56 data bytes
64 bytes from 171.67.215.200: icmp_seq=0 ttl=231 time=286.161 ms
64 bytes from 171.67.215.200: icmp_seq=1 ttl=231 time=286.175 ms
64 bytes from 171.67.215.200: icmp_seq=2 ttl=231 time=285.770 ms

--- stanford.edu ping statistics ---
3 packets transmitted, 3 packets received, 0.0% packet loss
round-trip min/avg/max/stddev = 285.770/286.035/286.175/0.188 ms

Networking and Internetworking    ◾    415

% ping -c 3 -s 32 stanford.edu
PING stanford.edu (171.67.215.200): 32 data bytes
40 bytes from 171.67.215.200: icmp_seq=0 ttl=231 time=285.965 ms
40 bytes from 171.67.215.200: icmp_seq=1 ttl=231 time=285.657 ms
40 bytes from 171.67.215.200: icmp_seq=2 ttl=231 time=307.640 ms

--- stanford.edu ping statistics ---
3 packets transmitted, 3 packets received, 0.0% packet loss
round-trip min/avg/max/stddev = 285.657/293.087/307.640/10.291 ms
% ping -c 3 -s 128 stanford.edu
ping: packet size too large: 128 > 56: Operation not permitted
%

The Solaris version of the ping command simply informs you if the specified host is
alive or not. Only the superuser is allowed to use the command with options. Here are a
few sample uses. Note that whereas you can use the –c option, you are not allowed to use
the –s option with packet sizes smaller or larger than the default size (56 bytes).

$ ping stanford.edu
stanford.edu is alive
$ ping -c 3 stanford.edu
stanford.edu is alive
$ ping -c 3 -s 32 stanford.edu
ping: bad data size: stanford.edu
$ ping -c 3 -s 128 stanford.edu
ping: bad data size: stanford.edu
$

You can use the IP address of a host in place of its hostname. For example, you can use
ping 171.67.215.200 instead of ping stanford.edu, as in

$ ping 171.67.215.200
171.67.215.200 is alive
$

11.8.5 Displaying Information about Users

You can use the finger command to display information about users on a local or remote
host. The information displayed is extracted from a user’s ~/.plan and ~/.project files. The
following is a brief description of the command.

SYNTAX

finger [options] [user-list]

Purpose: Display information about the users in user_list; without a user_list, the com-
mand displays a short status report about all the users currently logged on to the speci-
fied hosts

http://www.stanford.edu

416 ◾ UNIX: The Textbook, Third Edition

Output: User information extracted from the ~/.project and ~/.plan files
Commonly used options/features:

-m Match user_list to login names only
-s Display output in a short format

The following session shows the simplest use of the command in which information
about a user, Birch Tree, on the host is displayed.

% finger Birch
Login: tree Name: Birch Tree
Directory: /usr/home/tree Shell: /bin/csh
On since Sat Oct 18 21:55 (PKT) on pts/1 from 102.102.241.10
No Mail.
Plan: To become an informed and efficient UNIX user.
%

You can use the finger command with the -s option to display the command’s
output in a short format and the -m option to match user-list to login names only. The
finger -m Tree command displays the same information as the finger Birch
command if the login name of the user is tree (uppercase and lowercase letters are con-
sidered the same by the networking commands). However, if the login name of the user
is btree and the login name birch does not exist in the system, the finger command
displays the message informing you accordingly.

When run without any argument, the finger command returns the status of all the
users who are currently logged on to your machine. The amount of information displayed
varies somewhat, depending on the UNIX system that your host runs. The following com-
mand runs are on PC-BSD and Solaris systems, respectively.

% finger
Login Name TTY Idle Login Time Office Phone
davis James Davis pts/0 1d Aug 14 09:45
sarwar Mansoor Sarwar pts/1 Tue 22:43
%

$ finger
Login Name TTY Idle When Where
root Super-User console 7:09 Sat 16:39
sarwar Mansoor Sarwar pts/1 Wed 03:50 39.59.92.15
$

You can use the finger command to display information about a user on a host on the
Internet, provided the host offers the finger service and has the finger server (fingerd; the
finger daemon) running. Remote finger is disabled on most systems. The following com-
mand can be used to display information about the user Pohm at the iastate.edu host.

http://www.iastate.edu

Networking and Internetworking    ◾    417

% finger Pohm@iastate.edu
[iastate.edu]
Trying 129.186.1.99...
Iowa State University site-wide finger server.
Use 'finger "/h"@iastate.edu' for help information.

NetID: Real Name: Address: Phone:
-------- -- ---------------------------- -- ---------------------- ------- --------
avpohm Pohm, Arthur V
%

The format of the output is generally the same, but it can vary from one site to another.
Try the finger davis@iastate.edu command to see differences in output.

The following session shows the output of the finger command when a site contains
more than one user with the specified name (Cohen in this case) or the specified user does
not exist.

% finger Cohen@iastate.edu
[iastate.edu]
Trying 129.186.1.99...
Iowa State University site-wide finger server.
Use 'finger "/h"@iastate.edu' for help information.

3 entries found.

NetID: Real Name: Address:
Phone:
-------- ------------------------------ -------- ----------------- ---------------
cacohen Cohen, Cassidy A 3312 West St, Ames
IA +1 847 231 6283
ccohen Cohen, Chantel 2585 Campus Postal
Sta, +1 931 494 7748
dcohen Cohen-Corticchiato, Denis [GE 253 Science I, Ames
IA +1 515 294 4477
[sarwar@pcbsd-srv] ~%
% finger sarwar@iastate.edu
[iastate.edu]
Trying 129.186.1.99...
Iowa State University site-wide finger server.
Use 'finger "/h"@iastate.edu' for help information.

NOT FOUND: sarwar
%

If a host does not run the finger server, the finger command displays the
Connection refused message for you, as in

% finger crenshaw@up.edu
[up.edu]

mailto:davis@iastate.edu

418 ◾ UNIX: The Textbook, Third Edition

finger: connect: Connection refused
%

If DNS cannot find a mapping for a domain name, the finger command returns an
appropriate error message. When this happens, you can run the host command to find
the IP address for the destination host and rerun the finger command by using the IP
address instead of the domain name.

With *@hostname as its argument, the command displays the status of all the users
who are currently logged on to hostname. Some sites put restrictions on the use of the wild
card *—for example, requiring the use of at least two characters in all queries. Most sites
today do not allow the use of the wild card *.

In the following in-chapter exercises, you will use the ping and finger commands to
understand their syntax and various characteristics.

EXERCISES 11.12

Run the ping command to determine whether a remote host that you know about is up.

EXERCISES 11.13

Give the command for displaying information about yourself on your UNIX host.

EXERCISES 11.14

Give the command for displaying information about a user on your host, with “John” as
his first or last name.

EXERCISES 11.15

Give a command for displaying information about all the users who are currently logged
on to the site cmu.edu.

11.8.6 Remote Login

Most UNIX systems support three commands that allow you to log on to a remote host.
Two are based on the Internet service for remote login, telnet and ssh, and the other
is a BSD command (supported by most UNIX systems) known as rlogin. We discuss all
three in the following order: telnet; rsh (remote shell), along with all r commands
(remote insecure commands with commands and data traveling in plaintext); and ssh
(Secure Shell), along with all s commands (remote secure commands with commands and
data traveling through encrypted channels).

11.8.6.1 Telnet
The telnet protocol is designed to allow you to connect to a remote computer over a network.
This protocol allows you to log on not only to UNIX-based computer systems but also to any
computer system that supports the telnet protocol and has a telnet server process running

http://www.cmu.edu

Networking and Internetworking    ◾    419

on it. For example, you can connect a UNIX-based computer system to a Windows-based
PC. Although you usually need to have a valid account on the remote system, some remote
machines allow you to log on without having an account. After the connection has been
established, your host or terminal (or display window in a GUI environment) acts as a ter-
minal connected to the remote host. From this point on, every keystroke on your terminal
is sent to the remote host. As we mentioned before, telnet is implemented as client–server
software. In other words, the host to which you want to connect must have a telnet server
process running on a well-known port designated for it, and your command execution
starts a telnet client process on your host. The well-known port for the telnet server is port
number 23. Because the telnet protocol is based on TCP, the telnet client and server pro-
cesses establish a virtual connection before prompting you for input. Multiple telnet client
processes running on the same host or different hosts can communicate with the same
telnet server process—that is, multiple users can use a remote host via telnet.

The UNIX command for starting a telnet client process is telnet. The following is a
brief description of the command.

SYNTAX

telnet [options] [host [port]]

Purpose: To connect to a remote system host via a network; the host can be specified by
its name or IP address in dotted decimal notation

Commonly used options/features:
-a Attempt automatic login
-l Specify a user for login

The telnet client operates in two modes: Input mode and Command mode. When exe-
cuted without an argument, the client enters Command mode and displays the telnet>
prompt. When run with a host argument, the client displays the login: prompt to take
your login name and password. Once a connection has been established between your
client and the server, you interact directly with the telnet client. After establishing a
connection with the server, the client enters Input mode. In this mode, the client takes
character-at-a-time or line-at-a-time Input mode, depending on what the server on the
remote host supports; the default mode is character-at-a-time. All input mode data, except
<Ctrl+]>, known as the telnet escape character, are commands for the remote operating
system, transferred to it via the telnet server process. The telnet escape character puts telnet
in Command mode. Once it is in Command mode, you can use the ? or help command
to display a brief summary of the telnet commands. Table 11.4 shows some useful telnet
commands and their purpose.

The most common use of the telnet command is without an option. The following
session shows the use of telnet to log on to another host, upsun29, on your network. As
shown, after the connection with upsun29 has been established, you are prompted for your
login name and password (shown as a sequence of * characters). You must have a valid user
account on upsun29 to be able to use it via telnet.

420 ◾ UNIX: The Textbook, Third Edition

$ telnet upsun29
Trying 192.102.10.89...
Connected to upsun29.egr.up.edu. Escape character is '^]'.
UNIX(r) System V Release 4.0 (upsun29.egr.up.edu) login: sarwar
Password: **********
Last login: Sat Oct 18 10:05:37 from up You have mail.
DISPLAY = (') TERM = (vt100)
$

The following session shows how you can use the telnet command for logging on
to a host on a remote site (network). Note that you have to use the FQDN of the host to
which you want to telnet. The IP address of the host is 191.220.19.2, so you can execute the
telnet 191.220.19.2 command to achieve the same result. The session also shows that
you can put telnet into Command mode by pressing <Ctrl+]> and run various telnet
commands before quitting. Some commands, such as status, return you to the input
mode after completing their task. In the following session, we show that you can use the
z command to suspend the telnet client and transfer control to the shell on the local host.
The ps command shows the status of processes on the local machine. The fg command
reverts to the telnet client. The <Ctrl+]> command puts telnet into Command mode, and
the quit command terminates the telnet session.

$ telnet pccaix.sycrci.pcc.edu
Trying 192.220.19.2...
Connected to pccaix.sycrci.pcc.edu. Escape character is '^]'.
telnet (pccaix)
AIX Version 4
(C) Copyrights by IBM and by others 1982, 1996. login: msarwar
msarwar's Password:
Last login: Mon Jul 28 16:57:29 PDT 2003 on /dev/pts/1 from
192.220.11.131
[YOU HAVE NEW MAIL]
$
...
<Ctrl+]>
telnet> z
Suspended
$ ps

TABLE 11.4 Commonly Used Telnet Commands

Command Meaning

? or help Display a list of telnet commands and their purpose
close or quit Close the telnet connection
mode Try to enter Line or Character mode
open host Make a telnet connection to host
z Suspend the telnet session and return to the local host;

resume the telnet session with the fg command

Networking and Internetworking    ◾    421

...
$ fg
telnet pccaix.sycrci.pcc.edu
...
<Ctrl+]>
telnet> quit
$

As shown in the following session, you can use the telnet command to connect to a
telnet server that is not running on a well-known port. In this case, the server is running
on port number 5000. But be sure to login as guest and not register for anything.

$ telnet chess.net 5000
Trying 174.129.236.93...
Connected to chess.net.
Escape character is '^]'.
 *
WELCOME TO... /*\
 */
 /_/_/\ _ _ _ *<>*<*>*<>*
 (<>*<>(<>) /*_/*_/*\ /*\
 /<>___\<>/ _/ _/ _/ /_*/_/\ _/_/_ _/_/_
 /<*>/ (<>) (*) <*> (*) (*/_<*>_*) /*><*><*\ /*><*><*\
 /<*>/ \/ | \/<*>\/ | */*/ **/ /<>()(<>) /<>()(<>)
 (<*>(<<><>*<><>> <<>(_ _ <<>(___ \/ <<>(___ \/
 (<*>(*(<*>)*/ /<><*><>\ (_*_<*>\ (_*_<*>\
 \<*>\ /\ /*/<*>*\ \<><*><>/)<*>))<*>)
 \<*>___(<>) <<>()<>> <<>(/\ /<*>) /\ /<*>)
 \<>/***/<>\ |<>| |<>| |<>(__/\ (<>)_/<*>/ (<>)_/<*>/ /\
 (<>_<>(<>) (<>) (<>) (*<>*<>*) _<>*<>_/ _<>*<>_/ (<>)
 \/ \/ \/ \/ \/ \/ \/ \/ \/ \/ \/ \/

 / /\ /\
 (<><>) (<>) _/_/_ _/_/**_/_
 / \<>/ \ /**/ (*><*><*) (*><*>**<*><*)
 /<*>/\(*)\ /<>/ /*/ \(<>) /<*>/
 /(*)/ \(*)> /<>/ /*(\/ /<*>/
 /(*)/ \(*)/<>/ <>*<>*<>*<> /<*>/
 /(*)/ \ /<>/ /*(/\ /<*>/
 / \/ \/\/ /<>_(<>) /<*>(
 (<>) (<>) (_<>_<>_/ (_<*>_)
 \/ \/ \/ \/ \/

Login Screen By Aussie and Isis.
Welcome to Chess.net! Come in and join the fun!
...
login: guest

422 ◾ UNIX: The Textbook, Third Edition

You are "guest173". You may use this name to play unrated games.
...
chess% quit
chess.net: Train with grandmasters, play with friends. (TM)
...
$

You can run the telnet command with a well-known port number as an optional
parameter to invoke various Internet services that are connection triggered—that is, ser-
vices that respond to a connection request from a client. Although not offered at too many
hosts anymore, these services include the finger and daytime services offered at the well-
known ports 79 and 13, respectively. In the following session, we use the telnet com-
mand to connect with the finger server at iastate.edu and display information about the
user Pohm.

$ % telnet iastate.edu 79
Trying 129.186.1.99...
Connected to iastate.edu.
Escape character is '^]'.
Pohm
Iowa State University site-wide finger server.
Use 'finger "/h"@iastate.edu' for help information.

NetID: Real Name: Address: Phone:
-------- -- ----------------------------- --- --------------------- ---- ----------
avpohm Pohm, Arthur V
Connection closed by foreign host.
$

11.8.6.2 The rlogin Command
The rlogin command allows you to log on to a host on your local network. All the hidden
files that are executed for a regular login are also executed for remote login. After logging
on, therefore, you are put in your home directory and your login shell is executed. As we
mentioned before, the rlogin command was originally designed for BSD UNIX, but it
works on all the systems that have BSD support built into them (e.g., AIX, which is based
on System V). The following is a brief description of the rlogin command.

SYNTAX

rlogin [options] host

Purpose: To connect to a remote UNIX host via a network; the host can be specified by
its name or IP address in the dotted decimal notation

Commonly used options/features:
-e C Set the escape character to C (the default is ~)
-l user Use user as the login name on the remote host

http://www.iastate.edu

Networking and Internetworking    ◾    423

You can use the rlogin command to log on to a UNIX host on your network, provided
you have a valid login name and password on the remote host. The following session shows
how you can use the command to connect to a UNIX host upsun29 on your network. Note
that, unlike the setup on our system, the rlogin command might not prompt you for a
login name and password if they are the same on the local and remote hosts. Because
the rlogin command can be used with an IP address in place of the hostname, the rlogin
192.102.10.29 command accomplishes the same task. After using the remote system,
you can use the logout command to log out from the remote system and return to the
local system. In the following session, we also show that you can use the hostname and
whoami commands to confirm that you are logged in as the same user (sarwar) and that
the machine you log on to is upsun29.

$ rlogin upsun29
Password: xxxxxx
...
You have mail. DISPLAY = (') TERM = (vt100)

$ hostname
upsun29.egr.up.edu
$ whoami
sarwar
$ logout
Terminal session terminated by sarwar rlogin: connection closed.
$ hostname
upsun25.egr.up.edu
$

You can use the -l option to log on remotely with a login name different from the one
you used to log on to the local host. You can use the following command to log on to the
remote host upsun with the username perform. (Note that upsun is on the same LAN as
your host.) The rlogin command prompts you for your password, and you must have the
password for the user for a successful login. If you do not have the right password, rlogin
lets you try other login names (or the same login name) a few times.

$ rlogin upsun -l perform
Password: xxxxxx
Last login: Mon Nov 20 12:08:12 from upsun21.up.edu
SunOS 5.11 11.2 (UPSUN_SERVER) #5: Fri Nov 14 17:31:44 PST 2014
DISPLAY 5 (upx46:0.0)
TERM 5 (vt100)
$ whoami
perform
$ hostname
upsun.egr.up.edu
$

424 ◾ UNIX: The Textbook, Third Edition

The following session shows remote login to a UNIX host that is not on your local net-
work. Here, cs00.syi.pcc.edu is the FQDN of a host on the Internet, and the user is msarwar.
Of course, you must enter the valid password for msarwar to be able to log in. You could have
used the rlogin -l msarwar@cs00.syi.pcc.edu command to establish this session.

$ rlogin cs00.syi.pcc.edu -l msarwar
msarwar's Password: xxxxxx
Last login: Wed Nov 22 06:41:41 2003 on /dev/pts/2 from upibm7.
egr.up.edu
[YOU HAVE NEW MAIL]
$ whoami
msarwar
$ hostname
cs00
$

In the following in-chapter exercises, you will use the rlogin and telnet commands
to understand how they can be used to log on to a remote host on your network or on the
Internet.

EXERCISE 11.16

Use the telnet and rlogin commands to establish remote login sessions on a host on
your LAN. Note that you will not be able to establish these sessions if the remote system
does not run the corresponding server processes (e.g., telnetd or in.telnetd; use the
ps -el command to determine this).

EXERCISE 11.17

Try to establish a telnet session with the host locis.loc.gov and browse through the library
at your pace.

EXERCISE 11.18

Repeat all of the sessions shown in this section on telnet on your system. Do your results
match ours?

11.8.7 Remote Command Execution

You can use the rsh (remote shell) command to execute a command on a remote host
on your local network. Remote login is a relatively time-consuming process, but the rsh
command gives you a faster way to execute commands on remote machines if the pur-
pose of your remote login is to execute only a few commands. We used this command in
Chapter 9 to illustrate the power of I/O redirection in UNIX; now we discuss it formally.
The following is a brief description of the command.

http://www.locis.loc.gov
mailto:msarwar@cs00.syi.pcc.edu
http://www.cs00.syi.pcc.edu

Networking and Internetworking    ◾    425

SYNTAX

rsh [options] host [command]

Purpose: To execute a command on a remote machine, host, on the same network; the
rlogin command is executed if no command is specified

Commonly used options/features:
-l user Use user as the login name on the remote host

When you execute a command on a remote machine, your current directory on the
remote machine is set to your home directory and your login shell on the remote machine
is used to execute the command. Only the shell environment hidden files (.cshrc for the
C shell, .chrc for the C shell, etc.) are executed before the rsh command is executed. The
general environment files (.login and .profile) are not executed. The standard files (stdin,
stdout, and stderr) for the remote command are attached to the standard files used for
your local commands—that is, your terminal by default. Thus, when I/O redirection is
used, the redirected files are taken from your local machine unless the command to be
executed is enclosed in single quotes. We discuss this concept later in this section, and
in all cases we assume that upsun10 is the local machine and that upsun29 is the remote
machine.

The following command line executes the ps command on upsun29, a trusted host, and
its output is sent to the display screen of upsun10 (the local machine). The semantics of the
command line are depicted in Figure 11.8.

$ rsh upsun29 ps
 PID TTY TIME CMD
6525 pts/0 0:02 -bash
6565 pts/0 0:00 -bash
6566 pts/0 0:00 sort data | uniq > sorted_data

$

The following command line executes the sort students command on upsun29,
taking input from the students file on upsun29, and sends the results back to the sorted_
students file on the local machine, upsun10. If the students file does not exist, the error
message is also sent back to upsun10. The semantics of the command are illustrated in
Figure 11.9.

stderr

stdoutupsun29
(Remote machine) upsun10

(Local machine)

ps Screen

FIGURE 11.8 Semantics of the rsh upsun29 ps command.

426 ◾ UNIX: The Textbook, Third Edition

$ rsh upsun29 sort students > sorted_students
$

In the following command line, however, the sort command takes input from the
students file on the local machine, upsun10. As with the previous command, the output is
sent to the sorted_students file on the local machine.

$ rsh upsun29 sort < students > sorted_students
$

If you want the sort command to take input from the local file students and store
the sorted results in the sorted_students file on the remote machine, you must quote the
remote command with output redirection, as in:

$ cat students | rsh upsun29 'sort > sorted_students'
$

You can combine the I/O redirection operators with the pipe operator to create power-
ful command lines that take input from local and remote files, execute commands on local
and remote machines, and send the final results to a file on the local or remote machine.
We discussed a few such command lines in Chapter 9, which you should revisit at this time.

When used without an argument (which is optional), the rsh command reverts to the
rlogin command. All the rules for the rlogin command apply in this case, and all the
hidden files that are executed during a normal login are executed. The following session
shows the use of the rsh command without an argument. In the first example, the com-
mand is used to log on to upsun29 on the same network. In the second example, the rsh
command is used to log on to a host on a different network on the Internet.

$ rsh upsun29
Last login: Mon Oct 20 18:31:17 from upibm7.egr.up.ed
Sun Microsystems Inc.

stdout

upsun29
(Remote machine)

upsun10
(Local machine)

screen

sorted_students

students sort

stderr

FIGURE 11.9 Semantics of the rsh upsun29 sort students > sorted _ students
command.

Networking and Internetworking    ◾    427

SunOS 5.5.1 Generic May 2014
) SPLAY 5 (TERM 5 (vt100)
$
$ rsh cs00.syi.pcc.edu -l msarwar
msarwar's Password:
Last login: Mon Oct 20 18:56:07 PST 2014 on /dev/pts/2 from
upibm7.egr.up.edu
[YOU HAVE NEW MAIL]
$

11.8.8 File Transfer

You can use the ftp (File Transfer Protocol) command to transfer files to and from a
remote machine on the same network or another network. This command is commonly
used to transfer files to and from a remote host on the Internet. The following is a brief
description of the command.

SYNTAX

ftp [options] [host]

Purpose: To transfer files from or to a remote host
Commonly used options/features:

-d Enable debugging
-i Disable prompting during transfers of multiple files
-v Show all remote responses

As we mentioned earlier in the chapter, the File Transfer Protocol is a client–server pro-
tocol based on TCP. When you run the ftp command, an ftp client process starts running
on your host and attempts to establish a connection with the ftp server process running
on the remote host. If the ftp server process is not running on the remote host before the
client initiates a connection request, the connection is not made and an Unknown host
error message is displayed by the ftp command. A site running an ftp server process is
called an ftp site. When an ftp connection has been established with the remote ftp site,
you can run several ftp commands for effective use of this utility. However, you must
have appropriate access permission to be able to transfer files to the remote site. Table 11.5
presents some useful ftp commands.

Most ftp sites require that you have a valid login name and password on that site to be
able to transfer files to or from that site. A number of sites allow you to establish ftp sessions
with them by using anonymous as the login name and guest or your full e-mail address
as the password. Such sites are said to allow anonymous ftp. In other words, anonymous
ftp is a method of downloading public files using the ftp protocol. An anonymous log in is
usually download only. If you have an account on the computer of the ftp site (i.e., its not
an anonymous login), then you are almost certainly allowed to download and upload files.

The following session illustrates the use of the ftp utility to do an anonymous ftp with
the site ftp.FreeBSD.org and transfer the compressed kernel for release 10.1. In the process,

http://www.ftp.FreeBSD.org

428 ◾ UNIX: The Textbook, Third Edition

we demonstrate the use of the ftp commands cd, get, ls, and pwd. We also demon-
strate execution of the ls command on the local host. Finally, we terminate the ftp session
with the quit command. This site does not require any password for anonymous ftp.
Thus, you hit <Enter> when prompted for a password.

% ftp ftp.FreeBSD.org
Trying 149.20.53.23:21 …
Connected to ftp.geo.FreeBSD.org.
220 This is ftp0.isc.freebsd.org - hosted at ISC.org
Name (ftp.FreeBSD.org:sarwar): anonymous
331 Please specify the password.
Password: <Enter>
230-
230-This is ftp0.isc.FreeBSD.org, graciously hosted by
230-Internet Systems Consortium - ISC.org.
230-
230-FreeBSD files can be found in the /pub/FreeBSD directory.

TABLE 11.5 A Summary of Useful ftp Commands

Command Meaning

! [cmd] Runs cmd on the local machine; without the cmd argument,
invokes an interactive shell

Help [cmd] Displays a summary of cmd; without the cmd argument, displays a
summary of all ftp commands

ascii Puts the ftp channel into ASCII mode; used for transferring
ASCII-type files such as text files

binary Puts the ftp channel into binary mode; used for transferring
non-ASCII files such as files containing executable codes or pictures

cd Changes directory; similar to the UNIX cd command
close Closes the ftp connection with the remote host, but stays inside ftp
dir remotedir localfile Saves the listing of remotedir into localfile on the local host;

useful for long directory listings, as pipes cannot be used with the
ftp commands

get remotefile [localfile] Transfer remotefile to localfile in the present working directory
on the local machine; if localfile is not specified, remotefile is
used as the name of the local file

ls [dname] Shows contents of the designated directory dname; current
directory if none specified

mget remotefiles Transfers multiple files from the remote host to the local host
mput localfiles Transfers multiple files from the local host to the remote host
open [hostname] Attempts to open a connection with the remote host; prompts if

hostname not specified as parameter
put localfile [remotefile] Transfers localfile to remotefile on the remote host; if remotefile

is not specified, use localfile as name of remote file
quit Terminates the ftp session
user [login_name] If unable to log on, log on as a user on the remote host by

specifying the user_name as the command argument; prompt
appears if user_name is not specified

Networking and Internetworking    ◾    429

230-
230 Login successful.
Remote system type is UNIX.
Using binary mode to transfer files.
ftp> cd pub/FreeBSD
250-ISO images of FreeBSD releases may be found in the releases/
ISO-IMAGES
250-directory. For independent files and tarballs, see individual
250-releases/${machine}/${machine_arch} directories. For example,
250-releases/amd64/amd64 and releases/powerpc/powerpc64.
250 Directory successfully changed.
ftp> pwd
Remote directory: /pub/FreeBSD
ftp> cd releases/i386
250 Directory successfully changed.
ftp> pwd
Remote directory: /pub/FreeBSD/releases/i386
ftp> ls
229 Entering Extended Passive Mode (|||55844|).
150 Here comes the directory listing.
lrwxr-xr-x 1 ftp ftp 17 Jan 17 2014 10.0-RELEASE ->
i386/10.0-RELEASE
lrwxr-xr-x 1 ftp ftp 13 Oct 22 15:43 10.1-RC3 ->
i386/10.1-RC3
drwxrwxr-x 13 ftp ftp 25 Jun 20 2013 8.4-RELEASE
lrwxr-xr-x 1 ftp ftp 16 Jan 16 2013 9.1-RELEASE ->
i386/9.1-RELEASE
lrwxr-xr-x 1 ftp ftp 16 Sep 30 2013 9.2-RELEASE ->
i386/9.2-RELEASE
lrwxr-xr-x 1 ftp ftp 16 Jul 11 14:21 9.3-RELEASE ->
i386/9.3-RELEASE
drwxrwxr-x 3 ftp ftp 5 Jul 02 16:26 ISO-IMAGES
-rw-rw-r-- 1 ftp ftp 637 Nov 23 2005 README.TXT
drwxrwxr-x 8 ftp ftp 9 Oct 23 17:21 i386
226 Directory send OK.
ftp> cd 10.1-RC3
250 Directory successfully changed.
ftp> ls
229 Entering Extended Passive Mode (|||64206|).
150 Here comes the directory listing.
-rw-r--r-- 1 ftp ftp 661 Oct 22 01:41 MANIFEST
-rw-r--r-- 1 ftp ftp 62269164 Oct 22 01:41 base.txz
-rw-r--r-- 1 ftp ftp 1428452 Oct 22 01:41 doc.txz
-rw-r--r-- 1 ftp ftp 883080 Oct 22 01:41 games.txz
-rw-r--r-- 1 ftp ftp 77467572 Oct 22 01:41 kernel.txz
-rw-r--r-- 1 ftp ftp 33221748 Oct 22 01:41 ports.txz
-rw-r--r-- 1 ftp ftp 115163384 Oct 22 01:41 src.txz

430 ◾ UNIX: The Textbook, Third Edition

226 Directory send OK.
ftp> get kernel.txz
local: kernel.txz remote: kernel.txz
229 Entering Extended Passive Mode (|||61444|).
150 Opening BINARY mode data connection for kernel.txz (77467572
bytes).
100% |***********************************| 75651 KiB 174.60 KiB/s
00:00 ETA
226 Transfer complete.
77467572 bytes received in 07:13 (174.48 KiB/s)
ftp> !ls
kernel.txz
ftp> quit
421 Timeout.
%

Once you have established an ftp connection, most sites put you in binary mode so
that you can transfer non-ASCII files, such as files containing audio and video clips.
You can explicitly put the ftp session into binary mode by using the binary command,
which ensures proper file transfer. You can revert to ASCII mode by using the ascii
command.

In the following in-chapter exercise, you will use the ftp command to transfer a file
from a remote host on the Internet.

EXERCISE 11.19

Establish an anonymous ftp session with the host ftp.FreeBSD.org and transfer all the files
related to release 10.1 into your system by using the mget command.

11.8.9 Remote Copy

You can use the ftp command to transfer files to and from a remote host on another
network, but doing so requires that you log on to the remote host. You can use the rcp
(remote copy) command to copy files to and from a remote machine on the same LAN,
without logging on to the remote host. This command is not needed in a local area envi-
ronment if you are using a network-based file system such as the Network File System
(NFS). In this case, the storage of your files is completely transparent to you, and you can
access them from any host on your network, without specifying the name of the host that
contains them. The following is a brief description of the command.

SYNTAX

rcp [options] [host:]sfile [host:]dfile
rcp [options] [host:]sfile [host:]dir

Purpose: To copy sfile to dfile

http://www.ftp.FreeBSD.org

Networking and Internetworking    ◾    431

Commonly used options/features:
-p Attempt to preserve file modify and access times; without this option, the com-

mand uses the current value of umask to create file permissions
-r Recursively copy files at sfile to dir

As is obvious from the syntax, you can transfer files from your host to a remote host
or from one remote host to another. The rcp command fails if the remote host does not
“trust” your local host. The name of your local host must be in the /etc/hosts.equiv file on
the remote machine for it to be a trusted host and for you to be able to use the rcp, rsh,
and rlogin commands. You must also have a valid username and password to transfer
files to and from the remote host. The format of a line in the file is:

hostname [username]

A 2 character can precede both a hostname and a username to deny access. A 1 char-
acter can be used in place of the hostname or username to match any host or user. The
following are a few such entries.

uphpux sarwar Allows access to the user sarwar on the host uphpux

+ sarwar Allows the user sarwar access from any host

upaix-sarwar Denies access to the user sarwar on the host upaix

-pc1 Denies access to all users on the host pc1

pccvm Allows access to all users on the host pccvm

If the host you are using is not a trusted host—that is, it is not listed in the /etc/hosts.
equiv file—you need to create an entry in a file called .rhosts in your home directory on
the remote host that contains the name of the host from which you would use the rcp
command and your login name on this host. Thus, if the remote host is upsun29 and you
want to use the rcp command on a host called upsun10, the entry in the ~/.rhosts file on
upsun29 will be the following (assuming that your login name on upsun10 is sarwar).

upsun10 sarwar

This entry informs the networking software, which is in the UNIX kernel, that sarwar
is a trusted user on the host upsun10.

The following rcp command copies all the files with the .html extension from your
~/myweb directory to the ~/webmirror directory on upsun29.

$ rcp ~/myweb/*.html upsun29:webmirror
$

The following rcp command copies the files Chapter[1–9].doc from the ~/unixbook
directory on your system to the ~/unixbook.backup directory on upsun29.

432 ◾ UNIX: The Textbook, Third Edition

$ rcp ~/unixbook/Chapter[1-9].doc upsun29:unixbook.backup
$

The following rcp command copies all C and C++ source files from your ~/ece446/
projects directory on upsun29 to your ~/swprojects.backup directory on your machine.

$ rcp upsun29:ece446/projects/*.[c,C] ~/swprojects.backup
$

As we mentioned before, you can also use the rcp command to copy files from one
remote host to another remote host. The following rcp command is used to copy the
whole home directory from the www1 host to the www2 host. Note the use of the -r
option to copy subdirectories recursively and use of the -p option to preserve existing
modification times and access permissions.

$ rcp -rp www1:* www2:
$

The following in-chapter exercise gives you practice using the rcp command in your
environment.

EXERCISE 11.20

Use an rcp command to copy a file from your machine to another machine on your net-
work. What command did you use? What did it do?

11.8.10 Secure Shell and Related Commands

The BSD-originated r commands (rsh, rcp, rlogin, etc.) are insecure, as is telnet.
Secure Shell (SSH) is a modern substitute for them that eliminates the need for the .rhosts
and hosts.equiv files, and can authenticate users by cryptographic key; it also increases
the security of other TCP/IP-based applications, such as X Windows forwarding, which
transparently “tunnels” them via SSH-encrypted connections. The program that handles
the secure connection protocol is known as the Secure Shell daemon, sshd.

The secure version of the rsh command is called ssh. Whereas rsh, and the other UNIX
r commands, communicate with the remote host in cleartext (sometimes called plaintext),
ssh uses strong cryptography for transmitting data, including commands, password, and
files. Whenever your data is transmitted to your network, ssh automatically encrypts it and
automatically decrypts it when the data reaches its intended recipient. The result is transparent
encryption—that is, the sender and receiver are unaware of the encryption/decryption process.

For these reasons, ssh has become a de facto standard for secure terminal connections within
a LAN or the Internet. The encrypted sessions used by ssh, scp, and sftp for example, pre-
vent anyone from making sense of the ongoing communication while packet sniffing it. Also,
authentication methods used in ssh prevent any kind of spoofing, such as IP address spoofing.

SSH Version 2 is the default protocol for both PC-BSD and Solaris. It has three components:

 1. SSH Transfer Protocol: Handles server identification, encryption algorithm and key
encryption, and manages the channel between client and server

Networking and Internetworking    ◾    433

 2. SSH Authentication Protocol: Verifies the validity of the login role of user on the cli-
ent machine

 3. SSH Channel Protocol: Handles the encrypted channel and logical connection status
for a remote shell session, port forwarding, or X11 forwarding

The following subsections assume that the ssh service is installed and has been started by
default, on not only your client local computer, but also on the remote server host machine.
We do not provide details of how to obtain or install ssh client or server programs, but we
do provide instructions for how to do a preliminary configuration of the sshd daemon and
how to start/restart the daemon on both PC-BSD and Solaris.

By default, sshd was enabled and started on both our PC-BSD and Solaris systems, and
to use the ssh commands shown in this section, we simply had to let the daemons on both
local client machine and remote server machines initially exchange encryption keys, as
shown in the sample sessions that follow.

For a more complete description of the ssh, scp, and sftp commands, see the man
pages for these commands.

11.8.10.1 Preliminary Configuration of ssh and How to Start/Restart the sshd Daemon
The following subsection gives the preliminary configuration information for ssh on
PC-BSD and Solaris, and also shows how to start or restart the daemon process if it
has not been started by default on those two systems, or has been stopped for some
reason.

 1. Configuration of ssh on PC-BSD

 If you do not want to type your password when you use ssh, and you use RSA or
DSA keys to authenticate, you can run the ssh-agent command before running
other applications. X users usually do this through their .xsession or .xinitrc files.
See the man page for ssh-agent for details.

 a. Use the ssh-keygen command to generate a key pair and have it placed in
your $HOME/.ssh directory. Your public key is $HOME/.ssh/id_dsa.pub or
$HOME/.ssh/id_rsa.pub, depending on whether you use DSA or RSA, respec-
tively, to authenticate.

 b. Send your public key to the person setting you up as a committer so it can be
placed into your login in /etc/ssh-keys/. By default, on our PC-BSD and Solaris
machines, these keys were generated and stored automatically.

 2. Start or restart sshd on PC-BSD

 To determine if sshd is running, or to restart the service, run the following com-
mand sequence:

 % /etc/rc.d/sshd start
 sshd already running? (pid=1523)

434 ◾ UNIX: The Textbook, Third Edition

 % /etc/rc.d/sshd restart
 Stopping sshd.
 Waiting for PIDS: 1523
 Starting sshd.
 %

 An alternative way of starting the ssh daemon is to start an sshd server automati-
cally at boot time by adding the following line to the /etc/rc.conf file:

 sshd_enable="YES"

 Now start the sshd server by typing the following on the command line:

 % /etc/rc.d/sshd start

 1. Configuration of ssh on Solaris

 On the local client machine, examine the files /etc/ssh_config and /etc/ssh/sshd_
config, the client-side and server-side configuration files for ssh, respectively. The
lines in these files that are uncommented (i.e., no # as the first character), are the
configuration settings for your ssh sessions, both as client and as server, respectively.

 2. Starting or restarting sshd on Solaris

 To start sshd on the remote server, if it is not already running, run the following
command:

 $ svcadm enable svc:/network /ssh:default

 To restart sshd on the remote server, type the following:

 $ svcadm restart svc:/network/ssh:default

11.8.10.2 The ssh Command
The ssh command allows you to perform basically the same tasks that you can perform
with the telnet, rlogin, and rsh commands, but in a more secure manner. You are
allowed to log in to the remote host or execute a command on it if the ssh server running
on the remote host finds your machine name in the /etc/host.equiv or /etc/shosts.equiv
file and your login name is the same on your machine and the remote machine. You are
also allowed to log in to the remote host if your login names are different on the local and
remote hosts, and your local machine’s name and your login name on it are contained
in the ~/.rhosts or ~/.shosts file. Additional security features are used by ssh, including
public-key cryptography, to authenticate a user and its host before allowing the user to
log in to the remote machine. We describe only some of the rather basic features of the
ssh command that are needed for remote login, remote execution of commands, and file
transfer between your client and the server machines. Here is a brief description of the ssh
command:

Networking and Internetworking    ◾    435

SYNTAX

ssh [-option(s)] [-option argument(s)] [command]

Purpose: ssh (SSH client) is a program for logging into a remote machine and for execut-
ing commands on a remote machine. It is intended to replace rlogin and rsh, and pro-
vide secure encrypted communications between two untrusted hosts over an insecure
network.

Output: A remote connection over a secure channel to a host on a network or the
Internet

Common Options and Features:
-D [bind _ address:]port Specifies a local “dynamic” application-level port

forwarding. This works by allocating a socket to listen to port on the local side,
optionally bound to the specified bind_address.

-L [bind _ address:]port:host:hostport Specifies that the given port on
the local (client) host is to be forwarded to the given host and port on the remote
side.

-l login _ name Specifies the user to log in as on the remote machine. This also
may be specified on a per-host basis in the configuration file.

You can log in to a remote host or execute a command on a remote host with
the ssh command just like you do with the rsh command. For example, in the fol-
lowing session, from a PC-BSD client machine, you start an ssh session on a remote
host ssh server named 192.168.0.12 using the default username (which in this case
is the same username you have on the local client machine), and then log out of the
remote host:

% ssh 192.168.0.12
The authenticity of host '192.168.0.12 (192.168.0.12)' can't be
established.
RSA key fingerprint is 37:a2:db:ce:97:17:ce:37:26:bf:58:9d:a2:ed:1
c:0f.
No matching host key fingerprint found in DNS.
Are you sure you want to continue connecting (yes/no)? yes
Warning: Permanently added '192.168.0.12' (RSA) to the list of
known hosts.
Password: xxxxxx
Last login: Tue Sep 23 08:51:38 2014
OpenIndiana (powered by illumos) SunOS 5.11 oi_151a9
November 2013
$
...
$ logout
Connection to 192.168.0.12 closed.
%

436 ◾ UNIX: The Textbook, Third Edition

Notice that since this session is the first ssh connection from the local client to the
remote server host, an exchange of authentication keys is necessary. On every subsequent
connection, the key exchange is not necessary if the keys have not been changed.

Using the following command, you log in to a host 192.168.0.13 with username
sarwar, use the uname –a command to display the machine information of the
server-side machine, log out, and use the uname –a command on the client machine
to display information of the client-side machine. Note that there is no exchange of
authentication keys because this is not the first ssh connection between the client and
server machines.

% ssh -l sarwar 192.168.0.13
Password:
Last login: Sun Oct 12 17:32:20 2014 from 202.147.169.196
Oracle Corporation SunOS 5.11 11.2 June 2014
$ uname -a
SunOS solarissrv 5.11 11.2 i86pc i386 i86pc
$ logout
Connection to 202.147.169.197 closed.
% uname -a
FreeBSD pcbsd-srv 10.0-RELEASE-p6 FreeBSD 10.0-RELEASE-p6 #0
acf484b(releng/10.0): Mon Feb 24 15:14:38 EST 2014 root@
avenger:/usr/obj/root/pcbsd-build-10.0-EDGE/git/freebsd/sys/
GENERIC amd64
%

We now discuss remote execution of commands with ssh. All of the rsh commands
discussed in Section 11.8.7 will work if you replace rsh with ssh. Here are some addi-
tional commands. The following command executes the ps -A | grep d$ command
on the remote server host 192.168.0.13 (a Solaris machine) and displays (on the local cli-
ent machine) the status of all the daemons on that remote host. As shown, you will be
prompted for a password because of the default configuration of ssh.

% ssh 192.168.0.13 ps -A | grep d$
Password: xxxxxx
 0 ? 0:00 sched
 7 ? 0:03 intrd
 47 ? 0:09 dlmgmtd
 304 ? 0:00 nwamd
 535 ? 4:14 syslogd
 39 ? 0:09 netcfgd
 66 ? 3:20 kcfd
 518 ? 0:00 hald-add
 76 ? 0:38 ipmgmtd
 93 ? 0:00 pfexecd
 478 ? 0:00 in.ndpd
16991 ? 0:00 sshd

Networking and Internetworking    ◾    437

...
%

The following command executes the ps -axl | grep d$ command on the remote
server host 192.168.0.14 (a PC-BSD machine) and displays (on the local client machine)
the status of all the daemons running on the remote host.

$ ssh 192.168.0.14 ps -axl | grep d$
Password for sarwar@pcbsd-srv: xxxxxx
 0 8 0 0 -16 0 0 16 psleep DL - 2:56.64 [paged
 0 23 0 0 -16 0 0 16 sdflush DL - 0:34.12 [softd
1001 6481 6480 0 20 0 181552 25432 select I - 2:00.18 akonad
$

In the following session, the ps -el | grep d$ command runs on the remote Solaris
machine and its output is piped to the grep sshd$ command that runs on the local
PC-BSD machine. The output of the command line is the status of the ssh daemons run-
ning on the remote host.

% ssh 122.147.110.13 'ps -e | grep d$' | grep sshd$
Password: xxxx
 512 ? 0:07 sshd
25023 ? 0:00 sshd
25024 ? 0:00 sshd
%

11.8.10.3 The scp Command
The scp command is the secure version of the rcp command. It means that copying takes
place under encrypted sessions after proper authentication of the local host and user. All
of the commands discussed in Section 11.8.9 will work if rcp is replaced with scp. The
following command copies the prog4.c file in your current directory into your ~/courses/
cs213/programs/ directory on upsun29.

$ scp prog4.c upsun29:~/courses/cs213/programs/
Password: xxxxxx
...
$

You can use the IP address of upsun29 (122.147.110.17) in place of its symbolic name,
as in:

$ scp prog4.c 122.147.110.17:~/courses/cs213/programs/
Password: xxxxxx
...
$

438 ◾ UNIX: The Textbook, Third Edition

The following command recursively copies your entire home directory on the
122.147.110.17 host to your current directory on the local machine. Don’t forget to type
the period after the space character after ~.

% scp -r 122.147.110.17:~ .
Password: xxxxxx
temp 100% 0 0.0KB/s 00:00
.profile 100% 568 0.6KB/s 00:00
local.login 100% 170 0.2KB/s 00:00
welcomesir 100% 139 0.1KB/s 00:00
known_hosts 100% 397 0.4KB/s 00:00
scp: /export/home/sarwar/.bash_history: Permission denied
local.cshrc 100% 166 0.2KB/s 00:00
ps.man 100% 28KB 27.9KB/s 00:00
bigdata 3% 327MB 11.2MB/s 12:35 ETA
<Ctrl+C> Killed by signal 2.
%

Note that we terminate the command with <CTRL+C>, as can be seen on the last line
of the command output.

11.8.10.4 The sftp Command
The sftp command is the secure version of the ftp command. It works just like the ftp
command except that stronger authentication takes place before file transfer takes place,
and transfer takes place in encrypted sessions. The following sessions show sample com-
mands executed in sftp.

Connecting and getting help

% sftp 192.168.0.12
Password: xxxxxx
Connected to 202.147.169.197.
sftp> ?
Available commands:
bye Quit sftp
cd path Change remote directory to 'path'
chgrp grp path Change group of file 'path' to 'grp'
chmod mode path Change permissions of file 'path'
 to 'mode'
chown own path Change owner of file 'path' to 'own'
df [-hi] [path] Display statistics for current
 directory or filesystem containing
 'path'
exit Quit sftp
get [-Ppr] remote [local] Download file
reget remote [local] Resume download file

Networking and Internetworking    ◾    439

help Display this help text
lcd path Change local directory to 'path'
lls [ls-options [path]] Display local directory listing
lmkdir path Create local directory
ln [-s] oldpath newpath Link remote file (-s for symlink)
lpwd Print local working directory
ls [-1afhlnrSt] [path] Display remote directory listing
lumask umask Set local umask to 'umask'
mkdir path Create remote directory
progress Toggle display of progress meter
put [-Ppr] local [remote] Upload file
pwd Display remote working directory
quit Quit sftp
rename oldpath newpath Rename remote file
rm path Delete remote file
rmdir path Remove remote directory
symlink oldpath newpath Symlink remote file
version Show SFTP version
!command Execute 'command' in local shell
! Escape to local shell
? Synonym for help
sftp>

Listing the local present working directory

sftp> lpwd
Local working directory: /usr/home/bob
sftp>

Listing the remote present working directory

sftp> pwd
Remote working directory: /home/bob
sftp>

Listing the files in the remote present working directory

sftp> ls
Desktop passwordlist sshlogin sshlogin.txt test1.c
sftp>

List the files in the local present working directory

sftp> lls
1stxcbdraw USBint bsdsetfile1 qt_progs2 test8.c
1stxcbdraw.c Videos bsdsetfile2 qt_progs3 vi.txt
1stxcbdraw.c~ alien bsdsshman qt_progs4 xcb_events
…Output truncated
sftp>

440 ◾ UNIX: The Textbook, Third Edition

Uploading a single file named alien to the remote host

sftp> put alien
Uploading alien to /home/bob/alien
alien 100% 98 0.1KB/s 00:00
sftp>

Uploading multiple files that all end in .txt to the remote host

sftp> mput *.txt
Uploading emacs.txt to /home/bob/emacs.txt
emacs.txt 100% 20KB 20.5KB/s 00:00
Uploading fvwm.txt to /home/bob/fvwm.txt
fvwm.txt 100% 458KB 458.2KB/s 00:01
Uploading vi.txt to /home/bob/vi.txt
vi.txt 100% 50KB 50.3KB/s 00:00
sftp>

Getting (or downloading) single or multiple files from the remote to the local system

sftp> get testfile
Fetching /home/bob/testfile to testfile
/home/bob/testfile 100% 22 0.0KB/s 00.00sftp>

Switching from one directory to another directory in local and remote machines
On the remote machine:

sftp> cd test
sftp>

On the local machine:

sftp> lcd Documents
sftp>

Creating new directories on local and remote machines
On the remote machine:

sftp> mkdir test
sftp>

On the local machine:

sftp> lmkdir Documents
sftp>

Removing a directory or file on the remote machine

sftp> rm Report.xls
sftp> rmdir Documents
sftp>

Networking and Internetworking    ◾    441

Note that to remove/delete any directory from the remote location, the directory must
be empty.

Exiting from sftp:

sftp> quit
%

The following in-chapter exercise gives you practice using the ssh, scp, and sftp
commands in your environment.

EXERCISE 11.21

Use each of the ssh, scp, and sftp commands to access a remote host on your LAN, exe-
cute a command remotely, and copy a file from your machine to another machine on your
network. What command did you use? What are their semantics? Write a short description
of how you did this, and what the output from the local and remote systems was.

11.8.10.5 Packaged ssh Applications
In addition to the command line ssh operations shown earlier, which you can perform in
a terminal or console window, there are two very powerful and expedient graphical front-
end application programs readily available on UNIX and Windows/OS X machines that
accomplish the same things that ssh, scp, and sftp do.

The first application is called FileZilla, which allows you to do file and directory trans-
fers over an SSH connection. We will consider its capabilities in Chapter 23 on system
administration.

The second application is PuTTY, which as we have shown in Chapter 2, allows you to
login and execute commands on a UNIX machine from a Windows machine through an
SSH connection.

11.8.11 Interactive Chat

You can use the talk command for an interactive chat with a user on your host or on a
remote host over a network. The following is a brief description of the command.

SYNTAX

talk user [tty]

Purpose: To initiate interactive communication with user who is logged in on a tty terminal

The user parameter is the login name of the person if he or she is on your host. If the
person you want to talk to is on another host, use login_name@host for user. The tty
parameter is needed if the person is logged on to the same host more than once.

When you use the talk command to initiate a communication request, the other user
is interrupted with a message on his or her screen informing that person of the request.

442 ◾ UNIX: The Textbook, Third Edition

The other user needs to execute the talk command to respond to you. That establishes a
communication channel, and both users’ display screens are divided into two halves. The
upper-half contains the text that you type, and the lower half contains the other user’s
responses. Both you and the other user can type simultaneously. The talk command
simply copies the characters that you type at your keyboard on the screen of the other
user. The chat session can be terminated when either of you presses <Ctrl+C>. If you are
using the vim editor and your screen is corrupted during the communication, you can use
<Ctrl+L> to redraw the screen.

Suppose that user sarwar wants to talk to another user, bob, and that both are logged
on to the same host. The following command from sarwar initiates a talk request to bob.

$ talk bob

As soon as sarwar hits <Enter>, the following message is displayed at the top of bob’s
screen.

[Waiting for your party to respond]
Message from Talk_Daemon@upibm7.egr.up.edu at 13:36 …
talk: connection requested by sarwar@upibm7.egr.up.edu.
talk: respond with: talk sarwar@upibm7.egr.up.edu

When bob runs the talk sarwar command, both bob’s and sarwar’s screens
are divided in half, with the upper halves containing the message [Connection
established] and the cursor moved to the top of both screens. Both bob and sarwar
are now ready to talk. If bob wants to ignore sarwar’s request while using a shell, he can
simply press <Enter>.

If bob is logged in on another host—say, upsun29—sarwar needs to run the following
command to initiate the talk request.

$ talk bob@upsun29

If sarwar is logged in once on upibm7 and bob wants to communicate with sarwar, his
response to the preceding request should be talk sarwar@upibm7. If bob is logged in
on upsun29 multiple times, the following command from sarwar initiates a talk request
on terminal ttyp2 (one of the terminals bob is logged on to).

$ talk bob@upsun29 ttyp2

If you want to block all talk requests because users keep bothering you with too many
requests, execute:

$ mesg n
$

This command works only for your current session. If you want to block all talk and
write requests whenever you log on, put this command in your ~/.profile file on Solaris or

Networking and Internetworking    ◾    443

~/.login file on PC-BSD. Doing so simply takes away the write permission on your terminal
file in the /dev directory for your group and others. Thus, you can accomplish the same by
using the chmod 600 command on your terminal file, as shown in the following session.
Notice the change in the permissions of the /dev/pts/2 file before the after the execution
of the mesg n, mesg y, chmod 600 /dev/pts/2, and chmod 620 /dev/pts/2
commands.

% who
david pts/0 Oct 9 08:17 (:0)
sarwar pts/1 Oct 25 13:23 (182.185.251.51)
% ls -l /dev/pts/2
crw--w---- 1 sarwar tty 0x98 Oct 25 15:46 /dev/pts/2
% mesg n
% ls -l /dev/pts/2
crw------- 1 sarwar tty 0x98 Oct 25 15:47 /dev/pts/2
% mesg y
% ls -l /dev/pts/2
crw--w---- 1 sarwar tty 0x84 Oct 25 13:45 /dev/pts/2
% chmod 600 /dev/pts/2
% ls -l /dev/pts/2
crw------- 1 sarwar tty 0x84 Oct 25 13:45 /dev/pts/2
% chmod 620 /dev/pts/2
% ls -l /dev/pts/2
crw--w---- 1 sarwar tty 0x98 Oct 25 15:51 /dev/pts/2
%

Without any argument, the mesg command displays the current status.
In the following in-chapter exercises, you will use the talk command to establish a

chat session with a friend on your network and appreciate the various characteristics of
the command.

EXERCISE 11.22

Establish a chat session using the talk command with a friend who is currently logged on.

EXERCISE 11.23

Run the last shell session on your system to identify the pathname of your terminal file
and verify the effect of the mesg n and mesg y commands on the permissions of your
terminal file.

11.8.12 Tracing the Route from One Site to Another

The traceroute command uses IP protocol’s time to live (TTL) field to display the route
(the names of the routers in the path) that your e-mail messages, ssh commands, and
downloaded files from an ftp site can take from your host to the remote host, and vice versa.

444 ◾ UNIX: The Textbook, Third Edition

It also gives you a feel for the speed of the route. Because this command poses some secu-
rity threats, most system administrators disable its execution. The security threat stems
from the fact that, by displaying a route to a host on the Internet, someone can figure out
the internal structure of the network to which the host is connected and the IP addresses
of some machines on the network. The following is a simple execution of the command to
show its output and demonstrate the inner workings of the Internet a bit more. The follow-
ing command shows the route from our host to cs.berkeley.edu on a PC-BSD machine in
Portland, Oregon.

% traceroute cs.berkeley.edu
traceroute to cs.berkeley.edu (128.32.244.172), 64 hops max, 52
byte packets
 1 qwestmodem.domain.actdsltmp (192.168.0.1) 0.814 ms 0.803 ms

0.805 ms
 2 ptld-dsl-gw49.ptld.qwest.net (207.225.84.49) 38.010 ms

38.741 ms 37.543 ms
 3 ptld-agw1.inet.qwest.net (207.225.86.129) 38.800 ms 37.511 ms

37.248 ms
 4 svl-edge-20.inet.qwest.net (67.14.12.129) 54.657 ms 54.800 ms

54.614 ms
 5 65.115.64.166 (65.115.64.166) 63.803 ms 58.525 ms 57.449 ms
 6 dc-oak-core1--tri-isp1-10ge.cenic.net (137.164.47.154) 59.694 ms

80.097 ms 74.864 ms
 7 dc-oak-agg1--oak-core1-10ge.cenic.net (137.164.47.112)

64.220 ms 64.496 ms 63.003 ms
 8 137.164.50.31 (137.164.50.31) 65.394 ms 61.800 ms 65.839 ms
 9 t2-3.inr-202-reccev.Berkeley.EDU (128.32.0.39) 63.811 ms

61.207 ms
 t2-3.inr-201-sut.Berkeley.EDU (128.32.0.37) 60.933 ms
10 evans-eecs-br-10GE.EECS.Berkeley.EDU (128.32.255.54) 85.975 ms

63.822 ms 64.347 ms
11 * * *
12 * * *
13 * * *
%

The default probe datagram (packet) length is 40 bytes, but you can specify a larger
length after the destination host name, as in traceroute cs.berkeley.edu 64. As
shown in the first line of the output of our sample run, the PC-BSD version of tracer-
oute uses a 52-byte packet size. A line in the trace contains the times taken by the three
52-byte packets sent by traceroute as they go from one router (also known as hop) to
the next. The output also contains the IP addresses of the various routers on the way from
our host to the destination host. A total of 13 hops are traversed by anything that goes from
our host to cs.berkeley.edu. The Berkeley machine is on a class B network with network ID
128.32.244 and host ID 172. If traceroute does not receive a response within a five-
second timeout interval, it prints an asterisk (*) for that probe. Some of the asterisks are

http://www.cs.berkeley.edu
http://www.cs.berkeley.edu
http://www.cs.berkeley.edu

Networking and Internetworking    ◾    445

unexplainable and may be the result of bugs in the BSD (or other relevant operating system)
network code.

The following is the output of the traceroute command on Solaris. Note that this
version uses 30 hops and 40-byte packets. In this case, the route traversed 11 hops. The one-
way travel time for data from our host in Portland, Oregon to cs.berkeley.edu in Berkeley,
California, in both cases is a little over half a second. Note that the gateways that are 11, 12,
and 13 hops away (in the case of the PC-BSD version) and 11 hops away (in the case of the
Solaris version) either do not send the ICMP time exceeded messages or send them
with a TTL too small to reach us.

$ traceroute cs.berkeley.edu
traceroute to cs.berkeley.edu (128.32.244.172), 30 hops max, 40
byte packets
 1 qwestmodem.domain.actdsltmp (192.168.0.1) 0.833 ms 0.822 ms

0.713 ms
 2 ptld (207.225.84.49) 40.396 ms 66.589 ms 38.356 ms
 3 ptld (207.225.86.129) 37.581 ms 37.196 ms 37.710 ms
 4 svl-edge-20.inet.qwest.net (67.14.12.129) 54.609 ms 54.626 ms

54.853 ms
 5 65.115.64.166 (65.115.64.166) 57.936 ms 58.196 ms 58.836 ms
 6 dc-oak-core1--tri-isp1-10ge.cenic.net (137.164.47.154)

58.465 ms 60.132 ms 61.275 ms
 7 dc-oak-agg1--oak-core1-10ge.cenic.net (137.164.47.112)

62.278 ms 59.974 ms 61.523 ms
 8 137.164.50.31 (137.164.50.31) 63.568 ms 62.180 ms 62.294 ms
 9 t2-3.inr-201-sut.Berkeley.EDU (128.32.0.37) 58.946 ms t2-3.

inr-202-reccev.Berkeley.EDU (128.32.0.39) 60.258 ms t2-3.
inr-201-sut.Berkeley.EDU (128.32.0.37) 60.120 ms

10 evans-eecs-br-10GE.EECS.Berkeley.EDU (128.32.255.54) 62.424 ms
59.990 ms 59.202 ms

11 * * *
$

11.9 IMPORTANT INTERNET ORGANIZATIONS
Table 11.6 lists the names of some of the important organizations that manage the Internet
and formulate plans and policies for its growth.

11.10 WEB RESOURCES
Table 11.7 lists useful websites for network- and Internet-related concepts, organizations,
and UNIX commands.

SUMMARY
Computer networking began when the UCLA student Charley Kline sent the first suc-
cessful message on ARPANET at 10:30 p.m. on October 29, 1969. At that time, ARPANET
consisted of four hosts. Today, computing without networking is unthinkable because of

http://www.cs.berkeley.edu

446 ◾ UNIX: The Textbook, Third Edition

the ubiquitous Internet. Web browsing, file transfer, interactive chat, electronic mail, and
remote login are some of the well-known services commonly used by today’s computer
users. The e-commerce phenomenon has changed the way people do everyday chores and
conduct business across the globe. UNIX has a special place in the world of networking in
general and internetworking in particular because most of the networking protocols were
initially implemented on UNIX platforms. Today, UNIX-based computers run a majority
of the server processes that provide most of the Internet services.

The core of internetworking software is based on the TCP/IP protocol suite. This suite
includes, among several other protocols, the well-known TCP and IP protocols for trans-
portation and routing of application data. The key to routing in the Internet is 32-bit IP
addresses (in IPv4) and 128-bit addresses (in IPv6). The most heavily used Internet services
are for Web browsing (and all the services that it offers, such as e-commerce and social net-
working sites), electronic mail, file transfer, and remote login. Not only do UNIX systems
support all the Internet services, but they also have additional utilities to support local
network activities.

The topics discussed in this chapter include the general structure of a network and an
internetwork, networking models, the TCP/IP suite, IP addresses, the domain name system
(DNS), Internet protocols and services, and UNIX utilities for performing networking- and

TABLE 11.6 Important Organizations that Manage the Internet and Formulate Plans and Policies for Its
Growth

Organization Purpose

Internet Society (ISOC)
www.isoc.org

An international, nonprofit organization that was established to
encourage and promote the use of the Internet. ISOC is the host for
Internet Architecture Board (IAB).

Internet Architecture Board (IAB)
www.iab.org

A group of people responsible for setting policies and standards for the
Internet and the TCP/IP suite.

Internet Engineering Task Force
(IETF)
www.ietf.org

An open group of individuals (network designers, vendors, operators,
and researchers) who are responsible for the evolution of the Internet
architecture and the Internet’s smooth operation. IETF has the
responsibility to design and test new technologies for the Internet and
the TCP/IP suite. IETF is the technical arm of IAB.

Internet Research Task Force
(IRTF)
www.irtf.org

A group of individuals who are responsible for promoting research that
is important for the evolution of the Internet in all relevant areas:
protocols, applications, architecture, and technology. IETF is the
research arm of IAB.

Internet Assigned Numbers
Authority (IANA)
www.iana.org

Assignment of domain names and protocol port numbers for well-
known Internet services, such as ftp.

Internet’s Network Information
Center (InterNIC)
www.internic.net

Maintains a list of the currently operating registrars of top-level
domains, information about new top-level domains, problem reports
about registrars, and information about registered domains.

Internet Corporation for Assigned
Names and Numbers (ICANN)
www.icann.org

ICANN is a technical coordination body whose primary objective is to
insure the stability of the Internet’s system of assigned names and
numbers. Every business that wants to become a registrar with direct
access to ICANN-designated top-level domains must be accredited by
ICANN for this purpose.

http://www.icann.org
http://www.internic.net
http://www.iana.org
http://www.irtf.org
http://www.ietf.org
http://www.iab.org
http://www.isoc.org

Networking and Internetworking    ◾    447

TABLE 11.7 Web Resources for Network and Internet-Related Policies, Documents, and UNIX Commands

URL Description

www.openssh.com The home page for OpenSSH, a free version of ssh.
www.iana.org/domain-names.
htm

This page gives detailed information about domain names and
domain name services.

www.chiark.greenend.org.
uk/~sgtatham/putty/

A home page for PuTTY (a free implementation of telnet and ssh
for UNIX and Win32 platform).

www.linuxgazette.com/
issue64/dellomodarme.html

An introductory article on the ssh command suite: sftp, scp,
and so on

www.isi.edu The home page for the Information Sciences Institute (ISI) at the
University of Southern California (USC). ISI is a useful resource
for Internet-related information, such as the history of the
Internet, country codes, and protocol port numbers for the
well-known Internet services.

www.isoc.org/internet/
history/

This page contains many documents on the history of the Internet,
including its infrastructure, standards, growth, and future.

www.zakon.org/robert/
internet/timeline/

This page has a detailed time line for the history of the Internet,
including statistical data for the number of users, hosts, and
domains served by the Internet.

en.wikipedia.org/wiki/
Internet_protocol_suite

This page contains the history of the TCP/IP protocol suite.

www.ietf.org/rfc.html This page contains all you need to know about RFCs.
www.ietf.org/download/
rfc-index.txt

This page contains the RFC index in text form.

www.iana.org/domains/root/
db

This page contains the IANA root zone (i.e., top-level domains)
database.

www.internetlivestats.com/
total-number-of-websites/

This page maintains a live counter for total number of websites in
the world.

http://www.
worldwidewebsize.com/

This page maintains the size of the Internet in terms of number of
webpages.

news.netcraft.com/
archives/2014/04/02/
april-2014-web-server-
survey.html

This page maintains the latest survey about the number and type of
web servers on the Internet, and the growth history of Web
servers.

www.datacenterknowledge.
com/archives/2009/05/14/
whos-got-the-most-web-
servers/

This page contains the latest information about who has the most
number of Web servers.

en.wikipedia.org/wiki/
List_of_TCP_and_UDP_port_
numbers

List of TCP and UDP port numbers for all well-known and
registered ports.

en.wikipedia.org/wiki/
List_of_virtual_
communities_with_more_
than_1_million_users

This page contains the latest information about the number of
registered users of the social websites (virtual communities).

zephoria.com/social-media/
top-15-valuable-facebook-
statistics/

This page maintains the latest top-20 statistics about Facebook.

www.internetworldstats.
com/stats.htm

This page maintains the latest statistics about the worldwide users
of the Internet.

(Continued)

http://www.internetworldstats.com/stats.htm
http://www.zephoria.com/social-media/top-15-valuable-facebookstatistics/
http://www.zephoria.com/social-media/top-15-valuable-facebookstatistics/
http://www.zephoria.com/social-media/top-15-valuable-facebookstatistics/
http://www.en.wikipedia.org/wiki/List_of_virtual_communities_with_more_than_1_million_users
http://www.en.wikipedia.org/wiki/List_of_virtual_communities_with_more_than_1_million_users
http://www.en.wikipedia.org/wiki/List_of_virtual_communities_with_more_than_1_million_users
http://www.en.wikipedia.org/wiki/List_of_virtual_communities_with_more_than_1_million_users
http://www.en.wikipedia.org/wiki/List_of_TCP_and_UDP_port_numbers
http://www.en.wikipedia.org/wiki/List_of_TCP_and_UDP_port_numbers
http://www.en.wikipedia.org/wiki/List_of_TCP_and_UDP_port_numbers
http://www.datacenterknowledge.com/archives/2009/05/14/whos-got-the-most-webservers/
http://www.datacenterknowledge.com/archives/2009/05/14/whos-got-the-most-webservers/
http://www.datacenterknowledge.com/archives/2009/05/14/whos-got-the-most-webservers/
http://www.worldwidewebsize.com/news.netcraft.com/archives/2014/04/02/april-2014-web-serversurvey.html
http://www.worldwidewebsize.com/news.netcraft.com/archives/2014/04/02/april-2014-web-serversurvey.html
http://www.worldwidewebsize.com/news.netcraft.com/archives/2014/04/02/april-2014-web-serversurvey.html
http://www.worldwidewebsize.com/news.netcraft.com/archives/2014/04/02/april-2014-web-serversurvey.html
http://www.worldwidewebsize.com/news.netcraft.com/archives/2014/04/02/april-2014-web-serversurvey.html
http://www.internetlivestats.com/total-number-of-websites/
http://www.iana.org/domains/root/db
http://www.ietf.org/download/rfc-index.txt
http://www.en.wikipedia.org/wiki/Internet_protocol_suite
http://www.en.wikipedia.org/wiki/Internet_protocol_suite
http://www.zakon.org/robert/internet/timeline/
http://www.isoc.org/internet/history/
http://www.linuxgazette.com/issue64/dellomodarme.html
http://www.chiark.greenend.org.uk/~sgtatham/putty/
http://www.iana.org/domain-names.htm
http://www.internetworldstats.com/stats.htm
http://www.datacenterknowledge.com/archives/2009/05/14/whos-got-the-most-webservers/
http://www.worldwidewebsize.com/news.netcraft.com/archives/2014/04/02/april-2014-web-serversurvey.html
http://www.internetlivestats.com/total-number-of-websites/
http://www.iana.org/domains/root/db
http://www.ietf.org/download/rfc-index.txt
http://www.ietf.org/rfc.html
http://www.zakon.org/robert/internet/timeline/
http://www.isoc.org/internet/history/
http://www.isi.edu
http://www.linuxgazette.com/issue64/dellomodarme.html
http://www.chiark.greenend.org.uk/~sgtatham/putty/
http://www.iana.org/domain-names.htm
http://www.openssh.com

448 ◾ UNIX: The Textbook, Third Edition

internetworking-related tasks. These utilities are implemented by using the client–server
software model. The utilities discussed in this chapter are finger (for finding infor-
mation about users on a host), ftp and sftp (for file transfer), ifconfig, host, and
nslookup (for translation of domain names to IP addresses and vice cera), ping (to find
the status of a host), rcp and scp (to remote copy on a UNIX host), rlogin (to remote
login on a UNIX host), rsh and ssh (for logging on to a remote host on a network and
remote command execution), ruptime (to display information about UNIX hosts on a
LAN), rwho (to display users who are currently logged on to UNIX hosts in a LAN), talk
(for interactive chat), telnet (for remote login), and traceroute (for tracing the route
of data from your host to a destination host).

QUESTIONS AND PROBLEMS

 1. What are computer networks and why are they important?

 2. What is an internetwork? What is the Internet?

 3. What are the key protocols that form the main pillars of the Internet? Where were
they developed?

 4. What is an IPv4 address? What is its size in bits and bytes? What is dotted decimal
notation? What is the size of an IPv6 address in bits and bytes?

 5. What are the classes of IPv4 addresses? Given an IPv4 address in binary, how can you
tell which class the address belongs to? How can you tell the class of the address when
it is expressed in the dotted decimal notation?

 6. What is the DNS? Name the UNIX command that can be used to translate a host
name to its IP address.

TABLE 11.7 (CONTINUED) Web Resources for Network and Internet-Related Policies, Documents, and
UNIX Commands

URL Description

ftp.isc.org/www/survey/
reports/2014/01/

This page contains the latest information about the number of
Internet domains.

www.isc.org/services/
survey/

This page contains the latest information about the number of
hosts on the Internet.

www.factshunt.com/2014/01/
world-wide-internet-
usage-facts-and.html

This page contains the latest information about worldwide Internet
usage facts.

http://www.ftp-sites.org/ This page, although fairly dated, contains a list of known ftp sites.
https://www.freebsd.org/
doc/handbook/mirrors-ftp.
html

This page contains a list of worldwide ftp sites for official sources of
FreeBSD.

ftp://ftp.FreeBSD.org/pub/
FreeBSD/

Anonymous ftp site for official FreeBSD sources that allows a large
number of simultaneous connections.

https://en.wikipedia.org/
wiki/ARPANET

This page describes the history of ARPANET and brief early
history of the Internet, e-mail, and ftp.

https://www.en.wikipedia.org/wiki/ARPANET
ftp://ftp.FreeBSD.org/pub/FreeBSD/
https://www.freebsd.org/doc/handbook/mirrors-ftp.html
https://www.freebsd.org/doc/handbook/mirrors-ftp.html
http://www.factshunt.com/2014/01/world-wide-internetusage-facts-and.html
http://www.factshunt.com/2014/01/world-wide-internetusage-facts-and.html
http://www.ftp.isc.org/www/survey/reports/2014/01/
http://www.isc.org/services/survey/
http://www.ftp.isc.org/www/survey/reports/2014/01/
https://www.en.wikipedia.org/wiki/ARPANET
ftp://ftp.FreeBSD.org/pub/FreeBSD/
https://www.freebsd.org/doc/handbook/mirrors-ftp.html
http://www.ftp-sites.org/
http://www.factshunt.com/2014/01/world-wide-internetusage-facts-and.html
http://www.isc.org/services/survey/

Networking and Internetworking    ◾    449

 7. List two domain names each for sites that are in the following top-level domains: edu,
com, gov, int, mil, net, org, autos, beer, biz, careers, cancerresearch, church, museum,
au, de, ir, kw, pk, and uk. How did you find them? Do not use examples given in this
textbook.

 8. Read the ftp://ftp.isi.edu/in-notes/iana/assignments/port-numbers file to identify
port numbers for the following well-known services: ftp, http, time, daytime, echo,
ping, ssh, and quote-of-the-day.

 9. What is the timeout period for the finger protocol? How did you get your answer?

 10. How many users have Johnston as part of their name at the iastate.edu domain?
How did you find out? Write down your command.

 11. Give a command that accomplishes the same task that the following command does.

 rsh upsun29 sort < students > sorted _ students

 12. Show the semantics of the following command by drawing a diagram similar to the
ones shown in Figures 14.8 and 14.9. Assume that the name of the local machine is
upsun10.

 cat students | ssh upsun29 sort | ssh upsun21 uniq >
sorted _ uniq _ students

 13. Display the /etc/services file on your system and list the port numbers for well-known
ports for the following services: daytime, time, quote-of-the-day (qotd), echo, smtp,
and finger. Did you find all of them? Do the port numbers match those found in
Problem 8?

 14. Use the telnet command to get current time via the daytime service at mit.edu.
Write down your command.

 15. Fetch the files history.netcount and history.hosts from the directory nsfnet/statis-
tics using anonymous ftp from the host nic.merit.edu. These files contain the num-
ber of domestic and foreign networks and hosts on the NSFNET infrastructure. What
is the size of Internet in terms of the number of networks and hosts according to the
statistics in these files? Although the statistics are somewhat dated, what is your pre-
diction of its size a year from now? Why? Show your work.

 16. You create the following entries in your ~/.rhosts file on a host on your network.

 host1 john.doe

 host2 mike.brich

 What are the consequences if john.doe and mike.birch are users on hosts host1 and
host2 in your network? Both users belong to your user group.

 17. Give a command for displaying simple names of all the hosts on your network.

http://www.nic.merit.edu
http://www.nsfnet/statistics
http://www.nsfnet/statistics
http://www.history.hosts
http://www.history.netcount
http://www.mit.edu
http://www.iastate.edu
ftp://ftp.isi.edu/in-notes/iana/assignments/port-numbers

450 ◾ UNIX: The Textbook, Third Edition

 18. Use the telnet command to display information about all the users at mit.edu who
have Smith as part of their name. Show the command that you used to obtain your
answer.

 19. Give the command for displaying page-by-page information about the users who
have Chen as part of their name at mit.edu. How many such users exist?

 20. Describe the semantics of the following command. Clearly state which commands
are executed locally and which are executed on the remote host. What is the output
of the command?

 ssh cs00.syi.pcc.edu " ps -el | grep d$ " | grep '\<httpd'$
| wc -l

 21. Use the traceroute command to determine the route from your host to loc.gov.
What is the approximate travel time for data from your host to locis.loc.gov? If their
site is blocking traceroute to either skip this question or to go a website that does
traceroute for you such as traceroute.org or ping.eu/traceroute.

 22. Find a host that offers the quote-of-the-day (qotd) service. What is the quote of the
day today?

 23. What kind of network traffic is generated when an IP datagram is sent to localhost.

 24. Which of the following domains do not have an IPv6 address: google.com, twitter.com,
amazon.com, instagram.com, ibm.com? Show your commands and their outputs.

 25. How many machines (hosts) do Google and IBM use to handle its mail service? How
did you find out? Show the command(s) that you used to obtain your answer, along
with the outputs of these commands.

 26. Use the ifconfig command to give the following information about the local and
network interfaces on your machine for IPv4 and IPv6 addresses: localhost addresses
and network IP addresses along with their MTUs.

 27. What is the domain name of the host with the following IPv6 address: 2a03:2880:
2130:cf05:face:b00c:0:1? Show the command(s) that you used to obtain your answer,
along with the outputs of these commands.

 28. What is the current RFC count? What is the last RFC about? What is its category
(Standard, proposed standard, etc.)? How did you obtain your answer?

 29. Describe the semantics of the following commands. In particular, state clearly which
commands in the command line execute on the local machine and which execute on
the remote machine.

 a. cat students | ssh 122.147.110.13 'sort | grep David'

 b. cat students | ssh 122.147.110.13 'sort' | grep David

http://www.locis.loc.gov
http://www.loc.gov
http://www.ping.eu/traceroute
http://www.traceroute.org
http://www.ibm.com
http://www.instagram.com
http://www.amazon.com
http://www.twitter.com
http://www.google.com
http://www.mit.edu
http://www.mit.edu

451

C h a p t e r 12

Introductory Bourne
Shell Programming

Objectives

• To introduce the concept of shell programming

• To discuss how shell programs are executed

• To describe the concept and use of shell variables

• To discuss how command line arguments are passed to shell programs

• To explain the concept of command substitution

• To describe some basic coding principles

• To discuss the various control structures for Bourne shell scripting

• To explain the concept of functions in the Bourne shell

• To write and discuss some shell scripts

• To describe how Bourne shell scripts may be debugged

• To cover the commands and primitives

 *, =, ", ', ', &, <, >, ;, |, \, /, [], :, break, case,
continue, exit, export, env, for, if, ls, read, readonly, set,
sh, shift, test, while, until, unset

12.1 INTRODUCTION
The Bourne shell is more than a command interpreter. It has a programming language of
its own that can be used to write shell programs for performing various tasks that cannot
be performed by any existing command. A shell program, commonly known as a shell

452 ◾ UNIX: The Textbook, Third Edition

script, consists of shell commands to be executed in a shell, one command at a time, and is
stored in an ordinary UNIX file. The shell allows use of a read/write storage place, known
as a shell variable, for users and programmers to use as a scratch pad for completing a task.
The shell also contains program control flow commands (also called statements) that allow
nonsequential execution of the commands in a shell script and repeated execution of a
block of commands—similar to high-level programming languages like C.

12.2 RUNNING A BOURNE SHELL SCRIPT
There are three ways to run a Bourne shell script. The first step for all three methods is to
make the script file executable by adding the execute permission to the existing access per-
missions for the file. You can do so by running the following command, where script_file
is the name of the file containing the shell script.

$ chmod u+x script_file
$

Clearly, in this case you make the script executable for yourself only. However, you can
set appropriate access permissions for the file if you also want other users to be able to
execute it. Once you have made the script file executable, you can type ./script _ file
as a command to execute the shell script, as shown:

$./script_file
... Output of the script if any ...
$

If your search path (the PATH variable) includes your current directory (.), you can simply
use the script _ file command, instead of using the ./script _ file command. For
the rest of this chapter, we assume that your PATH variable includes your current directory.

As described in Chapter 10, a child of the current shell process executes the script. Thus,
with this method, the script executes properly if you are using the Bourne shell but not
if you are using any other shell. If you are currently using some other shell, first execute
the /bin/sh command to run the Bourne shell and then run the script _ file com-
mand, as shown in the following example. Here, we assume that your current shell is C
shell (with the % prompt). After the script has completed its execution, we press <Ctrl+D>
to terminate the Bourne shell and return to C shell.

% /bin/sh
$./script_file
... Output of the script if any ...
$ <Ctrl+D>
%

The second method of executing a shell script is to run the /bin/sh command with
the script file as its parameter. Thus, the following command executes the shell script in
script_file.

Introductory Bourne Shell Programming    ◾    453

$ /bin/sh script_file
... Output of the script if any ...
$

If your PATH variable includes the /bin directory, you can simply use the sh command,
instead of using the /bin/sh command.

The third method, which is also the most commonly used method, is to force the cur-
rent shell to execute a script in the Bourne shell, regardless of your current shell. You can
do so by beginning a shell script with the following line.

#!/bin/sh

When your current shell encounters the string #!, it takes the rest of the line as the abso-
lute pathname for the shell to be executed, under which the script in the file is executed. If
your current shell is the C shell, you can replace this line with a colon (:), which is known
as the null command in the Bourne shell. When the C shell reads : as the first character,
it runs a Bourne shell process that executes the commands in the script. The : command
returns true. We discuss the return values of commands later in the chapter.

Throughout this chapter, we would use the chmod u+x script _ file command
to make script_file executable by the owner of the file and run the script by using the
./script _ file command.

12.3 SHELL VARIABLES AND RELATED COMMANDS
A variable is a main memory location with a name. It allows you to reference the memory
location by using its name instead of its address. The name of a shell variable can com-
prise digits, letters, and underscores, with the first character being a letter or underscore.
Because main memory is read/write storage, you can read a variable’s value or assign it a
new value. For the Bourne shell, the value of a variable is always a string of characters, even
if you store a number in it. There is no theoretical limit on the length of a variable’s value.

Shell variables can be one of two types: shell environment variables and user-defined
variables. Environment variables are used to customize the environment in which your
shell runs and for proper execution of shell commands. A copy of these variables is passed
to every command that executes in the shell as its child. Most of these variables are initial-
ized when the /etc/profile file executes as you log on. This file is written by your system
administrator to set up a common environment for all the users of the system. You can
customize your environment by assigning different values to some or all of these variables,
as well as define other variables, in your ~/.profile startup file, which executes when you
log on. Table 12.1 lists most of the environment variables whose values you can change. We
described some of these variables in previous chapters.

These shell environment variables are writable, and you can assign any values to them.
Other shell environment variables are read only, which means that you can use (read) the
values of these variables but cannot change them. These variables are most useful for pro-
cessing command line arguments (also known as positional arguments) or parameters

454 ◾ UNIX: The Textbook, Third Edition

passed to a shell script at the command line. Examples of command line arguments are
the source and destination files in the cp command. Some other read-only shell variables
are used to keep track of the process ID of the current process, the process ID of the most
recent background process, and the exit status of the last command. Some important read-
only shell environment variables are listed in Table 12.2. These read-only variables are
established at the time the process is invoked rather than at the login time, as with other
environment variables.

TABLE 12.1 Some Important Writable Bourne Shell Environment Variables

Environment
Variable Purpose of the Variable

CDPATH Contains the names of the directories that are searched, one by one, by the cd
command to find the location of the directory passed to it as a parameter; the
cd command searches the current directory if this variable is not set

EDITOR Contains the name of the default editor used in programs such as an e-mail
program

ENV Contains the path along which UNIX looks to find configuration files
HOME Contains the name of the directory where the login shell places you in the

directory structure when you first log on
MAIL Contains the name of user’s system mailbox file
MAILCHECK Contains a number that specifies how often (in seconds) the shell should check a

user’s mailbox for new mail and inform the user accordingly
PATH Contains the user’s search path—that is, the sequence of directories that a shell

searches to find an external command or program
PPID Contains the process ID of the parent process
PS1 Contains the primary shell prompt that appears on the command line, usually set

to $
PS2 Contains the secondary shell prompt displayed on second line of a command if

the shell thinks that the command is not finished, typically when the command
terminates with a backslash (\), the escape character. Usually set to >.

PWD Contains the absolute pathname of the current working directory
TERM Contains the type of user’s console terminal

TABLE 12.2 Some Important Read-Only Bourne Shell Environment
Variables

Environment Variable Purpose of the Variable

$0 Name of program
$1–$9 Values of command line arguments 1–9
$* Values of all command line arguments
$@ Values of all command line arguments; each

argument individually quoted if $@ is enclosed in
quotes, as in "$@"

$# Total number of command line arguments
$$ Process ID (PID) of current process
$? Exit status of most recent command
$! PID of most recent background process

Introductory Bourne Shell Programming    ◾    455

User-defined variables are used within shell scripts as temporary storage places whose
values can be changed when the program executes. These variables can be made read only
as well as passed to the commands that execute in the shell script in which they are defined.
Unlike most other programming languages, in the Bourne shell programming language
you do not have to declare and initialize shell variables. An uninitialized shell variable is
initialized to a null string by default.

You can display the names of all shell variables (including user-defined variables) and
their current values by using the set command without any parameters. As described later
in this chapter, the set command can also be used to change the values of some of the
read-only shell environment variables. The following is a sample run of the set command
on our machine.

$ set
BLOCKSIZE=K
CLICOLOR=true
EDITOR=vi
GROUP=faculty
HOME=/home/sarwar
HOST=pcbsd-srv
HOSTTYPE=FreeBSD
IFS='
'
LANG=en_US.UTF-8
LOGNAME=sarwar
MACHTYPE=x86_64
MAIL=/var/mail/sarwar
MANPATH=/usr/share/man:/usr/local/man:/usr/share/openssl/man:
/usr/pbi/man:/usr/local/lib/perl5/5.16/man:/usr/local/lib/
perl5/5.16/perl/man
MORE=-erX
NO_PROXY=127.0.0.1,localhost
OPTIND=1
OSTYPE=FreeBSD
PAGER=more
PATH=/usr/local/share/pcbsd/bin:/sbin:/bin:/usr/sbin:/usr/bin:
/usr/games:/usr/pbi/bin:/usr/local/sbin:/usr/local/bin:/home/
sarwar/bin
PPID=35570
PS1='$ '
PS2='> '
PS4='+ '
PWD=/home/sarwar
REMOTEHOST=static-host202-147-168-98.link.net.pk
SHELL=/bin/csh
SHLVL=1
SSH_CLIENT='202.147.168.98 50256 22'

456 ◾ UNIX: The Textbook, Third Edition

SSH_CONNECTION='202.147.168.98 50256 202.147.169.196 22'
SSH_TTY=/dev/pts/1
TERM=xterm-color
USER=sarwar
VENDOR=amd
_=MAC
no_proxy=127.0.0.1,localhost
$

You can also use the env (System V) and printenv (BSD) commands to display the
names of the environment variables and their values, but the list is not as complete as the
one displayed by the set command. In particular, the output does not include any user-
defined variables. The following is a sample output of the env command on the same
system that we ran the set command on.

$ env
VENDOR=amd
SSH_CLIENT=202.147.168.98 50256 22
LOGNAME=sarwar
PAGER=more
LANG=en_US.UTF-8
no_proxy=127.0.0.1,localhost
OSTYPE=FreeBSD
NO_PROXY=127.0.0.1,localhost
MACHTYPE=x86_64
CLICOLOR=true
MAIL=/var/mail/sarwar
PATH=/usr/local/share/pcbsd/bin:/sbin:/bin:/usr/sbin:/usr/bin:
/usr/games:/usr/pbi/bin:/usr/local/sbin:/usr/local/bin:/home/
sarwar/bin
EDITOR=vi
HOST=pcbsd-srv
REMOTEHOST=static-host202-147-168-98.link.net.pk
PWD=/home/sarwar
GROUP=sarwar
TERM=xterm-color
SSH_TTY=/dev/pts/1
HOME=/home/sarwar
USER=sarwar
SSH_CONNECTION=202.147.168.98 50256 202.147.169.196 22
HOSTTYPE=FreeBSD
SHELL=/bin/csh
MORE=-erX
MANPATH=/usr/share/man:/usr/local/man:/usr/share/openssl/man:/usr/
pbi/man:/usr/local/lib/perl5/5.16/man:/usr/local/lib/perl5/5.16/
perl/man

Introductory Bourne Shell Programming    ◾    457

BLOCKSIZE=K
SHLVL=1
$

In the following in-chapter exercises, you will create a simple shell script and make
it executable. Also, you will use the set, printev, and env commands to display the
names and values of the shell variables on your system.

EXERCISE 12.1
Display the names and values of all the shell variables on your UNIX machine. What
command(s) did you use?

EXERCISE 12.2
Create a file that contains a shell script comprising the date and pwd commands, one on
each line. Make the file executable and run the shell script. List all the steps for completing
this task.

12.3.1 Reading and Writing Shell Variables

The syntax for the assignment statement in the Bourne shell is as follows. The command
syntax variable=value comprises what is commonly known as the assignment state-
ment, and its purpose is to assign a value to a variable. The evaluation of the assignment
statement is right to left. Thus, value is evaluated first and then assigned to variable.
If there is a problem in evaluating value, an error is reported.

SYNTAX
variable1=value1 [variable2=value2 … variableN=valueN]

Purpose: Assign values value1, …, valueN to variables variable1, …, variableN,
respectively; no space allowed before or after the equal sign

Note that there is no space before and after the equals sign (=) in the syntax. If a value
contains spaces, you must enclose the value in quotes. Single and double quotes work dif-
ferently, as discussed later in this section. You can refer to (i.e., access) the current value of
a variable by placing a dollar sign ($) before the variable name; there is no space between
$ and the variable name. You can use the echo command to display the values of shell
variables.

Single quotes should be used to preserve the literal meanings of all characters, except
single quotes. Double quotes preserve the literal meaning of all characters except single
quotes, dollar signs, and backslashes. A backslash preserves the literal meaning of the
character that follows, except n. The newline character (\n) has special meaning, and in
order to preserve this meaning, it must be enclosed in single quotes, as in '\n'. A backs-
lash in double quotes remains literal, unless it precedes the following characters: backlash,

458 ◾ UNIX: The Textbook, Third Edition

single quote, double quotes, dollar sign, and newline. Enclosing characters between $' and
' preserves the literal meaning of all characters, except single quotes and backslashes. \t
and \b also have special meaning and stand for tab and backspace, respectively.

The following session shows a few examples of quoting. $$ stands for the PID of the pro-
cess that executes the echo command—that is, the current shell process. You can prove it
by running the ps command and verifying that 61358 is, in fact, the PID of your current
Bourne shell process.

$ echo '$name * ? \'
$name * ? \
$ echo "$ * \n ?"
$ * \n ?
$ echo "$$ * \n ?"
61358 * \n ?
$ echo "\$ \' \" \\ \\n"
$ \' " \ \ n
$ echo $'a d ? * " $'
a d ? * " $
$ echo $'a \ ? * " $'
Syntax error: Bad escape sequence
$ echo $'a ' ? * " $'
>

The following session shows how shell variables can be created and read, and how their
values may be changed.

$ name=John
$ echo $name
John
$ name=John Doe
Doe: not found
$ name=John date
Sun Aug 3 09:44:35 PKT 2014
$ echo $name
$ name="John Doe"
$ echo $name
John Doe
$ name=John*
$ echo $name
John.Bates.letter John.Johnsen.memo John.email
$ echo "$name"
John*
$ echo "The name $name sounds familiar!"
The name John* sounds familiar!
$ echo \$name
$name

Introductory Bourne Shell Programming    ◾    459

$ echo '$name'
$name
$

If the right-hand side of an assignment statement is not enclosed in quotes and includes
spaces, the shell assumes that the second and remaining words in the right-hand side
form a command, and tries to execute them. The shell displays an error message if the
assumed command does not correspond to a valid command, as shown in the state-
ments name=John Doe and name=John date in the previous session. Also, after the
name=John* statement has been executed and $name is not quoted in the echo com-
mand, the shell lists the file names in your present working directory that match John*,
with * considered as the shell metacharacter. In this case, the variable $name must be
enclosed in quotes to refer to John*, as in echo "$name". However, if your current direc-
tory does not contain any file that starts with the string John, the echo John* com-
mand displays John*.

A command consisting of $variable only results in the value of variable exe-
cuted as a shell command. If the value of variable comprises a valid command, the
expected results are produced. If variable does not contain a valid command, the shell,
as expected, displays an appropriate error message. The following session makes this point
with some examples. The variable used in the session is command.

$ command=pwd
$ $command
/home/sarwar/unixb3e/examples
$ command=hello
$ $command
hello: not found
$

12.3.2 Command Substitution

Command substitution allows you to replace a command with its output. The following
is a brief description of command substitution. Note the use of back quotes (also known
as grave accents) in the first form of the syntax. In our example shell sessions and scripts
throughout the book, we will use the first syntax.

SYNTAX
‘command‘

Or

$(command)

Purpose: Execute command and substitute ‘command‘ or $(command), if you use this
syntax) with the output of the command

460 ◾ UNIX: The Textbook, Third Edition

The following session illustrates this concept with a few examples. In the first assign-
ment statement, the variable command is assigned a value pwd. In the second and
third assignment statements, the output of the pwd command is assigned to the command
variable.

$ command=pwd
$ echo "The value of command is: $command."
The value of command is: pwd.
$ command=‘pwd‘
$ echo "The value of command is: $command."
The value of command is: /home/sarwar/unix3e.
$ command=$(pwd)
$ echo "The value of command is: $command."
The value of command is: /home/sarwar/unix3e.
$

Command substitution can be specified in any command. For example, in the follow-
ing session, the output of the date command is substituted for ‘date‘ before the echo
command is executed.

$ echo "The date and time are ‘date‘."
The date and time are Thu Jul 24 23:59:11 PKT 2014.
$

We demonstrate the real-world use of command substitution in various ways through-
out this chapter and Chapter 13.

The following in-chapter exercises are designed to reinforce the creation and use of shell
variables and the concept of command substitution.

EXERCISE 12.3
Assign your full name to a shell variable called myname and echo its value. How did you
accomplish the task? Show your work.

EXERCISE 12.4
Assign the output of the echo "Hello, world!" command to the myname variable and
then display the value of myname. List the commands that you executed to complete your
work.

12.3.3 Exporting Environment

When a variable is created in a shell, subsequent shells do not have automatic access to it.
The export command passes the value of a variable to subsequent shells. Thus, when a
shell script is called and executed in another shell script, it does not get automatic access
to the variables defined in the original (i.e., caller) script unless they are explicitly made

Introductory Bourne Shell Programming    ◾    461

available to it. The export command can be used to pass the value of one or more shell
variables to any subsequent script. All read/write shell environment variables are available
to every command, script, and subshell, so they are exported at the time they are initial-
ized. The following is a brief description of the export command.

SYNTAX
export [name-list]

Purpose: Export the names and copies of the current values in name-list to every com-
mand executed from this point on

The following session presents a simple use of the export command. The name vari-
able is initialized to John Doe and is exported to subsequent commands executed under
the current shell and any subshells that run under the current shell.

$ name="John Doe"
$ export name
$

We now illustrate the concept of exporting shell variables via some simple shell scripts.
Consider the following session. Note that the one-line shell script in the display_name
file displays a null string even though we initialized the name variable to John Doe just
before executing this script. The reason is that the name variable is not exported before
running the script, and the name variable used in the script is local to the script. Because
this local variable name is uninitialized, the echo command displays the null string—the
default value of every uninitialized variable.

$ cat display_name
echo $name
exit 0
$ name="John Doe"
$./display_name
$

You can use the exit command to transfer control to the calling process—the current
shell process in the preceding session. The only argument of the exit command is an
optional integer number, which is returned to the calling process as the exit status of the
terminating process. All UNIX commands return an exit status of zero upon success (i.e.,
if they successfully perform their tasks and terminate normally) and nonzero upon failure.
The return status value of a command is stored in the read-only environment variable $?,
which can be checked and/or displayed by the calling process. In shell scripts, the status of
a command is commonly checked and subsequent action taken. We show the use of $? in

462 ◾ UNIX: The Textbook, Third Edition

some shell scripts later in the chapter. When the exit command is executed without an
argument, the UNIX kernel sets the return status value for the script.

In the following session, the name variable is exported after it is initialized, thus mak-
ing it available to the display_name script. Because the name variable is exported before
the display_name script is executed, the script displays John Doe and not a null string
as was the result of its execution in the previous session. The session also shows that the
return status of the display_name script is 0. Note that you can combine the initialization
of a variable and exporting it in one command as in export name="John Doe".

$ name="John Doe"
$./export name
$./display_name
John Doe
$ echo $?
0
$

We now show that a copy of an exported variable's value is passed to any subsequent
command. In other words, a command has access to the value of the exported variable
only; it cannot assign a new value to the variable. Consider the script in the export_demo
file.

$ cat export_demo
#!/bin/sh
name="John Doe"
export name
display_change_name
display_name
exit 0
$ cat display_change_name
#!/bin/sh
echo $name
name="Plain Jane"
echo $name
exit 0
$./export_demo
John Doe
Plain Jane
John Doe
$

When the export_demo script is invoked, the name variable is set to John Doe and
exported so that it becomes part of the environment of all the commands that execute
under export_demo. The first echo command in the display_change_name script dis-
plays John Doe as the value of the exported variable (nonlocal) name. It then initializes

Introductory Bourne Shell Programming    ◾    463

a local variable, name, to Plain Jane. The second echo command therefore echoes the
current value of the local variable name and displays Plain Jane. When the display_
change_name script has finished its execution, the display_name script executes and dis-
plays the value of the exported (nonlocal) name, thus displaying John Doe.

12.3.4 Resetting Variables

A variable retains its value as long as the script in which it is initialized is running. You
can reset the value of a variable to null (the default initial value of all variables) by either
explicitly initializing it to null or by using the unset command. The following is a brief
description of this command.

SYNTAX
unset [name-list]

Purpose: Reset or remove the variable or function corresponding to the names in name-
list, where name-list is a list of names separated by spaces

We discuss functions in the Bourne shell in Chapter 13, so we limit the discussion of
the unset command here to variables only. The following session shows a simple use of
the command. The variables name and place are set to John and Corvallis, respec-
tively, and the echo command displays the values of these variables. The unset com-
mand resets name to null. Thus, the echo "$name" command displays a null string
(a blank line).

$ name=John place=Corvallis
$ echo "$name $place"
John Corvallis
$ unset name
$ echo "$name"
$ echo "$place"
Corvallis
$

The following command removes the variables name and place.

$ unset name place
$

Another way to reset a variable is to assign it explicitly a null value by assigning it no
value and simply hitting <Enter> after the = sign, as in

$ country=
$ echo "$country"
$

464 ◾ UNIX: The Textbook, Third Edition

12.3.5 Creating Read-Only Defined Variables

When programming, you sometimes need to use constants. You can use literal con-
stants, but using symbolic constants is good programming practice, primarily because
it makes your code more readable. Another reason for using symbolic names is that a
constant used at various places in code might need to be changed. With a symbolic con-
stant, the change is made at one place only, but a literal constant must be changed every
place it was used. A symbolic constant can be created in the Bourne shell by initializ-
ing a variable with the desired value and making it read only by using the readonly
command. This command is rarely used in shell scripts, but we discuss it briefly for the
sake of complete coverage of shell variables. The following is a brief description of the
command.

SYNTAX
readonly [name-list]

Purpose: Prevent assignment of new values to the variables in name-list

In the following session, the name and place variables are made read only after initial-
izing them with John and Ames, respectively. Once they have become read only, assign-
ment to either variable fails.

$ name=John
$ place=Ames
$ readonly name place
$ echo "$name $place"
John Ames
$ name=Art
name: is read only
$ place="Ann Arbor"
place: is read only
$

When the readonly command is executed without arguments, it displays all read-
only variables, as in the following session:

$ readonly
name
place
$

On some UNIX systems, the output of the readonly command shows the list of read-
only variables along with the values of these variables.

Introductory Bourne Shell Programming    ◾    465

12.3.6 Reading from Standard Input

So far, we have shown how you can assign values to shell variables statically at the com-
mand line level or by using the assignment statement in your programs. If you want to
write an interactive shell script that prompts the user for keyboard input, you need to use
the read command to store the user input in a shell variable. This command allows you
to read one line of standard input. The following is a brief description of the command.

SYNTAX
read variable-list

Purpose: Read one line from standard input and assign words in the line to variables in
variable-list

A line is read in the form of words separated by white spaces (<Space> or <Tab>
characters, depending on the value of the shell environment variable IFS). The words are
assigned to the variables in the order of their occurrence, from left to right. If the number
of words in the line is greater than the number of variables in variable-list, the last vari-
able is assigned the extra words. If the number of words in a line is less than the number of
variables, the remaining variables are reset to null.

We illustrate the semantics of the read command by way of the following script in the
read_demo file.

$ cat read_demo
#!/bin/sh
echo –n "Enter input: "
read line
echo "You entered: $line"
echo –n "Enter another line: "
read word1 word2 word3
echo "The first word is: $word1"
echo "The second word is: $word2"
echo "The rest of the line is: $word3"
exit 0
$

We now show how the input that you enter from the keyboard is read by the read
command in that script. In the following run, you enter the same input: UNIX rules
the network computing world!. The first read command takes the whole input
and puts it in the shell variable line without the newline character. In the second read
command, the first word of your input is assigned to the variable word1, the second word
is assigned to the variable word2, and the rest of the line (without the newline character)
is assigned to the variable word3. The outputs of the echo commands for displaying the
values of these variables confirm this point.

466 ◾ UNIX: The Textbook, Third Edition

$./read_demo
Enter input: UNIX rules the network computing world!
You entered: UNIX rules the network computing world!
Enter another line: UNIX rules the network computing world!
The first word is: UNIX The second word is: rules
The rest of the line is: the network computing world!
$

The –n option used in the two echo commands is used to force the cursor to stay at
the same line after the echo command has displayed the quoted text. If you do not use
this character, the cursor moves to the next line, which is what you like to see happen
while displaying information and error messages. However, when you prompt the user
for keyboard input, you should keep the cursor in front of the prompt for a user-friendlier
interface.

On BSD and System V compatible UNIX systems, including PC-PSD, several special
characters can be used in the Bourne shell echo -e command as control characters.
These characters start with a backslash (\). Thus, for example, the echo –n "Enter
input: " command in the read_demo script may be replaced with echo –e "Enter
input: \c". Some of the control characters, along with their meanings, are listed in
Table 12.3. Note that on some UNIX systems, you may have to use double backslash (\\)
instead of single backslash for the special characters to work. For example, use \\c instead
of \c to keep the cursor on the same line.

In the following in-chapter exercises, you will use the read and export commands
to practice reading from stdin in shell scripts and exporting variables to child processes.

EXERCISE 12.5
Give commands for reading a value into the myname variable from the keyboard and
exporting it so that commands executed in any child shell have access to the variable.

TABLE 12.3 Special Characters for the echo -e Command

Character Meaning

\b Backspace
\c Prints line without moving cursor to next line
\f Form feed
\n Newline (move cursor to next line)
\r Carriage return
\t Horizontal tab
\v Vertical tab
\\ Backslash (escape special meaning of backslash)
\0N Character whose ASCII number is octal N (it is 0

and not o)
Note: You might have to use \\ instead of \ on some UNIX

systems.

Introductory Bourne Shell Programming    ◾    467

EXERCISE 12.6
Copy the value myname variable to another variable, anyname. Make the anyname vari-
able read only and unset both the myname and anyname variables. What happened?
Show all your work.

12.4 PASSING ARGUMENTS TO SHELL SCRIPTS
In this section, we describe how command line arguments can be passed to shell scripts
and manipulated by them. As we discussed in Section 12.3, you can pass command line
arguments, or positional parameters, to a shell script. The values of these arguments, start-
ing with the first argument, are stored in variables $1, $2, $3, $4, and so on, respectively.
The variable name $0 contains the name of the script file (i.e., the command name). On
some UNIX systems, up to only the first nine arguments are stored in these variables.
You can use the names of these variables to refer to the values of these arguments. If the
positional argument that you refer to is not passed an argument, it has a value of null. The
environment variable $# contains the total number of arguments passed in an execution
of a script. The variables $* and $@ both contain the values of all of the arguments, but
$@ has each individual argument in quotes if it is used as "$@". The shell script in the
cmdargs_demo file shows how you can use these variables.

$ cat cmdargs_demo
#!/bin/sh
echo "The command name is: $0."
echo "The number of command line arguments passed as parameters is
$#."
echo "The values of the command line arguments are: $1 $2 $3 $4 $5
$6 $7 $8 $9 $10 $11"
echo "Another way to display the values of all of the arguments
is: $@."
echo "Yet another way is: $*."
exit 0
$./cmdargs_demo a b c d e f g h i j k l m n
The command name is: cmdargs_demo.
The number of command line arguments passed as parameters is 9.
The values of the command line arguments are: a b c d e f g h i j k.
Another way to display the values of all of the arguments: a b c d
e f g h i j k l m n.
Yet another way is: a b c d e f g h i j k l m n.
$./cmdargs_demo One Two 3 Four 5 6
The command name is: cmdargs_demo.
The number of command line arguments passed as parameters is 6.
The values of the command line arguments are: One Two 3 Four 5 6.
Another way to display the values of all of the arguments: One Two
3 Four 5 6.
Yet another way is: One Two 3 Four 5 6.
$

468 ◾ UNIX: The Textbook, Third Edition

On systems where the shell maintains up to nine positional arguments at a time in the
shell variables $1– $9, you can write scripts that can accept and process more than nine
arguments. To do so, use the shift command. By default, the command shifts the com-
mand line arguments to the left by one position, making $2 become $1, $3 become $2,
and so on. The first argument, $1, is shifted out. Once shifted, the arguments cannot be
restored to their original values. The number of positions to be shifted can be more than
one and specified as an argument to the command. The following is a brief description of
the command.

SYNTAX
shift [N]

Purpose: Shift the command line arguments N positions to the left

The script in the shift_demo file shows the semantics of the shift command. The
first shift command shifts the first argument out and the remaining arguments to the
left by one position. The second shift command shifts the current arguments to the left
by three positions. The three echo commands are used to display the current value of
the program name ($0), the values of all positional parameters ($@), and the values of the
first three positional parameters, respectively. The results of execution of the script are
obvious.

$ cat shift_demo
#!/bin/sh
echo "The program name is $0."
echo "The arguments are: $@"
echo "The first three arguments are: $1 $2 $3"
shift
echo "The program name is $0."
echo "The arguments are: $@"
echo "The first three arguments are: $1 $2 $3"
shift 3
echo "The program name is $0."
echo "The arguments are: $@"
echo "The first three arguments are: $1 $2 $3"
exit 0
$./shift_demo 1 2 3 4 5 6 7 8 9 10 11 12
The program name is shift_demo.
The arguments are: 1 2 3 4 5 6 7 8 9 10 11 12
The first three arguments are: 1 2 3
The program name is shift_demo.
The arguments are: 2 3 4 5 6 7 8 9 10 11 12
The first three arguments are: 2 3 4
The program name is shift_demo.

Introductory Bourne Shell Programming    ◾    469

The arguments are: 5 6 7 8 9 10 11 12
The first three arguments are: 5 6 7
$

The set command can be used to alter the values of positional arguments. The most
effective use of this command is in conjunction with command substitution. The following
is a brief description of the command.

SYNTAX
set [options] [argument-list]

Purpose: Set values of the positional arguments to the arguments in argument-list; when
executed without an argument, the set command displays names of all shell variables
and their current values (as shown in Section 12.3)

The following session involves a simple interactive use of the set command. The date
command is executed to show that the output has six fields. The set ‘date‘ command
sets the positional parameters to the output of the date command. In particular, $1 is
set to Sat, $2 to Jul, $3 to 26, $4 to 16:29:35, $5 to PKT, and $6 to 2014. The echo
"$@" command displays the values of all positional arguments. The third echo command
displays the date in a commonly used form.

$ date
Sat Jul 26 16:29:35 PKT 2014
$ set ‘date‘
$ echo "$@"
Sat Jul 26 16:29:55 PKT 2014
$ echo "$2 $3, $6"
Jul 26, 2014
$

An option commonly used with the set command is --. It is used to inform the set
command that, if the first argument starts with a -, it should not be considered an option
for the set command. The script in set_demo shows another use of the command. When
the script is run with a file argument, it generates a line that contains the file name, the
file's inode number, and the file size (in bytes). Note that on some systems, the size variable
needs to be set to $5. The set command is used to assign the output of the ls -l com-
mand as the new values of the positional arguments $1–$9. If you do not remember the
format of the output of the ls -l command, we suggest you run this command on a file
before studying the code. The first string in the output starts with a – for an ordinary file.
Thus, with the use of the – option the set command does not regard – (the first charac-
ter in the permissions string) as the start of an option for the command and deals with it
literally.

470 ◾ UNIX: The Textbook, Third Edition

$ cat set_demo
#!/bin/sh
filename="$1"
set -- ‘ls -l $filename‘
perms="$1"
size="$5"
set ‘ls -i $filename‘
inode="$1"
echo "File Name: $filename"
echo "Inode Number: $inode"
echo "Permissions: $perms"
echo "Size (bytes): $size"
exit 0
$./set_demo lab1
File Name: lab1
Inode Number: 679
Permissions: -rwxr--r--
Size (bytes): 243
$

In the following in-chapter exercises, you will use the set and shift commands to
reinforce the use of command line arguments and their processing.

EXERCISE 12.7
Write a shell script that displays all command line arguments, shifts them to the left by two
positions, and redisplays them. Show the script along with a few sample runs.

EXERCISE 12.8
Update the shell script in Exercise 12.7 so that, after accomplishing the original task, it sets
the positional arguments to the output of the who | head -1 command and displays
the positional arguments again.

12.5 COMMENTS AND PROGRAM HEADERS
You should develop the habit of putting comments in your programs to describe the pur-
pose of a particular series of commands. At times, you should even briefly describe the
purpose of a variable or assignment statement. Also, you should use a program header for
every shell script that you write. These are simply good software engineering practices.
A program header is a set of introductory comments used to explain the script. Program
header and in-code comments help a programmer who has been assigned the task of main-
taining (i.e., modifying or enhancing) your code to understand it quickly. They also help
you understand your own code, in particular, if you reread it after some period of time.
Long ago, putting comments in the program code or creating separate documentation for
programs was not a common practice. Such programs, when inherited by a programmer or

Introductory Bourne Shell Programming    ◾    471

a team, are very difficult to understand and maintain, and are commonly known as legacy
code. You may find different definitions for legacy code in the literature.

A good program header must contain at least the following items. In addition, you can
insert any other items that you believe to be important or are commonly used in your orga-
nization or group as part of its coding rules.

 1. Name of the file containing the script

 2. Name of the author

 3. Date written

 4. Date last modified

 5. Purpose of the script (in one or two lines)

 6. A brief description of the algorithm used to implement the solution to the problem at
hand

A comment line, including every line in the program header, must start with the num-
ber sign (#), as in

This is a comment line.

However, a comment does not have to start at a new line; it can follow a command, as in:

set -- ‘ls -l lab1’ # Assign new values to positional parameters
and
 # if the first argument starts with a -, do
not
 # consider it an option for the set command.
 # This is to handle the output of the ls -l
 # command if lab1 is an ordinary file.

The following is a sample header for the set_demo script.

File Name: ~/Bourne/examples/set_demo
Author: Syed Mansoor Sarwar
Date Written: August 10, 1999
Modified: May 21, 2004 (by the original author)
Date Last Modified: July 27, 2014 (by the original author)
Purpose: To illustrate how the set command works
Brief Description: The script runs with a filename as the

only command
line argument, saves the filename, runs

the set command

472 ◾ UNIX: The Textbook, Third Edition

to assign output of ls -il command to
positional

arguments ($1–$9), and displays file
name,its

inode number, file permissions, and its
size in bytes.

We do not show the program headers for all the sample scripts in this textbook for the
sake of brevity.

12.6 PROGRAM CONTROL FLOW COMMANDS
The program control flow commands/statements are used to determine the sequence in
which statements in a shell script execute. There are three basic types of statements for
controlling the flow of a script: two-way branching, multiway branching, and repetitive
execution of one or more commands. The Bourne shell statement for two-way branching is
if, the statements for multiway branching are if and case, and the statements for repeti-
tive execution of some code are for, while, and until.

12.6.1 The if-then-elif-else-fi Statement

The most basic form of the if statement is used for one-way branching, but the statement
can also be used for two-way and multiway branching. The following is the syntax and a
brief description of the multiway if statement. The words in monospace type are keywords
and must be used as shown in the syntax. Everything in brackets is optional. All the com-
mand lists are designed to enable you to accomplish the task at hand.

SYNTAX

if expression
 then
 [elif expression
 then
 then-command-list]
 …
 [else
 else-command-list]
fi

Purpose: To implement two-way or multiway branching

Here, expression is a list of commands. The execution of commands in expression
returns a status of true (success) or false (failure). We discuss three versions of the if
statement that together comprise the statement's complete syntax and semantics. The first
version of the if statement is without any optional features, which results in the syntax for
the statement that is commonly used for one-way branching.

Introductory Bourne Shell Programming    ◾    473

SYNTAX

if expression
 then
 then-commands
fi

Purpose: To implement two-way branching

If expression is true, the then-commands are executed; otherwise, the command after
fi is executed. The semantics of the statement are illustrated in Figure 12.1.

The expression can be evaluated with the test command. It evaluates an expression
and returns true or false. The command has two syntaxes: One uses the keyword test and
the other uses brackets. The following is a brief description of the command.

SYNTAX

test [expression]

Or

[[expression]]

Purpose: To evaluate expression and return true or false status

An important point about this second syntax is that the normal (inside) brackets indi-
cate an optional expression and that the monospace (outside) brackets are required because

false

if

fi

expression

then-commands

true

FIGURE 12.1 Semantics of the if-then-fi statement.

474 ◾ UNIX: The Textbook, Third Edition

they comprise the test statement. Also, at least one space is required before and after an
operator, a parenthesis, a bracket, or an operand. If you need to continue a test expression
to the next line, you must use a backslash (\) before hitting <Enter> so that the shell
does not treat the next line as a separate command. Recall that \ is a shell metacharacter.
We demonstrate use of the test command in the first session but then use the simpler
syntax of [].

The test command supports many operators for testing files and integers, testing and
comparing strings, and logically connecting two or more expressions to form complex
expressions. Table 12.4 describes the meanings of the operators supported by the test
command on most UNIX systems.

We use the if statement to modify the script in the set_demo file so that it takes one
command line argument only and checks on whether the argument is a file or a directory.
The script returns an error message if the script is run with no or more than one command
line argument, or if the command line argument is not an ordinary file. The name of the
script file is if_demo1.

TABLE 12.4 Operators for the test Command

File Testing Integer Testing String Testing

Expression Return Value Expression Return Value Expression Return Value

-d file True if file is a
directory

int1 –eq
int2

True if int1and
int2 are equal

str True if str is not
an empty string

-f file True if file is an
ordinary file

int1 -ge
int2

True if int1 is
greater than or
equal to int2

str1 =
str2

True if str1 and
str2 are the
same

-r file True if file is
readable

int1 -gt
int2

True if int1 is
greater than int2

str1 !=
str2

True if str1 and
str2 are not the
same

-s file True if length of
file is nonzero

int1 –le
int2

True if int1 is less
than or equal to
int2

-n str True if the length
of str is greater
than zero

-t
[filedes]

True if file
descriptor filedes
is associated with
the terminal

int1 –lt
int2

True if int1 is less
than int2

-z str True if the length
of str is zero

-w file True if file is
writable

int1 –ne
int2

True if int1 is not
equal to int2

-x file True if file is
executable

Operators for Forming Complex Expressions
! Logical NOT operator: true if the

following expression is false
(expression) Parentheses for grouping

expressions; at least one space
before and one after each
parenthesis

-a Logical AND operator: true if the
previous (left) and next (right)
expressions are true

-o Logical OR operator: true if the
previous (left) or next (right)
expression is true

Introductory Bourne Shell Programming    ◾    475

$ cat if_demo1
#!/bin/sh
if test $# -eq 0
 then
 echo "Usage: $0 ordinary_file"
 exit 1
fi
if test $# -gt 1
 then
 echo "Usage: $0 ordinary_file"
 exit 1
fi
if test -f "$1"
 then
 filename=$1
 set -- ‘ls -l $filename‘
 perms="$1"
 size="$5"
 set ‘ls -i $filename‘
 inode="$1"
 echo "File Name: $filename"
 echo "Inode Number: $inode"
 echo "Permissions: $perms"
 echo "Size (bytes): $size"
 exit 0
fi
echo "$0: argument must be an ordinary file"
exit 1
$./if_demo1
Usage: if_demo1 ordinary_file
$./if_demo1 lab1 lab4
Usage: if_demo1 ordinary_file
$./if_demo1 dir1
if_demo1: argument must be an ordinary file
$./if_demo1 lab1
File Name: lab1
Inode Number: 679
Permissions: -rwxr--r--
Size (bytes): 243
$

In the preceding script, the first if statement displays an error message and exits the
program if you run the script without any command line argument. The second if state-
ment displays an error message and exits the program if you run the script with more
than one argument. The third if statement is executed if conditions for the first two are
false—that is, if you run the script with one argument only. This if statement produces the
desired results if the command line argument is an ordinary file. If the passed argument is

476 ◾ UNIX: The Textbook, Third Edition

not an ordinary file, the condition for the third if statement is false and the error message
if _ demo1: argument must be an ordinary file is displayed. The exit
command is used to take control out of the script. We normally use 1 as the argument (i.e.,
exit status) of exit when a script is to be terminated because of an erroneous condition.
The exit status 0 is used for normal termination of the script.

An important practice in script writing is to correctly indent the commands/statements
in it. Proper indentation of programs enhances their readability and makes them easier to
understand and maintain. However, the white spacing neither impacts the syntactic cor-
rectness of the program nor its efficiency when executed. Note the indentation style used
in our sample scripts and follow it when you write your own scripts.

We now discuss the second version of the if statement, which also allows two-way
branching. The following is a brief description of the statement.

SYNTAX

if expression
 then
 then-commands
 else
 else-commands
fi

Purpose: To implement two-way branching

If expression is true, the commands in then-commands are executed; otherwise, the
commands in else-commands are executed, followed by the execution of the command
after fi. The semantics of the statement are depicted in Figure 12.2.

Next, we rewrite the if_demo1 program, using the if-then-else-fi statement, and
use the alternative syntax for the test command. The resulting script is in the if_demo2
file, as shown in the following session. Note that the program looks cleaner and more
readable.

$ cat if_demo2
#!/bin/sh
if [$# -eq 0]
 then
 echo "Usage: $0 ordinary_file"
 exit 1
fi
if [$# -gt 1]
 then
 echo "Usage: $0 ordinary_file"
 exit 1
fi
if [-f "$1"]

Introductory Bourne Shell Programming    ◾    477

 then
 filename=$1
 set -- ‘ls -l $filename‘
 perms="$1"
 size="$5"
 set ‘ls -i $filename‘
 inode="$1"
 echo "File Name: $filename"
 echo "Inode Number: $inode"
 echo "Permissions: $perms"
 echo "Size (bytes): $size"
 exit 0
 else
 echo "$0: argument must be an ordinary file"
 exit 1
fi
exit 0
$

Finally, we discuss the third version of the if statement, which is used to implement
multiway branching. The following is a brief description of the statement.

SYNTAX

if expression1
 then
 then-commands

false

if

fi

expression

then-commands else-commands

true

FIGURE 12.2 Semantics of the if-then-else-fi statement.

478 ◾ UNIX: The Textbook, Third Edition

 elif expression2
 elif1-commands
 elif expression3
 elif2-commands
 …
 else
 else-commands
fi

Purpose: To implement multiway branching

If expression1 is true, the commands in then-commands are executed. If expression1
is false, expression2 is evaluated, and if it is true, the commands in elif1-commands are
executed. If expression2 is also false, expression3 is evaluated. If expression3 is true, the
commands in elif2-commands are executed. If expression3 is also false, the commands
in else-commands are executed. The execution of any command list is followed by the
execution of the command after fi. You can use any number of elifs in an if state-
ment to implement multiway branching. The semantics of the statement are depicted in
Figure 12.3.

We modify the script in the if_demo file so that, if the command line argument is a
directory, the program displays the number of files and subdirectories in the directory,
excluding the hidden files. In addition, the program ensures that the command line argu-
ment is an existing file or directory in the current directory before processing it. In addi-
tion to using two if statement, we also use the if-then-elif-else-fi statement in

false false false

if

fi

expression1 expression2 expression3

then-commands elif1-commands else-commandselif2-commands

true true … true

FIGURE 12.3 Semantics of the if-then-elif-else-fi statement.

Introductory Bourne Shell Programming    ◾    479

the implementation. The resulting script is in the if_demo3 file, as shown in the following
session.

$ cat if_demo3
#!/bin/sh
if [$# -eq 0]
 then
 echo “Usage: $0 file”
 exit 1
 elif [$# -gt 1]
 then
 echo “Usage: $0 file”
 exit 1
 elif [-d “$1”]
 then
 nfiles=’ls “$1” | wc -w’
 echo “The number of files in the $1 directory is
$nfiles”
 exit 0
 else
 ls “$1” 2> /dev/null | grep “$1” 2> /dev/null 1>&2
 if [$? -ne 0]
 then
 echo “$1: not found”
 exit 1
 fi
 if [-f “$1”]
 then
 filename=$1
 set -- ‘ls -l $filename’
 perms=”$1”
 size=”$5”
 set ‘ls -i $filename’
 inode=”$1”
 echo “File Name: $filename”
 echo “Inode Number: $inode”
 echo “Permissions: $perms”
 echo “Size (bytes): $size”
 exit 0
 else
 echo “$0: argument must be an ordinary file or
directory”
 exit 1
 fi
fi
$./if_demo3 /bin/ls
File Name: /bin/ls

480 ◾ UNIX: The Textbook, Third Edition

Inode Number: 12035
Permissions: -r-xr-xr-x
Size (bytes): 29512
$./if_demo3 lab2
lab2: not found
$./if_demo3 lab1 lab2
Usage: if_demo3 file
$./if_demo3 ~
The number of files in the /home/sarwar directory is 14
$./if_demo3 lab1
File Name: lab1
Inode Number: 679
Permissions: -rwxr--r--
Size (bytes): 243
$

If the argument is a directory, the number of files in it, excluding directories and hidden
files, is saved in the nfiles variable. The command ls "$1" 2> /dev/null | grep
"$1" 2>/dev/null 1>&2 is executed to check whether the file passed as the command
line argument exists. The standard error is redirected to /dev/null (the UNIX black hole),
and standard output is redirected to standard error by using 1>&2. Thus, the command
does not produce any output or error messages; its only purpose is to set the command's
return status value in $?. If the command line argument exists, the ls command is suc-
cessful and $? contains 0; otherwise, it contains a nonzero value. If the command line
argument is a file, the required file-related data is displayed. Note the use of command
substitution and pipe for setting the value of the nfiles variable.

In the following in-chapter exercises, you will practice the use of the if statement, com-
mand substitution, and manipulation of positional parameters.

EXERCISE 12.9
Create the if_demo2 script file and run it with no argument, more than one argument, and
one argument only. While running the script with one argument, use a directory as the
argument. What happens? Does the output make sense?

EXERCISE 12.10
Write a shell script whose single command line argument is a file. If you run the program
with an ordinary file, the program displays the owner's name and last update time for the
file. If the program is run with more than one argument, it generates meaningful error
messages.

12.6.2 The for Statement

The for statement is the first of three statements that are available in the Bourne shell for
repetitive execution of a block of commands in a shell script. These statements are com-
monly known as loops. The following is a brief description of the statement.

Introductory Bourne Shell Programming    ◾    481

SYNTAX

for variable [in argument-list]
do
 command-list
done

Purpose: To execute commands in command-list as many times as the number of items
in the argument-list; without the optional part in argument-list the arguments are sup-
plied at the command line

The items in argument-list are assigned to variable one by one, and the commands in
command-list, also known as the body of the loop, are executed for every assignment. This
process allows the execution of commands in command-list as many times as the number
of items in argument-list. Figure 12.4 illustrates the semantics of the for command. Items
may be numbers of words.

Execute the commands
in command-list

Are there any
more words in
argument-list?

done

Yes

No

Assign the next word in
argument-list to

variable

do

for

FIGURE 12.4 Semantics of the for statement.

482 ◾ UNIX: The Textbook, Third Edition

The following script in the for_demo1 file shows the use of the for command with
optional arguments. The variable people is assigned the words in argument-list one by
one, and each time the value of the variable is echoed until no word remains in the list. At
that time, control comes out of the for statement, and the command following done is
executed. Then the code following the for statement, the exit 0 statement only in this
case, is executed.

$ cat for_demo1
#!/bin/sh
for people in Debbie Jamie John Kitty Kuhn Shah
do
 echo "$people"
done
exit 0
$./for_demo1
Debbie
Jamie
John
Kitty
Kuhn
Shah
$

The following script in the user_info file takes a list of existing (i.e., valid) login names as
command line arguments and displays each login name and the full name of the user who
owns the login name, one per login. In the sample run, the first value of the user variable
is dheckman. The echo command displays dheckman: followed by a <Tab>, and the
cursor stays at the current line. The first grep command is used to check if dheckman has
an entry in the /etc/passwd file. If the answer is no, the process is repeated for the second
command line argument. If dheckman is found, the second grep command searches the
/etc/passwd file for the login name dheckman and pipes it to the cut command, which
displays the fifth field in the /etc/passwd line for dheckman (his full name). The process
is repeated for the remaining two login names (ghacker and msarwar). No user is left in
the list passed at the command line, so control comes out of the for statement and the
exit 0 command is executed to transfer control back to shell. The command substitution
"^"‘echo $user":"‘ in the grep command can be replaced by "^"$user":".

$ cat user_info
#!/bin/sh
for user
do
Don't display anything if a login name is not found in /etc/
passwd
 grep "^"‘echo $user":"‘ /etc/passwd 1> /dev/null 2>&1
 if [$? -eq 0]

Introductory Bourne Shell Programming    ◾    483

 then
 echo -n "$user: "
 grep "^"‘echo $user":"‘ /etc/passwd | cut -f5 -d':'
 fi
done
exit 0
$./user_info dheckman ghacker sarwar
dheckman: Dennis R. Heckman
ghacker: George Hacker
sarwar: Syed Mansoor Sarwar
$

12.6.3 The while Statement

The while statement, also known as the while loop, allows repeated execution of a block
of code based on the condition of an expression. The following is a brief description of the
statement.

SYNTAX

while expression
do
 command-list
done

Purpose: To execute commands in command-list as long as expression evaluates to true

The expression is evaluated and, if the result of this evaluation is true, the commands in
command-list are executed and expression is evaluated again. This sequence of expression
evaluation and execution of command-list, known as one iteration, is repeated until the expres-
sion evaluates to false. At that time, control comes out of the while statement and the state-
ment following done is executed. Figure 12.5 depicts the semantics of the while statement.

The variables and/or conditions in the expression that result in a true value must be cor-
rectly manipulated in the commands in command-list for well-behaved loops—that is,
loops that eventually terminate and allow execution of the rest of the code in a script. Loops
in which the expression always evaluates to true are known as nonterminating, or infinite,
loops. Infinite loops, usually a result of poor design and/or programming, are undesirable
because they continuously use CPU time without accomplishing any useful task. However,
some applications do require infinite loops. For example, all the servers for Internet services
such as the HTTP service (which allows us to browse webpages on the Internet) are programs
that run indefinitely, waiting for client requests. In case of the HTTP service, for example,
the client requests come through Web browsers (i.e., HTTP clients) such as Mozilla Firefox.
Once a server has received a client request, it processes it, sends a response to the client, and
waits for another client request. The only way to terminate a process with an infinite loop is to
kill it by using the kill command. Or, if the process is running in the foreground, pressing

484 ◾ UNIX: The Textbook, Third Edition

<Ctrl+C> would also do the trick, unless the process is designed to ignore <Ctrl+C>. In
that case, you need to put the process in the background by pressing <Ctrl+Z> and use the
kill -9 command to terminate it. See Chapter 10 for details on processes.

The script in the while_demo file shows a simple use of the while loop. When you run
this script, the secretcode variable is initialized to agent007 and you are prompted
to make a guess. Your guess is stored in a local variable yourguess. If your guess is
not agent007, the condition for the while loop is true and the commands between do
and done are executed. This program displays a message tactfully informing you of your
failure and prompts you for another guess. Your guess is again stored in the yourguess
variable, and the condition for the loop is tested. This process continues until you enter
agent007 as your guess. At which time, the condition for the loop becomes false and the
control comes out of the while statement. The echo command following done executes,
congratulating you for being part of a great gene pool!

$ cat while_demo
#!/bin/sh
secretcode=agent007
echo "Guess the code!"
echo -e "Enter your guess: \c"
read yourguess

Execute the commands in
command-list

Does the
expression
evaluate to

true?

done

Yes

No

do

while

FIGURE 12.5 Semantics of the while statement.

Introductory Bourne Shell Programming    ◾    485

while ["$secretcode" != "$yourguess"]
do
 echo "Good guess but wrong. Try again!"
 echo -e "Enter your guess: \c"
 read yourguess
done
echo "Wow! You are a genius!!"
exit 0
$./while_demo
Guess the code!
Enter your guess: star wars
Good guess but wrong. Try again! Enter your guess: columbo
Good guess but wrong. Try again! Enter your guess: agent007
Wow! You are a genius!!
$

12.6.4 The until Statement

The syntax of the until statement is similar to that of the while statement, but its
semantics are different. Whereas in the while statement the loop body executes as long
as the expression evaluates to true, in the until statement the loop body executes as long
as the expression evaluates to false. The following is a brief description of the statement.

SYNTAX

until expression
do
 command-list
done

Purpose: To execute commands in command-list as long as expression evaluates to false

Figure 12.6 illustrates the semantics of the until statement. The code in the until_demo
file performs the same task that the script in the while_demo file does (see Section 12.6.3),
but it uses the until statement instead of the while statement. Thus, the code between
do and done (the loop body) is executed for as long as your guess is not agent007.

$ cat until_demo
#!/bin/sh
secretcode=agent007
echo "Guess the code!"
echo –n "Enter your guess: "
read yourguess
until ["$secretcode" = "$yourguess"]
do
 echo "Good guess but wrong. Try again!"
 echo –n "Enter your guess: "

486 ◾ UNIX: The Textbook, Third Edition

 read yourguess
done
echo "Wow! You are a genius!!" exit 0
$./until_demo
Guess the code!
Enter your guess: Inspector Gadget
Good guess but wrong. Try again!
Enter your guess: Peter Sellers
Good guess but wrong. Try again!
Enter your guess: agent007
Wow! You are a genius!!
$
$

12.6.5 The break and continue Commands

The break and continue commands can be used to interrupt the sequential execu-
tion of the loop body. The break command transfers control to the command following
done, thus terminating the loop prematurely. The continue command transfers control
to done, which results in the evaluation of the condition again and hence, continuation
of the loop. In both cases, the commands in the loop body following these statements
are not executed. Thus, these statements are almost always used in an if or if-else
setting. Figure 12.7 illustrates the semantics of these commands.

Execute the commands in
command-list

Does the
expression
evaluate to

true?

done

No

Yes

do

until

FIGURE 12.6 Semantics of the until statement.

Introductory Bourne Shell Programming    ◾    487

In the following in-chapter exercises, you will write shell scripts with loops by using the
for, while, and until statements.

EXERCISE 12.11
Write a shell script that takes a list of host names on your network as command line argu-
ments and displays whether the hosts are up or down. Use the ping command to display
the status of a host and the for statement to process all host names.

EXERCISE 12.12
Rewrite the script in Exercise 12.11, using the while statement. Rewrite it again, using the
until statement.

12.6.6 The case Statement

The case statement provides a mechanism for multiway branching similar to a nested if
statement. However, the structure provided by the case statement is more readable. You
would use the case statement when you can—that is, when you are testing a single vari-
able to several distinct patterns. You would not use it when you want to test more than one
variable. The following is a brief description of the statement.

SYNTAX

case test-string in
pattern1) command-list1
 ;;
pattern2) command-list2
 ;;
…
patternN) command-listN
 ;;
esac

Purpose: To implement multiway branching like a nested if

�is iteration is over
and there are no more

iterations

while condition
do

done
echo “…”
…

cmd1

cmdn

break
…

…

while condition
do

done
echo “…”
…

cmd1

cmdn

continue

�is iteration is
over; do the next

iteration…

…

FIGURE 12.7 Semantics of the break and continue commands.

488 ◾ UNIX: The Textbook, Third Edition

The case statement compares the value in test-string with the values of all the patterns
one by one until either a match is found or no more patterns with which to match test-
string remain. If a match is found, the commands in the corresponding command-list are
executed and control goes out of the case statement. If no match is found, control goes
out of case. However, in a typical use of the case statement, a wild card pattern matches
any value of test-string. Also known as the default case, it allows the execution of a set of
commands to handle an exception (i.e., error) condition for situations in which the value
in test-string does not match any pattern. Back-to-back semicolons (;;) are used to delimit
a command-list. Without ;; the first command in the command list for the next pattern
is executed, resulting in an unexpected behavior by the program. Figure 12.8 depicts the
semantics of the case statement.

The following script in the case_demo file shows a simple but representative use of the
case statement. It is a menu-driven program that displays a menu of options and prompts
you to enter an option. Your option is read into a variable called option. The case state-
ment then matches your option with one of the four available patterns (single characters in
this case) one by one, and when a match is found, the corresponding command-list (a single
command in this case) is executed. Thus, at the prompt, if you type d and hit <Enter>, the
date command is executed and control goes out of case. Then, the program exits after the
exit 0 command executes. A few sample runs of the script follow the code in this session.

$ cat case_demo
#!/bin/sh
echo "Use one of the following options:"
echo " d: To display today's date and present time"

case

No

Yes

Execute the commands in
command-list1

Execute the commands in
command-list2

Execute the commands in
command-listN

Yes Yes

No
…

…

No

Is
test-string

equal to
pattern1?

esac

Is
test-string

equal to
pattern2?

Is
test-string

equal to
patternN?

FIGURE 12.8 Semantics of the case statement.

Introductory Bourne Shell Programming    ◾    489

echo " l: To see the listing of files in your present working
directory"

echo " w: To see who's logged in"
echo " q: To quit this program"
echo -n "Enter your option and hit <Enter>: "
read option
case "$option" in
 d) date
 ;;
 l) ls
 ;;
 w) who
 ;;
 q) exit 0
 ;;
esac
exit 0
$./case_demo
Use one of the following options:
 d: To display today's date and present time
 l: To see the listing of files in your present working

directory
 w: To see who's logged in
 q: To quit this program
Enter your option and hit <Enter>: d
Sat Jul 26 17:28:19 PKT 2014
$./case_demo
Use one of the following options:
 d: To display today's date and present time
 l: To see the listing of files in your present working

directory
 w: To see who's logged in
 q: To quit this program
Enter your option and hit <Enter>: w
malik pts/0 Jul 15 08:11
davis pts/1 Jul 27 16:11 (39.59.91.120)
sarwar pts/2 Jul 27 16:48
jacob pts/3 Jul 26 16:03
$./case_demo
Use one of the following options:
 d: To display today's date and present time
 l: To see the listing of files in your present working

directory
 w: To see who's logged in
 q: To quit this program
Enter your option and hit <Enter>: a
$

490 ◾ UNIX: The Textbook, Third Edition

From the output of the w option, it seems that davis is using the system through a remote
login, most likely through an ssh session. Note that, when you enter a valid option, the
expected output is displayed. However, when you enter input that is not a valid option (a in
the preceding session), the program does not give you any feedback. The reason is that the
case statement matches your input with all the patterns, one by one, and exits when there
is no match. We need to modify the script slightly so that when you enter an invalid option,
the script tells you so and then terminates. To do so we add the following code.

*) echo "Invalid option; try running the program again."
 exit 1
 ;;

We also enhance the script so that uppercase and lowercase inputs are considered to be
the same. We use the pipe symbol (|) in the patterns to specify a logical OR operation. The
enhanced code and some sample runs are shown in the following session.

$ cat case_demo
echo "Use one of the following options:"
echo " d or D: To display today's date and present time"
echo " l or L: To see the listing of files in your present
working directory"
echo " w or W: To see who's logged in"
echo " q or Q: To quit this program"
echo -n "Enter your option and hit <Enter>: "
read option
case "$option" in
 d|D) date
 ;;
 l|L) ls
 ;;
 w|W) who
 ;;
 q|Q) exit 0
 ;;
 *) echo "Invalid option; try running the program

again."
 exit 1
 ;;
esac
exit 0
$./case_demo
Use one of the following options:
 d or D: To display today's date and present time
 l or L: To see the listing of files in your present working

directory
 w or W: To see who's logged in

Introductory Bourne Shell Programming    ◾    491

 q or Q: To quit this program
Enter your option and hit <Enter>: D
Sun Jul 27 16:49:47 PKT 2014
$./case_demo
Use one of the following options:
 d or D: To display today's date and present time
 l or L: To see the listing of files in your present working

directory
 w or W: To see who's logged in
 q or Q: To quit this program
Enter your option and hit <Enter>: d
Sun Jul 27 16:50:18 PKT 2014
$./case_demo
Use one of the following options:
 d or D: To display today's date and present time
 l or L: To see the listing of files in your present working

directory
 w or W: To see who's logged in
 q or Q: To quit this program
Enter your option and hit <Enter>: a
Invalid option; try running the program again.
$

12.7 COMMAND GROUPING
A number of shell commands may be run as a group. The following is a brief description
of command grouping.

SYNTAX

(command-list)
Or
{ command-list; }

Purpose: Syntax 1: To execute commands in command-list under a child of the current
Bourne shell

 Syntax 2: To execute commands in command-list as a group

The child shell inherits a copy of the parent shell’s environment, except trapped but
ignored signals. When commands are executed by using the second syntax, no child shell
is created. It allows redirection of the outputs of the commands in command-list. In the
second syntax, it is mandatory to have a semicolon at the end of the last command, a space
after {, and a space before }. The following interactive session shows a few examples of com-
mand grouping using both syntaxes.

$ { date; }
Sat Aug 2 06:34:51 PKT 2014

492 ◾ UNIX: The Textbook, Third Edition

$ { date; echo -n "Hello, "; echo "world!"; }
Sat Aug 2 06:35:27 PKT 2014
Hello, world!
$ { date; echo -n "Hello, "; echo "world!"; } > groupout
$ more groupout
Sat Aug 2 06:35:40 PKT 2014
Hello, world!
$ { date; echo; ps; echo; echo "Hello, world!"; }
Sat Aug 2 06:36:39 PKT 2014
 PID TT STAT TIME COMMAND
31078 1 Is 0:00.21 -csh (csh)
31113 1 S 0:00.05 /bin/sh
31371 1 R+ 0:00.01 ps
Hello, world!
$ (date; pwd)
Sun Aug 3 12:47:24 PKT 2014
/home/sarwar
$ (date; pwd) > groupout
$ cat groupout
Sun Aug 3 12:52:42 PKT 2014
/home/sarwar
$ (date; echo; ps; echo; echo "Hello, world!")
Sat Aug 2 06:37:18 PKT 2014
 PID TT STAT TIME COMMAND
31078 1 Is 0:00.21 -csh (csh)
31113 1 S 0:00.06 /bin/sh
31421 1 S+ 0:00.00 /bin/sh
31423 1 R+ 0:00.02 ps
Hello, world!
$

The outputs of the commands in this session are self-explanatory. Note that no child
shell is created to execute the commands in { date; echo; ps; echo; echo
"Hello, world!"; }. However, the commands in (date; echo; ps; echo;
echo "Hello, world!") are executed under a child shell and the PID of the child
shell is 31421.

SUMMARY
Every UNIX shell has a programming language that allows you to write programs for
performing tasks that cannot be performed by existing commands. These programs are
commonly known as shell scripts. In its simplest form, a shell script consists of a list of shell
commands that are executed by a shell one by one, sequentially. More advanced scripts con-
tain program control flow statements for implementing multiway branching and repetitive
execution of a block of commands in a script. The shell programs that consist of Bourne
shell commands, statements, and features are called Bourne shell scripts.

Introductory Bourne Shell Programming    ◾    493

The shell variables are main memory locations that are given names and can be read
from and written to. There are two types of shell variables: environment variables and
user-defined variables. The environment variables are initialized by the shell at the
time of user login and are maintained by the shell to provide a nice work environ-
ment. The user-defined variables are used as scratch pads in a script to accomplish
the task at hand. Some environment variables such as positional parameters are read
only in the sense that you cannot change their values without using the set com-
mand. User-defined variables can also be made read only by using the readonly
command.

The Bourne shell commands for processing shell variables are = (for assigning a value
to a variable), set (for setting values of positional parameters and displaying values of all
environment variables), env (for displaying values of all shell variables), export (for allow-
ing subsequent commands to access shell variables), read (for assigning values to variables
from the keyboard), readonly (for making user-defined variables read only), shift (for
shifting command line arguments to the left by one or more positions), unset (to reset the
value of a read/write variable to null), and test (to evaluate an expression and return true
or false).

The program control flow statements if and case allow the programmer of a shell
script to implement multiway branching; the for, until, and while statements allow
the programmer to implement loops; and the break and continue statements allow the
user to interrupt sequential execution of a loop in a script. I/O redirection, command sub-
stitution, and other shell features can be used with control flow statements as with other
shell commands (see Chapter 13).

QUESTIONS AND PROBLEMS

 1. What is a shell script? Describe three ways of executing a shell script.

 2. What is a shell variable? What is a read-only variable? How can you make a user-
defined variable read only? Give an example to illustrate your answer.

 3. Which shell environment variable is used to store your search path? Change your
search path interactively to include ~/bin and your current directory (.). What would
this change allow you to do? Why? If you want to make it a permanent change, what
would you do? See Chapter 4 if you have forgotten how to change the search path of
your shell.

 4. What will be the output if the shell script read_demo in Section 12.3.6 is executed
and you give * as input each time you are prompted?

 5. Write a shell script that takes an ordinary file as an argument and removes the file if
its size is zero. Otherwise, the script displays the following information about the file:
name, size (in bytes), number of hard links, owner, and modify date (in this order) on
one line. Your script must do the appropriate error checking.

494 ◾ UNIX: The Textbook, Third Edition

 6. Write a shell script that takes a directory as a required argument and displays the
names of all zero-length files in it. Do the appropriate error checking.

 7. Write a shell script that removes all zero-length ordinary files from the current direc-
tory. Do appropriate error checking.

 8. Modify the script in Problem 6 so that it removes all zero-length ordinary files in the
directory passed as an optional argument. If you don’t specify the directory argu-
ment, the script uses the present working directory as the default argument. Do the
appropriate error checking.

 9. Run the script in if_demo2 in Section 12.6.1 with if _ demo2 as its argument. Does
the output make sense to you? Why or why not?

 10. Write a shell script that takes a list of login names on your computer system as com-
mand line arguments and displays these login names and full names of the users who
own these logins (as contained in the /etc/passwd file), one per line. If a login name
is invalid (i.e., not found in the /etc/passwd file), display the login name but nothing
for the full name. The format of the output line is login name: username.

 11. What happens when you run a stand-alone command enclosed in back quotes (grave
accents), such as ‘date‘? Why?

 12. What happens when you type the following sequence of shell commands?

 a. name=date

 b. $name

 c. ‘$name‘

 13. Look at your ~/.profile and /etc/profile files and list the environment variables that
are exported along with their values. What is the purpose of each variable?

 14. Write a Bourne shell script that takes a list of login names as its arguments
and displays the number of terminals that each user is logged on to in a LAN
environment.

 15. Write a Bourne shell script domain2ip that takes a list of domain names as command
line arguments and displays their IP addresses. Use the nslookup command. The
following is a sample run of this program.

 $ domain2ip usc.edu up.edu redhat.com

 Name: usc.edu

 Address: 128.125.253.136

 Name: up.edu

 Address: 64.251.254.23

Introductory Bourne Shell Programming    ◾    495

 Name: redhat.com

 Address: 209.132.183.105

 $

 16. Modify the script in the case_demo file in Section 12.6.6 so that it allows you to try
any number of options and quits only when you use the q option.

 17. Write a Bourne Shell script that displays the following menu and prompts you for
one-character input to invoke a menu option, as follows:

 a. List all files in the present working directory

 b. Display today’s date and time

 c. Invoke the shell script for Problem 14

 d. Display whether a file is a simple file or a directory

 e. Create a backup for a file

 f. Start a secure shell (ssh) session

 g. Start an ftp session

 h. Exit

 Option (c) requires that you ask for a list of login names; and for options (d) and
(e), insert a prompt for file names before invoking a shell command/program. For
options (f) and (g), insert a prompt for a domain name (or IP address) before initiat-
ing an ssh or ftp session. The program should allow you to try any option any number
of times and should quit only when you give option x as input. A good programming
practice for you to adopt is to build code incrementally—that is, write code for one
option, test it, and then go to the next option.

 18. Modify the Bourne Shell script for Problem 17 so that it executes code for each option
under a child shell. Display the PID for the child shell whenever it is initiated to run
the code for an option, before the code is executed.

 19. What is the purpose of the echo * command? Run the command on your system
and explain the output of the command.

 20. The Bourne shell allows the following types of command groupings: (command-
list) and { command-list; }. Run the following commands on your sys-
tem and answer the questions that follow. If there are any errors, correct them and
describe those corrections.

 a. (date; pwd; who; echo "Hello, \c"; echo "world!")

 b. {date; pwd; who; echo "Hello, world!"}

496 ◾ UNIX: The Textbook, Third Edition

 Make appropriate changes in the corrected versions of the two command groups so
that, in each case, the outputs of the date and pwd commands go to file1 and out-
puts of the who and echo commands are redirected to file2. Then, demonstrate that
commands in the first group are executed under a child shell and those in the second
group are executed under the current shell. For the first case, show two ways of dis-
playing the PID of the child shell.

497

C h a p t e r 13

Advanced Bourne
Shell Programming

Objectives

• To discuss numeric data processing

• To describe how standard input of a command in a shell script can be redirected from
data within the script

• To explain the signal/interrupt processing capability of the Bourne shell

• To describe how file I/O can be performed by using file descriptors and how standard
files can be redirected from within a shell script

• To explain functions in the Bourne shell

• To discuss debugging of Bourne shell scripts

• To cover the commands and primitives

 |, <, >, >>, clear, exec, expr, grep, kill, more, read, sort, stty, trap

13.1 INTRODUCTION
We discuss several important, advanced features of the Bourne shell in this chapter. They
include processing of numeric data, the here document, signals and signal processing, and
redirection of standard files from within a shell script. We also discuss the Bourne shell’s
support of functions that allow the programmer to write general-purpose and modular
code. Finally, we describe how Bourne shell scripts can be debugged.

13.2 NUMERIC DATA PROCESSING
The values of all Bourne shell variables are stored as character strings. Although this feature
makes symbolic data processing fun and easy, it does make numeric data processing a bit

498 ◾ UNIX: The Textbook, Third Edition

challenging. The reason is that integer data is actually stored in the form of character strings.
In order to perform arithmetic and logic operations on them, you need to convert them to
integers, perform the necessary operations on the integer data, and be sure the result is
converted back to a character string for its proper storage in a shell variable. Fortunately,
the Bourne shell command expr does the trick. The following is a brief description of the
command.

Shell metacharacters such as * must be escaped in an expression so that they are treated
literally and not as shell metacharacters. In the following session, the first expr command
increments the value of the shell variable var1 by 1. The second expr command com-
putes the square of var1. The last two echo commands show the use of the expr com-
mand to perform integer division and integer remainder operations on var1.

$ var1=10
$ var1=‘expr $var1 + 1‘
$ echo $var1
11
$ var1=‘expr $var1 * $var1‘
$ echo $var1
121
$ echo ‘expr $var1 / 10‘
12
$ echo ‘expr $var1 % 10‘
1
$

The following countup script takes an integer as a command line argument and dis-
plays the range of numbers from 1 to the given number in one line, in ascending order.
In the script, we use a simple while loop to display the current number (starting with 1)
and then compute the next numbers, until the current number becomes greater than the
number passed as the command line argument.

SYNTAX

expr args

Purpose: Evaluate the expression arguments args and send the result to standard output
Commonly used options/features:

\| Force creation of link; don’t prompt if new-file already exists
\& Don’t create the link if new-file already exists
=, \>, \>=, Integer comparison operators: equal, greater than, greater than or
\<, \<=, != equal to, less than, less than or equal to, not equal
+, -, *, /, % Integer arithmetic operators: add, subtract, multiply, integer divide

(return quotient), remainder

Advanced Bourne Shell Programming    ◾    499

$ cat countup
#!/bin/sh
if [$# != 1]
 then
 echo "Usage: $0 integer-argument"
 exit 1
fi
target="$1" # Set target to the number passed at the command
 # line
current=1 # The first number to be displayed
Loop here until the current number becomes greater than the target
while [$current -le $target]
do
 echo -n "$current"
 current=‘expr $current + 1‘
done
echo # Move cursor to the next line
exit 0
$./countup 5
1 2 3 4 5
$

The following script, addall, takes a list of integers as command line arguments and
displays their sum. The while loop adds the next number in the argument list to the run-
ning sum (which is initialized to 0), updates the count of numbers that have been added,
and shifts the command line arguments left by one position. The loop then repeats until all
the numbers in the command line arguments have been added. The sample run following
the code takes the list of the first eight perfect squares and returns their sum.

$ cat addall
#!/bin/sh
File Name: ~/unixbook/examples/Bshell/addall
Author: Syed Mansoor Sarwar
Written: August 18, 2004
Modified: August 18, 2004, July 28, 2014
Purpose: To demonstrate use of the expr command in processing
numeric data
Brief Description:
Maintain the running sum of numbers in a numeric
variable called sum, initialized to 0. Read the next
integer and add it to sum. When all the integers
specified as command line arguments have been read,
display the answer, and terminate the program. If
the program is run with no arguments, inform the
user of the command syntax.
if [$# = 0]

500 ◾ UNIX: The Textbook, Third Edition

 then
 echo "Usage: $0 number-list"
 exit 1
fi
sum=0 # Running sum initialized to 0
count=0 # Count the count of numbers passed as arguments
while [$# != 0]
do
 sum=‘expr $sum + $1‘ # Add the next number to the running sum
 count=‘expr $count + 1‘ # Update count of numbers added so far
 shift # Shift the counted number out
done
Display final sum
echo "The sum of the given $count numbers is $sum."
exit 0
$./addall
Usage: ./addall number-list
$./addall 1 4 9 16 25 36 49 64
The sum of the given 8 numbers is 204.
$

Although this example neatly explains numeric data processing, it is nothing more than
an integer addition machine. We now present a more useful example that uses the UNIX
file system. The fs (for file size) file contains a script that takes a directory as an optional
argument and returns the size (in bytes) of all nondirectory files in it. On some UNIX sys-
tems, running the fs command invokes xfs. If this happens on your system, change the
name of this script to files, or whatever name you prefer to use.

When you run the program without a command line argument, the script assumes
your current directory as the argument. If you run it with more than one command line
argument, the script displays the command syntax and terminates. When you execute it
with one nondirectory argument only, again the program displays the command syntax
and exits. If the program is run with a nonexistent file as an argument, it displays an error
message and terminates.

The gist of this script is the following code that runs when the script is run with a direc-
tory as a command line argument.

ls $directory | more | while read file
do
...
Done

This code generates a list of files in directory with the ls command, converts the
list into one file name per line list with the more command, and reads each file name in
the list, one by one, with the read command until no file remains in the list. The read
command returns true if it reads a line and returns false when it reads the eof marker.

Advanced Bourne Shell Programming    ◾    501

The body of the loop—that is, the code between do and done—adds the file size to the
running total if the file is an ordinary file. When no name is left in the directory list, the
program displays the total space in bytes occupied by all nondirectory files in the directory
and terminates.

If the value of the file variable is not an existing file, the [! -e "$file"] expres-
sion returns false and the error message Usage: fs [directory name], as shown
in sample run, where unix3e is a nonexistent directory. On some systems, the message
may display ./fs instead of fs, as in our session. The file="$directory"/"$file"
statement is used to construct the relative pathname of a file with respect to the directory
specified as the command line argument. Without this, the set -- 'ls -l "$file"̀
command will be successful only if the directory contains the name of the current
directory.

$ cat fs
#!/bin/sh
File Name: ~/unix3e/BourneShell/fs
Author: Syed Mansoor Sarwar
Written: August 18, 2004
Modified: May 8, 2004, August 20, 2004, Jul 28, 2014
Purpose: To add the sizes of all the files in a directory
passed as command line argument
Brief Description:
Maintain running sum of file sizes in a numeric variable
called sum, starting with 0. Read all the file names
by using the pipeline of the ls, more, and while commands.
Get the size of the next file and add it to the running
sum. Stop when all file names have been processed and
display the answer.
if [$# = 0] # If no command line argument, the
 # set directory to current directory
 then
 directory="."
 elif [$# != 1] # If more then one command line argument
 # then display command syntax
 then
 echo "Usage: $0 [directory name]"
 exit 1
 elif [! -e "$1"] # If one command line argument, but file
 # does not exist, display error message
 then
 echo "$1: File does not exist"
 exit 1
 elif [! -d "$1"] # If one command line argument, but is
 # not a directory, show command syntax
 then
 echo "Usage: $0 [directory name]"

502 ◾ UNIX: The Textbook, Third Edition

 exit 1
 else
 directory="$1" # If one command line argument and it is a
 # directory, prepare to perform the task
fi
Get file count in the given directory; for empty directory,
 display a
message and quit.
file_count=‘ls $directory | wc -w‘ # Get count of files in the

directory
if [$file_count -eq 0] # If no files, display error

message
 then
 echo "$directory: Empty directory."
 exit 0
fi
For each file in the directory specified, add the file size
to the running total. The more command is used to output file
names one per line so can read command can be used to read
file names.
sum=0 # Running sum initialized to 0.
ls "$directory" | more |
while read file
do
 file="$directory"/"$file" # Store the relative path name for

each file
 if [-f "$file"] # If it is an ordinary file
 then # then
 set -- ‘ls -l "$file"‘ # Set command line arguments
 sum=‘expr $sum + $5‘ # Add file size to the running

total.
 fi
 # Code to decrement the file_count variable and display the
 # final sum if the last file has been processed.
 if ["$file_count" -gt 1] # Are more files left? If so,

continue.
 then
 file_count=‘expr $file_count - 1‘
 else
 # Spell out the current directory
 if ["$directory" = "."]
 then
 directory="your current directory"
 fi
 echo "The size of all ordinary files in $directory is $sum
bytes."

Advanced Bourne Shell Programming    ◾    503

 fi
done
exit 0
$
$ pwd
/home/sarwar/unix3e/ch13
$./fs / /bin
Usage: ./fs [directory name]
$./fs unix3e
unix3e: File does not exist
$./fs ~/unix3e
The size of all ordinary files in /home/sarwar/unix3e is 0 bytes.
$./fs ..
The size of all ordinary files in .. is 0 bytes.
$./fs .
The size of all ordinary files in your current directory is 4716
bytes.
$./fs /
The size of all ordinary files in / is 10238 bytes.
$./fs /bin
The size of all ordinary files in /bin is 1635367 bytes.
$./fs dir1
dir1: Empty directory.
$

In the following in-chapter exercise, you will create a Bourne shell script that processes
numeric data by using the expr command.

EXERCISE 13.1

Create the addall script in your directory and run it with the first 10 numbers in the
Fibonacci series. What is the result? Does the program produce the correct result? If you
are not familiar with the Fibonacci series, browse through the following website: http://
en.wikipedia.org/wiki/Fibonacci_number.

13.3 THE HERE DOCUMENT
The here document feature of the Bourne shell allows you to redirect standard input of a
command in a script and attach it to data within the script, wrapped in a particular format,
as will be explained. Obviously, this feature works with commands that take input from
standard input. The feature is used mainly to display menus, although there are some other
important uses of this feature. The advantage of maintaining data within the script is that
it eliminates extra file operations such as open and read that would be required if the

http://www.en.wikipedia.org/wiki/Fibonacci_number
http://www.en.wikipedia.org/wiki/Fibonacci_number

504 ◾ UNIX: The Textbook, Third Edition

data was maintained in a separate file. The result is a much faster program. The following
is a brief description of the here document.

The input _ marker is a string that you choose to wrap the input data in for com-
mand. The closing marker must be on a line by itself and cannot be surrounded by any
spaces. The command and variable substitutions are performed before the here document
data is directed to stdin of the command. Quotes can be used to prevent these substitu-
tions or to enclose any quotes in the here document. input _ marker can be enclosed in
quotes to prevent any substitutions in the entire document, as in:

command <<'Marker'
...
'Marker'

A hyphen (-) after << can be used to remove leading tabs (not spaces) from the lines in
the here document and the marker that ends the here document. This feature allows the
here document and the delimiting marker to conform to the indentation of the script. The
following session illustrates this point:

while [...] do
grep ... <<- DIRECTORY
 John Doe ...
 ...
 Art Pohm ... DIRECTORY
...
done

One last, but very important point: output and error redirections of the command that
uses the here document must be specified in the command line, not following the marker
that ends the here document. The same is true of connecting the standard output of the
command with other commands via a pipeline, as shown in the following session. Note
that the grep ... <<- DIRECTORY 2> errorfile | sort command can be
replaced by (grep ... 2> errorfile | sort) <<- DIRECTORY.

while [...] do
 grep ... <<- DIRECTORY 2> errorfile | sort John Doe ...

SYNTAX

command << [-] input_marker
... input data ...
input_marker

Purpose: To execute command with its input coming from the here document—data
between the input start and end markers input _ marker

Advanced Bourne Shell Programming    ◾    505

 ...
 Art Pohm ... DIRECTORY
 ...
Done

We can illustrate the use of the here document feature with a simple instance of redirect-
ing stdin of the cat command from the here document. The script in the heredoc_demo
file is used to display a message for the user and then send a message to the person whose
e-mail address is passed as a command line argument. In the following session, we use two
here documents: one begins with << DataTag and ends with DataTag; and the other
begins with << WRAPPER and ends with WRAPPER.

$ cat heredoc_demo
#!/bin/sh
cat << DataTag
This is a simple use of the here document. This data is the
input to the cat command.
DataTag

Second example
mail -s "Weekly Meeting Reminder" $1 << WRAPPER

Hello,

This is a reminder for the weekly faculty meeting tomorrow.

Mansoor

WRAPPER

echo "Sending mail to $1 ... done."
exit 0
$./heredoc_demo eecsfaculty
This is a simple use of the here document. These data are the
input to the cat command.
Sending mail to eecsfaculty ... done.
$

The following script is more useful and makes a better utilization of the here document
feature. The dext (directory expert) script maintains a directory of names, phone num-
bers, and e-mail addresses. The script is run with a name as a command line argument and
uses the grep command to display the directory entry corresponding to the name. The -i
option is used with the grep command in order to ignore the case of letters.

$ more dext
#!/bin/sh
if [$# = 0]
 then
 echo "Usage: $0 name"
 exit 1

506 ◾ UNIX: The Textbook, Third Edition

fi
user_input="$1"
grep -i "$user_input" << DIRECTORY

 John Doe 555.232.0000 johnd@somedomain.com
 Jenny Great 444.6565.1111 jg@new.somecollege.edu
 David Nice 999.111.3333 david_nice@xyz.org
 Don Carr 555.111.3333 dcarr@old.hoggie.edu
 Masood Shah 666.010.9820 shah@Garments.com.pk
 Jim Davis 777.000.9999 davis@great.adviser.edu
 Art Pohm 333.000.8888 art.pohm@great.professor.edu
 David Carr 777.999.2222 dcarr@net.net.gov

DIRECTORY
exit 0
$./dext
Usage: ./dext name
$./dext Pohm
 Art Pohm 333.000.8888 art.pohm@great.professor.edu
$./dext Carr
 Don Carr 555.111.3333 dcarr@old.hoggie.edu
 David Carr 777.999.2222 dcarr@net.net.gov
$

If there are multiple entries for a name, the grep command displays all the entries. You
can display the entries in sorted order by piping the output of the grep command to the
sort command and enclosing them in parentheses, as in (grep -i "$user _ input"
| sort). We enhance the dext script in Section 13.6 to include this feature, as well as
take multiple names from the command line.

The following in-chapter exercise is designed to reinforce your understanding of the
here document feature of the Bourne shell.

EXERCISE 13.2

Create the dext script on your system and run it. Try it with as many different inputs as
you can think of. Does the script work correctly?

13.4 INTERRUPT (SIGNAL) PROCESSING
We discussed the basic concept of signals in Chapter 10, where we defined them as software
interrupts that can be sent to a process. We also stated that the process receiving a signal
can take one of the three possible actions:

 1. Take the default action as defined by the UNIX kernel

 2. Ignore the signal

 3. Take a programmer-defined action

Advanced Bourne Shell Programming    ◾    507

In UNIX, several types of signals can be sent to a running program. Some of these sig-
nals can be sent via hardware devices such as the keyboard, but all can be sent via the kill
command, as discussed in Chapter 10. The most common event that causes a hardware
interrupt (and a signal) is generated when you press <Ctrl+C> and is known as the key-
board interrupt. The default kernel-defined action of this event is that the foreground pro-
cess terminates. Other events that cause a process to receive a signal include termination of
a child process, a process accessing a main memory location that is not part of its address
space, and a software termination signal caused by execution of the kill command with-
out any signal number. The address space of a process is the main memory area that the
process owns legally and is allowed to access. Table 13.1 presents a list of some important
signals, their numbers, and their purpose. The signal numbers, or the corresponding sym-
bolic names, can be used to generate the respective signals with the kill command.

The interrupt processing feature of the Bourne shell allows you to write programs that
can ignore signals, take actions as defined by the UNIX kernel for those signals, or execute
a specific sequences of commands when signals of particular types are sent to them. This
feature is much more powerful than that of the C shell, which allows programs to ignore a
keyboard interrupt (<Ctrl+C>) only (see Chapter 15). The trap command can be used
to intercept signals. The following is a brief description of the command.

SYNTAX

trap ['command-list'] [signal-list]

Purpose: To intercept signals specified in signal-list and take default kernel-defined action,
ignore the signals, or execute the commands in command-list; note that quotes around
command-list are required

When you use the trap command in a script without any argument (i.e., no com-
mand-list and no signal-list), the script takes default actions when it receives signals.

TABLE 13.1 Some Important Signals, Their Numbers, and Their Purpose

Signal Name Signal # Purpose

SIGHUP (hang up) 1 Informs the process when the user who ran the process
logs out, and the process terminates

SIGINT (keyboard interrupt) 2 Informs the process when the user presses <Ctrl+C>
and the process terminates

SIGQUIT (quit signal) 3 Informs the process when the user presses <Ctrl+|>
or <Ctrl+\> and the process terminates

SIGKILL (sure kill) 9 Terminates the process when the user sends this signal to
it with the kill -9 command

SIGSEGV (segmentation violation) 11 Terminates the process upon memory fault when a process
tries to access memory space that does not belong to it

SIGTERM (software termination) 15 Terminates the process when the kill command is used
without any signal number

SIGTSTP (suspend/stop signal) 18 Suspends the process; usually <Ctrl+Z>
SIGCHLD (child finishes execution) 20 Informs	the	process	of	termination	of	one	of	its	children

508 ◾ UNIX: The Textbook, Third Edition

Thus, using the trap command without any argument is redundant. When the trap
command is used without any commands in single quotes, the script ignores the signals
in signal-list. When both a command-list and a signal-list are specified, the com-
mands in command-list execute when a signal specified in signal-list is received by the
script.

Next, we enhance the script in the while_demo file from Chapter 12 so that you cannot
terminate execution of this program with <Ctrl+C> (signal number 2), the kill com-
mand without any argument (signal number 15), or the kill -1 command (to generate
the SIGHUP signal). The enhanced version is in the trap_demo file, as shown in the fol-
lowing session. Note that the trap command is used to ignore signals 1, 2, 3, 15, and 18.
A sample run illustrates this point.

$ cat trap_demo
#!/bin/sh

Intercept signals 1, 2, 3, 15, and 18 and ignore them
trap '' 1 2 3 15 18

Set the secret code
secretcode=agent007

Get user input
echo "Guess the code!"
echo -e "Enter your guess: c"
read yourguess

As long as the user input is the secret code (agent007 in this
case), loop here: display a message and take user input again.
When the user input matches the secret code, terminate the loop
and execute the echo command that follows.
while ["$secretcode" != "$yourguess"]
do
 echo "Good guess but wrong. Try again!"
 echo -e "Enter your guess: \c"
 read yourguess
done
echo "Wow! You are a genius!"
exit 0
$./trap_demo
Guess the code!
Enter your guess: codecracker
Good guess but wrong. Try again!
Enter your guess: <Ctrl+C>
Good guess but wrong. Try again!
Enter your guess: agent007
Wow! You are a genius!
$

Advanced Bourne Shell Programming    ◾    509

To terminate programs that ignore terminal interrupts, you have to use the kill
command. You can do so by suspending the process by pressing <Ctrl+Z>, using the
ps command to get the PID of the process, and terminating it with the kill command.
Alternatively, you can login from another terminal and use the ps and kill commands
as stated in the previous sentence.

You can modify the script in the trap_demo file so that it ignores signals 1, 2, 3, 15, and
18, clears the display screen, and turns off the echo. When echo has been turned off, what-
ever input you enter from the keyboard, is not displayed. Next, it prompts you for the code
word and saves it. It then prompts you again to enter the same code word in order to make
sure that you remember the word that you have entered. It gives you two chances for this
purpose. If you do not enter the same code word both times, it reminds you of your bad
short-term memory and quits. If you enter the same code word, it clears the display screen
and prompts you to guess the code word again. If you do not enter the original code word,
the display screen is cleared and you are prompted to guess again. The program does not
terminate until you have entered the original code word. When you do enter it, the display
screen is cleared, a message is displayed at the top left of the screen, and the echo is turned
on. Because the terminal interrupt is ignored, you cannot terminate the program by press-
ing <Ctrl+C>. The stty -echo command turns off the echo. Thus, when you type the
original code word (or any guesses), it is not displayed on the screen. The stty echo turns
on the echo. The clear command clears the display screen and positions the cursor at the
top-left corner. The resulting script is in the canleave file, as shown in the following session.

$ cat canleave
#!/bin/sh
File Name: ~/unix3e/BourneShell/canleave
Author: Syed Mansoor Sarwar
Written: August 18, 2004
Modified: May 8, 2004, Jul 29, 2014
Purpose: To allow a user to leave his/her terminal for a
short duration of time by locking the terminal
after taking a code from the user. Terminal is
unlocked only when the user re-enters the same
code. Ignores command line arguments.
Brief Description:
Clear screen and turn off echo (i.e., do not display what
the user types at the keyboard). Take user code, save it,
and ask the user to re-enter his/her code just to make sure
that the user remembers the code that he/she has entered.
It is done twice. If the user does not enter the same code,
the program terminates after displaying a message for the
user. The user is prompted to enter the original code. If
the user enters the wrong code, the program keeps on
prompting the user until he/she enters the original code.
The keyboard is then unlocked, echo is turned on, and
program exits.

510 ◾ UNIX: The Textbook, Third Edition

Ignore signals 1, 2, 3, 15, and 18
trap '' 1 2 3 15 18

Clear the screen, locate the cursor at the top-left corner,
and turn off echo
clear
stty -echo

Set the secret code
echo -n "Enter your code word: "
read secretcode
echo " "

To make sure that the user remembers the code word,
ask the user to enter the secrete code again.
echo -n "Enter your code word again: "
read same
if [$secretcode != $same]
 then
 clear
 echo "Wrong code. Try again."
fi
echo -n "Enter your code word again: "
read same
if [$secretcode != $same]
 then
 clear
 echo "Work on your short-term memory before using this code!"
 echo "Goodbye!"
 exit 1
fi

Keyboard locked. Hit <Enter> to continue.
clear
echo -n "Keyboard locked. Hit <Enter> to continue."
read ignore
clear

Get user guess to unlock the terminal
clear
echo -n "Enter the code word: "
read yourguess
echo " "

As long as the user input is not the original code word, loop
here: display a message and take user input again. When the user
input matches the secret code word, terminate the loop and
execute the following echo command.
while ["$secretcode" != "$yourguess"]
do

Advanced Bourne Shell Programming    ◾    511

 clear
 echo "Wrong code. Try again."
 echo -n "Enter the code word: "
 read yourguess
done
Set terminal to echo mode clear
clear
echo "Back again!"
stty echo
exit 0
$

You can use this script to lock your terminal before you leave it for a short period of
time—for example, to pick up a printout or get a can of soda; hence, the name canleave (can
leave). Using it saves you the time otherwise required for the logout and login procedures.

The following in-chapter exercise is designed to reinforce your understanding of the
signal-handling feature of a Bourne shell.

EXERCISES 13.3

Test the scripts in the trap_demo and canleave files on your UNIX system. Do they work
as expected? Be sure that you understand them.

13.5 THE exec COMMAND AND FILE I/O
The exec command is the command-level version of the UNIX loader. Normally, the
exec command is used to replace the current process with a new process. Thus, when
executed under a shell, exec cmd overwrites the current shell with cmd. The exec com-
mand may also be used to open and close file descriptors.

When the exec command is used in conjunction with the redirection operators, it
allows commands and shell scripts to read/write any type of files, including devices. In
this section, we describe both uses of this command but focus primarily on the second
use.

13.5.1 Execution of a Command (or Script) in Place of Its Parent Process

The exec command can be used to run a command (or a script) instead of the process,
usually the shell, that executes this command. It works with all shells. The following is a
brief description of the command.

SYNTAX

exec command

Purpose: Overwrite the code for command on top of the process that executes the exec
command (the calling process), which makes command run in place of the calling pro-
cess without creating a new process

512 ◾ UNIX: The Textbook, Third Edition

After you have run this command, the control cannot return to the calling process.
When the exec command has finished, control goes back to the parent of the calling
process. If the calling process is your login shell, control goes back to the getty process,
which displays the Login: prompt after the exec command finishes execution, as in:

% exec date
Thu Jul 31 17:57:39 PKT 2014
Login:

When exec date finishes, control does not go back to the shell process but to the
getty process—that is, the parent of the login shell process. The semantics of this com-
mand execution are shown in Figure 13.1.

If the command is run under a subshell of the login shell, control goes back to the login
shell, as clarified in the following session. Here, a C shell is run as a child of the login shell,
also a C shell in this case, and exec date is run under the child C shell. When the exec
date command finishes execution, control goes back to the login C shell. The sequence of
three diagrams from left to right shown in Figure 13.2 depicts the semantics of these steps.

% ps
 PID TT STAT TIME COMMAND
29301 4 Ss 0:00.05 -csh (csh)
41055 4 R+ 0:00.00 ps
% /bin/csh
% ps
 PID TT STAT TIME COMMAND
29301 4 Ss 0:00.06 -csh (csh)
41084 4 S 0:00.00 /bin/csh
41097 4 R+ 0:00.01 ps
% exec date
Thu Jul 31 18:16:01 PKT 2014
% ps
 PID TT STAT TIME COMMAND
29301 4 Ss 0:00.06 -csh (csh)
41133 4 R+ 0:00.01 ps
%

getty getty getty

csh Login (C)
shell

exec date on
top of login

(C) shell

exec
date

getty
process

getty
process

getty
process

FIGURE 13.1 Execution of the exec date command under the login shell.

Advanced Bourne Shell Programming    ◾    513

13.5.2 File I/O via the exec Command

Different shells allow the use of different numbers of file descriptors at a time. As stated in
Chapter 7, three of these descriptors are set aside for standard input (0), standard output
(1), and standard error (2). Using the redirection operators with the exec command can
use all of these descriptors for I/O. Table 13.2 describes the syntax of the exec command
for file I/O.

When executed from the command line, the exec < sample command causes each
line in the sample file to be treated as a command and executed by the current shell. That
happens because the shell process, whose only purpose is to read commands from stdin
and execute them, executes the exec command; as the sample file is attached to stdin,
the shell reads its commands from this file. The shell terminates after executing the last

getty getty getty

csh

csh

csh

exec
dateC shell exec date on top

of C shell

cshLogin
shell

Login
shell

Login
shell

getty
process

getty
process

getty
process

FIGURE 13.2 Execution of the exec date command under a subshell of the login shell.

TABLE 13.2 Syntax of the exec Command for File I/O

Syntax Meaning

exec < file Opens file for reading and attaches standard input of the process to file
exec > file Opens file for writing and attaches standard output of the process to file
exec >> file Opens file for writing, attaches standard output of the process to file, and

appends standard output to file
exec n< file Opens file for reading and assigns it the file descriptor n
exec n> file Opens file for writing and assigns it the file descriptor n
exec n<< tag
...
tag

Opens a here document (data between << tag and tag) for reading; the opened
file is assigned a descriptor n

exec n>> file Opens file for writing, assigns it file descriptor n, and appends data to the end of
file

exec n>&m Duplicates m into n; whatever goes into file with file descriptor n will also go into
file with file descriptor m

exec <&- Closes standard output
exec >&- Closes standard output
exec n<&- Closes file with descriptor n attached to stdin
exec n >&- Closes file with descriptor n attached to stdout

514 ◾ UNIX: The Textbook, Third Edition

line in sample. When executed from within a shell script, this command causes the stdin
of the remainder of the script to be attached to sample. The following session illustrates
the semantics of this command when it is executed at the command line. As shown, the
sample file contains two commands: date and echo. A Bourne shell is run under the
login shell, which is a C shell, via the /bin/sh command. When the exec < sample
command is executed, the commands in the sample file are executed, the Bourne shell (the
child process of the login C shell) terminates after finishing execution of the last command
in sample (the output of the third ps command shows that only the login shell runs after
the exec < sample command has completed execution), and control returns to the
login shell.

% cat sample
date
echo "Hello, world!"
% ps
 PID TT STAT TIME COMMAND
41407 1 Ss 0:00.72 -csh (csh)
43286 1 R+ 0:00.02 ps
% /bin/sh
% ps
 PID TT STAT TIME COMMAND
41407 1 Is 0:00.15 -csh (csh)
41802 1 S 0:00.04 /bin/sh
41901 1 R+ 0:00.02 ps
% exec < sample
Thu Jul 31 18:41:38 PKT 2014
Hello, world!
% ps
 PID TT STAT TIME COMMAND
41407 1 Ss 0:00.50 -csh (csh)
41914 1 R+ 0:00.00 ps
%

So, effectively, when the exec < sample command is executed from the command
line, it attaches stdin of the current shell to the sample file. When this command is exe-
cuted from a shell script, it attaches stdin of the shell script to the sample file. In either
case, the exec < /dev/tty command must be executed to reattach stdin to the termi-
nal. Here, /dev/tty is the pseudo terminal that represents the terminal on which the shell
is executed. The following session illustrates the use of this command from the command
line. The semantics of these steps are shown in Figure 13.3.

Similarly, when the exec > data command is executed from the command line, it
attaches stdout of the current shell to the data file. Thus, it causes outputs of all subsequent
commands executed under the shell to go to the data file. Thus, you do not see the output
of any command on the screen. In order to see the output on the screen again, you need
to execute the exec > /dev/tty command. After doing so, you can view the contents

Advanced Bourne Shell Programming    ◾    515

of the data file to see the outputs of all the commands executed prior to this command.
When the exec > data command is executed from a shell script, it causes the outputs of
all subsequent commands to go to the data file until the exec > /dev/tty command is
executed from within the shell script.

The following session illustrates the use of this command from the command line. Note
that, after the exec > data command has completed its execution, the outputs of all
subsequent commands (date, echo, and more) go to the data file. In order to redirect
the output of commands to the screen, the exec > /dev/tty command must be exe-
cuted, as shown in the following session. Note that our system has an AMD64 CPU and, as
expected, is running FreeBSD UNIX.

$ exec > data
$ date
$ echo "Hello, world!"
$ uname -sm
$ exec > /dev/tty
$ date
Thu Jul 31 19:27:46 PKT 2014
$ more data
Thu Jul 31 19:27:12 PKT 2014
Hello, world!
FreeBSD amd64
$

Similarly, you can redirect standard output and standard error for a segment of a shell
script by using the following command:

exec > outfile 2> errorfile

getty getty getty getty processgetty processgetty process

Login shellLogin shellLogin shell

C shell sample

exec < sample

Execution of the
commands in
sample by the

child csh

csh csh csh

cshcsh

FIGURE 13.3 Execution of the csh and exec < sample commands under the login shell.

516 ◾ UNIX: The Textbook, Third Edition

In this case, output and error messages from the shell script following this line are directed
to outfile and errorfile, respectively. (Obviously, file descriptor 1 can be used with > to redi-
rect output.) If output needs to be reattached to the terminal, you can do so by using:

exec > /dev/tty

Once this command has executed, all subsequent output goes to the monitor screen.
Similarly, you can use the exec 2> /dev/tty command to send errors back to the
display screen.

Consider the following shell session. When exec.demo1 is executed, file1 gets the line
containing Hello, world!, file3 gets the contents of file2, and file4 gets the line This
is great!. The shell script between the commands exec < file2 and exec < /
dev/tty takes its input from file2. Therefore, the command cat > file3 is really cat
< file2 > file3. The cat > file4 command takes input from the keyboard as it is
executed after the exec < /dev/tty command has been executed (which reattaches the
stdin of the script to the keyboard). Figure 13.4 illustrates the semantics of the three cat
commands in the shell script.

$ more exec.demo1
cat > file1
exec < file2
cat > file3
exec < /dev/tty
cat > file4
$./exec.demo1
Hello, world!
<Ctrl+D>
This is great!
<Ctrl+D>
$ more file1
Hello, world!
$ more file2
[Contents of file2.]
$ more file3
[Contents of file3.]
$ more file4
This is great!
$

Now, we develop a shell script, diff2, which uses the file I/O features of the Bourne
shell. It takes two files as command line arguments and compares them line by line. If the
files are the same, it displays a message that says so, and the program terminates. If one
file is smaller than the other, it displays a message informing you of that and exits. As soon
as the program finds the lines at which the two files differ, it displays an error message
informing you of the lines from both files that are different and terminates. The following
is the script and a few sample runs.

Advanced Bourne Shell Programming    ◾    517

$ cat diff2
#!/bin/sh

File Name: ~/unix3e/BourneShell/diff2
Author: Syed Mansoor Sarwar
Written: August 28, 2004
Modified: August 28, 2004, July 29, 2014
Purpose: To see if the two files passed as command line
arguments are same or different
Brief Description:
Read a line from each file and compare them. If
the lines are the same, continue. If they are
different, display the two lines and exit. If one
of the files finishes before the other, display a
message and exit. Otherwise, the files are the
same; display an appropriate message and exit

if [$# != 2]
 then
 echo "Usage: $0 file1 file2"
 exit 1
 elif [! -f "$1"]
 then
 echo "$1 is not an ordinary file"
 exit 1
 elif [! -f "$2"]
 then
 echo "$2 is not an ordinary file"

Keyboard
stdin

stdout

stderr

cat
file1

Screen

Keyboard
stdin

stdin

stdout

stderr

stdout

stderr

cat

cat

file4

Screen

file3

file2

Screen

FIGURE 13.4 Detachment and reattachment of stdin and stdout inside a shell script.

518 ◾ UNIX: The Textbook, Third Edition

 exit 1
 else
 :
fi
file1="$1"
file2="$2"

Open files for reading and assign them file descriptors 3 and 4

exec 3< "$file1"
exec 4< "$file2"

Read a line each from both files and compare. If both reach EOF,
then files are the same. Otherwise, they are different. 0<&3 is
used to attach standard input of the read line1 command to file
descriptor 3, 0<&4 is used to attach standard input of the read
line2 command to file descriptor 4.

while read line1 0<&3
do
 if read line2 0<&4
 then
 # if lines are different, the two files are not the same
 if ["$line1" != "$line2"]
 then
 echo "$1 and $2 are different."
 echo " $1: $line1"
 echo " $2: $line2"
 exit 1
 fi
 else
 # if EOF for file2 reached, file1 is bigger than file2
 echo "$1 and $2 are different and $1 is bigger than $2."
 exit 1
 fi
done
if EOF for file1 reached, file2 is bigger than file1. Otherwise,
the two files are the same. 0<&4 is used to attach standard
input of read to file descriptor 4
if read line2 0<&4
 then
 echo "$1 and $2 are different and $2 is bigger than $1."
 exit 1
 else
 echo "$1 and $2 are the same!"
 exit 0
fi
Close files corresponding to descriptors 3 and 4

Advanced Bourne Shell Programming    ◾    519

exec 3<&-
exec 4<&-
$ cat test1
Hello, world!
Not the same!
Another line.
$ cat test2
Hello, world!
$ cat test3
Hello, world!
Not the same!
$ cat test4
This is different file.
Hello, world!
$./diff2
Usage: ./diff2 file1 file2
$./diff2 test1 test2 test3
Usage: ./diff2 file1 file2
$./diff2 test1 test1
test1 and test1 are the same!
$./diff2 test1 test3
test1 and test3 are different and test1 is bigger than test3.
$./diff2 test1 test2
test1 and test2 are different and test1 is bigger than test2.
$./diff2 test2 test3
test2 and test3 are different and test3 is bigger than test2.
$./diff2 test1 test4
test1 and test4 are different.
 test1: Hello, world!
 test4: This is different file.
$

The exec command is used to open and close files. The exec 3< "$file1" and
exec 4< "$file2" commands open the files passed as command line arguments
for reading and assigns them file descriptors 3 and 4. From this point on, you can
read the two files by using these descriptors. The commands read line1 0<&3
and read line2 0<&4 read the next lines from the files with files descriptors
3 (for file1) and 4 (for file2), respectively. The commands exec 3<&- and exec
4<&- close the two files. The colon sign (:) in the else part of the first if state-
ment is a null statement that simply returns true. You may use the Bourne shell com-
mand true for the same purpose. Incidentally, the false commands, as one would
expect, returns false.

In the following in-chapter exercises, you will use the exec command to redirect the
I/O of your shell to ordinary files. The concept of I/O redirection from within a shell script
and file I/O by using file descriptors is also reinforced.

520 ◾ UNIX: The Textbook, Third Edition

EXERCISE 13.4

Write a command for changing stdin of your shell to a file called data and stdout to a file
called out, both in your present working directory. If the data file contains the following
lines, what happens after the commands are executed?

echo –n "The time now is: "
date
echo –n "The users presently logged on are: "
who

EXERCISE 13.5

After finishing the steps in Exercise 13.4, what happens when you type commands at the
shell prompt? Does the result make sense to you? Write the command needed to bring your
environment back to normal.

EXERCISE 13.6

Create a file that contains the diff2 script and try it with different inputs.

13.6 FUNCTIONS IN THE BOURNE SHELL
The Bourne shell allows you to write functions. Functions consist of a series of commands,
called the function body, that are given a name. You can invoke the commands in the func-
tion body by using the function name.

13.6.1 Reasons for Using Functions

Functions are normally used if a piece of code is repeated at various places in a script. By mak-
ing a function of this code, you save typing time. Thus, if a block of code is used at, say, nine
different places in a script, you can create a function of it and invoke it where it is to be inserted
by using the name of the function. Another advantage of functions is that any changes to the
code, which would otherwise be needed at nine places, would now be needed at one place
only—that is, in the function body. The trade-off is that the mechanism of transferring control
to the function code and returning it to the calling code (from where the function is invoked/
called) takes time, which slightly increases the running time of the script.

Another way of saving typing time is to create another script file for the block of code
and invoke this code by calling the script as a command. The disadvantage of using this
technique is that, as the script file is on a secondary storage device such as a hard disk, the
invocation of the script requires loading the script from the disk into main memory once it
has been defined, which is an expensive operation. Whether they are located in ~/.profile,
defined interactively in a shell, or defined in the script, function definitions are always in
the main memory. Thus, invocation of functions is several times faster than invoking shell
scripts, which are on the disk.

Advanced Bourne Shell Programming    ◾    521

13.6.2 Function Definition

Before you can use a function, you have to define it. For often-used functions, you should
put their definitions in your ~/.profile file. This way, the shell records them in its envi-
ronment when you log on and allows you to invoke them while you use the system. The
definitions for functions that are specific to a script are usually put in the file that contains
the script. You must execute the ~/.profile file with the . (dot) command after defining a
function in it and before using it, unless you want to log off and then log back on. You can
also define functions while interactively using the shell. These definitions are valid for as
long as you remain in the session that you were in when you defined these functions.

The syntax of a function definition is as given as follows:

 name () command

where name is the name (also called the label) of the function and command is the body
of the function. For a function with multiple commands in the body, the command list is
enclosed in curly brace, { and }. This allows you to format a function definition in the fol-
lowing ways:

function_name () command

function_name () { command-list; }

function_name () {
 command-list
}

function_name ()
{
 command-list
}

The function _ name is the name of the function that you choose, and the com-
mands in command-list comprise the function body. The following session shows example
function definitions corresponding to the four ways of defining functions and sample runs
of the first three functions. The output of functions function4 and function5 would
be the same as that of function3.

$ function1 () date
$ function2 () { uname -s; }
$ function3 () { date; echo "Hello, world!"; ps; }
$ function4 () {
> date
> echo "Hello, world!"
> ps
> }
$ function5 ()

522 ◾ UNIX: The Textbook, Third Edition

> {
> date
> echo "Hello, world!"
> ps
> }
$ function1
Sat Aug 2 18:11:32 PKT 2014
$ function2
FreeBSD
$ function3
Sat Aug 2 18:13:56 PKT 2014
Hello, world!
 PID TT STAT TIME COMMAND
82778 1 Is 0:00.17 -csh (csh)
82807 1 S 0:00.13 /bin/sh
85195 1 R+ 0:00.02 ps
$

Note that there is no export command for functions. Thus, function definitions are
visible only to the shell in which they are defined.

13.6.3 Function Invocation/Call

The commands in a function body are not executed until the function is invoked—that is,
called. You can invoke a function by using its name as a command. When you call a func-
tion, its body is executed and control comes back to the command following the function
call. If you invoke a function at the command line, control returns to the shell after the
function finishes its execution.

Variables declared within a function are visible outside the function and may be accessed
accordingly. In order to make a variable local to a function, the keyword local may be
used, as in the function f1 in the following example. A local variable inherits the value and
exported and read-only flags of a variable with the same name defined in the surrounding
scope. If there is no such variable in the surrounding scope, the local variable is initialized
to null. The Bourne shell uses dynamic scoping. This means that a local variable defined in
the caller function is accessible to the called function. It is also demonstrated in the follow-
ing session, where the variable x is defined as local within f1 (the caller function) and is
accessible to f2 (the called function). However, x is not accessible outside f1. On the other
hand, the variable y is not defined as local and is accessible outside f1. The outputs of the
echo $x, echo $y, and f2 commands verify these scoping rules.

$ f1 () { local x=10; y=20; f2; }
$ f2 () { echo "x is $x"; echo "y is $y"; }
$ f1
x is 10
y is 20
$ echo $x

Advanced Bourne Shell Programming    ◾    523

$ echo $y
20
$ f2
x is
y is 20
$

13.6.4 A Few More Examples of Functions

The execution of the following function, called machines, returns the names of all the
computers on your local network.

$ machines ()
> {
> date
> echo "These are the machines on the network: "
> ruptime | cut -f1 -d' ' | more
> }
$./machines
Thu Jul 31 20:23:28 PKT 2014
These are the machines on the network: upibm0
...
upsun1
...
upsun29
$

We now enhance the dext script described in Section 13.3 so that it can take
multiple names at the command line. The enhanced version also uses a function
OutputData to display one or more output records (i.e., lines in the directory) for
every name passed as the command line argument. In the case of multiple lines for a
name, this function displays them in sorted order. A few sample runs are shown fol-
lowing the script.

$ cat dext
#!/bin/sh
if [$# = 0]
 then
 echo "Usage: $0 name"
 exit 1
fi
OutputData()
{
 echo "Infomation about $user_input"
 (grep -i "$user_input"| sort) << DIRECTORY

524 ◾ UNIX: The Textbook, Third Edition

 John Doe 555.232.0000 johnd@somedomain.com
 Jenny Great 444.6565.1111 jg@new.somecollege.edu
 David Nice 999.111.3333 david_nice@xyz.org
 Don Carr 555.111.3333 dcarr@old.hoggie.edu
 Masood Shah 666.010.9820 shah@Garments.com.pk
 Jim Davis 777.000.9999 davis@great.adviser.edu
 Art Pohm 333.000.8888 art.pohm@great.professor.edu
 David Carr 777.999.2222 dcarr@net.net.gov

DIRECTORY
 echo # A blank line between two records
}
As long as there is at least one command line argument (name),
take the first name, call the OutputData function to search the
DIRECTORY and display the line(s) containing the name, shift
this name left by one position, and repeat the process.

while [$# != 0]
do
 user_input="$1" # Get the next command line argument (name)
 OutputData # Display info about the next name
 shift # Get the following name
done
exit 0
$./dext john
Infomation about john
 John Doe 555.232.0000 johnd@somedomain.com

$./dext jim
Infomation about jim
 Jim Davis 777.000.9999 davis@great.adviser.edu

$./dext pohm masood carr
Infomation about pohm
 Art Pohm 333.000.8888 art.pohm@great.professor.edu

Infomation about masood
 Masood Shah 666.010.9820 shah@Garments.com.pk

Infomation about carr
 David Carr 777.999.2222 dcarr@net.net.gov
 Don Carr 555.111.3333 dcarr@old.hoggie.edu

$

In the following in-chapter exercise, you will write a simple function and a Bourne shell
script that uses it.

Advanced Bourne Shell Programming    ◾    525

EXERCISES 13.7

Write a function called menu that displays the following menu. Then write a shell script
that uses this function.

Select an item from the following menu:
d. to display today's date and current time,
f. to start an ftp session,
t. to start a telnet session, and
q. to quit.

13.7 DEBUGGING SHELL PROGRAMS
You can debug your Bourne shell scripts by using the -x (echo) option of the sh com-
mand. This option displays each line of the script after variable substitution but before its
execution. You can combine the -x option with the -v (verbose) option to display each
line of the script, as it appears in the script file, before execution. You can also invoke the
sh command from the command line to run the script, or you can make it part of the
script, as in #!/bin/sh -xv. In the latter case, remove the -xv options after debugging
is complete.

In the following session, we show how a shell script can be debugged. The script in
the debug_demo file prompts you for a digit. If you enter a value between 1 and 9, it
displays Good input! and quits. If you enter any other value, it simply exits. When
the script is executed and you enter 4, it displays the message debug _ demo: [4:
not found.

$ cat debug_demo
#!/bin/sh

echo -e "Enter a digit: c"
read var1
if ["$var1" -ge 1 -a "$var1" -le 9]
 then
 echo "Good input!"
fi
exit 0
$./debug_demo
Enter a digit: 4
./debug_demo: [4: not found
$

We debug the program by using the sh -xv debug _ demo command. The shaded
portion of the run-time trace shows the problem area. In this case, the error is generated
because of a problem in the condition for the if statement. A closer examination of the
shaded area reveals that a missing space between [and 4 is the problem. In other words,

526 ◾ UNIX: The Textbook, Third Edition

the comparison between [4 and 1 is the problem; it should be between 4 and 1. After we
take care of this problem by changing ["$var1" to ["$var1", the script works properly.

$ sh -xv debug_demo
#!/bin/sh

echo -e "Enter a digit: c"
+ echo -e 'Enter a digit: c'
Enter a digit: read var1
+ read var1
4
if ["$var1" -ge 1 -a "$var1" -le 9]
 then
 echo "Good input!"
fi
+ '[4' -ge 1 -a 4 -le 9]
debug_demo: [4: not found
exit 0
+ exit 0
$./debug_demo
Enter a digit: 4
Good input!
$

The following in-chapter exercise is designed to enhance your understanding of inter-
rupt processing and the debugging features of the Bourne shell.

EXERCISE 13.8

Test the scripts in the trap_demo and canleave files on your UNIX system. Do they work
as expected? Make sure you understand them. If your versions do not work properly, use
the sh -xv command to debug them.

SUMMARY
The Bourne shell does not have the built-in capability for numeric integer data processing
in terms of arithmetic, logic, and shift operations. In order to perform arithmetic and logic
operations on integer data, the expr command must be used.

The here document feature of the Bourne shell allows standard input of a command
in a script to be attached to the data within the script. The use of this feature results in
more efficient programs because no extra file-related operations, such as file open and
read, are needed, as the data is within the script file and should have been loaded into the
main memory when the script was loaded.

The Bourne shell also allows the user to write programs that ignore signals such as key-
board interrupt (<Ctrl+C>). This useful feature can be used, among other things, to dis-
able program termination when it is in the middle of updating a file. The trap command
can be used to invoke this feature.

Advanced Bourne Shell Programming    ◾    527

The Bourne shell has powerful I/O features that allow explicit processing of files. The exec
command can be used to open a file for reading or writing and to associate a small integer,
called a file descriptor, with it. The command exec n< file opens a file for reading and
assigns it a file descriptor n. The command line exec n> file opens a file for writing
and assigns it a file descriptor n. This feature allows writing scripts for processing files. The
command line exec n<&- can be used to close a file with descriptor n. The exec com-
mand provides various other file-related features, including opening a here document and
assigning it a file descriptor, which allows the use of a here document anywhere in the script.

The Bourne shell programs can be debugged by using the -x and -v options of the sh
command. This technique allows viewing the commands in the user’s script after variable
substitution but before execution.

QUESTIONS AND PROBLEMS

 1. Why is the expr command needed?

 2. What is the here document? Why is it useful?

 3. Write a Bourne shell script cv that takes the side of a cube as a command line argu-
ment and displays the volume of the cube.

 4. Modify the countup script in Section 13.2 so that it takes two integer command line
arguments. The script displays the numbers between the two integers (including the
two numbers) in ascending order if the first number is smaller than the second, and
in descending order if the first number is greater than the second. Name the script
count_up_down.

 5. Write a Bourne shell script that prompts you for a user ID and displays your login
name, your name, and your home directory.

 6. Write a Bourne shell script that takes a list of integers as the command line argument
and displays a list of their squares and the sum of the numbers in the list of squares.

 7. Write a Bourne shell script that takes a machine name as an argument and displays a
message informing you whether the host is on the local network.

 8. What are signals in UNIX? What types of signals can be intercepted in the Bourne
shell scripts?

 9. Write a Bourne shell script that takes a file name and a directory name as command
line arguments and removes the file if it is found under the given directory and is a
simple file. If the file (the first argument) is a directory, it is removed (including all the
files and subdirectories under it).

 10. Write a Bourne shell script that takes a directory as an argument and removes all the
ordinary files under it that have .o, .ps, and .jpg extensions. If no argument is speci-
fied, the current directory is used.

528 ◾ UNIX: The Textbook, Third Edition

 11. Enhance the diff2 script in Section 13.5 so that it displays the line numbers where
the two files differ.

 12. Enhance the diff2 script of Problem 11 so that, if only one file is passed to it as a
parameter, it uses standard input as the second file.

 13. Write a Bourne shell script for Problem 16 in Chapter 12, but use functions to imple-
ment the service code for various options.

 14. Suppose that a function, f, is defined first, followed by defining f as a variable. Would
f refer to the function or the variable after you have provided the second definition?
Why? Show a shell session to support your answer.

 15. Write a Bourne shell script that implements the following menu options:

 a. Display the CPU used by your system

 b. Display the name of the operating system used by your computer

 c. Display a and b on the screen separated by a vertical tab

 d. Display the full pathnames for the commands that have been executed on your
system

 e. Display the maximum number of files a process may open

 f. Display the maximum number of simultaneous processes a user may have on the
system

Your program should not terminate on signals 1, 2, 3, 15, and 18. Make use of a function
to display the program menu.

Hint: Review the man pages for the following commands: hash, ulimit, uname.

529

C h a p t e r 14

Introductory C Shell
Programming

Objectives

• To introduce the concept of shell programming

• To describe how C shell programs can be executed

• To explain the concept and use of shell variables in C shell

• To discuss how command line arguments are passed to C shell programs

• To discuss the concept of command substitution

• To describe some basic coding principles

• To write and discuss a few sample C shell scripts

• To cover the commands and primitives

 *, =, ", ', ', &, <, >, ;, |, \, /, [], (), continue, csh,
exit, env, foreach, goto, head, if, ls, set, setenv, shift,
switch, while, unset, unseten

14.1 INTRODUCTION
The C shell is more than a command interpreter, it has a programming language of its
own that can be used to write shell programs for performing various tasks that cannot be
performed by any existing command. Shell programs, commonly known as shell scripts,
in the C shell consist of shell commands to be executed by a shell and are stored in ordi-
nary UNIX files. The shell allows the use of read/write storage places, called shell vari-
ables, to make it easier for the user or programmer to work and for programmers to use as
scratch pads for completing tasks. The C shell also has program control flow commands/

530 ◾ UNIX: The Textbook, Third Edition

statements that allow the writers of shell scripts to implement multiway branching and
repeated execution of a block of commands.

14.2 RUNNING A C SHELL SCRIPT
There are three ways to run a C shell script. The first step for all three methods is to make
the script file executable by adding the execute permission to the existing access permis-
sions for the file. You can do so by running the following command, where script_file is
the name of the file containing the shell script.

% chmod u+x script_file
%

Clearly, in this case you make the script executable for yourself only. However, you can
set appropriate access permissions for the file if you also want other users to be able to
execute it. Once you have made the script file executable, you can type ./script _ file
as a command to execute the shell script, as follows:

% ./script_file
... Output of the script if any ...
%

If your search path (the path variable) includes your current directory (.), you can simply
use the script _ file command, instead of using the ./script _ file command. For
the rest of this chapter, we assume that your path variable includes your current directory.

As described in Chapter 10, a child of the current shell process executes the script. Thus,
with this method, the script executes properly if you are using the C shell but not if you are
using any other shell. If you are currently using some other shell, first execute the /bin/
csh command to run the C shell and then run the script _ file command, as shown
in the following example. Here, we assume that your current shell is the Bourne shell (with
the $ prompt). After the script has completed its execution, we press <Ctrl+D> to termi-
nate the Bourne shell and return to the C shell.

$ /bin/csh
% ./script_file
... Output of the script if any ...
% <Ctrl+D>
$

The second method of executing a shell script is to run the /bin/csh command with
the script file as its parameter. Thus, the following command executes the shell script in
script_file.

% /bin/csh script_file
... Output of the script if any ...
%

Introductory C Shell Programming    ◾    531

If your path variable includes the /bin directory, you can simply use the csh command,
instead of using the /bin/csh command.

The third method, which is also the most commonly used method, is to force the cur-
rent shell to execute a script in the C shell, regardless of your current shell. You can do so
by beginning a shell script with the following line:

#!/bin/csh

When your current shell encounters the string #!, it takes the rest of the line as the abso-
lute pathname for the shell to be executed, under which the script in the file is executed.

Throughout this chapter, we would use the chmod u+x script _ file command
to make script_file executable by the owner of the file and run the script by using the ./
script _ file command.

14.3 SHELL VARIABLES AND RELATED COMMANDS
A variable is a main memory location that is given a name. This allows you to reference
the memory location by using its name instead of its address. The name of a shell variable
is comprised of digits, letters, and underscores, with the first character being a letter or
underscore. Because the main memory is read/write storage, you can read a variable’s value
or assign it a new value. Under the C shell, the value of a variable can be a string of char-
acters or a numeric value. There is no theoretical limit to the length of a variable’s value
stored as a string; the practical limit is dictated by the length of a line.

Shell variables can be one of two types: shell environment variables and user-defined
variables. You can use environment variables to customize the environment in which your
shell runs and for proper execution of shell commands. A copy of these variables is passed
to every command that executes in the shell as its child. Most of these variables are initial-
ized when the login script(s) execute(s), according to the environment set by your system
administrator. You can further customize your environment by assigning appropriate val-
ues to some or all of these variables in your ~/.login and ~/.cshrc start-up files, which also
execute when you log on. See Chapter 2 for a discussion of start-up files. Table 14.1 lists
most of the environment variables whose values you can change.

The shell environment variables listed in Table 14.1 are writable, meaning that you can
assign them any values to make your shell environment meet your needs. Other shell envi-
ronment variables are read only. That is, you can use (read) the values of these variables,
but you cannot change them directly. These variables are most useful for processing com-
mand line arguments (also known as positional arguments), the parameters passed to a
shell script at the command line. Examples of command line arguments are the source
and destination files in the cp command. Some other read-only shell variables are used
to keep track of the process ID of the current process, the process ID of the most recent
background process, and the exit status of the last command. Some important read-only
shell environment variables are listed in Table 14.2.

User-defined variables are used within shell scripts as temporary storage places whose
values can be changed when the program executes. These variables can be made global and

532 ◾ UNIX: The Textbook, Third Edition

passed to the commands that execute in the shell script in which they are defined. As with
most programming languages, you have to declare C shell variables before using them.
A reference to a C shell variable that has not been declared results in an error.

You can display the values of all shell variables (environmental and user-defined) and
their current values by using the set command without any argument. The following is a
sample run of the set command on a machine running PC-BSD.

% set
_
addsuffix
anyerror
argv ()
autocorrect
autoexpand
autolist ambiguous
autorehash
complete enhance
correct cmd
csubstnonl

TABLE 14.1 Some Important Writable C Shell Environment Variables

Environment Variable Purpose of the Variable
cdpath Directory names that are searched, one by one, by the cd command to find the

directory passed to it as a parameter; the cd command searches the current
directory if this variable is not set

home Name of your home directory, the C shell places you in this directory when you
first log on

mail Name of your system mailbox file
path Variable that contains your search path—the directories that a shell searches to

find an external command or program that you try to run
prompt Primary shell prompt that appears on the command line, usually set to %
prompt2 Secondary shell prompt displayed on the second line of a command if the shell

thinks that the typed command is not complete, typically when the command
line terminates with a backslash (\), the escape character

cwd Name of the current working directory
term Type of user’s console terminal

TABLE 14.2 Some Important Read-Only C Shell Environment Variables

Environment Variable Purpose of the Variable

$argv[0] or $0 Name of the executing program
$number or ${number} Equivalent to $argv[number], where number may be 0, 1, 2, …
$argv[*] or $* Values of all of the command line arguments
$#argv or $# Total number of command line arguments
$$ Process ID (PID) of the current process; typically used as a file

name extension to create (most probably) unique file names
$! PID of the most recent background process

Introductory C Shell Programming    ◾    533

cwd /home/sarwar
dirstack /home/sarwar
echo_style bsd
edit
euid 1004
euser sarwar
filec
gid 1008
group faculty
history 100
home /home/sarwar
killring 30
loginsh
mail /var/mail/sarwar
owd
path (/usr/local/share/pcbsd/bin /sbin /bin /usr/sbin /usr/bin
/usr/games /usr/pbi/bin /usr/local/sbin /usr/local/bin /home
/sarwar/bin .)
prompt %{\033]0;%n@%m:%~\007%}[%B%n@%m%b] %B%~%b%#
prompt2 %R?
prompt3 CORRECT>%R (y|n|e|a)?
savehist 100
shell /bin/csh
shlvl 1
status 0
tcsh6.18.01
term xterm-color
tty pts/1
uid 1004
user sarwar
version tcsh 6.18.01 (Astron) 2012-02-14 (x86_64-amd-FreeBSD)
options wide,nls,dl,al,kan,sm,rh,color,filec
%

The @ command displays the same information. You can use the env (System V) and
printenv (BSD) commands to display both the environment variables and their values.
The following is a sample output of the env command on the same machine that we ran
the set command on.

% env
USER=sarwar
LOGNAME=sarwar
HOME=/home/sarwar
MAIL=/var/mail/sarwar
PATH=/usr/local/share/pcbsd/bin:/sbin:/bin:/usr/sbin:/usr/bin:/
usr/games:/usr/pbi/bin:/usr/local/sbin:/usr/local/bin:/home/
sarwar/bin:.

534 ◾ UNIX: The Textbook, Third Edition

TERM=xterm-color
BLOCKSIZE=K
SHELL=/bin/csh
SSH_CLIENT=182.185.191.114 52885 22
SSH_CONNECTION=182.185.191.114 52885 202.147.169.196 22
SSH_TTY=/dev/pts/1
HOSTTYPE=FreeBSD
VENDOR=amd
OSTYPE=FreeBSD
MACHTYPE=x86_64
SHLVL=1
PWD=/home/sarwar
GROUP=faculty
HOST=pcbsd-srv
REMOTEHOST=182.185.191.114
LANG=en_US.UTF-8
EDITOR=vi
PAGER=more
MANPATH=/usr/share/man:/usr/local/man:/usr/share/openssl/man:/usr/
pbi/man:/usr/local/lib/perl5/5.16/man:/usr/local/lib/perl5/5.16/
perl/man
NO_PROXY=127.0.0.1,localhost
no_proxy=127.0.0.1,localhost
CLICOLOR=true
MORE=-erX
%

In the following in-chapter exercises, you will create a simple shell script and make it
executable. Also, you will use the set and env commands to display the names and values
of shell variables in your environment.

EXERCISE 14.1

Display the names and values of all shell variables on your UNIX machine. What
command(s) did you use?

EXERCISE 14.2

Create a file that contains a shell script comprising the date and who commands, one on
each line. Make the file executable and run the shell script. List all the steps for completing
this task.

14.4 READING AND WRITING SHELL VARIABLES
You can use any of three commands to assign a value to (write) one or more shell variables
(environmental or user-defined): @, set, and setenv. The set and setenv commands
are used to assign a string to a variable. The difference is that the setenv command

Introductory C Shell Programming    ◾    535

declares and initializes a global variable, whereas the set command declares and initial-
izes a local variable. You can use the @ command to assign an integer value to a local vari-
able. The following are brief descriptions of the @ and set commands. We describe the
setenv command in Section 14.3.3.

SYNTAX

set [variable1[=strval1] variable2 [=strval2] … variableN [=strvalN]]
@ [variable1[=numval1] variable2 [=numval2] … variableN [=numvalN]]

Purpose: Assign values strval1, …, strvalN or numval1, …, numvalN to variables
variable1, …, variableN, respectively, where a value can be strval for a string
value and numval for a numeric value

No space is required before or after the = sign for the @ and set commands, but spaces
can be used for clarity. If a value contains spaces, you must enclose the value in parentheses.
The set command with only the name of a variable declares the variable and assigns it a
null value. Unlike the Bourne shell, where every variable is automatically initialized, in the
C shell you must declare a variable in order to initialize and use it. Without any arguments,
the set and @ commands display all shell variables and their values. Multiword values are
displayed in parentheses. (We discuss the @ command in detail in Chapter 15.) You can refer
to (i.e., read) the current value of a variable by inserting a dollar sign ($) before the name of
a variable. You can use the echo command to display values of shell variables.

In the following session, we show how shell variables can be read and written.

% echo $name
name: Undefined variable.
% set name
% echo $name

% set name = John
% echo $name
John
% set name = John Doe II
% echo $name
John
% echo $Doe $II

% set name = (John Doe)
% echo $name
John Doe
% set name = John*
% echo $name
John.Bates.letter John.Johnsen.memo John.email
% set name = "John*"
% echo "$name"
John*

536 ◾ UNIX: The Textbook, Third Edition

% echo "The name $name sounds familiar!"
The name John* sounds familiar!
% echo \$name
$name
% echo '$name'
$name

The preceding session shows that, if values that include spaces are not enclosed
in quotes, the shell assigns the first word to the variable and the remaining as null-
initialized variables. In other words, the command set name = John Doe II
initializes the name variable to John, and declares Doe and II as string variables
initialized to null. When you display a variable initialized to null, the shell displays
a blank line. Also, after the set name=John* command has been executed and
$name is not enclosed in quotes in the echo command, the shell lists the file names
in your present working directory that match John*, with * considered as the shell
metacharacter—that is, files that start with the string John, followed by 0 or more
characters. If your current directory does not contain any files that start with the
string John, the set name = John* command returns an error message, set: No
match., and a subsequent echo $name command would display the previous value
of the name variable, John Doe in this case. Running the echo * command would
display the names of all the files in your current directory. The preceding session also
shows that single quotes can be used to process the value of the name variable literally.
In fact, you can use single quotes to process the whole string literally. The backslash
character can be used to escape the special meaning of any single character, including
$, and treat it literally. In the C shell, in order to escape the special meaning of !, you
must use a backslash (\) before the ! symbol if it is followed by any character
other than a space.

A command consisting of $variable alone results in the value of variable being
executed as a shell command. If the value of variable comprises a valid command, the
expected results are produced. If variable does not contain a valid command, the shell,
as expected, displays an appropriate error message. The following session illustrates this
point with examples. The variable used in this session is command.

% set command = pwd
% $command
/usr/home/sarwar/unix3e/ch14
% set command = hello
% $command
hello: Command not found.
%

14.4.1 Command Substitution

When a command is enclosed in back quotes (also known as grave accents), the shell
executes the command and substitutes the output of the command for the command

Introductory C Shell Programming    ◾    537

(including back quotes). This process is referred to as command substitution. The follow-
ing is a brief description of command substitution.

SYNTAX

'command'

Purpose: Execute command and substitute its output for 'command'

The next session illustrates the concept. In the first assignment statement, the variable
called command is assigned the value pwd. In the second assignment statement, the out-
put of the pwd command is assigned to the command variable.

% set command = pwd
% echo "The value of command is: $command."
The value of command is: pwd.
% set command = 'pwd'
% echo "The value of command is: $command."
The value of command is: /usr/home/sarwar/unix3e/ch14.
%

Command substitution can be specified in any command. For example, in the follow-
ing command line, the output of the date command is substituted for 'date' before the
echo command is executed.

% echo "The date and time are 'date'."
The date and time are Sun Sep 7 14:12:13 PKT 2014.
%

The following in-chapter exercises are designed to reinforce the creation and use of shell
variables and the concept of command substitution.

EXERCISE 14.3

Assign your full name to a shell variable myname and echo its value. How did you accom-
plish the task? Show your work.

EXERCISE 14.4

Assign the output of the command echo "Hello, world!" to the myname variable
and then display the value of myname. List the commands that you executed to complete
this task.

14.4.2 Exporting Environment

When a variable is created, it is not automatically known to subsequent shells. The setenv
command passes the value of a variable to subsequent shells. Thus, when a shell script is

538 ◾ UNIX: The Textbook, Third Edition

called and executed from another shell script, it does not get automatic access to the vari-
ables defined in the original (caller) script unless they are explicitly made available to it.
You can use the setenv command to assign a value to a string variable and pass the value
of the variable to subsequent commands that execute as children of the script. Because all
read/write shell environment variables are available to every command, script, and sub-
shell, they are initialized by the setenv command. The setenv command is equivalent
to creating a variable, followed by exporting it with the export command to make its
value available to all subsequent shells in the Bourne shell. The following is a brief descrip-
tion of the setenv command.

SYNTAX

setenv [variable [strval]]

Purpose: Assigns to variable a string value strval and exports variable and a copy of
its value so that it is available to every command executed from this point on

The following session shows a simple use of the setenv command. The name variable
is initialized to John Doe and is exported to subsequent commands executed under the
current shell and any subshell that runs under the current shell. Note that unlike the set
command, the setenv command requires that you enclose multiword values in double
quotes, not in parentheses.

% setenv name "John Doe"
% echo $name
John Doe
%

The next session illustrates the concept of exporting shell variables via some simple shell
scripts.

% cat display_name
#!/bin/csh
echo $name
exit 0
%
% set name=(John Doe)
% ./display_name
name: Undefined variable.
%

Note that the script in the display_name file displays an undefined variable error mes-
sage, even though we initialized the name variable just before executing this script. The
reason is that the name variable declared interactively is not exported before running the
script, and the name variable used in the script is local to the script. As this local variable

Introductory C Shell Programming    ◾    539

name is uninitialized, the echo command displays the error message. As stated before,
unlike the Bourne shell, the C shell requires declaration of a variable before its use.

You can use the exit command to transfer control out of the executing program and
pass it to the calling process, the current shell process in the preceding session. The only
argument of the exit command is an optional integer number that is returned to the call-
ing process as the exit status of the terminating process. All UNIX commands return an
exit status of zero upon success—that is, after successfully performing their tasks, and non-
zero upon failure. The return status value of a command is stored in the read-only environ-
ment variable $? and can be checked by the calling process. In shell scripts, depending on
the task at hand, the status of a command execution can be checked and then subsequent
action can be taken. Later in the chapter we show the use of the read-only environment
variable $? in some shell scripts. When the exit command is executed without an argu-
ment, the UNIX kernel sets the return status value for the script.

In the following session, the name variable is exported after it has been initialized,
thus making it available to the display _ name script. The session also shows that
the return status of the display _ name script is 0, implying successful execution of
display _ name.

% setenv name "John Doe"
% ./display_name
John Doe
% echo $?
0
%

We now show that a copy of an exported variable’s value is passed to any subsequent
command. That is, a command has access only to the value of an exported variable; it can-
not assign a new value to the variable. Consider the following script in the export_demo
file.

% cat export_demo
#!/bin/csh
setenv name "John Doe"
display_change_name
echo "$name"
% cat display_change_name
#!/bin/csh
echo "$name"
set name = (Plain Jane)
echo "$name"
exit 0
% ./export_demo
John Doe
Plain Jane
John Doe
%

540 ◾ UNIX: The Textbook, Third Edition

When the export _ demo script is invoked, the name variable is set to John Doe
and exported so that it becomes part of the environment of the commands that execute
under export _ demo as its children. The first echo command in the display _
change _ name script displays the value of the exported variable name. It then initial-
izes a local variable called name to Plain Jane. The second echo command therefore
echoes the current value of the local variable name and displays Plain Jane. When the
display _ change _ name script finishes, the display _ name script executes the
echo command and displays the value of the exported name variable, thus displaying
John Doe.

14.4.3 Resetting Variables

A variable retains its value for as long as the script in which it is initialized executes. You
can remove a variable from the environment by using the unset and unsetenv com-
mands. The following are brief descriptions of the commands.

SYNTAX

unset variable-list
unsetenv variable

Purpose: Remove the specified variables from the environment. The variables in variable-
list are separated by spaces. The unset command is used for the variables declared
by the set or @ commands. The unsetenv command is used for variables declared
by the setenv command.

Next we show a simple use of the unset command. The variables name and place
are set to John and Corvallis, respectively, and the echo command displays the val-
ues of these variables. The unset command resets the name variable, defined with the
set command, to null. Thus, the echo "$name" command should display a message
saying that the name variable is undefined. However, the command shows John Doe as
its output. If you go back and look at the shell session before the last one, you would see
that name was initialized to John Doe using the setenv name "John Doe" com-
mand. The unset name command in the following session undefined the name variable
defined by using this command, but the name variable defined using the setenv com-
mand remained defined with the value John Doe. When we run the unsetenv name
command in the following session, the name variable defined with the setenv name
"John Doe" command is undefined and the echo "$name" command shows the error
message "name: Undefined variable.".

% set name=John place=Corvallis
% echo "$name $place"
John Corvallis
% unset name
% echo "$name"
John Doe

Introductory C Shell Programming    ◾    541

% echo "$place"
Corvallis
% unsetenv name
% echo "$name"
name: Undefined variable.
$

The following command removes the variables name and place, defined with the set
command, from the environment:

% unset name place
%

To reset a variable, explicitly assign it a null value by using the set command with the
variable name only. Or you can assign the variable no value and simply hit <Enter> after
the = sign, as in.

% set country=
% echo "$country"

% set place
% echo $place
%

Here, the set command is used to reset the country and place variables to null.

14.4.4 Reading from Standard Input

So far, we have shown how you can assign values to shell variables statically at the
command line or by using the assignment statement. If you want to write an interac-
tive shell script that prompts the user for keyboard input, you need to use the set
command in order to store the user input in a shell variable, according to the following
syntax.

SYNTAX

set variable = $<
set variable = 'head -1'

Purpose: Read one line from stdin into variable; note the use of back quotes (grave
accents) in 'head -1'

These commands allow you to read one line of keyboard input into variable. Some C
shell implementations do not support the first set command, but the second set com-
mand works in all implementations. You can use the syntax for the second command to
assign the first line of keyboard input to variable. Unlike that of the Bourne shell, the key-
board input feature of the C shell does not allow assignment of words in a line to multiple

542 ◾ UNIX: The Textbook, Third Edition

variables. However, the words in a line are stored in the form of an array, and you can
access them by using the name of the variable (we discuss arrays in Chapter 15).

We illustrate the semantics of the second set command with a script in the keyin_
demo file, as follows:

% cat keyin_demo
#!/bin/csh
echo -n "Enter input: "
set line = 'head -1'
echo "You entered: $line"
exit 0
%

In the following run, enter UNIX rules the network computing world!.
The set command takes the whole input and puts it in the shell variable line without
the newline character. The output of the echo command displays the contents of the shell
variable line.

% ./keyin_demo
Enter input: UNIX rules the network computing world!
You entered: UNIX rules the network computing world!
%

The -n option is used with the echo command to keep the cursor on the same line. If
you do not use this option, the cursor moves to the next line, which is what you want to
see happen while displaying information and error messages. However, when you prompt
the user for keyboard input, you should keep the cursor in front of the prompt for a more
user-friendly interface. The C shell on most UNIX systems that are based on BSD UNIX,
runs the BSD version of the echo command, which does not support the \c option and
other options supported by the System V version of the echo command. The BSD version
does support Standard ASCII control sequences that can be used to display other special
characters, such as <Ctrl+H> for backspace and <Ctrl+G> for bell.

In the following in-chapter exercise, you will use the set command to practice reading
from stdin in shell scripts.

EXERCISE 14.5

Write commands for reading a value into the myname variable from the keyboard and
exporting it so that the commands executed in any child shell have access to the variable.

14.5 PASSING ARGUMENTS TO SHELL SCRIPTS
In this section, we describe how command line arguments can be passed to shell scripts
and manipulated by them. As we discussed in Section 14.3, you can pass command
line arguments, also called positional parameters, to a shell script. The values of these

Introductory C Shell Programming    ◾    543

arguments can be referenced by using the names $argv[number] where number may
assume values 0, 1, 2, and so on, with $argv[0] referring to the program (or com-
mand) name. The positional parameters may also be specified by using the $number
or ${number} notation, such as $0, $1, $2, and so on, or ${0}, ${1}, ${2}, and so
on. The curly braces are used to isolate number from the character(s) that may follow.
If a positional argument referenced in your script is not passed as an argument, it is
initialized to a value of null. However, while displaying such arguments, the $number
notation works fine, but the $argv[number] notation results in an error message,
argv: Subscript out of range., which simply means that you are indexing
the argv array for an element that does not exist. You can use the names $#argv or
$# to refer to the total number of arguments passed in an execution of the script. The
names $argv[*], argv, or $* refer to the values of all of the arguments. The names
$argv[0] and $0 refer to the name of the script file (i.e., the command name). In the
following session, we use the shell script in the cmdargs_demo file to show how you can
use these variables.

% cat cmdargs_demo
#!/bin/csh
echo "The command name is $0."
echo "The number of command line arguments is $#argv."
echo -n "The values of the command line arguments are: "
echo "$1 $2 $3 $4 $5 $6 $7 $8 $9 $10 $11 $12"
echo "Another way to display command line arguments is: $argv[*]"
echo "Yet another is: $*"
exit 0
% ./cmdargs_demo 1 2 3 4 5 6 7 8 9 10 11 12
The command name is cmdargs_demo.
The number of command line arguments is 12.
The values of the command line arguments are: 1 2 3 4 5 6 7 8 9 10 11 12
Another way to display command line arguments is: 1 2 3 4 5 6 7 8 9 10 11 12
Yet another is: 1 2 3 4 5 6 7 8 9 10 11 12
% ./cmdargs_demo One Two 3 Four 5 6
The command name is cmdargs_demo.
The number of command line arguments is 6.
The values of the command line arguments are: One Two 3 Four 5 6
Another way to display command line arguments is: One Two 3 Four 5 6
Yet another is: One Two 3 Four 5 6
%

The C shell maintains as many as command line arguments at a time as the command
line length allows. You can write scripts that handle command line arguments, one at
a time, by shifting the arguments left by one argument. To do so, use the shift com-
mand. By default, this command shifts the command line arguments to the left by one
position, moving $argv[2] to $argv[1], $argv[3] become $argv[2], and so on. The

544 ◾ UNIX: The Textbook, Third Edition

first argument, $argv[1], is shifted out. Once shifted, the arguments cannot be restored
to their original values. More than one position can be shifted if specified as an argument
to the command. The following is a brief description of the command.

SYNTAX

shift [variable]

Purpose: Shift the words in variable one position to the left; if no variable name is
specified, the command line arguments are assumed

The script in the shift_demo file shows the semantics of the shift command with
the implicit variable, the command line arguments. The shift command shifts the first
argument out and the remaining arguments to the left by one position. The three echo
commands are used to display the current values of program names, all positional argu-
ments ($#argv[*]), and the values of the first three positional parameters, respectively.
The results of execution of the script are obvious.

% cat shift_demo
#!/bin/csh
echo "The name of the program is $0."
echo "The arguments are: $argv[*]."
echo "The first three arguments are: $argv[1] $argv[2] $argv[3]."
shift
echo "The name of the program is $0."
echo "The arguments are: $argv[*]."
echo "The first three arguments are: $argv[1] $argv[2] $argv[3]"
exit 0
% ./shift_demo 1 2 3 4 5 6 7 8 9 10 11 12
The name of the program is shift_demo.
The arguments are: 1 2 3 4 5 6 7 8 9 10 11 12.
The first three arguments are: 1 2 3.
The name of the program is shift_demo.
The arguments are: 2 3 4 5 6 7 8 9 10 11 12.
The first three arguments are: 2 3 4
%

The values of positional arguments can be altered by using the set command with
argv as its argument. The most effective use of this command is in conjunction with com-
mand substitution. The following is a brief description of the command.

SYNTAX

set argv = [argument-list]

Purpose: Set values of the positional arguments to the arguments in argument-list

Introductory C Shell Programming    ◾    545

The following is a simple interactive use of the command. The date command is exe-
cuted to show that the output has six fields. The set argv = 'date' command sets
the positional parameters according to the output of the date command. In particular,
$argv[1] is set to Sat, $argv[2] to Aug, $argv[3] to 7, $argv[4] to 13:26:42,
$argv[5] to PDT, and $argv[6] to 2004. The echo $argv[*] command displays
the values of all positional arguments. The third echo command displays the date in a
commonly used form.

% date
Sun Sep 7 08:25:04 PKT 2014
% set argv = 'date'
% echo $argv[*]
Sun Sep 7 08:25:17 PKT 2014
% echo "$argv[2] $argv[3], $argv[6]"
Sep 7, 2014
%

The script in set_demo shows another use of the command. When the script is run with a
file argument, it generates a line that contains the file name, the file’s inode number, and the file
size (in bytes). The set command is used to assign the output of ls -il command as the new
values of the positional arguments $argv[1] through $argv[9]. We show the output of the
ls -il command in case you do not remember the format of the output of this command.

% cat set_demo
#!/bin/csh
set filename = $argv[1]
set argv = 'ls -il $filename'
set inode = $argv[1]
set perms = $argv[2]
set size = $argv[6]
echo "File Name: $filename"
echo "Inode Number: $inode"
echo "Permissions: $perms"
echo "Size (bytes): $size"
exit 0
% ./set_demo lab3
File Name: lab3
Inode Number: 4313
Permissions: -rw-r--r--
Size (bytes): 221
% ls -il lab3
4313 -rw-r--r-- 1 sarwar sarwar 221 Sep 7 08:30 lab3
%

In the following in-chapter exercises, you will use the set and shift commands in
order to reinforce the use and processing of command line arguments.

546 ◾ UNIX: The Textbook, Third Edition

EXERCISE 14.6

Write a shell script that displays all command line arguments, shifts them to the left by two
positions, and redisplays them. Show the script along with a few sample runs.

EXERCISE 14.7

Update the shell script in Exercise 14.1 so that, after accomplishing this task, it sets the
positional arguments to the output of the who | head -1 command and displays the
positional arguments again.

14.6 COMMENTS AND PROGRAM HEADERS
You should develop the habit of putting comments in your programs to describe the pur-
pose of a particular series of commands. At times, you should even briefly describe the
purpose of a variable or assignment statement. Also, you should use a program header
for every shell script that you write. These are simply good software engineering prac-
tices. A program header is a set of introductory comments used to explain the script.
Program header and in-code comments help a programmer who has been assigned the
task of maintaining (i.e., modifying or enhancing) your code to understand it quickly.
They also help you understand your own code, in particular, if you reread it after some
period of time. Long ago, putting comments in the program code or creating separate
documentation for programs was not a common practice. Such programs when inher-
ited by a programmer or a team are very difficult to understand and maintain, and are
commonly known as legacy code. You may find different definitions for legacy code in
the literature.

A good program header must contain at least the following items. In addition, you can
insert any other items that you feel are important or are commonly used in your organiza-
tion or group as part of its coding rules.

 1. Name of the file containing the script

 2. Name of the author

 3. Date written

 4. Date last modified

 5. Purpose of the script (in one or two lines)

 6. A brief description of the algorithm used to implement the solution to the problem at
hand

A comment line, including every line in the program header, must start with the num-
ber sign (#), as in.

This is a comment line.

Introductory C Shell Programming    ◾    547

However, a comment does not have to start at a new line; it can follow a command, as in

set Var1=a Var2 Var3=b # Assign "a" to Var1, "b" to Var3, and
 # declare a variable Var2 with an initial
 # value of null.

The following is a sample header for the set_demo script.

File Name: ~/Cshell/examples/set_demo
Author: Syed Mansoor Sarwar
Date Written: August 10, 1999 (by the original author)
Modified: May 21, 2004 (by the original author)
Last Modified September 7, 2014
Purpose: To illustrate how the set command works
Brief Description: The script runs with a filename as the only
command line argument, saves the filename,
runs the set command to assign the output
of the ls -il command to positional
arguments ($1–$9), and displays file name,
its inode number, file permissions, and
file size (in bytes).

We do not show the program headers for all of the sample scripts in this textbook for
the sake of brevity.

14.7 PROGRAM CONTROL FLOW COMMANDS
The program control flow commands/statements are used to determine the sequence in
which statements in a shell script execute. The four basic types of statements for control-
ling the flow of a script are two-way branching, multiway branching, repetitive execution
of a group of commands/statements, and transferring control to a particular statement via
a jump or goto statement of some sort. The C shell statement for two-way branching is the
if statement, the statements for multiway branching are the if and switch statements,
and the statements for repetitive execution of some code are the foreach and while
statements. In addition, the C shell has a goto statement that allows you to jump to any
command in a program.

14.7.1 The if-then-else-endif Statement

The most basic form of the if statement is used for one-way branching, but the state-
ment can also be used for multiway branching. The following is a brief description of the
statement. The words in monospace type are keywords and must be used as shown in the
syntax. Everything in brackets is optional. All the command lists are designed to help you
accomplish the task at hand.

548 ◾ UNIX: The Textbook, Third Edition

SYNTAX

if (expression) then
 then-command-list
 [else if (expression) then
 then-command-list
 …
 else
 else-command-list]
endif

Purpose: To implement two-way or multiway branching

Here, an expression is a list of commands. The execution of commands in expression
returns a status of true (success) or false (failure). We discuss three versions of the if state-
ment that together comprise the statement’s complete syntax and semantics. The most
basic use of the if statement is without any optional features and results in the following
syntax for the statement, which is commonly used for two-way branching.

SYNTAX

if (expression) then
 then-commands
endif

Purpose: To implement two-way branching

If expression is true, the then-commands are executed; otherwise, the command after,
endif is executed. The semantics of the statement are shown in Figure 14.1.

if

expression

then-commands

endif

True

False

FIGURE 14.1 Semantics of the if-then-if statement.

Introductory C Shell Programming    ◾    549

You can form an expression by using a variety of operators for testing files, testing and
comparing integers and strings, and logically connecting two or more expressions to form
complex expressions. Table 14.3 describes the operators that can be used to form expres-
sions, along with their meanings. Operators not related to files are listed in the order of
their precedence (from high to low): parentheses, unary, arithmetic, shift, relational, bit-
wise, and logical.

We use the preceding syntax of the if command to modify the script in the set_demo
file so that it takes one command line argument only and checks on whether the argument
is a file or a directory. The script returns an error message if the script is run with none
or more than one command line argument, or if the command line argument is not an

TABLE 14.3 C Shell Operators for Forming Expressions

Operator Function Operator Function

Parentheses Relational Operators
() To change the order > Greater than

of evaluation < Less than
>= Greater than or equal to
<= Less than or equal to
!= Not equal to (for string

comparison)
== Equal to (for string

comparison)

Unary Operators Bitwise Operators
- Unary minus & AND
~ One’s complement ^ XOR (exclusive OR)
! Logical negation (NOT) | OR

Arithmetic Operators Logical Operators
% Remainder && AND
/ Divide || OR
* Multiply
- Subtract
+ Add

Shift Operators
>> Shift right
<< Shift left

File- and String-Related Operators
Operator Function Operator Function Operator Function
-d file True if file is

a directory
-e file True if file exists -f file True if file is

ordinary file
-o file True if user

owns file
-r file True if file is readable -w file True if file is

writable
-x file True if file is

executable
-z file True if length of file is zero bytes

550 ◾ UNIX: The Textbook, Third Edition

ordinary file. The name of the script file is if_demo1. The contents of the file and its sample
runs are as follows.

% cat if_demo1
#!/bin/csh
if (($#argv == 0) || ($#argv > 1)) then
 echo "Usage: $0 ordinary_file"
 exit 1
endif
if (! -e $1) then
 echo "$1 : non-existent file"
 exit 1
endif
if (-d $1) then
 echo "$1 : directory"
 echo "Usage: $0 ordinary_file"
 exit 1
endif
if (-f $1) then
 set filename = $argv[1]
 set fileinfo = 'ls -il $filename'
 set inode = $fileinfo[1]
 set perms = $fileinfo[2]
 set size = $fileinfo[6]
 echo "File Name: $filename"
 echo "Inode Number: $inode"
 echo "Permissions: $perms"
 echo "Size (bytes): $size"
 exit 0
endif
echo "$0: argument must be an ordinary file"
exit 1
% ./if_demo1
Usage: if_demo1 ordinary_file
% ./if_demo1 lab1
lab1 : non-existent file
% ./if_demo1 dir1
dir1 : directory
Usage: if_demo1 ordinary_file
% ./if_demo1 lab3
File Name: lab3
Inode Number: 4313
Permissions: -rw-r--r--
Size (bytes): 221
%

In the preceding script, the first instance of the if statement that contains a com-
pound expression displays an error message and exits the program if you run the script

Introductory C Shell Programming    ◾    551

without a command line argument or with more than one argument. The second and
third if statements, respectively, check if the file specified as command line argument
exists and is not a directory. The fourth if statement is executed if you run the script
with only one command line argument that exists in your directory hierarchy and is not
a directory. It produces the desired results if the command line argument is an ordinary
file. If the passed argument is not an ordinary file, the condition for the second if state-
ment is false and the error message if _ demo1: argument must be an ordi-
nary file is displayed. Note that the exit status of the script is 1 when it exits because
of an erroneous condition, and 0 when the script executes successfully and produces the
desired results.

An important practice in script writing is to correctly indent the commands/state-
ments in it. Proper indentation of programs enhances their readability, making them
easier to understand, debug, and maintain (add or remove features). Note the indenta-
tion style used in the sample scripts presented in this textbook and follow it when you
write scripts.

The second instance of the if statement syntax also allows two-way branching. The fol-
lowing is a brief description of the statement.

SYNTAX

if (expression) then
 then-commands
else
 else-commands
endif

Purpose: To implement two-way branching

If expression is true, the commands in then-commands are executed; otherwise, the
commands in else-commands are executed, followed by the execution of the first com-
mand after endif. The semantics of the statement are shown in Figure 14.2.

We rewrite the if_demo1 program by using the if-then-else-endif statement at
the end. The resulting script is in the if_demo2 file, as shown in the following session.
Notice that the program looks cleaner and more readable.

% cat if_demo2
#!/bin/csh
if (($#argv == 0) || ($#argv > 1)) then
 echo "Usage: $0 ordinary_file"
 exit 1
endif
if (! -e $1) then
 echo "$1 : non-existent file"
 exit 1

552 ◾ UNIX: The Textbook, Third Edition

endif
if (-d $1) then
 echo "$1 : directory"
 echo "Usage: $0 ordinary_file"
 exit 1
endif
if (-f $1) then
 set filename = $argv[1]
 set fileinfo = 'ls -il $filename'
 set inode = $fileinfo[1]
 set perms = $fileinfo[2]
 set size = $fileinfo[6]
 echo "File Name: $filename"
 echo "Inode Number: $inode"
 echo "Permissions: $perms"
 echo "Size (bytes): $size"
 exit 0
else
 echo "$0: argument must be an ordinary file"
 exit 1
endif
%

The third version of the if statement is used to implement multiway branching. The
following is a brief description of the statement.

if

expression

then-commands else-commands

endif

True

False

FIGURE 14.2 Semantics of the if-then-else-endif statement.

Introductory C Shell Programming    ◾    553

SYNTAX

if (expression1) then
 then-commands
else if (expression2) then
 else-if1-commands
else if (expression3) then
 else-if2-commands
...
else
 else-commands
endif

Purpose: To implement multiway branching

If expression1 is true, the commands in then-commands are executed. If expres-
sion1 is false, expression2 is evaluated, and if it is true, the commands in else-if1-com-
mands are executed. If expression2 is false, expression3 is evaluated. If expression3
is true, else-if2-commands are executed. If expression3 is also false, the commands
in else-commands are executed. The execution of any command list is followed by the
execution of the command after endif. You can use any number of else-ifs in an if
statement to implement multiway branching. The semantics of the statement are illus-
trated in Figure 14.3.

We enhance the script in the if_demo2 script so that if the command line argument is a
directory, the program displays the number of files and subdirectories in it, excluding hid-
den files. If the directory is empty, the script informs you so. Implementation also involves
the use of the if-then-else-endif statement throughout. The resulting script is in the

if

expression1 expression2 expressionk

then-commands else-if1-commands else-commandselse-ifk-1-commands

endif

True True True

False False False

…

FIGURE 14.3 Semantics of the if-then-else-if-else-endif statement.

554 ◾ UNIX: The Textbook, Third Edition

if_demo3 file, as shown in the following session. As you can see, although it contains more
functionality, it is more elegant than the previous two versions.

% cat if_demo3
#!/bin/csh
if (($#argv == 0) || ($#argv > 1)) then
 echo "Usage: $0 ordinary_file"
else if (! -e $1) then
 echo "$1 : non-existent file"
else if (-d $1) then
 set nfiles = 'ls $1 | wc -w'
 if ($nfiles == 0) then
 echo "$1 : Empty directory"
 else
 echo "The number of files in $1 is : $nfiles."
 endif
else if (-f $1) then
 set filename = $argv[1]
 set fileinfo = 'ls -il $filename'
 set inode = $fileinfo[1]
 set perms = $fileinfo[2]
 set size = $fileinfo[6]
 echo "File Name: $filename"
 echo "Inode Number: $inode"
 echo "Permissions: $perms"
 echo "Size (bytes): $size"
else
 echo "$0: argument must be an ordinary file"
endif
% ./if_demo3
Usage: if_demo3 ordinary_file
% ./if_demo3 lab1
lab1 : non-existent file
% ./if_demo3 dir1
dir1 : Empty directory
% ./if_demo3 .
The number of files in . is : 17.
% ./if_demo3 lab3
File Name: lab3
Inode Number: 4313
Permissions: -rw-r--r--
Size (bytes): 221
%

If the command line argument is an existing file, the required file-related data is dis-
played. If the argument is a directory, the number of files in it (including directories
and hidden files) is saved in the nfiles variables and displayed. If the argument is a

Introductory C Shell Programming    ◾    555

nonexistent file or directory, the error message if _ demo3: argument must be
an existing file or directory is displayed. The sample runs of the script show
these cases. The same runs also show the expected outputs when the script is run without
an argument and more than one argument.

In the following in-chapter exercises, you will practice the use of if statement, com-
mand substitution, and manipulation of positional parameters.

EXERCISE 14.8

Create the if_demo2 script file and run it with no argument, more than one argument, and
one argument only. While running the script with one argument, use a directory as the
argument. What happens? Does the output of the script make sense?

EXERCISE 14.9

Write a shell script whose single command line argument is a file. If you run the program with
an ordinary file, the program displays the owner’s name and last update time for the file. If the
program is run with more than one argument, it generates meaningful error messages.

14.7.2 The foreach Statement

The foreach statement is the first of two statements available in the C shell for repetitive
execution of a block of commands in a shell script. These statements are commonly known
as loops. The following is a brief description of the statement.

SYNTAX

foreach variable (argument-list)
 command-list
end

Purpose: To execute commands in command-list as many times as the number of strings
in command-list; if argument-list is $argv, the arguments are taken from the command
line arguments

The strings in argument-list are assigned to variable one by one, and the commands in
command-list, also known as the body of the loop, are executed for every assignment. This
process allows execution of the commands in command-list as many times as the number
of words in argument-list. Figure 14.4 depicts the semantics of the foreach command.

The following script in the foreach_demo file shows use of the foreach command
with optional arguments. The variable person is assigned the strings in argument-list
one by one each time the value of the variable is echoed, until no strings remain in the list.
At this time, control comes out of the foreach statement, and the command following
end is executed. Then, the code following the foreach statement (the exit statement
only in this case) is executed.

556 ◾ UNIX: The Textbook, Third Edition

% cat foreach_demo
#!/bin/csh
 foreach person (Debbie Jamie John Kitty Kuhn Shah)
 echo $person
end
exit 0
% ./foreach_demo
Debbie
Jamie
John
Kitty
Kuhn
Shah
%

The following script in the user_info file takes a list of existing (valid) login names
as command line arguments and displays each login name and the full name of the user
who owns the login name, one per line. In the sample run, the first value of the user vari-
able is dheckman. The echo command displays dheckman: followed by a <Tab>, and
the cursor stays at the current line. The grep command searches the /etc/passwd file
for dheckman and pipes it to the cut command, which displays the fifth field in the /
etc/passwd line for dheckman (his full name). The process is repeated for the remaining
two login names (ghacker and sarwar). As no user is left in the list passed at the com-
mand line, control comes out of the foreach statement and the exit 0 command

foreach

Assign the next word in
argument-list to

variable

Execute the commands
in command-list

Do any
words remain

in argument-list?

end

No

Yes

FIGURE 14.4 Semantics of the foreach statement.

Introductory C Shell Programming    ◾    557

is executed to transfer control back to shell. The command substitution "^"'echo
$user":" in the grep command can be replaced by "^"$user":". The >& operator is
used to redirect the output and error message generated by the grep command to /dev/
null, the UNIX black hole. It is so done because the purpose of the grep command is
to check whether a login name specified at the command line exists in /etc/passwd file
or not. The subsequent if statement checks the return status (saved in $?) of the grep
command; 0 means success.

% cat user_info
#!/bin/csh
foreach user ($argv)
Don't display anything if a login name is not in /etc/passwd
 grep "^"'echo $user":"' /etc/passwd >& /dev/null
 if ($? == 0) then
 echo -n "$user : "
 grep "^"$user":" /etc/passwd | cut -f5 -d':'
 endif
end
exit 0
% ./user_info dheckman ghacker sarwar
dheckman: Dennis R. Heckman
ghacker: George Hacker
sarwar: Syed Mansoor Sarwar
%

14.7.3 The while Statement

The while statement, also known as the while loop, allows repeated execution of a block
of code based on the condition of an expression. The following is a brief description of the
statement. Figure 14.5 illustrates the semantics of the while statement.

SYNTAX

while (expression)
 command-list
end

Purpose: To execute commands in command-list so long as expression evaluates to true

The expression is evaluated and, if the result of this evaluation is true, the commands
in command-list are executed and expression is evaluated again. This sequence of expres-
sion evaluation and execution of command-list, known as iteration, is repeated until the
expression evaluates to false. At that time, control comes out of the while statement and
the statement following end is executed.

The variables and/or conditions in the expression that result in a true value must be
properly manipulated in the commands in command-list for well-behaved loops—that

558 ◾ UNIX: The Textbook, Third Edition

is, loops that eventually terminate and allow execution of the rest of the code in a script.
Loops in which the expression always evaluates to true are known as infinite loops.
Infinite loops, also known as nonterminating loops, are usually a result of poor design
and/or programming, are undesirable because they continuously use CPU time without
accomplishing any useful task. However, some applications require infinite loops. For
example, all the servers for Internet services, such as the HTTP server, are programs that
run indefinitely, waiting for client requests. Once a server has received a client request, it
processes it, sends a response to the client, and waits for another client request. The only
way to terminate a process with an infinite loop is to kill it by using the kill command.
Or, if the process is running in the foreground, pressing <Ctrl+C> would do the trick,
unless the process is designed to ignore <Ctrl+C>. In that case, you need to put the
process in the background by pressing <Ctrl+Z> and using the kill -9 command to
terminate it. We discussed UNIX processes, including the foreground and background
processes, in Chapter 10.

The following script in the while_demo file shows a simple use of the while loop.
When you run this script, the secretcode variable is initialized to agent007, and
you are prompted to make a guess. Your guess is stored in the local variable your-
guess. If your guess is not agent007, the condition for the while loop is true and
the commands between while and end are executed. The program displays a tactful
message informing you of your failure and prompts you for another guess. Your guess
is again stored in the yourguess variable and the condition for the loop is tested.
This process continues until you enter agent007 as your guess. This time, the condi-
tion for the loop becomes false, and control comes out of the while statement. The

while

Does the
expression
evaluate to

true?

Execute the commands in
command-list

end

Yes

No

FIGURE 14.5 Semantics of the while statement.

Introductory C Shell Programming    ◾    559

echo command following done executes, congratulating you for being part of a great
gene pool!

% cat while_demo
#!/bin/csh
set secretcode = agent007
echo "Guess the code!"
echo -n "Enter your guess: "
set yourguess = 'head -1'
while ("$secretcode" != "$yourguess")
 echo Good guess but wrong. Try again!
 echo -n "Enter your guess: "
 set yourguess = 'head -1'
end
echo "Wow! You are a genius!!"
exit 0
% ./while_demo
Guess the code!
Enter your guess: star wars
Good guess but wrong. Try again!
Enter your guess: columbo
Good guess but wrong. Try again!
Enter your guess: agent007
Wow! You are a genius!!
%

14.7.4 The break, continue, and goto Commands

The break and continue commands can be used to interrupt the sequential execution
of the loop body. The break command transfers control to the command following end,
thus terminating the loop prematurely. A good programming use of the break command
is to transfer control out of a nested loop. The continue command transfers control to
end, which results in the evaluation of the loop condition again, hence continuation of
the loop. In both cases, the commands in the loop body following these statements are not
executed. Thus they are typically part of a conditional statement such as an if statement.
The goto command can be used to transfer control to any location in the script. The fol-
lowing is a brief description of the command.

SYNTAX

goto label

Purpose: To execute the command at the label

The goto command transfers control to the command at label:, a tag for the com-
mand. The use of goto is considered a bad programming practice because it makes debug-
ging of programs a daunting task. For this reason, we do not recommend its use, with

560 ◾ UNIX: The Textbook, Third Edition

the exception perhaps of transferring control out of a nested loop—all loops and not just
the one that has the goto command in it. Figure 14.6 illustrates the semantics of these
commands.

In the following in-chapter exercises, you will write the C shell scripts with loops by
using the foreach and while statements.

EXERCISE 14.10

Write a shell script that takes a list of host names on your network as command line argu-
ments and displays whether the hosts are up or down. Use the ping command to display
the status of a host and the foreach statement to process all host names.

EXERCISE 14.11

Rewrite the script in Exercise 14.10 by using the while statement.

14.7.5 The switch Statement

The switch statement provides a mechanism for multiway branching similar to a
nested if statement. However, the structure provided by the switch statement is
more readable. You should use the switch statement when you can—that is, when
you are testing a single variable to several distinct patterns. You would not use it when
you want to test more than one variable. The following is a brief description of the
statement.

�is iteration is over,
and there are no more

iterations.end
echo “…”

Cmd1

Cmdn

break
…
…

…

Cmd1

Cmdn

goto error
…

…

…

…

while (expression)

end
echo “…”

Cmd1

Cmdn

Continue
…
…

…

error

Transfer control to the
command at the label

“error” anywhere in the
script.

while (expression)

FIGURE 14.6 Semantics of the break, continue, and goto commands.

Introductory C Shell Programming    ◾    561

SYNTAX

switch (test-string)
 case pattern1:
 command-list1
 breaksw
 case pattern2:
 command-list2
 breaksw
 ...
 ...
 default:
 command-listN
 breaksw
endsw

Purpose: To implement multiway branching as with a nested if

The switch statement compares the value in test-string with the values of all the pat-
terns one by one until either a match is found or there are no more patterns to match
test-string with. If a match is found, the commands in the corresponding command-list
are executed and control goes out of the switch statement. If no match is found, control
goes to commands in command-listN. You don’t need to include a default for the switch
statement. Figure 14.7 illustrates the semantics of the switch statement.

The following script in the switch_demo file shows a simple but representative use
of the switch statement. It is a menu-driven program that displays a menu of options

Is
test-string

equal to
pattern1?

Execute the commands in
command-list1

endsw

Yes

No
Is

test-string
equal to

pattern2?

Execute the commands in
command-list2

Yes

No
…

…

Is
test-string

equal to
patternN?

Execute the commands in
command-listN

Yes

No

switch

FIGURE 14.7 Semantics of the switch statement.

562 ◾ UNIX: The Textbook, Third Edition

and prompts you to enter an option. Your input is read into a variable called option.
The switch statement then matches your option with one of the four available patterns
(single characters in this case) one by one, and when a match is found, the corresponding
command-list is executed. Thus if you type d and hit <Enter> at the prompt, the date
command is executed and control goes out of switch. The exit 0 command is then
executed for normal program termination. Note that the C shell performs logical OR on
the items enclosed in brackets. Thus, here, uppercase and lowercase letters are treated the
same. A few sample runs of the script follow the code.

% cat switch_demo
#!/bin/csh
echo "Use one of the following options:"
echo " d or D: To display today's date and present time"
echo " l or L: To see listing of files in your working directory"
echo " w or W: To see who is logged in"
echo " q or Q: To quit this program"
echo -n "Enter your option and hit <Enter>: "
set option = 'head -1'
switch ("$option")
 case [dD]:
 date
 breaksw
 case [lL]:
 ls
 breaksw
 case [wW]:
 who
 breaksw
 case [qQ]:
 exit 0
 breaksw
 default:
 echo "Invalid option; try running the program again."
 exit 1
 breaksw
endsw
exit 0
% ./switch_demo
Use one of the following options:
 d or D: To display today's date and present time
 l or L: To see listing of files in your working directory
 w or W: To see who is logged in
 q or Q: To quit this program
Enter your option and hit <Enter>: d
Sun Sep 7 11:23:00 PKT 2014

Introductory C Shell Programming    ◾    563

% ./switch_demo
Use one of the following options:
 d or D: To display today's date and present time
 l or L: To see listing of files in your working directory
 w or W: To see who is logged in
 q or Q: To quit this program
Enter your option and hit <Enter>: L
cmdargs_demo foreach_demo shift_demo
display_change_name keyin_demo switch_demo
display_name lab3 user_info
export_demo set_demo while_demo
% ./switch_demo
Use one of the following options:
 d or D: To display today's date and present time
 l or L: To see listing of files in your working directory
 w or W: To see who is logged in
 q or Q: To quit this program
Enter your option and hit <Enter>: q
% ./switch_demo
Use one of the following options:
 d or D: To display today's date and present time
 l or L: To see listing of files in your working directory
 w or W: To see who is logged in
 q or Q: To quit this program
Enter your option and hit <Enter>: a
Invalid option; try running the program again.
%

SUMMARY
Every UNIX shell has a programming language that allows you to write programs for
performing tasks that cannot be performed by using the existing commands. These pro-
grams are commonly known as shell scripts. In its simplest form, a shell script con-
sists of a list of shell commands that are executed by a shell sequentially, one by one.
More advanced scripts use program control flow statements for implementing multi-
way branching, repetitive execution of a block of commands in the script, transferring
control out of a loop, or transferring control to any command in the script. The shell
programs that consist of C shell commands, statements, and features are called C shell
scripts.

The shell variables are the main memory locations that are given names and can be read
from and written to by using these names, instead of the addresses of the relevant memory
locations. There are two types of shell variables: environment variables and user-defined
variables. Environment variables, initialized by the shell at the time the user logs on, are
maintained by the shell to provide a user-friendly work environment. User-defined vari-
ables are used as scratch pads in a script to accomplish the task at hand. Some environment

564 ◾ UNIX: The Textbook, Third Edition

variables, such as the positional parameters, are read only in the sense that the user cannot
change their values without using the set command.

The C shell commands for processing shell variables are set and setenv (for set-
ting values of positional parameters and displaying values of all environment variables),
env (for displaying values of all shell variables), unset and unsetenv (for removing
shell variables from the environment set by using the set and setenv commands,
respectively), set with $< or 'head -1' (for assigning keyboard input as values of
variables), and shift (for shifting command line arguments to the left by one or more
positions).

The program control flow statements if and switch allow the user to implement
multiway branching, and the foreach and while statements can be used to implement
loops. The continue, break, and goto commands can be used to interrupt the sequen-
tial execution of a shell program and transfer control to a statement that (usually) is not the
next statement in the program layout.

QUESTIONS AND PROBLEMS

Note: All scripts should be written using the C shell language

 1. What is a shell script? Describe three ways of executing a shell script.

 2. What is a shell variable? What is a read-only variable? How can you make a user-
defined variable read only? Give an example to illustrate your answer.

 3. Which shell environment variable is used to store your search path? Change your
search path interactively to include the directories ~/bin and . . What would this
change allow you to do? Why? If you want to make it a permanent change, what
would you do? See Chapter 2 if you have forgotten how to change your search path.

 4. What will be the output if the shell script keyin_demo in Section 14.3.5 is executed
and you give * as input each time you are prompted?

 5. Write a shell script that takes an ordinary file as an argument and removes the file
if its size is zero. Otherwise, the script displays the file’s name, size, number of hard
links, owner, and modify date (in this order) on one line. Your script must do the
appropriate error checking.

 6. Write a shell script that takes a directory as a required argument and displays the
name of all zero-length files in it. Do the appropriate error checking.

 7. Write a shell script that removes all zero-length ordinary files and empty directories
in the current directory. Do the appropriate error checking.

 8. Modify the script in Problem 6 so that it removes all zero-length ordinary files in the
directory passed as an optional argument. If you do not specify the directory argu-
ment, the script uses the present working directory as the default argument. Do the
appropriate error checking.

Introductory C Shell Programming    ◾    565

 9. Run the script in if_demo2 in Section 14.6 with if _ demo2 as its argument. Does
the output make sense to you? Why?

 10. Modify the script in if_demo2 in Section 14.6 so that it takes two ordinary files as
arguments and displays information about both. Also, the script should display an
error message if a special file is passed to it as an argument.

 11. Write a shell script that takes a list of login names on your computer system as com-
mand line arguments and displays these login names and full names of the users who
own these logins (as contained in the /etc/passwd file), one per line. If a login name is
invalid (not found in the /etc/passwd file), display the login name but nothing for the
full name. The format of the output line is login name: user name.

 12. What happens when you run a stand-alone command enclosed in back quotes (grave
accents), such as 'date'? Why?

 13. What happens when you execute the following sequence of shell commands?

 a. set name=date

 b. $name

 c. '$name'

 14. Take a look at your ~/.login and ~/.cshrc files and list the environment variables that
are exported, along with their values. What is the purpose of each variable?

 15. Write a shell script that takes a list of login names as its arguments and displays the
number of terminals that each user is logged on to in a LAN environment.

 16. Write a shell script domain2ip that takes a list of domain names as command
line arguments and displays their IP addresses. Use the nslookup command. The
following is a sample run of this program.

 % domain2ip up.edu redhat.com
 Name: up.edu
 Address: 192.220.208.9
 Name: redhat.com
 Address: 207.175.42.154
 %

 17. Modify the script in the switch_demo file in Section 14.6.5 so that it allows you to try
any number of options and quits only when you use the q option.

 18. Write a shell script that displays the following menu and prompts for one-character
input to invoke a menu option, as follows:

 a. List all files in the present working directory

 b. Display today’s date and time

 c. Invoke the shell script for Problem 15

566 ◾ UNIX: The Textbook, Third Edition

 d. Display whether a file is a simple file or a directory

 e. Create a backup for a file

 f. Start a telnet session

 g. Start an ftp session

 h. Exit

 Option (c) requires that you ask the user for a list of login names. For options (d)
and (e), prompt the user for file names before invoking a shell command/program.
For options (f) and (g), prompt the user for a domain name (or PI address) before
initiating a telnet or ftp session. The program should allow the user to try any option
any number of times and should quit only when the user gives option (h) as input.
A good programming practice is to build code incrementally—that is, write code for
one option, test it, and then go to the next option. Use this style of code development
for writing this shell script.

 19. Write a shell script that reads a string from the keyboard. If the string is a pathname
for a directory in your system’s directory structure, the script displays the counts of
all types of files in it in the following format:

 Directories :

 Block special files :

 Character special files :

 Link files :

 FIFOs :

 Ordinary files :

 Sockets :

 The script displays the cumulative size (in bytes) for all ordinary files in the directory.
Do the appropriate exception handling.

567

C h a p t e r 15

Advanced C Shell
Programming

Objectives

• To discuss numeric data processing

• To describe array processing

• To discuss how standard input of a command in a shell script can be redirected to
data within the script

• To explain signal/interrupt processing capability of the C shell

• To cover the commands and primitives

	 	=, +=, -=, *=, /=, %=, ==, <, >, |, &, (), <<, @, <^Z>, <^C>,
clear, kill, onintr, set, stty

15.1 INTRODUCTION
We did not discuss four features of C shell programming in Chapter 14: processing of
numeric data, array processing, the here document, and interrupt processing. In this chapter,
we discuss these features and give some example scripts that use them. We also describe
how C shell scripts can be debugged.

15.2 NUMERIC DATA PROCESSING
The C shell has a built-in capability for processing numeric data. It allows you to perform
arithmetic and logic operations on numeric integer data without explicitly converting
string data to numeric data and vice versa. You can use the @ command to declare numeric
variables, the variables that contain integer data. This command allows declaration of local
variables only. The following is a brief description of the command.

568 ◾ UNIX: The Textbook, Third Edition

SYNTAX

@ variable [operator expression] [variable [operator expression]] ...

Purpose: To declare variable to be a numeric variable, evaluate the arithmetic expres-
sion, apply the operator specified in operator to the current value of variable and
the value of expression, and assign the result to variable

Expressions are formed by using the arithmetic and logic operators summarized previ-
ously in Table 14.4. Although octal numbers can be used in expressions by starting them with
0, the final value of an arithmetic expression is always expressed in decimal numbers. The
elements of an expression must be separated by one or more spaces unless the elements are
(,), &, |, <, and >. Table 15.1 describes the possible assignment operators that can be used.

In the following interactive session, the numeric variables value1 and value2 are
initialized to 10 and 15, respectively. The echo command is used to show that the assign-
ments work properly.

% @ value1=10
% @ value2=15
% echo "$value1 $value2"
10 15
%

In the following session, the @ command declares two variables, difference and
sum, and initializes them to the values of the expressions to the right of the respective =
signs. These actions result in the variables difference and sum taking the values −5
and 25, respectively.

% @ difference = ($value1 - $value2) sum = ($value1 + $value2)
% echo $difference $sum
-5 25
%

TABLE 15.1 Assignment Operators for the @ Command

Operator Meaning

= Assigns the value of the expression on the right-hand side of = to the variable preceding it
+= Adds the value of the expression on the right-hand side of = to the current value of the variable

preceding it and assigns the result to the variable
-= Subtracts the value of the expression on the right-hand side of = from the current value of the

variable preceding it and assigns the result to the variable
*= Multiplies the value of the expression on the right-hand side of = by the current value of the

variable preceding it and assigns the result (product) to the variable
/= Divides the value of the variable preceding = by the value of the expression on the right-hand

side of = and assigns the result (quotient) to the variable
%= Divides the value of the variable preceding = by the value of the expression on the right-hand

side of = and assigns the remainder to the variable

Advanced C Shell Programming    ◾    569

You can use the ++ and −− operators, also used in most contemporary high-level languages
including C, C++, and Java, to increment or decrement a variable’s value by 1. Thus, @ var1++
and @ var1−− increase and decrease, respectively, the value of the numeric variable var1.
Similarly, we can use the following syntax to increment or decrement the value of var1 by N.

@ var1 += N
@ var1 -= N

In the following session, we show with examples how you can use these operators.

% @ result = $value1 + $value2
% echo $result
25
% @ result++
% echo $result
26
% @ result += 1
% echo $result
27
% @ result = ($result + 1)
% echo $result
28
% @ result--
% echo $result
27
% @ result -= 1
% echo $result
26
% @ result -= $value1
% echo $result
16
%

You can also use the variables declared the set command to store numeric data. Thus,
in the following session, the variables side, area, and volume are declared by using the
set command and are assigned numeric values by using the @ command. The echo com-
mand displays the values of these variables.

% set side = 10 area volume
% @ area = $side * $side
% @ volume = $side * $side * $side
% echo $side $area $volume
10 100 1000
%

In the following in-chapter exercise, you will perform numeric data processing by using
the set and @ commands.

570 ◾ UNIX: The Textbook, Third Edition

EXERCISE 15.1

Declare two numeric variables var1 and var2 initialized to 10 and 30, respectively. Give
two versions of a command that will produce and display their sum and product.

15.3 ARRAY PROCESSING
An array is a named collection of items of the same type stored in contiguous memory
locations. Array items are numbered according to their locations in the array, with the
first item being at location 1. You can access an array item by using the name of the array
followed by the item number in brackets. Thus, you can use people[k] to refer to the
kth element in the array called people. This process is known as array indexing. You can
declare arrays for strings and integers by using the set command in the following manner.

SYNTAX

set array_name = (array elements)

Purpose: To declare array _ name to be an array variable containing “array elements”
in parentheses

You can access the contents of the whole array by using the array name preceded by the
dollar sign ($), such as $name. You can access the total number of elements in an array by
using the array name preceded by $#, as in $#name, or simply by using $#, as is the case
in the Bourne shell. The value of $?name is 1 if the named array has been initialized and
0 if it has not been initialized.

In the following session, we define a string array of six items, called students, initial-
ized to the strings enclosed in parentheses. The contents of the whole array can be accessed
by using $students, as shown in the first echo command. Thus, the echo $#stu-
dents command displays 6 (the size of the students array), and the echo $?stu-
dents command displays 1, informing you that the array has been initialized. We also
show how you can declare an empty array, called empty, and initialize an array with the
elements of another array; in this case, the empty array.

% set students = (David James Jeremy Brian Art Charlie)
% echo $students
David James Jeremy Brian Art Charlie
% echo $#students
6
% echo $?students
1
% set empty = ()
% echo $empty
% echo $#empty
0
% echo $?empty
1

Advanced C Shell Programming    ◾    571

% set students = ($empty)
% echo $students
%

In the following session, we show how elements of the students array can be
accessed and changed. You can access the ith element in the students array by
indexing it as $students[i]. You can display a range of array elements from ele-
ment at position i to the element at position j by using i-j as the index value, as in
$students[i-j]. In the session below, the set command changes the second element
of the students array from “James” to “Steve Jobs.” The first echo command displays
all the elements of the array. The second echo command displays the second item in
the students array. The third echo command displays four elements of the stu-
dents array, starting with the item at position 2. The last set command, where we try
to assign a value to the seventh slot of the students array, shows that, once defined,
the size of an array is fixed and may not be changed. However, you may redefine an
array of a new size by assigning it a new set of values, as shown via the third set and
fourth echo commands in the following session. Finally, you may assign a subarray of
an array to another array variable, as shown in the final two set and echo commands.
Figure 15.1 depicts the original and modified students arrays.

% set students[2] = "Steve Jobs"
% echo $students
David Steve Jobs Jeremy Brian Art Charlie
% echo $students[2]
Steve Jobs
% echo $students[2-5]
Steve Jobs Jeremy Brian Art
% set students[7] = Jamal
set: Subscript out of range.
% set students = ("Dennis Ritchie" "Ken Thompson" David James
Jeremy "Linus Torvalds" Brian Art Charlie Jamal "Steve Jobs")
% echo $students

students students

students[1]:

.

.

.

students[1]:

students[6]:

(a) (b)

students[6]:

DavidDavid

Steve jobsJames

Jeremy

Brian

Art

Charlie

Jeremy

Brian

Art

Charlie

FIGURE 15.1 The students array (a) before and (b) after changing the contents of the second
slot.

572 ◾ UNIX: The Textbook, Third Edition

Dennis Ritchie Ken Thompson David James Jeremy Linus Torvalds
Brian Art Charlie Jamal Steve Jobs
% set UNIX_Authors = ($students[1-2])
% echo $UNIX_Authors
Dennis Ritchie Ken Thompson
%

Like other variables, an array variable can be removed from the environment by using
the unset command. In the following session, the unset command is used to deallocate
the students array. The echo command is used to confirm that the array has actually
been deallocated.

% unset students
% echo $students
students: Undefined variable.
%

Any shell variable assigned multiple values with the set command becomes an array
variable. Thus, when a variable is assigned a multiword output of a command as a value, it
becomes an array variable and contains each field of the output, as separated by spaces, in
a separate array slot. In the following session, files is an array variable whose elements
are the names of all the files in the present working directory. The numfiles variable
contains the number of files in the current directory. The echo $files[3] command
displays the third array element.

% set files = ‘ls‘ numfiles = ‘ls | wc -w‘
% echo $files
cmdargs_demo foreach_demo1 if_demo1 if_demo2 keyin_demo
% echo $numfiles
5
% echo $files[3]
if_demo1
%

You can also use an array declared with the set command to contain numeric data. In
the following session, the num_array_demo file contains a script that uses an array of inte-
gers, called Fibonacci, computes the sum of integers in the array, and displays the sum
on the screen. The Fibonacci array contains the first 10 numbers of the Fibonacci series.
If you are not familiar with the Fibonacci series, the first two numbers in the series are 0
and 1 and the next Fibonacci number is calculated by adding the preceding two numbers.
Therefore, the first 10 numbers in the Fibonacci series are 0, 1, 1, 2, 3, 5, 8, 13, 21, and 34.
Thus, the Fibonacci series may be expressed mathematically as follows.

	 F F F F F for nn n n1 2 1 20 1 3= = … = + ≥()− −, , ,

Advanced C Shell Programming    ◾    573

The following script in the num_array_demo file is well documented and fairly easy
to understand. It displays the sum of the first 10 Fibonacci numbers. A sample run of the
script follows the code.

% cat num_array_demo
File Name: ~/unixbook/examples/Cshell/num_array_demo
Author: Syed Mansoor Sarwar
Written: August 16, 2004
Last Modified: August 16, 2004; September 13, 2014
Purpose: To demonstrate working with numeric arrays
Brief Description: Maintain running sum of numbers in a numeric
variable called sum, starting with 0.
Read the next array value and add it to sum.
When all elements have been read, stop and
display the answer.
#!/bin/csh
Initialize the Fibonacci array to any number of Fibonacci
numbers - first ten in this case
set Fibonacci = (0 1 1 2 3 5 8 13 21 34)
@ size = $#Fibonacci # Size of the Fibonacci array
@ index = 1 # Array index initialized to point to
 # the first element
@ sum = 0 # Running sum initialized to 0
while ($index <= $size)
 @ sum = $sum + $Fibonacci[$index] # Update the running sum
 @ index++ # Increment array index by 1
end
echo "The sum of the given $#Fibonacci numbers is $sum."
exit 0
% ./num_array_demo
The sum of the given 10 numbers is 88.
%

Although this example clearly explains numeric array processing, it is of little or no
practical use. We now present a more useful example, wherein the fs file contains a script
that takes a directory as an optional argument and returns the size (in bytes) of all ordi-
nary files in it. If no directory name is given at the command line, the script uses the cur-
rent directory. If you specify more than one argument, the script displays an error message
and terminates. When executed with one nondirectory argument only, the program again
displays an error message and exits. When executed with one argument only and the argu-
ment is a directory, the program initializes the string array variable files to the names
of all the files in the specified directory by using the set files = 'ls $directory'
command. A numeric variable nfiles is initialized to the number of files in the specified
directory by using the @ nfiles = $#files command. Then, the size of every ordinary

574 ◾ UNIX: The Textbook, Third Edition

file in the files array is added to the numeric variable sum that is initialized to 0. When
no more names are left in the files array, the program displays the total space (in bytes)
used by all ordinary files in the directory, then terminates.

% cat fs
#!/bin/csh

File Name: ~/unix3e/CShell/fs
Author: Syed Mansoor Sarwar
Written: August 16, 2004
Modified: May 11, 2004; September 13, 2014
Purpose: To add the sizes of all the files in a
directory passed as command line argument
Brief Description: Maintain running sum of file sizes in a
numeric variable called sum, starting with 0.
Read all the file names by using the pipeline
of ls, more, and while commands.
Get the size of the next file and add it to
the running sum. Stop when all file names
have been processed and
display the answer.
if ($# == 0) then # If no command line argument, the
 # set directory to current directory
 set directory = "."
 else if ($# != 1) then # If more then one command line
 # argument then display command
 # syntax
 echo "Usage: $0 [directory name]"
 exit 1
 else if (! -e "$1") then # If one command line argument, but
 # file does not exist, display error
 # message
 echo "$1 : File does not exist"
 exit 1
 else if (! -d "$1") then # If one command line argument, but is
 # not a directory, show command
 # syntax
 echo "Usage: $0 [directory name]"
 exit 1
 else
 set directory="$1" # If one command line argument and it is a
 # directory, prepare to perform the task
endif
Initialize files array to file names in the specified directory
set files = 'ls $directory'

Advanced C Shell Programming    ◾    575

@ nfiles = $#files # Number of files in the specified directory
 # into nfiles
@ index = 1 # Array index initialized to point to the first
 # file name
@ sum = 0 # Running sum initialized to 0
if ("$nfiles" == 0) then
 echo "$directory : Empty directory"
 exit 0
endif

while ($index <= $nfiles) # For as long as a file name is
 # left in files
 set thisfile = $directory/$files[$index]
 if (-f "$thisfile") then # If the next file is an
 # ordinary file
 set argv = 'ls -l $thisfile' # Set command line arguments
 @ sum = $sum + $argv[5] # Add file size to the running
 # total
 @ index++
 else
 @ index++
 endif
end
echo "The size of all ordinary files in $directory is $sum bytes."
exit 0
% ./fs unix3e
unix3e : File does not exist
% ./fs / /usr/bin
Usage: fs [directory name]
% ./fs dir1
d1 : Empty directory
% ./fs
The size of all ordinary files in . is 7360 bytes.
% ./fs ~
The size of all ordinary files in /home/sarwar is 0 bytes.
% ./fs ~/unix3e
The size of all ordinary files in /home/sarwar/unix3e is 0 bytes.
% ./fs /
The size of all ordinary files in / is 10238 bytes.
% ./fs /usr/bin
The size of all ordinary files in /usr/bin is 232019634 bytes.
%

In the following in-chapter exercise, you will write a C shell script that uses the numeric
data processing commands for manipulating numeric arrays.

576 ◾ UNIX: The Textbook, Third Edition

EXERCISE 15.2

Write a C shell script that contains two numeric arrays, array1 and array2, initial-
ized to values in the sets {1, 2, 3, 4, 5} and {1, 4, 9, 16, 25}, respectively. The script produces
and displays an array whose elements are the sum of the corresponding elements in the
two arrays. Thus the first element of the resultant array is 1 + 1 = 2, the second element is
2 + 4 = 6, and so on.

15.4 THE HERE DOCUMENT
The here document feature of the C shell allows you to redirect standard input of a com-
mand in a script and attach it to data within the script. Obviously, then, this feature works
with commands that take input from standard input. The feature is used mainly to display
menus, although it also is useful in other ways. The following is a brief description of the
here document.

SYNTAX

command <<[-] input_marker
… input data …
input_marker

Purpose: To execute command with its input coming from the here document—data
between the input start and end markers “input_marker”

The “input_marker” is a word that you choose to wrap the input data in for command.
The closing marker must be on a line by itself and cannot be surrounded by any spaces.
The command and variable substitutions are performed before the here document data
is directed to the standard input of the command. Quotes can be used to prevent these
substitutions or to enclose any quotes in the here document. The “input_marker” can be
enclosed in quotes to prevent any substitutions in the entire document, as follows:

command <<Marker
...
Marker

A hyphen (-) after << can be used to remove leading tabs (not spaces) from the lines in
the here document and the marker that ends the here document. This feature allows the
here document and the delimiting marker to conform to the indentation of the script. One
last, but very important point: The output and error redirections of the command that uses
the here document must be specified in the command line, not following the here docu-
ment ending marker. The same is true of connecting the standard output of the command
with other commands via a pipeline, as shown in the following session. See Section 13.3
for an example.

We explain the use of the here document with a simple redirection of the stdin of the
cat command from the document. The following script in the heredoc_demo file displays

Advanced C Shell Programming    ◾    577

a message for the user and then sends a mail message to the person whose e-mail address
is passed as a command line argument.

% cat heredoc_demo
#!/bin/csh

cat << DataTag
This is a simple use of the here document. This data is the
input to the cat command.
DataTag

Second example
mail -s "Weekly Meeting Reminder" $argv[1] << WRAPPER

Hello,

This is a reminder for the weekly faculty meeting tomorrow.

Mansoor

WRAPPER

echo "Sending mail to $argv[1] ... done."
exit 0
% ./heredoc_demo ecefaculty
This is a simple use of the here document. This data is the
input to the cat command.
Sending mail to ecefaculty ... done.
%

The following script is more useful and a better use of the here document feature. This
script, dext (directory expert), maintains a directory of names, phone numbers, and
e-mail addresses. The script is run with a name as a command line argument and uses the
grep command to display the directory entry corresponding to the name. The -i option
is used with the grep command to ignore the case of letters.

% more dext
#!/bin/csh
if ($#argv == 0) then
 echo "Usage: $0 name"
 exit 1
endif
set user_input = "$argv[1]"
grep -i "$user_input" << DIRECTORY

 John Doe 555.232.0000 johnd@somedomain.com
 Jenny Great 444.6565.1111 jg@new.somecollege.edu
 David Nice 999.111.3333 david_nice@xyz.org
 Don Carr 555.111.3333 dcarr@old.hoggie.edu
 Masood Shah 666.010.9820 shah@Garments.com.pk

578 ◾ UNIX: The Textbook, Third Edition

 Jim Davis 777.000.9999 davis@great.adviser.edu
 Art Pohm 333.000.8888 art.pohm@great.professor.edu
 David Carr 777.999.2222 dcarr@net.net.gov

DIRECTORY
exit 0
% ./dext
Usage: dext name
% dext Pohm
 Art Pohm 333.000.8888 art.pohm@great.professor.edu
% ./dext Carr
 Don Carr 555.111.3333 dcarr@old.hoggie.edu
 David Carr 777.999.2222 dcarr@net.net.gov
% ./dext david
 David Nice 999.111.3333 david_nice@xyz.org
 David Carr 777.999.2222 dcarr@net.net.gov
%

The advantage of maintaining the directory within the script is that it eliminates some
extra file operations such as open and read that would be required if the directory data
were maintained in a separate file. The result is a much faster program.

Completing the following in-chapter exercise will enhance your understanding of the
here document feature of C shell.

EXERCISE 15.3

Create the dext script on your system and run it. Try it with as many different inputs as
you can think of. Does the script work correctly?

15.5 INTERRUPT (SIGNAL) PROCESSING
We discussed the basic concept of signals in Chapter 10, where we defined them as software
interrupts that can be sent to a process. We also stated that the process receiving a signal
can take any one of three possible actions:

 1. Accept the default action as determined by the UNIX kernel

 2. Ignore the signal

 3. Take a programmer-defined action

In UNIX, several types of signals can be sent to a process. Some of these signals can be
sent via the hardware devices such as the keyboard, but all can be sent via the kill com-
mand, as discussed in Chapter 10 and Chapter 13. The most common event that causes a
hardware interrupt (and a signal) is generated when you press <Ctrl+C> and is known
as the keyboard interrupt. This event, as its default action, causes the foreground process
to terminate. Other events that cause a process to receive a signal include termination of

Advanced C Shell Programming    ◾    579

a child process, a process accessing a main memory location that is not part of its address
space (the main memory area that the program owns and is allowed to access), and a soft-
ware termination signal caused by execution of the kill command without any signal
number. Table 15.2 presents a list of some important signals, their numbers (which can be
used to generate those signals with the kill command), and their purposes.

The signal processing feature of the C shell allows you to write programs that cannot be
terminated by a terminal interrupt (<Ctrl+C>). In contrast to the Bourne shell support for
signal processing, this feature is very limited. The command used to intercept and ignore
<Ctrl+C> is onintr. The following is a brief description of the command.

SYNTAX

onintr [options]

Purpose: To ignore a terminal interrupt (<Ctrl+C>) or intercept it and transfer control to
any command

Commonly used options/features:
- To ignore the terminal interrupt
label: To transfer control to the command at “label”

When you use the onintr command without any option, the default action of
process termination takes place when you press <Ctrl+C> while the process is run-
ning. Thus, using the onintr command without any option is redundant. Here, we
enhance the script in the while_demo file in Chapter 14, so that you cannot terminate
execution of this program with <Ctrl+C>. The enhanced version is in the onintr_
demo file, as shown in the following session. Note that the onintr command is used
to transfer control to the command at the interrupt_label: label when you press

TABLE 15.2 Some Important Signals, Their Numbers, and Their Purpose

Signal Name Signal # Purpose

SIGHUP (hang up) 1 Informs the process when the user who ran the
process logs out and terminates the process

SIGINT (keyboard interrupt) 2 Informs the process when the user presses
<Ctrl+C> and terminates the process

SIGQUIT (quit signal) 3 Informs the process when the user presses
<Ctrl+|> or <Ctrl+\> and terminates the
process

SIGKILL (sure kill) 9 Terminates the process when the user sends this
signal to it with the kill -9 command

SIGSEGV (segmentation
violation)

11 Terminates the process upon memory fault when a
process tries to access memory space that does not
belong to it

SIGTERM (software
termination)

15 Terminates the process when the kill command is
used without any signal number

SIGTSTP (suspend/stop signal) 18 Suspends the process, usually <Ctrl+Z>
SIGCHLD (child finished
execution)

20 Informs	the	process	of	the	termination	of	one	of	its	
children

580 ◾ UNIX: The Textbook, Third Edition

<Ctrl+C> while executing this program. The code at this label is a goto command
that transfers control to the onintr interrupt command to reset the interrupt
handling capability of the code, effectively ignoring <Ctrl+C>. A sample run illus-
trates this point.

% cat onintr_demo
#!/bin/csh

Intercept <Ctrl+C> and transfer control to the command at
backagain:
 onintr interrupt

Set the secret code
set secretcode = agent007

Get user input
echo "Guess the code!"
echo -n "Enter your guess: "
set yourguess = 'head -1'

As long as the user input is not the secret code (agent007 in
this case), loop here: display a message and take user input
gain. When the user input matches the secret code, terminate the
loop and execute the following echo command.
while ("$secretcode" != "$yourguess")
 echo "Good guess but wrong. Try again\!"
 echo -n "Enter your guess: "
 set yourguess = 'head -1'
end
echo "Wow! You are a genius\!"
exit 0
Code executed when you press <Ctrl+C>
interrupt:
 echo "Nice try -- you cannot terminate me by <Ctrl+C>\!"
 goto backagain
% ./onintr_demo
Guess the code!
Enter your guess: codecracker
Good guess but wrong. Try again!
Enter your guess: <Ctrl+C>
Nice try -- you cannot terminate me by <Ctrl+C>!
Guess the code!
Enter your guess: Lionking
Good guess but wrong. Try again!
Enter your guess: agent007

Advanced C Shell Programming    ◾    581

Wow! You are a genius!
%

The net effect of using the onintr command in the preceding script is to ignore a
keyboard interrupt. You can achieve the same effect by using the command with the -
option. Thus, the whole interrupt handling code in the onintr_demo program can be
replaced by the onintr - command; no code is needed at any label, but then the code
does not display any message for you when you press <Ctrl+C>.

To terminate programs that ignore terminal interrupts, you have to use the kill com-
mand. You can do so by suspending the process by pressing <Ctrl+Z>, using the ps
command to get the process ID (PID) of the process, and terminating it with the kill
command.

You can modify the script in the onintr_demo file so that it ignores the keyboard inter-
rupt, clears the display screen, and turns off the echo. Whatever you enter at the keyboard,
then, is not displayed. Next, it prompts you for the code word twice. If you do not enter
the same code word both times, it reminds you of your bad short-term memory and quits.
If you enter the same code word, it clears the display screen and prompts you to guess the
code word again. If you do not enter the original code word, the screen is cleared and you
are prompted to guess again. The program does not terminate until you have entered the
original code word. When you do enter it, the display screen is cleared, a message is dis-
played at the top left of the screen, and echo is turned on. Because the terminal interrupt
is ignored, you cannot terminate the program by pressing <Ctrl+C>. The stty -echo
command turns off the echo. Thus, when you type the original code word (or any guesses),
it is not displayed on the screen. The clear command clears the display screen and locates
the cursor at the top-left corner. The stty echo command turns on the echo. The result-
ing script is in the canleave file shown in the following session.

% cat canleave
#!/bin/csh

File Name: ~/unix3e/CShell/canleave
Author: Syed Mansoor Sarwar
Written: August 18, 2004
Modified: May 8, 2004, September 15, 2014
Purpose: To allow a user to leave his/her terminal for a
short duration of time by locking the terminal
after taking a code from the user. Terminal is
unlocked only when the user re-enters the same
code. Ignores command line arguments. Does not
terminate with <Ctrl+C>.
Brief Description:
Clear screen and turn off echo (i.e., do not
display what the user types at the keyboard).
Take user code, save it, and ask the user

582 ◾ UNIX: The Textbook, Third Edition

to re-enter his/her code just to make sure that
the user remembers the code that he/she has
entered. It is done twice. If the user does not
enter the same code, the program terminates
after displaying a message for the user. The
user is prompted to enter the original code. If
the user enters the wrong code, the program
keeps on prompting the user until he/she enters
the orignal code. The keyboard is then unlocked,
echo is turned on, and program exits, allowing
the user to use his/her system again.
Ignore terminal interrupt
onintr -

Clear the screen, locate the cursor at the top-left corner,
and turn off echo
clear
stty -echo

Set the secret code
echo -n "Enter your code word: "
set secretcode = ‘head -1‘
echo " "

To make sure that the user remembers the code word
echo -n "Enter your code word again: "
set same = ‘head -1‘
echo " "
if ($secretcode != $same) then
echo "Work on your short-term memory before using this code\!"
exit 1

endif

Keyboard locked. Hit <Enter> to continue.
clear
echo -n "Keyboard locked. Hit <Enter> to continue."
set ignore = ‘head -1‘
clear

Get user guess to unlock the terminal
echo -n "Enter the code word: "
set yourguess = ‘head -1‘
echo " "

As long as the user input is not the original code word, loop
here: display a message and take user input gain. When the user
input matches the secret code word, terminate the loop and
execute the following echo command.

Advanced C Shell Programming    ◾    583

while ("$secretcode" != "$yourguess")
 clear
 echo -n "Enter the code word: "
 set yourguess = ‘head -1‘
end

Set terminal to echo mode
clear
echo "Back again!"
stty echo
exit 0
%

You can use this script to lock your terminal before you leave it to pick up a printout or
get a can of soda; hence, the name canleave (can leave). Using it saves you the time other-
wise required for the logout and login procedures.

15.6 DEBUGGING SHELL PROGRAMS
You can debug your C shell scripts by using the -x (echo) option of the csh command.
This option displays each line of the script after variable substitution but before execution.
You can combine the -x option with the -v (verbose) option to display each command line
of the script, as it appears in the script file before its execution. You can also invoke the csh
command from the command line to run the script, or you can make it part of the script,
as in #!/bin/csh -xv.

In the following session, we show how a shell script can be debugged. The script in the
debug_demo file prompts you to enter a digit. If you enter a value between 1 and 9, it
displays a message informing you that what you entered was good and quits. If you enter
any other value, it informs you accordingly and exits. When we execute the script and
enter 4, a valid input, it displays the message var1cat: Undefined variable.
Similarly, when we run the script and enter 10, an invalid input, we get the same error
message.

% cat debug_demo
#!/bin/csh

echo -n "Enter a digit: "
set var1 = ‘head -1‘
if (("$var1" >= 1) && ("$var1" <= 9)) then
 echo "Good input is $var1!!"
else
 echo "Bad input is $var1!!"
endif
exit 0
% ./debug_demo
Enter a digit: 4

584 ◾ UNIX: The Textbook, Third Edition

var1cat: Undefined variable.
% ./debug_demo
Enter a digit: 10
var1cat: Undefined variable.
%

We debug the program by using the csh -xv debug _ demo command. The
last two lines of output of the runtime trace show the problem area. Somehow, the
$var1 variable is followed by the character sequence cat canleave. We put a space
between $var1 and !! at the end of the echo command. This helps a little in that
the output becomes Good input is 4 cat canleave. We then realize that the
problem is with the two back-to-back bang signs (!!) at the end of the two echo com-
mands. The bang sign is has a special meaning in the C shell that indicates the begin-
ning of a previous event; !! means the event immediately preceding. This means that
cat canleave was the command that was executed prior to this command. The
problem is taken care of by either escaping one of the two ! signs, as in $var1\!!, or
by removing one of the ! signs, as in $var1!. After we take care of this problem, the
script works properly.

% csh -xv debug_demo

echo -n "Enter a digit: "
echo -n Enter a digit:
Enter a digit: set var1 = ‘head -1’
set var1 = ‘head -1‘
head -1
4
if (("$var1" > = 1) && ("$var1" < = 9)) then
if ((4 > = 1) && (4 < = 9)) then
echo "Good input is $var1cat canleave"
var1cat: Undefined variable.
%

For larger scripts, it may become difficult to identify the problem area. In such cases, you
should use the echo commands at different places in your script to narrow down on the
problematic code region. It is similar to using the cout or printf statements in C, C++,
and Java programs while debugging your code in these high-level languages.

The following in-chapter exercise has been designed to enhance your understanding of
the interrupt processing and debugging features of the C shell.

EXERCISE 15.4

Test the scripts in the onintr_demo and canleave files on your UNIX system. Do they
work as expected? Be sure that you understand them. If your versions do not work prop-
erly, use the csh -xv command to debug them.

Advanced C Shell Programming    ◾    585

SUMMARY
The C shell has the built-in capability for numeric integer data processing in terms of arith-
metic, logic, and shift operations. Combined with the array processing feature of the lan-
guage, this allows the programmer to write useful programs for processing large data sets
with relative ease. The numeric variables can be declared and processed by using the @ and
set commands.

The here document feature of the C shell allows standard input of a command in a script
to be attached to data within the script. The use of this feature results in more efficient
programs. The reason is that no extra file-related operations, such as file open and read,
are needed, as the data is within the script file and has probably been loaded into the main
memory when the script was loaded.

The C shell also allows the user to write programs that ignore signals such as terminal
interrupt (<Ctrl+C>). This useful feature can be used, among other things, to disable pro-
gram termination when it is in the middle of updating a file. The onintr command can
be used to invoke this feature.

The C shell programs can be debugged by using the -x and -v options of the csh com-
mand, as in csh –xv filename. This technique allows viewing of the commands in the
user's script after variable substitution but before execution.

QUESTIONS AND PROBLEMS

 1. Is the expr command needed in the C shell?

 2. What is the here document? Why is it useful?

 3. Modify the num _ array _ demo script in Section 15.3 so that it takes the num-
bers to be added as the command line arguments. Use the while control structure
and integer arrays.

 4. What is the difference between the following two commands if students is an
array? See the second shell session in Section 15.3 for the current value of the stu-
dents array. Explain your answer.

 a. set UNIX _ Authors = $students[1-2]

 b. set UNIX _ Authors = ($students[1-2])

 5. The dext script in Section 15.4 takes a single name as a command line argument.
Modify this script so that it takes a list of names as command line arguments. Use the
foreach control structure to implement your solution.

 6. The script in the canleave file discussed in Section 15.5 is designed to ignore key-
board interrupt. How can this program be terminated? Be precise.

 7. Write a C shell script that takes integer numbers as command line arguments and
displays their sum on the screen.

586 ◾ UNIX: The Textbook, Third Edition

 8. Write a C shell script that takes an integer number from the keyboard and displays
the Fibonacci numbers equal to the number entered from the keyboard. Thus, if the
user enters 7, your script displays the first seven Fibonacci numbers.

 9. What are signals in UNIX? What types of signals can be intercepted in C shell scripts?

 10. Enhance the code of Problem 7 so that it cannot be terminated by pressing <Ctrl+C>.
When the user presses <Ctrl+C>, your script should give a message to the user and
continue.

 11. Modify the script in Problem 6 so that it reads integers to be added as a here document.

 12. Enhance the onintr _ demo script so that it takes the code word and the category
of the code word (e.g., scientist, TV newscaster, politician, celebrity, movie, sportsper-
son) as input. It then informs the user of the category and gives 10 chances to the user
to guess the code word.

 13. Write a C shell script that implements the following menu options:

 a. Display the name of the central processing unit (CPU) used by your system.

 b. Display the name of the operating system used by your computer.

 c. Display the results of a. and b. on the screen separated by a vertical tab.

 d. Display the full pathnames for the commands that have been executed on your
system.

 e. Display the maximum number of files a process may open.

 f. Display the maximum number of simultaneous processes a user may have on the
system.

 Your program should not terminate when the user presses <Ctrl+C>.

 Hint: Review the manual pages for the following commands: hash, ulimit, uname.

587

C h a p t e r 16

Python

Objectives

• To give an overview of the Python programming language

• To cover the basic syntax of Python

• To show how to install and run Python on a UNIX system

• To provide several basic practical examples of using Python in the UNIX environment

• To cover the commands and primitives

 python

16.1 INTRODUCTION
In the UNIX environment, if you are presented with a task that requires you to do either
script writing or programming, the first thing you have to decide is what programming
model you are going to adopt to accomplish the task. In simple terms, this means using any
of the three predominant programming models: the procedural/imperative programming
model, the object-oriented programming (OOP) model, or the logic programming model.
Of course, how well you accomplish the task depends on how much script writing or pro-
gramming experience you have. And, perhaps, if you are doing this task with a group of
people, their experiences and preferences count for a great deal as well. But, how you for-
mulate the task in terms of any of the models is related, most importantly, to your experi-
ence in using these models. There are no simple guidelines for applying any of the models
to the vast number of possible script writing or programming tasks that exist in UNIX.

However, the bottom line in the accomplishment of your task is how familiar you are
with the syntax of the languages that implement the model you choose.

That is why we explain Python syntax in detail. Python can utilize all of these program-
ming models, and can, in fact, mix the techniques used in the models. We make some
commentary on this here, and illustrate some simple uses of the models in the next few
sections.

588 ◾ UNIX: The Textbook, Third Edition

Python is a high-level, structured (in this case, this means built of regular components),
and interpreted programming (or scripting) language, as opposed to a low-level, compiled
language like C or Java. As stated, it is also a multiparadigm programming language, which
allows you to use data abstractions from the three predominant paradigms. For our pur-
poses, “scripting” and “programming” can be thought of as the same thing.

16.1.1 Python Program Data Model

Even though Python is a multiparadigm programming language, its actual basis is the
following:

Everything in a Python program can be referred to as an object, with the same exact
meaning of the word object in OOP. These objects have three parts: an identifier, a
type, and a value.

For example, when you assign X = 62.25 interactively in the Python interpreter, or
in a Python module, script file, or library of modules, a real number object type
is created; it has a value of 62.25, and it is identified as an object with a pointer
to its location in memory. X is the identifier that refers to its specific location in
memory.

In OOP languages such as Python and Java, the type that an object assumes gives it
membership in a particular set, called its class. The class of the object limits and also
defines, in a fashion, what are known as the methods, or operations, which can be
performed on or with it.

When a particular object of some type is created, that particular object is called an
instance of that type. In general, an object’s identity and type cannot be changed.
They are known as immutable. If an object’s value can be modified, the object is said
to be mutable. An object that refers to other objects to obtain value and type is known
as a container.

Objects can also define their own attributes or characteristics of the data they are com-
prised of, and even the methods used on them. An attribute is a property or value
associated with an object. A method is a function internal to a class of objects that
performs some sort of operation on those objects when the method is invoked.

Attributes and methods are accessed using the dot (.) operator, as shown in the follow-
ing examples:

x = 2 + 4j creates a complex number x.

A = a.real uses a method known as real to extract the real part (an attribute) of a.

c = [1, 2, 3] creates an instance of type list identified as c of the integers 1, −2, and −3.

c.append(7) adds a new element to c using the append method.

Python    ◾    589

16.1.2 The Ultimate Python Reference

Before you begin this section, and as you proceed through the rest of this chapter, it would
be helpful for you to read and try to understand, in a “top-down” manner, the following
reference in the Python online documentation for the release of Python you are using.

The Python Language Reference: Release 2.7.X, by Guido van Rossum and Fred L. Drake, Jr.
Whatever top-down principles you can carry with you from this reference throughout

your Python programming experience, both in this chapter and beyond, are very impor-
tant and will enable you to see the complex details in a larger context. And we have put a
summary of the above reference in Table 16.6, found at the end of this chapter.

16.1.3 Ultimate Reference Glossary

A simplified and abbreviated glossary of some of the terms from this reference is as follows:

Class: A template for creating user-defined objects. Class definitions normally contain
method definitions which operate on instances of the class.

Expression: A piece of syntax which can be evaluated to some value. In other words, an
expression is an accumulation of expression elements like literals, names, attribute
access, operators, or function calls, which all return a value.

In contrast to many other languages, not all language constructs are expressions. There
are also statements which cannot be used as expressions, such as print or if.
Assignments are also statements, not expressions.

Immutable: An object with a fixed value. Immutable objects include numbers, strings,
and tuples. Such objects cannot be altered. A new object has to be created if a different
value has to be stored; for example, a key in a dictionary.

Iterable: An object capable of returning its members one at a time. Examples of iterables
include all sequence types (such as a list, string, and tuple) and some nonsequence
types like dict and file and objects of any classes you define with an _ _
iter _ _ () or _ _ getitem _ _ () method. Iterables can be used in a for
loop and in many other places where a sequence is needed. When an iterable object is
passed as an argument to the built-in function iter(), it returns an iterator for the
object. This iterator is good for one pass over the set of values. When using iterables, it
is usually not necessary to call iter() or deal with iterator objects yourself. The for
statement does that automatically for you, creating a temporary unnamed variable to
hold the iterator for the duration of the loop.

Lambda: An anonymous inline function consisting of a single expression which is eval-
uated when the function is called. The syntax to create a lambda function is lambda
[arguments]: expression.

Method: A function which is defined inside a class body. If called as an attribute of an
instance of that class, the method will get the instance object as its first argument
(which is usually called self).

590 ◾ UNIX: The Textbook, Third Edition

mutable: Mutable objects can change their value but keep their class identity.

Pythonic: An idea or piece of code which closely follows the most common usages of
the Python language, rather than implementing code using structures common to
other languages. For example, a common usage in Python is to loop over all ele-
ments of an iterable using a for statement. Many other languages do not have this
type of construct, so people unfamiliar with Python sometimes use a numerical
counter instead:

for i in range(len(money)):
 print money[i]

 The Pythonic way:

for bills in money:
 print bills

Sequence: An iterable which supports efficient element access using integer indices
via the _ _ getitem _ _ () special method and defines a len() method that
returns the length of the sequence. Some built-in sequence types are list, str,
tuple, and unicode. Note that dict also supports _ _ getitem _ _ () and
_ _ len _ _ (), but is considered a mapping rather than a sequence because the
lookups use arbitrary immutable keys rather than integers.

type: The kind of object, such as integers or character strings.

16.1.4 Python Standard Type Hierarchy

The type of an object describes the Python data structure representation of the object as
well as the methods and operations that can be carried out on that object. Table 16.1 is a
listing of the type categories, and following it is a brief description of some of the categories
in the table.

The None type has a single value that contains a null object (an object with no value).
Its truth value is False.

Numeric types: Booleans, integers, long integers, floating point numbers, and complex
numbers.

Sequence types: Sequences represent ordered sets of objects indexed by non-negative
integers and include strings, Unicode strings, lists, and tuples.

Mapping types: A mapping object represents an arbitrary collection of objects that are
indexed by another collection of nearly arbitrary key values. Unlike a sequence, a
mapping object is unordered and can be indexed by numbers, strings, and other
objects. Dictionaries are the only built-in mapping type and are similar to hash.

Set types: A set is an unordered collection of unique items. Unlike sequences, sets pro-
vide no indexing or slicing operations. They are also unlike dictionaries in that there

Python    ◾    591

are no key values associated with the objects. In addition, the items placed into a set
must be immutable.

Callable types: These represent objects that support the function call operation. There
are several flavors of objects with this property, including user-defined functions,
built-in functions, instance methods, and classes.

TABLE 16.1 Python Type Categories

Category Name Description

None None Null object
Numbers int Plain integer

Long Arbitrary-precision integer
Float Floating point number
Complex Complex number
Bool Boolean (True or False)

Sequences (immutable) str Character string
Unicode Unicode character string
tuple Tuple

Sequences (mutable) list List
bytearray Returned by bytearray()

Mapping dict Dictionary
Sets set Mutable set

Frozenset Immutable set

Callable BuiltinFunctionType Built-in functions
BuiltinMethodType Built-in methods
type Type of built-in types and classes
object Ancestor of all types and classes
FunctionType User-defined function
InstanceType Class object instance
MethodType Bound class method
UnboundMethodType Unbound class method

" Modules ModuleType Module
" Classes object Ancestor of all types and classes
" Types type Type of built-in types and classes
" Files file File
" Internal CodeType Byte-compiled code

FrameType Execution frame
GeneratorType Generator object
TracebackType Stacks traceback of an exception
Slice Generated by extended slices
Ellipsis Used in extended slices

" Classic Classes ClassType Legacy class definition
InstanceType Legacy class instance

592 ◾ UNIX: The Textbook, Third Edition

Classes and types: When you define a class, the class definition normally produces an
object of type type.

Modules: The module type is a container that holds objects loaded with the import
statement.

Files: The file object represents an open file and is returned by the built-in open()
function.

Internal types: Objects used by the interpreter are exposed to the user, such as trace-
back objects, code objects, frame objects, generator objects, slice objects, and the ellipsis
object.

Code objects: These represent raw byte-compiled executable code, or bytecode, and are
typically returned by the built-in compile() function.

Frame objects: These are used to represent execution frames and most frequently occur
in traceback objects.

Traceback objects: These are created when an exception occurs and contains stack trace
information.

Generator objects: These are created when a generator function is invoked (see Chapter 6,
“Functions and Functional Programming”). A generator function is defined when-
ever a function makes use of the special yield keyword.

Slice objects: These are used to represent slices given in extended slice syntax, such as
a[i:j:stride], a[i:j, n:m], or a[..., i:j].

Ellipsis object: The ellipsis object is used to indicate the presence of an ellipsis (...)
in a slice. There is a single object of this type, accessed through the built-in name
Ellipsis. It has no attributes and evaluates as True.

Classic classes: In versions of Python prior to version 2.2, classes and objects were imple-
mented using an entirely different mechanism that is now deprecated. For backward
compatibility, however, these classes, called classic classes or old-style classes, are still
supported.

16.1.5 Basic Assumptions We Make

Four basic and important assumptions we make in this chapter are

 1. You have Python 2.X installed on your UNIX system. This installation was either
done by the system administrator at the time the UNIX system was installed on the
computer you are using, or by you. On our base UNIX system, PC-BSD (the one we
have used to illustrate everything in this book), Python 2.7.9 was already installed as
part of the installation of the system itself.

 2. The path of execution to the Python program and the path of execution to all the
Python scripts you create in this chapter include the current working directory that

Python    ◾    593

you want to do Python in! If you do not know, given the particular shell you are using
(we use the C shell, with the % prompt), what your path of execution is set to, go back
to Section 2.8 and examine your path and set it properly. For example, in the C shell,
you can see your path of execution by typing echo $path at the shell prompt. On
our base UNIX system, PC-BSD, Python is installed by default in /usr/local/bin.

 3. You are doing Python in a console or terminal window without an integrated devel-
opment environment (IDE). Therefore, the basic procedure is as follows: you edit
Python scripts in your favorite text editor, save them to the current working directory,
and execute Python in that current working directory. You execute Python interac-
tively by typing commands into its “interpreter” shell window. When you become
more familiar with Python, you may wish to make your work with the language more
efficient by using an IDE.

 4. In general, whenever we want you to type something on the Python command line,
we will indicate what is to be typed in bold text.

Computer programs execute and accomplish their objectives in a particular order, from start
to finish. They may “branch” within that order, perhaps to only execute some of their instruc-
tions, based on certain logical tests or conditions. They may also repeat segments of their opera-
tion, either for some predetermined number of times, or indeterminately, based on changing
conditions. Python conforms to this model, and operates using the following scheme of levels:

 1. Everything in Python programs, or scripts, is composed of modular components.

 2. These modular components contain syntactically correct Python statements.

 3. These statements contain expressions.

 4. The expressions create and manipulate objects.

16.1.6 Running Python

The following subsection illustrates the three ways that we use to run Python.

16.1.6.1 Way 1 (Interactive Mode)
In a console or terminal window, you type python. The program executes, and you are
presented with the Python command prompt, >>>. Then, you type single or multiple lines
of Python code on the Python command line, and see the results immediately. A good rea-
son to use this mode is that you can test small fragments of Python code one line at a time
this way directly in the interpreter. A simple example of this would be as follows:

Example 16.0.a

>>>print "How about some more?"
How about some more?
>>>

594 ◾ UNIX: The Textbook, Third Edition

To submit a line of Python code to its interpreter, at the end of the line, press
<Enter> on the keyboard.

16.1.6.2 Way 2 (Script Mode)
You use a text editor of your choice to create and save multiple properly formatted Python
commands in a file, called a script file, perhaps named first.py, in the current working
directory in which you are executing Python. Then, you run Python with the python
command and first.py as the command argument. A good reason to use this mode is
if you have scripts with more than a few lines of code in them, and you do not want to type
that code in every time you want to run it. A simple example of this would be as follows
(the % is the C shell command prompt):

Example 16.0.b

%python first.py

where first.py is a file full of syntactically correct Python commands in the current
working directory, and the Python program is in the path of execution of programs
in your UNIX environment.

This method of executing the Python code is sometimes called running it as a
user-written library module.

If the commands in first.py do not contain any output directed to the screen, such
as using print statements, the shell prompt will immediately reappear, and you will
not be in the Python interpreter when the script file terminates!

16.1.6.3 Way 3 (Import Script Mode)
Similarly to Way 2, you use a text editor of your choice to create and save multiple Python
commands in a script file, perhaps named first.py, in the current working directory in
which you are executing Python. Then, you run Python, and at the Python command
prompt you bring the script file into Python with the import command. A good reason
to use this mode is if your script files contain function definitions. A simple example of this
would be as follows:

Example 16.0.c

>>>import first
>>>

where first is the file without the .py extension. It should contain Python commands
and be in the current working directory. Now, the objects, statements, expressions,
and modules (like Python functions) in first.py are available to you in the Python
interpreter. A good reason to use this mode is to bring those structures and functions
into the current interactive Python session.

Python    ◾    595

Caution: Once you leave Python by holding down the <Ctrl> and D keys on the
keyboard, the current interactive session is ended, and the environment you have
created in Python is lost.

16.1.7 Uses of Python

Python can accomplish several kinds of programming tasks, which might be broken down
into the following sample categories:

Shell scripting
Systems programming
Network and Internet scripting
Database programming
Systems administration scripting
Graphical user interface (GUI) scripting
Scientific and math programming
Data mining

In this chapter, we use all three modes of running Python shown, and we give a begin-
ners’ introduction to the Python language. We also follow the model of level schemes
shown, going roughly from the bottom of the scheme to the top. The remainder of this
chapter can be divided into three parts:

Section 16.2 shows you how to install Python.
Section 16.3 gives the basic syntax of Python within that model scheme.
Section 16.4 gives a few simple, worked examples of some of the practical pro-

gramming task categories for which you can use Python in UNIX.

We use Python 2.7.9, a more established and universal Python release at the time of the
writing of this book, that comes bundled with and is automatically installed on our base
UNIX system, PC-BSD. An advantage of running Python 2.X is that there are many exist-
ing libraries of Python 2.X programs and modules that you can incorporate into your own
programs. Where necessary, we will note the differences between Python Release 2.X and
Python Release 3.X, which for the beginning programmer are not difficult to overcome.

16.2 HOW TO INSTALL PYTHON ON A PC-BSD AND SOLARIS SYSTEM
Both PC-BSD and Solaris come with some version of Python already installed and usable
by a normal user. But, you may need to install Python on your system if you are doing the
install of some other UNIX operating system and it does not include Python, or if you
want to install a later version of the software alongside or to replace the version your system
already has on it. There are four possible paths through this section. Be aware that because
of variations in the way your system has been installed by the system administrator, and
exactly what version of UNIX you have installed, the four-step installation procedure in
the next section may have to be done by a system administrator for you! A good example of

596 ◾ UNIX: The Textbook, Third Edition

a similar situation would be that you do not have a C compiler available in /usr/bin, or you
want to upgrade to the latest gcc compiler and do not know how to do that with or without
a package manager!

16.2.1 Installing Python on PC-BSD

The easiest way of knowing whether or not Python version 2.7.X is already installed on the
computer you are using is to simply type python and press <Enter> at the shell prompt
in a console or terminal window. When we do this on our PC-BSD system we obtain the
following:

[bob@pcbsd-6064] ~% python
Python 2.7.9 (default, Feb 12 2014, 19:30:28)
[GCC 4.2.1 Compatible FreeBSD Clang 3.3 (tags/RELEASE_33/final
183502)] on freebsd10
Type "help", "copyright", "credits" or "license" for more
information.
>>>

The three greater-than symbols (>>>) are the Python interpreter prompt, letting you
know you are in Python!

To exit to the command line prompt in the terminal window, press <Ctrl-D> after
the >>>.

The first line of response from the system shows that Python 2.7.9 is running on this
system.

If you get an error message on the command line in the terminal window, such as com-
mand not found, either Python has not been installed on your system, or you do not
have access to it. You would need to then contact your system administrator to install the
program or give you privileges to execute it.

Every program in this chapter can be done in Python 2.7.9, but if you want to run the
examples in Section 16.4.4, you must obtain Python 2.7.9 (or the latest release of version 2.7
at the time you are reading this) and install it on your system.

The easiest way of installing Python on a PC-BSD system is to use the command pkg
install python as superuser, and follow the prompts the pkg program provides.
For example, if you want to install Python 2.7.X or Python 3.X, type pkg install
python27 or pkg install python3. If you do install Python 3.X, to run it on the
command line type python3.4.

16.2.2 Installing Python on Solaris

For Solaris, you can upgrade the release of Python that comes preinstalled with the system
by using the IPS package manager. If you have the default Gnome desktop running under
Solaris, there is a graphical version of the IPS package manager that we recommend you use
to download and install the latest release of Python 2.7.X. See Figure 16.22 at the end of this
chapter for an illustration of the graphical IPS package manager as it appears in Solaris. We
do not provide installation instructions to use the IPS package manager graphically in this

Python    ◾    597

chapter, but in Chapter 23, “UNIX System Administration Fundamentals,” we do go over
the details of using the command line, text-based version of the IPS package manager for
Solaris to install packages.

16.3 BASIC SETUP AND SYNTAX, AND GETTING HELP
To use Python in practical examples, as shown in later sections of this chapter, it is first
necessary to become familiar with the syntax of the language; for example, how it is used as
a calculator to execute single lines of Python code to accomplish short, meaningful tasks.

If you need help on a particular module, keyword, or topic in Python, you can always
type in the function call to help as follows to get into the help system:

>>>help ()
Welcome to Python 2.7! This is the online help utility.
If this is your first time using Python, you should definitely
check out
the tutorial on the Internet at http://docs.python.org/tutorial/.
Enter the name of any module, keyword, or topic to get help on
writing
Python programs and using Python modules. To quit this help
utility and
return to the interpreter, just type "quit".
To get a list of available modules, keywords, or topics, type
"modules",
"keywords", or "topics". Each module also comes with a one-line
summary
of what it does; to list the modules whose summaries contain a
given word
such as "spam", type "modules spam".
help>

16.3.1 Printing Text, Comments, Numbers, Grouping Operators, and Expressions

One of the first things you must know about how a calculator works is how to enter
numbers and mathematical expressions on the calculator. Instead of listing all the syn-
tactic rules, we will do a number of examples to illustrate and have you work with those
rules.

Here are a few important considerations you need to be aware of before you enter any
Python code on the Python command line or into a file.

 1. The rule of four: The indentation spaces that you place on each line of Python code
are very important! Since Python is a structured programming language that uses
specific structures in blocks, those blocks are delimited or defined by the indenta-
tion you give them on each line (unlike in other languages that use specific printing
characters to delimit blocks). This means you must line up your blocks of Python
structures vertically, starting from the left-hand side, and for our purposes, use four

598 ◾ UNIX: The Textbook, Third Edition

spaces for each indented block. For example, the following sample shows this four-
space indentation constraint:

Block 1 head
 xxxxxxxxx
 xxxxxxxxx
 Block 2 head
 xxxxxxxxx
 xxxxxxxxx
 Block 3 head
 xxxxxxxxx
 xxxxxxxxx
 end of Block 3
 end of Block 2
end of Block 1

 where Blocks 1, 2, 3 and so on and their statements xxxxxxxxx line up vertically
with an indentation of four spaces for each block from left to right. This is shown in
more detail next.

 2. Normal order and applicative order evaluation: The order of execution of a math-
ematical expression used by Python is PEMDAS: parentheses, exponents, multiplica-
tion, division, addition, and subtraction. See Table 16.2 for an even more detailed of
operator precedence in Python expressions.

TABLE 16.2 Python Order of Evaluations

Operator Description

() Parentheses (grouping)
f(args...) Function call
x[index:index] Slicing
x[index] Subscription
x.attribute Attribute reference
** Exponentiation
~x Bitwise not
+x, -x Positive, negative
*, /, % Multiplication, division, remainder
+, - Addition, subtraction
<<, >> Bitwise shifts
& Bitwise AND
^ Bitwise XOR
| Bitwise OR
in, not in, is, is not,
<, <=, >, >=, <>, !=, ==

Comparisons, membership, identity

not x Boolean NOT
and Boolean AND
or Boolean OR
lambda Lambda expression

Python    ◾    599

The first thing we want Python to do is to print, or echo, a line of text we type at the
keyboard. This is done by typing the following at the Python 2.7 command prompt:

>>>print "This is the number of fingers I am holding up:"
This is the number of fingers I am holding up:

In Python 3.X, the print statement turned into a function, so the syntax for the previous
example in Python 3.X would be:

>>>print("This is the number of fingers I am holding up:")
This is the number of fingers I am holding up:

To add comments to a script file of Python commands, you place the pound sign(#)
before everything on the line you want commented. For example, in interactive mode:

>>> # This is a comment, which you can use to annotate your script
file code.
…
>>> # Anything after the # is ignored by python.
…
>>>print "You could have comments appear like this:" # and the
comment after is ignored.
You could have comments appear like this:
>>> # You can also use the pound sign to comment out a piece of
code:
…
>>> # print "This won't run."
…
>>> print "This will run."
This will run.
>>>

In this interactive session, just press <Enter> on the Python command line when the …
appears.

Quotation marks are used for string literals. To include a single quotation mark in a
string literal, enclose it inside of double quotation marks. For example:

>>> '"Don\'t," he said.'
'"Don\'t," he said.'
>>> print('"Don\'t," he said.')
"Don't," he said.
>>> s = 'First place.\nSecond place.' # \n means newline
>>> s # without print(),
\n is included in the output
'First line.\nSecond line.'

600 ◾ UNIX: The Textbook, Third Edition

>>> print(s) # with print(), \n
produces a new line
First place.
Second place.

Triple quotation marks are used to enclose long lines of string literals.
Next, we want to combine some text with an arithmetic expression that Python evaluates

for us:

>>> print "Not Ring Fingers", 7 − (1 + 1)
Not Ring Fingers 5

Notice that in evaluating the mathematical expression, Python evaluates what is in
parentheses first by doing the addition of 1 + 1, then, from left to right, subtracts 2 from 7.

EXERCISE 16.1

Have Python evaluate the following expressions, and list what Python prints:

 1. ((7 + 5) * (3 + 2))/(6/18)

 2. How can you change the previous expression so that it yields a numeric answer, and
why?

 3. 3 + 2 + 1 – 5 + 4 % 2 – 1 / 4 + 6

 4. What kind of operator is the percent sign (%)?

We can also use relational operators in arithmetic expressions, such as less than (<),
greater than (>), greater than or equal to (>=), and less than or equal to (<=).

For example:

>>> print "Is it true that 3 + 1 < 5 - 7?"
Is it true that 3 + 1 < 5 - 7?
>>> print 3 + 1 < 5 - 7
False
>>> print "Is it greater?", 4 > -2
Is it greater? True
>>> print "Is it greater or equal?", 4 >= -2
Is it greater or equal? True
>>> print "Is it less or equal?", 4 <= -2
Is it less or equal? False

EXERCISE 16.2

 1. What ar e the results of typing in the following Python statements, and why?

>>> 5 + 7>= 6 <= 78 – 9
>>> 5 + 7>= 6 >= 78 – 9

Python    ◾    601

>>> (5 + 7>= 6 >= 78 – 9)/8
>>> (5 + 7>= 6 >= 78 – 9)/–8

16.3.2 Variables

An important feature of a high-level programming language like Python is providing for
names that allow you to refer to computational objects. The name represents, or stands for
in any particular computational environment of interest, the value or values which the
object can take on; thus it is called a ‘variable’.

Python variable names can contain both letters, numbers, and the underscore (_)
character, but must begin with a letter. If you get an error message about the use of a vari-
able name, it may be a reserved word, or keyword, in Python. Table 16.3 lists the 31 key-
words that may not be used as variable names in a Python statement.

In Python 3.X, exec is no longer a keyword, but nonlocal is.
In the following simple example, we define some variables, and use them:

>>> pie = 3.14159
>>> radius = 10
>>> pie * (radius * radius)
314.159 >>> circumference = 2 * pie * radius
>>> circumference
62.8318

16.3.3 Functions

Python provides a programming construct called a function that allows you to define your
own named procedures and lets you reuse those procedures in a modular fashion in your
code. You can think of a function as a black box machine that takes named objects present
before the function call or invocation as inputs, processes them inside the black box with
names that are only seen inside the black box, and then spits them out as named objects
available to the Python program via an assignment statement.

The general form of a function definition is:

def name (formal parameters):
 body of the function
 return (returned parameters)

TABLE 16.3 Python 2.7.X Keywords
and del from not while
as elif global or with
assert else if pass yield
break except import print
class exec in raise
continue finally is return
def for lambda try

602 ◾ UNIX: The Textbook, Third Edition

where name is the name you give the function (make sure you are not using a Python
keyword!), “formal parameters” are the named objects that are passed to the function so it
can carry out some operations on them and, optionally, “returned parameters” are named
objects that are used by your program.

There are three basic ways you can execute a function:

 1. Use Way 1 (Interactive mode), and by typing or copying and pasting each line of
code that is the function definition into the interpreter at the Python command line
prompt.

 2. Use Way 2 (Script mode), and create the function definition in a file with a .py exten-
sion. Then run Python at the shell prompt with the name of the function definition
file plus extension as an argument to the Python command.

 3. Use Way 3 (Import script mode), and by importing a file (sometimes called a module),
which you have created with a text editor and which contains the function definition,
into the current session of Python. You can then use the function definitions and
named objects in that file.

A simple example of the first way to use a function definition in Python is as follows.
Type the following seven lines of Python code at the Python command prompt. The
ellipses (…) are another form or the Python prompt, requesting more command line entry.
Remember to indent the lines shown, and press <Enter> on the keyboard after each).

>>> w = 7
>>> x = 12
>>> def add(a, b):
… c = a + b
… return (c)
…
>>> z = add(w, x)
>>> z
19
>>>

From this example, we can call w and x the actual parameters passed to the function
definition, a and b the formal parameters used in the body of the function definition, and
c a returned parameter. Notice that, for the returned parameter to be used in the remain-
der of your Python session after the function definition, you must assign a named variable
on the left-hand side of the equals sign to the function call or invocation on the right-hand
side of the equals sign.

A simple example of using Way 3 (Import script mode) to bring a function definition
into Python is as follows:

Use the text editor of your choice to create the following file, named math1.py, in the
current working directory you are executing Python in:

Python    ◾    603

Example 16.1

def add(a, b):
 c = a + b
 return(c)
def subtract(a, b):
 c = b - a
 return(c)
def multiply(a, b):
 c = a * b
 return(c)
def divide(a, b):
 c = a / b
 return(c)

Then, at the Python command line, type the following three lines of Python code:

>>> import math1
>>> z = math1.add(3, 4)
>>> z
7
>>>

The first line you typed in at the Python command line made the named objects
in the math1.py module available in the current session of Python. The second line
allowed you to address the add function from that module as math1.add. The
assignment statement on the second line also allowed you to add 3 and 4 together and
assign the returned value to a variable named z. We will cover more about Python
modules, and global and local scopes in functions, in Section 16.3.16.

16.3.4 Conditional Execution

As mentioned in Section 16.1, the order in which computer programs execute includes a
“branching”, or conditional execution structure. Python uses the truth value of test condi-
tions to determine whether certain blocks of code will be executed or not. This is imple-
mented in Python with the if statement. The general form of the if statement construct is

if cond1 is true:
 initial statement(s)
elif cond2 is true:
 additional statement(s)
else:
 final statement(s)

where:
cond1 is a test condition whose truth value determines whether the initial statement(s)

block gets executed

604 ◾ UNIX: The Textbook, Third Edition

cond2 is a test condition whose truth value determines whether the additional
statement(s) block gets executed

else is the default which executes final statement(s)

A simple example of the use of this structure using Way 1 (Interactive mode) in Python
is as follows (remember to press <Enter> on the keyboard after each line you type in).

Example 16.2

>>> x = 1
>>> if x == 0: # the == is a logical, or Boolean operator
 print "x equal 0"
 elif x == 1: #one or more of these optional blocks are
 # allowed
 print "x equal 1"
 else: #optional block
 print "x is something else"
x equal 1
>>>

EXERCISE 16.3

 1. If you leave out the elif block in Example 16.2, what prints out?

 2. If you change the first line to read x = 3, and leave out the else line in Example 16.2,
what prints out?

 3. If you change the first line to read x = 1.8 in Example 16.2, what prints out?

It is also possible to nest conditional execution blocks inside of one another. For example:

Example 16.3

>>> w = 36
>>> y = 13
>>> z = 20
>>> if w < 37:
... print "w is less than 37"
... if y > 13:
... print "y is greater than 13"
... elif y == 13:
... print "y is equal to 13"
... else:
... print "y is less than 13"
... if z > 21:
... print "z is greater than 21"
... elif z == 21:

Python    ◾    605

... print "z is equal to 21"

... else:

... print "z is less than 21"

... else:

... print "w is greater than or equal to 37"

...
w is less than 37
y is equal to 13
z is less than 21
>>>

16.3.5 Determinate and Indeterminate Repetition Structures and Recursion

Python can repeat segments of program or script file structure in two basic ways: via deter-
minate repetition structures or indeterminate repetition structures. Traditionally, a deter-
minate repetition structure is called counting repetition, and an indeterminate repetition
structure is called logical repetition. These two methods are implemented with the for
procedural statement and the while procedural statement. Generally, if you know ahead
of time (at the time you are writing the code) how many repetitions of a block of code
you want to execute, you use the for statement, and if you do not (when, for example,
you allow the user to input the number of repetitions as the script file is run), you use the
while statement.

Of course, it is possible to implement the same two ways of repetition by not using a spe-
cific structured programming approach; for example, by using conditional execution and
unstructured switching to obtain the same results. But, we choose to show the structured
approach in Python.

Make sure that in the body of statements included in the indeterminate repetition
block that while is executing, the test condition for continued execution becomes false.
Otherwise, this will result in infinite repetition! To halt infinite repetition in an executing
script file, hold down the <Ctrl> and C keys on the keyboard.

Proceeding from Guido van Rossum’s definition of Pythonic in the Python language
reference, a common technique in Python is to loop over all elements of an iterable object
using a for statement. Many other languages do not have this type of construct, so people
unfamiliar with Python sometimes use a numerical counter instead:

>>>for i in range(len(money)):
... print money[i]

The Pythonic way is:

>>>for bills in money:
... print bills

The Pythonic way can be characterized as iteration, whereas the traditional language
construct can be characterized as counting.

606 ◾ UNIX: The Textbook, Third Edition

The for structure can repeat a block of operations on any iterable sequence, such as
strings, lists, tuples, or user-defined iterable objects in classes.

The general form of the for statement structure is:

for a certain number of times
 repeat these statements

The while structure can repeat a block of operations as long as a test condition is true.
The general form of the while statement structure is:

while a certain condition is true
 repeat these statements

An object, K, is iterable if it can be successfully run with the following code. This code
also shows that a counting form of iteration such as the traditional for loop structure can
be implemented with a while structure (be careful of indentation, and press <Enter>
after the last ellipsis […]):

>>>K = [22,33,44,55] #Lists are iterable.
>>>c = K.__iter__() #c is the counter
>>>while 1: #execute while true
... try:
... item = c.next() #get the next one
... print item # Do some operations on each item

as you count through it
... except StopIteration: #Nothing left
... break
...

22
33
44
55
>>>

Following are two simple examples of both forms of repetition. We use Way 2 (Script
mode) to run them:

Save the following three lines of Python in a file named for1.py in the current working
directory (notice that the keywords in the Python script file are in bold type):

Example 16.4

limit = [1, 2, 3, 4, 5]
for number in limit:
 print "number of repeats %d" % number

Python    ◾    607

Then execute Python on your shell command line with the command python
for1.py. Your output should be:

number of repeats 1
number of repeats 2
number of repeats 3
number of repeats 4
number of repeats 5

Save the following seven lines of Python in a file named while1.py in the current
working directory. (Notice that the keywords in the Python script file are shown in
bold type.)

Example 16.5

s= int(raw_input("Enter an Integer"))
i = 0
numbers = []
while i < s:
 numbers.append(i)
 i = i + 1
 print "numbers now: ", numbers

Then execute Python on your shell command line with the command python
while1.py. When prompted for an integer, type in 6 and then press <Enter> on
the keyboard. Your output should be

numbers now: [0]
numbers now: [0, 1]
numbers now: [0, 1, 2]
numbers now: [0, 1, 2, 3]
numbers now: [0, 1, 2, 3, 4]
numbers now: [0, 1, 2, 3, 4, 5]

Try this same script file using different input integers each time you run it to con-
firm that indeterminate repetition is happening.

Another interesting indeterminate repetition method that Python can implement
is known as recursion. Basically, recursion is the repetition of a body of calculations
to accumulate intermediate results, until some basic state is reached, and at that point
the calculations yield the final results. The following is an example of a recursive pro-
cess that calculates the factorial of an integer, implemented in Python as a function
that calls, or invokes, itself an indeterminate number of times (the Python keywords

608 ◾ UNIX: The Textbook, Third Edition

are shown in bold type, and we are using Way 3 [Import script mode] to execute the
script):

Example 16.6

def factR(n):
 if n == 1:
 return n
 else:
 return n*factR(n – 1)

If you create this function definition in a file named FactR.py in the current work-
ing directory in which you are executing Python, then typing the following into the
Python interpreter will yield the factorial of the input argument:

>>> import FactR
>>> FactR.factR(7)
5040
>>>

EXERCISE 16.4

 1. What error message do you get if you supply a real number, such as 9.76, when you
run the code of Example 16.6? Why do you get this error message?

 2. How can you find the factorial of a real number in Python? Such as from 1.?

16.3.6 File Input and Output

If you look back to the beginning of this chapter, at the programming tasks that Python is
capable of in a UNIX environment (such as systems programming, network and Internet
scripting, database programming, systems administration scripting, GUI scripting, scientific
statistical math programming, and data mining), the common thread which runs through
all of those tasks is the ability to interface with the UNIX system via utilities that work with
UNIX files. For example, you may be programming a statistical analysis script in Python that
perhaps has its data generated from some other program or utility stored in a file somewhere
in the file structure of your system. These files can be either text (and in the case of Python 3.X,
Unicode text), or binary, raw 8-bit bytes. Probably the most significant differences between
Python 2.X and Python 3.X lies in the area of text representation and processing!

The general form of a file operation is

name = open(filename, mode)
name.method(argument(s))
name.close()

where:
name is a file object name in the current procedure
open is the keyword that opens Python’s connection to an external file

Python    ◾    609

filename is the name of the external file, which may include directory paths, and
so on

mode is a method of accessing the file, like reading from it, or writing to it
method is one of several operations that can be performed on the open external file
argument(s) are one or more qualifiers on the operation specified in method
close is the termination of connection to the external file

The mode can be r, w, or a, for reading (the default, meaning you do not need to specify
this to open with read), writing, or appending to the file, respectively. The file will be cre-
ated if it does not exist, and opened for writing or appending. It will be truncated when
opened for writing. Add b to the mode for binary files. Add + to the mode to allow simul-
taneous reading and writing.

The preferred way to open a file is with the built-in open() function. Add U to the mode
to open the file for input with universal newline support.

In the following examples, we illustrate some simple operations on files, such as how to
open, write/read from, and close files.

In the first example, we input a string of text into a named file. Run Python and type the
following three lines of code into the interpreter:

Example 16.7

>>> file = open('sometext', 'w')
>>> file.write('This is a line of text.')
>>> file.close()
>>>

Then, when you are in the same working directory in which you are executing
Python, type the following line at the UNIX shell prompt (shown as %):

% more sometext
This is a line of text.
%

In the next example, we input some integer data into an external file using your
favorite text editor, and then do some Python operations on that data. Run your
favorite text editor and into a file you name somedata.txt, type the following four
integers (one integer per line):

23
33
43
54

Then, run Python and execute the following lines of code. The variable named x1
is a list, which we will discuss in more detail in Section 16.3.7. So, the list element

610 ◾ UNIX: The Textbook, Third Edition

x1[0] is the first element of the list that has been read from the first line in the exter-
nal file. The float and int functions convert the text strings in the file to integers
and real numbers:

Example 16.8

>>> file = open('somedata.txt') #the default mode is reading
>>> x1 = file.readlines()
>>> x1
['23\n', '33\n', '43\n', '54\n']
>>> s = float(x1[0])
>>> s
23.0
>>> r = int(x1[0])
>>> r
23
>>> s + r
46.0
>>> file.close()
>>>

We can also write list elements, such as numbers, to an external file. For example, the
following Python code uses the write method to place three lists into a file named listw.txt:

Example 16.9

>>> L = [1, 2, 3]
>>> M = [4, 5, 6]
>>> N = [7, 8, 9]
>>> F = open('listw.txt','w')
>>> F.write(str(L) + 'n')
>>> F.write(str(M) + 'n')
>>> F.write(str(N) + 'n')
>>> F.close()
>>>

On the shell commend line, view the contents of listw.txt:
%more listw.txt
[1, 2, 3]
[4, 5, 6]
[7, 8, 9]
%

EXERCISE 16.5

 1. What commands do you use to add the first three elements of the list x1 of
Example 16.8, and print that sum?

Python    ◾    611

 2. What are the \n characters shown on line 4 of Example 16.8?

 3. What happens if you edit the file somedata.txt, and enter the numbers 23, 33, 43,
and 54 on a single line in your text editor instead of on four different lines, save the
file, and try to perform the same action in Example 16.8 in Python on the new file
somedata.txt?

 4. After you close the file, can you still access the values 43 and 54 in any way?

 5. How would you specify the third element of the list x1?

16.3.7 Lists and the List Function

On the lowest level of the organizational scheme for Python, the list is an object that can
contain multiple elements of possibly different types. Just like a shopping list can contain
different kinds of things from a store, such as food, household goods, automotive supplies,
and so on, a Python list can be made up of different types of elements, like integers, real
numbers, strings, and so on; in fact, any type of Python object. For example:

>>>A = [34, 'Bob', 54.76, [4,7,9]]

is an expression that assigns the integer 34, the string “Bob”, the real number 54.76, and
another list comprised of the numbers 4, 7, and 9 to a variable named A. List indices are
integers, starting with 0. So, the following statements in Python yield the results:

>>>A[2]
54.76
>>>A[0]
34
>>>A[3][2]
9

A 2 × 2 matrix (or array) can be specified as:

B = [[x, x],[y, y]]

Here is Python code to create a 3 × 3 matrix (or array) named x of random numbers,
using the list function that works on objects (please notice that your results will differ from
the output shown here, since the numbers shown in the example are randomly generated):

Example 16.10

>>> import random # random is a function from the Standard
Library
>>> x = list(list (random.random() for i in range(3)) for j in
range(3))
>>> x

612 ◾ UNIX: The Textbook, Third Edition

[[0.1455440585876967, 0.7525092872509719,
0.30168961326498955], [0.6967960669374997, 0.8715621457012694,
0.24960628313623423], [0.891389814359208, 0.9591605275600708,
0.5240885874508074]]
>>>

16.3.8 Strings, String Formatting Conversions, and Sequence Operations
16.3.8.1 Strings
Strings are a class of objects in Python that can represent text, and are basically seen in
their single-quoted and double-quoted form, which are interchangeable. For example:

>>> 'program', "program's"
('program',"program's")
>>>

To format strings in an expression, you can use the % binary operator to format values
as strings according to a specific format definition. On a line of code, on the left of the %
operator, put in a format string that has one or more code types. On the right of the % sign,
put in objects you want to substitute in for the types.

The operator (s % k) produces a formatted string, given a format string s and a collec-
tion of objects in a tuple or mapping object (dictionary).The string s may be a standard
or Unicode string. The format string contains two types of objects: ordinary characters
(which are left unmodified) and conversion specifiers, each of which is replaced with a
formatted string representing an element of the associated tuple or mapping.

If k is a tuple, the number of conversion specifiers must exactly match the number of
objects in k. If k is a mapping, each conversion specifier must be associated with a valid
key name in the mapping, using parentheses. Each conversion specifier starts with the %
character and ends with one of the conversion characters shown in Table 16.4.

TABLE 16.4 String Formatting Conversions

Character Output Format

d, I Decimal integer or long integer
u Unsigned integer or long integer
o Octal integer or long integer
x Hexadecimal integer or long integer
X Hexadecimal integer (uppercase letters)
f Floating point as [−]m.dddddd
e Floating point as [−]m.dddddde±xx
E Floating point as [−]m.ddddddE±xx
g, G Use %e or %E for exponents less than −4 or greater than the precision
s String or any object. The formatting code uses str() to generate strings
r Produces the same string as produced by repr()
c Single character
% Literal %

Python    ◾    613

The following example allows you to perform some basic operations on strings, such
as concatenating them (adding their characters together), embedding escape sequences in
them (to include special characters), finding their lengths (an integer representing their
length), or slicing them (extracting smaller substring parts of them).

Example 16.11

>>> a = 'programming'
>>> b = 'programmer\n'
>>> c = 'programs'
>>> print (a + ' ' + b + c)
programming programmer
programs
>>> len(a+b+c) #len is the length operator
30
>>> d = a[0:3] + b[3:7] + c[7] #b[3:7] is gram
>>> d
'programs'
>>> b[3:]
'grammer\n'
>>> print b[3:]
grammer
>>> q = c[:]
>>> q
'programs'
>>>

16.3.8.2 Sequence Operations
Three important and useful operations you can perform on sequence types of objects are
indexing, slicing, and extended slicing. Objects such as strings and tuples are immutable and
cannot be modified after creation. But, lists can be modified with the following operators
(Table 16.5).

The following section describes and gives examples of some sequence operations on
mutable objects.

TABLE 16.5 Indexing, Slicing, and Extended Slicing
Operations

Operation Description

s[n] Returns nth element of s
s[i] = x Index assignment
s[i:j] = r Slice assignment
s[i:j:stride] = r Extended slice assignment
del s[i] Deletes an element
del s[i:j] Deletes a slice
del s[i:j:stride] Deletes an extended slice

614 ◾ UNIX: The Textbook, Third Edition

Indexing into the sequence:

Gets components using offsets, where the first element indexed is at zero (0) offset.

Negative indices count backward from the end, where the last element is at offset –1.

s[0] gets the first element, s[1] gets the second element, and so on.

s[–2] gets the second from last element.

Slicing the sequence:

Extracts contiguous sections of a sequence, from i to j-i.

Slice boundaries i and j default to 0 and sequence length len(s).

s[1:4] retrieves elements from offset 1–3.

s[1:] retrieves from offset 1 until the end of the sequence object.

s[:−1] retrieves from offset 0 to the next to last element.

s[:] makes a copy of the sequence object.

Extended slicing of the sequence:
The third element is a stride, which defaults to 1, added to the offset of each element

extracted.

s[::2] is every other item in the sequence.

s[::–1] is the reverse of the sequence.

s[4:1:–1]retrieves from offset 4, up to but not including 1, in reverse.

Slice assignments:

On mutable objects, deleting elements of the sequence and then reinserting new ones.

Iterable objects assigned to slices s[i:j] do not have to be the same size.

Iterable objects assigned to extended slices s[i:j:k] must match in size.

Here are several interactive code examples of sequence object operations on a list of
integers:

>>>m = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
>>>n = m[::2]
>>>m
[2, 6, 10, 14, 18]
>>>p = m[::-2]
>>>p

Python    ◾    615

[20, 16, 12, 8, 4]
>>>q = m[0:5:2]
>>>q
[2, 6, 10]
>>>r = m[5:0:-2]
>>>r
[12, 8, 4]
>>>s = m[:5:1]
>>>s
[2, 4, 6, 8, 10]
>>>t = m[:5:-1]
>>>t
[20, 18, 16, 14]
>>>u = m[6::1]
>>>u
[14, 16, 18, 20]
>>>v = m[5::-1]
>>>v
[12, 10, 8, 6, 4, 2]
>>>w = m[5:0:-1]
>>>w
[12, 10, 8, 6, 4]
>>>

Here are interactive code examples of some further uses of formatting expressions on
different objects.

Example 16.12

>>>x = 400
>>>y = 75.142783
>>>z = "master"
>>>d = {'x':13, 'y':1.54321, 'z':'unive'}
>>>q = 1234567812345678L
>>>print 'x is %d' % x
x is 400
>>>print '%10d %f' % (x,y)
400 75.142783
>>>print '%+010d %E' % (x,y)
+0000000400 7.514278E+01
>>>print '%(x)-10d %(y)0.3g' % d
13 1.54
>>>print '%0.4s %s' % (z, d['z'])
mast unive
>>>print '%*.*f' % (5,3,y)
75.143
>>>print 'q = %d' % q
q = 1234567812345678

616 ◾ UNIX: The Textbook, Third Edition

Here are more interactive code examples showing slicing operations on a list of
integers.

>>>x = [1,2,3,4,5]
>>>x[1] = 6
>>>x
[1,6,3,4,5]
>>>x[2:4] = [10,11]
>>>x
[1,6,10,11,5]
>>>x[3:4] = [-1,-2,-3]
>>>x
[1,6,10,-1,-2,-3,5]
>>>x[2:] = [0]
>>>x
[1, 6, 0]
>>>

A slicing assignment may be supplied with an optional stride argument. The argu-
ment on the right side of the assignment statement must have exactly the same num-
ber of elements as the slice that is being replaced. Here are a few interactive code
examples of this.

>>>y = [1, 2, 3, 4, 5]
>>>y[1::2] = [10, 11]
>>>y
[1, 10, 3, 11, 5]
>>>y[1::2] = [30, 40, 50]
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
ValueError: attempt to assign sequence of size 3 to extended
slice of size 2
>>>

EXERCISE 16.6

 1. Instead of printing the concatenated strings in line 4 of Example 16.11, what do you
get echoed to you on the Python command line if you just type a + b + c?

 2. The variable c has 12 characters in it. Why are there 30 characters returned for the
length of the concatenation of a, b, and c?

 3. What is the first index value used to extract substrings from a string?

 4. What is the last index value used to extract substrings from a string?

 5. What does the indexing operation [:] shown in Example 16.11 accomplish?

 6. What does a[1:3] return, and why?

Python    ◾    617

16.3.9 Tuples

Similar to the list object described in Section 16.3.7, the Python tuple is a simple object
that creates data structures using any other object type. Tuples support most of the same
operations as lists, such as indexing, slicing, and concatenation. But, you cannot modify
the contents of a tuple after creation, as you can with a list.

This is its most important feature as a sequence object used in data structures; that it
cannot be changed. The following example uses Way 2 (Script mode) to execute the code,
and shows the creation, querying, and manipulation of tuples in a database.

Example 16.13

With your favorite text editor, create the following file of six lines (named data.txt) in
the current working directory in which you run Python in:

Conditions,23,45.8
Methods,12,11.75
Objects,40,17.1
Modules,1023,1.4
Dictionaries,45,120.71
Comprehensions,5,234.75

Next, using your text editor again, create the following file (named searcher.py) in
the current working directory:

filename = "data.txt"
collection=[]
for line in open(filename):
 fields = line.split(",") #splits line by commas
 name = fields[0] #create the fields
 uses = int(fields[1])
 value = float(fields[2])
 card = (name,uses,value) #create the tuple
 collection.append(card)
print collection[0]
print collection[3][2]
sum = 0.0
for name, uses, value in collection:
 sum += uses / value
print sum

Then, at the shell prompt, type python searcher.py
You should see the following output on your screen:

('Conditions', 23, 45.8)
1.4
734.9710205576091
>>>

618 ◾ UNIX: The Textbook, Third Edition

16.3.10 Sets

Another elementary object type in Python is the set, which is an unordered collection
of objects that have no duplicate elements. The distinguishing feature of a set as an
unordered sequence is that you cannot address or index into the set using the index
operations on sequences we illustrated for lists and tuples. To create sets, and do some
operations on them, do the following example. (You can omit typing in the comments
shown!)

Example 16.14

>>> x = set([1.0, 2.0, 3.0, 4.0])
>>> x
set([1.0, 2.0, 3.0, 4.0])
>>> z = set([10,11,12,13,14])
>>> z
set([10, 11, 12, 13, 14])
>>> q = set("Hello")
>>> q
set(['H', 'e', 'l', 'o']) #no repeated elements
>>> a = z | q #union of z and q
>>> a
set(['e', 'H', 10, 11, 12, 13, 14, 'l', 'o']) #ordered

ascending
>>> r = set([9, 8, 7, 6])
>>> b = q | r
>>> b
set(['e', 6, 7, 8, 'H', 'l', 'o', 9]) #ordered ascending even

though r is descending!
>>> c = r | a
>>> c
set(['e', 6, 7, 8, 9, 10, 11, 12, 13, 14, 'l', 'o', 'H'])
>>> c = r & a #intersection of r and a
>>> c
set([]) #the empty set
>>> x.add(5.0) #add an element
>>> x
set([1.0, 2.0, 3.0, 4.0, 5.0])
>>> x.remove(4.0) #remove an element
>>> x
set([1.0, 2.0, 3.0, 5.0])
>>> x.update([6.0, 7.0, 8.0]) #add multiple elements
>>> x
set([1.0, 2.0, 3.0, 5.0, 6.0, 7.0, 8.0])
>>>

Python    ◾    619

EXERCISE 16.7

 1. In Example 16.14, why is c finally the empty set?

 2. What would the set x contain if you added three number 5.0’s with only one x.add
command? What would the set x contain if you added three number 5.0’s with the
x.update command?

 3. Can you use slice assignment statements to reassign new values to elements of a
tuple?

16.3.11 Dictionaries

A dictionary is a data structure or “container” that acts like a table of objects that
can be indexed into, or various parts of it can be addressed by, keys. The keys can be
strings or one of several other Python objects. The container is not a sequence object,
in the way that a list is. An example of dictionary creation that uses strings as keys is
as follows.

>>> function = {
... "name":"operator",
... "class" :"arithmetic",
... "number": 12
... }
>>> function
{'number': 12, 'name': 'operator', 'class': 'arithmetic'}
>>>

The keys are the strings “name”, “class”, and “number”, the field data are “oper-
ator”, “arithmetic”, and 12, and the curly braces are the syntax that allows you to
define the dictionary.

The order of how the keys and their field data is presented is not necessarily the same
order in which you defined them!

Here is a way of extracting a value from the table function we just created, and then
changing one of the data values in it:

>>> n = function.get("number")
>>> n
12
>>> function["class"]="logical"
>>> function
{'number': 12, 'name': 'operator', 'class': 'logical'}
>>>

Here is a way that lets you sort the keys in a for loop using the sorted function.
Python has two basic ways of sorting. The sorted function works to sort any iterable

620 ◾ UNIX: The Textbook, Third Edition

object, such as entries in a Python dictionary. The sort method is a list method that
works on Python lists (there is no need to type in the comments).

>>> K = {'x':1, 'y':2, 'z':3} #creates the dictionary
>>> K
{'y':2, 'x':1, 'z':3} #not a sequence, thus comes

back in any order
>>>for key in sorted(K):
... print key, '=', K[key] #press Enter twice here
...
x = 1
y = 2
z = 3
>>>

16.3.12 Generators

A Python functional technique of program execution that harnesses the advanced pro-
gramming methodologies of data flows, streams, and process pipelines, and preserves the
state of the generation of output as the function executes stepwise, is called a generator. A
generator produces a collection of output results only when a next method (or a next()
in Python 3.X) is called. The next method is executed by the Python yield statement.
When a large collection of data needs to be created on the fly, perhaps in single steps, at a
particular time during program execution, the generator function is invoked. The next
built-in function steps you through and generates the output. The following example shows
how to create and invoke a generator function (no need to type in the comments):

Example 16.15

>>> def generadd(Q):
... for i in range(Q):
... yield i #generates the next value
... i += 1
...
>>> for i in generadd(4): #whenever the function is called,

the values are generated
... print i
...
0
1
2
3
>>> z = generadd(6) #this passes 6 to generadd
>>> z #this will show you the compiled

generator object
<generator object generated at 0x284f60f4>
>>> next(z) #the next built-in steps you

through and generates the value

Python    ◾    621

0
>>> next(z)
1
>>> next(z)
2
>>> next(z)
3
>>> next(z)
4
>>> next(z)
5
>>> next(z)
Traceback(most recent call last):
 File "<stdin?", line 1. in <module>
StopIteration
>>>

The following example shows how to implement recursive generator functions in a file
named regen.py that you create with your favorite text editor. First, create the file regen.py
as shown, and then use Way3 (Import script mode) to do in-chapter Exercise 16.8:

Example 16.16

def abc():
 a = deff()
 for i in a:
 yield i
 yield 'abc'
def deff():
 a = ijk()
 for i in a:
 yield i
 yield 'deff'
def ijk():
 for i in (1, 2, 3):
 yield i
 yield 'ijk'

EXERCISE 16.8

 1. Give the exact Python code that would bring the three functions from
Example 16.16 into the Python interpreter, given that you must use Way 3 (Import
script mode).

 2. Give the exact Python code that would invoke the three functions from Example 16.16
on the Python command line.

622 ◾ UNIX: The Textbook, Third Edition

 3. Give the exact Python code that would allow you to step through the invocation of
the three functions from Example 16.16, to generate its output results until you reach
StopIteration. List the output generated at each step through the recursion.

16.3.13 Coroutines

In the previous section, we introduced generator functions, which use yield to give out-
put results. Python generator functions can also “consume” results using a yield state-
ment. In addition, two new methods applied to generator objects, send() and close(),
create a framework for objects that consume and give values. Generator functions that
define these objects are called coroutines. Coroutines consume values using a yield state-
ment on the right side of an expression, as follows.

value = (yield)

With this syntax, execution pauses at this statement until the object’s send method is
invoked with an argument:

coroutine.send(data)

Then, execution resumes, with value being assigned to the value of data. To signal the
end of a computation, we shut down a coroutine using the close() method. This raises
a GeneratorExit exception inside the coroutine, which we can catch with a try/
except clause.

The next example illustrates these concepts. It is a coroutine that prints strings that
match a provided template pattern:

Example 16.17

>>>def grepper(template):
... print ('Searching for ' + template)
... try:
... while True:
... x = (yield)
... if template in x:
... print x
... except GeneratorExit:
... print "Done"
...
>>> q = grepper("Pythonista")
>>> q.next()
Pythonista
>>> q.send("After doing this section, you will be known as a
Pythonista")
After doing this section, you will be known as a Pythonista
>>> q.send("Not a very Pythonic answer")

Python    ◾    623

>>> q.send("Python makes C look high maintenance and too
complex")
>>> q.close()
Done
>>>

When we call q.send a value, evaluation resumes inside the coroutine q at the statement
line = (yield), where the sent value is assigned to the variable line. Evaluation continues
inside q, printing out the line if it matches, going through the loop until it encounters the
line = (yield) again. Then, evaluation pauses inside q and resumes where q.send was called.

We can chain functions that send() and functions that yield together to achieve
complex behaviors, similar to streaming or pipelining, illustrated in earlier chapters in this
book on shell programming. In the next example, the function read splits a string named
text into words and sends each word to another coroutine.

Example 16.18

>>> def read(text, next_coroutine):
... for line in text.split():
... next_coroutine.send(line)
... next_coroutine.close()

Each word is sent to the coroutine bound to next _ coroutine, causing
next _ coroutine to start executing, and this function to pause and wait. It waits
until next _ coroutine pauses, at which point the function resumes by sending
the next word or exiting with Done.

If we join this function together in a pipeline with the function grepper defined
in Example 16.17, we can create a program that prints out only the words that match
a particular word.

>>> text = "0110 1100 0101 1000 1010 0111 1111 0001 0110"
>>> found = grepper('01')
>>> found.next()
Looking for 01
>>> read(text, found)
0110
0101
1010
0111
0001
0110
Done
>>>

The read function sends each word to the coroutine grepper, which prints out
any input that matches its template pattern. Within the grepper coroutine, the line

624 ◾ UNIX: The Textbook, Third Edition

x = (yield) waits for each word sent, and it transfers control back to read when it
is reached.

EXERCISE 16.9

 1. (a) Put the code from Example 16.17 into a file (if you have not done so already), and
using Way 3 (Import script mode), invoke the coroutine grepper on the template
“1201”.

 (b) Then search the following using that template: “0120 1201 1020”, “3012 3013
3212”, “12010203101213012”.

 (c) What prints out on your screen when you use the proper commands, similarly to
what is shown in the follow-up code to the function definition in Example 16.17?

 2. (a) Put the code from Example 16.18 in a file (if you have not done so already), and
using Way 3 (Import script mode), invoke the coroutine read on the string “Python
is the most Pythonic enterprise a Pythonista can practice”.

 (b) Then search for the string “Python” using the coroutines grepper and read.

 (c) What prints out on your screen when you use the proper commands, similarly to
what is shown in the follow-up code to the function definition in Example 16.18?

16.3.14 Objects and Classes

OOP is a programming model that represents concepts as objects that have fields (attributes
that describe the object) and associated procedures known as methods. Objects, which are
usually instances of classes, are used to interact with one another to design applications
and computer programs. Some examples of OOP languages are: Smalltalk, C++, C#, Java.
Perl, Ruby, PHP, and Python.

Some common terms used in OOP are as follows:

Class: A user-defined model for an object that defines characteristics of any object in
that class. The characteristics are data members (class variables and instance vari-
ables) and methods, accessed via dot notation.

Class variable: A variable that is shared by all instances of a class. Class variables are
defined within a class but outside any of the class’s methods.

Data member: A class variable or instance variable that holds data associated with a
class and its objects.

Instance variable: A variable that is defined inside a method and belongs only to the
current instance of a class.

Inheritance: The transfer of the characteristics of a class to other classes that are derived
from it.

Python    ◾    625

Instance: An individual object of a certain class. An object that belongs to a class
Circle, for example, is an instance of the class Circle.

Instantiation: The creation of an instance of a class.

Method: A special kind of function that is defined in a class definition.

Object: A unique instance of a data structure defined by its class. An object can com-
prise both data members (class variables and instance variables) and methods.

The general form of a class definition is:

class ClassName:
 'Optional class documentation string'
 class_suite

The class has a documentation string, which can be accessed via
ClassName. _ _ doc _ _ .

The class _ suite consists of all the component statements defining class members,
data attributes, and methods.

The following lines of interactive code very simply illustrate the inheritance model of
OOP classes and its hierarchic nature. Be sure to press <Enter> on the second line of
code. There is no need to type in the comment line numbers.

>>> class tab: pass #Line 1
... #Line 2
>>> tab.name = 'Mansoor Sarwar' #Line 3
>>> tab.age = 25 #Line 4
>>> print tab.name,tab.age #Line 5
Mansoor Sarwar 25
>>> x = tab() #Line 6
>>> y = tab() #Line 7
>>> x.name #Line 8
Mansoor Sarwar
>>> y.name = 'Alan Turing' #Line 9
>>> tab.name, x.name, y.name #Line 10
('Mansoor Sarwar', 'Mansoor Sarwar', 'Alan Turing')
>>>

A line-by-line analysis and description of this code is as follows.

Line 1: Starting with the keyword class, you name it tab. You use the keyword pass
to assign the class to an empty namespace object, that is, it has no class members,
attributes or methods yet. A class is an object!

Line 2: Continue by pressing <Enter>.

626 ◾ UNIX: The Textbook, Third Edition

Line 3: You now add an attribute called name to the class tab. The class tab has no
instances yet!

Line 4: You assign another attribute called age to the class tab.

Line 5: You print out the attributes of tab.

Line 6: You now assign an instance, named x, to the class tab, which is an empty
instance.

Line 7: You now assign another instance, named y, to the class tab, which is another
empty instance.

Line 8: The instance x inherits the attribute name from tab. You use the dot (.) opera-
tor to connect or refer to the instance x with name “Mansoor Sarwar” in the class
tab.

Line 9: You now explicitly assign the instance y, with an attribute name, the value “Alan
Turing”. You use the dot (.) operator to connect the instance y with name “Alan
Turing”.

Line 10: You print out the name in tab, the name referred to in x inherited from tab,
and the explicitly assigned name in y. Attribute references work through the mecha-
nisms of inheritance, and attribute assignments work on the objects to which the
assignment is done.

The following is a more involved example of creating a class, and then using some meth-
ods to manipulate the objects in that class. Type the following code into a file named first
class.py using your favorite text editor:

Example 16.19

#!/usr/local/bin/python
class Structure:
 'Common base class for all Python Structures'
 StrucCount = 0
 def __init__(s, name, number):
 s.name = name
 s.number= number
 Structure.StrucCount += 1

 def displayCount(s):
 print "Total Structures %d" % Structure.StrucCount
 def displayStructure(s):
 print "Name : ", s.name, ", Number : ", s.number

Then, at the UNIX shell prompt, run Python with the command python
firstclass.py

Python    ◾    627

On the Python command line, type the following (you can leave out the comments):

>>> import firstclass
>>> Stru1 = firstclass.Structure("Arithmetic Operators", 17)
#creates the first object
>>> Stru2 = firstclass.Structure("Logical Operators", 10)
#creates the second object
>>> Stru1.displayStructure() #displays the first object
Name : Arithmetic Operators,, Number : 17
>>> Stru2.displayStructure() #displays the second object
Name : Logical Operators,, Number : 10
>>> print "Total Structures %d" % firstclass.Structure.
StrucCount #prints the total
Total Structures 2
>>> Stru1.inst = 7 #creates a new attribute of Stru1
>>> hasattr(Stru1, 'inst') #checks object for attribute
True
>>> getattr(Stru1, 'inst') #gets the value of the attribute
7
>>> getattr(Stru1, 'name') #gets the value of the attribute
'Arithmetic Operators'

There are three things to notice about this example.

 1. The variable StrucCount is a class variable whose value is shared among all
instances of this class. This variable can be accessed as Structure.StrucCount
from inside the class or as firstclass.Structure.StrucCount outside the
class.

 2. The first class method, _ _ init _ _ (), is a special method, which is called a class
constructor or initialization method. Python calls this method when you create a new
instance of this class.

 3. You declare other class methods like normal Python functions, with the exception
that the first argument to each method is s. Python adds the s argument to the list
for you; you do not need to include it when you call the methods.

16.3.15 Exceptions

Before we begin our discussion of Python exceptions, it is worth noting that there are
facilities that can help you to debug your program 1) before you even submit it to the inter-
preter, and 2) during the execution of the program. Usually these facilities are a part of a
UNIX Python integrated development environment (IDE), which we have not been using
in this chapter to keep our Python tutorial here as plain and universal with respect to our
base UNIX system (PC-BSD) as possible.

A good example of one of these facilities is automatic indentation, available in a Python
IDE editor. Another is an interactive step-by-step debugging tool such as PyDebug.

628 ◾ UNIX: The Textbook, Third Edition

With that said, an exception, or unexpected end to a program, is a Python object that
represents an error. To terminate the flow of execution of a program because of some excep-
tion the interpreter has found, Python has two kinds of exception-handling structure that
can end the program. These structures are

 1. Exception handling that uses for example try:…except:…else: as shown in
Example 16.15, and the standard exceptions—for example, StopIteration, as
shown in Example 16.13.

 2. Assertions, for example using the assert statement.

 The general form of try:...except:...else: is:

try:
 Some operations…
 ...
except ExceptionI:
 If there is an Exception, do this…
else:
 If there is no Exception then, do this…

The following is a simple exception test example, which opens a new file in the current
working directory, writes some content to the file, and then exits normally.

Example 16.20

>>> try:
... handler = open("datafile", "w")
... handler.write("This is a data file for testing

exception handling!!")
... except IOError:
... print "Error: Can\'t find file or write data"
... else:
... print "File write successful"
... handler.close()
...
File write successful
>>>

EXERCISE 16.10

 1. List five other standard exceptions, what general class of exception they signal, and
what source you used to obtain their names.

 2. Modify the code of Example 16.18 so that it writes the integers 1, 2, 3, 4, 5, 6, 7, 8, 9, and
10 as a string list to the file named datafile.

Python    ◾    629

16.3.16 Modules, Global and Local Scope in Functions

At a certain level of abstraction, everything in Python is a module, even Python itself. A
Python module is a container or package which holds all the hierarchical objects, state-
ments, expressions, and other modular components we spoke about in the introduction to
this chapter that are necessary to accomplish an intended task or subtask. Modules may
contain function definitions, class operations, and variable assignments. Basically, there
are only two types of Python module: a module written by you, or a module from some
external library, like the Python standard library. The standard library that is built in con-
tains over 200 modules, and there are many other module resources available online that a
programmer can use so that she does not have to “reinvent the wheel,” so to speak.

A schematic diagram of the modular construction of a possible Python program is as
follows.

Python shell ---> First Module.py ---> Second Module.py, etc. --->
Standard Library
>>> commands <---objects <---objects <---objects
results

The following example, taken from the code in Example 16.1, shows the composition
and use of a module, which happens to be a function, that you create:

If you have not already done so, type the code from Example 16.1 into a file named arith.
py using your favorite text editor (or rename math1.py as arith.py). Then type the
following lines of Python code at the Python command line:

Example 16.21

>>> import arith1
>>> A = arith1.add(3.5,4.2)
>>> B = A + arith1.subtract(16.78,20.45)
>>> C = arith1.multiply(B,5.0)
>>> D = arith1.divide(A,C)
>>> D
0.13487133984028396
>>>

Notice what is different about Example 16.1’s code and the code in Example 16.19:

 1. You use import rather than from…import.

 2. The functions in arith1 are addressed or touched by referencing arith1.
function _ name.

EXERCISE 16.11

 1. After doing Example 16.21, what result do you get if you type b on the Python com-
mand line, and why?

630 ◾ UNIX: The Textbook, Third Edition

 2. After doing Example 16.21, type del arith1 on the Python command line. Then type
D = arith1.divide(A,C) and press <Enter> on the keyboard. What result do
you get, and why?

 3. Edit the file arith1.py, and comment out all of the return statements in the functions.
Then, redo the commands shown in Example 16.21. What is D equal to, and why?

A simple example of a library module from the standard library that you can import and
use to execute UNIX operating system commands is given next. Type in the commands
shown on the Python command line (the output results given in the example may differ
from what you see on your screen, depending on the specifics of your system):

Example 16.22a

>>> import os
>>> File = os.popen('pwd')
>>> File.read(50)
'/usr/home/bob\n'
>>> for line in os.popen('ls -la f*'): print(line.rstrip())
#Press Enter twice!
...
-rw-r--r-- 1 bob bob 42 Feb 14 23:07 func1.py
-rw-r--r-- 1 bob bob 222 Feb 14 23:08 func1.pyc
-rw-r--r-- 1 bob bob 27 Feb 14 21:54 func2.py
-rw-r--r-- 1 bob bob 207 Feb 14 21:47 func2.pyc

16.4 PRACTICAL EXAMPLES
To begin this section, it would be helpful for you to read and try to understand the follow-
ing two references in the Python online documentation for the release of Python you are
using to get a better “top-down” overview of how Python is structured:

 1. Python Language Reference: Release 2.7.X by Guido van Rossum and Fred L. Drake, Jr.

 2. Python standard library, particularly the sys and os modules.

In the previous sections of this chapter, we provided an overview of the Python language
and its syntax via the writing and execution of small (1–25 line) script files and functions.
In this section, we will detail some of Python’s practical applications in real-world com-
puter programming with larger (25–50 line) user-written modules, functions, and scripts.

As mentioned in Section 16.1, Python can be used to accomplish tasks revolving around
shell scripting, systems programming, network and Internet scripting, database program-
ming, systems administration scripting, GUI scripting, scientific and math programming,
and data mining.

We will begin by writing script files in Python that accomplish what UNIX shell scripts
accomplish, with the goal of familiarizing you with Python.

Python    ◾    631

16.4.1 Another Way of Writing Shell Script Files

If you have not already done so, you should read and do the examples and exercises in
Chapters 12 through 15 to review and get a better feel for basic and advanced shell script-
ing in a UNIX environment. In this section, we do not go over the basics of shell script-
ing, but provide methods and practical examples (including the rewriting of some of the
shell scripts in Chapters 12 through 15) of how to accomplish what UNIX shell scripting
accomplishes, but using Python language syntax and structure. The advantages of using
Python are that it is a more robust and extensible language, with many more features and
capabilities than any of the UNIX scripting languages.

16.4.1.1 Rewriting Bourne and tcsh Scripts
We start with a simple example of a Bourne shell script rewritten in Python. The Bourne
shell script to print out whether a certain directory path exists on our file system or not is
given first, and then its Python equivalent is shown in Example 16.22b. You should type in
and run both of these code samples, and note the output on your system:

Example 16.22b

#!/bin/sh
if [-d "/usr/bin"] ; then
 echo "/usr/bin is a directory"
else
 echo "/usr/bin is not a directory"
fi

#!/usr/local/bin/python
import os
if os.path.isdir("/usr/bin"):
 print "/usr/bin is a directory"
else:
 print "/usr/bin is not a directory"

For the Python version of the Bourne shell script, we can run the script file using Way 2
(Script mode). The important things to notice about the Python code are that

 1. A standard library module named os is imported at the top of the script file.

 2. os.path is a nested module that provides directory and pathname tools in addition
to those tools in the os standard library module.

EXERCISE 16.12

 1. Give the exact syntax you used on your UNIX shell command line to run the Bourne
shell script shown in Example 16.22b.

632 ◾ UNIX: The Textbook, Third Edition

 2. Referring to the online documentation, what other os module from the standard
library can be used to achieve the same thing as the Python code in Example 16.22b?

 3. Edit the Python code for Example 16.22b and substitute the path /usr/bin/yyy for /usr/
bin. What output from the program do you get when you run it after making this change?

Another simple example of a Bourne shell script converted to Python is as follows. The
Bourne shell script is from Chapter 12.

Example 16.23

Bourne shell code

#!/bin/sh
echo "Enter input: \c"
read line
echo "You entered: $line"
echo "Enter another line: \c"
read word1 word2 word3
echo "The first word is: $word1:"
echo "The second word is: $word2:"
echo "The rest of the line is: $word3:"
exit 0

Python code

#!/usr/local/bin/python
import sys
s = raw_input("Enter input:")
print "You entered:", s
r = raw_input("Enter another line:")
words = r.split(' ')
print "The first word is:", words[0]
print "The second word is:", words[1]
rest = (' '.join(words[2:]))
print "The rest of the line is:", rest
sys.exit() #normal exit status

Take note of the Python string methods and slicing used in Example 16.23.

EXERCISE 16.13

 1. Give two examples of list indexing or slicing used in Example 16.23.

 2. Give two examples of string methods from Example 16.23.

The following is another illustration of taking a Bourne shell script and converting it to
Python. The Bourne shell script, cmdargs _ demo, is taken from Section 12.4.

Python    ◾    633

Example 16.24

Bourne shell code

#!/bin/sh
echo "The command name is: $0."
echo "The number of command line arguments passed as
parameters is: $#."
echo "The value of the command line arguments are: $1 $2 $3 $4
$5 $6 $7 $8 $9."
echo "Another way to display values of all the arguments: $@."
echo "Yet another way is: $*."
exit 0

Python code

#!/usr/local/bin/python
import sys
x = (sys.argv)
print "The command name is: ", sys.argv[0]
print "The number of command line arguments passed as
parameters is: ", len(sys.argv[1:])
print "The value of the command line arguments are: ", x[1:]
print "Another way to display values of all the arguments: ",
sys.argv[1:]
print "Yet another way is: ", sys.argv[slice(1,9)]
sys.exit ()

Similar to the Bourne shell in syntax and structure, the C shell has functional capabili-
ties that can be implemented easily by Python. The following is an example of a script file,
if _ demo1, taken from Section 14.6.1, whose syntactic structure and program function-
ality are converted to a Python script file that you should run in Way 2 (Script mode).
Notice that, in our Python conversion, we also conditionally check to see if a hidden or dot
(.) file has been entered as an argument:

Example 16.25

C shell code

#!/bin/csh
if (($#argv == 0) | | ($#argv > 1)) then
 echo "Usage: $0 ordinary_file"
 exit 1
endif
if (-f $argv[1]) then
 set filename = $argv[1]
 set fileinfo = 'ls -il $filename'
 set inode = $fileinfo[1]

634 ◾ UNIX: The Textbook, Third Edition

 set size = $fileinfo[5]
 echo "Name Inode Size"
 echo
 echo "$filename $inode $size"
 exit 0
endif
echo "$0: argument must be an ordinary file"
exit 1

Python code

#!/usr/local/bin/python
import os
import sys
if len(sys.argv) = = 1 or len(sys.
argv) > 2: #check for no or too many arg(s)
 print "Usage: ", sys.argv[0], "is not an ordinary file"
 sys.exit(1)
if sys.argv[1].startswith('.'): #added check for dot files
 print "Usage: ", sys.argv[1], "is a dot file"
 sys.exit(1)
if os.path.isfile(sys.
argv[1]): #bingo, get stats
 filename = sys.argv[1]
 fileinfo = os.stat(filename)
 print "Filename inode size"
 Print " "
 print filename, fileinfo.st_ino, fileinfo.st_size
 sys.exit(0)
else: # argument must be a directory
 print sys.argv[1], " argument must be an ordinary file"
 sys.exit(1)

16.4.2 Basic User File Maintenance

A very useful and important aspect of your interaction with a computer is how effec-
tively you can maintain the files on your system. The Python standard library, and
many user-written libraries and modules, can help you do this efficiently in UNIX.
You can utilize the extensive syntax and multiparadigm programming capabilities of
Python to go far beyond the capabilities of doing operating system and file mainte-
nance available in any of the UNIX shell programs. This section assumes that you
have already read and done the exercises and problems in Chapters 4 through 9 that
deal with file manipulation. User file maintenance consists of creating, saving, orga-
nizing, and deleting files on your system, in your own account. Chapter 23 describes
and details how the same things can be done on a system-wide level by the person that

Python    ◾    635

administers your computer. The following sections are a good preparation for what is
shown in that chapter.

16.4.2.1 Manually Mounting and Unmounting a USB Thumb Drive with Python
A very common and frequently done basic user file maintenance operation performed by
an ordinary user is the deployment of a USB thumb drive on their system. This is usu-
ally done to maintain files, to save or archive them, or perhaps to be able to transfer files
between one computer and another. A simple example of how to use Python to mount and
unmount a USB thumb drive manually on a UNIX computer (in our case the base UNIX
system, PC-BSD) follows.

A few preliminary procedures and issues must be considered first before actually exe-
cuting the Python code in Example 16.26 to achieve the mounting and unmounting of the
USB thumb drive to your user account file system. We assume that the file system structure
on the USB thumb drive is an MS-DOS file system.

• Many UNIX systems with a GUI interface like Gnome or KDE (for example,
Oracle Solaris, the current Solaris-family UNIX system) automatically mount
the USB thumb drive on the file system, and make it available as a desktop icon.
Therefore, it is not feasible to carry out the following example (Example 16.26)
on those types of system. This is similar to what you would experience on non-
UNIX systems. PC-BSD does not do this for security and other administrative
reasons. PC-BSD under KDE does make a system “tray” icon available, known
as the “mount tray,” to allow you to semiautomatically mount items such as USB
thumb drives and so forth. It can be found in the lower-right corner of the screen,
and if you right-click on it, you can make several pop-up menu choices affecting
the mount tray. Also, from the KDE desktop kickoff applications launcher, you
can choose from the “System Settings” menu. One of the “System Settings” icons
is “Removable Devices.” When you click on this icon, you can turn automount-
ing on or off, and also configure other settings for removable media. By default,
automounting is off. This setting is independent of what the mount tray does. If
you turn off automounting and quit the mount tray, as shown in Example 16.26,
mounting of removable media such as USB thumb drives or hard drives can be
done manually.

 The Python code in Example 16.26 will allow you to do the same mounting and
unmounting operations that the mount tray does, but manually. With both mount
tray mounting and manual mounting, the file system found on the USB thumb drive
will be mounted in your own branch of the file system, and you will own the files on
the USB thumb drive.

• When you plug a USB thumb drive into one of the USB connectors on your com-
puter, it shows up as a device entry in /dev. If it does not, do not use it. Most popular
brands of USB thumb drive can be used with both our Solaris and PC-BSD systems.

636 ◾ UNIX: The Textbook, Third Edition

These USB thumb drives should be formatted to FAT32, which is usually the default
formatting.

• You must have superuser privilege on the UNIX system on which you are mounting
the USB thumb drive.

Example 16.26

 0. If you are using PC-BSD, exit the mount tray by right-clicking on its icon at the
lower right of the screen display, and making the pop-up menu choice More
Options -> Close Tray.

 On Solaris, it is not feasible to do a similar operation.
 1. Change your current working directory to /dev, and list the files in that direc-

tory. The USB devices already attached to your computer should have names
like da0, and so on. Note their name(s).

 2. Plug in your USB thumb drive.
 3. List the files again in /dev. Note the name of the new device added to the file

list. On our system, the new device is listed as da0s1. This logical device name
shows the primary partition on the USB thumb drive as s1. If nothing new has
been added, get another USB thumb drive, and try Steps 3 and 4 again, until a
new device is listed in /dev.

 4. Return to your home directory, and create a subdirectory with the name USB,
under your home directory.

 5. Turn on superuser mode.
 6. Run Python.
 7. At the Python command prompt type:

>>>import os
>>> os.popen('mount -t msdosfs /dev/da0s1 /your_home_

directory/USB')

 where your _ home _ directory is the name of the directory under which
you created USB in Step 4.

 8. Exit Python. Your USB thumb drive has been mounted at /your_home_direc-
tory/USB, and the files on it are available at that path. In our case it was /usr/
home/bob/USB.

 9. To transfer files back and forth between the thumb drive and your UNIX computer,
you should exit superuser. Then, copy files freely between your home account and
the thumb drive. Notice that you own the files on the USB thumb drive!

 10. To unmount it, turn superuser back on and in a terminal window type umount
-f /dev/da1s1. Do not remove it from the USB connector on your computer
until you have unmounted it!

 11. We encourage you to use the mount tray as a GUI tool to mount and unmount
your removable media. So do not forget to restart the mount tray by clicking on
its icon in the PC-BSD control panel, after you are done with the next examples

Python    ◾    637

and exercises . You can also restart it by typing pc-mounttray & as super-
user in a console window.

EXERCISE 16.14

 1. What is the exact syntax of the Python command that would unmount the USB
thumb drive?

 2. What other file system formats are available, what are their names, and how would
you change the commands in Example 16.26 to accommodate those different file
formats if they were present on your USB thumb drive?

 3. After you properly unmount the USB thumb drive, what is in the directory USB?
After you unmount it and physically pull the thumb drive out of the computer, does
it show up as a device in /dev?

 4. Try mounting other external USB devices to your file system, such as an Android cell
phone, a Nexus 7 tablet, an iPad, an iPhone, an mp3 music player, and so on. What
results do you attain? Can any of those devices be mounted as external file systems on
your UNIX computer?

 5. Try mounting an external USB hard drive (usually found in a powered enclosure). We
give more instructions on how to do this procedure in Chapter 23.

16.4.2.2 Backing up Your Files
We will not go into the general necessity of backing up your files on your UNIX system
as a part of maintaining that computer system, because the reasons for that should seem
pretty obvious to all users.

According to UNIX system professionals, there is an easy-to-remember and important
set of considerations you must make when backing up the system as an ordinary user, and
perhaps even as the system administrator. This set of considerations can be posed in simple
question form as “How, What, Why, When, Where, and Who?” Some of the answers to
these simple questions can be dovetailed together, and we give a selected list of example
answers as follows:

“How” means on a local disk, to Dropbox, to a USB thumb drive manually, to another
computer on your home network, automatically by cron, to another hard disk man-
ually, totally, incrementally, to RAID, or any variant and combination of these.

“What” means just some of your personal files, all of them, only certain kinds of docu-
ments, your entire home directory, the whole disk drive, multiple disk drives, and
so on.

“Why” means deciding on the relative importance of “What” you are backing up.

“When” means hourly, once a day, once a week, once a month, every time you save a
particular file, and at what time exactly, like 3 a.m.

638 ◾ UNIX: The Textbook, Third Edition

“Where” means very much the same thing as “How”.

“Who” means you personally, automatically by cron, the designated system administra-
tor, Dropbox.com.

To give you a notion of a prudent strategy to deploy in backing up your own user files,
the file that contains the words you are reading right now was archived in the following
manner:

 1. Saved at regular intervals to the hard drive on a local computer

 2. Saved periodically to a USB thumb drive mounted on that local computer

 3. Saved periodically to another hard drive on another computer attached to the local
area network

 4. Saved to Dropbox.com

The following examples and procedures in this section assume you have completed
Section 16.4.2.1 in preparation for completing the examples presented next. If you are
working on a Sun Solaris-family UNIX system, like Solaris, and have not done this exam-
ple because of the constraints mentioned there, you can still do these examples on your
automatically mounted USB thumb drive.

We will use the rsync command to accomplish our backup strategies in this section.
This command is similar to cp, except that it is more efficient and faster.

Most importantly, rsync “synchronizes” two files or directory structures so that
changes in one are reflected in the rsync duplicate, either locally between drives, or
remotely over a local area network (LAN) or the Internet.

It can copy locally or to/from another host over any remote shell, particularly ssh. It
has a large number of options that control every aspect of its behavior and permit very flex-
ible specification of the set of files to be copied. The rsync command finds files that need
to be transferred using a “quick check” algorithm (by default) that looks for files that have
changed in size or in last-modified time. We encourage you to consult the rsync manual
page for more information.

The general forms of the rsync command are

Local:

rsync [OPTION(S)...] SRC... [DEST]

Across a network:

Pull: rsync [OPTION(S)...] [USER@]HOST:SRC... [DEST]
Push: rsync [OPTION(S)...] SRC... [USER@]HOST:DEST

where OPTION(S) are the valid options for the rsync command, SRC is the source file or
directory, and DEST is the destination path.

http://www.Dropbox.com
http://www.Dropbox.com

Python    ◾    639

The next five examples will use Python standard library modules and embed Bourne
shell commands in a Python “wrapper” (UNIX shell command(s) embedded in Python
code), primarily using os.system, to

 1. Back up a single file on the hard disk to a mounted USB thumb drive

 2. Back up a single directory beneath your home directory on the hard disk to a direc-
tory on a mounted USB thumb drive

 3. Back up a single directory beneath your home directory on the hard disk to another
network location on your local area network in Push mode

 4. Back up a directory on the hard disk to a mounted USB thumb drive in a rolling,
incremental scheme that creates “snapshots” of the source directory anytime the
Python script is run

 5. Customize a system command to show permissions of files in the current working
directory that match a certain pattern

The following simple example shows you how to use Python to back up a single file on your
hard disk to the USB thumb drive you mounted and attached to your system’s file system in
Example 16.26. It assumes you have an ordinary file in the current working directory named
rsynctest, and that the destination path on the USB thumbdrive is /usr/home/bob/USBint.

Example 16.27

>>>import os
>>>os.system('rsync -av rsynctest /usr/home/bob/USBint')
sending incremental file list
rsynctest

sent 192 bytes received 35 bytes 454.00 bytes/sec
total size is 92 speedup is 0.41
>>>

The following example shows you how to use Python to back up an entire directory on your
hard disk to the USB thumb drive you mounted and attached to your system’s file system in
Example 16.26. It assumes you have a directory under the current working directory named
syncdir, and that the destination path on the USB thumb drive is /usr/home/bob/USBint.

Example 16.28

>>>import os
>>>os.system('rsync -av syncdir /usr/home/bob/USBint')
sending incremental file list
syncdir/
syncdir/Chap16.doc

640 ◾ UNIX: The Textbook, Third Edition

syncdir/backup1.py
syncdir/ossystem.py

sent 280,176 bytes received 77 bytes 186,835.33 bytes/sec
total size is 279,855 speedup is 1.00
0
>>>

The following example shows you how to use Python to back up an entire directory on
your hard disk to a remote location on your local area network. It assumes:

 1. You have the ssh daemon running on both your local and remote host

 2. You have a directory under the current working directory named syncdir2 with
some files in it

 3. Where a password is asked for, you type in your password on the remote host

 4. That the destination path to the remote host is bob@192.168.0.7:/Users/b/unix3e

Example 16.29

>>>import os
>>>os.system('rsync -av -e ssh syncdir2 bob@192.168.0.7:/
Users/b/unix3e')
The authenticity of host '192.168.0.7 (192.168.0.7)' can't be
established.
RSA key fingerprint is 64:62:9c:46:2a:ef:ba:7d:45:02:40:6e:b5:
7e:f2:f5.
No matching host key fingerprint found in DNS.
Are you sure you want to continue connecting (yes/no)? yes
Warning: Permanently added '192.168.0.7' (RSA) to the list of
known hosts.
Password:
building file list ... done
syncdir2/
syncdir2/Chap16.doc
syncdir2/backup1.py
syncdir2/ossystem.py

sent 280,171 bytes received 96 bytes 16,985.88 bytes/sec
total size is 279,855 speedup is 1.00
0
>>>

EXERCISE 16.15

 1. Repeat the operations shown in Examples 16.16 through 16.29, substituting file
names and directory paths on your computer system and local network for those
shown in the examples. When backing up files to a USB thumb drive is finished,

mailto:bob@192.168.0.7:/Users/b/unix3e

Python    ◾    641

be sure to unmount that drive before removing it from the USB connector on your
machine.

The following example shows you how to create a rolling backup scheme of “snapshots”
of a directory on your hard disk, and archive the contents of the directory to multiple
(five) backup directories on the USB thumb drive you mounted and attached to your sys-
tem’s file system in Example 16.26. It is assumed that the source directory containing some
files exists. Every time you execute this Python script, it recycles the oldest (fifth) archived
directory, and creates a new full backup with the rsync command:

Example 16.30

#!/usr/local/bin/python
import os
import shutil
target = "/usr/home/bob/USBint/"
i = 1
while i <= 5:
 temp_path = target + str(i) + "/"
 if not os.path.exists (temp_path):
 try:
 os.makedirs (temp_path)
 print "Created " + temp_path
 except:
 print " Could not create " + temp_path
 i = i + 1
print "Deleting the oldest archive"
shutil.rmtree (target + "5")
print "Recycle the backups"
os.rename (target + "4", target + "5")
os.rename (target + "3", target + "4")
os.rename (target + "2", target + "3")
Unlike some other rolling snapshot schemes that use cp -al,
we do full

backup copies across devices, filesystems, etc. with the following-
os.system('cp -a ' + target + "1" + " " + target + "2")
os.system('rsync -av /usr/home/bob/python/' + " " + target +
"1")

Here is another example of carrying out simple system administration using Python. It
customize a shell command to show permissions set on files in the current working direc-
tory that match a certain pattern:

Example 16.31

#!/usr/local/bin/python
import stat, sys, os, string, commands

642 ◾ UNIX: The Textbook, Third Edition

try:
 #Getting search pattern from user and assigning it to a

list
 pattern = raw_input("Enter the file pattern to search

for:\n")
 #defining a 'find' string and assigning results to a

variable
 commandString = "find " + pattern
 commandOutput = commands.getoutput(commandString)
 findResults = string.split(commandOutput, "\n")
 #output find results, along with permissions
 print "Files:"
 print commandOutput
 print "*******************************"
 for file in findResults:
 mode=stat.S_IMODE(os.lstat(file)[stat.ST_MODE])
 print "\nPermissions for file ", file, ":"
 for level in "USR", "GRP", "OTH":
 for perm in "R", "W", "X":
 if mode & getattr(stat,"S_I"+perm+level):
 print level, " has ", perm, " permission"
 else:
 print level, " does NOT have ", perm, "
permission"
except:
 print "Error - check your input of file matching pattern"

In summary, we used rsync to backup a file and directories from the hard drive to
a USB thumb drive, to a remote host on the local network, and in a rolling scheme to a
USB thumb drive. We have also illustrated a simple UNIX file maintenance command
useful for system administration. In Chapter 23 we will explore more robust strategies
and examples of how to back up user files and system files, and carry out common system
administration chores using shell commands and Python code.

16.4.3 Graphical User Interface with Python and Tkinter Widgets

Up until this point in the chapter, we have interacted with Python in a text-based manner,
where we typed commands into the Python shell, or into a text editor, and executed Python
to view the output results as text. In this section, we will build a “widget”-based (widget is
short for window gadget) GUI with Python, where we still create the Python code as text,
but see the resulting output of the Python script in the form of widget graphics.

To accomplish this, we assume the following:

 1. That you are using a GUI environment to interact with your UNIX system, such as
KDE or Gnome. In our base UNIX system, PC-BSD, we installed the default KDE
desktop environment when we installed the system. Thus, we have a GUI capability in
Python.

Python    ◾    643

 2. That you have Python 2.7.9 on your PC-BSD, as we showed in Section 16.2.

 3. That you are using a BSD-family UNIX, such as our base system, PC-BSD.

 4. If you are using a Solaris-family UNIX system, such as Oracle Solaris or
OpenIndiana, you can use the graphical version of the IPS package manager, as
mentioned in Section 16.2, to update your Python installation to Python 2.7.X.
Additionally, the Tkinter graphics package installation is already done for you if
you upgrade to Python 2.7.X in Solaris using the IPS package manager. When you
upgrade to Python 2.7.X in Solaris, to launch version 2.7.X of Python, you need to
type python2.7 on the command line.

16.4.3.1 Obtaining Tkinter and Basic Widget Construction
The standard widget GUI package that works with Python is called Tkinter. For you to do
add widget GUI components and functionality to Python, you must be able to import the
Tkinter package. You can easily test to see if your default Python system has the Tkinter
package available. On the Python command line, type:

>>> import Tkinter

If you get an error message that the module does not exist, or some similar error mes-
sage, then you must install the Tkinter package from the FreeBSD ports repository. Use
the kickoff application launcher at the bottom left of the PC-BSD window, and under
“Applications> System”, launch an XTerm window. In that window, type the following
command as superuser:

% pkg install py27-tkinter

The pkg package manager may update itself to its latest release, and then, by typing y
to assent to the installation of packages, Tkinter is installed in the proper directories. You
can then import Tkinter as a module in Python.

Basically, there are two parts to Tkinter widget GUI script construction. The first part is
constructing your widgets, using a set of universal constructor tools and the Tkinter wid-
get module set. The second part is building your application program from Python code,
that accomplishes what you want to do, and then “hooking” it to the widget constructors
of the first part.

Tkinter widgets can be constructed to display and be hooked up to your Python appli-
cation code, either using OOP, where the widgets are object instances of master classes of
Tkinter widgets, or they can be constructed using a functional programming approach.
We choose the latter approach because it is easier for beginners, even though in the last
examples we present you should be able to see that OOP is an essential, but not mandatory,
part of Tkinter GUI programming.

The general form of using a Tkinter widget is as follows.

>>> widget = Widget.method (master, option=value,
option=value,...)

644 ◾ UNIX: The Textbook, Third Edition

where
widget is the name assigned in your Python script to the particular instance you are

creating and using
Widget is the master instance of a widget class in the Tkinter module
method is an optional procedure performed on the master instance of the widget
master is container to which our instance of the widget is attached
option is a graphical entity or modifier that describes your particular instance
value is one of the characteristics that the option can take on

The following simple example shows a complete Tkinter Python script, and the widget it
creates. You should execute these four lines of code using Way 2 (Script mode):

Example 16.32

>>> from Tkinter import *
>>> w = Label(None, text = 'First Python GUI')
>>> w.pack()
>>> w.mainloop()

To close the widget, just click on the “destroy window” button (in Figure 16.1 in the
upper right-hand corner) in your style of GUI window in which the widget was created.
You may have to expand the window to see all of the window manipulation buttons. The
following universal traits of a Tkinter widget script illustrated by Example 16.32 are

 1. Tkinter programming is event driven, meaning you invoke Tkinter and put it in a
wait state, where it waits for an event like a mouse button click on the destroy window
button, or a keyboard entry, and so forth. The widgets you create and which remain
on screen generally only do so while Tkinter is waiting for an event to happen, or
until you destroy the window. You can also construct exit handling events in your
script to close the widget and its window.

 2. Line 1 of Example 16.32 imports all Tkinter modules into the current session.

 3. Line 2 of Example 16.32 assigns the widget class Label, with its modifying options
to your object w.

 4. Line 3 of Example 16.32 uses the Tkinter pack geometry manager to consolidate ele-
ments into w. There are three geometry managers available in Tkinter: pack, grid,
and place. We will use the pack and grid geometry managers in our examples
listed next. The grid geometry manager, which treats every window or frame as a
table of rows and columns, gives you greater control over where widgets and their
components are placed.

FIGURE 16.1 First Python GUI display.

Python    ◾    645

 5. Line 4 of Example 16.32 starts off the event-driven loop that Tkinter enters, and con-
structs the Label widget, with your modifying options, on screen.

16.4.3.2 Tkinter Core Widget Dictionary
The following is a graphical library, or “dictionary,” of the core widget classes in Tkinter,
along with the Tkinter Python code that generates each core widget class. The graphical
library can be used as a visual reference to allow you to choose which kind of widget(s) to
which you want to hook your application (see Figures 16.2 through 16.18):

Example 16.33

Label widget:

from Tkinter import *
def label():
 master = Tk()
 w = Label(master, text="Label")
 w.pack()
 mainloop()
label()

Example 16.34

Button widget:

from Tkinter import *
import sys
def quit():
 print "Out of Here"
 sys.exit()
def button():
 master = Tk()
 b = Button(master, text="Button", command=quit)
 b.pack()
 mainloop()
button()

FIGURE 16.2 Tk Label display.

FIGURE 16.3 Tk Button display.

646 ◾ UNIX: The Textbook, Third Edition

Example 16.35

Canvas widget:

from Tkinter import *
def canvas():
 master = Tk()
 master.title("Canvas")
 w = Canvas(master, width=200, height=100)
 w.pack()
 w.create_line(0, 0, 200, 100)
 w.create_line(0, 100, 200, 0, fill="red", dash=(4, 4))
 w.create_rectangle(50, 25, 150, 75, fill="blue")
 mainloop()
canvas()

Example 16.36

Checkbutton widget:

from Tkinter import *
def checkbutton():
 master = Tk()
 var = IntVar()
 c = Checkbutton(master, text="Checkbutton", variable=var)
 c.pack()
 mainloop()
checkbutton()

Example 16.37

Entry widget:

from Tkinter import *
def entry():
 master = Tk()
 master.title("Entry")
 e = Entry(master)

FIGURE 16.4 Tk Canvas display.

FIGURE 16.5 Tk CheckButton display.

Python    ◾    647

 e.pack()
 mainloop()
entry()

Example 16.38

Frame widget:

from Tkinter import *
def frame():
 master = Tk()
 master.title("Frame")
 Label(text="above Frame separator").pack()
 separator = Frame(height=2, bd=1, relief=SUNKEN)
 separator.pack(fill=X, padx=5, pady=5)
 Label(text="below Frame separator").pack()
 mainloop()
frame()

Example 16.39

ListBox widget:
from Tkinter import *
def listbox():
 master = Tk()
 master.title("Listbox")
 listbox = Listbox(master)

FIGURE 16.6 Tk TextEntry display.

FIGURE 16.7 Tk Frame display.

FIGURE 16.8 Tk ListBox display.

648 ◾ UNIX: The Textbook, Third Edition

 listbox.pack()
 for item in ["one", "two", "three", "four"]:
 listbox.insert(END, item)
 mainloop()
listbox()

Example 16.40

Menu widget

from Tkinter import *
def menu():
 root = Tk()
 root.title("Menu")
 def hello():
 print "I am here"
 # create a toplevel menu
 menubar = Menu(root)
 menubar.add_command(label="1stMenu", command=hello)
 menubar.add_command(label="2ndMenu", command=root.quit)
 # Show them
 root.config(menu=menubar)
 mainloop()
menu()

Example 16.41

RadioButton widget

from Tkinter import *
def radiobutton():
 master = Tk()
 master.title("RadioButton")
 v = IntVar()
 Radiobutton(master, text="One", variable=v, value=1).
pack(anchor=W)

FIGURE 16.9 Tk Menu display.

FIGURE 16.10 Tk RadioButton display.

Python    ◾    649

 Radiobutton(master, text="Two", variable=v, value=2).
pack(anchor=W)
 mainloop()
radiobutton()

Example 16.42

Scale widget

from Tkinter import *
def scale():
 master = Tk()
 master.title("Scale")
 w = Scale(master, from_=0, to=100)
 w.pack()
 w = Scale(master, from_=0, to=200, orient=HORIZONTAL)
 w.pack()
 mainloop()
scale()

Example 16.43

Scrollbar widget

from Tkinter import *
def scrollbar():
 master = Tk()
 master.title("Scrollbar")

FIGURE 16.11 Tk Scale “Slider” display.

FIGURE 16.12 Tk Scrollbar display.

650 ◾ UNIX: The Textbook, Third Edition

 scrollbar = Scrollbar(master)
 scrollbar.pack(side=RIGHT, fill=Y)
 listbox = Listbox(master, yscrollcommand=scrollbar.set)
 listbox.insert(END, "Listbox")
 for i in range(1000):
 listbox.insert(END, str(i))
 listbox.pack(side=LEFT, fill=BOTH)
 scrollbar.config(command=listbox.yview)
 mainloop()
scrollbar()

Example 16.44

PanedWindow widget

from Tkinter import *
def panedwindow():
 m1 = PanedWindow()
 m1.pack(fill=BOTH, expand=1)
 left = Label(m1, text="PanedWindow left")
 m1.add(left)
 m2 = PanedWindow(m1, orient=VERTICAL)
 m1.add(m2)
 top = Label(m2, text="PanedWindow top")
 m2.add(top)
 bottom = Label(m2, text="PanedWindow bottom")
 m2.add(bottom)
 mainloop()
panedwindow()

Example 16.45

Spinbox widget

from Tkinter import *
def spinbox():

FIGURE 16.13 Tk PanedWindow display.

FIGURE 16.14 Tk Spinbox display.

Python    ◾    651

 master = Tk()
 master.title("Spinbox")
 w = Spinbox(master, from_=0, to=10)
 w.pack()
 mainloop()
spinbox()

Example 16.46

Text widget

from Tkinter import *
def text():
 master = Tk()
 master.title("Text")
 textBox = Text(master,wrap=WORD)
 textBox.grid()
 mainloop()
text()

Example 16.47

LabelFrame widget

from Tkinter import *
def labelframe():
 master = Tk()
 group = LabelFrame(master, text="LabelFrame", padx=5,

pady=5)
 group.pack(padx=10, pady=10)
 w = Entry(group)
 w.pack()
 mainloop()
labelframe()

FIGURE 16.15 Tk Text Box display.

FIGURE 16.16 Tk LabelFrame display.

652 ◾ UNIX: The Textbook, Third Edition

Example 16.48

OptionMenu widget

from Tkinter import *
def optionmenu():
 master = Tk()
 master.title("OptionMenu")
 variable = StringVar(master)
 variable.set("one") # default value
 w = OptionMenu(master, variable, "one", "two", "three")
 w.pack()
 mainloop()
optionmenu()

Example 16.49

Message widget

from Tkinter import *
def message():
 master = Tk()
 master.title("Message")
 w = Message(master, text="the message")
 w.pack()
 mainloop()
message()

16.4.3.3 Hooking Tkinter Widgets to Applications in Python: Examples
Given the widget library of available core widgets in Tkinter, and armed with your
knowledge of Python programming to this point, you are ready to do the following
examples. The following simple example allows the user to enter a text string into a
dialog box in a widget, and echoes that string as a label in another widget. A line-by-
line description/explanation of the code follows the example (see Figures 16.19 and
16.20):

FIGURE 16.18 Tk Message display.

FIGURE 16.17 Tk OptionMenu display.

Python    ◾    653

Example 16.50

Widgets 103

from Tkinter import *
from tkMessageBox import showinfo
def reply(name):
 showinfo(title='Callback', message='Greetings %s!' % name)
top = Tk()
top.title('Event')
Label(top, text="Enter your first name:").pack(side=TOP)
ent = Entry(top)
ent.pack(side=TOP)
btn = Button(top, text="Call", command=(lambda: reply(ent.get(
))))
btn.pack(side=LEFT)
top.mainloop()

A line-by-line description/explanation of Example 16.50:

Line 1. Loads everything from the Tkinter widget module.

Line 2. Loads the tkMessageBox module, its function showinfo, and define
showinfo's title and message text.

Line 3. Defines the function reply that will use showinfo to generate the second
widget’s text.

Line 4. The body of the reply function invoking showinfo with its options.

Line 5. Defines the object top, and assign the top Tkinter widget to it.

Line 6. Defines the top Tkinter widget title as Event.

Line 7. Constructs a Label widget, packs it using the pack method on Label, and
positions it.

FIGURE 16.19 Tk Event display.

FIGURE 16.20 Tk Callback display.

654 ◾ UNIX: The Textbook, Third Edition

Line 8. Uses an assignment statement to declare the object ent, and constructs it using
the Entry widget.

Line 9. Packs the ent widget using the pack method on Entry, and positions it.

Line 10. Uses an assignment statement to declare the object btn, constructs it using
the Button widget, and positions and specifies the text to appear in it. Also invokes
the reply function defined in Line 3 using the Lambda anonymous inline function,
which is evaluated when it is called. As the Lambda function is invoked, uses the
get method on Entry.

Line 11. Packs and positions the btn widget.

Line 12. Starts the event loop.

Even though Example 16.50 uses functional programming syntax and data abstraction,
after having examined the line-by-line description/explanation of it, you should begin to
see that Tkinter GUI scripts are basically composed of OOP class instance objects. All of
the methods in those instances come from the methods on the core widgets in Tkinter.

The following example will construct a Fahrenheit-to-Celsius temperature conversion
GUI with Tkinter. A line-by-line description/explanation of the script follows the code (see
Figure 16.21):

Example 16.51

Temperature conversion

from Tkinter import *
These colors are set in several places, but this lets us
change in only one.
mainbg = '#8888FF';
activebg = '#AAAAFF';
root = Tk()
root.title('Temp Conversion')
This grids the widget object where indicated, then returns
it.
def mkgrid(r, c, w):
 w.grid(row=r, column=c, sticky='news')
 return w
This computes the Celsius temperature from the Fahrenheit.

FIGURE 16.21 Tk TempConversion display.

Python    ◾    655

def findcel():
 famt = ftmp.get()
 if famt == '': #not double quote, 2 single quotes
 cent.configure(text='')
 else:
 famt = float(famt)
 camt = (famt - 32) / 1.8
 # A method (configure) applied to an object (cent) that

is converted to a string (str(camt)).
 cent.configure(text=str(camt))
The rest hooks the Fahrenheut and Celsius Temperatures into
the grid graphics manager widgets.
flab = mkgrid(0, 0, Label(root, text="Fahrenheit Temperature",
 anchor='e', bg=mainbg))
clab = mkgrid(1, 0, Label(root, text="Celsius Temperature",
 anchor='e', bg=mainbg))
ftmp = mkgrid(0, 1, Entry(root, bg=mainbg))
cent = mkgrid(1, 1, Label(root, text="", relief='sunken',
 anchor='w', bg=mainbg))
elab = mkgrid(0, 2, Label(root, text='', bg=mainbg))
fbut = mkgrid(1, 2, Button(root, text="Compute Celsius",
 bg=mainbg, activebackground=activebg,
 command=findcel))
Starts the root main event loop
root.mainloop()

Here is a line-by-line description/explanation of the code of Example 16.51, with com-
ment lines omitted from the count:

Line 1. Imports everything from Tkinter.

Line 2. Specifies the main window background and button color in hex digits.

Line 3. Specifies the active window background in hex digits.

Line 4. Creates the main top-level window, normally referred to as root.

Line 5. Applies the title method to root, and gives the top-level window the name
Temp Conversion.

Line 6. Defines the function mkgrid, which uses the grid geometry manager to posi-
tion the widgets.

Line 7. Invokes the grid method on the w argument of mkgrid with the options of set-
ting row and column numbers, and allocation of extra space within the widget cell.

Line 8. The return of w to the main calling script.

Line 9. Hooking widgets to the application begins. Defines a function findcel that
brings the temperature conversion values into the GUI. The next seven lines of
Python calculate the temperature conversion.

656 ◾ UNIX: The Textbook, Third Edition

Line 10. Uses the get method to obtain the input Fahrenheit temperature ftmp and
assign it to the variable famt.

Line 11. If the Fahrenheit variable famt is null, then goes to line 12.

Line 12. Uses the configure method to set the Celsius variable cent to null.

Line 13. Else.

Line 14. Takes the string entered as the Fahrenheit temperature and converts it to a
floating point number.

Line 15. The conversion formula for Fahrenheit to Celsius; camt is the Celsius
temperature.

Line 16. Uses the configure method to assign the variable camt as a string to the
variable cent.

Line 17. The next 11 lines of code create the widget instances and hook the calculated
temperature conversions to them. Puts a Label widget at grid position 0,0, with the
text “Fahrenheit Temperature” in it, and assigns that widget to the object flab. Uses
the function mkgrid defined in Line 6 to do this.

Line 18. Continuation of the code on Line 17.

Line 19. Puts a Label widget at grid position 1, 0, with the text “Celsius Temperature”
in it, and assigns that widget to the object clab. Uses the function mkgrid defined
in Line 6 to do this.

Line 20. Continuation of the code on Line 19.

Line 21. Puts an Entry widget at grid position 0, 1, and assigns that widget to object
ftmp. Uses the function mkgrid defined in Line 6 to do this.

Line 22. Puts a Label widget at grid position 1,1, allowing the display of the Celsius
temperature in it, and assigns that widget to the object cent. Uses the function
mkgrid defined in Line 6 to do this.

Line 23. Continuation of the code on Line 22.

Line 24. Puts a Label widget at grid position 0,2, with nothing displayed in it, and
assigns that widget to the object elab. Uses the function mkgrid defined in Line 6
to do this.

Line 25. Puts a Button widget at grid position 1,2, with the text “Compute Celsius” in
it, and assigns that widget to the object fbut. This widget triggers the command to
invoke the function findcel defined starting on Line 9. Uses the function mkgrid
defined in Line 6 to do this.

Line 26. Continuation of the code on Line 25.

Line 27. Continuation of the code on Line 26.

Line 28. Starts the main root event loop.

Python    ◾    657

Even though the previous example is a functional program design, you should be able to
recognize from this line-by-line description/explanation that the underlying core widgets
from Tkinter are OOP classes that we have instanced as objects. The example used meth-
ods on those classes, but the structure of our script file was still functional and declarative
in nature.

EXERCISE 16.16

 1. What is the difference between a Python method and a Python function?

 2. In the grid geometry manager, where does the numbering of cells that widgets can
be placed in begin, and how do the numbering indices evolve? For instance, in
Example 16.51, what does grid position 0,2 mean?

 3. What code would put a “quit” button in the grid cell 0,2 instead of a blank label?

16.4.4 Multithreaded Concurrency with Python

The first question you must ask yourself about how and why UNIX functions the way it
does is: Given the limited resources and nature of modern computer hardware, how does
UNIX maximize performance and efficiency for all users of a system? And how can user
programs, such as Python, reflect this technique?

The answer for UNIX is

First, by breaking the hardware, that is, CPU(s), main memory, and peripheral memory,
into multiple virtual machinery: in short, virtualization.

Then, by executing instructions concurrently on this virtualized machinery—this means
not in any particular sequence, and perhaps even all at once.

Finally, by making sure that the data generated and stored in the file system is persistent
over time.

Python, as a UNIX tool to create user programs, can achieve concurrency with a mech-
anism called threads, and the concurrent execution of instructions by threads. This is
very similar to UNIX system programming with threads.

Similarly to the UNIX system programming concurrency facility, Python threads give
you the ability to run several programs concurrently, in a single process. When you create
one or more threads in your Python program, they are executed concurrently, indepen-
dently of each other, and they can share information among them because they are using
the same resources of a single process.

These features make Python threads useful in creating Python applications for such
things as network programming and the creation of GUI programs.

Python supports threads on PC-BSD and Solaris, and any other systems that uses the
POSIX threads library (pthreads).

From the Python 2.7.11 documentation at https://docs.python.org/2/c-api/init.html:

https://www.docs.python.org/2/c-api/init.html

658 ◾ UNIX: The Textbook, Third Edition

The Python interpreter is not fully thread-safe. In order to support multi-threaded
Python programs, there’s a global lock, called the global interpreter lock or GIL,
that must be held by the current thread before it can safely access Python objects.
Without the lock, even the simplest operations could cause problems in a multi-
threaded program: for example, when two threads simultaneously increment the
reference count of the same object, the reference count could end up being incre-
mented only once instead of twice.

Therefore, the rule exists that only the thread that has acquired the GIL may
operate on Python objects or call Python/C API functions. In order to emulate
concurrency of execution, the interpreter regularly tries to switch threads. The
lock is also released around potentially blocking I/O operations like reading or
writing a file, so that other Python threads can run in the meantime.

The major impact this has in terms of Python performance is that Python threads can-
not take advantage of multiprocessor or multicore processor architectures. Thread switch-
ing can only occur between the execution of individual bytecodes in the interpreter. The
frequency with which the interpreter checks for thread switching is set by the sys.set-
checkinterval() function. By default, the interpreter checks for thread switching
after every 100 bytecode instructions.

When working with extension modules, the interpreter may invoke functions written in C.
Unless specifically written to interact with a threaded Python interpreter, these functions block
the execution of all other threads until they complete execution. Thus, a long-running calcula-
tion in an extension module may limit the effectiveness of using threads. However, most of the
I/O functions in the standard library have been written to work in a threaded environment.

16.4.4.1 Python Thread Examples Using the Functional Programming Paradigm
We show both the thread (_ thread in Python 3.X) and threading modules, and
the examples we present in this section use the thread module.

Unless you need the more powerful OOP tools and capabilities in the threading
module, the choice is largely a matter of programmer and programming team preference,
and programming design goals/methodologies. We cover some of the functions offered in
the threading module in Section 16.4.5.

The basic thread module does not impose OOP, and is very easy to use if you are
used to functional programming. As mentioned, the thread module has been renamed
to _ thread in Python 3.

This module provides low-level primitives for working with multiple threads of control
(also called lightweight processes or tasks) that share their global data space. For synchroni-
zation, simple locks (also called mutexes) are provided.

16.4.4.1.1 thread Functions Reference The thread module defines the following con-
stants and functions:

exception thread.error: Raised on thread-specific errors.

thread.LockType: This is the type of lock object.

Python    ◾    659

thread.start _ new _ thread(function, args[, kwargs]): Starts a new
thread and return its identifier. The thread executes the function named function
with the argument list args (which must be a tuple). The optional kwargs argu-
ment specifies a dictionary of keyword arguments. When the function returns, the
thread silently exits. When the function terminates with an unhandled exception, a
stack trace is printed and then the thread exits (but other threads continue to run).

thread.interrupt _ main(): Raises a KeyboardInterrupt exception in the
main thread. A subthread can use this function to interrupt the main thread.

thread.exit(): Raises the SystemExit exception. When not caught, this will
cause the thread to exit silently.

thread.allocate _ lock(): Returns a new lock object. Methods of locks are
described later. The lock is initially unlocked.

thread.get _ ident(): Returns the “thread identifier” of the current thread. This
is a nonzero integer. Its value has no direct meaning; it is intended as a magic cookie
to be used, for example, to index a dictionary of thread-specific data. Thread identi-
fiers may be recycled when a thread exits and another thread is created.

thread.stack _ size([size]): Return the thread stack size used when creating
new threads.

Lock objects have the following methods:

lock.acquire([waitflag]): Without the optional argument, this method acquires
the lock unconditionally, if necessary waiting until it is released by another thread
(only one thread at a time can acquire a lock—that is the reason for their existence).

lock.release(): Releases the lock. The lock must have been acquired earlier, but
not necessarily by the same thread.

lock.locked(): Return the status of the lock: True if it has been acquired by some
thread, False if not.

Since the basic thread module is a bit simpler than the more advanced threading mod-
ule covered later in the next subsection, we give examples of that first. This module provides
a portable interface to whatever threading system is available in your platform: its interfaces
work in the same way on PC-BSD and Solaris, and on any system with an installed pthreads
POSIX threads implementation (including Linux and others). Python scripts that use the
Python thread module work on all of these platforms without changing their source code.

16.4.4.1.2 Examples Let us start off by experimenting with a script that deploys the main
thread interfaces.

The script in Example 16.52 starts successive, one-at-a-time-only threads until you type
an x at the console and then press <Enter>:

660 ◾ UNIX: The Textbook, Third Edition

Example 16.52

import thread
def child(tid):
 print 'Started thread', tid
def parent():
 i = 0
 while 1:
 i += 1
 thread.start_new_thread(child, (i,))
 if raw_input() == 'x': break
parent()
% python Example16_52.py
Started thread 1
Started thread 2
Started thread 3
Started thread 4
x
%

What exactly is going on in Example 16.52? A single thread is being started, and then
it immediately dies, and the program loops indeterminately, allowing you to create suc-
cessive new threads. Only two thread calls are made in this example: the import of the
thread module and the call to create the threads. To start a thread, call the thread.
start _ new _ thread function. This call takes a function (or other callable) object as
a tuple argument, and starts a new thread to execute a call to the passed function with the
passed arguments.

The following is another example that iterates to create new threads that exist simulta-
neously, in parallel:

Example 16.53

import thread, time
def counter(myId, count): # function that will run in each

thread
 for i in range(count):

 time.sleep(1) # simulate useful code here
 print '[%s] => %s' % (myId, i)

for i in range(5): # call start_new_thread 5 times
 thread.start_new_thread(coun ter, (i, 3)) # loop the newest

thread 3 times

time.sleep(5) # prevents exit from parent too
early

print 'Main thread exiting.' # all threads are destroyed by
default

Python    ◾    661

When we execute this script file, we get:

% python Example16_53.py
[4] => 0
[2] => 0
[1] => 0
[3] => 0
[0] => 0
[0] => 1
[4] => 1
[1] => 1
[2] => 1
[3] => 1
[2] => 2
[4] => 2
[3] => 2
[0] => 2
[1] => 2
Main thread exiting.
%

What exactly is happening in Example 16.53? Five threads are being created and run
simultaneously. Within each thread, the counter value from 0 to 4 is being printed at stan-
dard output. The time.sleep(1) method in the function counter is used to simulate
code that might be used to do some system programming task(s).

EXERCISE 16.17

If each of the threads you start in Example 16.52 were to perform some operations, after
what line in the given code would you put the lines of code that performed that work?

EXERCISE 16.18

In the output of Example 16.53 shown, you will notice that the order in which the value of
the myId variable that is printed is not always the same. Why is this true?

EXERCISE 16.19

If you run Example16_53.py a few times, is the order of the printed value of myId the
same on each successive run of the program? Why or why not?

16.4.4.2 Python Thread Example Using the OOP Model The threading module con-
structs higher-level threading interfaces on top of the lower-level thread module. If
you want your application to make better use of the computational resources of mul-
ticore machines, you are advised to use the multiprocessing module. However,

662 ◾ UNIX: The Textbook, Third Edition

threading is still an appropriate model if you want to run multiple I/O-bound tasks
simultaneously.

16.4.4.2.1 threading Functions Reference The threading module defines the fol-
lowing functions and objects:

threading.active_count()
threading.activeCount()

Returns the number of thread objects currently alive. The returned count is equal to the
length of the list returned by enumerate().

threading.Condition()

A factory function that returns a new condition variable object. A condition variable
allows one or more threads to wait until they are notified by another thread.

threading.current_thread()
threading.currentThread()

Returns the current thread object, corresponding to the caller’s thread of control.

threading.enumerate()

Returns a list of all thread objects currently alive. The list includes daemonic threads,
dummy thread objects created by current _ thread(), and the main thread. It excludes
terminated threads and threads that have not yet been started.

threading.Event()

A factory function that returns a new event object. An event manages a flag that can
be set to true with the set() method and reset to false with the clear() method. The
wait() method blocks until the flag is true.

class threading.local

A class that represents thread-local data. These are data whose values are thread specific.
To manage thread-local data, just create an instance of local (or a subclass) and store
attributes on it, for example:

mydata = threading.local()
mydata.x = 1

The instance’s values will be different for separate threads.

threading.Lock()

Python    ◾    663

A factory function that returns a new primitive lock object. Once a thread has acquired
it, subsequent attempts to acquire it block, until it is released; any thread may release it.

threading.RLock()

A factory function that returns a new reentrant lock object.

threading.Semaphore([value])

A factory function that returns a new semaphore object.

threading.BoundedSemaphore([value])

A factory function that returns a new bounded semaphore object.

class threading.Thread

A class that represents a thread of control. This class can be safely subclassed in a limited
fashion.

class threading.Timer

A thread that executes a function after a specified interval has passed.

threading.settrace(func)

Sets a trace function for all threads started from the threading module. The function
func will be passed to sys.settrace() for each thread, before its run() method is
called.

threading.setprofile(func)

Sets a profile function for all threads started from the threading module. The func-
tion func will be passed to sys.setprofile() for each thread, before its run()
method is called.

threading.stack_size([size])

Returns the thread stack size used when creating new threads.

exception threading.ThreadError

Raised for various threading-related errors as described next.

16.4.4.2.2 Thread Class Objects
The Thread class of the threading module provides methods applicable to the multithread
example presented next, and in general to all Python OOP-based thread synchronization

664 ◾ UNIX: The Textbook, Third Edition

techniques. All of the methods described can be used on the Thread class, and are executed
atomically. For our purposes in this chapter, atomically means without interruption. For illus-
trations of a wider application of atomic operations, see Chapters 18 through 21.

The Thread class represents an activity that is run in a separate thread of control.
There are two ways to specify the activity: by passing a callable object to the constructor, or
by overriding the run() method in a subclass. No other methods (except for the construc-
tor) should be overridden in a subclass. In other words, only override the __ init __ ()
and run() methods of this class.

Once a thread object is created, its activity must be started by calling the thread’s
start() method. This invokes the run() method in a separate thread of control.

Once the thread’s activity is started, the thread is considered alive. It stops being alive
when its run() method terminates—either normally, or by raising an unhandled excep-
tion. The is _ alive() method tests whether the thread is alive.

Other threads can call a thread’s join() method. This blocks the calling thread until
the thread whose join() method is called is terminated.

A thread has a name. The name can be passed to the constructor, and read or changed
through the name attribute. A thread can be flagged as a daemon thread. The significance
of this flag is that the entire Python program exits when only daemon threads are left run-
ning. The initial value is inherited from the creating thread. The flag can be set through the
daemon property.

This constructor should always be called with keyword arguments.
Arguments are:

group should be None; reserved for future extension when a ThreadGroup class is
implemented.

target is the callable object to be invoked by the run() method. Defaults to None,
meaning nothing is called.

name is the thread name. By default, a unique name is constructed of the form
“Thread-N” where N is a small decimal number.

args is the argument tuple for the target invocation. Defaults to ().

kwargs is a dictionary of keyword arguments for the target invocation. Defaults to {}.

If the subclass overrides the constructor, it must make sure to invoke the base class
constructor (Thread. _ _ init _ _ ()) before doing anything else to the thread.

Methods on the Thread class are:

start()

Starts the thread’s activity. It must be called at most once per thread object. It arranges
for the object’s run() method to be invoked in a separate thread of control. This method
will raise a RuntimeError if called more than once on the same thread object.

run()

Python    ◾    665

Method representing the thread’s activity. You may override this method in a subclass.
The standard run() method invokes the callable object passed to the object’s constructor
as the target argument, if any, with sequential and keyword arguments taken from the
args and kwargs arguments, respectively.

join([timeout])

Waits until the thread terminates. This blocks the calling thread until the thread
whose join() method is called terminates—either normally or through an unhandled
exception—or until the optional timeout occurs.

ident

The thread identifier of this thread, or None if the thread has not been started. This is
a nonzero integer.

is_alive()
isAlive()

Returns whether the thread is alive. This method returns True just before the run()
method starts until just after the run() method terminates. The module function
enumerate() returns a list of all alive threads.

daemon

A Boolean value indicating whether this thread is a daemon thread (True) or not (False).

16.4.4.2.3 OOP GUIs and Producer–Consumer Model Threads Threads are extremely
important and integral to the Tkinter GUI toolkit, which is illustrated in Section 16.4.3.
This also applies in general to GUI libraries such as Qt.

Since many of the functions of a GUI use synchronous I/O, any operation that can block
or take a long time to complete must be spawned to run in parallel, so that the central GUI
module (the main thread) is always running. Although such children can be run as pro-
cesses, the efficiency and shared environment model of threads make them ideal for this
role. Most GUI toolkits do not allow multiple threads to update the main thread in parallel;
updates are best restricted to the main thread.

The two important points to be made about Python threads in a GUI are that the main
thread handles all screen graphics updates and that GUI threads must obey the synchroni-
zation rules established for general thread concurrency.

All threads in a GUI generally follow what is called the producer–consumer model.
This is where one or more objects (the producers) are responsible for placing data into

a buffer, and one or more objects (the consumers) are responsible for removing data from
that buffer.

666 ◾ UNIX: The Textbook, Third Edition

The drawbacks to this are as follows.

The producer(s) cannot add more data than the buffer can hold.

The consumers(s) cannot take from an empty buffer,

The actions of all objects must be synchronized.

We address more of the issues of the producer–consumer model in Section 16.4.5, and
give an example Python program in that section to illustrate the model solution using
condition variables.

16.4.4.2.4 OOP Threads Example
The following is an example illustrating the basic methodology of using OOP and Python
threads. We first describe, in blocks of code, what is happening in the Python code of the
example. Then, we present the actual example code in its entirety. Finally, we show sample
output when the code is run on the UNIX command line.

It would be very instructive for a beginner to compare what the basic methodology and
structure of the following OOP example is compared with the previous Python thread
code examples presented.

The components of Example 16.54 are shown as blocks of code as follows (the blocks are
indicated as comments on the line of code that begins the block).

Block 1. Import the Thread class from the threading module

 Why do it this way? The Thread class, as shown in Section 16.4.4.2.2, contains
many useful methods that allow you to construct and manipulate threads. Using it
avoids you having to define your own functions or methods to do the same opera-
tions. Not doing it this way would mean you would have to write lower-level system
programming functions to accomplish thread creation and synchronization, and
then, somehow, stitch that code together with higher-level Python functional pro-
gramming code.

Block 2. Subclass your own thread, named Threader, by defining it as a child class
based on Thread, and also define the constructor properties of it:

Block 3. Define a run method in the Threader class. This run method is always exe-
cuted when we call the start method of any object in our Threader class.

 The sleep function makes the thread inactive for a definite amount of time. This
randomly-timed sleep will ensure that the code will not be executed so quickly that
we will not be able to notice any changes.

Block 4. The most important block. Create three objects. Call the start method of each
object, which, in turn, executes the run method of each object.

 You need to call the join method of each object, or the program will terminate
before the threads complete their execution.

Python    ◾    667

Example 16.54

from threading import Thread #Block 1.
from random import randint
import time
class Threader(Thread): #Block 2.
 def __init__(self, val):
 ''' Constructor. '''
 Thread.__init__(self)
 self.val = val
 def run(self): #Block 3.
 for i in range(1, self.val):
 print('Value %d in thread %s' % (i, self.

getName()))
 # Sleep for random time
 GoToSleep = randint(1, 5)
 print('%s sleeping fo %d seconds...' % (self.

getName(), GoToSleep))
 time.sleep(GoToSleep)
if __name__ == '__main__': #Block 4.
 # Declare Threader class
 Threader_Object1 = Threader(4)
 Threader_Object1.setName('Thread 1')

 Threader_Object2 = Threader(4)
 Threader_Object2.setName('Thread 2')
 Threader_Object3 = Threader(4)
 Threader_Object3.setName('Thread 3')

 # Run the threads!
 Threader_Object1.start()
 Threader_Object2.start()
 Threader_Object3.start()

Wait ...
 Threader_Object1.join()
 Threader_Object2.join()
 Threader_Object3.join()

#Exuent ...
 print('Main Terminating...')

The output from the program is as follows, when run on the UNIX command line:

% python Example16_54.py
Value 1 in thread Thread 1
Thread 1 sleeping for 3 seconds...
Value 1 in thread Thread 3
Thread 3 sleeping for 5 seconds...
Value 1 in thread Thread 2

668 ◾ UNIX: The Textbook, Third Edition

Thread 2 sleeping for 2 seconds...
Value 2 in thread Thread 2
Thread 2 sleeping for 2 seconds...
Value 2 in thread Thread 1
Thread 1 sleeping for 1 seconds...
Value 3 in thread Thread 1
Thread 1 sleeping for 4 seconds...
Value 3 in thread Thread 2
Thread 2 sleeping for 4 seconds...
Value 2 in thread Thread 3
Thread 3 sleeping for 5 seconds...
Value 3 in thread Thread 3
Thread 3 sleeping for 3 seconds...
Main Terminating...
%

EXERCISE 16.20

If you wanted the threads to do some actual work, in what block of Example 16.54 and
exactly where in that block would you put the Python code to accomplish that work?

16.4.5 Talking Threads: The Producer–Consumer Problem Using a Condition Variable

In computing, the producer–consumer problem is a classic example of multiobject syn-
chronization. We addressed some of the issues involved with the producer–consumer
model in Section 16.4.4.2.3. In this section, we give more details and a worked example to
further illustrate this important computer science concept using Python.

The problem concerns two objects, the producer and the consumer, that share a com-
mon, fixed-size buffer used as a queue. The producer produces a piece of data, puts it into
the buffer and starts producing again. At the same time, the consumer is consuming the
data (i.e., removing it from the buffer) one piece at a time.

The crux of the problem is to make sure that the producer will not add data into the buf-
fer when it is full, and that the consumer will not try to remove data from an empty buffer.

The solution to the problem, for the producer, is to either go to sleep, or discard data if
the buffer is full. The next time the consumer removes an item from the buffer, it notifies
the producer, which starts to fill the buffer again. In the same way, the consumer can go to
sleep if it finds the buffer to be empty. The next time the producer puts data into the buffer,
it wakes up the sleeping consumer.

In that way, the threads of execution “talk” to each other while they are awake.

16.4.5.1 Signaling Between Threads: Condition Variables
A major component of any threads library, particularly the SUSv3 or POSIX-compliant thread
libraries, is the presence of a condition variable. Use of a condition variable allows one thread
to indicate to other threads that a change in state of a shared variable, or other resource, has
happened. For example, if one thread is waiting for another to do something before it can
continue.

Python    ◾    669

Condition variables presuppose that some lock is associated with this condition, similar
to the features of mutexes spoken about in Chapter 21. The lock provides mutual exclusion
for accessing the shared variable, but the condition variable indicates changes in the vari-
able’s state. This lock must be maintained.

The two principal methods in Python a condition variable has are wait() and
notify().

16.4.5.2 Python Condition Variable Implementation
To implement a producer–consumer model using a condition variable, we are going to
deploy the more advanced threading module first introduced in Section 16.4.5.

A description and explanation of the useful functions and methods from that section
are repeated here.

16.4.5.2.1 Python Condition Variables and Associated Methods A condition variable has
acquire() and release() methods that call the corresponding methods of the asso-
ciated lock. It also has a wait() method, and notify() and notifyAll() methods.
These three must only be called when the calling thread has acquired the lock, otherwise a
RuntimeError is raised.

The wait() method releases the lock, and then blocks until it is awakened by a
notify() or notifyAll() call for the same condition variable in another thread. Once
awakened, it reacquires the lock and returns. It is also possible to specify a timeout.

The notify() method wakes up one of the threads waiting for the condition variable,
if any are waiting. The notifyAll() method wakes up all threads waiting for the condi-
tion variable.

The notify() and notifyAll() methods do not release the lock; this means that the
thread or threads awakened will not return from their wait() call immediately, but only
when the thread that called notify() or notifyAll() finally relinquishes ownership
of the lock.

This technique of programming style, using condition variables, uses the lock to syn-
chronize access to some shared global variable. Threads that are interested in a particular
change of state call wait() repeatedly until they see the desired state, while threads that
modify the state call notify() or notifyAll() when they change the state in such a
way that it could possibly be a desired state for one of the waiters. For example, the follow-
ing code is a generic producer–consumer situation with unlimited buffer capacity.

Consume one item
cv.acquire()
while not an_item_is_available():
 cv.wait()
get_an_available_item()
cv.release()

Produce one item
cv.acquire()
make_an_item_available()

670 ◾ UNIX: The Textbook, Third Edition

cv.notify()
cv.release()

To choose between notify() and notifyAll(), consider whether one state change
may be interesting for only one or several waiting threads. In a typical producer–con-
sumer situation, adding one item to the buffer only needs to wake up one consumer
thread.

The following is a listing of methods used to accomplish this.

threading.Condition()

A factory function that returns a new condition variable object. A condition variable
allows one or more threads to wait until they are notified by another thread.

acquire(*args)

Acquires the underlying lock. This method calls the corresponding method on the
underlying lock; the return value is whatever that method returns.

release()

Releases the underlying lock. This method calls the corresponding method on the
underlying lock; there is no return value.

wait([timeout])

Waits until notified or until a timeout occurs. If the calling thread has not acquired the
lock when this method is called, a RuntimeError is raised.

This method releases the underlying lock, and then blocks until it is awakened by a
notify() or notifyAll() call for the same condition variable in another thread, or
until the optional timeout occurs. Once awakened or timed out, it reacquires the lock and
returns.

When the timeout argument is present and is not None, it should be a floating point
number specifying a timeout for the operation in seconds (or fractions thereof).

notify(n=1)

By default, wake up one thread waiting on this condition, if any. If the calling thread has
not acquired the lock when this method is called, a RuntimeError is raised.

This method wakes up at most n of the threads waiting for the condition variable; it is a
“no operation” (no-op) if no threads are waiting.

An awakened thread does not actually return from its wait() call until it can reacquire
the lock. Since notify() does not release the lock, its caller should.

notify_all()
notifyAll()

Python    ◾    671

Wakes up all threads waiting on this condition. This method acts similarly to notify(),
but wakes up all waiting threads instead of one. If the calling thread has not acquired the
lock when this method is called, a RuntimeError is raised.

16.4.5.3 An Example
The following Python code brings together many of the ideas and syntactic structures
from this chapter, to illustrate a Python solution to the producer–consumer problem
in a multithreaded program. It uses OOP that deploys the threading module and
its methods to start two threads, Producer and Consumer. These threads talk to
each other and share the state of the condition variable, which we conveniently name
condition.

What exactly is happening in Example 16.55? A brief explanation of the layout of the
program in major blocks, and a description of the operational heart of the code is as follows:

Block 1: This is the initialization part of the program, where the threading module,
submodule Thread, and class Condition are imported. Also, the variables buf-
fer and condition are initialized. The variable condition is derived from the
Condition class, so that it can use the methods from that class.

Block 2: This defines the class Producer derived from the Thread module. It also
specifies, in a determinate repetition loop, how many times we will add data to the
buffer. We are only adding a determinate number of data objects to the buffer in this
example. The mechanics of using the condition variable in Producer are explicated
here.

Block 3: This defines the class Consumer derived from the Thread module. How data
is removed from the buffer is specified as well. The mechanics of using the condition
variable in Consumer are explicated here.

Block 4: Producer is started, and then Consumer is started.

The critical execution order of this program, and how it accomplishes its objectives, are
described as follows:

 0. The Producer thread puts data in the buffer and calls the notify() method on
the condition instance.

 1. The Consumer thread checks if buffer is empty before consuming.

 2. If the buffer is empty, then call the wait() method on condition instance.

 3. The wait() method blocks the Consumer thread and also releases the lock associ-
ated with the condition. This lock was held by the Consumer thread, so it loses hold
of the lock.

 4. Unless the Consumer thread is notified, it will not run.

672 ◾ UNIX: The Textbook, Third Edition

 5. The Producer thread can acquire the lock because the lock was released by the
Consumer thread.

 6. The Producer thread puts data into the buffer and calls the notify() method on
the condition instance.

 7. Once the notify() method is done on condition, the Consumer thread wakes
up but does not execute.

 8. The notify() method does not release the lock. Even after notify(), the lock is
still held by Producer.

 9. The Producer thread explicitly releases the lock by using condition.release().

 10. The Consumer thread starts running again. Back to Step 0.

Trace these 11 steps through the code we present next:

Example 16.55

from threading import Thread, Condition #Block 1.
import time
import random
buffer = []
MAX_NUM = 10
condition = Condition()

class Producer(Thread): #Block 2.
 def run(self):
 global buffer
 for i in range(10):
 condition.acquire()
 if len(buffer) == MAX_NUM:
 print "Queue full, Producer waiting"
 condition.wait()
 print "Queue empty, Producer notified"
 buffer.append(i)
 print "Data Produced", i
 condition.notify()
 condition.release()
 time.sleep(random.random())

class Consumer(Thread): #Block 3.
 def run(self):
 global buffer
 for i in range(10):
 condition.acquire()
 while not buffer:
 print "Queue empty, Consumer waiting"
 condition.wait()
 print "Data added to queue, Consumer notified"

Python    ◾    673

 i = buffer.pop(0)
 print "Data Consumed", i
 condition.notify()
 condition.release()
 time.sleep(random.random())

Producer().start() #Block 4.
Consumer().start()

Output from the above example is as follows:

% python Example16_55.py
Data Produced 0
Data Consumed 0

Queue empty, Consumer waiting
Data Produced 1
Data added to queue, Consumer notified
Data Consumed 1
Queue empty, Consumer waiting
Data Produced 2
Data added to queue, Consumer notified
Data Consumed 2
Data Produced 3
Data Produced 4
Data Produced 5
Data Consumed 3
Data Produced 6
Data Consumed 4
Data Produced 7
Data Consumed 5
Data Produced 8
Data Produced 9
Data Consumed 6
Data Consumed 7
Data Consumed 8
Data Consumed 9
%

EXERCISE 16.21 (refer to Example 16.55)

Briefly state the purpose of the variable MAX _ NUM. In the way the program is structured,
what value would this variable have to have to be deployed successfully (i.e., prevent a buf-
fer overrun)?

EXERCISE 16.22

As the output of running this program one time shows, the production and consump-
tion of data to and from the buffer is sporadic. That is, sometimes data is produced and

674 ◾ UNIX: The Textbook, Third Edition

then immediately consumed, and sometimes data is produced and not immediately con-
sumed. Also, you will notice that if you do several runs of the program, each run may yield
different patterns of production and consumption (Figure 16.22). Why is this so?

SUMMARY
We give a broad introduction to the Python programming language, using Python ver-
sion 2.7.x. We illustrate all of its programming capabilities and syntactic structure, in
the context of the three predominant computer programming paradigms. We show the
details of doing a fresh install of version 2.7.x or Version 3.x, or an upgrade of those two
versions on our two base systems, PC-BSD and Solaris. We show all of Python basic
syntax, including numbers and expressions, variables, statements, getting input from
the user, functions, OOP in Python, modules, saving and executing Python scripts,
string and sequence operations, and error handling. We also give practical examples,
such as another way of writing shell script files, rewriting Bash and tcsh scripts, basic
user file maintenance, backing up files, remote copying with rsync, and graphics
using Tkinter.

FIGURE 16.22 Package manager display for Python 2.7.

Python    ◾    675

TABLE 16.6 Python Syntax and Command Summary

Interactive Help in Python Shell

help() Invoke interactive help
help(m) Display help for module m
help(f) Display help for function f
dir(m) Display names in module m

Module Import
import module_name
from module_name import name, ...
from module_name import *

Common Data Types
Type Description Literal Ex
int 32--‐bit Integer 3, -4

long Integer > 32 bits 101L

float Floating point number 3.0, -6.55

complex Complex number 1.2J

bool Boolean True, False

str Character sequence 'Python'

tuple Immutable sequence (2, 4, 7)

list Mutable sequence [2, x, 3.1]

dict Mapping { x:2, y5}

Common Syntax Structures
Assignment Statement
var = exp

Console Input/Output
var = input([prompt])
var = raw_input([prompt])
print exp[,]
Selection
if (boolean_exp):
 stmt ...
[elif (boolean_exp):
 stmt ...]
[else:
 stmt ...]

Repetition
while (boolean_exp):
 stmt ...
Iteration
for var in iterableable_object(sequence suite):
 stmt ...
Function Definition
def function_name(parmameters):
 stmt ...
Function Call
function_name(arguments)

(Continued)

676 ◾ UNIX: The Textbook, Third Edition

TABLE 16.6 (CONTINUED) Python Syntax and Command Summary

Class Definition
class Class_name [(super_class)]:
 [class variables]
 def method_name(self, parameters):
 stmt...
Object Instantiation
obj_ref = Class_name(arguments)

Method Invocation
obj_ref.method_name(arguments)

Exception Handling
try:
 stmt ...
except [exception_type] [, var]:
 stmt ...

Common Built-in Functions
Function Returns
abs(x) Absolute value of x
dict() Empty dictionary, e.g.: d =

dict()
float(x) int or string x as float
id(obj) memory addr of obj
int (x) float or string x as int
len(s) Number of items in sequence s
list() Empty list, eg: m = list()
max(s) Maximum value of items in s
min(s) Minimum value of items in s
open(f) Open filename f for input
ord(c) ASCII code of c
pow(x,y) x ** y
range(x) A list of x ints 0 to x --‐ 1
round(x,n) float x rounded to n places
str(obj) str representation of obj
sum(s) Sum of numeric sequence s
tuple(items) tuple of items
type(obj) Data type of obj

Common Math Module Functions
Function Returns (all float)
ceil(x) Smallest whole nbr >= x
cos(x) Cosine of x radians
degrees(x) x radians in degrees
radians(x) x degrees in radians
exp(x) e ** x
floor(x) Largest whole nbr <= x

Python    ◾    677

TABLE 16.6 (CONTINUED) Python Syntax and Command Summary
hypot(x, y) sqrt(x * x + y * y)
log(x [, base]) Log of x to base or natural log if

base not given
pow(x, y) x ** y

sin(x) Sine of x radians
sqrt(x) Positive square root of x
tan(x) Tangent of x radians
pi Math constant pi to 15 sig figs
e Math constant e to 15 sig figs

Common String Methods
S.method() Returns (str unless noted)
capitalize S with first char uppercase
center(w) S centered in str w chars wide
count(sub) int nbr of non--‐overlapping

occurrences of sub in S
find(sub) int index of first occurrence of sub

in S or --‐1 if not found
isdigit() bool True if S is all digit chars,

False otherwise
islower(),
isupper()

bool True if S is all lower/upper case
chars, False otherwise

join(seq) All items in seq concatenated into a
str, delimited by S

lower(), upper() Lower/upper case copy of S
lstrip()
rstrip()

Copy of S with leading/trailing
whitespace removed, or both

split([sep]) List of tokens in S, delimited by sep;
if sep not given, delimiter is any
whitespace

Formatting Numbers as Strings
Syntax: format_spec % numeric_exp
format_spec
width (optional): align in number of columns
specified; negative to left--‐align, precede with
0 to zero--‐fill
precision (optional): show specified digits of
precision for floats; 6 is default
type (required): d (decimal int), f (float), s
(string), e (float ⍰ exponential notation)
Examples for x = 123, y = 456.789
 % x --‐> … 123
 % x --‐> 000123
 %8.2f % y --‐> … 456.79
 "8.2e" %y--‐> 4.57e+02
 "-8s"%y "Hello" ‐> Hello …

(Continued)

678 ◾ UNIX: The Textbook, Third Edition

TABLE 16.6 (CONTINUED) Python Syntax and Command Summary

Common List Methods
L.method() Result/Returns
append(obj) Append obj to end of L
count(obj) Returns int nbr of occurrences of

obj in L
index(obj) Returns index of first occurrence of

obj in L; raises ValueError if
obj not in L

pop([index]) Returns item at specified index or
item at end of L if index not
given; raises IndexError if L is
empty or index is out of range

remove(obj) Removes first occurrence of objfrom
L; raises ValueError if obj is not in L

reverse() Reverses L in place
sort() Sorts L in place

Common Tuple Methods
T.method() Returns
count(obj) Returns nbr of occurrences of obj

in T
index(obj) Returns index of first occurrenceof

obj in T; raises ValueError if
obj is not in T

Common Dictionary Methods

D.method() Result/Returns
clear() Remove all items from D
get(k [,val]) Return D[k] if k in D, else val
has_key(k) Return True if k in D, else False
items() Return list of key-value pairs in D;

each list item is two‐item tuple
keys() Return list of D’s keys
pop(k, [val]) Remove key k, return mapped value

or val if k not in D
values() Return list of D’s values

Common File Methods
F.method() Result/Returns
read([n]) Return str of next n chars from F, or

up to EOF if n not given
readline([n]) Return str up to next newline, or at

most n chars if specified
readlines() Return list of all lines in F, where

each item is a line
write(s) Write str s to F
writelines(L) Write all str in seq L to F
close() Closes the file

Python    ◾    679

QUESTIONS AND PROBLEMS

 1. Type in the following Python code, with the indentation shown, and note what error
messages you get. Then, after each error message, type in the proper indentation,
until you can execute all eight lines of code.
x= 23
if x==27:
print "no go"
 print "why?"
 elif x ==26:
print "still a no go"
 else:
 print "why?"

2.

 a. Take the code shown in Example 16.2 and convert it to a function script file that
can be executed using Way 3 (Import script mode). Name the function script file
testcase.py. Save it in the current working directory. The function should allow
you to enter different values of x as an input argument each time it is invoked, and
print out results on screen.

 b. How is the function brought into and invoked in Python? Test it with several
values of x.

3.

 a. Take the code shown in Example 16.3 and convert it to a function script file that
can be executed using Way 3 (Import script mode). Name it nested.py, and save it
in the current working directory. The function should allow you to enter different
values of w, y, and z as input arguments each time it is invoked, and print out the
results on screen.

 b. How is the function brought into and invoked in Python? Test it with several
values of w, y, and z.

 4. From the following psuedocode plan,
for i ← 1 to length(A)
 j ← i
 while j > 0 and A[j-1] > A[j]
 swap A[j] and A[j-1]
 j ← j - 1

 write and test a script file, using Way 2 (Script mode), that:

 a. Allows the user to pass a list individual numbers (real or integer) held in a list A
in random order, as arguments to it, and

 b. Uses for and while repetition structure(s) to sort the numbers from list A into
ascending order, so their values can print out from low to high, left to right on the
screen.

680 ◾ UNIX: The Textbook, Third Edition

 5. Create a function script file in Python that uses Way 3 (Import script mode) to exe-
cute it. Name it factIter.py, and have it calculate the factorial of an integer number
using the while indeterminate repetition structure. Test it on the Python command
line with several integer values to the script file.

 6. Give a definition of list comprehensions, and how the comprehension functional
component in Python works on lists, sets, and dictionaries.

 7. Similarly to Example 16.10, write a Python function script file that uses Way 3
(Import script mode) to execute. It must deploy the list function, and when invoked
at the Python command line, allows you to input integer numbers for the indices of
the matrix, and output the resulting random number matrix.

 8. Convert the Python function script file you created in Problem 16.7 into a new Python
function script file that writes the random number matrix to a file named matrixout.
txt, similarly to what is done in Example 16.9.

9.

 a. Convert the script file from Example 16.13 into a new Way 3 (Import script
mode) function script file that obtains the filename as an input argument to the
function.

 b. Rename the data.txt file that Example 16.13’s script file worked on to data2.txt.
Test your new function script file with the filename data2.txt.

 c. What are the values of collection[2], collection[2][1], and collec-
tion[1][1]? How can you obtain these on the Python command line after your
new function script file has run?

 10. Using Way 2 (Script mode) to execute it, create a Python dictionary that represents a
3 × 3, two-dimensional matrix of real numbers of your choice. In the same script file,
have it print out the elements of the matrix as

row 1
row 2
row 3

 11. After doing Example 16.14, and using the Python standard library reference docu-
mentation, find and make a list of some of the basic set operations available (giving
the basic syntax for each).

 12. Similarly to Examples 16.8 and 16.20, and using Way 3 (Import script mode):

 a. Write a Python function script file that takes a filename as an argument, and

 b. Uses a robust set of try:…except:…else: error handling statements in it to
test the filename, and

 c. Opens the file named in a., reads a collection of integers from the file into a list,
and

Python    ◾    681

 d. Converts all of the list elements to integer numbers, and

 e. Produces a new integer list of the squares of all the integers, and finally

 f. Prints the list of the squares of all the integers.

 Then, test the function for your error handling statements with erroneous file
names, or names of files that are not in the current working directory.

 13. Modify the code in arith1.py from Example 16.19 so that the variable c is declared
as a global variable in all four functions (add, subtract, multiply, and divide). For
example:

def add(a,b):
 global c
 c = a + b
#NO RETURN STATEMENT!

 Then:

 a. Save the file as arith2.py.

 b. Import arith2, and redo in-chapter Exercise 16.10.

 c. Explain the results you get when you type >>>arith2.c on the Python com-
mand line at any particular point after you have imported and invoked the file
arith2 with some numeric arguments.

 14. Take the Bourne shell script named cmdargs_demo, shown in Section 12.4, and con-
vert it to Python code that runs using Way 2 (Script mode). Your Python conversion
should find the byte sizes of all ordinary (regular) and dot (.) files in the directory
specified as an argument to the command, and add them up to print a total. It should
skip over subdirectories. It should include the branching structure for error handling
statements from the original Bourne shell script.

 Hint: The following line of Python code adds up or accumulates the running total of
file byte sizes of ordinary and dot files in the directory specified:

x = sum(os.path.getsize(f) for f in os.listdir(directory) if
os.path.isfile(f))

 15. Write a Way 2 (Script mode) Python script that takes an ordinary file in the current
working directory as an argument, and removes the file from the file system if its size
is zero bytes. Otherwise, the script should display the file’s name, size, number of
hard links, and inode number (in this order) on one line, with a header, similarly to
what is shown in Example 16.25. Your script must do appropriate exception handling;
for example, it should not work on hidden files or on files which are subdirectories in
the current working directory.

 16. Following Example 16.30, substitute your own selected directory name on your UNIX
system as the source for backup, and back up all the files in that selected directory to

682 ◾ UNIX: The Textbook, Third Edition

a mounted USB thumb drive on your system in a rolling scheme of three directories.
Then, make changes to the source files and directory on the hard drive, and run the
script file again to see how the changes have been synchronized in the files and direc-
tory on the USB thumb drive.

 17. Beginning with the Tkinter script shown in Example 16.51, add Python and Tkinter
code to allow the user to do not only Fahrenheit-to-Celsius conversions, but also
Celsius-to-Fahrenheit conversions. The layout of the widgets in the Tkinter GUI for
this problem can look similar to Figure 16.23.

 18. Add a single operating system call to the Example 16.52 code that executes the ps
command. Every time you press <Enter> and start a new successive thread, that
thread should execute the ps command with output to stdout.

 19. Add a single operating system call to the Example 16.53 code that executes the
ping –c 5 google.com command. Every thread will then ping google.com
“simultaneously.”

 20. Write a program using Python threads that pings 10 different hosts simultaneously.

 21. Starting with the Python code from Example 16.55, rewrite the program so that an
indeterminate number of values are produced by the producer and consumed by the
consumer. Termination of the program can be achieved with <Ctrl-Z> if necessary.

FIGURE 16.23 TempConversion cell layout.

http://www.google.com
http://www.google.com

683

C h a p t e r 17

UNIX Tools for Software
Development

Objectives

• To summarize computer programming languages at different levels

• To discuss interpreted and compiled languages and the compilation process

• To briefly describe the software engineering life cycle

• To discuss UNIX program generation tools for C to perform the following tasks: edit-
ing, indenting, compiling (of C, C++, and Java programs), handling module-based
software, creating libraries, source code management, and revision control

• To describe UNIX tools for static analysis of C programs: verifying code for portabil-
ity and profiling

• To discuss UNIX tools for dynamic analysis of C programs: debugging, tracing, and
monitoring performance

• To cover the commands and primitives

 ar, emacs, g++, gcc, gdb, get, git (and all related commands), grep,
help, indent, javac, make, nm, ranlib, rlog, strip, time

17.1 INTRODUCTION
A typical UNIX system supports several high-level languages, both interpreted and com-
piled. These languages include C, C++, Pascal, Java, LISP, and FORTRAN. However, most
of the application software for the UNIX platform is developed in the C language, the
language in which the UNIX operating system is written. Thus, a range of software engi-
neering tools are available for use in developing software in this language. Many of these
tools can also be used for developing software in other programming languages, C++ in
particular.

684 ◾ UNIX: The Textbook, Third Edition

The UNIX operating system has a wealth of software engineering tools for program gen-
eration and static and dynamic analysis of programs. They include tools for editing source
code, indenting source code, compiling and linking, handling module-based software,
creating libraries, profiling, verifying source code for portability, source code manage-
ment, debugging, tracing, and performance monitoring. In this chapter, we describe some
of the commonly used tools in the development of C-based software. The extent of discus-
sion of these tools varies from brief to detailed, depending on their usefulness and how
often they are used in practice. Before discussing these tools, however, we briefly describe
various types of languages that can be used to write computer software. In doing so, we
also discuss both interpreted and compiled languages.

17.2 COMPUTER PROGRAMMING LANGUAGES
Computer programs can be written in a wide variety of programming languages. The
native language of a computer is known as its machine language, the language compris-
ing the instruction set of the CPU inside the computer. Recall that the instruction set of
a CPU consists of instructions that the CPU understands. These instructions enable the
performance of various types of operations on data, such as arithmetic, logic, shift, and
I/O operations. Today’s CPUs are made of bistate devices (devices that operate in on or off
states), so CPU instructions are in the form of 0s and 1s (0 for the off state and 1 for the on
state). The total number of instructions for a CPU and the maximum length (in bytes) of
an instruction is CPU dependent. Whereas reduced instruction set computer (RISC)-based
CPUs have several hundred simple instructions, complex instruction set computer (CISC)-
based CPUs have a much smaller number of complex instructions. A program written in
a CPU’s machine language is known as machine program, commonly known as machine
code. The machine language programs are the most efficient because they are written in a
CPU’s native language. However, they are the most difficult to write because the machine
language is very different from any spoken language; the programmer has to write these
programs in 1s and 0s, and a change in one bit can cause major problems. Debugging
machine language programs is a very challenging and time-consuming task. For these
reasons, programs today are rarely written in machine languages.

In assembly language programming, machine instructions are written in English-like
words, called mnemonics. Because programs written in assembly language are closer to the
English language, they are relatively easier to write and debug. However, these programs
must be translated into the machine language of the CPU used in your computer before
you can execute them. This process of translation is carried out by a program called an
assembler. You have to execute a command to run an assembler, with the file containing an
assembly language program as its argument. Although assembly languages are becoming
less popular, they are still used to write time-critical programs for controlling real-time
systems (e.g., the controllers in drilling machines for oil wells) that have limited amounts
of main storage.

In an effort to bring programming languages closer to the English language—and make
programming and debugging tasks easier—high-level languages (HLLs) were developed.
Commonly used high-level languages are Ada, C, C++, Java, JavaScript, Python, BASIC,

UNIX Tools for Software Development    ◾    685

FORTRAN, LISP, SASL, Pascal, and Prolog. Some of these languages are interpreted (e.g.,
JavaScript, LISP, SASL, and all shell scripts), whereas others are compiled (e.g., C, C++,
and Java). On the one hand, programs written in an interpreted language are executed one
instruction at a time by a program called an interpreter, without translating them into the
machine code for the CPU used in the computer. On the other hand, programs written
in compiled languages must be translated into the machine code for the underlying CPU
before they are executed. This translation is carried out by a program called a compiler,
which generates the assembly version of the high-level language program. The assembly
version has to go through further translation before the executable code is generated. The
compiled languages run many times faster than the interpreted languages because com-
piled languages are directly executed by the CPU, whereas the interpreted languages are
executed by a piece of software (an interpreter).

However, the Java language is not compiled in the traditional sense. Java programs
are translated into a form known as the Java bytecode, which is then interpreted by an
interpreter.

To simplify the task of writing computer programs even more, languages at a higher
level even than the HLLs were developed. They include scripting and visual languages
such as UNIX shell programming, Perl, Visual BASIC, and Visual C++. Some of these
languages are interpreted; others are compiled. Figure 17.1 shows the proximity of various
types of programming languages to the computer hardware, ease of their use, and relative
speed at which programs are executed.

As the level of programming languages increases, the task of writing programs
becomes easier and programs become more readable. The trade-off is that programs
written in HLLs take longer to run. For interpreted programs, the increase in pro-
gram running time is due to the fact that another program (the interpreter) is running
the program. For compiled languages, the compilation process takes longer and the
resulting machine code is usually much bigger than it would be if written in assembly
language by hand. However, time is saved because the ease of programming in HLLs

Speed of
execution

Ease of
programming

Fourth-generation
languages

Example
languages

Perl, Visual BASIC

C, C++ Java, FORTRAN

MASM, Turbo assembler

Specific to every CPU

Example
instructions

Draw window (…)

While (count < 100){…}

ADD
JMP

X, AX
L1

1001110100111101

High-level languages

Assembly languages

Machine languages

Hardware

FIGURE 17.1 Levels of programming languages, with examples, ease of programming, and speed
of execution.

686 ◾ UNIX: The Textbook, Third Edition

far outweighs the increase in code size. Figure 17.1 also shows some language state-
ment examples to demonstrate the increased readability of programs as the level of
programming languages increases.

17.3 THE COMPILATION PROCESS
Because our focus in this chapter is on UNIX tools—primarily for the C programming
language (a compiled language)—we need to describe briefly the compilation process
before moving on. As we stated in Section 17.2, computer programs written in compiled
languages must be translated to the machine code of the CPU used in the computer system
on which they are to execute. This translation is usually a three-step process consisting of
compilation, assembly, and linking. The compilation process translates the source code (e.g.,
a C program) to the corresponding assembly code for the CPU used in the computer sys-
tem. The assembly code is then translated to the corresponding machine code, known as
object code. Finally, the object code is translated to the executable code. Figure 17.2 outlines
the translation process.

The object code consists of machine instructions, but it is not executable because the
source program might have used some library functions that the assembler cannot resolve

Source
code in an

HLL

Compiler

Assembly
code

Assembler

Object
code

Linker

Executable
code

FIGURE 17.2 The process of translating a high-level language program to executable code.

UNIX Tools for Software Development    ◾    687

references to, because the code for these functions is not in the source file(s). The linker
performs the task of linking (connecting) the object code for a program and the object
code in a library, and generates the executable binary code.

The translation of C programs goes through a preprocessing stage before it is compiled.
The C preprocessor translates program statements that start with the # sign. Figure 17.3
outlines the compilation process for C programs. The entire translation process is car-
ried out by a single compiler command. We discuss various UNIX compilers later in this
chapter.

17.4 THE SOFTWARE ENGINEERING LIFE CYCLE
A software product is developed in a sequence of phases, collectively known as the software
life cycle. Several life cycle models are available in the literature and used in practice. The
life cycle used for a specific product depends on its size, the nature of the software to be

C source
code

C
preprocessor

C
compiler

Assembly
code

Assembler

Object code

Linker

Executable
code

FIGURE 17.3 The process of translating C programs to executable code.

688 ◾ UNIX: The Textbook, Third Edition

developed (scientific, business, etc.), and the design methodology used (object oriented or
classical). Some of the commonly used life cycle models are build-and-fix, waterfall, and
spiral. The common phases in most life cycle models are requirement analysis, specifica-
tions, planning, design, coding, testing, installation, and maintenance. A full discussion of
life cycle models and their phases is outside the scope of this textbook, but we discuss the
coding phase in detail—in particular, the UNIX program development tools that can be
used in this phase.

The program development process consists of three steps: program generation, static
analysis of the source code, and dynamic analysis of the executable code. The purpose of the
program generation phase is to create source code and generate the executable code for
the source code. Hence, it involves tools for editing text files, indenting the source code
properly, compiling the source code, handling module-based software, creating libraries,
managing the source code, and controlling revisions. The static analysis phase consists
of verifying the source code for portability and measuring metrics related to the source
code (e.g., the number of calls to a function and the time taken by each function). The
dynamic analysis phase comprises debugging, tracing, and monitoring the performance of
the software, including testing it against product requirements. In the rest of this chapter,
we describe UNIX tools for all three steps. The depth of discussion on each tool depends on
its usefulness for an average software developer, the frequency of its use, and how widely it
is available on various UNIX platforms.

17.5 PROGRAM GENERATION TOOLS
The program generation phase consists of creating source code and generating the execut-
able code for it. Hence, it involves tools for editing text files, indenting the source code
properly, compiling the source code, handling module-based software, creating libraries,
managing the source code, and controlling revisions. We now discuss the UNIX tools for
supporting these tasks.

17.5.1 Generating C Source Files

Any text editor can be used to generate C program source files. We discussed the most
frequently used UNIX editors, including vim and emacs, in Chapter 3.

17.5.2 Indenting C Source Code

Proper indentation of source code is an important part of good coding practice, primar-
ily because it enhances the readability of the code, and readable code is easier to maintain
(debug, correct, and enhance). The best-known indentation style for C programs was pro-
posed by Brian Kernighan and Dennis Ritchie in The C Programming Language (1978), the
first book on the C language. It is commonly known as the K&R (Kernighan and Ritchie)
indentation style. Most non-C programmers are not familiar with this style unless they
have read the book. The UNIX utility indent can be used to indent a C program properly.
This utility is available in PC-BSD but not in Solaris. The following is a brief description of
the indent command.

UNIX Tools for Software Development    ◾    689

SYNTAX

indent input-file [output-file] [options]

Purpose: This command reads a syntactically correct program specified in input-file,
indents it according to some commonly accepted C program structure, and saves the
formatted program in output-file if it is specified in the command line. If the output
file is not specified, the formatted version replaces the original version after saving the
original version in a file that has the same name as input-file and extension .bak.

Commonly used options/features:
/*INDENT OFF*/ The source code between these two
/*INDENT ON*/ comments is not formatted by indent
-bl Format according to Pascal-like syntax
-br Format according to the more commonly used K&R-like syntax,

the default setup

Several other options allow you to format your code in various styles. You can specify
these options before or after the file names. The indent command makes sure that the
names of input-file and output-file are different; if they are the same, it gives an error mes-
sage and quits. We show a simple use of the command in the following session using the
C program file called second.c. The indent command saves the original contents of the
source file second.c in the second.c.bak file in the current directory.

% more second.c
#include <stdio.h>
main()
{
 int i, j;

 for (i=0,j=10; i < j; i++)
 {
 printf("UNIX Rules the Networking World!\n");
 }
}
% indent second.c
% cat second.c
#include <stdio.h>
main()
{
 int i , j;

 for (i = 0, j = 10; i < j; i++) {
 printf("UNIX Rules the Networking World!\n");
 }
}
%

In the following in-chapter exercise, you will use indent to practice indentation of C
programs.

690 ◾ UNIX: The Textbook, Third Edition

EXERCISE 17.1

Create the second.c file just described and indent it according to the K&R style by using the
indent command. What command lines did you use?

17.5.3 Compiling C, C++, and JAVA Programs

Several C compilers are available on UNIX, including cc, xlc, and gcc. The most com-
monly used C compiler for UNIX is the GNU C/C++ compiler, gcc. This compiler is
written for ANSI C, the most recent standard for C language. All C++ compilers, such
as the GNU compiler for C++, g++, can also be used to compile C programs. The g++
compiler invokes gcc with options necessary to make it recognize C++ source code.
Although we primarily discuss the gcc compiler in this section, we do show a few small
examples of the C++ and Java programs and their compilation with the g++ and javac
compilers. We use the cc compiler for examples in the rest of the chapter; all of the
examples work for the gcc compiler, too. The following is a brief description of the gcc
command. Most of the options discussed in this section for the gcc compiler also work
for the cc compiler. The GNU compilers were preinstalled on PC-BSD, but not avail-
able on Solaris. So, as shown in Chapter 23, Section 7.3, we downloaded and installed
the GNU compiler package for Solaris with the pkg command. Then, on PC-BSD, the
default compile command was gcc48, and on Solaris it was gcc. In the following ses-
sions, we show the compile command simply as gcc.

The gcc command can be used with or without options. We describe some basic options
here and some in later sections of this chapter. One of the commonly used options, even by
the beginners, is -o. You can use this option to inform gcc that it should store the execut-
able code in a particular file instead of the default a.out file. In the following session, we
show compilation of the C program in the first.c file, with and without the -o option.
The gcc first.c command produces the executable code in the a.out file and the gcc
-o slogan first.c command produces the executable code in the slogan file. The
ls command is used to show the names of the executable files generated by the two gcc
commands.

SYNTAX

gcc [options] file-list

Purpose: This command can be used to invoke the C compilation system. When exe-
cuted, it preprocesses, compiles, assembles, and links to generate executable code.
The executable code is placed in the a.out file by default. The command accepts sev-
eral types of files and processes them according to the options specified in the com-
mand line. The files can be archive files (.a extension), C source files (.c extension), C++
source files (.C, .cc, or .cxx extension), assembler files (.s extension), preprocessed files
(.i extension), or object files (.o extension). When a file extension is not recognizable,
the command assumes the file to be an object or library/archive file. The files are speci-
fied in file-list.

UNIX Tools for Software Development    ◾    691

Commonly used options/features:
-ansi Enforce full ANSI conformance.
-c Suppress the linking phase and keep object files (with the .o extension).
-g Create symbol table, profiling, and debugging information for use with

gdb (GNU Debugger).
-llib Link to the lib library.
-mconfig Optimize code for config CPU (config can specify a wide variety of

CPUs, including Intel 80386, 80486, Motorola 68K series, RS6000, AMD
29K series, and MIPS processors).

-o file Create executable in file, instead of the default file a.out.
-O[level] Optimize. You can specify 0–3 as level; generally, the higher the num-

ber for level, the higher the level of optimization. No optimization is
done if level is 0.

-pg Provide profile information to be used with the profiling tool gprof.
-S Do not assemble or link .c files, and leave assembly versions in corre-

sponding files with the .s extension.
-v Verbose mode: Display commands as they are invoked.
-w Suppress warnings.

% cat first.c
#include <stdio.h>

int main ()
{
 printf("UNIX Rules the Networking World!\n");
 return (0);
}
% ls
first.c second.c
% gcc first.c
% ls
a.out first.c second.c
% a.out
UNIX Rules the Networking World!
% gcc -o slogan first.c
% ls
a.out first.c second.c slogan
% slogan
UNIX Rules the Networking World!
%

If your shell’s search path does not include your current directory (.), you will get the
message a.out: Command not found., as shown in the following session. If this
happens, then you have two options: you can either run the command as ./a.out (that
is, explicitly inform the shell that it should run the a.out file in your current directory)
or include your current directory in your shell’s search path and rerun the command as

692 ◾ UNIX: The Textbook, Third Edition

a.out. The following session illustrates both options. Note that the change in your search
path is effective for your current session only; for a permanent change in the search path,
you need to change the value of the path variable in your ~/.login or ~/.cshrc file (see
Chapter 2 for details).

% a.out
a.out: Command not found.
% ./a.out
UNIX Rules the Networking World!
% set path = ($path ~)
% a.out
UNIX Rules the Networking World!
%

Under Bash, the search path may be changed using the PATH=$PATH:. command.
For a permanent change, you need to change the PATH variable’s value in the ~/.profile or
~/.bash_profile file.

17.5.3.1 Dealing with Multiple Source Files
You can use the gcc command to compile and link multiple C source files and create an
executable file, all in a single command line. For example, you can use the following com-
mand line to create the executable file called polish for the C source files driver.c, stack.c,
and misc.c.

% gcc driver.c stack.c misc.c -o polish
%

If one of the three source files is modified, you need to retype the entire command line,
which creates two problems. First, all three files are compiled into their respective object
modules, although only one needs recompilation. This results in longer compilation time,
particularly if the files are large. Second, retyping the entire line may not be a big problem
when you are dealing with three files (as here), but you certainly will not like having to do
it with a much larger number of files. To avoid these problems, you should create object
modules for all source files and then recompile only those modules that are updated. All
the object modules are then linked together to create a single executable file.

You can use the gcc command with the -c option to create object modules for the
C source files. When you compile a program with the -c option, the compiler leaves an
object file in your current directory. The object file has the name of the source file and
an .o extension. You can link multiple object files by using another gcc command. In
the following session, we compile three source modules—driver.c, stack.c, and misc.c—
separately to create their object files, and then use another gcc command to link them and
create a single executable file, polish.

% gcc -c driver.c
% gcc -c stack.c

UNIX Tools for Software Development    ◾    693

% gcc -c misc.c
% gcc misc.o stack.o driver.o -o polish
% polish
[output of the program]
%

You can also compile multiple files with the -c option. In the first of the following com-
mand lines, we compile all three source files with a single command to generate the object
files. The compiler shows the names of the files as it compiles them. The order in which files
are listed in the command line is not important. The second command line links the three
object files and generates one executable file, polish.

% gcc -c driver.c stack.c misc.c
% gcc misc.o stack.o driver.o -o polish
%

Now if you update one of the source files, you need to generate only the object file for
that source file by using the gcc -c command. Then you link all the object files again
using the second of the gcc command lines to generate the executable file.

17.5.3.2 Linking Libraries
The C compilers on UNIX systems link appropriate libraries with your program when you
compile it. Sometimes, however, you have to tell the compiler explicitly to link the required
libraries. You can do so by using the gcc command with the -l option, immediately fol-
lowed by the letters in the library name that follow the string lib and before the extension.
Most libraries are in the /lib directory. You have to use a separate -l option for each library
that you need to link. In the following session, we link the math library (/lib/libm.a) to
the object code for the program in the power.c file. We used the first gcc command line
to show the error message generated by the compiler if the math library is not linked. The
message says that the symbol pow is not found in the power.o file, the file in which it is
used. The name of the math library is libm.a, so we use the letter m, which follows the
string lib and precedes the extension, with the –l option.

% cat power.c
#include <stdio.h>
#include <math.h>

int main()
{
 float x,y;

 printf ("The program takes x and y from stdin and displays
x^y.\n");

 printf ("Enter integer x: ");
 scanf ("%f", &x);
 printf ("Enter integer y: ");

694 ◾ UNIX: The Textbook, Third Edition

 scanf ("%f", &y);
 printf ("x^y is: %6.3f\n", pow((double)x,(double)y));
 return(0);
}
% gcc power.c
/tmp//ccnEwHNH.o: In function 'main':
power_lib.c:(.text+0x73): undefined reference to 'pow'
collect2: ld returned 1 exit status
% gcc power.c -lm -o power
% power
The program takes x and y from stdin and displays x^y.
Enter integer x: 9.82
Enter integer y: 2.3
x^y is: 191.362
%

17.5.3.3 Compiling C++ and Java Programs
You can use the gcc compiler to compile C++ programs as well. The file containing C++
source must have one of the following extensions: .C, .CPP, .cpp, .c++, or .cc.

Java source code is compiled (translated) into Java bytecode and is interpreted by the
Java Virtual Machine (JVM), also known as the Java Interpreter. The Java compiler on our
UNIX system is called javac, and the JVM is java. Thus, in order to run a Java program
in a file, say Hello.java, we use the javac compiler to compile it. It produces the Java byte-
code and stores it in the Hello.class file, which is interpreted with the java command, as
shown in the following session.

% javac Hello.java
$ java Hello
Hello, world!
%

In the following in-chapter exercise, you will use the gcc and javac compiler com-
mands to compile simple C, C++, and Java programs on your UNIX system and run them.

EXERCISE 17.2

Create simple C, C++, and Java programs on your UNIX system. Compile and run them
to appreciate the basic working of the two compilers (gcc and javac) and the Java Virtual
Machine, java.

17.5.4 Handling Module-Based C Software

Most of the useful C software is divided into multiple source (.c and .h) files. This soft-
ware structure has several advantages over a monolithic program stored in a single file.
First, it leads to more modular software, which results in smaller program files that are

UNIX Tools for Software Development    ◾    695

less time-consuming to edit, compile, test, and debug. It also allows recompilation of only
those source files that are modified, rather than the entire software system. Furthermore,
the multimodule structure supports information hiding, the key feature of object-oriented
(OO) design and programming.

However, the multimodule implementation also has its disadvantages. First, you must
know the files that comprise the entire system, the interdependencies of these files, and the
files that have been modified since you created the last executable system. Also, when you
are dealing with multimodule C software, compiling multiple files to create an executable
sometimes becomes a nuisance because two long command lines have to be typed: one to
create object files for all C source files, and the other to link the object files to create one
executable file. An easy way out of this inconvenience is to create a simple shell script that
does this work. The disadvantage of this technique is that, even if a single source file (or
header file) is modified, all object files are recreated, most of them unnecessarily.

UNIX has a much more powerful tool called make, which allows you to manage the com-
pilation of multiple modules into an executable. The make utility reads a specification file
called the makefile, that describes how the modules of a software system depend on each other.
The make utility uses this dependency specification in the makefile and the times when vari-
ous components were modified, in order to minimize the amount of recompilation. This util-
ity is very useful when your software system consists of tens of files and several executable
programs. In such a system, remembering and keeping track of all header, source, object, and
executable files can be a nightmare. The following is a brief description of the make utility.

SYNTAX

make [-f makefile]

Purpose: Updates a file based on the dependency relationship stored in a makefile called
makefile; the dependency relationship is specified in makefile in a particular format.

Commonly used options/features:
-f This option allows you to instruct make to read interdependency specification from

any file; without this option, the file name is treated as makefile or Makefile.
-h Display a brief description of all options.
-n Do not run any makefile commands; just display them.
-s Run in silent mode, without displaying any messages.

The make utility is based on interdependencies of files, target files that need to be built
(e.g., executable or object file[s]), and commands that are to be executed to build the tar-
get files. These interdependencies, targets, and commands are specified in the makefile as
make rules. The following is the syntax of a make rule.

SYNTAX

target-list: dependency-list
Or

696 ◾ UNIX: The Textbook, Third Edition

target-list! dependency-list
Or
target-list:: dependency-list
<Tab> command-list

Purpose: The syntax of a make rule

Here, target-list is a list of target files separated by one or more spaces, dependency-list
is a list of files (object, header, source code, etc.) separated by one or more spaces that the
target files depend on, and command-list is a list of commands—separated by the newline
character—that have to be executed to create the target files. Each command in the com-
mand-list starts with the <Tab> character. The comment lines start with the # character.
Files in the target-list and dependency-list may use shell wildcards ?, *, [], and {}.

With the : operator, a target is considered out of date if its modification time is less than
any of the files in the dependency-list. If the operator is !, the target is always recreated
after examining and recreating the sources in the dependency-list. With the :: operator,
the targets are always recreated if no sources are specified in dependency-list. In case of
the : and ! operator, the target is removed if make is interrupted, but not in case of the ::
operator. In this book, we use only the most commonly used : operator.

The makefile consists of a list of make rules that describe the dependency relationships
between files that are used to create an executable file. The make utility uses the rules in the
makefile to determine which of the files that comprise your program need to be recompiled
and relinked to recreate the executable. Thus, for example, if you modify a header (.h) file,
the make utility recompiles all those files that include this header file. The files that contain
this header file must be specified in the corresponding makefile.

The following makefile can be used for the power program discussed in Section 17.5.3.

% cat makefile
Sample makefile for the power program
Remember: each command line starts with a <TAB>
power: power.c
 cc power.c -o power -lm
%

If the executable file power exists and the source file power.c has not been modified since the
executable file was created, running make will give the message that the executable file is up to
date for power.c. Therefore, make has no need to recompile and relink power.c. At times, you
will need to force the remaking of an executable because, for example, one of the system header
files included in your source has changed. In order to force recreation of the executable, you
will need to change the last update time. One commonly used method for doing so is to use the
touch command, and rerun make. The following session illustrates these points.

% make
make: 'power' is up to date.

UNIX Tools for Software Development    ◾    697

% touch power.c
% make
cc power.c -o power -lm
%

When you use the touch command with one or more existing files as its arguments,
it sets their last update time to the current time. When used with a nonexistent file as an
argument, it creates a zero-length (i.e., empty) file with that name.

In the following in-chapter exercise, you will use the make command to create an exe-
cutable for a single source file.

EXERCISE 17.3

Create the executable code for the C program in the power.c file and place it in a file called
XpowerY. Use the make utility to perform this task by using the makefile given previously.
Run XpowerY to confirm that the program works properly.

In order to show a next-level use of the make utility, we partition the C program in
the power.c file into two files: power.c and compute.c. The following session shows the
contents of these files. The compute.c file contains the compute function, which is called
from the main function in power.c. To generate the executable in the power file, we need
to compile the two source files independently and then link them, as shown in the two cc
command lines at the end of the session.

% cat power.c
#include <stdio.h>

double compute(double x, double y);
int main()
{
 float x,y;

 printf ("The program takes x and y from stdin and
displays x^y.\n");

 printf ("Enter integer x: ");
 scanf ("%f", &x);
 printf ("Enter integer y: ");
 scanf ("%f", &y);
 printf ("x^y is: %6.3f\n", compute(x,y));
}
% cat compute.c
#include <math.h>
double compute (double x, double y)
{
 return (pow ((double) x, (double) y));
}

698 ◾ UNIX: The Textbook, Third Edition

% cc -c compute.c power.c
% ls
compute.c compute.o power.c power.o
% cc compute.o power.o -o power -lm
%

The dependency relationship of the two source files is quite simple in this case. To create
the executable file power, we need two object modules: power.o and compute.o. If either
of the two files power.c or compute.c is updated, the executable needs to be recreated.
Figure 17.4 shows this first cut on the dependency relationship.

The make rule corresponding to this dependency relationship is, therefore, the follow-
ing. Note that the math library has to be linked because the compute function in the
compute.c file uses the pow function in this library.

power: power.o compute.o
 cc power.o compute.o -o power -lm

We also know that the object file power.o is built from the source file power.c and that
the object file compute.o is built from the source file compute.c. Figure 17.5 shows the
second cut on the dependency relationship.

Thus, the make rules for creating the two object files are

power.o: power.c
 cc -c power.c

power

compute.opower.o

FIGURE 17.4 First cut on the make dependency tree.

power

power.o

power.c

compute.o

compute.c

FIGURE 17.5 Second cut on the make dependency tree.

UNIX Tools for Software Development    ◾    699

compute.o: compute.c
 cc -c compute.c

The final makefile is shown as

% cat makefile
power: power.o compute.o
 cc power.o compute.o -o power -lm
power.o: power.c
 cc -c power.c
compute.o: compute.c
 cc -c compute.c
%

We then execute the make utility with the preceding makefile:

% make
cc power.o compute.o -o power -lm
%

In the following in-chapter exercise, you will use the make utility to create the execut-
able code for a C source code that is partitioned into two files.

EXERCISE 17.4

Create the two source files power.c and compute.c and follow the steps just discussed to
create the executable file power by using the make utility.

We now change the structure of this software and divide it into six files called main.c,
compute.c, input.c, compute.h, input.h, and main.h. The contents of these files are shown
in the following session. Note that the compute.h and input.h files contain declarations
(prototypes) of the compute and input functions but not their definitions; the defini-
tions are in the compute.c and input.c files. The main.h file contains two prompts to be
displayed to the user. Figure 17.6 shows the new dependency tree.

% cat compute.h
/* Declaration/Prototype of the "compute" function */
double compute(double, double);
% cat input.h
/* Declaration/Prototype of the "input" function */
double input (char *);
% cat main.h
/* Declaration of prompts to users */
#define PROMPT1 "Enter the value of x: "
#define PROMPT2 "Enter the value of y: "

700 ◾ UNIX: The Textbook, Third Edition

% cat compute.c
#include <math.h>
#include "compute.h"
double compute (double x, double y)
{
 return (pow ((double) x, (double) y));
}
% cat input.c
#include <stdio.h>
#include "input.h"
double input(char *s)
{
 float x;

 printf ("%s", s);
 scanf ("%f", &x);
 return (x);
}
% cat main.c
#include <stdio.h>
#include "main.h"
#include "compute.h"
#include "input.h"

int main()
{
 double x, y;

 printf ("The program takes x and y from stdin and displays
x^y.\n");

 x = input(PROMPT1);
 y = input(PROMPT2);
 printf ("x^y is: %6.3f\n", compute(x,y));
}
%

power

main.o input.o

input.c input.hmain.c main.h

compute.o

compute.c compute.hinput.h compute.h

FIGURE 17.6 The make dependency tree for the sample C software.

UNIX Tools for Software Development    ◾    701

To generate the executable for the software, you need to generate the object files for the
three source files and link them into a single executable. The following commands are
needed to accomplish this task. Note that, as before, you need to link the math library
while linking the compute.o file to generate the executable in the power file.

% cc -c main.c input.c compute.c
% cc main.o input.o compute.o -o power -lm
%

The makefile corresponding to this dependency relationship is

% cat makefile
power: main.o input.o compute.o
 cc main.o input.o compute.o -o power -lm
main.o: main.c main.h input.h compute.h
 cc -c main.c
input.o: input.c input.h
 cc -c input.c
compute.o: compute.c compute.h
 cc -c compute.c
%

The execution of the make command results in the execution of the rules associated
with all targets in the makefile.

% make
cc main.o input.o compute.o -o power -lm
%

In the following in-chapter exercise, you will use the make utility to create an execut-
able for a multimodule C source.

EXERCISE 17.5

Create the three source and header files just discussed, and then use the make command
to create the executable in the file power. Use the preceding makefile to perform your task.

If the make rules are in a file other than makefile (or Makefile), you need to run the
make command with the -f option, as in make -f my.makefile.

The make rules as shown in the preceding makefile contain some redundant commands
that can be removed. The make utility has a predefined rule that invokes the cc -c
xxx.c -o xxx.o command for every rule, as in

xxx.o: xxx.c zzz.h
 cc -c xxx.c

702 ◾ UNIX: The Textbook, Third Edition

Furthermore, the make utility recognizes that the name of an object file is usually the
name of the source file. This capability is known as a standard dependency, and because of
it you can leave xxx.c from the dependency list corresponding to the target xxx.o. The fol-
lowing makefile, therefore, works as well as the one given previously.

% cat makefile
power: main.o input.o compute.o
 cc main.o input.o compute.o -o power -lm

main.o: main.h input.h compute.h

input.o: input.h

compute.o: compute.c compute.h
 cc -c compute.c
%

Running the make command with this makefile produces the following result:

% make
cc main.o input.o compute.o -o power -lm
%

The make utility supports simple macros that allow simple text substitution. You must
define the macros before using them; they are usually placed at the top of the makefile. A
macro definition has the following syntax.

SYNTAX

macro_name = text

Purpose: Substitute text for every occurrence of $(macro_name)

With this rule in place, text is substituted for every occurrence of $(macro _ name)
in the rest of the makefile. In addition, the make utility has some built-in macros, such as
CFLAGS, that are set to default values and are used by the built-in rules, such as execution
of the cc $(CFLAGS) -c xxx.c -o xxx.o command for a predefined rule, as previ-
ously described.

The default value of the CFLAGS macro is usually -O (for optimization), but it can be
changed to any other flag(s) for the cc compiler. On our system, CFLAGS is set to null; that
is, there are no default options. The make utility uses several built-in macros for the built-
in rules.

The following makefile shows the use of user-defined macros and some useful
make rules that can be invoked at the command line. It also shows that the com-
mands for make rules are not always compiler or linker commands; they can be any
shell commands.

UNIX Tools for Software Development    ◾    703

% cat makefile
CC = cc
OPTIONS = -O4 -o
OBJECTS = main.o input.o compute.o
SOURCES = main.c input.c compute.c
HEADERS = main.h input.h compute.h

power: main.c $(OBJECTS)
 $(CC) $(OPTIONS) power $(OBJECTS) -lm
main.o: main.c main.h input.h compute.h
input.o: input.c input.h
compute.o: compute.c compute.h

all.tar: $(SOURCES) $(HEADERS) makefile
 tar cvf - $(SOURCES) $(HEADERS) makefile > all.tar

clean:
 rm *.o
%

When the make command is executed, the commands for the last two targets (all.
tar and clean) are not executed, as these targets do not depend on anything and noth-
ing depends on them. You can invoke the commands associated with these targets by pass-
ing the targets as parameters to make. The advantage of putting these rules in the makefile
is that you do not have to remember which files to archive (by using the tar command
in this case) and which to remove once the final executable has been created. The make
clean command invokes the rm *.o command to remove all object files that are created
in the process of creating the executable for the software. The following session shows the
output of make when executed with two targets as command line arguments. The tar
archive is placed in the all.tar file.

% make all.tar clean
tar cvf - main.c input.c compute.c main.h input.h compute.h
makefile > all.tar
a main.c
a input.c
a compute.c
a main.h
a input.h
a compute.h
a makefile
rm *.o
%

In the following in-chapter exercise, you will run the previous sessions on your system
to further enhance your understanding of the make utility.

704 ◾ UNIX: The Textbook, Third Edition

EXERCISE 17.6

Use the preceding makefile to create the executable in the file power.

17.5.5 Building Object Files into a Library

The UNIX operating system allows you to archive (bundle) object files into a single file,
called a library. This process lets you to use the name of one file instead of a number of
object files in a makefile and allows function-level software reuse of C programs. The ar
tool, also called the librarian, allows you to perform this task. The following is a brief
description of this utility.

SYNTAX

ar key archive-name [file-list]

Purpose: Allows the creation and manipulation of archives; for example, to create an
archive of the object files in file-list and store it in the file called archive-file.

Commonly used options/features:
d Delete one or more files from an archive
q Append a file to an existing archive
r Create a new archive or overwrite an existing archive
s Force generation of the archive symbol table
t Display the table of contents of an archive
u Update (when used with the r key) or extract (when used with the x key) modules

only if they are newer than the existing one
v Generate a verbose output
x Extract one or more files from an archive and store them in the current working

directory

The archive-name must end with the .a extension. Once an archive file has been cre-
ated for a set of object modules, these modules can be accessed by the C compiler and the
UNIX loader (ld) by specifying the archive file as an argument. The compiler or the loader
automatically links the object modules needed from the archive. The ld command can be
used to explicitly link object files and libraries.

A key is like an option for a command. However, unlike with most UNIX commands,
you do not have to insert a hyphen (-) before a key for the ar command, but you can use
it if you want to. In the following examples of the ar command, we do not use a hyphen
before a key.

17.5.5.1 Creating an Archive
You can create an archive by using the ar command with the r key. The following com-
mand line creates an archive of the input.o and compute.o files in mathlib.a.

% ar r mathlib.a input.o compute.o
%

UNIX Tools for Software Development    ◾    705

Note that if mathlib.a does not exist, it is created. If it already exists and has the input.o
and compute.o modules in it, they are replaced with the ones specified in the command
line. Once the archive has been created in your current directory, you can link it to the
main.c file by using the compiler command such as cc, as in:

% cc main.c mathlib.a -o power
%

You can use the q key to append the object modules at the end of an existing archive.
Thus, in the following example, the object modules input.o and compute.o are appended
at the end of the existing archive mathlib.a. If the mathlib.a archive does not exist, it is
created.

% ar q mathlib.a input.o compute.o
%

Once you have created an archive of some object modules, you can remove the original
modules in order to save disk space, as in:

% rm compute.o input.o
%

17.5.5.2 Displaying the Table of Contents
You can display the table of contents of an archive by using the ar command with the t
key. The first of the following commands displays the table of contents of the mathlib.a
archive and the second displays the archive in verbose format (similar to the output of the
ls –l command).

% ar t mathlib.a
input.o
compute.o
% ar -tv mathlib.a
rw-r--r-- 1004/1004 1472 Nov 2 06:37 2014 input.o
rw-r--r-- 1004/1004 1208 Nov 2 06:37 2014 compute.o
%

17.5.5.3 Deleting Object Modules from an Archive
You can delete one or more object modules from an archive by using the ar command
with the d key. In the following session, the first ar command deletes the object module
input.o from the mathlib.a archive, and the second displays the new table of contents con-
firming the removal of the input.o object module from the archive.

% ar d mathlib.a input.o
% ar t mathlib.a
compute.o
%

706 ◾ UNIX: The Textbook, Third Edition

Note that creating a brand new archive from scratch is more efficient than modifying an
existing archive by using the d, q, and r keys.

17.5.5.4 Extracting Object Modules from an Archive
You can extract one or more object modules from an archive by using the ar command
with the x key. The extracted module remains in the archive. The following command line
can be used to extract the object module cpstr.o from the stringlib.a archive and put it in
your current directory.

% ar x stringlib.a cpstr.o
%

You can run the ls –l cpstr.o command to see that the cpstr.o object file has been
extracted, and the ar t mathlib.a command to see that this object file remains a part
of the archive.

Although we have shown the use of the ar command from the command line, you can
also run the command as part of a makefile so that an archive of the object files of a soft-
ware product is created after the executable file has been created. Doing so allows future
use of any general-purpose object modules (one or more functions in these modules) cre-
ated as part of the software. It is done at the end of a makefile with an explicit make rule,
as in:

mathlib.a: input.o compute.o
 ar rv mathlib.a input.o compute.o
 rm input.o compute.o

The following makefile is an enhancement of the makefile from the previous section
that can be used to create an archive of input.o and compute.o, called mathlib.a. It then
removes the input.o and compute.o files before creating the executable power by using
the archive mathlib.a.

% cat makefile
CC = cc
OPTIONS = -O4 -o
OBJECTS = main.o input.o compute.o
SOURCES = main.c input.c compute.c
HEADERS = main.h input.h compute.h

power: main.o mathlib.a
 $(CC) $(OPTIONS) power main.o mathlib.a -lm
main.o: main.h input.h compute.h

mathlib.a: input.o compute.o
 ar rv mathlib.a input.o compute.o
 rm input.o compute.o

UNIX Tools for Software Development    ◾    707

all.tar: $(SOURCES) $(HEADERS) makefile
 tar cvf - $(SOURCES) $(HEADERS) makefile > all.tar

clean:
 rm *.o
%

For each of these rules, the make utility executes a sequence of built-in commands that
generate the object module by using the cc command and archives this object module by
using the ar command. The following is a sample run of the preceding makefile.

% make
cc -O2 -pipe -c input.c
cc -O2 -pipe -c compute.c
ar rv mathlib.a input.o compute.o
r - input.o
r - compute.o
rm input.o compute.o
cc -O4 -o power main.o mathlib.a -lm
%

In the following in-chapter exercise, you will use the ar command with different options
to appreciate its various characteristics in dealing with the libraries of object files.

EXERCISE 17.7

Use the commands just discussed to create an archive, delete an object file from the archive,
display the table of contents for an archive, and extract an object file from the archive.
Show your work.

17.5.5.5 Working with the MRI Librarian
You can run the ar command with the –M option to invoke the MRI librarian, which
allows you to manage libraries with commands from standard input. In the following ses-
sion, we show how you can use this interface of the ar command to create an archive, add
a module to the archive, list modules currently in the archive, delete an archive, extract an
archive, save changes in the archive, and close this interface of ar. Note that the default
prompt for the MRI librarian is AR >.

% ar -M
AR >create math2lib.a
AR >addmod input.o compute.o
AR >list
rw-r--r-- 1004/1004 1480 Nov 2 11:15 2014 input.o
rw-r--r-- 1004/1004 1232 Nov 2 11:15 2014 compute.o
AR >delete compute.o
AR >list

708 ◾ UNIX: The Textbook, Third Edition

rw-r--r-- 1004/1004 1480 Nov 2 11:15 2014 input.o
AR >addmod compute.o
AR >list
rw-r--r-- 1004/1004 1480 Nov 2 11:15 2014 input.o
rw-r--r-- 1004/1004 1232 Nov 2 11:15 2014 compute.o
AR >extract input.o
AR >list
rw-r--r-- 1004/1004 1480 Nov 2 11:15 2014 input.o
rw-r--r-- 1004/1004 1232 Nov 2 11:15 2014 compute.o
AR >save
AR >end
%

In this session, the create command is used to create an archive, addmod to add
one or more object modules to the newly created archive, list to list the object files that
are currently in the archive, delete to delete one or more archives from the archive,
extract to extract a module from the archive, save to save the archive on the disk, and
end to quite the MRI librarian.

You can work with an existing archive by opening it with the open command, as in
open mathlib.a. You can browse through the manual page of ar for more information
about the additional features of the MRI librarian. Note that instead of modifying an exist-
ing archive (i.e., deleting and adding existing objects from the archive), it is more efficient
to remove the existing archive and create a brand new from scratch.

EXERCISE 17.8

Repeat the previous session on your system to understand how the MRI librarian works.

17.5.6 Working with Libraries

A library is an archive of object modules. Working with libraries, therefore, involves creat-
ing libraries, ordering modules in a library, and displaying library information. We dis-
cussed library creation and manipulation in several ways in the previous section. In this
section, we discuss the remaining two operations: ordering archives and displaying library
information.

17.5.6.1 Ordering Archives
Object files are not maintained in any particular order in an archive file created by the ar
command. On some UNIX systems, the caller function must occur before the called func-
tion regardless of whether they are in the same or different modules. This condition is a
problem because the cc and ld commands cannot locate object modules unless they are
properly ordered. When they cannot locate object modules, these commands display an
undefined symbol error message when they encounter a call to a function in an object
module in an archive. The easiest way to handle this problem is to use the ranlib utility,
which adds a table of contents to one or more archives that are passed as its parameters.

UNIX Tools for Software Development    ◾    709

This utility performs the same task as the ar command with the s key. The following is a
brief description of the ranlib utility.

SYNTAX

ranlib [archive-list]

Purpose: Adds a table of contents to each archive in archive-list

The following ranlib command adds a table of contents to the mathlib.a archive. The
ar s mathlib.a command can also be used to perform the same task.

$ ranlib mathlib.a
$

17.5.6.2 Displaying Library Information
The nm utility can be used to display the symbol table (names, types, sizes, entry points,
etc.) of libraries and object files. The command displays one line for each object (function
and global variable) in a library or object file. This output informs you about the functions
available in a library and the functions that these library functions depend on. Each output
line includes the size (in bytes) of an object, the type of the object (data object, function,
file, etc.), scope of the object, and the name of the object. This information is quite useful
for debugging libraries. The following is a brief description of the utility.

SYNTAX

nm key archive-name [file-list]

Purpose: Allows display of the symbol table of the library and object files specified in
file-list

Commonly used options/features:
-V Display the version number of the command
-n Display symbols according to their address and not alphabetically
-s Display names of the modules that contain the definitions of the symbols

In the following session, the nm -V command is used to display the version of the nm
command, and the nm mathlib.a command is used to display the information about
the mathlib.a library that we created in Section 17.4.

$ nm -V
GNU nm 2.17.50 [FreeBSD] 2007-07-03
Copyright 2007 Free Software Foundation, Inc.
This program is free software; you may redistribute it under the
terms of the GNU General Public License. This program has
absolutely no warranty.

710 ◾ UNIX: The Textbook, Third Edition

$ nm mathlib.a

input.o:
0000000000000000 T input
 U printf
 U scanf

compute.o:
0000000000000000 T compute
 U pow
%

The output of the nm command shows that it contains two object modules: input.o and
compute.o. Further, the printf, scanf, and pow symbols are undefined (U) and the
symbols input and compute are in the text (code) sections of the relevant object mod-
ules in the library.

The nm and grep commands are often run together in order to retrieve information
about a specific object. The following commands demonstrate the use of the nm command
on the math library (/usr/lib/libm.a). The command output shows that the pow function
is in the e_pow.o module.

% nm -s /usr/lib/libm.a | grep "pow"
imprecise_powl in imprecise.o
powl in imprecise.o
powf in e_powf.o
pow in e_pow.o
0000000000000000 T imprecise_powl
 U pow
0000000000000000 W powl
e_powf.o:
0000000000000000 T powf
e_pow.o:
0000000000000000 T pow
%

17.5.7 Version Control

Studies have shown that about two-thirds of the cost of a software product is spent on
maintenance. As we mentioned before, the maintenance of a software product comprises
corrective maintenance and enhancement. In corrective maintenance, the errors and bugs
found after the deployment of a software product are fixed. In enhancement, the product
is enhanced to include more features, such as an improved user interface. Regardless of its
type, maintenance means changing and/or revising the source code for the product and
generating new executables. This means using a version control system (VCS). As you revise
source code, you may need to undo changes made to it and go back to an earlier version of
the software. Moreover, if an individual or team of programmers is working on a piece of

UNIX Tools for Software Development    ◾    711

software, they should be able to locally and autonomously maintain editable (modifiable)
versions that can be joined together at a convenient time.

Git and GitHub are atomic-level, distributed, content-oriented VCSs. Atomic level means
that when you take a snapshot of the software package, everything in it is captured in the
snapshot at a single instance in time. Distributed means that the entire software package
you are working with is available to all collaborators locally at all times. Content oriented
means that when you join different branches of work on the software, only the content of
lines in the files along the branches you are merging are considered. Here, content means
“with form,” and context means “with meaning.” Git only considers content when it oper-
ates on your software files and directories; the individual(s), collaborator(s), or integrator(s)
of the software project are responsible for the merged context of the files in the software
package. The combining of different lines of development of a project that causes content
conflicts are indicated by Git with several useful strategies and mechanisms, and their
resolution is aided by many tools that are available as add-ons to Git. But only the people
writing and testing how the software works, and those people managing that process, are
responsible for resolving merged-context conflicts.

EXERCISE 17.9

Give a detailed example of what you think is content tracking in a revision control system.
Then contrast that example with what you think is context tracking.

Git, as a source code maintenance tool, is a software database for tracking changes made to
a set of source code files over time. Although programmers most often use it to coordinate
changes to software source code, you can use Git to track any kind of content. Git can

• Examine the state of your source code project at earlier points in time

• Show the differences among various states of the project, and the files present at those
states

• Split the project development into multiple independent lines, called branches, which
can evolve separately

• Regularly recombine branches by merging, or reconciling, the changes made in two
or more branches

• Allow many people to work on a project simultaneously, sharing and combining their
work as needed

Git is a member of the newer generation of distributed VCSs. Older systems such as
SCCS, RCS, CVS, and Subversion are centralized, meaning that there is a single, central
copy of the project content and history to which all users must refer. If the central copy
is unavailable, all users must wait until the central copy is online again. Distributed
systems such as Git have no central copy. Each user has a complete, independent copy

712 ◾ UNIX: The Textbook, Third Edition

of the entire project history, called a repository, and full access to all version control
facilities. Network access is only needed to share changes among members of the same
development team or group.

Git’s distributed nature accommodates many different styles of interaction, or work-
flows. Individuals can share work directly between their personal repositories. Git is the
technology behind the social coding website GitHub, which includes many well-known
open-source projects, most notably for the Linux kernel.

We discuss Git and GitHub in an examples-based tutorial presentation. For Git and
GitHub, the following subsections will include:

 1. How Git is used, and how it works on a UNIX system

 2. A high-level overview of the Git terminology, data structures, objects, and actions

 3. Illustrations, both graphical and verbal, of the Git staging model, what a directed
acyclic graph (DAG) is, and a finer-grained view of the object store contents

 4. A short and a long example of how to create, edit, branch, and merge branches of a
Git repository

 5. An exploration of GitHub as a remote repository

 6. Three basic examples of how to use git clone, git push, and git pull to
transfer repository contents between a local repository and GitHub

To get the most useful information out of this section, you are encouraged to first read
through the high-level background materials in first three subsections. Then do the exam-
ples in the subsequent three sections, as many times as necessary to become comfortable
using Git and GitHub. Finally, be sure to do all in-chapter exercises and the problem set on
Git and GitHub at the end of this chapter.

17.5.7.1 What Is Git Used for and How Does It Work?
Git is used to manage one or more source code project repositories, each packaged into
its own directory that you create for the source code files in that project. A repository is a
database containing all the information needed to archive and manage the revisions and
history of a project. In Git, as with most VCSs, a repository archives a complete copy of the
entire project, with all of the revisions to it.

Git maintains a set of configuration settings and files within each repository. Unlike file
data and other repository metadata, configuration settings are not propagated from one
repository to another during a cloning, or duplicating, operation. Instead, Git manages and
inspects the configuration and setup information on a per-site, per-user, and per-reposi-
tory basis. Within a repository, Git maintains two primary data structures, the object store
and the index. The object store is designed to be efficiently copied during a clone opera-
tion as part of the mechanism that supports a fully distributed VCS. The index is transi-
tory information, is private to a repository, and can be created or modified on demand as

UNIX Tools for Software Development    ◾    713

needed. All of this repository data is stored at the root of your working directory in a hid-
den subdirectory named .git.

Simply put, with Git and GitHub, you can manage your source code repositories and
work in an independent, collaborative, or integrative management way. A majority of the
introductory material we present here is aimed at the independent developer. From a learn-
ing point of view, you need to first know how to use Git in an independent way. Then we
also show some collaborative workflows, particularly with GitHub. We do not touch on the
integrative management techniques and commands of Git or GitHub.

EXERCISE 17.10

What do you think the role of an integrator of a project would be, in terms of what a revi-
sion control system accomplishes for a software development and maintenance program?

17.5.7.2 Basic Git Terminology
Following is a glossary of basic Git terminology used throughout our examples. This glos-
sary is partitioned into categories that reflect the basic structure of the Git repository itself.

17.5.7.2.1 Top-Level Terminology

Repository: The repository is the working directory, and contains inside of itself the
source code files you want to maintain and control, the object store, and the index, as
shown in Figure 17.7. The advantage of having the repository self-sufficient inside of
its own container is that the container can then be shared locally and globally.

 A repository can also be thought of as a collection of commits, each of which is an
archive of what the project’s working tree looked like at a past date, whether on your
machine or someone else’s. It also defines HEAD, which identifies the branch or com-
mit the current working tree stemmed from. It contains a set of branches and tags, to
identify certain commits by name.

�e working directory

Index Object store

Blobs, trees, commits, tags

Source code files: old, new, modified

FIGURE 17.7 The structure of the repository.

714 ◾ UNIX: The Textbook, Third Edition

Working directory: The working directory is any directory on your file system that has
a repository associated with it, typically indicated by the presence of a subdirectory
within it named .git. It includes all the files and subdirectories in that directory.

17.5.7.2.2 Primary Data Structures

Object store: Holds the changes in your source code over time, as you perform more
commit operations. It is found in the .git subdirectory of your working directory. Its
primary components or data structures are blobs, trees, commits, and tags.

The index (staging area): This is a cache, or intermediate area, between your working tree
and your repository. You can add changes to the index and build your next commit
step by step. When your index content is complete, you then commit from the index.
It is also used to keep information during failed merges (your side, their side, and
current state). Unlike other, similar tools you may have used, Git does not commit
changes directly from the working tree into the repository. Instead, changes are first
made in the index. Think of it as a way of double-checking your additions or modifi-
cations, one by one, before doing a commit. You can also call it the staging area.

17.5.7.2.3 Basic Object Types in the Object Store

Blobs: Each version of a file is represented as a blob. Blob, a contraction of “binary large
object,” is a term that’s commonly used in computing to refer to some variable or file
that can contain any data and whose internal structure is ignored by the program.
A blob is treated as being opaque. A blob holds a file’s data but does not contain any
metadata about the file or even its name.

Trees: A tree object represents one level of directory information. It records blob identi-
fiers, pathnames, and a bit of metadata for all the files in one directory. It can also
reference other subtree objects recursively and thus build a complete hierarchy of files
and subdirectories.

Commits: A commit object holds metadata for each change introduced into the reposi-
tory, including the author, committer, commit date, and log message. Each commit
points to a tree object that captures, in one complete snapshot, the state of the reposi-
tory at the time the commit was performed. The initial commit, or root commit, has
no parent. Most commits have one commit parent. However, as we explain later, a
commit, called a merge commit, can reference more than one parent. A commit is
the state of your project, or of your working tree at some point in time. The state of
HEAD at the time your commit is made becomes that commit’s parent. This is what
creates the revision history.

Tags: A tag is also a name for a commit, similar to a branch, except that it always names
the same commit, and can have its own shorthand descriptive text name. A tag object
assigns an arbitrary, human-readable name to a specific object, usually a commit.
Although the 40-digit-long hexadecimal number is an exact reference to a commit,

UNIX Tools for Software Development    ◾    715

a more tractable, understandable, and familiar tag name like Ver-1.0-Beta is more
useful for humans.

17.5.7.2.4 Components and Actions

Working tree: A working tree is a data structure component that represents the state of
your source code files and directories at any given point in the history of the reposi-
tory. Sometimes referenced as the contents of the index, it can be best thought of for
beginners in Git as the data structure tree that loads or fills the working directory
with its files and directories when you either create or checkout a commit.

Adding: Putting files from the working directory into the index for staging.

Branch: A branch is just a name for a line of commits, also called a reference. It is the
parentage of a commit that defines its history—hence, the typical notion of a “branch
of project development.” It can be simply thought of as a different line of development
in the project. A branch in Git is just a “label” that points to a commit. You can get
the full history through the parent pointers. A branch by default is only local to your
repository.

Checking out: Bringing a branch of the repository into the working directory is called
checking out.

Directed acyclic graph (DAG): A DAG is a graph of the state of a repository, show-
ing all commits and the parent–child relationships of the commits. It is also a
good graphic representation of the branches, tags, and location of HEAD, if those
are included in the graph. See Section 17.5.7.4 for more complete and descriptive
information.

Master: The main line of development in most repositories is done on a branch called
the master. It is the default name for the main branch of development.

HEAD: Your repository uses HEAD to define what is currently checked out. If you
checkout a branch, HEAD symbolically refers to that branch, indicating that the
branch name should be updated after the next commit operation. If you checkout a
specific commit, HEAD refers to that commit only. This is referred to as a detached
HEAD, and occurs, for example, if you check out a tag name.

Clone: A clone is a replicated copy of the entire repository, with all of its data structures,
files, configurations, and so on.

Merge: The opposite of branch—that is, the fusion of branches and their commits.

EXERCISE 17.11

What do you think would be the quickest and easiest way to delete a local repository on
your UNIX system?

716 ◾ UNIX: The Textbook, Third Edition

17.5.7.3 The Git Staging Model
Git has three main states that your files can be in: modified, staged, and committed.
Modified means that you have changed the file but have not committed it to your database
yet. Staged means that you have designated a modified file in its current version to go into
your next commit snapshot. Committed means that the data is safely stored in your Git
repository database. It is held as a data structure consisting of the four types of objects in
your object store.

The three main sections of a Git project are seen in Figure 17.8. They are the working
directory (where you initially add, create, or modify files), the index or staging area (where
you prepare files to be put into the repository), and the repository (that is, in a database held
in the .git subdirectory of your working directory).

The object store, in your .git subdirectory of your working directory, is where Git stores
the metadata and object database for your project. This is the most important part of Git,
and it is what is copied when you clone a repository to collaborate with other members of
a software development team or group. The working directory contains a single checked-
out copy of one version of the project. These files are pulled out of the compressed database
in the repository directory and placed on disk for you to use or modify using the git
checkout command. The index is a file contained in the .git subdirectory of your work-
ing directory that stores information about what will go into your next commit.

The basic Git workflow is as follows:

 1. You place new files into, delete files from, or modify files in your working directory.

 2. You stage the files, adding snapshots of them to your index.

 3. You do a commit, which takes the files as they are in the staging area and stores that
snapshot permanently to your object store.

If a particular version of a file is in the object store, it is considered committed. If it is
modified but has been added to the index, it is staged. And if it was changed since it was
checked out but has not been staged, it is modified.

Working
directory

Index
(staging

area)

Object
store

Edited files

Files

FIGURE 17.8 Working directory, index (staging area), and repository.

UNIX Tools for Software Development    ◾    717

17.5.7.4 Directed Acyclic Graphs
In order to plan or visualize the history of a repository structure, a directed acyclic graph
(DAG), or commit graph, can be used. The name of the graph is derived from the fact that
the flow of commits happens along the arrows of the graph (directed), and there is no way
you can form a closed circle of commits by following the arrows (it is acyclic). We show an
example in Figure 17.9, and will employ this graphic aid to help you visualize the state and
the history of the kinds of commits we show.

In Figure 17.9, the circles represent commits, and arrows point from a commit to its
parent(s). Time flows from left to right in a DAG, although there is no precise correlation
in terms of a time or date stamp on any of the commits. There is just the implication that
commits to the left happened earlier than commits to the right in the graph. For most
people, this is counterintuitive; usually we see the arrow pointing from something to its
successor. In the DAG, arrows point backward toward a parent from a child. The first com-
mit has no parents and is called a root commit; it was the initial commit in this repository’s
history. Most commits have a single parent, indicating that they evolved in a linear way
from a single previous state of the project, usually incorporating a set of related changes or
edits. A commit that has multiple parents is called a merge commit. This indicates that the
commit incorporates the changes made on one branch of the commit graph into a commit
on another branch of the graph.

There are two other important features of a DAG shown in Figure 17.9. The last commit
on the “release” branch has a tag at the top of it, which could contain a descriptive abbre-
viation of the name of that commit—perhaps “Version 1.0,” denoting that this is the first
release of the software project. Also, the letter “H” represents the position of HEAD, or the
currently checked-out commit on the master branch. We will omit the arrowheads in such
diagrams from now on.

The labels on the right side of this picture—release, master, and dev—are the named
branches. The branch name refers to the latest commit on that branch. Such a commit is
called the tip of the branch. The branch itself is defined as the collection of all commits in
the graph that are reachable from the tip by following the parent arrows backward along
the history to the initial commit.

release

masterH

dev

FIGURE 17.9 Example DAG.

718 ◾ UNIX: The Textbook, Third Edition

17.5.7.5 Contents of the Object Store
Now that we have illustrated how the working directory is structured, how commits are
staged, and the general layout of a repository as shown in a DAG, we can now take a finer-
grained look at the objects contained in the object store. Figure 17.10 shows the four object
types that are found in the object store and the relationships between those objects.

Remember from the DAG shown in Figure 17.9 that time flows from left to right and an
arrow points from a child to a parent. Starting at the top, we see a rectangle to the right rep-
resenting the branch name, and another smaller square representing a tag object. The name
by default is master, but can be assigned text that is more meaningful. The tag is a shorthand
label that might represent the initial release number or version of the software code. The circles
represent commits. So this diagram shows two commits. The triangles represent tree objects,
which can be thought of as directory or linking information between commits and blobs.
Finally, at the bottom are a number of blobs, shown linked to the trees that point to them.

In the next section, we discuss a few examples involving Git and GitHub. Before discuss-
ing these examples, we give a brief description of the git command.

SYNTAX

git [options] [option arguments] <command> [<command arguments>]

Purpose: A distributed version control system with a rich command set that tracks the
content of changes in source code files

Commonly used commands and command arguments:
add <file> Stage a file to the index
commit Take a snapshot of the working tree
config --global username "<name>" Configure a repository global username
log --oneline Display a short log of commits on the

current branch
init Initialize a repository in the current

directory
status Display the status of a repository

Tag

Trees

Trees

Blobs

Commits Branch
name

FIGURE 17.10 Contents of the object store.

UNIX Tools for Software Development    ◾    719

17.5.7.6 Examples of Using Git and GitHub
We show a few examples describing how to make use of Git and GitHub. Each example
consists of the following:

 1. Topic covered in the example

 2. Objectives of the example

 3. Introductory material for understanding the example

 4. Git commands used in the example

 5. Prerequisites for carrying out the example

 6. Detailed procedure

 7. Conclusions

Example 17.1: A Short Introduction to Git

Objectives: To briefly illustrate the Git staging model, and how to see differences
between the various states of the parts of the repository.

Introduction: As shown previously, the workflow in Git basically follows a pattern
of add, edit, modify, stage, and commit. This is the staging model. In this example,
we show the essential Git commands that allow you to do that, repetitively if nec-
essary. As you do more commits you add, in a linear fashion, more nodes on the
branch named master downstream, after you create the first node in this example.
Earlier commits are called upstream commits. The history of the repository flows
downstream from the initial commit to the latest commit. Similar to the UNIX diff
command, the four basic forms of the git diff command allow you to examine
and compare the files and directories present during different states of the repository.

Git commands referenced: Table 17.1 shows the Git commands, and a brief descrip-
tion of each, that are used in this example. It is arranged in the order presented. Any
argument enclosed in < > is a string of text. In order to get a more complete descrip-
tion of all the commands in the table, you can look at the man page for a particular
command. For example, man git-status gives you a complete man page for the
git status command.

Prerequisites: The following are the prerequisites for carrying out this example:

 1. Having Git installed on your PC-BSD or Solaris system
 2. Reading through and doing the in-chapter exercises shown in the previous

subsections

Procedure: Do the following steps, in order, to meet the objectives of this example.

 1. Create a working directory within which your Git repository will exist, and
make that the current working directory.
% mkdir short-git

720 ◾ UNIX: The Textbook, Third Edition

% cd short-git
%

 2. Do an initial configuration of Git.
% git config --global user.name "your_name"
% git config --global user. Email your_email_address
%

 3. Initialize a repository in the current working directory.

% git init
%

 This command initializes an empty Git repository in /usr/home/bob/short-
git/.git/.

 4. Create and save a short C program, named hello.c, in the current working
directory, as shown:

% cat hello.c
#include <stdio.h>
int main()
{
 printf("%s\n , "Hello Linus");
 return 0;
}
%

TABLE 17.1 Git Commands Referenced

Command Description

git config --global user.
name "<name>"

Sets the author of commits in this repository

git config --global user.
Email <email_address>

Sets the e-mail address of the author of commits in this
repository

git init Creates the .git directory in the working directory,
initializing the data structures and objects necessary for a
repository to exist

git status Reports the on the differences between files in the working
directory and the index, and what files are untracked.

git add <file> Stages a file to the index
git commit Takes a snapshot of the index, both files and directories
git diff Shows the difference between two project states, in this

form meaning your working directory and the index
git diff <commit_identifier> Shows the differences between your working tree and a

specifically identified commit
git diff –cached
<commit_identfier>

Shows the differences between staged files in the index and
a specifically identified commit

git diff <commit_id_1>
<commit_id_2>

Shows the difference between two project states, in this
form between commits commit_id_1 and commit_id_2

git log –oneline Shows history of commits in an abbreviated format

UNIX Tools for Software Development    ◾    721

 5. Compile hello.c, and list the files in the current working directory.
% gcc47 hello.c
% ls
a.out hello.c
%

 6. Use the git status command to examine the status of the repository at this
point. It will show you that you are on the branch named master, you can do
your initial commit, the untracked files are a.out and hello.c, and you can stage
those files by using git add.
% git status
On branch master
Initial commit
Untracked files:
 (use "git add <file>..." to include in what will be
committed)

 a.out
 hello.c
nothing added to commit but untracked files present (use
"git add" to track)
%

 7. Stage only the source code file hello.c with the git add command.
% git add hello.c
%

 8. Now do your initial commit.
% git commit
%

 Use the default text editor to put the message Added the Hello Linus
program on the first line of the file that appears, and then save and quit that
file.
/usr/home/bob/short-git/.git/COMMIT_EDITMSG: 13 lines, 285
characters.
[master (root-commit) 0527389] Added the Hello Linus
program
 1 file changed, 6 insertions(+)
 create mode 100644 hello.c

 9. Look at the status of the repository.

% git status
On branch master
Untracked files:
 (use "git add <file>..." to include in what will be
committed)
 a.out

722 ◾ UNIX: The Textbook, Third Edition

nothing added to commit but untracked files present (use
"git add" to track)
%

 10. Now lets make a change in the file hello.c, and track the changes with some of
the forms of the git diff command. First, edit the file with your favorite text
editor, and on the fourth line, add Torvalds after the word Linus, as shown
in the following command output:
% nl hello.c
 1 #include <stdio.h>
 2 int main ()
 3 {
 4 printf("%s\n", "Hello Linus Torvalds");
 5 return 0;
 6 }
%

 11. Examine the status of the repository. The output shows that the file has been
changed since the last commit, but has not been staged for a new commit yet.

% git status
On branch master
Changes not staged for commit:
 (use "git add <file>..." to update what will be
committed)

 (use "git checkout -- <file>..." to discard changes in
working directory)

 modified: hello.c
Untracked files:
 (use "git add <file>..." to include in what will be
committed)

 a.out
no changes added to commit (use "git add" and/or "git
commit -a")
%

 12. Now we use git diff to see the difference between what is in the working
directory and the index.

% git diff
diff --git a/hello.c b/hello.c
index f907257..621aad0 100644
--- a/hello.c
+++ b/hello.c
@@ -1,6 +1,6 @@
#include <stdio.h>
 int main ()
 {
- printf("%s\n", "Hello Linus");

UNIX Tools for Software Development    ◾    723

+ printf("%s\n", "Hello Linus Torvalds");
 return 0;
 }
%

 13. Now stage the file hello.c in preparation for a new commit.
% git add hello.c
%

 14. If you execute git diff, since there are no differences between what is in the
working directory and the index, you get no output.

% git diff
%

 15. Now use another form of the command: git diff –cached commit, to
see the differences between the files staged in the index and any given com-
mit. If you omit the commit argument, HEAD is used as the default commit.
Remember from the glossary that HEAD is a reference to the current commit.
The output should be exactly the same as from step 12. That’s because what is in
the working directory is the current commit as seen in the object store: HEAD,
the current last commit.
% git diff --cached
diff --git a/hello.c b/hello.c
index f907257..621aad0 100644
--- a/hello.c
+++ b/hello.c
@@ -1,6 +1,6 @@
 #include <stdio.h>
 int main ()
 {
- printf("%s\n", "Hello Linus");
+ printf("%s\n", "Hello Linus Torvalds");
 return 0;
 }
%

 16. Now commit the changes using the -m option of git commit, which allows
you to add a message line right on the command line instead of in an editor.

% git commit -m "Added Torvalds to Linus"
[master 37664b9] Added Torvalds to Linus
 1 file changed, 1 insertion(+), 1 deletion(-)
%

 17. Examine the history of commits with the git log command in an abbrevi-
ated format with the –oneline option.

% git log --oneline
37664b9 Added Torvalds to Linus

724 ◾ UNIX: The Textbook, Third Edition

0527389 Added the Hello Linus program
%

 18. See the differences between the two commits we have done so far by using git
diff commit1 commit2, where commit1 can be referred to as 0527389,
and commit2 can be referred to as 37664b9. These references are seen in the
git log –oneline command output in step 17.

% git diff 0527389 37664b9
diff --git a/hello.c b/hello.c
index f907257..621aad0 100644
--- a/hello.c
+++ b/hello.c
@@ -1,6 +1,6 @@
#include <stdio.h>
int main ()
{
- printf("%s\n", "Hello Linus");
+ printf("%s\n", "Hello Linus Torvalds");
 return 0;
 }
%

 19. Examine with git diff the differences in only commit 0527389.

% git diff 0527389
diff --git a/hello.c b/hello.c
index f907257..621aad0 100644
--- a/hello.c
+++ b/hello.c
@@ -1,6 +1,6 @@
 #include <stdio.h>
 int main ()
 {
- printf("%s\n", "Hello Linus");
+ printf("%s\n", "Hello Linus Torvalds");
return 0;
}
%

 20. Repeat steps 4–19 as many times as you want to, each time creating or modify-
ing new or existing files in the working directory. Also, it would be helpful to
repeat this entire example several times, in several new directories with newly
created repositories to gain practice. Each time, you stage the files with git
add and then commit the additions or modifications with git commit. Then
examine the differences as shown with git diff and its four variations. As
you do more commits you are adding, in a linear fashion, more and more nodes
downstream on the branch named master.

UNIX Tools for Software Development    ◾    725

Conclusions: This short example illustrated the staging model in Git. It introduced
a small set of Git commands that allowed you to implement the model, once or repeti-
tively, and see the differences between commits.

EXERCISE 17.12

The git diff command is similar to what UNIX command?

Example 17.2: Creating, Editing, and Branching a Git Repository

Objectives: To introduce the Git commands that create, edit, and allow you to develop
a C source code project along different branches in a Git repository. To show how dif-
ferent branches may be merged.

Introduction: In order to appreciate and utilize the Git concepts shown in the
previous section, we present a complete Git example of repository creation, edit-
ing, branching, and merging. Maintaining source code files and their history is the
primary objective of Git. In the following example we create C source code files
as needed with a text editor in the directory that has the Git repository in it. This
method of introducing the files into the working directory does not preclude placing
those files in that directory by any other viable means, for example by copying them
from another directory or file system. We then edit those files to change their content
and commit those changes. Finally, we show how to create branches along which
different lines of development of the source code can proceed, and how to merge
different branches. We try to emphasize the staging model, or the edit-stage-commit
workflow model, as detailed in the previous section, throughout this example. We
have purposefully not done commits and merges of branches that would produce
merge conflicts. The mechanisms and strategies for resolving content conflicts are
more usefully covered in other Git reference sources beyond the scope of this section,
just as the mechanisms and strategies for resolving context conflicts are.

Git Commands Referenced: Table 17.2 shows the Git commands, and a brief descrip-
tion of each, that are used in this example. It is arranged in the order presented. Any
argument enclosed in < > is a string of text. In order to get a more complete descrip-
tion of all the commands in the table, you can look at the man page for a particular
command. For example, man git-status gives you a complete man page for the
git status command.

Prerequisites: The following are the prerequisites for carrying out this example:
 1. A recent version of Git available on your system, executable by an ordinary user

from the command line. In PC-BSD, Git is preinstalled. For Solaris, see the
addendum in Section 17.5.7.9 showing how to install Git.

 2. Being able to use a text editor, such as vi, vim, or emacs, to create C program
source code files.

 3. Having reviewed and done the in-chapter exercises in Section 17.1 on Git con-
cepts. This not only gives you a conceptual, top-down view of Git, but also

726 ◾ UNIX: The Textbook, Third Edition

shows you how to obtain Git help and use the man pages on the system for Git
commands.

 4. Completion of Example 17.1.

Procedure: Do the steps shown, in the order presented, to meet the objectives of
this example. This is a long and detailed example. If you make mistakes, which for a
beginner not familiar with the commands are irrevocable, simply start over again in
a new directory that has another name than the one shown in step 1.

 1. The first step in creating a repository to retain a history of your source code
project files is to create a directory within which the repository can exist. We
name this directory first-git. Then you can do a very elementary configuration
of Git to identify yourself to the system.
% mkdir first-git
% cd first-git
% git config --global user.name bob
% git config --global user. Email "your_email_address"
%

 2. Create a C source code file named first.c with the text editor of your choice. Save
it in the current working directory, which should be first-git.

TABLE 17.2 Git Commands Used
git init Create a Git repository in the current directory
git status View the status of each file in a repository
git add <file> Stage a file for the next commit
git commit Commit the staged files with a descriptive message
git log View a repository’s commit history
git config --global user.name
"<name>"

Define the author name to be used in all repositories

git config --global user.
Email <email>

Define the author e-mail to be used in all repositories

git checkout <commit-id> Move a previous commit into the working directory
git tag -a <tag-name> -m
"<description>"

Create an annotated tag pointing to the most recent
commit

git revert <commit-id> Undo the specified commit by applying a new commit
git reset –hard Reset tracked files to match the most recent commit
git clean –f Remove untracked files
git reset --hard / git clean –f Permanently undo uncommitted changes
git branch List all branches
git branch <branch-name> Create a new branch using the working directory as its

base
git checkout <branch-name> Make the working directory and HEAD match the

specified branch
git merge <branch-name> Merge a branch into the checked-out branch
git branch -d <branch-name> Delete a branch
git rm <file> Remove a file from the working directory (if applicable)

and stop tracking that file

UNIX Tools for Software Development    ◾    727

 3. The next command initializes the repository, which enables the Git program in
the current working directory. There is now a .git subdirectory in first-git that
stores all the tracking data for our repository. The .git folder is the only differ-
ence between a Git repository and an ordinary folder, so deleting it will turn
your project back into an unversioned collection of files.
% git init
Initialized empty Git repository in /usr/home/bob/first-
git/.git/
%

 4. Before we try to start creating revisions, view the status of our new repository.
Execute the following command:
% git status
On branch master
Initial commit
Untracked files:
 (use "git add <file>..." to include in what will be
committed)

 first.c

nothing added to commit but untracked files present (use
"git add" to track)
%

 This status message tells you that we are about to make our initial commit
and that we have nothing to commit but untracked files. An untracked file is one
that is not under version control. Git doesn’t automatically track files because
there are often project files that we don’t want to keep under revision control.
These might be binaries created by a C program, compiled Python modules
(.pyc files), or any other unnecessary files. To keep a project small and efficient,
you should only track source files and omit anything that can be generated from
those files. This latter content is part of the build process, not revision control.

 5. The next step stages the file first.c in preparation for doing the first commit.
% git add first.c
%

 We added first.c to the snapshot of the index for the next commit. Git’s term
for creating a snapshot is called staging because we can add or remove multiple
files before actually committing it to the project history. The index holds a snap-
shot of the content of the working tree, and it is this snapshot that is taken as
the contents of the next commit. Thus, after making any changes to the work-
ing directory and before running the commit command, you must use the add
command to add any new or modified files to the index.

 6. Now we examine the repository status with the git status command.
% git status
On branch master

728 ◾ UNIX: The Textbook, Third Edition

Initial commit
Changes to be committed:
 (use "git rm --cached <file>..." to unstage)
 new file: first.c
%

 Now, instead of first.c being an untracked file, it is shown as being staged to be
committed.

 7. We are ready to commit.
% git commit
%

 The first part of committing is to use the default text editor you are put into
by Git to add The initial commit as the first line in that file. Then save
and quit that file.
/usr/home/bob/first-git/.git/COMMIT_EDITMSG: 10 lines, 245
characters.
[master (root-commit) 74088f6] The initial commit
 1 file changed, 1 insertion(+)
 create mode 100644 first.c

 8. We need a new command, git log, to view the project revision history. When
you execute this command, Git will output information about our first commit:
% git log
commit 74088f645993f3df16f27565628ea38c271357e0
Author: bob <your_email_address>
Date: Mon Nov 10 18:59:44 2014 -0800
 The initial commit
%

 9. We continue to add new C source code files to our working directory. Create
two C source code files named second.c and third.c with the text editor of
your choice. Save them in the current working directory, which should be
first-git.

 10. We now need to stage those two new files, in preparation for committing them
to our repository.
% git add second.c third.c
%

 11. Take a look at the status of the repository.
% git status
On branch master
Changes to be committed:
 (use "git reset HEAD <file>..." to unstage)
 new file: second.c
 new file: third.c
%

UNIX Tools for Software Development    ◾    729

 12. Take a look at the history of the repository.
% git log
commit 74088f645993f3df16f27565628ea38c271357e0
Author: bob <your_email_address>
Date: Mon Nov 10 18:59:44 2014 -0800
 The initial commit
%

 13. Commit the two new files.
% git commit
%

 Use the text editor that automatically launches to add second.c and
third.c added as the first line in the file. Then save the file and quit the text
editor.
/usr/home/bob/first-git/.git/COMMIT_EDITMSG: 8 lines, 255
characters.
[master 4ea0534] second.c and third.c added
 2 files changed, 2 insertions(+)
 create mode 100644 second.c
 create mode 100644 third.c

 14. The git add command is used to stage new files. It can also be used to stage
modified files. In order to demonstrate this, use a text editor to modify the pre-
viously created C source code files first.c, second.c, and third.c.

 15. Then take a look at the status of the repository. Git lists the tracked files as being
modified.
% git status
On branch master
Changes not staged for commit:
 (use "git add <file>..." to update what will be
committed)
 (use "git checkout -- <file>..." to discard changes in
working directory)

 modified: first.c
 modified: second.c
 modified: third.c
no changes added to commit (use "git add" and/or "git
commit -a")
%

 16. Stage those modified files.
% git add first.c second.c third.c
%

 17. Now commit the modified, staged files. The -m option of commit lets you spec-
ify a commit message on the command line instead of opening a text editor.
This is a shortcut method; it has the exact same effect as our previous commits.

730 ◾ UNIX: The Textbook, Third Edition

% git commit -m "Revised all three files"
[master b0a6b40] Revised all three files
 3 files changed, 3 insertions(+)
%

 18. Our history can now be shown as follows:
% git log --oneline
b0a6b40 Revised all three files
4ea0534 second.c and third.c added
74088f6 The initial commit
%

 The git log command comes with formatting options. For now we show
the --oneline flag, as in git log –oneline.

 19. Condensing output to a single line is one way to get an overview of a repository.
Another useful configuration is to pass a filename to git log:
% git log --oneline second.c
b0a6b40 Revised all three files
4ea0534 second.c and third.c added
%

 20. So far, we have recorded versions of a project into a Git repository. Maintaining
these copies provides us with backups. More importantly, we can have inde-
pendent versions of the state of the project that can be used for the purposes of
creating multiple lines or tracks of development. Our next objective is to be able
to view the previous states of a project, revert back to them, and reset uncom-
mitted changes if necessary. First, let’s return to the state of the repository at the
commit 4ea0534 second.c and third.c added. The HEAD is now at 4ea0534.
The git checkout command positions HEAD at any commit we desire,
going all the way back to the initial commit.
% git checkout 4ea0534
Note: checking out '4ea0534'.
%

 You are in the detached HEAD state. You can look around, make experimen-
tal changes and commit them, and you can discard any commits you make in
this state without impacting any branches by performing another checkout.

 If you want to create a new branch to retain commits you create, you may
do so (now or later) by using -b with the checkout command again. For
example:
% git checkout -b new_branch_name
HEAD is now at 4ea0534... second.c and third.c added
%

 21. Let’s go back to the initial commit.
% git checkout 74088f6
Previous HEAD position was 4ea0534... second.c and third.c
added

UNIX Tools for Software Development    ◾    731

HEAD is now at 74088f6... The initial commit
%

 22. We can check the status of the repository at this point.
% git status
HEAD detached at 74088f6
nothing to commit, working directory clean
%

 23. All previous steps worked on the master branch, where our second and third com-
mits reside. To retrieve our complete history, we just have to check out this entire
branch. This is a very brief introduction to branches, but it’s all we need to know to
navigate between commits. The following command makes Git update our work-
ing directory to reflect the state of the master branch’s snapshot. It recreates the
second.c and third.c files for us, and the content of first.c is updated as well. We’re
now back to the current state of the entire commits history of the project.
% git checkout master
Previous HEAD position was 74088f6... The initial commit
Switched to branch 'master'
%

 24. Tags are references to milestones, or releases in a software project. They let
developers easily browse and check out important revisions. For example, we
can now use the v1.0 tag to refer to the third commit instead of its random ID.
To view a list of existing tags, execute git tag without any arguments. So, we
can label this a stable version of the C program modules. The -a option tells
Git to create an annotated tag, which lets us record our name, the date, and a
descriptive message, specified via the -m option. We can finalize it by tagging
the most recent commit with a version number as follows:
% git tag -a v1.0 -m "Stable version of the software"
%

 25. Now we can add C modules to the working directory that allow us to experi-
ment, without committing those modules. Use the text editor of your choice to
create an experimental C source code file named experiment.c, and save it in
the current working directory.

 26. Then stage that file.
% git add experiment.c
%

 27. Check on the status of the repository.
% git status
On branch master
Changes to be committed:
 (use "git reset HEAD <file>..." to unstage)
 new file: experiment.c
%

732 ◾ UNIX: The Textbook, Third Edition

 28. Commit that file.
% git commit -m "Add an experimental C program"
[master 1707e3e] Add an experimental C program
 1 file changed, 1 insertion(+)
 create mode 100644 experiment.c
%

 29. See a history of commits to the repository.
% git log
commit 1707e3e6f3e12ef1eaa20417dd601bb11180d731
Author: bob <your_email_address>
Date: Mon Nov 10 19:32:31 2014 -0800
Add an experimental C program
commit b0a6b40c4ab515fb10c036b0d7d2ebcacd281865
Author: bob <your_email_address>
Date: Mon Nov 10 19:16:05 2014 -0800
Revised all three files
commit 4ea0534d1e88d297d38a0c63e31dab8b6da7c5ca
Author: bob <your_email_address>
Date: Mon Nov 10 19:08:00 2014 -0800
second.c and third.c added
commit 74088f645993f3df16f27565628ea38c271357e0
Author: bob <your_email_address>
Date: Mon Nov 10 18:59:44 2014 -0800
The initial commit
%

 30. Let’s go back to our stable revision. Remember that the v1.0 tag is now a short-
cut to the third commit’s ID.
% git checkout v1.0
Note: checking out 'v1.0'.
%

 You are in detached HEAD state. You can look around, make experi-
mental changes and commit them, and you can discard any commits you
make in this state without impacting any branches by performing another
checkout.

 If you want to create a new branch to retain commits you create, you may
do so (now or later) by using -b with the checkout command again. For
example:
% git checkout -b new_branch_name
HEAD is now at b0a6b40... Revised all three files
%

 31. After seeing the stable version of the site, we decide to scrap the C code experi-
ment we started in step 25. But, before we undo the changes to the repository,
we need to return to the master branch. If we didn’t, all of our updates would

UNIX Tools for Software Development    ◾    733

be on some nonexistent branch. You should never make changes directly to a
previous revision.
% git checkout master
Previous HEAD position was b0a6b40... Revised all three
files
Switched to branch 'master'
%

 32. Now examine the history of our repository with the git log command. This
gives us the shorthand name of the last commit we executed entitled Add an
experimental C program.
% git log --oneline
1707e3e Add an experimental C program
b0a6b40 Revised all three files
4ea0534 second.c and third.c added
74088f6 The initial commit
%

 33. Now we want to restore our stable release by removing the most recent com-
mit. Make sure to change 1707e3e to the ID supplied by your system’s Git for
the experimental C code commit before running the next command. Also,
the command we use, git revert, undoes the commit we specify as its
argument.
% git revert 1707e3e
%

 You are put into the default text editor, which allows you to change the title
of the reverted commit. Leave the commit title the same, save the file and quit
the editor.

 34. Look at what files are in the working directory, and see a history of your
commits.
% ls
first.c second.c third.c
% git log --oneline
03ece49 Revert "Add an experimental C program"
1707e3e Add an experimental C program
b0a6b40 Revised all three files
4ea0534 second.c and third.c added
74088f6 The initial commit
%

 Notice that instead of deleting the Add an experimental C program
commit, Git undoes the changes it contains, then adds on another commit
showing the reversion. So, our fifth commit and our third commit represent
the exact same snapshot, as follows. Again, Git is designed to never lose his-
tory: the fourth snapshot is still accessible, just in case we want to continue
developing it.

734 ◾ UNIX: The Textbook, Third Edition

 35. Now we can try to add a file that we definitely will want to get rid of completely.
Use your text editor to create a file named dumbc.c, and then edit first.c to
make a small change in it. Now look at the status of the repository.
% git status
On branch master
Changes not staged for commit:
 (use "git add <file>..." to update what will be
committed)
 (use "git checkout -- <file>..." to discard changes in
working directory)

 modified: first.c
Untracked files:
 (use "git add <file>..." to include in what will be
committed)

 dumbc.c
no changes added to commit (use "git add" and/or "git
commit -a")
%

 36. We have a tracked file and an untracked file that need to be changed. First, we’ll
take care of the tracked first.c.
% git reset --hard
HEAD is now at 03ece49 Revert "Add an experimental C
program"
%

 This changes all tracked files to match the most recent commit. You can
also pass a filename to this command to reset only that file—for example, git
reset --hard first.c. The --hard flag is what actually updates the file.
Running git reset first.c without any flags will simply unstage the file,
leaving its contents as is. In either case, git reset only operates on the work-
ing directory and the staging area, so our git log history remains unchanged.

 37. Now remove the dumb.c file. Of course, we could manually delete it, but using
Git to reset changes eliminates human errors when working with several files in
large teams. Run the following command:
% git clean -f
Removing dumbc.c
%

 This will remove all untracked files. With dumb.c gone, git status
should now tell us that we have a “clean” working directory, meaning our
project repository matches the most recent commit. Be careful with git
reset and git clean. Both operate on the working directory, not on
the committed snapshots. Unlike git revert, they permanently undo
changes, so make sure you really want to delete what you’re working on
before you use them.

UNIX Tools for Software Development    ◾    735

 38. To begin creating and using branches, list what branches exist at this point.
% git branch
* master
%

 This command displays the only current branch, named * master. The mas-
ter branch is Git’s default branch, and the asterisk next to it means that it is
currently checked out. This means that the most recent snapshot in the master
branch resides in the working directory. There is only one working directory for
each project, only one branch can be checked out at a time.

 39. Look at some previous commits before we begin creating a new branch. First get
a shorthand list of the repository commit history.
% git log --oneline
03ece49 Revert "Add an experimental C program"
1707e3e Add an experimental C program
b0a6b40 Revised all three files
4ea0534 second.c and third.c added
74088f6 The initial commit
%

 40. Next, checkout the Add an experimental C program commit.
% git checkout 1707e3e
Note: checking out '1707e3e'.
%

 You are in detached HEAD state. You can look around, make experimental
changes and commit them, and you can discard any commits you make in this
state without impacting any branches by performing another checkout.

 If you want to create a new branch to retain commits you create, you may
do so (now or later) by using -b with the checkout command again. For
example:
% git checkout -b new_branch_name
HEAD is now at 1707e3e... Add an experimental C program
%

 The HEAD normally is on the tip of a development branch, meaning you are on
that branch. But when we checked out the previous commit, the HEAD moved to
the middle of the branch. We are no longer on the master branch since it contains
more recent snapshots than the HEAD. This is reflected in the Git branch output
from the previous command, which tells us that we’re currently not on a branch.

 41. We can now create a branch from this commit. Name it test.
% git branch test
%

 42. To be able to add commits to the new branch, move onto that branch by check-
ing it out.
% git checkout test

736 ◾ UNIX: The Textbook, Third Edition

Switched to branch 'test'
%

 43. Use your favorite text editor to make minor changes to the file experiment.c, so
that we can begin development along this branch. Be sure to save the modified
experiment.c.

 44. Now stage the modified experiment.c.
% git add experiment.c
% git status
On branch test
Changes to be committed:
 (use "git reset HEAD <file>..." to unstage)
 modified: experiment.c
%

 45. The following commit will create a fork in our project repository, as shown in
Figure 17.11.
% git commit -m "Modified experiment.c"
[test 1ff0291] Modified experiment.c
 1 file changed, 1 insertion(+)
%

 46. Take a look at the history of commits in abbreviated form.
% git log --oneline
1ff0291 Modified experiment.c
1707e3e Add an experimental C program
b0a6b40 Revised all three files
4ea0534 second.c and third.c added
74088f6 The initial commit
%

 The history before the fork is considered part of the new branch. So, since we
are on the branch test, the test history spans all the way back to the first commit.
The project repository has a complex history, but each individual branch still
has a linear history. Snapshots and commits occur one after another in a linear
fashion. This means that we can work within branches in the same way we did
in steps 1–37.

master

H

experiment

FIGURE 17.11 Forked project repository.

UNIX Tools for Software Development    ◾    737

 47. Let’s add one more snapshot to the test branch. Rename experiment.c to
experiment2.c, then use the following Git commands to update the repository.
% mv experiment.c experiment2.c
% git status
On branch test
Changes not staged for commit:
 (use "git add/rm <file>..." to update what will be
committed)
 (use "git checkout -- <file>..." to discard changes in
working directory)
 deleted: experiment.c
Untracked files:
 (use "git add <file>..." to include in what will be
committed)
 experiment2.c
no changes added to commit (use "git add" and/or "git
commit -a")
% git rm experiment.c
rm 'experiment.c'
% git status
On branch test
Changes to be committed:
 (use "git reset HEAD <file>..." to unstage)
 deleted: experiment.c
Untracked files:
 (use "git add <file>..." to include in what will be
committed)

 experiment2.c
% git add experiment2.c
% git status
On branch test
Changes to be committed:
 (use "git reset HEAD <file>..." to unstage)
 renamed: experiment.c -> experiment2.c
%

 The git rm command tells Git to stop tracking experiment.c (and delete
it if necessary), and git add starts tracking experiment2.c. The renamed:
experiment.c => experiment2.c message in the final status output
shows us that Git knows when we are just renaming a file. You could have just
made editing changes to experiment.c to justify moving the branch forward
with another commit. Our snapshot is staged and ready to be committed.

 48. We now do a new commit along the new branch.
% git commit -m "Renamed experiment.c to experiment2.c"
[test 27d1e0d] Renamed experiment.c to experiment2.c
 1 file changed, 0 insertions(+), 0 deletions(-)

738 ◾ UNIX: The Textbook, Third Edition

 renamed experiment.c => experiment2.c (100%)
%

 49. Look at the history of commits along this branch. Our project repository now
looks as shown in Figure 17.12.
% git log --oneline
27d1e0d Renamed experiment.c to experiment2.c
1ff0291 Modified experiment.c
1707e3e Add an experimental C program
b0a6b40 Revised all three files
4ea0534 second.c and third.c added
74088f6 The initial commit
%

 50. Now we will fork another branch off the master branch. In preparation for
doing this, return the HEAD to the master branch by using the git check-
out command.
% git checkout master
Switched to branch 'master'
%

 51. Now that you are back on the master branch, list the branches in this repository.
% git branch
* master
 test
% git log --oneline
03ece49 Revert "Add an experimental C program"
1707e3e Add an experimental C program
b0a6b40 Revised all three files
4ea0534 second.c and third.c added
74088f6 The initial commit
%

 52. We will now create a new branch, forked off the master branch and named
modules.
% git branch modules
%

master

H

experiment

FIGURE 17.12 DAG of project repository.

UNIX Tools for Software Development    ◾    739

 53. Make the modules branch the current branch.
% git checkout modules
Switched to branch 'modules'
%

 54. In your favorite text editor, create a C program file called module1.c. Then stage
module1.c.
% git add module1.c
%

 55. Check the status of the repository.
% git status
On branch modules
Changes to be committed:
 (use "git reset HEAD <file>..." to unstage)
 new file: module1.c
%

 56. Now commit module1.c.
% git commit -m "Added module1.c"
[modules 9b37c23] Added module1.c
 1 file changed, 1 insertion(+)
 create mode 100644 module1.c
%

 57. In your favorite text editor, add a reference to the C code in module1.c in the
files first.c, second.c, and third.c.

 58. Stage the changes you made in first.c, second.c, and third.c.
% git add first.c second.c third.c
%

 59. Check the status of the project repository.
% git status
On branch modules
Changes to be committed:
 (use "git reset HEAD <file>..." to unstage)
 modified: first.c
 modified: second.c
 modified: third.c
%

 60. Commit the changes to the files first.c, second.c, and third.c.
% git commit -m "Add references to module1.c"
[modules 436a966] Add references to module1.c
 3 files changed, 3 insertions(+)
%

 61. Now examine the history of commits along this branch.
% git log --oneline
436a966 Add references to module1.c

740 ◾ UNIX: The Textbook, Third Edition

9b37c23 Added module1.c
03ece49 Revert "Add an experimental C program"
1707e3e Add an experimental C program
b0a6b40 Revised all three files
4ea0534 second.c and third.c added
74088f6 The initial commit
%

 A DAG of your project repository at this point is shown in Figure 17.13.
 62. In preparation for merging the modules branch with the master branch, do the

following. First, switch to the master branch, then check the files in the working
directory. Finally look at the commit history of the repository as seen along the
master branch.
% git checkout master
Switched to branch 'master'
% ls
first.c second.c third.c
% git log --oneline
03ece49 Revert "Add an experimental C program"
1707e3e Add an experimental C program
b0a6b40 Revised all three files
4ea0534 second.c and third.c added
74088f6 The initial commit
%

 63. We will now merge the modules branch with the master branch. This command
always merges into the current branch. The modules branch is unchanged.
Check the history of commits with git log --oneline to make sure that
modules’s history of commits has been added to master’s history of commits.
The DAG representing the final state of the repository is shown in Figure 17.14.
% git merge modules
Updating 03ece49..436a966

master

experiment

modules

H

FIGURE 17.13 DAG of repository with three branches.

UNIX Tools for Software Development    ◾    741

Fast-forward
 first.c | 1 +
 module1.c | 1 +
 second.c | 1 +
 third.c | 1 +
 4 files changed, 4 insertions(+)
 create mode 100644 module1.c
% git log --oneline
436a966 Add references to module1.c
9b37c23 Added module1.c
03ece49 Revert "Add an experimental C program"
1707e3e Add an experimental C program
b0a6b40 Revised all three files
4ea0534 second.c and third.c added
74088f6 The initial commit
%

Conclusions: In this example, we created C source code files as needed with a text editor
in the directory that has the Git repository in it. We then edited those files to change their
content and committed those changes. Finally, we showed how to create branches along
which different lines of development of the source code can proceed, and how to merge dif-
ferent branches. We emphasized the staging model, or edit-stage-commit workflow model,
as detailed in the previous section, throughout this example.

EXERCISE 17.13

Under what circumstances would you want to track, or stage, other kinds of files in a Git
repository related to the C program development and build process?

EXERCISE 17.14

If, after step 63, you were to create a new text file in the working directory, but not stage
and commit, would that file still be in the working directory after you do a checkout of the
initial commit? Why/why not?

experiment

modules

master

H

FIGURE 17.14 DAG of final state of project repository.

742 ◾ UNIX: The Textbook, Third Edition

17.5.7.7 GitHub as a Remote Repository
GitHub is a popular remote repository where you can easily and securely work together
with a team to do the development and maintenance of a software project. We first provide
some background information on Git URLs and refspecs. Then, in this section’s examples,
we show the basics of how to take files from a local repository and put them on a GitHub
repository using the UNIX command line. We also show how to take files from GitHub
and retrieve them back on to a local repository. The basis and groundwork for these opera-
tions are expedited on the UNIX command line with the Git commands we have illus-
trated thus far. Therefore, having completed the previous subsections on Git is necessary
to your understanding of the GitHub interactions shown here. We also introduce new Git
commands to allow you to work with a GitHub remote repository.

We do not show how to get an account on GitHub, or how to create a new repository
using the web-based GUI interface of GitHub. It is assumed in all of the examples that you
can do those two basic steps via a Web browser at www.github.com, and can navigate to the
URL we show. The repository on your system is called the local or current repository, and a
repository like GitHub is called the remote repository.

Use the git remote command and its options and arguments to create, remove,
manipulate, and view a remote. For example, to add a remote reference specification, or
refspec, to the current local repository, use the git remote add command with options
and arguments. You can also look at what has been defined as a remote in the .git/config
file. All the remotes you added are recorded in the .git/config file and can be manipulated
using git config and its options and arguments.

The basic Git commands that refer to remote repositories are

git clone Transfers a remote repository into the local repository

git fetch Retrieves objects and their related data structures from a remote
repository

git pull Merges changes from a remote repository into a corresponding
local branch

git push Copies objects and their related data structures to a remote repository

git ls-remote Lists references in a given remote repository

17.5.7.7.1 Git URLs For the git remote command, Git names the argument forms of
reference to the remote repository as Uniform Resource Locators (URLs). A Git URL that
refers to a repository on a local file system can be:

/pathname/repo.git
file:///pathname/repo.git

The first reference form uses hard links within the UNIX file system to directly share
exactly the same objects between the current and remote repository. The second and pre-
ferred form copies the data instead of sharing it via links.

http://www.github.com

UNIX Tools for Software Development    ◾    743

A Git URL that refers to a repository on a remote system can take several forms. These
forms include http, https, ssh, scp, rsync, and ftp. The primary and preferred ways of des-
ignating a remote repository using http or https, and which we use in the examples, are as
follows.

http://github.com/pathname/repository_name
https://github.com/pathname/repository_name

where pathname is a username on GitHub, and repository_name is a specific named
repository for that user. The named repository does not have to end in with a .git suffix.
These two URL forms are most favored by GitHub.

Server firewalls usually allow the http port 80 and https port 443 to remain open, and
by default on PC-BSD, port 22 for ssh.

For a remote repository whose data must be retrieved across a wide area network, such
as the Internet, you can also use the Git native protocol, which refers to the custom proto-
col used internally by Git to transfer data. Examples of a native protocol URL include

git://example.com/pathname/repo.git
git://example.com/~user/pathname/repo.git

These forms are used by Git to publish repositories for anonymous read. You can both
clone and fetch using these URL forms.

The Git native protocol can be tunneled over an ssh connection using the following URL
specification:

ssh://[user@]github.com[:port]/pathname/repo.git

where user@ is the client-side ssh username on the local system, port is the optional desig-
nation of a port on the client other than the default port 22, pathname is the username on
GitHub, and repo.git is the name of the specific repository on GitHub.

Git also supports a URL form with scp-like syntax. It is identical to the ssh forms, but
there is no way to specify a port parameter.

[user@]example.com:/pathname/repo.git

For a more complete list and explanation of the remote URL specifications, use the com-
mand man git-clone. Then, you should page down to the URL specifications section
of the man page.

17.5.7.7.2 Understanding Remote Pull and Push Operations Git and GitHub workflow
models, branching strategies, and particularly the resolution of merge conflicts when
working with those models and strategies, can be very complex. Those models are also
as varied as the different kinds of software development and maintenance teams, the size
of those teams, and their respective goals. For the basic Git commands that allow you

http://www.git://wexample.com/~user/pathname/repo.git
http://www.git://example.com/pathname/repo.git
https://www.github.com/pathname/repository_name
http://www.github.com/pathname/repository_name

744 ◾ UNIX: The Textbook, Third Edition

to work with remote repositories, it is helpful for a beginner to know some background
material for those commands discussed at the beginning of Section 17.5.7. Since most of
your workflow as a beginner involves using the git push and git pull commands,
it is very helpful to know what the underlying assumptions and basis for those com-
mands are.

After you have cloned a remote repository to a local one, the commands git pull and
git push keep the two repositories synchronized as far as their content is concerned.
The most important thing to remember about keeping repositories synchronized is that,
with regard to content, a repository consists of two things: an object store and a set of ref-
erences, or refs—in other words, a commit graph and a set of branch names and tags that
designate commits. When you clone a repository, such as with the command git clone
URL/repository, the Git does the following things in the order shown:

• Creates a new local repository that is essentially a replica of the remote repository

• Adds a remote named origin to refer to the repository being cloned in .git/config:

[remote "origin"]
fetch = +refs/heads/*:refs/remotes/origin/*
url = URL/repository

The line in the config file with fetch in it is the refspec, an assignment statement that
specifies a correspondence between sets of refs in the two repositories: the pattern on the
left side of the colon names refs in the remote, associated with the pattern on the right side
of the colon, which are the corresponding refs in the local repository.

• Runs the command git fetch origin, which updates our local refs for the
remote’s branches (creating them in this case), and asks the remote to send any
objects we need to complete the history for those refs (in the case of this new reposi-
tory, all of them).

• Checks out the remote repository’s current branch (its HEAD ref), giving you a work-
ing directory, and .git directory in it—that is, a replicated local repository cloned
from the remote repository.

So now you can execute the git show-ref command as follows and view the local
repository refs:

% git show-ref --abbrev master
b5216a81 refs/heads/master
b5416a91 refs/remotes/origin/master
%

When you give the git pull command, Git first executes a fetch on the remote for the
current branch, updating the remote’s local tracking refs and obtaining any new objects
needed to complete the history of those refs—that is, all commits, tags, trees, and blobs

UNIX Tools for Software Development    ◾    745

reachable from the new branch tips. Then it tries to update the current local branch to
match the corresponding branch in the remote. If only one side has added content to the
branch, then this will succeed, and is called a fast-forward update since one ref is simply
moved forward along the branch to catch up with the other.

If both sides have committed to the branch, however, then Git has to do something to
incorporate both versions of the branch history into one shared version. By default, this is
a merge: Git merges the remote branch into the local one, producing a new commit that
refers to both sides of the history via its parent pointers. And this would most likely lead
to merge conflicts.

When you give the git push command, Git updates the corresponding branch in the
remote with your local repository branch contents, sending any objects the remote needs
to complete the new state of the remote repository. This will fail if the update is non-fast-
forward, and Git will suggest that you first git pull in order to resolve the differences
between repositories.

Nothing in remote-tracking branches ties the things you do to your repository to the
remote; the relationship is one way. Each remote-tracking branch is just a branch in your
repository like any other branch, a ref pointing to a particular commit. They are only
“remote” in the sense that they point to a remote repository. They track the state of cor-
responding branches in the remote, and you can update them using the command git
pull.

A repository can have many remotes, set up at any time; see the git remote add
command in Example 17.3. If the original repository you cloned from is no longer avail-
able, you can fix its URL by editing the .git/config file for a particular local repository.
You can remove a remote reference entirely with git remote rm. This command will
remove the remote-tracking branches for that remote repository too.

17.5.7.8 GitHub Examples
The following section illustrates your basic interaction with GitHub as a remote repository,
using Git commands from the UNIX command line.

Example 17.3: Basic GitHub Operations

Objective: To create a new repository in your existing account at GitHub, and trans-
mit files to the new GitHub repository from a local repository.

Introduction: In this example, we first create a working directory with a new Git
repository in it. Then we add a file to this new local repository and use the git push
command to move that file up to a repository at GitHub.

Git Commands Referenced: Table 17.3 shows the Git commands, and a brief descrip-
tion of each, that are used in this example. It is arranged in the order presented. Any
argument enclosed in < > is a string of text. In order to get a more complete descrip-
tion of all the commands in the table, you can look at the man page for a particular
command. For example, man git-push gives you a complete man page for the git
push command.

746 ◾ UNIX: The Textbook, Third Edition

Prerequisites: The following are the prerequisites for carrying out this example:

 1. Having an account on GitHub and knowing how to add a new repository to that
account

 2. Having completed the previous subsections that familiarize you with Git com-
mands executed on the UNIX command line

 3. Having an Internet connection and a suitable Web browser installed and oper-
ating on your UNIX system

 4. Local and remote GitHub repositories with only one branch each
 5. Having completed Example 17.2

Procedure: Do the following steps, in the order presented, to meet the objectives of
this example.

 1. Create the working directory and make it the current directory.
% mkdir githubtest
% cd githubtest
%

 2. Add a new file to the directory.
% touch README.md
%

 3. Initialize Git in this new directory.
% git init
Initialized empty Git repository in /usr/home/bob/
githubtest/.git/
%

 4. Stage the file README.md, and do an initial commit to the repository.
% git add README.md
% git commit -m "First Commit"
[master (root-commit) f971b1d] First Commit
 1 file changed, 0 insertions(+), 0 deletions(-)
 create mode 100644 README.md
%

TABLE 17.3 git Commands

Command Description

git init Add a Git repository in the current directory
git add <file> Stage <file> for the next commit
git commit -m "Message" Execute a commit with Message automatically added

using the –m option.
git remote add origin <path> Identify the valid <path> as a Git remote repository

reference
git push -u origin master Transmit the branch named master to the current remote

repository and add upstream tracking information
git remote –v List the remotes defined for this repository

UNIX Tools for Software Development    ◾    747

 5. In your Web browser, navigate to GitHub at www.github.com, log in, and create
a new repository in your GitHub account. Name that repository test.

 6. Use the git remote command to designate your GitHub repository test as
a remote repository for the local repository we created in steps 1-4. To find the
URL to designate as the GitHub repository, look in the URL bar of your browser
when you are in the GitHub repository named test that you created in step 5. On
our system, in our browser, the URL to this new repository on GitHub is https://
github.com/bobk48/test.git.
% git remote add origin https://github.com/bobk48/test.git
%

 7. Use the git push command to take the local repository and move it up
to GitHub. Supply the username and password for the GitHub repository as
needed.
% git push -u origin master
Username for 'https://github.com': bobk48
Password for 'https://bobk48@github.com': xxx
Counting objects: 3, done.
Writing objects: 100% (3/3), 207 bytes | 0 bytes/s, done.
Total 3 (delta 0), reused 0 (delta 0)
To https://github.com/bobk48/test.git
 * [new branch] master -> master
Branch master set up to track remote branch master from
origin.
%

 8. Check the names of the files in the local repository.
% ls
README.md
%

 In your browser, check the content of the repository test.
 9. Use the git remote command to list the remote repositories for this local

repository.
% git remote -v
origin https://github.com/bobk48/test.git (fetch)
origin https://github.com/bobk48/test.git (push)
%

 What this output shows you is that you can transfer (using the git push
command) new content to the remote repository, and get content from it (using
the git fetch command).

 10. To add a new file to the GitHub repository from the local repository, first create
the file with your favorite text editor.
% vi newfile.txt
... Create and save a new textfile named newfile.txt ...

https://www.github.com/bobk48/test.git
https://www.github.com/bobk48/test.git
http://www.github.com

748 ◾ UNIX: The Textbook, Third Edition

newfile.txt: new file: 1 lines, 47 characters.
%

 11. List the files in your working directory.
% ls
README.md newfile.txt
%

 12. Stage newfile.txt and commit it.
% git add newfile.txt
% git commit -m "second new file added"
[master 4dc2de7] second new file added
 1 file changed, 1 insertion(+)
 create mode 100644 newfile.txt
%

 13. Now use git push again to push the contents of the repository to your GitHub
repository.
% git push origin master
Username for 'https://github.com': bobk48
Password for 'https://bobk48@gmail.com@github.com': xxx
Counting objects: 4, done.
Delta compression using up to 2 threads.
Compressing objects: 100% (2/2), done.
Writing objects: 100% (3/3), 325 bytes | 0 bytes/s, done.
Total 3 (delta 0), reused 0 (delta 0)
To https://github.com/bobk48/test.git
 f971b1d..4dc2de7 master -> master
%

 In your browser, check the content of your GitHub repository named test.
You should see the same files there that are in your local repository along the
branch master.

Conclusions: By designating a GitHub repository as a remote repository reference
using an https URL, we accomplished moving files up from a local repository to a
GitHub repository.

EXERCISE 17.15

What refspec URL and fetch assignments are listed for the repository test? What branch
refspecs are listed? How did you find this out?

EXERCISE 17.16

What Git command do you use locally to put an earlier, or upstream, commit into the
working directory?

UNIX Tools for Software Development    ◾    749

Example 17.4: Cloning a GitHub Repository

Objectives: To clone an existing remote GitHub repository into a new local repository.
Introduction: In order to share the contents of an existing GitHub repository

between members of a software development and maintenance team, it is a usual
practice to clone, or copy, a complete repository from GitHub into a new local reposi-
tory. In the previous Example 17.3, we first created a working directory and a new
Git repository in it. Then we added a file to this new local repository and used the
git push command to move that file up to an existing repository at GitHub. In this
example, we will use the git clone command to create an entirely new local Git
repository from an existing remote GitHub repository. Then we will add a new file to
the local repository and use git push to transfer that file to the GitHub repository.
To simplify things for the beginner, there is only one branch on the remote GitHub
repository.

Git Commands Referenced: Table 17.4 shows the Git commands, and a brief descrip-
tion of each, that are used in this example. It is arranged in the order presented. Any
argument enclosed in < > is a string of text. In order to get a more complete descrip-
tion of all the commands in the table, you can look at the man page for a particular
command. For example, man git-clone gives you a complete man page for the
git clone command.

Prerequisites: The following are the prerequisites for carrying out this example:

 1. Having completed the previous subsections that familiarize you with Git com-
mands executed on the UNIX command line

 2. Having an Internet connection and a suitable Web browser installed and oper-
ating on your UNIX system

 3. Having completed Example 17.3 and having your Web browser pointed at the
test repository created in that example so you can check on its contents

 4. Having access to an account on GitHub that has in it the existing repository test
created in Example 17.3.

TABLE 17.4 Git Commands Referenced

Command Description

git clone <remote_designation> Transfers a complete repository from the remote
designated into a local repository, maintaining the
branch and file structure

git status Shows the current state of the repository
git add <object(s)> Stages the named object(s) to the index
git commit –m "Message" Commits the contents of the staged files in the index
git push <remote_designation>
master

Transfers the working directory to the remote
designated on the branch master

750 ◾ UNIX: The Textbook, Third Edition

Procedure: Perform the following steps, in the order presented, to meet the objec-
tives of this example:

 1. Create a new empty directory beneath your home directory on your UNIX
system named github_clone and make that directory the current working
directory.
% mkdir github_clone
% cd github_clone
%

 This new directory will serve as the file system landing zone, within which
the git clone command shown in the next step will replicate the entire
remote GitHub repository.

 2. Use the git clone command to transfer the contents of the remote GitHub
repository into the current working directory. Remember that the URL we show
in the command is different from the one that you will be seeing on your sys-
tem, so make the appropriate changes.
% git clone https://github.com/bobk48/test
Cloning into 'test'...
remote: Counting objects: 6, done.
remote: Compressing objects: 100% (3/3), done.
remote: Total 6 (delta 0), reused 6 (delta 0)
Receiving objects: 100% (6/6), done.
Checking connectivity... done.
%

 3. List the contents of the working directory. It should contain the complete repos-
itory from your GitHub repository in Example 17.3. The directory listed is the
working directory for the cloned repository. If you descend into that directory,
everything that is in your GitHub repository is in test.
% ls
test
%

 4. Make the directory test the current directory, in preparation for putting a new
file in it that you will then transfer up to the GitHub repository.
% cd test
%

 The test directory is now your working directory in Git terminology.
 5. With your favorite text editor, create a new file, with any contents you want in

it, in the directory test. Save the file and exit the text editor.
% vi newfile2.txt
newfile2.txt: new file: 1 lines, 58 characters.
%

UNIX Tools for Software Development    ◾    751

 6. List the contents of directory test.
% ls
README.md newfile.txt newfile2.txt
%

 7. Check the status of the local repository with the git status command.
% git status
On branch master
Your branch is up-to-date with 'origin/master'.
Untracked files:
 (use "git add <file>..." to include in what will be
committed)

 newfile2.txt
nothing added to commit but untracked files present (use
"git add" to track)
%

 8. Stage and commit the new file to the local repository, in preparation for trans-
ferring it up to GitHub.
% git add newfile2.txt
% git commit –m "Added newfile2.txt to test"
%

 9. Use git push to transfer the new file up to the GitHub repository named test
on the branch master.
% git push https://github.com/bobk48/test master
Username for 'https://github.com': your_username
Password for 'https://bobk48@gmail.com@github.com': xxx
Counting objects: 4, done.
Delta compression using up to 2 threads.
Compressing objects: 100% (3/3), done.
Writing objects: 100% (3/3), 371 bytes | 0 bytes/s, done.
Total 3 (delta 0), reused 0 (delta 0)
To https://github.com/bobk48/test
 4dc2de7..b651617 master -> master
%

 10. From your Web browser, examine the GitHub repository named test. It should
now contain the file you pushed to it in step 9.

Conclusions: The easiest way to create a local repository that is an exact copy of a
GitHub repository is to use the git clone command.

EXERCISE 17.17

What refspec URL and fetch assignments are listed for the repository test? What branch
refspecs are listed? How did you find this out?

752 ◾ UNIX: The Textbook, Third Edition

EXERCISE 17.18

After having completed both Examples 17.3 and 17.4, what UNIX command(s) would
enable you to update the repository test from Example 17.3 with what is in your online
GitHub repository named test?

EXERCISE 17.19

What Git command can you use to see the abbreviated list of commits in the current
branch of a repository and their commit comments?

Example 17.5: Pulling from a GitHub Repository

Objectives: To show the mechanics of taking content from a GitHub repository branch
and adding it to a local repository by merging it with a local repository branch.

Introduction: The easiest way to share content from a GitHub repository is to use
the git pull command. This command combines git fetch and git merge
so that the content of a GitHub repository branch can be duplicated on a branch of
one of your local repositories. We create a new local working directory and repository
in it to receive the content from a remote source on GitHub. We then use the GitHub
repository https://github.com/bobk48/unixthetextbook3, which contains all of the
source code examples for the book you are now reading, as the remote source.

Git Commands Referenced: Table 17.5 shows the Git commands, and a brief descrip-
tion of each, that are used in this example. It is arranged in the order presented. Any
argument enclosed in < > is a string of text. In order to get a more complete descrip-
tion of all the commands in the table, you can look at the man page for a particular
command. For example, man git-pull gives you a complete man page for the git
pull command.

Prerequisites: The following are the prerequisites for carrying out this example:

 1. Knowing how to navigate to www.github.com using a Web browser GUI
interface

TABLE 17.5 Git Commands Referenced

Command Description

git init Creates the .git directory in the working directory,
initializing the data structures and objects necessary
for a repository to exist

git status Reports on the differences between files in the
working directory and the index, and what files are
untracked

git add <file> Stages a file to the index
git commit -m "<Message>" Takes a snapshot of the index, both files and

directories, with <Message> automatically added
git pull <ref> master Retrieves the branch named master from the remote

<ref> designated into the current branch

http://www.github.com
https://www.github.com/bobk48/unixthetextbook3

UNIX Tools for Software Development    ◾    753

 2. Having completed the previous subsections that familiarize you with Git com-
mands executed on the UNIX command line

 3. Having an Internet connection and a suitable Web browser installed and oper-
ating on your UNIX system

 4. Having completed Examples 17.3 and 17.4

Procedure: Carry out the following steps, in the order presented, to meet the objec-
tives of this example:

 1. Begin by setting up a new local repository working directory and initializing it
as a Git repository.
% mkdir unixthetextbook3
% cd unixthetextbook3
% git init
Initialized empty Git repository in /usr/home/bob/
unixthetextbook3/.git/
%

 2. Put a file in the new repository.
% touch Readme.txt
%

 3. Examine the status of the new repository.
% git status
On branch master
Initial commit
Untracked files:
 (use "git add <file>..." to include in what will be
committed)

 Readme.txt
nothing added to commit but untracked files present (use
"git add" to track)
%

 4. Stage the Readme.txt file, and make your initial commit into the new repository.
% git add Readme.txt
% git commit -m "first commit"
[master (root-commit) 57e0400] first commit
 1 file changed, 0 insertions(+), 0 deletions(-)
 create mode 100644 Readme.txt
%

 5. Use the git pull command to fetch and merge the entire unixthetextbook3
repository from the branch named master.
% git pull https://github.com/bobk48/unixthetextbook3
master
From https://github.com/bobk48/unixthetestbook3
%

754 ◾ UNIX: The Textbook, Third Edition

You are placed in the default editor. Leave the first line, numbered 1, as is, and save and
quit the file.

 * branch master -> FETCH_HEAD
 1 Merge branch 'master' of https://github.com/

bobk48/unixthetextbook3
 2
 3 # Please enter a commit message to explain why

this merge is necessary,
 4 # especially if it merges an updated upstream into

a topic branch.
 5 #
 6 # Lines starting with '#' will be ignored, and an

empty message aborts
 7 # the commit.
/usr/home/bob/unixthetextbook3/.git/MERGE_MSG: 7 lines,
295 characters.
Merge made by the 'recursive' strategy.
 .gitattributes | 22
++++++
 .gitignore | 43
++++++++++++
 README.md | 4 ++
 chap22_code/xlib_xcb_programs/1stxcbdraw.c | 115
++++++++++++++++++++++++++++++
 chap22_code/xlib_xcb_programs/2ndxcb_events.c | 102
+++++++++++++++++++++++++++
 chap22_code/xlib_xcb_programs/test1.c | 59
++++++++++++++++
 chap22_code/xlib_xcb_programs/test2.c | 21
++++++
 chap22_code/xlib_xcb_programs/test3.c | 53
++++++++++++++
 chap22_code/xlib_xcb_programs/test4.c | 99
++++++++++++++++++++++++++
 chap22_code/xlib_xcb_programs/test7.c | 98
++++++++++++++++++++++++++
 chap22_code/xlib_xcb_programs/test8.c | 132
+++++++++++++++++++++++++++++++
 chap22_code/xlib_xcb_programs/xcb_events.c | 146
+++++++++++++++++++++++++++++
…
create mode 100644 qt/qt_progs3/qt_progs3
create mode 100644 qt/qt_progs3/qt_progs3.pro
create mode 100644 qt/qt_progs4/Makefile
create mode 100644 qt/qt_progs4/qt4.cpp
create mode 100644 qt/qt_progs4/qt4.o
create mode 100644 qt/qt_progs4/qt_progs4

UNIX Tools for Software Development    ◾    755

create mode 100644 qt/qt_progs4/qt_progs4.pro

<Output Truncated>

 6. Examine the contents of the working directory.
% ls
The current contents of the unixthetextbook3 repository
%

Conclusion: Using the git pull command, you can take content from a GitHub
repository branch and put it on a local repository branch.

EXERCISE 17.20

What refspec URL and fetch assignments are listed for the repository unixthetextbook3?
How did you find this out?

17.5.7.9 Solaris Git Installation Addendum
The following steps will allow you to install Git on a Solaris system:

 1. Become the superuser.
bob@solaris:~$ su
Password: xxxxxx

 2. Use the pkg info command to examine what Git is available in the default online
repository for your Solaris. Note the name as /developer/versioning/git.
root@solaris:~# pkg info -r git
 Name: developer/versioning/git
 Summary: git - Fast Version Control System
 Description: Git is a free & open source, distributed

version control system
 designed to handle everything from small to
 very large projects with speed and efficiency.
 Category: Development/Source Code Management
 State: Not installed
 Publisher: solaris
 Version: 1.7.9.2
 Build Release: 5.11
 Branch: 0.175.2.0.0.42.1
Packaging Date: June 23, 2014 01:29:36 AM
 Size: 22.91 MB
 FMRI: pkg://solaris/developer/versioning/
git@1.7.9.2,5.11-0.175.2.0.0.42.1:20140623T012936Z
root@solaris:~#

 3. Use pkg install to install Git.
root@solaris:~# pkg install developer/versioning/git
 Packages to install: 1

756 ◾ UNIX: The Textbook, Third Edition

 Create boot environment: No
Create backup boot environment: No
 Services to change: 1
DOWNLOAD PKGS FILES XFER (MB) SPEED
Completed 1/1 334/334 8.5/8.5 454k/s
PHASE ITEMS
Installing new actions 496/496
Updating package state database Done
Updating image state Done
Creating fast lookup database Done
root@solaris:~#

 4. You now have Git on your Solaris system.

17.6 STATIC ANALYSIS TOOLS
Static analysis of a program involves analyzing the structure and properties of your pro-
gram without executing it. These analyses are usually meant to determine the level of porta-
bility of your code for multiple platforms, the number of lines of code (LOC), the number of
function calls/points (FPs) in your program, and the percentage of time taken by each func-
tion in the code. During the planning phase of a software project, parameters such as LOC
and FPs are commonly used in software cost models that are used to estimate the number of
person-months needed to complete a software project and, hence, the software cost.

Static analysis tools allow you to measure those parameters. In the following sections,
we discuss some useful UNIX tools that allow you to perform these analyses. Our focus is
the lint utility, but we also briefly describe the prof utility.

17.6.1 Verifying Code for Portability

Most C compilers do fairly well at checking for type mismatches, but few handle portabil-
ity. You can use the lint utility to check your C software for portability. It is one of the
most useful tools in UNIX for developing high-quality, clean, and portable C software, yet
it is one of the least understood and used. It detects program features that are likely to be
bugs, nonportable, or wasteful of system resources. Although lint can be used with many
types of files, including C program, assembly, and preprocessor files, the discussion here is
limited to its use with C program files. It is not available in Solaris. Thus, we show the use
of this tool under PC-BSD.

In addition to performing tight type checking, lint also performs many other checks
on a program to report structural problems such as unreachable statements, loops that are
not entered at the top, local variables declared and not used, and logical expressions whose
values are constant. The lint utility also reports messages if it finds functions that return
values in some places and not in others, functions that are called with varying numbers
or types of arguments, and functions that return values that are not used or whose return
values are used but are not supposed to return any.

Most of the messages reported by lint are meaningful; they tell you what the problem
is and where it is. However, some of its messages are difficult to understand and irrelevant.

UNIX Tools for Software Development    ◾    757

You simply have to learn to ignore such messages. The following is a brief description of
the lint utility.

SYNTAX

lint [options] file-list

Purpose: Allows checking of C programs, specified in file-list, for features that can be
bugs, nonportable, or wasteful of system resources

Commonly used options/features:
-c Check type casts (coercions) of questionable validity
-s Produce one-line error messages (or warnings) only
-u Suppress complaints about external variables and functions used and not defined,

or vice versa; useful for running lint on a subset of modules of a software
-v Suppress complaints about unused arguments in functions

We demonstrate the use of lint with the simple program shown in the following ses-
sion and stored in the cat.c file. The program reads input from stdin and sends it to stdout.
It is in a sense, then, a simple version of the cat command. We have used the nl command
with -ba option to number all the source lines (including blank lines) because the line
numbers reported in lint's error messages include blank lines.

% nl -ba cat.c
 1 /* Copy stdin to stdout */
 2
 3 #include <stdio.h>
 4
 5 int main(int argc, char *argv[])
 6 {
 7 char c;
 8 int i, j;
 9
 10 while ((c=getchar()) != EOF)
 11 putchar(c);
 12 }
%

The program compiles without any error messages from the compiler. It also runs with-
out a problem, echoing each line entered from the keyboard until you press <Ctrl+D>, the
EOF character in UNIX on a new line. The compilation and execution of the program is
shown in the following session.

% a.out
Hello there!
Hello there!
Let's see how it goes.

758 ◾ UNIX: The Textbook, Third Edition

Let's see how it goes.
That's all, folks!
That's all, folks!
<Ctrl+D>
%

We now use the lint command to see if it detects any potentially problematic features
in the cat.c program. The following is a run of lint on cat.c.

% lint cat.c
cat.c:
cat.c(8): warning: i unused in function main [192]
cat.c(8): warning: j unused in function main [192]
cat.c(12): warning: function main falls off bottom without
returning value [217]
cat.c(5): warning: argument argc unused in function main [231]
cat.c(5): warning: argument argv unused in function main [231]
_types.h(61): warning: struct __timer never defined [233]
_types.h(62): warning: struct __mq never defined [233]
stdio.h(142): warning: struct pthread_mutex never defined [233]
stdio.h(143): warning: struct pthread never defined [233]
lint: cannot find llib-lc.ln
Lint pass2:
__srget used(cat.c(10)), but not defined
__stdinp used(cat.c(10)), but not defined
putc used(cat.c(11)), but not defined
__swbuf used(cat.c(11)), but not defined
getc used(cat.c(10)), but not defined
__stdoutp used(cat.c(11)), but not defined
__isthreaded used(cat.c(10)), but not defined
%

The first five lines of the output are warnings about your program source. The warn-
ings are pretty self-explanatory and may be removed by making the necessary changes in
the source code. The warning at line 12 means that there is no explicit return statement
for the main() function. The remaining esoteric warnings and comments are about the
header files and library functions and may be ignored. In the following session, we show
the new version of the program, the output of the lint command when it is used with
the new version, compilation of the new code, and a sample run. Note that lint did not
report a single error. This is how production-quality C code should be developed on UNIX
platforms.

% nl -ba cat_new.c
 1 /* Copy stdin to stdout */
 2
 3 #include <stdio.h>

UNIX Tools for Software Development    ◾    759

 4
 5 int main()
 6 {
 7 char c;
 8
 9 while ((c=getchar()) != EOF)
 10 (void) putchar(c);
 11
 12 return(0);
 13 }
% lint cat_new.c
cat_new.c:
_types.h(61): warning: struct __timer never defined [233]
_types.h(62): warning: struct __mq never defined [233]
stdio.h(142): warning: struct pthread_mutex never defined [233]
stdio.h(143): warning: struct pthread never defined [233]
lint: cannot find llib-lc.ln
Lint pass2:
__srget used(cat_new.c(9)), but not defined
__stdinp used(cat_new.c(9)), but not defined
putc used(cat_new.c(10)), but not defined
__swbuf used(cat_new.c(10)), but not defined
getc used(cat_new.c(9)), but not defined
__stdoutp used(cat_new.c(10)), but not defined
__isthreaded used(cat_new.c(9)), but not defined
% cc cat_new.c
% a.out
Long live lint!
Long live lint!
%

The following in-chapter exercise is designed to give you an appreciation of the use of
the lint utility and to help you understand some of the error messages that it produces.

EXERCISE 17.21

Go through all the sessions presented in this section to appreciate how lint works. Does
lint produce the same error messages on your system for the first version of cat.c?

You can put some special comments in your code that are treated specially by lint.
When lint reaches these special comments, it takes an action specific to the comment.
We discuss one special comment that informs lint of functions that never return.

System calls such as exit() and exec() that do not return are not understood by
lint, nor is the return call. This condition causes a different type of wrong error reports
(or warnings) from lint. The /*NOTREACHED*/ comment can be placed after such
calls, informing lint that this path through the program code can never be reached.

760 ◾ UNIX: The Textbook, Third Edition

When this comment is read by lint, it does not produce the bogus warning. Use of
/*NOTREACHED*/ is shown in the following session.

% cat sample.c
...
 if (fd == -1) {
 printf("File open failed.");
 exit(0);
 /*NOTREACHED*/
 }
 ...
%

The lint command can be run with several command line options. For example, the
-c option checks type casts of questionable validity. Thus, lint reports a warning for the
s = (int *) i; statement in the following code:

$ cat test.c
int main()
{
 char *s;
 int i=100;

 s = (int *) i;

 return(0);
}
% lint test.c
test.c:
test.c(6): warning: illegal pointer combination, op = [124]
test.c(6): warning: s set but not used in function main [191]
lint: cannot find llib-lc.ln
Lint pass2:
$ lint -c test.c
(8) warning: illegal combination of pointer and integer, op CAST
(9) warning: assignment type mismatch: pointer to char "=" pointer
to int
$

We strongly recommend that you create a make rule for running the lint utility on
your modules before compiling them. The following is a sample make rule and its execution:

% cat makefile
SOURCES = compute.c input.c main.c
LINTFLAGS = -c
...
lint: $(SOURCES)

UNIX Tools for Software Development    ◾    761

lint $(LINTFLAGS) $(SOURCES)
...
% make lint
lint -c compute.c input.c main.c
...
%

Although lint checks for most portability features, it does not check a few things. It
does not check whether control strings in the printf calls match the types of the corre-
sponding variables. Nor does it ensure that variables are unique after the first seven charac-
ters. Other than these minor exceptions, lint is trouble free and should be used regularly
to remove sticky stuff from production software.

17.6.2 Source Code Metrics

You can use the UNIX tool prof to display a profile of your code in terms of the functions
used and the percentage of time taken by each function. This information allows you to
focus more closely on those functions that are causing bottlenecks in the software.

At times, you will want to know how long a program spends in each function when it
is executed. You can use this information to improve the performance of certain portions
of a program by optimizing them. UNIX has two main tools for analyzing the program
performance: prof and gprof. Both tools enable your program to track down the num-
ber of times each function is called and the time spent in each function. The gprof tool
provides more data than prof, but both are effective in identifying expensive portions of
your program and execution paths in it. The use of both tools is very similar, and they gen-
erate similar output. We discuss prof only, but the steps shown work for gprof as well.

The first step in using prof is to compile your program with a particular option that
asks the compiler to insert appropriate code in the object module for counting the number
of times that each function is executed and the time spent in each function. For fully test-
ing your program, use the cc compiler command with the -p option, as in:

% cc -p matrix_mult.c -o mm
%

After your program has compiled successfully, run it. Execution produces the run-time
data in a file called mon.out in a format that prof can read. You then use the prof utility
with this file to display the program profile. The gprof tool is available on both PC-BSD
and Solaris. However, prof is available on Solaris only.

17.7 DYNAMIC ANALYSIS TOOLS
Dynamic analysis of a program involves its analysis during run time. As we mentioned
before, this phase comprises debugging, tracing, and performance monitoring of the soft-
ware, including testing it against product requirements. In this section, we discuss the
two useful UNIX tools for tracing the execution of a program and debugging (gdb), and
measuring the running time of a program in actual time units (time).

762 ◾ UNIX: The Textbook, Third Edition

17.7.1 Source Code Debugging

The task of debugging software is time-consuming and difficult. It consists of monitoring
the internal working of your code while it executes, examining values of program variables
and values returned by functions, and executing functions with specific input parameters.
As we stated before, many C programmers tend to use the printf calls (cout for C++) at
various places in their programs to locate the origin of a bug and then remove it. This tech-
nique is simple and works quite well for small programs. However, for large-size software,
where an error may be hidden deep in a function call hierarchy, this technique ends up
taking a lot of editing time for adding and removing printf (or cout) calls in the source
file. A more efficient debugging method under such circumstances is to use a symbolic
debugger. A typical symbolic debugger offers several facilities for observing the run-time
behavior of a program, including the following:

• Running programs

• Setting breakpoints

• Single stepping

• Listing source code

• Editing source code

• Accessing and modifying variables

• Tracing program execution

• Searching for functions and variables

• Identifying what a program was doing when it crashed

Several symbolic debuggers are available on UNIX platforms, the most common being
the freeware GNU debugger, gdb. The default source code debuggers on Solaris and
PC-BSD are adb and gdb, respectively. They offer similar facilities. adb is a link to mdb,
the modular debugger, which allows you to examine processes, user process core dumps, as
well as live operating system and operating system dumps. We primarily describe gdb, as
it is the standard debugger on most UNIX systems. Although gdb has several features for
debugging C++ classes as well, we discuss its features for debugging C programs only. The
following is a brief description of the utility.

SYNTAX

gdb [options] [executable-file [core-file or PID]]

Purpose: Allows source-level debugging and execution of the program in executable-file,
which was generated using a C or C++ source file; or core-file, created due a C/C++
program crash; or process ID (PID) of a running program

UNIX Tools for Software Development    ◾    763

Commonly used options/features:
-c file Examine the file file as the core dump (i.e., file created by UNIX when a pro-

gram crashes)
-h List all options along with their brief explanations
-n Do not run commands from any .gdbinit initialization files
-x file Execute gdb commands from the file file (or from the .gdbinit initialization file(s)

if file is not specified)

During startup, gdb searches for .gdbinit. The search order is: your current directory (.)
and then your home directory (~). The -x option allows you to use any file as a startup file.
Table 17.6 gives a brief description of some of the commonly used gdb commands.

17.7.1.1 Using gdb
Before debugging a program with gdb (or any other debugger), you must compile it
with the -g compiler option to include the symbol table and relocation, debugging,
and profiling information in the executable. This information is used by the debugging
and profiling tools. We use the program in the bugged.c file to show various features
of gdb. The program prompts you for keyboard input, displays the input, and exits. We
use several functions to demonstrate the features of gdb for setting breakpoints and dis-
playing the stack trace at function boundaries, tracing program execution by executing
program statements one by one, viewing types and values of variable, and so on. The
following session shows the program code, its compilation without the -g option, and
its execution.

% nl -ba bugged.c
 1 /*
 2 * Sample C program bugged with a nasty error
 3 */
 4
 5
 6 #include <stdio.h>
 7
 8 #define PROMPT "Enter a string: "
 9
 10 void get_input(char *, char *);
 11 void null_function1 ();
 12 void null_function2 ();
 13
 14 int main ()
 15 {
 16 char *s_val, *temp;
 17
 18 temp = s_val;
 19 null_function1 ();

764 ◾ UNIX: The Textbook, Third Edition

 20 null_function2 ();
 21 get_input(PROMPT, temp);
 22 (void) printf("You entered: %s\n", s_val);
 23 (void) printf("The end of buggy code!\n");
 24 return (0);
 25 }
 26
 27 void get_input(char *prompt, char *str)
 28 {

TABLE 17.6 Commonly Used gdb Commands

Command Brief Description

break break <line_num> :
break <function_name> :

Set breakpoint at line number line_num
Set breakpoint at function function_name

continue continue : Continue execution after breakpoint
clear clear <line> :

clear <function> :
Delete breakpoint set at line number line
Delete breakpoint set at function function

delete delete <num> :
delete :

Delete breakpoint number num
Delete all breakpoint numbers

frame frame :
frame <num> :

Show all stack frames
Set current stack frame to frame number num

help help <num> :
help command :

List a brief description of the command classes
Display a brief description of a command or
command class command

info info break :
info frame :

info locals :

info registers :

Show information about current breakpoints
Show information about current stack frame
Show contents of local variables on the current stack
frame

Display values of CPU registers
list list :

list <line> :
list <start>,<end> :

list <function> :

List next few (10 by default) lines of the program
List 10 lines around line number line
List 10 lines from lines start through end
List 10 lines of the function

next next :
next <count> :

Like the step command, except that it treats a
function call as one instruction

print print <expr> :
print identifier :

Display the value of the expression expr
Display the current value of identifier

quit quit : Quit gdb
set set <var> = <expr> : Set variable var to expression expr
step step :

step <count> :

Execute the next program instruction, stepping into
a function (i.e., not treating a function call as one
instruction)

Execute next count lines of program code
run run [command-

line-args] :
Execute the program that was an argument of the
gdb command

whatis whatis identifier : Display the type of identifier

UNIX Tools for Software Development    ◾    765

 29 (void) printf("%s", prompt);
 30 for (* str = getchar(); *str != '\n'; *str =

getchar())
 31 str++;
 32 *str = '\0'; /* string terminator */
 33 }
 34
 35 void null_function1 ()
 36 { }
 37
 38 void null_function2 ()
 39 { }
 40
% cc bugged.c -o bugged
% bugged
Enter a string: Need gdb!
Segmentation Fault
%

Note that the program prompts you for input and faults without echoing what you enter
from the keyboard. This happens frequently in C programming, particularly with pro-
grammers who are new to C or are not careful about initializing variables in their pro-
grams and rely on the compiler. It is time to use gdb!

17.7.1.2 Entering the gdb Environment
As we stated earlier, in order to enter the gdb environment, you must compile your C
program with the -g compiler option. This option creates an executable file that contains
the symbol table and debugging, relocation, and profiling information for your program.
After the source program compiles successfully, you can then use the gdb command to
debug your code, as in the following session. We ran the gdb –q command to prevent the
introductory messages from being displayed. Note that (gdb) is the prompt for the gdb
debugger.

% cc -g bugged.c -o bugged
% gdb -q bugged
(gdb)

Once inside the gdb environment, you can run many commands to monitor the execu-
tion of your code. You can use the help command to get information about the gdb com-
mands. Without any argument, the help command displays the names of all of the gdb
command classes. A command class specifies the type of operations you can perform on
your executable code, a core file, or a process. Under a command class, you can run the
commands available for that class. You can get information about any gdb command class
by passing the command name as an argument to the help command. In the following

766 ◾ UNIX: The Textbook, Third Edition

session, the help command shows the names of all gdb commands and the help tra-
cepoints command displays a brief description of the command class tracepoints
and commands supported by gdb under this class.

(gdb) help
List of classes of commands:
aliases -- Aliases of other commands
breakpoints -- Making program stop at certain points
data -- Examining data
files -- Specifying and examining files
internals -- Maintenance commands
obscure -- Obscure features
running -- Running the program
stack -- Examining the stack
status -- Status inquiries
support -- Support facilities
tracepoints -- Tracing of program execution without stopping the
program
user-defined -- User-defined commands
Type "help" followed by a class name for a list of commands in
that class.
Type "help" followed by command name for full documentation.
Command name abbreviations are allowed if unambiguous.
(gdb) help tracepoints
Tracing of program execution without stopping the program.
List of commands:
actions -- Specify the actions to be taken at a tracepoint
collect -- Specify one or more data items to be collected at a
tracepoint
delete tracepoints -- Delete specified tracepoints
disable tracepoints -- Disable specified tracepoints
enable tracepoints -- Enable specified tracepoints
end -- Ends a list of commands or actions
passcount -- Set the passcount for a tracepoint
save-tracepoints -- Save current tracepoint definitions as a
script
tdump -- Print everything collected at the current tracepoint
tfind -- Select a trace frame;
tfind end -- Synonym for 'none'
tfind line -- Select a trace frame by source line
tfind none -- De-select any trace frame and resume 'live'
debugging
tfind outside -- Select a trace frame whose PC is outside the
given range
tfind pc -- Select a trace frame by PC
tfind range -- Select a trace frame whose PC is in the given range

UNIX Tools for Software Development    ◾    767

tfind start -- Select the first trace frame in the trace buffer
tfind tracepoint -- Select a trace frame by tracepoint number
trace -- Set a tracepoint at a specified line or function or
address
tstart -- Start trace data collection
tstatus -- Display the status of the current trace data collection
tstop -- Stop trace data collection
while-stepping -- Specify single-stepping behavior at a tracepoint
Type "help" followed by command name for full documentation.
Command name abbreviations are allowed if unambiguous.
(gdb) help trace
Set a tracepoint at a specified line or function or address.
Argument may be a line number, function name, or '*' plus an
address.
For a line number or function, trace at the start of its code.
If an address is specified, trace at that exact address.
Do "help tracepoints" for info on other tracepoint commands.
(gdb)

In addition to the gdb-specific commands, gdb also allows you to execute all shell
commands.

17.7.1.3 Executing a Program
You can run your program inside the gdb environment by using the run command. The
following command executes the program called bugged.

(gdb) run
Starting program: /usr/home/sarwar/unix3e/ch17/Gdb/bugged
Enter a string: Need gdb!
Program received signal SIGSEGV, Segmentation fault.
0x0000000000400951 in get_input (prompt=0x400a76 "Enter a string:",
str=0x0) at bugged.c:30
30 for (*str = getchar(); *str != '\n'; *str = getchar())
Current language: auto; currently minimal
(gdb)

The program (now a process) prompts you for input. When you enter the input (Need
gdb! in this case) and hit <Enter>, the process fails when it tries to execute the com-
mand at line 30. The error message is quite cryptic for beginners and those who are not
familiar with UNIX jargon. All the error message says is that a signal of type SIGSEGV
(segmentation violation, i.e., address space violation) was received by the process when it
was executing the statement at line 30. The message explains that SIGSEGV was sent to
the program because of Segmentation fault. A segmentation fault is generated by
the UNIX kernel when a process tries to access a memory region (a segment) that it is not

768 ◾ UNIX: The Textbook, Third Edition

allowed to access. In other words, your process tried to access a memory location that did
not belong to its address space.

17.7.1.4 Listing Program Code
You can use the list command to display all or part of a source program. By default,
it displays 10 lines around the line (or function) that you specify as its argument. You
can display lines of code in a particular function or on a range of lines. In the following
example, the list get _ input command is used to display 10 lines in the code around
the get _ input function, and the list 14,27 command is used to display the source
program at lines 14–27. Note that the list get _ input command displays five lines
before the start of the function code and five lines after it. In order to display the first 10
lines of the function code, we use the list get _ function, command. Since get _
function has less than 10 lines, a few extra lines after the function are also displayed.
Use the help list command to get more information about the list command.

(gdb) list get_input
23 (void) printf("The end of buggy code!\n");
24 return (0);
25 }
26
27 void get_input(char *prompt, char *str)
28 {
29 (void) printf("%s", prompt);
30 for (*str = getchar(); *str != '\n'; *str = getchar())
31 str++;
32 *str = '\0'; /* string terminator */
(gdb) list get_input,
28 {
29 (void) printf("%s", prompt);
30 for (*str = getchar(); *str != '\n'; *str = getchar())
31 str++;
32 *str = '\0'; /* string terminator */
33 }
34
35 void null_function1 ()
36 { }
37
(gdb) list 14,27
14 int main ()
15 {
16 char *s_val, *temp;
17
18 temp = s_val;
19 null_function1 ();
20 null_function2 ();

UNIX Tools for Software Development    ◾    769

21 get_input(PROMPT, temp);
22 (void) printf("You entered: %s.\n", s_val);
23 (void) printf("The end of buggy code!\n");
24 return (0);
25 }
26
27 void get_input(char *prompt, char *str)
(gdb)

17.7.1.5 Tracing Program Execution
To find out what went wrong in our process, we need to identify the part of the code that
may be problematic. There are several ways of doing so, including line-by-line tracing
of the whole program, tracing statements of a function, calls to a particular function,
and changes to a variable. We do so by backtracking the program using the where
or backtrace command of gdb, as shown in the following session. The output of
both commands is the same: the location of the program where the fault occurred and
how this location was reached. The how part is identified by the function call sequence
identified in the stack trace (also known as stack frame or activation record in the pro-
gramming language jargon) that the command displays. Line #0 shows the top of stack
with the get _ input() function’s statement where the crash occurred, and #1 shows
that the get _ input() function was called at line 21 in the main() function. The
main() function is called the caller and the get _ input() function is called the
callee.

(gdb) where
#0 0x0000000000400951 in get_input (prompt=0x400a76 "Enter a

string: ", str=0x0) at bugged.c:30
#1 0x0000000000400862 in main () at bugged.c:21
(gdb) backtrace
#0 0x0000000000400951 in get_input (prompt=0x400a76 "Enter a

string: ", str=0x0) at bugged.c:30
#1 0x0000000000400862 in main () at bugged.c:21
(gdb)

The output of the command shows that the program was at location (memory address)
0x0000000000400951 at line 30 in the get _ input() function when it received the
SIGSEGV signal. The stack frame shows that the call sequence is main() => get _
input() and the program was executing the *str = getchar() statement at line 30
when it crashed (see the program listing in the previous section). Note that the code on
this line has two assignment statements and one comparison statement. In all of these
statements, we dereference the string pointer str. Two statements use the C library func-
tion getchar(). This library function is well tested and has been in use for many years.
Thus, the problem must be with the pointer variable str. We pursue this issue in a later
section.

770 ◾ UNIX: The Textbook, Third Edition

17.7.1.6 Setting Breakpoints
Viewing execution of all or part of your code statement by statement is called program/
code tracing. In order to trace code, you need to set breakpoints in your program. You can
trace a program up to a particular statement or function by using the break command,
as described in Table 17.1. It allows you to run a program without interruption until the
control reaches the line or function that you want to study more closely. The process of
stopping a program in this way is known as setting breakpoints. As shown in the previous
section, the main function starts at line 14 but its first executable statement is at line 18.
We set the breakpoint at the first executable statement in main() and run the program.
The program stops execution at line 18, the only breakpoint we have set, having statement
temp = s _ val;.

(gdb) break main
Breakpoint 1 at 0x40083f: file bugged.c, line 18.
(gdb) run
Starting program: /usr/home/sarwar/unix3e/ch17/Gdb/bugged

Breakpoint 1, main () at bugged.c:18
18 temp = s_val;
Current language: auto; currently minimal
(gdb)

17.7.1.7 Single-Stepping through Your Program
Always set breakpoints in your program to be able to view execution of all or part of your
code statement by statement. The process of tracing program execution statement by state-
ment is known as single-stepping through your program. Single-stepping, combined with
tracing of variables, allows you to study program execution closely. Single-stepping can
be done with the step command, which executes the next program statement, stepping
into a function if the statement is a function call. You can use the next command to
single-step through your code, but it executes a function into its entirety. If you are tracing
a variable, it shows you the value of the variable when a statement within the scope of the
variable executes. Run the help scope command to get more information about the
scoping rules.

After setting the breakpoint at main and running the program in the previous session,
we then run each statement of the program one by one by using the next command. After
the third next statement, the control reaches the call to the get _ input (PROMPT,
temp); function at line 21 in the main() function. We then use the step command
to step into and execute each statement in the get _ input() function. The first step
command takes control to the first executable statement in the get _ input() func-
tion, the for loop. The second step statement prompts you for keyboard input. As soon
as you hit <Enter> after typing Hello World!, the system displays the error message
Program received signal SIGSEGV, Segmentation fault. along with the
problematic source code statement and line number (30 in this case) and the value of the
str variable. The hexadecimal number at the beginning of the second line of the error

UNIX Tools for Software Development    ◾    771

message is the memory address (0x0000000000400951) of the getchar() function that
caused the exception. We can use the x command to display the contents of this memory
location. The output of the command shows that the error occurred at the 178th byte in the
getchar() function. We still do not know the reason why the program faulted.

(gdb) next
19 null_function1 ();
(gdb) next
20 null_function2 ();
(gdb) next
21 get_input(PROMPT, temp);
(gdb) step
get_input (prompt=0x400a76 "Enter a string: ", str=0x0) at
bugged.c:29
29 (void) printf("%s", prompt);
(gdb) step
30 for (*str = getchar(); *str != '\n'; *str = getchar())
(gdb) step
Enter a string: Hello world!

Program received signal SIGSEGV, Segmentation fault.
0x0000000000400951 in get_input (prompt=0x400a76 "Enter a string:
", str=0x0) at bugged.c:30
30 for (*str = getchar(); *str != '\n'; *str = getchar())
(gdb) x 0x0000000000400951
0x400951 <get_input+177>: 0x8b480a88
(gdb)

17.7.1.8 Accessing Identifiers (Variables and Functions)
You can access the location of an identifier (variable or function) in the program source
and view its type, value, and places of use by using various gdb commands. In the fol-
lowing session, we illustrate the use of these commands with examples. The outputs
of the commands are fairly self-explanatory. The print s _ val and print str
commands display the values of the s _ vala and str variables as zero each and the
whatis str command displays the type declaration of the str variable: char *, as
expected.

(gdb) delete
Delete all breakpoints? (y or n) y
(gdb) run
The program being debugged has been started already.
Start it from the beginning? (y or n) y

Starting program: /usr/home/sarwar/unix3e/ch17/Gdb/bugged
Enter a string: Hello world!

Program received signal SIGSEGV, Segmentation fault.

772 ◾ UNIX: The Textbook, Third Edition

0x0000000000400951 in get_input (prompt=0x400a76 "Enter a string:
", str=0x0) at bugged.c:30
30 for (*str = getchar(); *str != '\n'; *str = getchar())
(gdb) whatis str
type = char *
(gdb) print s_val
$1 = 0x0
(gdb) print str
$1 = 0x0
(gdb)

17.7.1.9 Fixing the Bug
After finding out that the program faults at line 30, the first thing you should do is deter-
mine the variables involved in the statement that caused the fault. Then you should display
the values of theses variables.

The session immediately reveals that the value of the actual parameter to the get _
input() function, s _ val, is nil (0). This causes the formal parameter in the get _
input() function, str, to have a starting value of nil. When we dereference the str
variable to store user input, we try to access memory location with address 0. This loca-
tion belongs to the UNIX kernel space and is used to store the resident part of the oper-
ating system. Therefore, the process tries to write to a location that is outside its address
space—that is, does not belong to it. This attempt is a clear violation that results in
the SIGSEGV signal sent to the running program, causing its termination—the default
action on this signal. Hence, you see the error message Segmentation Fault when
you run the program from the command line. Figure 17.15 illustrates segmentation
violation.

To fix the bug in the program, all you need do is initialize the s _ val pointer to a
memory space that has been allocated to the program, statically or dynamically. We use
a character array called user _ input[SIZE] and set the s _ val pointer to point to

�e instruction accesses
memory location 0,

which belongs to
the kernel memory

Memory location 0

Kernel
memory

User
memory

Process
address
space of
bugged

*str = getchar();

FIGURE 17.15 The memory (segmentation) access violation causing program failure.

UNIX Tools for Software Development    ◾    773

the first byte of the array. The revised main() function is shown in the following session,
along with its compilation and proper execution. The changes in the code are the additions
of lines 8, 17, and 19 in the program, as follows.

% nl -ba working.c
 1 /*
 2 * Sample C porgram bugged with a nasty error
 3 */
 4
 5 #include <stdio.h>
 6
 7 #define PROMPT "Enter a string: "
 8 #define SIZE 255
 9
 10 void get_input(char *, char *);
 11 void null_function1 ();
 12 void null_function2 ();
 13
 14 int main ()
 15 {
 16 char *s_val, *temp;
 17 char user_input[SIZE];
 18
 19 s_val = user_input; /* Initialize s_val to an

array */
 20 temp = s_val;
 21 null_function1 ();
 22 null_function2 ();
 23 get_input(PROMPT, temp);
 24 (void) printf("You entered: %s\n", s_val);
 25 (void) printf("The end of buggy code!\n");
 26 return (0);
 27 }
 28
 29 void get_input(char *prompt, char *str)
 30 {
 31 (void) printf("%s", prompt);
 32 for (* str = getchar(); *str != '\n'; *str =

getchar())
 33 str++;
 34 *str = '\0'; /* string terminator */
 35 }
 36
 37 void null_function1 ()
 38 { }
 39
 40 void null_function2 ()

774 ◾ UNIX: The Textbook, Third Edition

 41 { }
 42
% cc bugged.c -o working
% working
Enter a string: Hello World!
You entered: Hello World!
The end of buggy code!
%

17.7.1.10 Leaving gdb and Wrapping Up
You can use the quit command to leave gdb and return to your shell.

(gdb) quit
%

Once your code has been debugged, you can decrease the size of the binary file, releas-
ing some disk space, by removing from it the information generated by the -g option of
the C compiler to be used by debugging and profiling utilities. You can do so by using the
strip command. The information stripped from the file contains the symbol table and
relocation, debugging, and profiling information. In the following session, we show the
long list for the working file before and after the execution of the strip command. Note
that the size of the file has decreased from 8318 bytes to 5552 bytes, resulting in a saving of
about 33% disk space. Alternatively, you can recompile the source to generate an optimized
executable by using various options.

% ls -l working
-rwxr-xr-x 1 sarwar faculty 8318 Nov 10 08:25 working
% strip working
% ls -l working
-rwxr-xr-x 1 sarwar faculty 5552 Nov 10 08:27 working
%

In the following in-chapter exercise, you will make extensive use of gdb to understand
its various features.

EXERCISE 17.22

Go through all gdb commands discussed in this section to appreciate how gdb works. If
some of the commands used in this section do not work on your system, use the help
command to list the gdb commands and use those that are available in your version of gdb.

17.7.2 Run-Time Performance

The run-time performance of a program or any shell command can be measured and dis-
played by using the time command. This command reports three times: real time, system
time, and user time in the format hours:minutes:seconds. Real time is the actual time taken

UNIX Tools for Software Development    ◾    775

by the program to finish running, system time is the time taken by system (kernel) activities
while the program was executing, such as handling the clock interrupt, and user time is the
time taken by execution of the program code. Because UNIX is a time-sharing system, real
time is not always equal to the sum of system and user time, as many other user processes may
be running while your program executes. The following is a brief description of the command.

SYNTAX

time [command]

Purpose: Report the run-time performance of command in terms of its execution time. It
reports three times: real time (actual time taken by command execution), system time
(time spent on system activities while the command was executing), and user time (time
taken by the command code itself).

There are two versions of the time command: the built-in command for the C shell
and the /usr/bin/time command. The output of the built-in time command is quite
cryptic, whereas the output of the /usr/bin/time command is very readable. When the
C shell version of the time command is executed without a command argument, it reports
the length of time the current C shell has been running. The reported time includes the
time taken by all its children—that is, all the commands that have run under the shell. The
other version of the command does not have this feature. The time command sends its
output to stderr. So, if you want to redirect the output of the time command to a disk file,
you must redirect its stderr (not its stdout) to the file.

The following time command, executed under the C shell, reports how long the cur-
rent shell has been running: 36 minutes and 53.51 seconds. In the output, u represents user
time and s represents system time.

% time
0.804u 0.540s 36:53.51 0.0% 5812+327k 9+122io 15pf+0w
%

The following command reports the time taken by the find command. For the sake
of brevity, we have not displayed the error messages generated by the find command
because of improper access privileges for certain directories. Note how neat the output
looks.

% ls -l bigdata
-rw-r--r-- 1 sarwar faculty 1678770176 Nov 10 08:37 bigdata
% /usr/bin/time cp bigdata bigdata.old
 20.94 real 0.00 user 2.55 sys
%

As stated earlier, the sum of the user and system times does not always equal real time,
especially if a program is idle and does not use the CPU for some time. In the output of the

776 ◾ UNIX: The Textbook, Third Edition

first time command, the real time is 20.94 seconds, which clearly does not equal the sum
of the user and system times (0.00 and 2.55 seconds, respectively).

Because the time command can be used to measure the running time of any program,
you can use it with an executable of your own—a binary image or a shell script. The follow-
ing session shows the running time of the quick_sort program when it is executed to sort
numbers in the in_data file. Note that the real time equals the system time plus the user
time, as the command was run late at night when the system was not running any other
user processes. In the second command, we copy:

% /usr/bin/time quick_sort in_data
 51.2 real 48.6 user 2.6 sys
%

There are other ways of measuring the running time of a program that give you better
precision. But, using the time command to perform this task is the easiest way, and we
certainly recommend it for beginners.

17.8 WEB RESOURCES
Table 17.7 lists useful websites for various programming languages and UNIX commands
and tools for program development.

SUMMARY
UNIX supports all contemporary high-level languages (both interpreted and compiled),
including C, C++, Java, Javascript, FORTRAN, BASIC, and LISP. We described the trans-
lation process that a program in a compiled language such as C has to go through before
it can be executed. We also described briefly a typical software engineering life cycle and
discussed in detail the program development process and the tools available in UNIX for
this phase of the life cycle. The discussion of tools focused on their use for developing
production-quality C software.

The program development process comprises three phases: code generation, static anal-
ysis, and dynamic analysis. The UNIX code generation tools include text editors (emacs,
pico, and vi), C language enhancers (cb and indent), compilers (cc, gcc, xlc, CC, cpp, and
g++), tools for handling module-based software (make), tools for creating libraries (ar, nm,
and ranlib), and the most commonly used version control tool, Git/Github, and its related
commands.

Git is a source code maintenance tool. It is a software database for tracking changes
made to a set of source code files over time. Although it is most often used by program-
mers to coordinate changes to software source code, you can use Git to track any kind of
content. Git perform the following tasks:

• Examines the state of your source code project at earlier points in time

• Shows the differences among various states of the project and the files present at those
states

UNIX Tools for Software Development    ◾    777

TABLE 17.7 Web Resources for the Most Commonly Used Programming Languages, and UNIX
Commands and Tools for Program Development

General Pages: Shell Commands, Shell Programming, Advanced UNIX, and Program Development Tools

www.tutorialspoint.com/unix/unix-manpage-help.htm A Web page for UNIX shell commands, UNIX
shell programming, advance UNIX, and many
important UNIX tools and resources

tacpa.org/notes/linux/devTools.html A Web page for UNIX/Linux development tools

Programming Languages
www.perl.com The Perl language homepage
http://www.bell-labs.com/usr/dmr/www/
chist.html

History of the C language by Dennis Ritchie

www.stroustrup.com/C++.html C++ language page, maintained by Bjarne
Stroustrup, designer of the language

www.oracle.com/java/index.html The home page for Java
www.oracle.com/technetwork/java/
index.html

Essentials of the Java programming language

www.gnu.org/software/java/java.html GNU and the Java language
www.haskell.org/haskellwiki/Haskell The Haskell programming language
www.eiffel.com The Eiffel programming language home page
www.smalltalk.org The Smalltalk programming language home page
www.visualbasic.org Association of Visual BASIC Professionals page
gcc.gnu.org/fortran Home page for GNU FORTRAN
www.sigapl.org ACM SIGPLAN chapter on APL
en.wikipedia.org/wiki/AWK Wikipedia page for AWK
www.grymoire.com/Unix/Awk.html A nice tutorial on AWK
www.gnu.org/software/gawk Page for GNU AWK (gawk)
www.tcl.tk A useful page for TCL developers

HTML Activities
www.w3.org/MarkUp XHxTML2 working group home page
www.w3schools.com/html/ A comprehensive HTML5 tutorial
www.w3schools.com/html/html_intro.asp Introduction to HTML

Compilers
gcc.gnu.org/ The home page for gcc
gcc.gnu.org/java/ The home page for GNU Java compiler gcj
www.w3schools.com/html/ A comprehensive HTML5 tutorial
www.cprogramming.com/g++.html
courses.cs.washington.edu/courses/
cse373/99au/unix/g++.html

Home pages for g++ compiler use

docs.oracle.com/javase/7/docs/
technotes/tools/
windows/javac.html

Page for Java language compiler javac

Make and Library Tools
www.tutorialspoint.com/makefile/
index.htm
www.cs.colby.edu/maxwell/courses/
tutorials/maketutor/

Nice tutorials on makefiles

(Continued)

http://www.cs.colby.edu/maxwell/courses/tutorials/maketutor/
http://www.tutorialspoint.com/makefile/index.htm
http://www.windows/javac.html
http://www.docs.oracle.com/javase/7/docs/technotes/tools/
http://www.docs.oracle.com/javase/7/docs/technotes/tools/
http://www.courses.cs.washington.edu/courses/cse373/99au/unix/g++.html
http://www.courses.cs.washington.edu/courses/cse373/99au/unix/g++.html
http://www.gcc.gnu.org/java/
http://www.gcc.gnu.org/
http://www.en.wikipedia.org/wiki/AWK
http://www.gcc.gnu.org/fortran
http://www.oracle.com/technetwork/java/index.html
http://www.bell-labs.com/usr/dmr/www/chist.html
http://www.tacpa.org/notes/linux/devTools.html
http://www.tacpa.org/notes/linux/devTools.html
http://www.cs.colby.edu/maxwell/courses/tutorials/maketutor/
http://www.tutorialspoint.com/makefile/index.htm
http://www.cprogramming.com/g++.html
http://www.w3schools.com/html/
http://www.w3schools.com/html/html_intro.asp
http://www.w3schools.com/html/
http://www.w3.org/MarkUp
http://www.tcl.tk
http://www.gnu.org/software/gawk
http://www.grymoire.com/Unix/Awk.html
http://www.sigapl.org
http://www.visualbasic.org
http://www.smalltalk.org
http://www.eiffel.com
http://www.haskell.org/haskellwiki/Haskell
http://www.gnu.org/software/java/java.html
http://www.oracle.com/technetwork/java/index.html
http://www.oracle.com/java/index.html
http://www.stroustrup.com/C++.html
http://www.bell-labs.com/usr/dmr/www/chist.html
http://www.perl.com
http://www.tutorialspoint.com/unix/unix-manpage-help.htm

778 ◾ UNIX: The Textbook, Third Edition

• Splits the project development into multiple independent lines, called branches,
which can evolve separately

• Regularly recombines branch content by merging, or reconciling, the content changes
made in two or more branches

• Allows many people to work on a project simultaneously, sharing and combining
their work as needed, at any convenient time

Git and GitHub are atomic-level, distributed, content-oriented version control systems.
Atomic level means that when you take a snapshot of the software, everything in it is
captured in the snapshot at a single instance in time. Distributed means that the entire
software package you are working with is available to all collaborators locally at all times.
Content oriented means that when you join different branches of work on the software, only
the content of lines in the files along the branches you are merging are considered. Git indi-
cates merged-content conflicts with several useful strategies and mechanisms, and resolves
them using several tools that are add-ons to Git. But only the people writing, building, and
testing how the software works, and those people managing that process, are responsible
for resolving merged-context conflicts.

The purpose of the static analysis phase is to identify features of the software that might
be bugs or nonportable, and to measure metrics such as lines of code (LOC), function
points (FPs), and repetition count for functions. The UNIX tools that can be used for this
purpose include lint, prof, and dprof.

The purpose of the dynamic analysis phase is to analyze programs during their execu-
tion. The tools used during this phase are meant to trace program execution in order to
debug them and measure their run-time performance in terms of their execution time. The
commonly used UNIX tools for this phase of the software life cycle are debuggers (gdb,
etc.) and tools for measuring running times of programs (time).

TABLE 17.7 (CONTINUED) Web Resources for the Most Commonly Used Programming Languages, and
UNIX Commands and Tools for Program Development

General Pages: Shell Commands, Shell Programming, Advanced UNIX, and Program Development Tools

capone.mtsu.edu/csdept/
FacilitiesAndResources/make.htm

A small tutorial on the make utility

heather.cs.ucdavis.edu/~matloff/
UnixAndC/CLanguage/Make.html

Very good tutorial on makefiles and libraries

gdb and GNU Tools for Software Testing
http://www.gnu.org/software/gdb/gdb.
html

The home page for gdb, the GNU project debugger

http://www.gnu.org/manual/ Online documentation for GNU packages

Revision Control with Git/GitHub
http://gitref.org/ A comprehensive reference site for Git
http://git-scm.com/ Open source site for Git hosted on GitHub
https://github.com/ GitHub hosting site
en.wikipedia.org/wiki/GitHub The Wikipedia site for GitHub

http://www.en.wikipedia.org/wiki/GitHub
http://www.gnu.org/software/gdb/gdb.html
http://www.heather.cs.ucdavis.edu/~matloff/UnixAndC/CLanguage/Make.html
http://www.heather.cs.ucdavis.edu/~matloff/UnixAndC/CLanguage/Make.html
http://www.capone.mtsu.edu/csdept/FacilitiesAndResources/make.htm
http://www.capone.mtsu.edu/csdept/FacilitiesAndResources/make.htm
https://www.github.com/
http://www.git-scm.com/
http://www.gitref.org/
http://www.gnu.org/manual/
http://www.gnu.org/software/gdb/gdb.html

UNIX Tools for Software Development    ◾    779

UNIX has several tools for other phases of a software life cycle, but a discussion of them
is outside the scope of this textbook.

QUESTIONS AND PROBLEMS

 1. What are the differences between compiled and interpreted languages? Give three
examples of each.

 2. Give one application area each for assembly and high-level languages.

 3. Write the steps that a compiler performs on a source program in order to produce an
executable file. State the purpose of each step. Be precise.

 4. What are the -o, -l, and -xO options of the cc command used for? Give an example
command line for each and describe what it does.

 5. Give the compiler commands to create an executable called prog from C source files
myprog.c and misc.c. Assume that misc.c uses some functions in the math library.
What is the purpose of each command?

 6. What are the three steps of the program development process? What are the main
tasks performed at each step? Write the names of UNIX tools that can be used for
these tasks.

 7. Give a shell command that can be used to determine the LOC in the program stored
in the scheduler.c file.

 8. Write advantages and disadvantages of automating the recompilation and relinking
process by using the make utility, as opposed to manually doing this task.

 9. Consider the following makefile and answer the questions that follow.
CC = cc
OPTIONS = -xO4 -o
OBJECTS = main.o stack.o misc.o
SOURCES = main.c stack.c misc.c
HEADERS = main.h stack.h misc.h
polish: main.c $(OBJECTS)
 $(CC) $(OPTIONS) power $(OBJECTS) -lm
main.o: main.c main.h misc.h
stack.o: stack.c stack.h misc.h misc.o: misc.c misc.h

 List the following:

 a. Names of macros

 b. Names of targets

 c. Files that each target is dependent on

 d. Commands for constructing the targets named in part (b)

780 ◾ UNIX: The Textbook, Third Edition

 10. For the makefile in Problem 9, give the dependency tree for the software.

 11. What commands are executed for the main.o, stack.o, and misc.o targets? How do
you know?

 12. For the makefile in Problem 9, what happens if you run the make command on your
system? Show the output of the command.

 13. Use the nm command to determine the size of the select call in the socket library
(/usr/lib/libsocket.a). What is the size of the code for the call?

 14. Give the command line for determining the library that contains the function
strcmp. What is the size of this function?

 15. What would happen if you tried to check out the same file again using Git/GitHub?
Why?

 16. Create a three-branch repository of commits exactly like Figure 17.16. Use any num-
ber of text files that you modify between commits on the three branches. Keep the
default name for the branch master, but name the other two branches test and dev, as
seen in Figure 17.16.

 17. Create a three-branch repository of commits exactly like Figure 17.17. Use any num-
ber of text files that you modify between commits on the three branches. Keep the
default name for the branch master, but name the other two branches test and dev, as
seen in Figure 17.17.

test

master

dev

FIGURE 17.16 Sample three-branch repository of commits.

master

dev

test

FIGURE 17.17 Sample three-branch repository of commits.

UNIX Tools for Software Development    ◾    781

 18. As an alternative to using git pull in Example 17.5 to obtain the source code for
this book from the listed GitHub repository (https://github.com/bobk48/unixthe-
textbook3), use the git clone command, as shown in Example 17.4, from your
home directory on your UNIX system. What will be the name of the repository direc-
tory created by Git on your local machine that contains the source code files?

 19. Before doing this problem, go through all of the material in Chapter 24 on the
Zettabyte File System, including the in-chapter exercises and problems. Then, in your
own words, describe the differences and similarities between Git, GitHub, and ZFS.
For example, the commands zfs snapshot and git commit are very simi-
lar. In what way do they differ? In your opinion, is it possible to use the commands
zpool and zfs to achieve the same or similar results as using Git and GitHub?
What other UNIX commands would be needed to augment the ZFS file system com-
mands to attain results that are similar to Git and GitHub functions, commands, and
capabilities?

 20. The following code is meant to prompt you for integer input from the keyboard, read
your input, and display it on the screen. The program compiles with one warning, but
it doesn’t work properly. Use the gdb utility to find the bugs in the program. What are
they? Fix the bugs, recompile the program, and execute it to be sure that the corrected
version works. Show the working version of the program.
#include <stdio.h>

#define PROMPT "Enter an integer: " void get_input(char *,
int *);
void main ()
{
 int user_input;
 get_input(PROMPT, user_input);
 (void) printf("You entered: %d.\n", user_input);
}

void get_input(char *prompt, int *ival)
{
 (void) printf("%s", prompt);

 scanf ("%d", &ival);
}

 21. What does the time sh command line do when executed under the C shell?

 22. Give the command line to redirect the output of the /usr/bin/time polish
command to a file called polish_output. Assume that you are using the Bourne shell.

https://www.github.com/bobk48/unixthe-textbook3
https://www.github.com/bobk48/unixthe-textbook3

http://taylorandfrancis.com

783

C h a p t e r 18

System Programming I
File System Management

Objectives

• To explain the concept of system programming

• To describe briefly the concept of system calls

• To discuss the execution details of a system call in UNIX

• To describe briefly the types of system calls in UNIX

• To explain the concept of file and file descriptors in UNIX

• To discuss the concept of per-process file descriptor tables, system-wide file tables,
and inode tables

• To discuss briefly standard I/O and low-level I/O

• To describe in detail the system calls for I/O of file data and attributes

• To describe briefly the purpose of system calls related to directories and setting file
attributes

• To discuss the concept of file holes in UNIX

• To discuss several small programs to illustrate the use of the various system calls for
the I/O and management of file data and attributes

• To discuss the concept of blocking I/O and restarting a system call

• To explain briefly several system calls and C library functions for manipulating
directories and file attributes

• To cover the system calls, library calls, and primitives

784 ◾ UNIX: The Textbook, Third Edition

 access(), chdir(), chmod(), chown(), close(), closedir(),
creat(), fstat(), lseek(), lstat(), mkdir(), open(),
opendir(), printf(), read(), readdir(), rename(), rewinddir(),
seekdir(), stat(), telldir(), truncate(), umask(), unlink(),
utime(), write()

18.1 INTRODUCTION
The kernel does the steady-state maintenance of a UNIX operating system, and the kernel
provides services to user programs through the system call interface (SCI). This mainte-
nance is achieved by using three techniques: virtualization, concurrency, and persistence.
Virtualization allows devices, such as a single or multicore CPU, to act as if it were many
CPUs acting simultaneously in a time-sharing manner. Concurrency allows multithreaded
or multiprocess programs to access the virtualized resources of the hardware. Persistence
allows data to be retained over time via mechanisms of I/O onto devices such as a solid
state drive (SSD).

In this and the subsequent three chapters, we describe how various components of the
SCI perform their roles in the realization of virtualization, concurrency, and persistence.
This chapter deals with persistence. Chapter 19 deals with virtualization and concur-
rency. Chapter 20 deals with the communication aspect of virtualization and concurrency.
Chapter 21 deals with the various practical issues related to virtualization, concurrency,
and persistence.

In this chapter, we discuss the use of the API provided by the SCI for file handling.
We assume that the reader is familiar with file handling through the use of the stan-
dard I/O library that is built around the ISO C standard specification and is available
on multiple operating system platforms, including UNIX and Microsoft Windows. Our
coverage of file handling is focused on performing data I/O with regular files. We also
investigate how you can access and display a file’s attributes by reading certain kernel
data structures. We do not describe in detail the system calls for changing file attributes,
but explain them briefly so you can explore them on your own. Also, we do not cover
the details of directory handling. However, we provide a summary of the relevant sys-
tem calls and library functions for performing such chores. Our coverage of the various
topics is closely linked with the underlying kernel data structures and operating sys-
tem concepts where appropriate. For the compilation of our sample C programs we use
gcc48, the standard compiler command on PC-BSD. If you are using Solaris, you can
use the gcc command.

18.2 WHAT IS SYSTEM PROGRAMMING?
Application programming is the skill of writing programs to provide services to users,
including word processing, text and graphics editing, video processing, voice streaming,
and Internet services such Web browsing. System programming is the ability of writing the
kernel code to manage system hardware, including main memory and disk space man-
agement, disk formatting and defragmentation, CPU scheduling, and management of I/O
devices through device drivers. Writing compilers or any part of the operating system

System Programming I     ◾    785

code also falls in the realm of system programming. Whereas application programming
requires users to be savvy in using language libraries, system programming requires a high
degree of understanding of the computer hardware, assembly language, and a language
like C.

In UNIX jargon, system programming uses the system call interface in order to access
hardware resources such as the CPU, disk and files, main memory, and the status of pro-
cesses and files. Such programs include, for instance, a shell, a language assembler or com-
piler, tools for providing information about a computer’s hardware resources including the
usage of CPU, disk, and main memory, and programs that provide the status of software
resources such as processes and files.

18.3 ENTRY POINTS INTO THE OS KERNEL
There are several reasons for control to transfer from a user process to the OS kernel. These
reasons collectively fall into four categories, known as four entry points into the kernel, as
shown in Figure 18.1. Because the purpose of these entry points is to invoke the relevant
pieces of codes in the kernel to provide different services, they are also known as service
points into the kernel.

Two of these entry points, trap and interrupt, are caused by computer hardware. An
interrupt is a “signal” that a peripheral hardware device sends to the CPU in order to get its
attention. For example, after a disk controller has finished reading a disk block (or cluster),
it needs to inform the CPU about it. For this purpose, it generates an interrupt and the
kernel takes over control in order to execute the code to service this interrupt, called the
interrupt service routine (ISR) for this interrupt.

Whereas a peripheral device generates an interrupt, the CPU itself generates a trap in
order to handle an exception in the code being executed. There are several reasons for the
CPU to do so, including execution of an illegal instruction (instruction not in the instruc-
tion set of the CPU), a potential run-time error like a divide-by-zero situation, and an
instruction trying to access a main memory area outside the process address space.

A signal in UNIX jargon is a mechanism that allows interruption of a process. In the
computer science literature, it is also known as software interrupt. In Section 13.4, we dis-
cussed this topic in a fair amount of detail. However, the discussion was focused on shell-
level handling of signals. Table 13.1 shows some of the commonly used signals and their

Application software
Signal System call

Operating system kernel

Interrupt
Hardware

Trap

FIGURE 18.1 Entry points into the operating system kernel.

786 ◾ UNIX: The Textbook, Third Edition

purpose. Note that some of the signals are generated through keystrokes but most are soft-
ware generated. We discuss signals and signal handling from a system programmer’s point
of in detail in Chapter 19.

The fourth entry point, system call, is the topic of discussion in the remainder of this and
next three chapters.

18.4 FUNDAMENTALS OF SYSTEM CALLS
The SCI is a mechanism that allows a user process to execute a piece of code in the operat-
ing system kernel. Processes use system calls to invoke services that allow access to hard-
ware devices and kernel resources (code and data) that processes are not allowed to access
otherwise, particularly in a multiuser, time-sharing system. This limitation is necessary in
order to protect the resources (data and code) belonging to the kernel and other users from
accidental or judicious access by a user. The system call interface ensures such protection
and security.

18.4.1 What Is a System Call?

A user process is not allowed to have direct access to computer hardware such as a disk
drive and kernel data structures in order to ensure that resources belonging to other users
and the kernel remain protected. However, a user does need to access resources that he/she
owns on the system such as files, as well as information about various system resources
(hardware and software) such as CPU utilization or any number of processes running on
the system. A system call is a mechanism that allows a process to perform privileged tasks
that it is not allowed to perform by directly accessing (reading or writing) an I/O device or
executing a piece of kernel code.

Thus, a system call is an entry point into the UNIX kernel code. In other words, it is a
way for a process to execute a piece of code in the kernel, ensuring protection of resources
that do not belong to the process. UNIX offers this mechanism to provide several types of
services, including the following:

• Opening a file

• Reading and writing file data and attributes

• Accessing file attributes

• Setting file attributes

• Obtaining information about system hardware and operating system

• Creating a process

• Creating a channel for communication between processes

• Getting attention of a process and having it perform a particular task

• Obtaining information about the processes currently running on the system

• Creating and terminating processes

System Programming I     ◾    787

• Stopping processes

• Making processes wait for different events

• Creating communication channels for processes to communicate with each other

• Accessing process attributes

• Accessing utilizations of hardware resources such as memory and CPU utilization

These service points are provided through wrapper (library) functions, one for each
system call. System programmers use these library functions to invoke relevant services.

18.4.2 Types of System Calls

There are several types of system calls dealing with the various aspects of the UNIX ser-
vices. We categorize them as follows:

• Process control

• File management

• Device management

• Information maintenance

• Communications

In this and subsequent chapters on system programming in this book, we will primar-
ily cover some commonly used system calls related to process control, file management,
and interprocess communication. We discuss system calls related to file management in
this chapter. In Chapters 19 and 20, we describe system calls for process management and
interprocess communication.

EXERCISE 18.1

Browse the Web for manual pages on UNIX system calls and list two system calls each for
the five types listed in Section 18.4.2 along with their purpose.

18.4.3 Execution of a System Call

Although not necessary to the learning of system programming and becoming good at
it, knowing the low-level details of system call execution enhances your understanding
of the process an operating system goes through to execute a system call. These steps are
hardware dependent and vary from system to system. Here is an example sequence of
steps.

 1. The user program makes a call to a library function that acts as a wrapper for the
system call.

788 ◾ UNIX: The Textbook, Third Edition

 2. The library function:

 a. Puts the parameters of the system call on the process stack.

 b. Passes a call number (N) that uniquely identifies the system call via a register or
stack, or as a parameter to the trap function (see next bullet).

 c. Executes a CPU instruction, called the trap instruction on some CPUs (such
as the Motorola microprocessors), to switch the CPU mode from user to ker-
nel/system and transfer control to the syscall() function in the UNIX
kernel.

 3. The syscall() function is the system call handler and performs the following
tasks:

 a. Identifies the system call invoked based on the call number.

 b. Copies the appropriate number of parameters from the user stack to the kernel
stack.

 c. Uses the call number to index the dispatch table (which contains pointers to ser-
vice routines for system calls) to execute the code for the requested service.

 4. The code for the respective service executes and:

 a. The return value is placed in one or two registers for transferring it to the caller
process (the return value is –1 in case of failure).

 b. In case of failure, the appropriate error code is placed in a register.

 5. Control transfers back to the library code, which performs the following tasks:

 a. In case of error, the error code, placed in a register in 4(ii), is saved at a known
location (for errno).

 b. The instruction following the trap instruction executes.

 6. Execution of the user program continues.

Figure 18.2 gives a pictorial view of these steps.

18.5 FILES: THE BIG PICTURE
Recall that nearly everything in UNIX is a sequence of bytes: files, directories, I/O
devices, network cards, and so on. Further, UNIX treats all files as streams of bytes.
Thus, it treats all files consistently. We discussed the structure of a directory entry in
UNIX, comprising of filename and inode number, and the concept of file descriptors
in Chapter 4. We can access a file or its attributes without opening it through the file’s
inode. After opening a file using the corresponding system call, its contents are accessed
through its file descriptor.

System Programming I     ◾    789

18.5.1 File Descriptors, File Descriptor Tables, File Tables, and Inode Tables

We discussed the concept of file descriptors in detail in Chapters 4 and 9. However, that
discussion was focused on the use of standard file descriptors for I/O and error redirection
for shell commands. In this chapter, we focus on the concept and use of file descriptors,
including the standard file descriptors, from a system programmer’s point of view.

File descriptors are non-negative integers starting with 0 and are used to index the per-
process file descriptor tables (PPFDTs). We discussed this concept in Chapter 4 (Sections
4.7–4.9) and throughout most of Chapter 9, starting with Section 9.6. Figure 4.6 shows the
relationship between PPFDTs, system-wide file tables (SFTs), inode tables, and a file’s con-
tents on a secondary storage.

Several UNIX system calls, including open(), creat(), pipe(), and socket(),
return file descriptors for the file, pipe, and socket that they open or create. Communication
with these objects using the read() and write() system calls is carried out through
these descriptors. We discuss the open() and creat() system calls later in this chapter,
and describe the pipe() and socket() calls in Chapters 19 and 20, respectively.

Processes perform data I/O and error output also through file descriptors for the three
files that the UNIX kernel opens automatically for every process. As discussed in Chapter 4
and Chapter 9, these files are known as standard files: standard input, standard output, and
standard error. Standard input is the default location from where a process takes its input.
Standard output is the default location where a process’s output goes to and standard error

User
process

Library call

User mode

Kernel/system mode

syscall ()

Call
number

(N)

Service code
for system call

•
•
•

•
•
•

Control back
to user process

via the
library call

Dispatch
table

Performs steps
2 (i, ii, iii) and
5 (i, ii)

Trap the operating
system kernal

FIGURE 18.2 The sequence of steps required for the execution of a system call.

790 ◾ UNIX: The Textbook, Third Edition

is the file where errors generated by a process are sent. The integer values for standard input,
standard output, and standard error are 0, 1, and 2, respectively. Thus, the first descriptor
returned by a system call is 3, by default. However, if you close one of the standard files,
execution of the open(), creat(), pipe(), or socket()system call will return the first
available descriptor, starting with 0.

18.5.2 Why Two Tables?

The UNIX PPFDT keeps track of all the files that a process has opened. The SFT keeps
track of all the files open in a UNIX system at any given time and links the PPFDTs and
the inode table, as shown in Figure 18.3.

Why did the designers of the UNIX kernel need to have the SFT? Why could they not have
an entry in the PPFDT point directly to an entry in the inode table? The answer is that since
UNIX allows a file to be opened multiple times simultaneously, it needs to keep track of mul-
tiple read/write file pointers (See Section 18.8.5). Thus an inode cannot be used to store all of the
attributes of a file, and a separate data structure is needed where file pointers for files that have
been opened multiple times simultaneously may be maintained. The SFT is an array (i.e., table)
of such a data structure. Note that in Figure 18.3, a file has been opened in two different pro-
cesses, P1 and P2. In P1, the file descriptor for the file is 3 and in P2 the descriptor is 5. Because
the file has been opened twice, it has two entries in the SFT, both of which point to the inode of
the file. Each entry in the SFT contains the current position of the read/write file pointer.

EXERCISE 18.2

Browse through the <limits.h> file on Solaris to determine the size of the PPFDT on your
system. What is it? Clearly write down the exact definition as given in the header file.

Number of links
file mode
user ID

time created
time last updated

•
•
•

Contents
of lab1.c

Location on disk

Inode for lab1.c

System-wide
inode table

System-wide
file table

Per-process file
descriptor table

Process P2

Process P1

File
descriptor

0
1
2
3
4
5

•
•
•

•
•
•

•
•
•

•
•
•

•
•
•

0
1
2
3
4
5
•
•
•

Disk drive

•
•
•

•
•
•

•
•
•

FIGURE 18.3 The relationship between PPFDT, SFT, inode table, and secondary storage.

System Programming I     ◾    791

EXERCISE 18.3

What is the size of the SFT on your system? How did you obtain your answer? Write down
if your system is Solaris or FreeBSD.

18.6 FUNDAMENTAL FILE I/O PARADIGM
The basic file I/O paradigm in UNIX is open, read, write, and close. It means that a process
must open a file before performing a data I/O (i.e., read/write) operation on it. If a file does
not exist, it should be created and opened before data I/O can be performed on it. If a file is
created using the open() system call (see Section 18.8.1 for details), it can be created and
opened according to the access permission specified as a parameter. If, however, the file is
created using the creat() system call (see Section 18.8.2), it must be explicitly opened
with the open() system call for I/O. As I/O is being performed on a file, the position of the
read/write file pointer may be changed in order to carry out the read/write operations at
the desired byte position in the file. We discuss this issue in Section 18.8.5. A file does not
have to be opened for reading or writing its attributes. We discuss this topic in Section 18.8.

18.7 STANDARD I/O VERSUS LOW-LEVEL I/O
The UNIX API provides two interfaces for file I/O, one via the Standard I/O library and
the second through the SCI. Since the SCI resides immediately above the kernel and the
language libraries are built on top of the SCI, I/O via the SCI is called low-level I/O. Since
the C Standard Library (CSL) interface is built on top of the SCI, it is easy to use but slower
than the SCI.

The low-level I/O interface via the SCI is more time efficient because of its direct inter-
face with the UNIX kernel. However, it is cumbersome because the programmer needs
to handle buffer issues such as buffer allocation/deallocation and choosing the right size
block for I/O.

18.7.1 The C Standard Library

The CSL implementation is based on the ISO C standard specification that has been imple-
mented on several operating systems, including UNIX, Linux, and Microsoft Windows.
Thus, code written using this library is portable across operating systems. The library
consists of a set of predefined and well-tested functions, constants, and header files. It
provides for you the mechanisms to handle such tasks as character I/O to file I/O, from
time-related functions to complex math functions, and from string operations to signal
handling. The header files in this library contain hundreds of variable types, functions,
and macros. Some of the definitions are duplicated in multiple files for the sake of comple-
tion. For example, NULL is defined in multiple header files. Table 18.1 lists the header files
that comprise the CSL.

18.7.2 File Data I/O Using the C Standard Library

The Standard I/O library API is simple to use and handles the issues of buffer allocation
and using appropriate size blocks for optimal I/O in terms of time (both CPU and clock

792 ◾ UNIX: The Textbook, Third Edition

times). The functions in this library use the file I/O calls available in the SCI. The purpose
of using the right size buffers and block sizes is to minimize the number of disk I/O opera-
tions by minimizing the number of read() and write() system calls (see Sections 18.8.3
and 18.8.4).

The Standard I/O library supports three types of buffered I/O: fully buffered, line buff-
ered, and unbuffered. The ISO C standard requires that standard input and standard output
be fully buffered for noninteractive devices. On the other hand, standard error is never
fully buffered; it is normally unbuffered so that error messages are displayed at the earliest
possible time.

When we open a file using the Standard I/O interface, we get back a pointer to an
object FILE, called the file pointer. We perform all subsequent file operations using
this pointer and the standard I/O library functions. When we open a file using the SCI,
we get back an object of type int, called the file descriptor. We perform all subsequent
I/O operations on the file using this descriptor and the relevant system calls. Another

TABLE 18.1 Header Files for C Standard Library and Their Purpose

Header File Purpose

<assert.h> It contains a macro, called assert, that can be used to diagnose whether the
assumptions made in your program are correct or not.

<ctype.h> It contains a set of functions to test the attributes of characters (i.e., whether a
character is a decimal digit, a control character, etc.). It also contains two functions to
convert a lowercase character to uppercase, and vice versa.

<errno.h> It contains the definition of the errno variable that is set by system calls and some
library functions. It also contains a few macros that indicate different error codes.

<float.h> It contains a set of constants and macros that deal with floating point values in a
machine-dependent way.

<limits.h> It contains the minimum and maximum values of different variable types, including
signed char, unsigned char, int, unsigned int, short int,
unsigned short int, long, and unsigned long.

<locale.h> It contains currency symbols and date formats.
<math.h> It contains math functions, including sin, cos, tan, sqrt, log, ceil, and floor.
<setjmp.h> It contains a macro, a function, and a variable used to bypass the normal function call/

return mechanism.
<signal.h> It contains functions and macros for signal handling (discussed in Chapters 13 and

15).
<stdarg.h> It contains a functions and macro to handle variable number of arguments in a

function.
<stddef.h> It contains variable types and macros, some of which appear in other header files too.
<stdio.h> It contains variable types, functions, and macros for I/O.
<stdlib.h> It contains variable types, functions, and macros for general-purpose tasks, including

conversion from ASCII to float, random number generation, and dynamic memory
allocation/deallocation.

<string.h> It contains variable types, functions, and macros for handling character arrays (i.e.,
character strings).

<time.h> It contains variable types, functions, and macros for handling date and time, including
conversion from one format to another.

System Programming I     ◾    793

term used for both of these objects is file handle. In this book, we primarily deal with
the low-level I/O interface.

When we open a file using the Standard I/O library interface, a stream is associ-
ated with the file. Depending on the character set used, a character can be represented
using one or multiple bytes. Thus, stream I/O depends on the “width” of a character
in terms of bytes and determines the “orientation” of the stream. When a stream is
created it has no orientation and its orientation is set by the type of functions used for
performing I/O with the stream. When we open a file with the open() system call, a
sequence of bytes is associated with the file and all subsequent I/O takes place in terms
of byte sequence.

We assume that the reader is familiar with file I/O using the Standard I/O library and
do not discuss it any further.

18.7.3 Low-Level I/O in UNIX via System Calls

Table 18.2 shows UNIX system calls for file I/O along with their purpose. We will discuss
most of these system calls in this chapter and the remaining in Chapter 19. As discussed
in Section 18.4.3, these are in fact wrapper functions that eventually transfer control to the
system call, syscall(), along with the respective call number and call parameters so that
appropriate kernel function may be executed to serve the relevant system call. You need to
include the <fcntl.h> file in order to be able to use the open() and creat() system
calls. For the close() and lseek() system calls, you need to use the <unistd.h> file.
Finally, for using read() and write() you need to include the <sys/types.h> and
<unistd.h> files.

In this chapter, we discuss the system calls for performing the following operations on
files: creating, opening, closing, reading, writing, preparing for random access, deleting a
hard link to a file, and getting file attributes. You will get to practice some of the remaining
calls in some of the programming exercises given at the end of the chapter.

TABLE 18.2 The UNIX System Calls for File I/O
Creating, Opening for I/O, Closing

creat() Create a file
open() Open or create and open a file
close() Close a file

Data I/O
read() Read from an open file
write() Write to an open file

Creating and Removing Files (Hard Links)
link() Create a hard link to a file
unlink() Remove a hard link to a file and if the resultant link count becomes zero, delete the file
remove() Identical to unlink()

Setting Up for Random Access
lseek() Set file for random access

794 ◾ UNIX: The Textbook, Third Edition

18.7.4 System Call Failure and Error Handling

A UNIX system call returns –1 on failure. Thus, while using a system call in your code,
you must first check whether the call has failed and use appropriate code to handle it. In
most cases, you would like to display an adequate error message to the user by using the C
Standard Library function perror() and terminate the program execution by using the
exit() system call.

EXERCISE 18.4

Browse through <stdio.h> and identify the number of functions and macros defined in it.

EXERCISE 18.5

List the Standard I/O library calls for character and file processing. Give a one-sentence
description of each call.

18.8 FILE MANIPULATION
In this section, we discuss the UNIX system calls to access and manipulate file data and
attributes. Our focus will be on the following operations:

• Opening a file

• Creating a file

• Reading file data

• Writing data to a file

• Positioning the read/write file pointer for random access

• Truncating a file

• Closing a file

• Checking the existence of a file

• Removing a file

• Obtaining and displaying file attributes

We will primarily focus on manipulating data in regular files. However, we discuss the
access, display, and modification of file attributes for files of all types. We do not discuss
the manipulation of directories, but briefly describe the system call interface for doing so. The
system calls for handling sockets and FIFOs are described in detail in Chapters 20 and 21.

18.8.1 Opening and Creating a File

You can use the open() system call to open an existing file for reading, writing, or per-
forming both operations. If a file does not exist, you can create it and open it for writing by

System Programming I     ◾    795

using the creat() system call. Obviously, reading from a newly created (empty) file does
not make sense. You can also create a file by specifying appropriate flags in the open()
call to request the kernel to create the file if it does not exist, and set it for reading, writing,
or both. The following are the brief descriptions of the two system calls.

#include <fcntl.h>
int open(const char path, int flags, ... /* mode_t mode */);

Success: Non-negative integer, called a file descriptor
Failure: –1 and kernel variable errno set to indicate the type of error

#include <fcntl.h>
int creat(const char path, mode_t mode);

Success: Non-negative integer, called a file descriptor
Failure: –1 and kernel variable errno set to indicate the type of error

The third argument (...) in the prototype of the open() call means that the number
and type of remaining arguments may vary. The mode argument in the creat() call is
used to specify the access permissions (see Chapter 5) for the newly created file. Both calls
return a non-negative integer called the file descriptor of the opened file, which can be used
to perform the desired I/O operations by using the read() and write() system calls
(discussed later), change the position of the read/write file pointer for random access, and
close the file using the close() system call. The returned descriptor is the first unused
descriptor in the PPFDT, starting with descriptor 0. If the file opens successfully, the read/
write file pointer is set to the beginning of the file. It means that the first read or write
operation starts at the first byte of the file. Both calls return –1 on failure.

Bitwise ORing two or more constants listed in the <fcntl.h> file forms the flags argu-
ment. Table 18.3 shows some of the commonly used flags used for file I/O and their meanings.

The open() call may fail for several reasons. Some of the commonly occurring reasons
for the call to fail for regular files are given in Table 18.4, along with the corresponding
symbolic values saved in the errno variable.

Since the creat() system call creates a file and, by default, opens it for writing only, the
following calls are equivalent to each other:

creat(pathname, mode);
open(pathname, O_WRONLY | O_CREAT | O_TRUNC, mode);

TABLE 18.3 Commonly Used Flags for File I/O

Flag Meaning

O_RDONLY Open the file for reading only.
O_WRONLY Open the file for writing only.
O_RDWR Open the file for reading and writing.
O_CREAT Create the file if it does not exist. If you use this option, you must specify the access

permissions for the newly created file as the third argument, mode.
O_APPEND Each write operation appends at the end of file.
O_TRUNC If the file exists, its length is set to 0. Previous file contents are not accessible anymore.

796 ◾ UNIX: The Textbook, Third Edition

The open() system call follows a symbolic link and accesses the data or attributes of
the file that the link points to. If you want to read the data or attributes of a symbolic link,
you must use the readlink() system call. Similarly, the creat() system call can create
only an ordinary file. If you want to create a symbolic link, you should use the symlink()
system call. You should browse through the man pages for these calls to learn more about
them.

EXERCISE 18.6

Give the prototypes of the symlink() and readlink() system call. Briefly describe
each parameter for these calls.

18.8.2 Closing a File

You can close a file by using the close() system call, which takes a file’s descriptor as an
argument and deallocates the PPFDT slot corresponding to the given descriptor. The fol-
lowing is a brief description of the call.

#include <unistd.h>
int close(int fd);

Success: 0
Failure: –1 and kernel variable errno set to indicate the type of error

The close() system call may fail for several reasons. Two commonly occurring rea-
sons are given in Table 18.5, along with the symbolic values of the errno variable corre-
sponding to these errors.

TABLE 18.4 A few Common Reasons for the Failure of the open() System Call

Reason for Failure Value of errno

A component in the path does not exist. ENOENT

A component in the path is not a directory. ENOTDIR

The named file is a directory. EISDIR

Search permission is not set on a component in the path. EACCESS

The process has already opened the maximum number of files allowed by the
system, i.e., the PPFDT is already full.

EMFILE

The system has already reached the limit of the maximum number of files that may
be opened on it simultaneously (i.e., the system-wide file table is full).

EMFILE

The file opening operation was interrupted by a signal. EINTR

A component in path exceeds the file name size limit (255 characters) or the entire
path exceeds the 1023 characters.

ENAMETOOLONG

The named file is a special file, but the device associated with the file does not exist. ENXIO

O_CREAT flag is specified to create a file but the file system is read only. EROFS

O_CREAT flag is specified and error occurred while creating an inode for the new
file or making the directory entry for the file to be created.

EIO

O_CREAT and O_EXCL flags are specified and the file specified in path exists. EEXIST

System Programming I     ◾    797

If an open file was being referenced by more than one process—that is, if entries in mul-
tiple PPFDTs are pointing to an entry in the SFT—then closing the file would only deal-
locate the entry in the relevant PPFDT and decrement the reference count by one. A file is
closed only when this reference count becomes zero. When a process terminates, the kernel
automatically closes all of its open files.

In the following example, we open the file passed as the only command line argument,
display the file descriptor of the file, and close the file. The compilation and execution of the
example program shows the program output. Note that the default compiler commands
are gcc and gcc48 on Solaris and PC-BSD. We show compilation of programs on the
BSD system. We use the compiler command with the –w option in order to suppress the
warning messages.

% cat open_close.c
#include <fcntl.h>
#include <unistd.h>

int main(int argc, char *argv[])
{
 int fd;

 /* Open file */
 if (argc == 1) {
 printf("No file specified as command line

argument.\n");
 exit(1);
 }
 if ((fd = open(argv[1], O_RDWR)) == -1) {
 perror("File opening");
 exit(1);
 } else
 printf("The file descriptor is %d.n",fd);
 /* Close file */
 if (close(fd) == -1) {
 perror("File closing");
 exit(1);
 }
 else
 printf("File closed successfully.\n");
 exit(0);
}

TABLE 18.5 Commonly Occurring Reasons for the Failure of the close() System Call

Reason for Failure Value of errno

fd is not an active descriptor, i.e., does not correspond to an open file. EBADF

The file-closing operation was interrupted by a signal. EINTR

798 ◾ UNIX: The Textbook, Third Edition

% gcc48 –w open_close.c
% ./a.out foobar
The file descriptor is 3.
File closed successfully.
%

Note that this is the first (and the only) file that the process has opened. Since the kernel
has already opened the standard files for this process, the kernel allocated file descriptor 3
for when the program opened foobar.

We now modify the program slightly so that it first closes standard input and then opens
the file passed to it as a command line argument. In order to do so, we only need to insert
the following line before the open() system call:

close(0);

Here is the updated program:

% cat open_close.c
#include <fcntl.h>
#include <unistd.h>

int main(int argc, char *argv[])
{
 int fd;

 /* Open file */
 if (argc == 1) {
 printf("No file specified as command line

argument.\n");
 exit(1);
 }
 close(0); /* Close standard input */
 if ((fd = open(argv[1], O_RDWR)) == -1) {
 perror("File opening");
 exit(1);
 } else
 printf("The file descriptor is %d.\n",fd);
 /* Close file */
 if (close(fd) == -1) {
 perror("File closing");
 exit(1);
 }
 else
 printf("File closed successfully.\n");
 exit(0);
}
% gcc48 –w open_close.c
% ./a.out foobar

System Programming I     ◾    799

The file descriptor is 0.
File closed successfully.
%

As you can see, as expected, the kernel allocated file descriptor 0 to the newly opened
file foobar.

EXERCISE 18.7

Compile and run the programs given in Sections 18.8.1 and 18.8.2. Do they work as
intended?

18.8.3 Reading from a File

Once a file has been opened using the open() system call, you can read its contents by
using the read() system call. Here is a brief description of the read() call.

#include <sys/types.h>
#include <unistd.h>
ssize_t read(int fd, void *buf, size_t nbytes);

Success: 0
Failure: –1 and kernel variable errno set to indicate the type of error

This call tries to read nbytes bytes from the file with the file descriptor fd into the
main memory area pointed to by buf. The data is read starting with the current location of
the read/write file pointer. Upon completion, the read() call returns the number of bytes
actually read, which may be less than nbytes. The file pointer advances by the number
of bytes actually read. For a regular file, the call guarantees reading nbytes if the file has
these many bytes left before the end-of-file (EOF). However, with other files, such as pipes
or sockets (see Chapters 19 and 20), this is not guaranteed. The read() system call returns
0 when it encounters EOF.

On failure, read() returns –1 and errno is set to indicate the reason for failure.
Table 18.6 shows some common reasons for the read() call to fail for regular files.

TABLE 18.6 Some Common Reasons for the read() System Call to Fail

Reason for failure Value of errno

The fd argument is not a valid descriptor for reading. EBADF

The buf argument points to a memory location outside the process address space. EFAULT

An I/O error occurred while reading from the file system. EIO

The file reading operation was interrupted. EINTR

The pointer associated with the fd argument is negative. EINVAL

The nbytes value is greater than INT_MAX, i.e., the maximum value of an integer. EINVAL

800 ◾ UNIX: The Textbook, Third Edition

18.8.4 Writing to a File

Once a file has been opened using the open() or creat() system call, you can write to it
using the write() system call. Here is a brief description of the write() call:

#include <sys/types.h>
#include <unistd.h>
ssize_t write(int fd, const void *buf, size_t nbytes);

Success: 0
Failure: –1 and kernel variable errno set to indicate the type of error

This call tries to write nbytes bytes from the main memory area pointed to by buf
to the file with the file descriptor fd. The data is written starting with the current location
of the read/write file pointer. Upon completion, the write() call returns the number of
bytes actually written, which may be less than nbytes. The file pointer advances by the
number of bytes actually written. For a regular file, the call guarantees writing nbytes
if the disk is not full or the file size has not exceeded the maximum file size supported by
the UNIX system. However, with other files, such as sockets (see Chapter 20), this is not
guaranteed.

On failure, write() returns –1 and errno is set to indicate the reason for failure.
Table 18.7 shows some common reasons for the read() call to fail for regular files.

We now enhance the open _ close.c program and convert it into a file copy pro-
gram, cpy, with the following syntax:

cpy source target

The program copies the source file, an existing file, to the target file, a nonexistent file.
The compilation and execution of the example program shows the program output.

% cat cpy.c
#include <fcntl.h>
#include <unistd.h>

#define SIZE 512

void closefd(int);

TABLE 18.7 Some Common Reasons for the write() System Call to Fail

Reason for failure Value of errno

The fd argument is not a valid descriptor for writing EBADF

The fd argument is associated with a negative pointer. EINVAL

File size limit for the process or the maximum file size limit has reached. EFBIG

The file system containing the file is full. ENOSPC

The user’s quota of disk blocks on the file system containing the file has been exhausted. EDQUOT

An I/O error occurred while reading from the file system. EIO

The file reading operation was interrupted. EINTR

The nbytes value is greater than INT_MAX, i.e., the maximum value of an integer. EINVAL

System Programming I     ◾    801

int main(int argc, char *argv[])
{
 int rfd, wfd, nr, nw;
 char buf[SIZE];

 if (argc != 3) {
 printf("Inappropriate number of command line

arguments.\n");
 exit(0);
 }
 /* Open the source file for reading */
 if ((rfd = open(argv[1], O_RDONLY)) == -1) {
 perror("Source file opening");
 exit(1);
 }
 /* Open the destination file for writing */
 if ((wfd = open(argv[2], O_CREAT | O_WRONLY | O_TRUNC,

0666)) == -1) {
 perror("Creation and opening of destination file");
 exit(1);
 }
 while ((nr = read(rfd, buf, sizeof(buf))) != 0) {
 if (nr == -1) {
 perror("File reading");
 exit(1);
 }
 nw = write(wfd, buf, nr);
 }
 closefd(rfd);
 closefd(wfd);
 return(0);
}
void closefd(int fd)
{
 if (close(fd) == -1) {
 perror("File closing");
 exit(1);
 }
}
% gcc48 –w cpy.c
% ./a.out cpy.c cpy_bak.c
% ls -l
total 18
-rwxr-xr-x 1 sarwar faculty 7960 Jan 29 23:27 a.out
-rw-r--r-- 1 sarwar faculty 788 Jan 29 23:27 cpy.c
-rw-r--r-- 1 sarwar faculty 788 Jan 29 23:29 cpy_bak.c
%

802 ◾ UNIX: The Textbook, Third Edition

EXERCISE 18.8

Compile and run the programs given in Section 18.8.4. Do they work as intended?

EXERCISE 18.9

Remove the O _ TRUNC flag in the second open() system call. What is its effect? Explain
your answer.

18.8.5 Positioning the File Pointer: Random Access

You can use lseek() to change the position of the read/write file pointer. This service
allows you to access file data randomly. Here is a brief description for the call.

#include <unistd.h>
off_t lseek(int fd, off_t offset, int whence);

Success: 0
Failure: –1 and kernel variable errno set to indicate the type of error

The call sets the position of the read/write file pointer for the file with descriptor fd to
offset according to the value of the whence argument. The repositioning of the descrip-
tor is done according to Table 18.8.

On successful completion, lseek() returns the resulting offset location in bytes from
the beginning of the file. It returns -1 on failure and errno is set to indicate the reason for
error. Thus, if you want to append data to a file, you should set the file pointer to the end of
the file by using the following statement:

n = lseek(fd, 0L, SEEK_END);

Note that this call sets the file pointer to 0 bytes away from the current EOF and returns
the new position (in bytes) of the file pointer. The new position also indicates the size of the
file in bytes. Thus, when lseek() returns, n contains the size of the file (in bytes).

TABLE 18.8 Repositioning of the Read/Write File Pointer for Random Access of File Data

The Value of whence Position of the Read/Write Pointer

SEEK_SET The position/offset is set to offset bytes from the beginning of the file.
SEEK_CUR The position/offset is set to offset bytes from the current location of the

pointer.
SEEK_END The position/offset is set to offset bytes from the end of the file (i.e., to the

size of the file plus offset).
SEEK_HOLE The position/offset is set to the start of the next hole greater than or equal to

offset.
SEEK_DATA The position/offset is set to the start of the next non-hole (i.e., data region)

greater than or equal to offset.

System Programming I     ◾    803

You can determine the current position of the file pointer by using the following state-
ment. When the call returns, n contains the current position (in bytes) of the file pointer
from the beginning of the file.

n = lseek(fd, 0L, SEEK_CUR);

This call only works for file objects that are capable of seeking. The use of lseek() for
other types of files fails and errno is set to indicate this reason. Three such file types are
pipe, FIFO, and socket, and device files not capable of seeking, such as keyboard. Table 18.9
shows some common reasons for the lseek() call to fail.

The lseek() call allows you to position the file pointer beyond the EOF. If data is writ-
ten at this point later on, a hole is created between the previous EOF and the position of the
file pointer after lseek(). The hole contains null bytes—that is, bytes containing zeros.
Figure 18.4 shows the state of a file with holes.

The create _ holes.c program creates three holes of 512 bytes each in the file
passed to it as a command line argument. After the sample run of the program, we use
the ls –l data command to display the size of the data file with holes. We use the tail
data | od commands to show the contents of the original file and after holes have been
inserted in it as octal dumps (using the od command). Note that asterisks (*) are used in
the octal dump to show a series of zeros. The count of zeros in one hole will come out to
be, as expected, 512. Note that you cannot view the holes with the tail data command
because it does not display null bytes.

TABLE 18.9 Some Common Reasons for the lseek() System Call
to Fail

Reason for Failure Value of errno

The fd argument is not an open file descriptor. EBADF

The fd argument is associated with a file that it is not
capable of seeking: pipe, FIFO, or socket.

ESPIPE

The whence argument or the resulting offset would
be negative for a noncharacter special file.

EINVAL

The resulting offset cannot be represented in off_t. EOVERFLOW

There is no data region (SEEK_DATA) or hole region
(SEEK_HOLE) beyond offset

ENXIO

00 … 00000 … 0 00 … 0

File pointer EOF

Data Hole Hole HoleData Data

FIGURE 18.4 A UNIX file with three holes of different sizes.

804 ◾ UNIX: The Textbook, Third Edition

% cat create_holes.c
#include <fcntl.h>
#include <unistd.h>
#include <string.h>

#define HSIZE 512L

int main(int argc, char *argv[])
{
 int fd, i, n, nholes, nw;
 char *buf="Random data for creating holes.";

 /* Open the given file */
 if (argc != 3) {
 printf("Inappropriate number of command line

arguments.\n");
 exit(0);
 }
 nholes = atoi(argv[2]);
 if ((fd = open(argv[1], O_WRONLY)) == -1) {
 perror("File opening");
 exit(1);
 }
 for (i=0; i<nholes; i++) {
 n = lseek(fd, HSIZE, SEEK_END);
 nw = write(fd, buf, strlen(buf));
 }
 if (close(fd) == -1) {
 perror("File closing");
 exit(1);
 }
 return(0);
}

% man bash > data
% ls -l data
-rw-r--r-- 1 sarwar faculty 367470 Jan 30 09:53 data
% tail data | od
0000000 020040 020040 020040 070040 071141 067145 064164 071545
0000020 071545 020040 067564 063011 071157 062543 020040 072151
0000040 020040 067151 067564 020011 020141 072563 071542 062550
0000060 066154 020054 064167 061551 020150 060555 020171 062542
0000100 071440 067564 070160 062145 060440 020163 005141 020040
0000120 020040 020040 072440 064556 027164 005012 020040 020040
0000140 020040 040440 071162 074541 073040 071141 060551 066142
0000160 071545 066440 074541 067040 072157 024040 062571 024564
0000200 061040 004545 074145 067560 072162 062145 005056 020012
0000220 020040 020040 020040 064124 071145 020145 060555 020171
0000240 062542 067440 066156 020171 067157 020145 061541 064564

System Programming I     ◾    805

0000260 062566 061440 070157 067562 062543 071563 060440 020164
0000300 020141 064564 062555 005056 005012 043412 052516 041040
0000320 071541 020150 027064 004463 004411 030062 032061 043040
0000340 061145 072562 071141 020171 004462 004411 020040 020040
0000360 020040 041040 051501 024110 024461 000012
0000373
% gcc48 –w create_holes.c
% ./a.out data 3
% ls -l data
-rw-r--r-- 1 sarwar faculty 369099 Jan 30 09:54 data
% tail data | od
0000000 020040 020040 020040 072440 064556 027164 005012 020040
0000020 020040 020040 040440 071162 074541 073040 071141 060551
0000040 066142 071545 066440 074541 067040 072157 024040 062571
0000060 024564 061040 004545 074145 067560 072162 062145 005056
0000100 020012 020040 020040 020040 064124 071145 020145 060555
0000120 020171 062542 067440 066156 020171 067157 020145 061541
0000140 064564 062566 061440 070157 067562 062543 071563 060440
0000160 020164 020141 064564 062555 005056 005012 043412 052516
0000200 041040 071541 020150 027064 004463 004411 030062 032061
0000220 043040 061145 072562 071141 020171 004462 004411 020040
0000240 020040 020040 041040 051501 024110 024461 000012 000000
0000260 000000 000000 000000 000000 000000 000000 000000 000000
*
0001240 000000 000000 000000 000000 000000 000000 051000 067141
0001260 067544 020155 060544 060564 063040 071157 061440 062562
0001300 072141 067151 020147 067550 062554 027163 000000 000000
0001320 000000 000000 000000 000000 000000 000000 000000 000000
*
0002300 000000 000000 000000 000000 000000 000000 060522 062156
0002320 066557 062040 072141 020141 067546 020162 071143 060545
0002340 064564 063556 064040 066157 071545 000056 000000 000000
0002360 000000 000000 000000 000000 000000 000000 000000 000000
*
0003340 000000 000000 000000 000000 000000 051000 067141 067544
0003360 020155 060544 060564 063040 071157 061440 062562 072141
0003400 067151 020147 067550 062554 027163
0003412
% tail data
 unit.

 Array variables may not (yet) be exported.

 There may be only one active coprocess at a time.

GNU Bash 4.3 2014 February 2 BASH(1)
Random data for creating holes.Random data for creating holes.
Random data for creating holes.%

806 ◾ UNIX: The Textbook, Third Edition

EXERCISE 18.10

Compile and run the program given in Section 18.8.5. Does it work as intended?

EXERCISE 18.11

Change the hole size to 2K. Compile and run the program. Verify that it works correctly.

18.8.6 Truncating a File

Truncating a file means chopping off contents from the tail of the file. The use of the
open() system call with the O _ TRUNC flag, as shown in Section 18.8.4, is a special case
of truncation where the file size is reduced to zero and the read/write file pointer and EOF
are set to 0. You can use the truncate() or ftruncate() system calls to truncate a file.
Here are the brief descriptions of these commands.

#include <unistd.h>
int truncate(const char *path, off_t length);
int ftruncate(int fd, off_t length);

Success: 0
Failure: –1 and kernel variable errno set to indicate the type of error

These functions truncate an existing file to length bytes. The difference between the
functions is that truncate() works with a pathname and ftruncate() with a file
descriptor. If length is smaller than the existing length of the file, the contents of the file
beyond length bytes are not accessible anymore. If length is greater than the current
file size, the file size is increased to length and the space between the previous EOF and
new EOF is filled with zeros and becomes a hole (See Section 18.8.5).

The truncate.c program takes two command line arguments: a file and a number. It
displays the size of the file by using the lseek() system call, truncates the file to the size
specified as the second argument by using the truncate() system call, and displays the
size of the truncated file. The sample run shows the sizes of the file, called data, before and
after truncation. Note that the size of the input file is also confirmed with the ls –l data
command. The tail commands are used to show the tails of the data file before and after
truncation.

% cat truncate.c
#include <fcntl.h>
#include <unistd.h>

#define HSIZE 512L

int main(int argc, char *argv[])
{
 int fd, newfilesize, size_o, size_t;

 /* Open the given file */

System Programming I     ◾    807

 if (argc != 3) {
 printf("Inappropriate number of command line

arguments.\n");
 exit(0);
 }
 newfilesize = atoi(argv[2]);
 if ((fd = open(argv[1], O_WRONLY)) == -1) {
 perror("File opening");
 exit(1);
 }
 size_o = lseek(fd, 0, SEEK_END); /* Size of original file */
 if (truncate(argv[1], newfilesize) == -1) {
 perror("Truncating file");
 exit(1);
 }
 size_t = lseek(fd, 0, SEEK_END); /* Size of truncated file */
 printf("The size of the original file is %d bytes.\n",

size_o);
 printf("The size of the truncated file is %d bytes.\n",

size_t);
 if (close(fd) == -1) {
 perror("File closing");
 exit(1);
 }
 return(0);
}

% man cat > data
% ls -l data
-rw-r--r-- 1 sarwar faculty 4083 Jan 31 14:15 data
% tail data
BUGS
 Because of the shell language mechanism used to perform

output redirection, the command "cat file1 file2 > file1"
will cause the original data in file1 to be destroyed!

 The cat utility does not recognize multibyte characters when
the -t or -v option is in effect.

FreeBSD 11.0 January 29, 2013 FreeBSD 11.0

% gcc48 –w truncate.c
% ./a.out data 1024
The size of the original file is 4083 bytes.
The size of the truncated file is 1024 bytes.
% tail data

808 ◾ UNIX: The Textbook, Third Edition

 The options are as follows:

 -b Number the non-blank output lines, starting at 1.

 -e Display non-printing characters (see the -v option), and
display a dollar sign ('$') at the end of each line.

 -l Set an exclusive advisory lock on the standard output
file descri%

EXERCISE 18.12

Compile and run truncate.c. Does it work as intended?

18.8.7 Removing a File

You can use the unlink() system call to remove a file from the file system structure. The
following is a brief description of the call.

#include <unistd.h>
int unlink(const char *path);

Success: 0
Failure: –1 and kernel variable errno set to indicate the type of error

This system call essentially decrements by one the hard link count for the file stored in
its inode. If the resultant link count becomes zero and no process has the file open, the
file is removed from the file system. If link count becomes zero but one or more processes
have the file open, the removal of the file is delayed until the reference count for the file
becomes zero. If the link count is not zero, the file remains in the file system structure and
its directory entry is removed. Once a file has been removed from the file system, its direc-
tory entry, inode, and all other kernel resources associated with the file are returned to the
system for recycling.

On successful completion, unlink() returns 0. It returns –1 on failure and errno
is set to indicate the reason for failure. Table 18.10 shows some common reasons for the
unlink() call to fail for regular files.

The create_holes_delete.c program shown in the following is an updated version of
the create_holes.c program discussed in Section 18.8.5. The program saves the size of the
original file, creates holes in it, displays the sizes of the original file and the file with holes,
and then removes the file with holes. The program determines the sizes of the original and
new file (with holes) by using the lseek() system call. The sample run shows the sizes of
original file and the file with holes. The ls –l data command shows that the program
did remove the file with holes.

% cat create_holes_delete.c
#include <fcntl.h>
#include <unistd.h>

System Programming I     ◾    809

#include <string.h>

#define HSIZE 512L

int main(int argc, char *argv[])
{
 int fd, i, n, nholes, nw, size_o, size_h;
 char *buf="Random data for creating holes.";

 /* Open the given file */
 if (argc != 3) {
 printf("Inappropriate number of command line

arguments.\n");
 exit(0);
 }
 nholes = atoi(argv[2]);
 if ((fd = open(argv[1], O_WRONLY)) == -1) {
 perror("File opening");
 exit(1);
 }
 size_o = lseek(fd, 0, SEEK_END); /* Size of original file */
 for (i=0; i<nholes; i++) {
 n = lseek(fd, HSIZE, SEEK_END);
 nw = write(fd, buf, strlen(buf));
 }
 size_h = lseek(fd,0,SEEK_END); /* Size of file with holes */
 if (close(fd) == -1) {
 perror("File closing");
 exit(1);
 }
 printf("The size of the original file is %d bytes.\n",

size_o);

TABLE 18.10 Some Common Reasons for the unlink() System Call to Fail

Reason for Failure Value of errno

The named file is a directory. EISDIR

The file specified in path does not exist. ENOENT

A component in path is not a directory. ENOTDIR

Search permission is denied on a component of path. EACCES

Write permission does not exist on the directory containing the file/
link to be removed.

EACCES

A component in path exceeds the file name size limit (255 characters)
and the entire path exceeds the 1023 characters.

ENAMETOOLONG

An I/O error occurred while deleting the directory entry for the file or
deallocating file’s inode.

EIO

The file to be removed resides on a read-only file system or device. EROFS

810 ◾ UNIX: The Textbook, Third Edition

 printf("The size of the file with holes is %d bytes.\n",
size_h);

 unlink(argv[1]);
 return(0);
}
% man bash > data
% ls -l data
-rw-r--r-- 1 sarwar faculty 367470 Jan 30 09:59 data
% gcc48 –w create_holes_delete.c
% ./a.out data 3
The size of the original file is 367470 bytes.
The size of the file with holes is 369099 bytes.
% ls -l data
ls: data: No such file or directory
%

The remove() system call is equivalent to the unlink() system call for files.

EXERCISE 18.13

Compile and run create_holes_delete.c. Does it work as expected?

18.9 GETTING FILE ATTRIBUTES FROM A FILE INODE
Recall that the UNIX inode contains most of the attributes of a file, including the following:

• Size (in bytes)

• User (Owner) ID

• Group ID (of the owner)

• File mode and access permissions

• Hard link count

• Times for the creation, last access, and last modification

• Pointers to file blocks on secondary storage

Note that the file’s name and the current position of the file’s read/write pointer are
not stored in the inode of the file. The name of the file, as discussed in Chapter 4 and in
Section 18.11, is stored in the directory entry for the file and, as discussed Section 18.5.2
the file pointer is stored in the SFT. You can obtain a copy of a file’s attributes stored in
its inode by using the stat(), lstat(), and fstat() system calls. These calls fill in
the stat structure (struct stat), defined in <sys/stat.h>, with the values of various
attributes. We discuss the stat structure and the three calls in Sections 18.9.1 and 18.9.2,
respectively.

System Programming I     ◾    811

18.9.1 The stat Structure

Most, but not all, of the attributes of a file are stored in the file’s inode. For example, as dis-
cussed in Chapter 4, a file’s inode number resides in the directory entry of the file and not
in file’s inode. The stat structure describes part of the inode. The definitions of this struc-
ture are similar on both Solaris and FreeBSD. Here is how this structure looks on FreeBSD:

struct stat {
 __dev_t st_dev; /* inode's device */
 ino_t st_ino; /* inode's number */
 mode_t st_mode; /* inode protection mode */
 nlink_t st_nlink; /* number of hard links */
 uid_t st_uid; /* user ID of the file's owner */
 gid_t st_gid; /* group ID of the file's group */
 __dev_t st_rdev; /* device type */
 struct timespec st_atim; /* time of last access */
 struct timespec st_mtim; /* time of last data modification */
 struct timespec st_ctim; /* time of last file status change */
 off_t st_size; /* file size, in bytes */
 blkcnt_t st_blocks; /* blocks allocated for file */
 blksize_t st_blksize; /* optimal blocksize for I/O */
 fflags_t st_flags; /* user defined flags for file */
 __uint32_t st_gen; /* file generation number */
 __int32_t st_lspare;
 struct timespec st_birthtim;/* time of file creation */
 unsigned int :(8 / 2) * (16 - (int)sizeof(struct timespec));
 unsigned int :(8 / 2) * (16 - (int)sizeof(struct timespec));
};

Most of the fields of the structure are self-explanatory, but not all. Some of the fields that
need a bit more explanation are described briefly in Table 18.11.

The <sys/stat.h> file defines 24 distinct 24-bit flags for the st _ mode field for file
types, access permissions, special permission bits, and so on. A programmer does not
need to know what these values are, but you should browse through the header file to see
these fields. The <sys/stat.h> file also contains several macros to check the type of file.
Each macro takes st _ mode value as an argument corresponding to a specified type

TABLE 18.11 Commonly Used Fields of struct stat Defined in <sys/stat.h>

Field Meaning

st_mode • File’s access permissions
• Type of file
• Status of special permission bits: SUID, SGID, and sticky (see Chapter 5)

st_ctim Time when file’s attributes were changed such as file access permissions
through the chmod command

st_birthtim Time when file’s inode was created
st_blocks The number of 512-byte blocks allocated to the file

812 ◾ UNIX: The Textbook, Third Edition

and evaluates to a non-negative if the test is true. If it evaluates to 0 then the test is false.
Table 18.12 contains these macros and their purpose.

18.9.2 Populating the stat Structure with System Calls

You can use any of the three system calls to populate the stat structure with the
attributes of a file: stat(), lstat(), and fstat(). Here are brief descriptions of these
calls.

#include <sys/types.h>
#include <sys/stat/h>
int stat(const char *path, struct stat *sb);
int lstat(const char *path, struct stat *sb);
int fstat(int fd, struct stat *sb);

Success: 0
Failure: –1 and kernel variable errno set to indicate the type of error

The stat() system call reads information about the file specified in the path param-
eter and stores it in the stat structure (struct stat) pointed to by sb. This structure
is defined in <sys/stat.h>. All of the components in the path variable must be search-
able (i.e., must have the execute permission on). Access permissions on the named file are
irrelevant because this call does not deal with the contents of the file. If the named file is a
symbolic link, the stat() system call returns the information about the file that the link
points to.

The lstat() system call works like the stat() system call, except that if the named
file is a symbolic link, the call returns information about the link file and not where it
points to. The fstat() system call returns information about an open file.

18.9.3 Displaying File Attributes

Once you have obtained file attributes by using one of the preceding system calls and
stored them in a variable of struct stat, you can display them by using the Standard
I/O functions for output, such as printf() and sprint(). For example, the stat.c
program that follows reads the sv variable (of struct stat type) the attributes

TABLE 18.12 Macros Defined in <sys/stat.h> for
Checking the Type of a File

Macro Test

S_ISBLK(m) Test for block special file
S_ISCHR(m) Test for character special file
S_ISDIR(m) Test for directory
S_ISFIFO(m) Test for named pipe (FIFO)
S_ISLN(m) Test for symbolic link
S_ISREG(m) Test for regular file
S_ISSOCK(m) Test for socket
S_ISWHT(m) Test for whiteout (not implemented)

System Programming I     ◾    813

of the file passed as a command line argument. It then displays the size of the file (in
bytes) if it is a regular file. Otherwise, it displays an error message using the library call
perror().

% cat stat.c
#include <sys/stat.h>
#include <sys/types.h>

int main(int argc, char *argv[])
{
 struct stat sv;

 if (argc != 2) {
 printf("Inappropriate number of command line

arguments.\n");
 exit(0);
 }
 if (stat(argv[1], &sv) == 0 && S_ISREG(sv.st_mode))
 printf("File size is %d bytes\n", sv.st_size);
 else
 perror("stat");
}

% gcc48 –w stat.c
% ./a.out stat.c
File size is 374 bytes
% ls -l stat.c
-rw-r--r-- 1 sarwar faculty 374 Jan 29 23:52 stat.c
% ./a.out ~
stat: No such file or directory
% ./a.out /usr
stat: No such file or directory
%

Note that the error message for the ./a.out ~ and ./a.out /usr commands is
stat: error 0 on Solaris.

18.9.4 Accessing and Manipulating File Attributes

UNIX provides several system calls for modifying file attributes, including file access per-
missions, file owner, and file access times. We do not discuss these system calls in detail.
Table 18.13 contains brief descriptions of some system calls related to the manipulation of
file attributes and their purpose.

EXERCISE 18.14

Browse through the stat structure definition on Solaris. What are the differences between
the definitions of this structure on FreeBSD and Solaris?

814 ◾ UNIX: The Textbook, Third Edition

EXERCISE 18.15

Compile and run stat.c, discussed in Section 18.9.3. Does it work as intended?

EXERCISE 18.16

Browse through the man pages for the system calls given in Table 18.13 on both BSD and
Solaris. Write small programs to practice them.

18.10 RESTARTING SYSTEM CALLS
We should write code that has the ability to restart system calls that are interrupted during
their execution. Such situations arise when you perform blocking I/O using the read()
and write() system calls. We will also discuss blocking I/O in detail in Chapters 19 and
20 while discussing the concept of a communication channel, called a UNIX pipe, used for
communication between related processes. We discussed the command line use of pipes
in detail in Chapter 9.

Simply saying, blocking input means that the read() system call waits as there is noth-
ing to read because the pipe is empty. Another example of blocking is when the read()
system call reads input interactively from a keyboard. The read() call blocks until the
user enters keyboard input. Similarly, in the context of a pipe, a write() system call
blocks if the pipe is full.

The read() system call may be interrupted when it is performing a blocking read
from a slow device. When the read() call is used to read input interactively from
a keyboard, it may be interrupted while waiting for user input. Most modern UNIX
implementations restart such system calls automatically. If you are not sure whether
your code would be run on such a system, you need to write code to explicitly handle
the restarting of an interrupted system call. The following code snippet may be used for
this purpose.

Repeat:
 if ((nr = read(fd, buf, SIZE)) == -1)) {
 switch(errno) {
 case EINTR: goto repeat;

TABLE 18.13 Additional System Calls for Accessing
and Changing File Attributes

Accessing and Setting File Attributes

access() Check file access permissions
chmod() Set file access permissions
chown() Change file owner
rename() Rename a file
umask() Check and set umask
utime() Change access and medication times

System Programming I     ◾    815

 break;
 /* handle other errors */
 default:
 }
 }

We address this issue for network-related system calls, particularly, the select() sys-
tem call, in Chapter 20.

18.11 SYSTEM CALLS FOR MANIPULATING DIRECTORIES
UNIX provides a set of system calls for creating, deleting, and changing directories.
Table 18.14 lists these calls along with their purpose. We will not discuss these calls any
further. However, you will get to practice them in a programming exercise given at the end
of the chapter.

As a system programmer, you do not need to know the details of the kernel data struc-
tures for directories. However, such knowledge enhances your understanding of the UNIX
operating system and your skills as a programmer. The most important directory data
structure is defined in the <sys/dirent.h> file. Here is the definition of the directory entry
in Solaris that is independent of the file system.

struct dirent {
 ino_t d_ino; /* "inode number" of entry */
 off_t d_off; /* offset of disk directory entry */
 unsigned short d_reclen; /* length of this record */
 char d_name[1]; /* name of file */
};

In FreeBSD, it the directory entry is defined as

struct dirent {
 __uint32_t d_fileno; /* file number of entry */
 __uint16_t d_reclen; /* length of this record */
 __uint8_t d_type; /* file type, see below */

TABLE 18.14 UNIX System Calls Related to Directories

System Call Purpose

chdir() Change directory
mkdir() Create directory
rmdir() Remove directory
remove() Remove an empty directory; equivalent to rmdir()
rename() Rename a directory

816 ◾ UNIX: The Textbook, Third Edition

 __uint8_t d_namlen; /* length of string in d_name */
 char d_name[255 + 1]; /* name must be no longer than this */
};

Definitions in both systems have three common fields: the inode number for the
file (called the file number under FreeBSD), the file name, and the length of the direc-
tory entry. The BSD definition contains two additional fields: the length of the string
in the name field and the type of the file the entry represents. The type field is not
strictly required here because the inode contains this information, as discussed in
Section 18.9. The Solaris definition contains the additional field of offset of the disk
directory entry.

You can use several C library functions to manipulate directories, including open-
dir(), closedir(), readdir(), telldir(), seekdir(), and rewinddir().

EXERCISE 18.17

Browse through the man pages for the previously stated calls to manipulate directories in
order to understand their syntax and semantics. Then write small programs to use them in
order to enhance your understanding of these calls.

18.12 IMPORTANT WEB RESOURCES
Table 18.15 lists useful websites for UNIX system programming and related topics.

TABLE 18.15 Web Resources for the UNIX System Programming and Related Topics
https://www.freebsd.org/ Home page for FreeBSD. Contains a lot of useful

material, including FreeBSD source, manual
pages, support, SVN repository, forums, user
groups, etc.

http://www.oracle.com/technetwork/
server-storage/solaris11/
documentation/index.html

Webpage for Oracle Solaris 11 product
documentation.

http://www.gnu.org/ Homepage for the free operating system GNU by
the Free Software Foundation. Work on GNU’s
kernel, The Hurd, started in 1990 (before work on
Linux had started).

http://www.tutorialspoint.com/
index.htm

An excellent site for tutorials on almost all known
programming languages, including C, and
development environments.

http://www.tutorialspoint.com/c_
standard_library/index.htm

The C standard library.

www.compileonline.com
(http://www.tutorialspoint.com/
codingground.htm)

A great free site for online editing, compiling, and
running programs in almost any language from
assembly language to Python and from Algol-68
to Ruby.

http://www.tutorialspoint.com/c_standard_library/index.htm
http://www.tutorialspoint.com/index.htm
http://www.oracle.com/technetwork/server-storage/solaris11/documentation/index.html
http://www.oracle.com/technetwork/server-storage/solaris11/documentation/index.html
http://www.tutorialspoint.com/codingground.htm
http://www.tutorialspoint.com/codingground.htm
http://www.compileonline.com
http://www.tutorialspoint.com/c_standard_library/index.htm
http://www.tutorialspoint.com/index.htm
http://www.gnu.org/
http://www.oracle.com/technetwork/server-storage/solaris11/documentation/index.html
https://www.freebsd.org/

System Programming I     ◾    817

SUMMARY
UNIX provides two APIs for software development: the language libraries and the system
call interface. Application programmers typically use the interface provided by the lan-
guage libraries and system programmers primarily use the system call interface. We
described the UNIX system calls and their use in small programs for the I/O of file data
and attributes. Our focus was on regular files.

Before discussing the system calls, we explained that four types of events cause the con-
trol to be transferred to the kernel code. They are interrupt, trap, signal, and system call,
with the first two caused by the system hardware and the last two primarily caused by
software. We also discussed the details of events that happen in order to execute a system
call. We discussed briefly the C Standard Library and the difference between Standard I/O
and low-level I/O through system calls.

We discussed the system calls for data I/O for regular files and I/O of file attributes
using the open(), creat(), read(), write(), close(), truncate(), and stat()
system calls. For random I/O, we used the lseek() system call to set the file pointer to
the byte where the next read or write operation should be performed. We showed the use of
the lseek() and write() system calls to illustrate how holes can be created in a regular
file under UNIX. We showed the holes created in a file by displaying its octal dump using
the od command.

We discussed briefly several system calls and C library functions for accessing and
manipulating file attributes and directories. These calls are: access(), chdir(),
chmod(), chown(), closedir(), mkdir(), opendir(), read(), readdir(),
rename(), rewinddir(), seekdir(), telldir(), umask(), utime().

We also showed the kernel data structures for the stat structure and a directory entry,
as described in the <sys/stat.h>, <limits.h>, and <sys/limits.h> files.

Finally, we showed how you can use a small piece of code to restart a system call if it is
interrupted in the middle of execution and the underlying OS kernel does not automati-
cally restart it. Such interruption may occur when blocking I/O is done on slow devices,
keyboards, and files such as pipes, FIFOs, and sockets.

QUESTIONS AND PROBLEMS

 1. What is a system call? List names of three system calls in each of the following
categories:

 a. Process control

 b. File management

 c. Device management

 d. Information maintenance

 e. Communications

818 ◾ UNIX: The Textbook, Third Edition

 2. Clearly describe the difference between file I/O using the Standard C library and the
UNIX system call interface.

 3. What is a stream in the context of Standard I/O? Explain with an example.

 4. What is the FILE object? What does it contain? Create a file called foo, open it using
a Standard C library function and display the file descriptor of the file.

 5. Describe clearly the differences between the PPFDTs and the SFT. Illustrate your
answer with an example.

 6. Describe in words situations under which the same entry in multiple PPFDTs would
point to the same entry in the SFT.

 7. What happens when a process executes the close() system call on a file descriptor
when pointers from more than one PPFDT point to the entry for this file in the SFT?

 8. What is the size of the PPFDT on Solaris and BSD? Hint: Browse through the
<limits.h> file on Solaris and <limits.h> and <sys/syslimits.h> files on BSD.

 9. What does the lseek() system call return after completing successful execution?

 10. Write a piece of code that opens a file whose name is passed as a command line argu-
ment and sets the read/write file pointer to the beginning of the file.

 11. Write a program that takes the following command line arguments: file, posi-
tion, nbytes. It displays nbytes bytes from the file starting with the position
byte of the file. Do the appropriate error handling.

 12. Enhance the create_holes.c program in Section 18.8.5 so that it takes the hole size
from the command line and appends after the hole data taken from the file specified
as the second command line argument. Compile and show a few sample runs of the
program.

 13. What is the effect of executing the unlink() system call if there are multiple hard
links to a file?

 14. Give the syntax for the open() system call for creating a new file for reading and
writing.

 open(pathname, O _ RDWR | O _ CREAT | O _ TRUNC, mode);

 15. Give the sequence of system calls for performing this operation by using the creat(),
open(), and close() system calls.

 16. Write a C program to verify that the UNIX kernel allocates file descriptors sequen-
tially starting with descriptor 0. Show the source code and execution of your program.

 17. Create a large file running the man csh >> bigdata command five times. Then,
create three holes in it of sizes 4K, 8K, and 16K bytes. Display the file size by using the
ls –l bigdata command. Then use the du bigdata command to determine the

System Programming I     ◾    819

file size. Read the man page for the du command to determine the block size used
so you can perform this task. Now verify that the bigdata file contains holes equal to
28K bytes.

 18. What is the purpose of the following program? Explain your answer.
 int main(void)

 {
 int nr, nw;
 while ((nr = read(0, &c, 1)) !== 0)
 nw = write(1, &c, 1);
 return(0);
 }

 19. Write a C program that takes a file as a command line argument and outputs Yes if
the file is empty and No if it isn’t. Show the source code, compilation of the source
code, and a few sample runs of the program.

 20. What would happen if we did not use the O _ TRUNC flag in the cpy.c program in
Section 18.8.4?

 21. Modify the truncate.c program discussed in Section 18.8.6 so that it takes any num-
ber of files as command line arguments and truncates them to the argument specified
as the last argument. It displays the names and sizes of the original and truncated
files in the form of a table and removes the truncated files from the file system. Show
a few sample runs of the program.

 22. Change the truncate.c program discussed in Section 18.8.6 so that it takes three com-
mand line arguments. The first two arguments are file names, with the first the name
of an existing file. The third argument specifies the new file length. The program cre-
ates the file with the name given as the second argument, copies the first file into it,
truncates the file according to the third argument, displays the sizes of the original
and truncated file, removes the truncated file from the file system, and terminates.
Show a few sample runs of the program.

 23. Browse through the <stdio.h> file and identify the values (or macros) for the
following:

• Maximum number of files that the system allows to be opened concurrently

• Macros for standard files

• Macros that define SEEK _ CUR, SEEK _ END, and SEEK _ SET

 24. Browse through the <stdio.h> file and identify all of the functions and their purposes.

 25. Write a program that opens a file with one hard link and removes the file with the
unlink() system call. Read data from the opened file and send it to standard out-
put using the write() system call. What happens? Is your program able to read file
data? Explain your answer.

820 ◾ UNIX: The Textbook, Third Edition

 26. Clearly state the difference between the stat(), fstat(), and lstat() system
calls. Which of these calls would you use if you need to display the attributes of a
link-type file? Why?

 27. Write a C program that uses the stat() system call to display the file size and last
modification time for the file whose path is passed as a command line argument. The
program then opens the file, appends data to it, and uses the fstat() system call to
read and display the file size and modification time for the file.

 28. Enhance the program from Problem 27 so that it takes the file as a command line
argument and, in the output, first displays the type of the file followed by the file
size in bytes, the file’s inode number, the file’s access permissions, the number of
hard links to the file, the file size in 512-byte blocks, and the last modification time.
Compile the program and show its execution for an ordinary file, a directory, a link
file, a character special file, and a block special file.

 29. Modify the stat.c program discussed in Section 18.9.3 so that if the command line
argument is a link file, it displays the information about the link file and not where
the link points. Do the appropriate error handling.

 30. Write a simple UNIX shell that:

 a. Displays a prompt and waits for the user to enter a command terminated with
<Enter>

 b. Executes the shell commands and prompts the user for input again

 c. Terminates when the user presses <Ctrl+D>

 You should implement the following commands with your own code; that is, they are
the built-in (intrinsic) shell commands:

Command Purpose
finfo file Display the following attributes of file: type, number of hard

links, user ID, access permissions
truncate file size Truncate size of file to size bytes
holes file number Create number holes in file if it is a regular file
mkdir dname Create the directory dname
rmdir dname Remove the directory dname
cd [dname] Change directory to dname

 For the execution of all other shell commands, use the library function system(). Do
the appropriate error handling. You will need to use the following system and library
calls in addition to the Standard I/O library calls: chdir(), mkdir(), rmdir(),
truncate(), lseek(), stat(), and system().

821

C h a p t e r 19

System Programming II
Process Management and Signal Processing

Objectives

• To explain the concepts of processes and threads

• To describe the general concept of the process control block (PCB) and its implemen-
tation in UNIX

• To discuss the details of main memory and disk images of UNIX processes

• To describe threads in detail, including user- and kernel-level threads

• To explain the differences and commonalities between threads

• To discuss fundamental process management concepts in UNIX: process creation,
process termination, waiting for a child process to terminate and obtain its ter-
mination status, overwriting a process image with another, creating zombie pro-
cesses, sharing open files between a process and its children, and duplicating file
descriptors

• To explain the concept of signals in UNIX, signal generation, and signal handling

• To explain process management concepts using various system and library calls
within several small programs

• To explain briefly several system calls and C library functions for manipulating
directories and file attributes

• To cover the system calls, library calls, commands, and primitives

 alarm(), dup(), dup2(), execl(), execve(), execle(), exit(),
file, fork(), gcc48, getpid(), getppid(), getuid(), getgid(),

822 ◾ UNIX: The Textbook, Third Edition

kill(), ls, open(), signal(), size, wait(), waitpid(),
wait3(), wait4(), wait6()

19.1 INTRODUCTION
In this chapter, we discuss the use of the API provided by the UNIX SCI and libraries for
process creation, termination, and management. We also describe the generation and han-
dling of software interrupts, commonly known as signals in UNIX lexicon. Our coverage
starts with the concepts of processes and threads, and moves to the coverage of the UNIX
process control block, the structure of the memory and disk images of UNIX processes,
static and dynamic linking, single- and multithreaded processes, user- and kernel-level
threads, and the differences between processes and threads. We also touch on the issues of
the critical section and critical section problems.

Our treatment of UNIX process management encompasses the following: system and
library calls for process creation, process termination and status reporting to the par-
ent process, getting the process ID and parent process ID, creating and handling zom-
bie processes, a process overwriting itself with another executable image, duplicating file
descriptors, file sharing between processes, sending different types of interrupts (UNIX
signals) to processes, handling signals, and setting up alarms in programs. As usual, our
coverage of the various topics is closely linked with the underlying kernel data structures
and operating system concepts where appropriate. As was the case for the programs in
Chapter 18, for the compilation of our sample C programs we use the default GNU C
compilers on PC-BSD and Solaris. The default compiler on our PC-BSD and Solaris sys-
tems are gcc48 and gcc, respectively. We show the compilation and execution of our
programs on PC-BSD.

19.2 PROCESSES AND THREADS
In this section, we discuss the concepts of processes and threads. Our discussion focuses
on the conceptualization of the two, how they are created, the system resources that they
need for their execution, their address spaces, similarities between two, and how they differ
from each other. After the discussion on generic processes, we focus primarily on UNIX
processes. The discussion of threads covers both user- and kernel-level thread libraries.

19.2.1 What Is a Process?

A simplistic and high-level view of a process is that it is a program in execution. Process
execution starts at the entry point into the process (usually the first statement of the main
function) and continues sequentially, one program statement at a time. Thus, a program
counter is associated with a process that controls the sequence of execution of the program
statements, including function calls. On a function call, the control transfers to the called
function and the first statement in the function is executed, followed by the execution
of the remaining body of code in the function sequentially, statement by statement. On
return from the function, the statement following the function call in the caller function
is executed. Process execution continues like this until the execution of the last statement
in the process.

System Programming II    ◾    823

A deeper look into a process reveals that it in fact consists of the following three entities:

 1. The address space

 2. The CPU state

 3. The process control block

The address space of the process is dictated by the main memory image of the process, as
discussed in Chapter 10, Section 10.5.1. The values of the CPU registers at any given time,
including the value of the program counter, comprise the CPU state of the process. We
describe the enhanced version of the main memory image of a process, the address space
of a process, and the process control block (PCB) of a process in the next subsection.

19.2.2 Process Control Block

The PCB is a kernel data structure that keeps track of the run-time attributes of the pro-
cess. In UNIX, the PCB of a process consists of two parts: the proc structure and the u area.
Whereas the proc structure contains the scheduling-related information of a process, the
u area contains information about signal handling, resource allocation, and a reference to
the proc structure. The proc structure of a process always remains in the main memory
regardless of the state of the process. However, the u area is in the main memory only when
the process is in the running state.

The proc structure contains the PID and PPID, its priority, scheduling and waiting
queues, information about memory management (paging and segmentation), the process
state, and the signal-handling mask. The u area contains a pointer to the proc structure,
the CPU state (i.e., context) of a blocked process, the UID and GUID, the current directory,
CPU usage of the process, the terminal the process is attached to, signal-handling informa-
tion, and the PPFDT.

A process may not access its PCB directly; the kernel updates the proc structure fields
of a process as and when needed. For example, the kernel code updates the scheduling
priority field in the PCB of a process when the process priority changes. Although a part
of a process image, the u area is only accessible to a process through the kernel code that
executes on behalf of the process, such as the code for a system call.

19.2.3 Process Memory Image (Process Address Space)

We discussed the memory image of a UNIX process in detail in Chapter 10. As stated
earlier, the process memory image, also known as the process image, consists of several
sections, as shown in Figure 10.6. Figure 19.1 shows the complete version of the process
image, including the u area at the top of the image. The memory image of a process delin-
eates the main memory region(s) that a process may access legally, known as the process
address space.

Some of the regions of the process image come into being only while the process remains
in the system (running or waiting for an event); other regions are an integral part of the
process image, whether it is a process in the main memory or an executable image on

824 ◾ UNIX: The Textbook, Third Edition

disk. For example, the environment, stack, shared (dynamically linked) libraries, heap,
and uninitialized data portions of the process are only required for as long as the process
remains in the system. These regions have been labeled as “Run-time areas” in Figure 19.1.
We have discussed most of the sections of the address space of a process in this and/or
other chapters, except shared libraries.

By default, all modern C compilers, including gcc, generate executable code by link-
ing all library calls to the relevant library code at run time. When a process calls a library
function, the code for the relevant library is loaded into the memory if it is not already in
the memory because of a previous reference to this library by this or another process. Once
a library’s code has been loaded into the memory, it remains memory resident for future
references to it by any process. Such linking of library code to an executable code is called
dynamic linking and the libraries used in this fashion are called shared libraries. Thus,
dynamically linked libraries are always shared.

Dynamic linking is preferred over static linking, primarily, for the following reasons:

 1. The resultant executable code is smaller in size. It means that it requires less disk space
to save it, a shorter time to load it into the main memory, and potentially less main
memory to execute it (in case the library function is not called during execution).

 2. Library code is loaded into the memory only once and is shared by multiple processes.

 3. New executable code does not need to be generated (relinked) again if a library is
updated, provided the prototypes for the library calls do not change.

Heap

Uninitialized data (bss)

Initialized

Text/code segment

Only accessible in kernel mode
Accessible in user mode

High memory

Process control block (PCB)

Run-time areas

Data segment

Tex/code segment

Low memory

u area
(also contains a pointer
to the proc structure)

Environment: Command line
arguments and environment

variables

Stack segment

Shared (dynamically linked)
libraries

FIGURE 19.1 Main memory image (process address space) of a UNIX process.

System Programming II    ◾    825

The primary drawback of dynamic linking is that the execution of a program is slower
if it refers to a library that has not been referenced by any process previously and, hence, its
code has not been loaded into the main memory previously.

19.2.4 Process Disk Image

The disk image of an executable file in UNIX has five sections, as shown in Figure 19.2.
These sections are: header, text/code, data, relocation information, and symbol table. The
header section contains the following information:

• Magic number

• Size of text/code area

• Size of data area

• Size of initialized data area (bss)

• Size of the symbol table

• Information about the entry point into the text/code area and flags

The magic number of an executable file describes the type of the executable code in the
file. A few types are: binary executable generated by a compiler, shell script, Perl script,
and Python code. Although commonly used in the computer literature now to describe
file formats and protocols, the term magic number was first used in the seventh edition
of UNIX for identifying the type of an executable file. The UNIX command file, dis-
cussed in Chapter 4, uses the magic number in a file to decipher the type of the file.

The relocation information describes whether the program is relocatable. An executable
code is relocatable if it will run regardless of where it is loaded into the memory. Programs

Flags

Text/code segment

Data segment

Relocation/paging
information

Symbol table

Header

Size of text/code and data
segment, initialized data
area, and symbol table

Entry point into the
text/code segment

•
•
•

Magic number

FIGURE 19.2 Disk image of an executable file.

826 ◾ UNIX: The Textbook, Third Edition

that are not relocatable must be loaded in a specific area in the main memory for it to
execute properly.

As discussed in Chapter 10, you can use the size command to display the sizes of the
text/code, data, and bss segments of an executable file. The following session shows the use
of the file, ls –l, and size commands to display the types of the executable files a.out
and cpy, their sizes in bytes, and the sizes in bytes of their code, data, and bss segments, as
well as the sum of their sizes in bytes shown in decimal and hexadecimal notations.

% file a.out cpy
a.out: ELF 64-bit LSB executable, x86-64, version 1 (FreeBSD),
dynamically linked (uses shared libs), for FreeBSD 10.0 (1000510),
not stripped
cpy: ELF 64-bit LSB executable, x86-64, version 1 (FreeBSD),
dynamically linked (uses shared libs), for FreeBSD 10.0 (1000510),
not stripped
% ls -l a.out cpy
-rwxr-xr-x 1 sarwar sarwar 8153 Feb 7 22:52 a.out
-rwxr-xr-x 1 sarwar sarwar 7960 Feb 21 14:32 cpy
% size a.out cpy
 text data bss dec hex filename
 2599 520 24 3143 c47 a.out
 2484 504 24 3012 bc4 cpy
%

The output of the file command shows that a.out and cpy are both executable files in
the ELF 64-bit format. The output of the ls –l command shows that their sizes are 8153
and 7960 bytes, respectively. Finally, the output of the size command shows the sizes in
bytes of their text, data, and bss segments, as well as the sum of their sizes.

EXERCISE 19.1

What is the difference between static linking and dynamic linking?

EXERCISE 19.2

Use the size command to determine the sizes of the text, data, and bss segments of the
executable files for the UNIX commands find and sort. Show the command runs and
their outputs.

19.2.5 What Is a Thread?

When a process calls a function from its “main” function, the control of execution trans-
fers from the main function to the code of the called function. On return from the func-
tion, the statement following the function call is executed in the caller function. If a called
function calls another function, the control transfers to the newly called function, returns
to its caller, and, eventually, returns to the main function. Thus, there is a single flow of
control as the program executes, also known as the thread of execution (commonly called

System Programming II    ◾    827

a thread), that, usually, starts with the main function and moves to the called functions
one after another, eventually returning to the main function. When the main function
finishes its execution, the only thread of execution in the process and the process itself
terminate. Such processes are known as single-threaded processes and the only thread in
them is known as the main thread. We can also say that single-threaded processes have
only one program counter (PC) associated with them and the value of the PC at any given
time determines the address of the next instruction to be executed in the thread.

All conventional programs result in single-threaded processes. Figure 19.3 shows a typi-
cal single-threaded C program in which program execution starts with the main function
and moves through different functions when they are called. The single execution path fol-
lowed by the process from main to other functions and back—that is, the thread of execu-
tion through the program—is shown in Figure 19.4. Note how the only thread of execution
moves from one function to another and back in the following order:

main → f1 → f2 → f1 → main → f3 → main → f1 → main

Code
#include <stdio.h>

int main(int argc, char* argv[])
{

int i;
char c;

printf(“Hello, world!\n”);
...
f1(...);
...
f3(...);
...
f1(...);
...
exit(0);

}
void f1(int i, int* ip)
{

...
if (...)
then

f2(...);
else

...
}
void f2(char c)
{

...
}
void f3(char* s)
{

...
}

FIGURE 19.3 Single-threaded process with only the main thread.

828 ◾ UNIX: The Textbook, Third Edition

You can create another thread of execution in your program that executes in parallel
with the main thread by executing a piece of code in the program, usually a function, such
that the function code executes like an independent program but without a main func-
tion and within the address space of the process in which the function resides. This means
that this thread of execution has its own program counter and stack. However, because it
executes within the address space of a process, it shares with all other threads of execu-
tion, including the main thread, data, code, and other segments of the program previously
discussed.

You may use the API for one of several thread libraries to create and manage threads.
The threads created by user programs using these libraries, which are not known to the
kernel and are managed solely by the user-level thread libraries, are known as user-level
threads. The code and data structures for these libraries are maintained in the user space.
The kernel does not know about and provides no support for such threads. It means that the
kernel only manages processes and the relevant thread library manages threads, including
their scheduling.

Some programming languages such as Java provide direct support for user-level threads.
Such threads are created and managed by the program itself through the use of the API of
a thread library.

If a thread library is implemented in the kernel, the operating system maintains the
code and data structures for the library. Calls to functions in these libraries for creating
and managing threads result in system calls. The threads created by the user programs

f1 ()

f2 ()

.

.

.

.

.

.

.

.

.

.

.

.

f1 ()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
f3 ()

start

finish

main ()

f1 (…);

f3 (…);

f1 (…);

exit (0);

f2 ()

FIGURE 19.4 The flow of control (thread) of the program: a single-threaded process.

System Programming II    ◾    829

using such libraries are known as kernel-level threads. The kernel handles both processes
and threads, including their scheduling.

Several libraries are available for the implementation of user- and kernel-level threads.
The POSIX standard Pthreads may be provided as user- or kernel-level libraries. Win32
threads are available as kernel-level libraries.

Kernels of almost all modern general-purpose operating systems are multithreaded.
This means that they can serve multiple system calls simultaneously. This is done by run-
ning the code corresponding to a system call as a thread instead of a function call. Thus,
for example, multiple invocations of the read() system call from threads within the same
process or different processes may be served simultaneously. The operating system kernels
that offer such multithreaded services are known as multithreaded kernels.

We use library calls to create, terminate, and manage threads. If the threads library
were for kernel threads, each library call would eventually invoke a system call. The ker-
nel would have the knowledge of threads and would be responsible for managing them,
including their scheduling. Otherwise, the user-level library manages threads.

In Figure 19.5, we show a multithreaded process with four threads: the main thread,
two threads of the function f1(), and one thread for the function f3(). A function that
is designed to become a thread must terminate with a library function that terminates the
thread, such as pthread _ exit(...). We use the names of the Pthreads library func-
tions for the creation and termination of threads. Note that you need to include the header
file /usr/include/pthread.h in your program and link the Pthreads library with the execut-
able code using the –pthread option with the gcc compiler, as in

gcc48 –w –pthread prog.c –o prog

The typical graphical representations of single-threaded and multithreaded processes
are shown in Figure 19.6.

19.2.6 Commonalities and Differences between Processes and Threads

Processes and threads have several things in common. For example, each has its own ID,
stack, and program counter.

There are several differences between processes and threads. For example, whereas pro-
cesses operate within their own address spaces, threads within a process operate within
the address space of the process. Similarly, processes have their own data and text (code)
areas but threads share the text and data areas in the process.

19.2.7 Data Sharing among Threads and the Critical Section Problem

Data sharing among threads is a mixed blessing. Whereas this saves memory space by
preventing the duplication of data, it does require that threads access data on a mutu-
ally exclusive basis by locking data before accessing it and unlocking it afterward. If this
were not done, the results produced by the process would be dependent on the sequence
in which instructions within threads access shared data, and the results may or may not
be correct. This is called the race condition and the final result produced by the process is
dependent on the order in which instructions in different threads access the shared data.

830 ◾ UNIX: The Textbook, Third Edition

Code
#include <stdio.h>
#incldue <pthreads.h>

int main(int argc, char* argv[])
{

int i;
char c;

printf(“Hello, world!\n”);
...
pthread_create(..., ..., f1, ...);
...
pthread_create(..., ..., f3, ...);
...
pthread_create(..., ..., f1, ...);
...
exit(0);

}
void f1(int i, int* ip)
{

...
if (...)
then

f2(...);
else

...
pthread_exit(...);

}
void f2(char c)
{

...
pthread_exit(NULL);

}
void f3(char* s)
{

...
pthread_exit(NULL);

}

FIGURE 19.5 Multithreaded process with four threads including the main thread.

(a) (b)

• • •

FIGURE 19.6 Typical graphical representations of (a) a single-threaded process and (b) a
multithreaded process.

System Programming II    ◾    831

The piece of code in a thread that accesses shared data is known as the critical sec-
tion. Thus multiple critical sections that access shared data must be executed mutually
exclusively, one after the other. In other words, when there are simultaneous requests for
the execution of multiple critical sections, the execution of these critical sections must be
serialized. How such mutual exclusion is achieved is known as the critical section problem.
Several solutions are available in the literature for solving this problem. However, further
discussion on this topic is beyond the scope of this book. If you are interested in knowing
more about this subject, you may read a textbook on operating system principles or operat-
ing system concepts.

EXERCISE 19.3

Browse the Web and write down the names of three thread libraries, in addition to those
we have discussed in Section 19.2.5, that may be used for user-level threads.

EXERCISE 19.4

The Bakery Algorithm is an elegant solution for the N-process critical section problem.
Browse the Web or see a book on operating system principles and concepts to find out the
name of the author of this algorithm. Who is the author?

19.3 PROCESS MANAGEMENT CONCEPTS
Process management entails several things, from process creation to termination and
everything in between, including suspending a process, having a process wait for an event
such as the termination of a child process, sending a signal (software interrupt) to a pro-
cess, handling signals, setting up an alarm in a process, and duplicating a file descriptor in
the PPFDT. Table 19.1 shows a few system calls for process management.

TABLE 19.1 The UNIX System Calls for Process Management
fork() Create a clone (i.e., a child) of the calling process
execve() Overwrite the main memory image of the caller process
wait() Suspend the calling process and wait for a child process to terminate
waitpid() Wait for the termination of the process with the given PID
exit() Terminate the caller process and return status to the parent of the process
getpid() Get the PID of the caller process
getppid() Get the PPID of the parent of the caller process
getuid() Get the UID of the owner of the caller process
getgid() Get the GID of the owner of the caller process
signal() Handle a signal by ignoring it, taking the default (kernel-defined) action, or taking the

programmer-defined action specified for the relevant signal
kill() Send a signal of a particular type to a process; normally used to terminate a process
alarm() Set an alarm signal for the given number of seconds
dup(), dup2() Duplicate a file descriptor in the PPFDT

832 ◾ UNIX: The Textbook, Third Edition

EXERCISE 19.5

Browse the man page for the execve() system call and list the names of all the variants
of this call, both system calls and library calls.

EXERCISE 19.6

Browse the man page for the wait() system call and list the names of all the variants of
this call, both system calls and library calls.

19.3.1 Getting the Process ID and the Parent Process ID

You can use the getpid() and getppid() calls to display the ID of a process (PID) and
the ID of its parent (PPID). Here are the brief descriptions of these calls.

#include <sys/types.h>
#include <unistd.h>
pid_t getpid();

Success: The ID of the process (PID)
Failure: –1 and kernel variable errno set to indicate the type of error

#include <sys/types.h>
#include <unistd.h>
pid_t getppid();

Success: The ID of the parent process (PPID)
Failure: –1 and kernel variable errno set to indicate the type of error

The pids.c program in the following session shows the use of these calls. The compila-
tion and running of this program displays the PID of the process (26438) and the PID of its
parent (16733). Note that the parent of the process is the login shell (-csh) with PID 16733,
as shown in the output of the ps command.

% cat pids.c
void main(void)
{
 printf("Child’s PID = %d\n", getpid());
 printf("Parent’s PID = %d\n", getppid());
}
% gcc48 -w pids.c -o pids
% ./pids
Child’s PID = 26438
Parent’s PID = 16733
% ps
 PID TT STAT TIME COMMAND
16733 1 Ss 0:02.23 -csh (csh)
26830 1 R+ 0:00.01 ps
%

System Programming II    ◾    833

EXERCISE 19.7

Compile and run the pids.c program to make sure it works on your system.

EXERCISE 19.8

Browse the man page for the getpgrp() and getpgid() system calls. What is the pur-
pose of each of these calls?

19.3.2 Creating a Clone of a Process

The only way to create a process in UNIX is to have a process create a clone of itself—that
is, a replica of the main memory image of the process and most of the associated kernel
data structures (discussed later in this section). A process can use the fork() system call
for this purpose. The clone is called the child process and the caller of fork() is known
as the parent process. Both processes have their unique process IDs (PIDs). Here is a brief
description of the fork() system call.

#include <sys/types.h>
#include <unistd.h>
pid_t fork(void);

Success: 0 to the child process and the PID of child to the parent process
Failure: –1 and kernel variable errno set to indicate the type of error

As you can see, the fork() call returns a value of type pid _ t, which is defined in
the header file /usr/incude/sys/types.h as a 32-bit integer. This means that you would use
fork() in an assignment statement, as in

pid_t pid;
...
pid = fork();
...

As soon as fork() has completed the creation of the child process and before it returns,
the parent and child processes start running concurrently as independent processes. Both
execute the statement following fork(), which is the assignment statement meant to save the
return value of the fork() call. The fork() call returns 0 to the child process and the PID of
the child process to the parent process. It is not easy to comprehend how a system call could
return two values because a function may return only one value. Note that it is possible for
fork() to return two values because as soon as the child process has been created fork() has
to complete its execution in both processes by returning a value in each of the two processes.

The child process inherits several attributes and characteristics of the parent process.
Here is a partial list:

• A copy of the parent’s PPFDT

• The current working directory

834 ◾ UNIX: The Textbook, Third Edition

• The environment

• The root directory

• The set-user-ID (SUID) and set-group-ID (SGID) status

• The signal settings

• The time left before an alarm goes off

• The value of the file creation mask, umask

Although the child process is an exact copy of the memory image of the parent process,
the two differ from each other in many ways:

• Both processes have their own process IDs (PIDs).

• Both have different parent processes.

• Both have their own copies of the PPFDT.

• The resource utilization for the child process is set to 0.

• The child process has only one thread of execution, and if the parent process is multi-
threaded, the other threads do not release the resources held by them.

Since the parent and child processes have copies of the same PPFDT, both can do I/O
with files that the parent process had opened before creating the child process and this I/O
is visible in both processes. In other words, the change is the position of the file pointer due
to read(), write(), and lseek() calls by either process is visible in the other process.
So, if either process reads N bytes from an already open file, the file pointer is incremented
by N and the next read or write operation by parent or child is performed at the new posi-
tion of the file pointer.

The fork() call may fail for the reasons listed in Table 19.2.
The vfork() system call is a lighter version of fork(). It creates a child process exactly

like fork() but does not copy the address space of the parent; it copies the address space
on demand—that is, when the child’s memory image is needed. The vfork() system call is
used instead of fork(), particularly if the child process uses the execve() system call (or
a variant) or the execl() library call (or a variant) right after its creation to overwrite itself

TABLE 19.2 Reasons for the fork() System Call to Fail

Reason for Failure Value of errno

The limit on the maximum number of processes that may run on the system
simultaneously would be exceeded

EAGAIN

The limit on the maximum number of processes that may run under a user
would be exceeded

EAGAIN

The resource limit set for the process has been reached EAGAIN

Insufficient swap space for the new process ENOMEM

System Programming II    ◾    835

with another executable code. This is done in applications like a shell program that executes
external commands by using and exec() call (execl(), execve(), fexecve(), etc.)
immediately after fork(). The exec() call is covered later in the chapter.

EXERCISE 19.9

If you browse the man page for the fork() system call, you will see the names of the
vfork() and rfork() calls. What is the purpose of each of these calls?

19.3.3 Reporting Status to the Parent Process

A UNIX process reports its termination status to its parent via the _exit()system call or
the exit() library call. Since most programmers use the exit() call to terminate a pro-
cess, we will discuss it throughout the book. A process passes its termination status to its
parent through the only parameter of the exit() call, usually, 0 or 1. The value 0 is used
to indicate successful completion of the process and 1 means its unsuccessful termination.

The parent process accepts this status through the use of a system call in the wait()
class (see Section 19.3.4). In reality, the status of the terminating process is saved in the
proc structure of the process. All the data structures and resources allocated to the process
are deallocated, except its proc structure. The proc structure is released back to the kernel
after the parent has read the exit status of the child process. If a process does not use the
exit() call to terminate itself, the kernel automatically sends the termination status of the
process to its parent process.

Note that a child process and its parent rendezvous through the exit() and wait()
system calls, with the parent receiving the exit status of the child and the reason for its
termination through this meeting. This is the simplest form of interprocess communica-
tion available in UNIX. By associating different connotations to the exit()parameter, the
child can communicate meaningful messages to its parent. We discuss the issue of com-
munication between UNIX processes in detail in Chapter 20.

19.3.4 Collecting the Status of a Child Process

A process can use the wait() system call to wait for the termination of a child process and to
know the reason of its termination. The process can use the waitpid() system call to wait for
the termination of a particular child process. Here are brief descriptions of these system calls.

#include <sys/types.h>
#include <sys/wait.h>
pid_t wait(int *status);
pid_t waitpid(pid_t wpid, int *status, int options);

Success: PID of the child process
Failure: –1 and kernel variable errno set to indicate the type of error

The wait() call may fail for several reasons. Some of these reasons are listed in
Table 19.3.

836 ◾ UNIX: The Textbook, Third Edition

The programmer can decipher the termination status of a child process and additional
information related to its termination, such as whether the process was terminated due to a
signal, by examining the value of the status parameter. As shown in Figure 19.7, the exit
status and the reason for the process to terminate are stored in status. The lower byte
contains the reason for the process termination and the upper byte contains the exit status.
If a process terminated on receiving a signal, the signal number is stored in the lower byte
of the status variable. Thus, for example, if a process terminated due to <Ctrl+C> (key-
board interrupt), the lower byte contains SIGINT (i.e., value 2).

With the passage of time, UNIX designers have added a number of variants of the
wait() call. The wait() system call is the oldest and waitpid() is the most restricted
of these calls. The newest and broadest interface is the wait6() system call. Detailed dis-
cussions on wait3(), wait4(), and wait6()are beyond the scope of this book. Here are
brief descriptions of the wait3() and wait4() calls.

#include <sys/types.h>
#include <sys/wait.h>
#include <sys/time.h>
#include <sys/resource.h>
pid_t wait3(int *status, int options, struct rusage *rusage);
pid_t wait4(pid_t wpid, int *status, int options, struct rusage *rusage);

Success: PID of the child process
Failure: –1 and kernel variable errno set to indicate the type of error

The wait4() system call instructs the process to wait for specific children processes
and to retrieve the statistics about their resource usage. As shown in Table 19.4, the wpid
parameter in the wait4() and waitpid() calls determines what child (or children) the
parent process waits for.

The options argument in wait3() and wait4() contains a bitwise OR of any of the
half a dozen options. You can see these options and their meaning by viewing the man

TABLE 19.3 Some of the Reasons for the wait() System Call to Fail

Reason for Failure Value of errno

The caller process has no children to wait for ECHILD

The statuses from the terminated children are not available because the caller
process is ignoring SIGCHLD and the system is discarding such statuses

ECHILD

The call was interrupted by a signal EINTR

An invalid option was specified in the system call EINVAL

Low byteHigh byte

System’s understanding of the reason
for child’s termination: zero for normal
and nonzero for abnormal

Argument of the exit()call

015 8 7

FIGURE 19.7 The meaning of the values in the two bytes of the value in the status parameter.

System Programming II    ◾    837

pages for these calls and by browsing through the header file /usr/include/sys/wait.h. The
man pages also describe several macros that you may use to determine the status of a ter-
minated child process. For example, you can find out if a child process terminated due to
the arrival of a signal and, if so, the number of the signal that caused the process to termi-
nate. These macros are defined in /usr/include/sys/wait.h.

When the WNOHANG option is specified and no processes are there to report the status,
wait4() and wait3() do not block, and return 0 as the PID. Table 19.5 shows a few
equivalences of the wait4() call and other calls in the wait() class.

The fork.c program in the following session uses the fork() system call to create a
child process. The child process terminates after displaying its PID and its parent PID. The
parent process waits for the child process and terminates after displaying its PID and the
child’s PID. Note that the PID displayed by the parent is, as expected, the same as the par-
ent PID displayed by the child process.

% cat fork.c
#include <unistd.h>

extern int errno;

int main(void)
{
 int pid, status;

 pid = fork();
 if (pid == -1) {
 perror("Fork failed.");
 exit(1);
 }
 /* Child process */
 if (pid == 0) {
 printf("\nCHILD: Child here with PID = %d.\n",

getpid());
 printf("CHILD: My Mom has PID = %d.\n", getppid());

TABLE 19.4 Values of the wpid Parameter for the wait4() and waitpid()
System Calls and Children Processes Waited for

wpid The Caller Waits for

–1 Any child process
0 Any child process in the process group of the caller
> 0 The child with PID wpid
< –1 Any child process whose process group ID equals the absolute value of wpid

TABLE 19.5 The Equivalences of the wait4() System Calls
wait4(..., ..., ..., 0) ; waitpid(..., ..., ...);

wait4(-1, ..., ..., ...); wait3(..., ..., ...);
wait4(-1, ..., 0, 0); wait(...);

838 ◾ UNIX: The Textbook, Third Edition

 exit(0);
 }
 /* Parent process */
 wait(&status);
 printf("\nPARENT: Mom here with PID = %d.\n", getpid());
 printf("PARENT: Well done, child!\n\n");
 exit(0);
}
% gcc48 -w fork.c -o fork
% ./fork
CHILD: Child here with PID = 28375.
CHILD: My Mom has PID = 28374.

PARENT: Mom here with PID = 28374.
PARENT: Well done, child!
%

19.3.5 Overwriting a Process Image

A process may overwrite itself with another executable image. The execve() and
fexecve() system calls may be used to do so. These calls differ from each other in the
manner in which parameters are passed to the caller process. Here are brief descriptions
of these calls.

#include <unistd.h>
int execve(const char *path, char *const argv[], char *const envp[]);
int fexecve(int fd, char *const argv[], char *const envp[]);

Success: Control does not return to the caller process because it has been overwritten with a new
executable

Failure: –1 and kernel variable errno set to indicate the type of error

In the execve() call, path is the pathname of the ordinary file that contains the
executable image of the new process. In the case of the fexecve() system call, fd is the
file descriptor of the file that contains the image of the new process. The file may contain
the binary executable code or a script to be executed by an interpreter, such as a shell or
Perl script. A script file begins with a line in the following format:

#! interpreter [arg]

The execve() system call actually overlays the caller process with interpreter
and passes the script file to it as an argument. If the arg parameter is not specified on the
first line, the script file is specified as the first argument to interpreter; otherwise, it
is specified as the second argument. The argv argument is a pointer to a null-terminated
array of pointers to null-terminated strings that become the command line arguments of
the script or the binary executable. The envp argument is structurally similar to argv
and contains the values of different environment variables.

System Programming II    ◾    839

If the file that is to overlay the caller process is a binary executable, it is executed just like
a main program in C with command line arguments is executed, as in:

int main(int argc, char **argv, char **envp)

where argc is the number of command line arguments including the program name, and
argv and envp are as described in the previous paragraph.

File descriptors open in the caller process remain open in the new process, except for
those descriptors for which the close-on-exec flag is set. Signals set to be ignored in
the caller process remain ignored in the new process and signals set to be caught in the
caller process are set to default action in the new process. The new process also inherits
the following identities and attributes of the caller process: PID, PPID, PGID, working
directory, root directory, control terminal, access groups, resource usages, timers, resource
limits, signal mask, and umask.

The execve() and fexecve() system calls may fail for different reasons, some of
which are listed in Table 19.6.

The system call interface for overwriting a process with an executable image specified by
the execve() and fexecve() calls is quite cumbersome. UNIX provides several library
functions with easier interfaces for performing the same task. The simplest of these is the
execl() library call, which is the front end of the execve() system call. We use this call
in the examples that we discuss in this book. Here is a brief description of the call.

#include <unistd.h>
int execl(const char *path, const char *arg, ... /*, (char *)0 */);

Success: Control does not return to the caller process because it has been overwritten with a new
executable

Failure: –1 and kernel variable errno set to indicate the type of error

The execl() call may fail for the same reasons that the execve() system call fails.
The fork_exec_1.c program shown in the following session creates a child process that

overwrites itself with the executable in the /bin/date file to display today’s date and the

TABLE 19.6 Some of the Reasons for the execve() or fexecve() System Call to Fail

Reason for Failure Value of errno

A component in the path argument, except the last component, is not a directory. ENOTDIR

The ordinary file specified as the last component in the path argument is not found. ENOENT

Search permission for a directory in path has not been given.
The last component in path is not an ordinary file.
The last component in path does not have the execute permission on.

EACCES

The ordinary file does not have a valid magic number in its header. ENOEXEC

The process requires more virtual memory than the system-imposed limit. ENOMEM

One or more of the three arguments of the call point to an illegal address. EFAULT

An error occurred while reading the file. EIO

The fd argument is not a valid file descriptor. EBADF

840 ◾ UNIX: The Textbook, Third Edition

current time. Thus, the child becomes the date process. The parent process displays the
PID of the child process, waits for the child process to terminate, and displays the PID of
the terminated child process. The sample run of the program shows that, as expected, the
PID displayed by the parent for the child process and that of the terminated child process
are the same.

% cat fork_exec_1.c
#include <unistd.h>

extern int errno;

int main(void)
{
 int pid, status;

 pid = fork();
 if (pid == -1) {
 perror("Fork failed");
 exit(1);
 }
 /* Child process */
 if (pid == 0) {
 execl("/bin/date", "date", (char *) NULL);
 perror("execl failed");
 exit(1);
 }
 /* Parent process */
 printf("Child PID = %d.\n", (int) pid);
 pid = wait(&status);
 printf("Child with PID %d has terminated.\n", (int) pid);
 exit(0);
}
% gcc48 -w fork_exec_1.c -o forke1
% ./forke1
Child PID = 37831.
Sun Mar 15 10:04:49 PKT 2015
Child with PID 37831 has terminated.
%

The fork_exec_2.c program creates a child process that creates a directory, called dir1,
in the current directory using the execl() call. The parent process creates a file called
foo in dir1, opens this file, writes the Hello, world! message into foo, resets the file
pointer to the beginning of the file, reads back the Hello, world! message from foo,
displays this message on standard output, removes foo from dir1, and removes the now
empty dir1. The compilation and a sample run of the program are shown in the following
session.

System Programming II    ◾    841

% cat fork_exec_2.c
#include <fcntl.h>
#include <unistd.h>
#include <errno.h>

#define SIZE 512
#define MODE 0644
#define Message "Hello, world!\n"

extern int errno;

int main(void)
{
 int n, nr, nw, fd, pid, status;
 char buf[SIZE];

 pid = fork();
 if (pid == -1) {
 perror("Fork failed");
 exit(1);
 }
 /* Child process */
 if (pid == 0) {
 execl("/bin/mkdir", "mkdir", "dir1", (char *) NULL);
 perror("execve failed.\n");
 exit(1);
 }
 /* Parent process */
 while (((pid = wait(&status)) == -1) && errno == EINTR)
 ;
 if (pid == -1) {
 perror("Wait failed");
 exit(1);
 }
 /* Open or create dir1/foo file */
 if ((fd = open("dir1/foo", O_RDWR|O_CREAT, MODE)) == -1) {
 perror("Open failed");
 exit(1);
 }
 /* Write to foo */
 if ((nw = write(fd, Message, strlen(Message))) == -1) {
 perror("Write failed");
 exit(1);
 }
 /* Rewind file pointer */
 n = lseek(fd, 0L, SEEK_SET);

842 ◾ UNIX: The Textbook, Third Edition

 /* Read back from foo */
 if ((nr = read(fd, buf, nw)) == -1) {
 perror("Read failed");
 exit(1);
 }
 /* Throw on standard output */
 write(1, buf, nr);
 if (close(fd) == -1) {
 perror("File closing");
 exit(1);
 }
 /* Remove dir1/foo to make dir1 an empty directory */
 unlink("dir1/foo");
 /* Remove the now empty directory dir1 */
 rmdir("dir1");
 exit(0);
}
% gcc48 -w fork_exec_2.c -o forke2
% ./forke2
Hello, world!
%

EXERCISE 19.10

Compile and run the preceding program on your system. Does it produce the expected
output?

19.3.6 Creating a Zombie Process

A process whose parent is not waiting (i.e., is sleeping or has finished execution) when
it terminates cannot report its termination status to its parent and is called a zombie
process. It has completed its work but some of the resources allocated to it may not be
returned to the system. Eventually, init, the grandparent of all user processes, takes over
the parenthood of the zombie process, receives its status, and releases the remaining sys-
tem resources.

The following piece of code spawns a child process and puts the parent process to sleep
for 10 seconds. The child process displays its PID and exits. Because the parent process is
not waiting when the child terminates, the child process becomes a zombie. In the sample
run, we suspend the parent process by pressing <Ctrl+Z> and use the ps command to
display the status as zombie. Note that the child process is marked as <defunct> and its
status is Z (for zombie). We bring the zombie process into the foreground by using the fg
program.

% cat create_zombie.c
int main(void)

System Programming II    ◾    843

{
 int pid;

 pid = fork();
 if (pid == -1) {
 perror("Fork failed");
 exit(1);
 }
 /* Child process */
 if (pid == 0) {
 printf("Child’s PID = %d\n", getpid());
 exit(0);
 }
 /* Parent process */
 printf("Parent’s PID = %d\n", getpid());
 sleep(10);
 /* Parent process does not wait for the child */
 /* process and child becomes a zombie process */
 exit(0);
}
% gcc48 -w create_zombie.c -o create_zombie
% ./create_zombie
Parent’s PID = 14978
Child’s PID = 14979
<Ctrl+Z>
Suspended
% ps
 PID TT STAT TIME COMMAND
14522 1 Ss 0:00.42 -csh (csh)
14978 1 T 0:00.00 ./create_zombie
14979 1 Z 0:00.00 <defunct>
14986 1 R+ 0:00.01 ps
% fg
zombie
%

A sample run under Solaris is shown in the following session. Note that you need to use
the ps –al command to display the status of the zombie processes.

% ./create_zombie
Parent’s PID = 12295
Child’s PID = 12296
<Ctrl+Z>
Stopped (user)

844 ◾ UNIX: The Textbook, Third Edition

% ps -al
F S UID PID PPID C PRI NI ADDR SZ WCHAN TTY TIME CMD
0 Z 1007 12296 12295 0 0 - - 0 - ? 0:00 <defunct>
0 T 1007 12295 12294 0 40 20 ? 432 pts/1 0:00 ./create_zombie
0 O 1007 12297 12294 0 40 20 ? 2318 pts/1 0:00 ps
0 S 1007 12294 12166 0 40 20 ? 2179 ? pts/1 0:00 csh

% fg
zombie
%

When a child of the init process terminates, init calls one of the wait() system calls
to collect the exit status of the child. Thus, none of the children of init ever becomes a
zombie. The child may be a process that was directly created by init or was inherited by
init because the parent of the process had died (or was not waiting) when the process
terminated.

EXERCISE 19.11

Replicate the preceding session on your system. Does the create_zombie.c program work
as expected?

19.3.7 Terminating a Process

A process can use the kill() system call to terminate a process for which it has such
permission. A process owned by the superuser may terminate any process. We discuss this
system call in detail in Section 19.5.4.

19.4 PROCESSES AND THE FILE DESCRIPTOR TABLE
We now discuss the importance of PPFDT in relation to file sharing between processes,
I/O redirection, and communication between processes using different channels including
pipes, FIFOs, and sockets. We discuss the concept of file sharing in Section 19.4.1 and I/O
redirection in Section 19.4.2. Chapter 20 describes UNIX interprocess communication in
detail.

19.4.1 File Sharing between Processes

As discussed earlier, a child process gets a copy of the PPFDT of its parent. It means that if
a process opens a file before creating a child process, the parent and child processes have
access to the file descriptor of the open file. Consequently, the I/O performed on the open
file by either process is visible to the other process.

The program file_sharing.c illustrates how parent and child processes share files that
are open before the child process is created. We demonstrate the concept with only one file,
but it extends to multiple files. The program takes filename and nbytes (the I/O size in
bytes) as command line arguments and opens for reading and writing the file specified as
the command line argument. It then creates a child process that inherits the PPFDT and,

System Programming II    ◾    845

therefore, the file descriptor of the opened file. Both the parent and child processes do I/O
with the same file. The program displays the data read by both processes and the position
of the file pointer after I/O in both processes, verifying that both processes do I/O with the
same file. The nbytes argument may vary from 0 to 512 because the size of the read/write
buffer has been set to 512 bytes. We use the sleep(1) call in the parent process to make
sure that the child process performs I/O before the parent process. It is done to make sure
that the values of the file pointer are displayed correctly in both processes. A few sample
runs follow the listing of the program to verify that the file-sharing concept works as dis-
cussed. Note that foo is the name of an existing file.

% cat file_sharing.c
/* file_sharing.c: fileshare filename nbytes */

#include <fcntl.h>
#include <unistd.h>
#include <sys/wait.h>

#define SIZE 512

int main(int argc, char *argv[])
{
 int fd, n, nr, nbytes, pid, status;
 char buf[SIZE];

 /* Open file */
 if (argc != 3) {
 printf("%s filename nbytes\n", argv[1]);
 exit(1);
 }
 nbytes = atoi(argv[2]);
 if ((fd = open(argv[1], O_RDWR)) == -1) {
 perror("File opening");
 exit(1);
 }
 /* Create a child */
 pid = fork();
 /* Child process */
 if (pid == 0) {
 /* Read and display on stdout */
 if ((nr = read(fd, buf, nbytes)) == -1) {
 perror("Read failed");
 exit(1);
 }
 write(1, buf, nr); /* Throw on standard output */
 n = lseek(fd, 0L, SEEK_CUR);
 printf("\n\nCHILD: position of the file pointer after

I/O is %d\n\n", n);
 close(fd);

846 ◾ UNIX: The Textbook, Third Edition

 exit(0);
 }
 /* Parent process */
 sleep(1); /* Allow the child process to do I/O first. */
 /* Read and display on stdout */
 if ((nr = read(fd, buf, nbytes)) == -1) {
 perror("Read failed");
 exit(1);
 }
 write(1, buf, nr); /* Throw on standard output */
 n = lseek(fd, 0L, SEEK_CUR);
 printf("\n\nPARENT: position of the file pointer after I/O

is %d\n\n", n);
 close(fd);
 while (wait3(&status, WNOHANG, 0) >= 0)
 ;
 exit(0);
}
% gcc48 –w file_share.c –o fileshare
% ./fileshare foo 32
The sh utility is the standard c

CHILD: position of the file pointer after I/O is 32

ommand interpreter for the syste

PARENT: position of the file pointer after I/O is 64

% ./fileshare foo 64

The sh utility is the standard command interpreter for the syste

CHILD: position of the file pointer after I/O is 64

m. The current version of sh is close to the IEEE Std 1003.1 (?

PARENT: position of the file pointer after I/O is 128

% ./fileshare foo 256
The sh utility is the standard command interpreter for the system.
The current version of sh is close to the IEEE Std 1003.1
("POSIX.1") specification for the shell. It only supports features
designated by POSIX, plus a few Berkeley extensions.

CHILD: position of the file pointer after I/O is 256

This man page is not intended to be a tutorial nor a complete
specification of the shell.
The shell is a command that reads lines from either a file or the
terminal, interprets them, and generally executes other commands.
It is the program that is sta

PARENT: position of the file pointer after I/O is 512

%

System Programming II    ◾    847

EXERCISE 19.12

Replicate the preceding session on your system. Does the file_sharing.c program work as
expected?

EXERCISE 19.13

Modify the file_sharing.c program so that it takes the number of bytes to be read as the
first command line argument and the filename as the second argument. Compile and run
the program with different files and bytes-to-read as command line arguments.

19.4.2 Duplicating File Descriptor

You can use the dup() and dup2() system calls to duplicate a file descriptor. A UNIX shell
uses these system calls to implement I/O redirection. Here are brief descriptions of these calls.

#include <unistd.h>
int dup(int olddes);
int dup2(int olddes, int newdes);

Success: A newly allocated file descriptor
Failure: –1 and kernel variable errno set to indicate the type of error

The dup() call duplicates the existing file descriptor olddes in the PPFDT and returns
the duplicated file descriptor. As discussed earlier, the new file descriptor is the smallest
unused descriptor in the PPFDT. The old and new file descriptors point to the same entry
in the SFT. Thus, changes in the read/write file pointer, file contents, and file attributes are
visible through both descriptors. This is true regardless of the file type that the descriptor
points to: ordinary file, pipe, socket, or FIFO.

The dup2() call is similar to dup(), except that the newly allocated descriptor is
explicitly specified as the second argument. If olddes is a valid descriptor and is equal
to newdes, the call is successful and performs a null operation; that is, it does not do
anything. If oldfd is a valid descriptor and is not equal to newdes, the dup2() call first
deallocates newdes and then performs the duplicate operation. If olddes is not a valid
descriptor, the call fails and no duplication operation is performed.

These calls may fail for the reasons specified in Table 19.7.
These calls are normally used to implement input, output, and error redirection for a

process (see Chapter 9). You can do input redirection by closing standard input for the

TABLE 19.7 Reasons for the dup() and dup2() System Calls to Fail

Reason for Failure Value of errno

The descriptor specified in olddes is not a valid active descriptor (i.e., has not been
allocated using a system call such as open()) or the descriptor specified in newdes is
greater than the size of PPFDT or is a negative number

EBADF

The process has already used the maximum number of descriptors (i.e., the PPFDT is being
used to full capacity)

EMFILE

848 ◾ UNIX: The Textbook, Third Edition

process, opening the file to which input has to be redirected, and attaching standard input
to the file by duplicating the file descriptor to the PPFDT slot for standard input. Similarly,
you can do output and error redirection for a process.

The following program shows sample uses of the dup()system call. The program
takes a file as a command line argument, opens the file for writing, and saves the file
descriptor for the file in fd. If the file does not exist, the program creates it and sets its
access permissions to read and write. The program then closes the file descriptor for
standard output by using the close(1) system call. After the standard file descriptor
has been closed, slot number 1 of the PPFDT becomes free and the dup(fd) system
call copies the entry for fd in the PPFDT into slot 1. After this has been done, any-
thing directed to standard output is sent to the opened file. Thus, the output of the
printf() call is redirected to the file passed as the command line argument. In the
following session, we pass foo as the command line argument to the program. The out-
put of the cat foo command verifies that the standard output has been redirected
to foo.

% cat dup.c
#include <fcntl.h>
#include <sys/stat.h>

int main(int argc, char *argv[])
{
 int fd;

 /* Open file */
 if (argc == 1) {
 printf("No file specified as command line

argument.\n");
 exit(1);
 }
 if ((fd = open(argv[1], O_WRONLY|O_CREAT |O_TRUNC, S_IREAD|S_

IWRITE)) == -1) {
 perror("File opening");
 exit(1);
 }
 /* Close standard output */
 close(1);
 /* Duplicate fd into file descriptor 1, i.e., stdout */
 if (dup(fd) == -1) {
 perror("Duplicating file descriptor");
 exit(1);
 }
 /* Close fd in order to release the extra slot in the PPFDT */
 if (close(fd) == -1) {
 perror("File closing");
 exit(1);
 }

System Programming II    ◾    849

 /* Stdout redirected to the file passed as command line
argument */

 printf("Hello, world!\n");
 exit(0);
}
% gcc48 -w dup.c -o dup
% ./dup foo
% cat foo
Hello, world!
%

In the following session, we show the use of dup2()in the dup2.c program to perform
the same task as performed by the dup.c program—that is, redirect standard output to the
file passed to the program as a command line argument.

% cat dup2.c
#include <fcntl.h>
#include <sys/stat.h>

int main(int argc, char *argv[])
{
 int fd;

 /* Open file */
 if (argc == 1) {
 printf(" No file specified as command line

argument.\n");
 exit(1);
 }
 if ((fd = open(argv[1], O_WRONLY|O_CREAT|O_TRUNC,

S_IREAD|S_IWRITE)) == -1) {
 perror("File opening");
 exit(1);
 }
 /* Duplicate fd into file descriptor 1, i.e., stdout */
 if (dup2(fd, 1) == -1) {
 perror("Duplicating file descriptor");
 exit(1);
 }
 /* Close fd in order to release the extra slot in the PPFDT */
 if (close(fd) == -1) {
 perror("File closing");
 exit(1);
 }
 /* Stdout redirected to the file passed as command line

argument */

850 ◾ UNIX: The Textbook, Third Edition

 printf("Hello, world!\n");
 exit(0);
}
% gcc48 -w dup2.c -o dup2
% ./dup2 foo
% cat foo
Hello, world!
%

You can redirect standard input (or standard error) in the same manner as discussed.
All three standard files may be redirected to one file or multiple files, one each for standard
input, standard output, and standard error.

EXERCISE 19.14

Replicate the preceding sessions on your system. Do the dup.c and dup2.c programs work
as expected?

19.5 GETTING THE ATTENTION OF A PROCESS: UNIX SIGNALS
Similar to how a peripheral device may use an interrupt to get the attention of the CPU and
be served, you may use a signal to get the attention of a process. We discussed this topic in
detail in Chapters 13 and 15 to explain signal/interrupt handling in shell scripts. Here, we
discuss signal handling in a C program.

19.5.1 What Is a Signal?

As stated earlier, a signal in UNIX vocabulary is an event that interrupts the execution
of a process. We discussed the events that cause signals in Chapter 13, Section 13.4 while
discussing advanced Bourne Shell programming. Some of the events that cause signals are
listed in Table 13.1. We reproduce that table here as Table 19.8.

You can view the complete list of events that cause signals by viewing the man pages for
the kill command or kill() system call. You can also use the kill –l command to
display the list of signals. A similar list is also found in the /usr/include/sys/signal.h file.

You can send a signal to a process by using the kill command or the kill() system
call. Both take two arguments, a signal number and the PID of the process to receive the
signal. For example, the kill -16 12345 command sends signal number 16 to the pro-
cess with PID 12345.

19.5.2 Intercepting Signals

A process may use the sigaction() system call or the signal() library call to intercept
a signal and take one of the following three possible actions:

 1. Ignore the signal

 2. Take the default action as defined by the kernel

 3. Take the programmer-defined action

System Programming II    ◾    851

The interface for the sigaction() system call is rather complex. The library call
signal() has a much simpler interface. For this reason, programmers normally use
signal() for handling signals. Here is a brief description of this call.

#include <signal.h>
sign_t signal(int sig, sig_t func);

Success: 0
Failure: –1 and kernel variable errno set to indicate the type of error

The func argument is SIG _ IGN for ignoring a signal and SIG _ DFL for the default,
kernel-defined action. A call to the signal() function may fail for two reasons, as shown
in Table 19.9.

19.5.3 Setting Up an Alarm

The library call alarm() sends the SIGALRM signal to the calling process after the speci-
fied number of seconds. Thus, the call alarm(10) sends the SIGALRM signal to the caller
process after 10 seconds. Here is a brief description of the call:

TABLE 19.8 Commonly Used Signals, Their Number, and Their Purpose

Signal Number Purpose

SIGHUP (hang up) 1 Informs the process when the user who ran the process
logs out, and the process terminates

SIGINT (keyboard interrupt) 2 Informs the process when the user presses <Ctrl+C>
and the process terminates

SIGQUIT (quit signal) 3 Informs the process when the user presses <Ctrl+|>
or <Ctrl+\> and the process terminates

SIGKILL (sure kill) 9 Terminates the process with no further processing (e.g.,
exception handling) when the user sends this signal to
it with the kill -9 command

SIGSEGV (segmentation
violation)

11 Terminates the process upon memory fault when a
process tries to access memory space that does not
belong to it

SIGTERM (software termination) 15 Terminates the process when the kill command is
used without any signal number

SIGTSTP (suspend/stop signal) 18 Suspends the process; usually <Ctrl+Z>
SIGCHLD (child finishes
execution)

20 Informs	the	process	of	termination	of	one	of	its	
children

TABLE 19.9 Reasons for the Library Call signal() to Fail

Reason for Failure Value of errno

The signal specified in sig is not a valid signal number EINVAL

The process tried to ignore or specified a handler for the
SIGKILL or SIGSTOP signal

EINVAL

852 ◾ UNIX: The Textbook, Third Edition

#include <unistd.h>
unsigned int alarm(unsigned int seconds);

Success: 0 if no alarm is currently set and the number of seconds left on the timer of the previous
alarm()

Failure: –1 and kernel variable errno set to indicate the type of error

The maximum number of seconds allowed is 100,000,000. If an alarm has already been
set but has not gone off (i.e., the signal has not been sent to the process), another call
to alarm supersedes the previous call. The alarm(0) call cancels the current alarm and
SIGALRM is never delivered to the calling process.

The signals.c program shown in the following session ignores the SIGHUP signal,
and takes programmer-defined actions for SIGINT (signal number 2, <Ctrl+C>) and
SIGALARM (signal number 14). For all other signals, the process takes the system-defined
default action.

% cat signals.c
#include <sys/signal.h>

#define TRUE 1

void nicetry(void);
void onalarm(int);

int main(void)
{
 signal(SIGHUP, SIG_IGN);
 signal(SIGINT, nicetry);
 signal(SIGALRM, onalarm);
 alarm(10);
 while (TRUE) {
 printf("Waiting for alarm.\n");
 sleep(9);
 }
}

void nicetry(void)
{
 printf("Nice try! Sorry you cannot terminate me like this.\n");
}

void onalarm(int signal)
{
 printf("Caught signal number %d. Going back to work.\n", signal);
}
%

In the following session, we show the compilation and working of the code by running
the program. Note that when we press <Ctrl+C> (which appears as <Ctrl+C> in the shell

System Programming II    ◾    853

session), the program responds with the message displayed by the nicetry() function.
In order to test that the response to SIGHUP also works as expected, we put the signals
process (PID 19156) in the background using <Ctrl+Z> (which appears as <Ctrl+Z> in
the shell session) and send the SIGHUP signal to the process using the kill -1 19156
command. The handling of SIGALRM also works as expected when the program displays
the message Caught signal number 14. Going back to work.

% gcc48 -w signals.c -o signals
% ./signals
Waiting for alarm.
<Ctrl+C>Nice try! Sorry you cannot terminate me like this.
Waiting for alarm.
<Ctrl+C>Nice try! Sorry you cannot terminate me like this.
Waiting for alarm.
Caught signal number 14. Going back to work.
Waiting for alarm.
<Ctrl+Z>
Suspended
% ps
 PID TT STAT TIME COMMAND
17975 1 Ss 0:00.40 -csh (csh)
19156 1 T 0:00.00 ./signals
19199 1 R+ 0:00.01 ps
% kill -1 19156
Waiting for alarm.
% ps
 PID TT STAT TIME COMMAND
17975 1 Ss 0:00.41 -csh (csh)
19156 1 S 0:00.00 ./signals
19234 1 R+ 0:00.01 ps
%
Waiting for alarm.
Waiting for alarm.
<Enter>
% kill -9 19156
<Enter>
[1] Killed signals
% ps
 PID TT STAT TIME COMMAND
17975 1 Ss 0:00.44 -csh (csh)
19286 1 R+ 0:00.01 ps
%

On some UNIX systems, including Solaris, the settings for intercepting signals using
the signal() call is effective only once. When a signal has been intercepted and handled
according to signal settings, the signal settings have to be reestablished in order for signal

854 ◾ UNIX: The Textbook, Third Edition

handling to work correctly. For this purpose, the relevant signal handlers include the code
for resetting signals for future signal handling. For the signals.c program to work correctly
on such systems, you need to modify the nicetry() function, the handler for SIGINT,
as follows:

void nicetry(void)
{
 signal(SIGINT, nicetry);
 printf("Nice try! Sorry you cannot terminate me like this.\n");
}

EXERCISE 19.15

Replicate the preceding sessions on your system. Does the signals.c program work as
expected?

Several Internet services such as ftp are offered via server processes that provide services
to client processes through multiple slave processes, one for each client. Slaves are precre-
ated and/or created dynamically by the main server when needed. The main server is also
known as the master server. Such servers are known as multiprocess servers or concurrent
servers. A concurrent server runs in an infinite loop with the following code structure:

while (1) {
 wait for a client request
 create a slave process when a client request arrives
 slave handles the client request
}

Because concurrent servers keep creating slave processes as client requests arrive, it is
important to terminate a slave process properly and remove it from the system after it has
provided its service to a client process. This is done by using the exit() and wait()calls
in tandem, in the slave and master processes, respectively. If the master server process does
not remove the slave processes after they have provided their services, a large number of
zombie processes will be created in the system. We would want the server to spawn a child,
wait, and then when returned to, kill the child, but we can’t do that with a concurrent
server since it has to continue to process further client requests.

Recall that when a process terminates, the UNIX kernel sends the SIGCHLD signal to
its parent. A concurrent server process uses this feature to intercept all SIGCHLD signals to
remove the terminating slave processes from the system by using the following code structure:

...
int main(...)
{
 ...

System Programming II    ◾    855

 signal (SIGCHLD, zombie_gatherer);
 while(1) {
 wait for a client request
 create a slave process when a client request arrives
 slave handles the client request
 }
 ...
}
void zombie_gatherer(int signal)
{
int status;
while (wait3(&status, WNOHANG, 0) >= 0)
 ;
}

Recall that the WNOHANG option for the wait3() system call makes it a nonblocking call,
in the sense that if it does not find a child process that has performed exit(), it returns –1.
When wait3() returns –1, the control returns from the zombie _ gatherer() function
to the line of code in the main function that was interrupted by SIGCHLD.

We discuss the algorithms for the various types of Internet servers in Chapter 20.

19.5.4 Sending Signals

A process can send a signal to another process by using the kill() system call. Here is a
brief description of the call.

#include <sys/types.h>
#include <signal.h>
int kill(pid_t pid, int sig);

Success: 0
Failure: –1 and kernel variable errno set to indicate the type of error

If pid is 0, the signal is sent to all the processes whose group ID (GID) is equal to
the sender process and for which the sender process has the permission to do so. If the
sender process has superuser privileges and pid is –1, the specified signal is sent to all the
processes having the same UID as the sender, the system processes, and the init process
(PID = 1).

The kill() call may fail for the reasons listed in Table 19.10.

TABLE 19.10 Reasons for the kill() System Call to Fail

Reason for Failure Value of errno

The signal specified in sig is not valid EINVAL

The process specified in pid does not exist ESRCH

The process using kill() does not have the permission to send the
signal to the process specified in pid

EPERM

856 ◾ UNIX: The Textbook, Third Edition

The killer.c program in the following session takes a PID and a signal number as com-
mand line arguments and uses the kill() system call to send the specified signal to the
process with the given PID. After compiling the program and saving the executable code
in the file called killer, we start a C shell process, and use the ps command to see the
PID of the new C shell process. We then use the killer program to send signal num-
ber 2 (SIGINT) to the new C shell process (PID 53426). The output of the ps command
shows that, as expected, the C shell does not terminate. When we send signal number 9
(SIGKILL; sure kill) to the new C shell process, the shell terminates. The SIGHUP signal
would also terminate the shell process.

% cat killer.c
/* killer.c: killer signal pid */

#include <sys/types.h>

int main(int argc, char *argv[])
{
 pid_t pid;
 int signal;

 if (argc != 3) {
 printf("Inappropriate number of command line

arguments.\n");
 exit(0);
 }
 pid = atoi(argv[1]);
 signal = atoi(argv[2]);
 if (kill(pid, signal) == -1) {
 perror("Kill failed");
 exit(1);
 }
 exit(0);
}
% gcc48 -w killer.c -o killer
% csh
% ps
 PID TT STAT TIME COMMAND
51926 1 Ss 0:00.29 -csh (csh)
53426 1 S 0:00.28 csh
53435 1 R+ 0:00.00 ps
% ./killer 53426 2
% ps
 PID TT STAT TIME COMMAND
51926 1 Ss 0:00.29 -csh (csh)
53426 1 S 0:00.28 csh
53435 1 R+ 0:00.00 ps
% ./killer 53426 9

System Programming II    ◾    857

Killed
% ps
 PID TT STAT TIME COMMAND
51926 1 Ss 0:00.29 -csh (csh)
53479 1 R+ 0:00.01 ps
%

EXERCISE 19.16

Replicate the preceding sessions on your system. Make sure that the killer.c program
works as expected.

19.6 IMPORTANT WEB RESOURCES
Table 19.11 lists some useful websites for UNIX system programming and related
topics.

SUMMARY
We described the UNIX system calls and their use in small programs for process cre-
ation, process termination, and process management. Before discussing the system calls
we explained in detail the concept of processes and threads. We then discussed how
they differ from each other and the concept of user- and kernel-level threads. We also
discussed the following concepts and kernel data structures in UNIX: the process con-
trol block, memory and disk images of processes, zombie processes, signals, and signal
handling.

We discussed process management using the following system calls and library func-
tions: fork(), vfork(), exit(), _ exit(), wait(), and its different variants, the
getpid(), getppid(), signal(), dup(), dup2(), kill(), execve(), fexecve(),
and execl() calls. We discussed the concept of zombie processes and used the exit()
and wait() calls to illustrate how a zombie process can be created. We also discussed the
concept of file sharing between the parent and children processes.

Throughout the chapter, we showed the use of the various system calls and library func-
tions in small C programs to illustrate various process management concepts.

TABLE 19.11 Web Resources for the UNIX System Programming and Related Topics
https://www.freebsd.org/ Home page for FreeBSD. Contains a lot of useful material,

including FreeBSD source, manual pages, support, SVN
repository, forums, user groups, etc

https://computing.llnl.gov/
tutorials/pthreads/

An excellent tutorial on Pthreads by Blaise Barney, Lawrence
Livermore National Laboratory

https://www.computing.llnl.gov/tutorials/pthreads/
https://www.computing.llnl.gov/tutorials/pthreads/
https://www.freebsd.org/

858 ◾ UNIX: The Textbook, Third Edition

QUESTIONS AND PROBLEMS

 1. What is a thread? What are user threads? What are kernel threads?

 2. List the differences between processes and threads.

 3. Suppose a system supports multithreaded processes with user-level threads. Where is
the scheduling of threads carried out?

 4. What do we mean by race condition in the context of multithreaded processes? What
does a programmer need to do to handle the issue of race condition?

 5. Explain the difference between single- and multithreaded kernels by using an
example.

 6. Why is a separate function needed to terminate a thread? Why can we not terminate
a thread with the _ exit() system call or the exit() library function?

 7. What is atomic execution of a piece of code?

 8. What is a critical section? What is the critical section problem?

 9. The Bakery Algorithm is an elegant solution for the N-process critical section prob-
lem. Browse the Web or read a book on operating system principles and concepts to
find out the name of the author of this algorithm. Who is the author?

 10. A process is said to be a program in execution. What really comprises a process in
terms of the system resources that a process utilizes?

 11. What is the process control block (PCB)? What are the names of the two parts of a
process’s PCB in UNIX? What kind of information do they contain about the process?

 12. The PCB of a process is not accessible in user mode. Why?

 13. Which part of the PCB of a UNIX process always remains in the main memory?
What information about the process does it contain?

 14. Why is bss not part of the disk image of an executable file but is part of the process
that is created when the file is executed?

 15. The UNIX command size may be used to display the size in bytes of the code,
data, and bss segments of an executable file. Show an example to illustrate your
answer.

 16. What is the relationship of shared libraries with dynamic linking? What are the
advantages of dynamic linking over static linking? What are the disadvantages of
dynamic linking?

 17. By default, the gcc compiler use dynamic linking. What is the compiler option for
creating an executable program using static linking? Which linking generates smaller
executable code? Why?

System Programming II    ◾    859

 18. Compile a program using static and dynamic linking and then display the program
size using the ls –l command. Show your shell session.

 19. Display the sizes of the code, data, and bss sections of the executable program gen-
erated in Problem 7. Show the shell session. Why is the sum size of the code, data,
and bss sections generated by the size command not equal to the size of the same
executable generated by using the ls –l command?

 20. Consider the following C programs and answer the questions that follow:
% cat bss_size_1.c
int BigData[1000000];
void main(void)
{
 BigData[0] = 0;
}
% cat bss_size_2.c
int BigData[1000000] = {1, 2, 3};
void main(void)
{
 BigData[0] = 0;
}

 a. Which of these two programs takes more disk space? Why?

 b. If executable codes are generated for the two programs, which would take more
disk space? Which would require more main memory to execute? Explain your
answers.

 c. What are the sizes of the bss and data segments of the executable files for these
programs? What commands did you use to obtain these sizes? Show your shell
session.

 21. What is the purpose of the magic number of a file in UNIX? What command uses
the magic number of a file to display its output? Show an example to illustrate your
answer.

 22. Write a small program that creates three children processes, P1, P2, and P3. The
parent and each child display their PIDs and their parent PPIDs. The parent should
display its PID and PPID only when all three of its children have terminated.

 23. How many processes does the following C program create? Assume that all three
fork() calls are successful. Draw the process tree for the program after the third
fork() call has executed successfully. Explain your answer.

#include <stdio.h>

int main(void)
{
 int pid1, pid2, pid3;

860 ◾ UNIX: The Textbook, Third Edition

 pid1 = fork();
 pid2 = fork();
 pid3 = fork();
}

 24. Browse the man pages for the vfork() and rfork() system calls. What is the pur-
pose of each of these calls? How does vfork() differ from fork()?

 25. Write a program that has one file opened by the parent process and one by the child.
The child writes Long live UNIX. to both files, reads and displays the contents
of its own file, closes its file, and returns (i.e., exits). The parent reads and displays
the contents of its file, closes the file, and terminates. Does the output of the program
make sense? Explain your answer.

 26. Write a program in which a parent opens two files (file1 and file2), writes Long
live UNIX. to file1, and spawns a child. The child copies the contents of file1 to
file2, closes the two files, and returns (i.e., exits). The parent reads and displays the
contents of the two files, closes them, and terminates. Does the output of the program
make sense? Explain your answer.

 27. When a process uses the execve() or fexecve() call to overwrite itself, signals set
to be caught in the caller process are set to default action in the new process. Why are
signals set to default action—why not the actions as specified in the caller process?

 28. What are the differences between the _ exit() and exit() calls?

 29. What would happen if you terminated a multithreaded process with the exit()
call? Explain your answer.

 30. What are the wait4() equivalents of the following calls? The three dots (...) repre-
sent the value of the corresponding argument for the calls:

• waitpid(..., ..., ...);

• wait3(..., ..., ...);

• wait(...);

 31. Write a program that creates a child process that displays its PPID and sleeps for
60 seconds. The parent displays its PID, the termination status of child, and the rea-
son for the child’s termination (i.e., the signal that caused its termination). Run the
program in the background, use the ps command to identify the PID of the child
process, and then terminate the process by sending it a signal using the kill com-
mand. Show your code and a few sample runs. Make sure that the program displays
the correct values for the return code of the child as well as the signal number that
caused its termination.

 32. What is the purpose of the kill() system call? What happens when 0 or –1 is speci-
fied as the PID to this call?

System Programming II    ◾    861

 33. What is the effect of the kill(getpid(), SIGKILL) system call?

 34. Suppose you run a program under a C shell. What will be the effect of the
kill(getppid(), SIGKILL) system call in the program?

 35. What is the effect of executing the dup() system call? What happens if the specified
descriptor is invalid?

 36. What happens if dup2() is used and the old and new descriptors specified in the
call are the same, provided that the old descriptor is valid? What happens if the old
descriptor is not valid?

 37. The dup2.c program discussed in Section 19.4.2 illustrates how a shell implements
output redirection. Modify this program so that it takes two files as arguments and
implements both input redirection and output redirection.

 38. What is the difference between fork() and vfork()? As a system programmer,
when should you prefer to use vfork() over fork()?

 39. What is the output of the following program? Explain your answer.

int main(void)
{
 pid_t pid;
 int i=100, status;
 if ((pid = vfork()) == -1) {
 perror ("vfork failed");
 exit(1);
 }
 if (pid == 0) {
 i++;
 exit(0);
 }
 wait(&status);
 printf("%d\n",++i);
 exit(0);
}

 40. What will be the output of the program listed in Problem 37 if the following state-
ments are swapped? Explain your answer.

wait(&status);
printf("%d\n",++i);

 Will the program always produce the same output every time it is run? Explain
your answer.

 41. Write a C program that creates a zombie process and then runs the ps command
from within the process to verify that the process status is zombie. Show your pro-
gram and its sample run.

862 ◾ UNIX: The Textbook, Third Edition

 42. Remove the sleep(1); statement in the file_sharing.c program discussed in
Section 19.4.1. Compile the program and run it a few times. You will notice that for
some sample runs, the file pointer value displayed by the parent and child processes
is the same. Explain why this is so.

 43. Identify the values of the following by browsing through the <limits.h> and <sys/
limits.h> files on BSD and <limits.h> file on Solaris:

• The maximum number of processes that can run on your system concurrently

• The maximum number of children processes that a process can have at a given time

 44. Use the limit command under the C shell or the ulimit command under Bash
to determine the maximum number of processes that can run on your system con-
currently and the maximum number of files that can be opened on your system
concurrently.

 45. Browse through the <sys/signal.h> file and identify all of the signals along with their
numbers and their purpose.

 46. What piece of code would you add to your code in the simple shell program that
you wrote for Problem 30 in Chapter 18 so that the shell only terminates when the
user presses <Ctrl+D>? It should not terminate due to a keyboard interrupt—that is,
when you press <Ctrl+C>.

 47. Give two reasons each for the following system calls to fail: dup(), fork(),
execve(), _ exit(), wait(), kill(), and signal().

863

C h a p t e r 20

System Programming III
Interprocess Communication

Objectives

• To explain the concept of interprocess communication (IPC), important related
system calls, macros, and data structures

• To describe IPC based on the client–server model

• To discuss the most primitive form of IPC between a parent process and its children
processes

• To discuss IPC between related processes on a machine using UNIX pipes

• To describe IPC between unrelated processes on the same machine using UNIX
named pipes (FIFOs)

• To discuss IPC between related or unrelated processes on the same machine or differ-
ent machines on a network using sockets

• To elucidate synchronous and asynchronous IPC

• To discuss in detail the client–server models for socket-based IPC

• To describe in detail the design of client–server software and possible types of servers

• To study multiple-process-based concurrent servers

• To explain concurrent servers based on the select() system call

• To explain the UNIX superserver, inetd

• To briefly discuss concurrent clients

• To cover the system calls, library calls, commands, macros, and primitives

864 ◾ UNIX: The Textbook, Third Edition

 _exit(), FD_CLR(), FD_ISSET(), FD_SET(), FD_ZERO(), accept(),
bind(), bzero(), close(), connect(), exit(), gethostbyaddr(),
gethostbyname(), getservent(), gettablesize(), htonl(),
htons(), inet_addr(), inet_aton(), inet_ntoa(), inet_ntop(),
inet_pton(), listen(), memcpy(), memset(), mkfifo(), mknod(),
ntohl(), ntohs(), open(), perror(), pipe(), read(), recvfrom(),
sendto(), select(), shutdown(), signal(), sizeof(), socket(),
strtol(), system(), wait(), wait3(), waitpid(), write()

20.1 INTRODUCTION
UNIX interprocess communication (IPC) facilities exist so that processes and threads
may communicate with one another and synchronize their actions. The three func-
tional facilities into which IPC can be divided are communication, synchronization,
and signals. Communication provides functionality to exchange data between pro-
cesses or threads, synchronization provides for the synchronization of processes or
threads, and signals are a communication technique where the signal number itself is
a form of communication information. Although some of these facilities fundamen-
tally exist for communication and synchronization, the term IPC is used to describe
them all.

The IPC facilities provide similar functionality because of the following reasons:

 1. Similar facilities evolved on different UNIX families, and then migrated between
families. For example, FIFOs were developed on System V and (stream) sockets were
developed on BSD.

 2. New facilities have been developed to make up for deficiencies of similar earlier facili-
ties. For example, the POSIX IPC facilities (message queues, semaphores, and shared
memory) were designed to improve on the older System V IPC facilities. In particu-
lar, whereas POSIX IPC is thread safe, System V IPC is not.

Some facilities, which on the surface seem similar, are actually significantly different
in terms of the methods and functionality they provide. For example, stream sockets
can be used to communicate over a network, while FIFOs can be used only for com-
munication between processes on the same machine. Of all of the IPC methods, only
sockets permit processes to communicate over a network. Sockets are generally used in
one of two domains: that which allows communication between processes on the same
system, and on the Internet, which allows communication between processes on differ-
ent hosts connected via a Transmission Control Protocol/Internet Protocol (TCP/IP)
network. Often, only minor changes can convert a program that uses sockets between
the two domains.

Our coverage of the topic is broadly divided into three types: (a) IPC between related
processes on the same computer, (b) IPC between unrelated processes on the same
computer, and (c) IPC between related or unrelated processes on the same or different

System Programming III    ◾    865

computers on a network, including the Internet. The relationship between processes is
normally a parent–child or sibling relation. We cover in detail the system calls, library
functions, macros, data structures, and header files involved in creating the requi-
site communication channels, as well as using them for reading and writing messages
between the processes involved in communication. After covering the preliminary top-
ics, we focus on the discussion of UNIX IPC under the client–server paradigm and the
fundamentals of Internet working with UNIX TCP/IP. In doing so, we describe the
design of various types of clients and servers, including iterative and different types of
concurrent servers based on slave processes and the select() system call. We also
explain what a superserver is and how the UNIX superserver, inetd, works. Finally,
we discuss concurrent clients. Throughout this chapter, we use the terms computer,
machine, and host interchangeably.

20.2 IPC: COMMUNICATION CHANNELS AND
COMMUNICATION TYPES

For communication between processes, you require a communication channel and com-
municating processes. The characteristics of communication channels are dependent on
the location of processes, their relationship with each other, and the type of communi-
cation to be carried out between these processes. Processes may fall into the following
types:

 1. Related processes on the same computer

 2. Unrelated processes on the same computer

 3. Unrelated processes on different computers on a network

The communication channel may be categorized based on the direction of communica-
tion and the nature of messages through the channel. The communication channel may
support only simplex (i.e., one-way) communication or it may support full-duplex (i.e., two-
way/bidirectional) communication. The messages may be just a stream of bytes or messages
with clear boundaries. Messages with clear boundaries may be of fixed or variable size
but with a maximum size limit and, depending on the literature you read and the net-
work layer at which they are handled, may be called packets, frames, datagrams, segments,
chunks, and so on.

Depending on the algorithm/protocol used by them, the communicating processes
may have to establish a connection with each other before starting communication, or
they may just send messages by specifying the address/name of a process. The first style
of communication is called connection oriented and results in guaranteed, in-order,
error-free delivery of messages. The second style of communication is known as con-
nectionless communication and results in best-effort delivery of messages but without
any guarantees. The messages used in connection-oriented communication are usually
without boundaries and those used in connectionless communication are usually with
boundaries.

866 ◾ UNIX: The Textbook, Third Edition

There are several communication channels that support IPC on UNIX machines,
including the following:

 1. Exit-wait

 2. Pipe

 3. Named pipe (FIFO)

 4. Semaphore

 5. Spin lock

 6. Shared memory

 7. Message queue

 8. Sockets

 9. System V transport layer interface (TLI)

We focus primarily on the following three commonly used channels: pipe, named pipe
(FIFO), and socket. Which channel you should use in your applications depends on the
relationship between communicating processes, their location, and the nature of applica-
tion from the point of view of reliability of message delivery and the integrity of message
content.

20.3 IPC: IMPORTANT SYSTEM AND LIBRARY CALLS, DATA
STRUCTURES, MACROS, AND HEADER FILES

In this section, we describe briefly the most commonly used UNIX channels of commu-
nication between the three types of processes already mentioned (i.e., pipe, named pipe,
and socket), related data structures, system calls, library functions, and macros. We will
discuss them in detail later under the appropriate sections. Using the taxonomy of process
types in Section 20.2, a pipe may be used for communication between type (a) processes,
a named pipe (also called FIFO) for communication between type (a) processes or type
(b) processes, and a socket for communication between processes belonging to any one
of the three types. We describe in detail these channels as well as the system calls and
library functions needed for input/output (I/O) through these channels in the remainder
of this chapter. Table 20.1 shows a brief summary of important system calls required for
IPC using pipes, named pipes (FIFOs), and sockets.

The list of commonly used macros and library calls in network-based IPC along with
their purposes is shown in Table 20.2.

The list of important data structure in network-based IPC along with their purposes is
shown in Table 20.3.

Details of these system calls, library functions, macros, and data structures are described
at appropriate places in subsequent sections.

System Programming III    ◾    867

The list of important header files, specifically designed for IPC through pipes, FIFOs,
and sockets, and used throughout the chapter, is briefly described in Table 20.4.

20.3.1 Byte Orders

Multibyte values may be stored, communicated, and manipulated in two orders: little
endian and big endian. In the little endian order, the low-order byte of data value is stored
in low storage location and the high-order byte in the high location. Thus, if the low-order
byte is stored at memory location L, then the high-order byte is stored at location L + 1. The
order is reversed in the big endian storage order; that is, the low-order byte of data value is
stored in the high storage location (at address L + 1) and the high-order byte is stored in the
low storage location (at address L). Figure 20.1 shows these storage orders in pictorial form.

Internet protocols deal with multibyte values in the big endian order. This means that
network software stores and transmits multibyte data in the big endian order. Hence, the
big endian order is also known as network byte order. Depending on the brand of central
processing units (CPUs) used in the hosts on a network, they may use network byte order
or little endian order. Intel processors use little endian order, whereas Sun and Motorola
processors use big endian order. Thus, if a host uses an Intel CPU, it deals with multibyte
values in little endian order.

The following program may be used to determine the byte order used by your computer
system. Note that the compilation and sample run of the program shows that our UNIX
system runs on a machine that uses little endian byte order. The uname –p command

TABLE 20.1 Brief Summary of UNIX System Calls for IPC, Creating and Using Pipes, Named Pipes
(FIFOs), and Sockets

System Call Purpose

pipe() Creates an IPC channel (two descriptors) for IPC between related processes on the
same computer

mkfifo() Creates an IPC channel (a file of a particular type) for IPC between related or
unrelated processes on the same computer

socket() Creates an endpoint (descriptor) for network-based IPC
bind() Binds a local IP and protocol port number to a socket
listen() Puts the socket in passive (listening) mode and sets the size of the queue where

incoming connection requests may wait
connect() Establishes a connection with a remote server
accept() Accepts a client request for connection
select() Waits for a connection request on a bit-set (flags) representing a set of descriptors

for a specific period of time and flags for those descriptors that are ready for I/O
sendto() Sends a datagram to a socket whose address has been prerecorded
recvfrom() Receives a datagram and records the address of the sender socket
read() Receives data (or datagram) from a socket on which connect() has been called
write() Sends data (or datagram) to a socket on which connect() has been called
close Terminates communication and deallocates a descriptor
shutdown() Terminates TCP communication (I/O) in one or both directions

868 ◾ UNIX: The Textbook, Third Edition

TABLE 20.2 Commonly Used Macros, Library Calls, and Their Purpose

Macro Purpose

htons()* Converts a 16-bit value in host byte order to network byte order
htonl()* Converts a 32-bit value in host byte order to network byte order
ntohs()* Converts a 16-bit value in network byte order to host byte order
ntohl()* Converts a 32-bit value in network byte order to host byte order
bzero() Initializes a string to null (zero) bytes
memset() Initializes a string to bytes of a particular character’s value
memcpy() Copies the given number of bytes from one string to another
FD_SET()** Includes the given descriptor in the set (i.e., sets the relevant numbered bit to 1)
FD_CLR()** Exclude the given descriptor in the set (i.e., sets the relevant numbered bit to 0)
FD_ZERO()** Initializes a descriptor set to null set (i.e., all zeros)
FD_ISSET()** Tests if a particular descriptor in the set is 0 or 1 (i.e., if the given descriptor is ready

for I/O or not)
getdtablesize() Gets the size of PPFDT (i.e., the maximum number of file descriptors that the

system may use simultaneously)
gethostbyname() Returns a pointer to a variable of the following structure describing an Internet host

referenced by name
gethostbyaddr() Returns a pointer to a variable of the following structure describing an Internet host

referenced by address
getservent() Returns a pointer to a variable of the servent structure with fields containing

corresponding values in a line in the /etc/services file
inet_addr() Converts and returns the specified string for an IP address in DDN to a 32-bit

unsigned binary value in network byte order
inet_aton() Converts the string containing an IPv4 address in DDN to an address in network

byte order and stores it in an address structure
inet_ntoa() Converts an IPv4 address in network byte order to a string containing the address in

DDN
inet_ntop() This is the newer version of the inet_ntop() function that works with both IPv4

and IPv6
inet_pton() This is the newer version of the inet_aton() function that works with both IPv4

and IPv6
* These functions are normally used to convert IP addresses and port numbers returned by the
gethostbyname() and getservent() library calls. On machines that have the same byte order as the
network byte order, these functions are defined as null macros.

** These macros, defined in /usr/include/select.h, are normally used with the select() system call and are
meant to set and test bits in a descriptor set, that is, a bit mask in which a particular number represents the state
of the descriptor with that number. For example, the value in bit number 2 represents whether descriptor 2 is
ready for I/O or not; the bit value 0 means “no” and the value 1 means “yes.” The behavior of these macros is
undefined if a descriptor value is negative or greater than the largest descriptor value on the system.

TABLE 20.3 Important Data Structures for Network-Based IPC and Their Purpose

Data Structure Purpose

struct sockaddr Most general structure for specifying the address of a socket
struct sockaddr_un Structure for specifying the address of a UNIX domain socket
struct in_addr Structure to store the IPv4 address
struct sockaddr_in Structure used to specify the address of an Internet domain (PF_INET

or PF_INET6) socket
struct hostent Structure to maintain information about a host on the Internet
struct servent Structure to maintain information about an Internet service

System Programming III    ◾    869

shows that our system uses an AMD64 processor. On Solaris, this command incorrectly
shows the machine to be i386.

% cat byteorder.c
#include <stdio.h>

int main()
{
 int n;
 char *cp;

 n = 0x12345678;
 cp = (char*)(&n);
 if (*cp != 0x78)
 printf("Big Endian\n");
 else

TABLE 20.4 Brief Description of Important Header Files

Header File Purpose

<netdb.h>* Definitions of various symbolic constants, data structures, and prototypes of
functions to maintain and manipulate information about hosts, networks,
servers, protocols, and Internet addresses

<time.h> Definitions of various symbolic constants, data structures, and prototypes of
functions to maintain and manipulate information about time

<netinet/in.h> Definitions of assigned numbers according to RFC 1700 related to protocols,
TCP ports, multicast addresses, and so on as symbolic constants, storage order
for multibyte values, data structures (such as Internet style socket address
structure), and prototypes of functions to maintain and manipulate them

<arpa/inet.h> Definitions of various symbolic constants, data structures, and prototypes of
functions to maintain and manipulate information about IP addresses for IPv4
and IPv6

<sys/errno.h> Definitions of various symbolic constants for the errors produced by system and
library calls

<sys/select.h> Definitions of symbolic constants, data structures, macros, and prototypes for
the select() and pselect() system calls

<sys/socket.h> Definitions of symbolic constants, related data structures, and prototypes for
system and library calls for socket types, address families, protocol families,
message headers, addresses, and options

<sys/stat.h> Definitions of symbolic constants for different statistics and values for files
(inode number, hard link count, user ID, group ID, file size, time last accessed,
time last modified, permission masks, type masks, etc.), macros to determine
the type of a file, and prototypes for system calls to create and manipulate
different types of files

<sys/types.h> Definitions of symbolic constants for different types for items such as data units,
inodes, file flags, disk addresses, Internet addresses, group IDs, process IDs,
user IDs, thread IDs, access permissions, link counts, file offsets, resource limits,
and so on; macros and function prototypes for related system calls

<sys/un.h> Definitions of symbolic constants and data structure of socket addresses for
UNIX-based IPC

* <abc.h> means /usr/include/abc.h

870 ◾ UNIX: The Textbook, Third Edition

 printf("Little Endian\n");
 return 0;
}
% gcc46 byteorder.c -w -o byteorder
% ./byteorder
Little Endian
% uname -p
amd64
%

20.4 THE CLIENT–SERVER MODEL
The design of applications to solve certain types of problems necessitates that we divide
these applications into two independently running processes that communicate with each
other to provide solutions for such problems. All Internet services are provided through
such applications, including Web browsing, remote file transfer, remote login, remote pro-
gram execution, video streaming, e-mail, and Internet games. Today, IPC primarily deals
with processes of such applications communicating by sending messages back and forth.
The Internet works on the client–server model. Web servers, database servers, and social
media all use these types of interactions among client and server processes. In this model of
communication, a process, called the server, offers some kind of service to other processes
and runs on a host whose address is known. Another process, called the client, runs on the
same host on which the server process runs, or on a different host, and initiates communi-
cation with the server process to use its service. We describe various client–server models
throughout the rest of the chapter and different types of servers in detail in Section 20.7
and subsequent sections.

Server processes run forever and quietly wait for service requests from client processes.
On receiving a request from a client process, the server process prepares a response, sends
the response to the client process, and waits for the next request. Such servers are known
as iterative servers. It is possible that, on receiving a client request, the server process cre-
ates a child process, delegates the rest of the communication with the client to that child
process, and goes back to wait for another client request. Such servers are known as concur-
rent servers. In this style of client–server model, the original server process is known as the
master server and the processes that it creates to handle communication with client pro-
cesses are known as slave processes. Servers that need to respond to clients with one-time,
short responses are usually iterative and those that need to interact with clients in request–
response sessions are concurrent. Figure 20.2 shows the conceptual models for the iterative

Memory address

L+1 High byte Low byte

L Low byte High byte

(a) (b)

FIGURE 20.1 Storage orders for 16-bit data: (a) little endian (b) big endian.

System Programming III    ◾    871

and concurrent servers with a server process serving k clients. Note that clients may run on
a single host, including the host that runs the server process, or on multiple hosts.

Applications may be standard—also known as well-known applications—or non-
standard (unknown). Nontechnically speaking, well-known applications are those that
most users know of and use, such as Web browsing, downloading files, remote execu-
tion of programs, voice or video streaming, e-mail, and logging on to a remote host.
Technically speaking, well-known applications are those that are built around com-
munication protocols described in Requests for Comments (RFCs) such as Hypertext
Transfer Protocol (also called HTTP and WWW), File Transfer Protocol (FTP), Simple
Mail Transfer Protocol (SMTP), and secure shell (SSH). Nonstandard applications may
be sample applications written by students in a class or applications written for private
use by individuals, groups of individuals, or employees of an organization or group of
organizations.

slave
1

slave
2

slave
3

slave
k

Master
server

Server

(b)

(a)

INTERNET

INTERNET

C1 C2 C3

CK

C1 C2 C3

CK

• • •

•
•
•

•
•
•

•
•
•

FIGURE 20.2 Conceptual models for (a) iterative server (b) concurrent server.

872 ◾ UNIX: The Textbook, Third Edition

20.4.1 Simplest Form of Communication

As discussed in detail in Chapter 19, the most primitive form of communication between
UNIX processes is between a parent process and its children processes. This communi-
cation involves the use of the exit() system call (or the exit() library call) in a child
process and the wait() system call (or a variant) in the parent process. Through this
communication, a child communicates its exit status to the parent process. The exit status
of the child is transferred from the exit() system call in the child to the wait() system
call in the parent process. The UNIX kernel handles this communication implicitly and no
explicit communication channel is involved.

20.4.2 Communication via Pipes

A pipe is a full-duplex (two-way) communication channel that allows two related pro-
cesses to communicate with each other in terms of a stream of bytes, without message
boundaries. It is normally used for communication between siblings, or parent and child.
Although a pipe is a bidirectional communication channel, it is normally used for simplex
(i.e., one-way) communication between two processes—a reader process and a writer pro-
cess. Consequently, for two-way communication between two processes, a minimum of
two pipes are usually required.

A pipe may be used to connect the standard output of a process (command) to the stan-
dard input of another process (command), as discussed in Chapter 9. The command-level
syntax for accomplishing this task is cmd1 | cmd2, as in sort datafile | grep
"John Doe".

From an implementation point of view, a pipe is a fixed-size main memory circular buf-
fer created and maintained by the UNIX kernel. In the operating system lexicon, it is also
known as a bounded buffer. Communication using a pipe is, therefore, an implementation
of the bounded-buffer reader–writer problem. The UNIX kernel handles the synchroniza-
tion required for making the reader process wait when the pipe is empty and the writer
process wait when the pipe is full.

The pipe() and pipe2() system calls may be used to create a pipe. Here is a brief
description of the two calls.

#include <unistd.h>
int pipe(int filedes[2]);
int pipe2(int filedes[2], int flags);

Success: 0
Failure: -1 and kernel variable errno set to indicate the type of error

A call to pipe() or pipe2() returns two descriptors in the filedes[2] array, both
allocated in the per-process file descriptor table (PPFDT) of the caller process. Thus, creat-
ing a pipe is equivalent to opening two files. However, unlike an open file, no file pointer is
associated with a pipe. Thus, each write request to a pipe appends data to the current end of
the pipe. The first descriptor, filedes[0], is used to read from the pipe, and the second,
filedes[1], is used to write to the pipe.

System Programming III    ◾    873

The flags argument in pipe2() is used to control the attributes of the pipe descrip-
tors. Table 20.5 describes the possible flag values.

A bitwise-OR of these values may also be used for the flags argument. When the
flags argument has a value of 0, the pipe2() system call behaves like the pipe()
system call.

The maximum amount of data that can reside in a pipe is dictated by the size of the
pipe as a bounded buffer (i.e., the fixed-size array of characters). When a pipe is full and a
writer process wants to put data into it, the writer process is blocked by the UNIX kernel.
Similarly, if a pipe is empty and a reader process tries to read data from the pipe, the reader
process blocks. This is known as blocking I/O through a pipe.

The amount of data a writer process can write without interruption is known as the
size of an atomic write into the pipe. It is defined as PIPE _ BUF in the /usr/include/
sys/limits.h file under Solaris and in the /usr/include/sys/syslimits.h file under BSD.
The value of PIPE _ BUF is 5120 bytes under Solaris and 512 bytes under BSD. Under
Solaris, you can also use the man limits command to see the meaning of each sym-
bolic constant described in the limits.h file, including PIPE _ BUF. Under BSD, you can
use the limits command to display values of some of the symbolic constants defined
in the limits.h file.

If multiple processes write to a pipe, then requests of PIPE _ BUF bytes or less are writ-
ten atomically for each process. A request to write data greater than PIPE _ BUF bytes
may have data interleaved, on arbitrary boundaries, with writes of other processes.

If the O _ NONBLOCK flag is not set, a request to write n bytes of data may block a
thread if there is not enough space in the pipe to write the requested data. However, on
successful completion, the write() system call returns n.

If the O _ NONBLOCK flag is set, then a write() system call never blocks and the
thread continues its execution. When sufficient space is available in a pipe, a request to
write PIPE _ BUF bytes or less completes successfully. If sufficient space is not available,
the write() system call returns –1 and errno is set to EAGAIN. If no space is available
in a pipe, then a write() system call for writing more than PIPE _ BUF bytes returns –1
with errno set to EAGAIN. If space is available for at least one byte, the call writes what it
can and returns the number of bytes written. When the data previously written to the pipe
has been read, the call writes at least PIPE _ BUF bytes.

The pipe() and pipe2() calls may fail for the reasons listed in Table 20.6.

TABLE 20.5 The Flags for the flags Argument in the pipe2() System Call

Flag Meaning

O_CLOEXEC Set the “close-on-exec” flag on the pipe descriptors. This means when a
process executes an exec() system call, it does not inherit an already
open pipe

O_NONBLOCK Set pipe descriptors for nonblocking I/O. This means that a read() system
call will not block when the pipe is empty and a write() system call will
not block when the pipe is full

874 ◾ UNIX: The Textbook, Third Edition

20.4.2.1 Allocation of Pipe Descriptors
The create _ pipe.c program shown next creates a pipe, and displays the values of
descriptors for the read and write ends of the pipe. The UNIX kernel opens three standard
files automatically for each process using file descriptors 0 (standard input), 1 (standard
output), and 2 (standard error). Therefore, when we run this program, the kernel allocates
the next two unused file descriptors, 3 and 4, to the read and write ends of the pipe, respec-
tively. Figure 20.3 shows the pipe with its relationship to the PPFDT.

% cat create_pipe.c
#include <unistd.h>

int main(void)
{
 int data_channel[2];

 if (pipe(data_channel) == -1) {
 perror("Pipe failed");
 exit(1);
 }
 printf("The pipe descriptors are: \n");
 printf(" Read end: %d\n", data_channel[0]);
 printf(" Write end: %d\n", data_channel[1]);
 exit(0);
}

TABLE 20.6 Reasons for the pipe() and pipe2() System Calls to Fail

Reason for Failure Value of errno

The PPFDT does not have two unused file descriptors EMFILE

The system file table is full EMFILE

The kernel does not have enough memory to create a pipe ENOMEM

The flags argument in pipe2() is not valid EINVAL

data_channel(1) data_channel(0)

data_channel (pipe)

Standard
descriptors

Per-process file
descriptor table

File
descriptor

0
1
2
3
4
5
6

•
•
•

FIGURE 20.3 Pipe created by the create _ pipe.c program and its relationship with PPFDT.

System Programming III    ◾    875

% gcc46 create_pipe.c -w -o createpipe
% ./createpipe
The pipe descriptors are:
 Read end: 3
 Write end: 4
%

20.4.2.2 One-Way Communication
The pipe _ talk.c program creates a pipe and spawns a child process. The child pro-
cess, among other things, as discussed in Chapter 19, inherits the parent’s PPFDT. The
child process closes the write end of the pipe and reads data from the read end of the pipe.
The child process blocks if there is nothing in the pipe. The parent process, on the other
hand, closes the read end of the pipe and writes data to the child process using the write
end of the pipe. The child process displays on the screen whatever it reads from the pipe.
Figure 20.4 shows the setup for the program in a pictorial form.

% cat pipe_talk.c
#include <unistd.h>

#define SIZE 32

const char *Child_Greeting="Hello, mom!\n";

int main(void)
{
 int data_channel[2], pid, nr, nw, nbytes;
 char buf[SIZE];

 if (pipe(data_channel) == -1) {
 perror("Pipe failed");
 exit(1);
 }
 pid = fork();
 if (pid == -1) {

Writer

Child
process

Reader

Parent
process Display

screen
standard
output

data_channel(pipe)
data_channel(0) 2

3

1 data_channel(1)

FIGURE 20.4 Pictorial representation of the IPC setup in pipe _ talk.c

876 ◾ UNIX: The Textbook, Third Edition

 perror("Fork failed");
 exit(1);
 }
 nbytes = strlen(Child_Greeting);
 if (pid == 0) {
 close(data_channel[0]);
 nw = write(data_channel[1], Child_Greeting, nbytes);
 if (nw == -1) {
 perror("Write error");
 exit(1);
 }
 exit(0);
 }
 /* Parent process */
 close(data_channel[1]);
 nr = read(data_channel[0], buf, nbytes);
 if (nr == -1) {
 perror("Read error");
 exit(1);
 }
 nw = write(1, buf, nr);
 if (nw == -1) {
 perror("Write to stdout failed");
 exit(1);
 }
 printf("Well done, son!\n");
 exit(0);
}
% gcc46 pipe_talk.c -w -o pipetalk
% ./pipetalk
Hello, mom!
Well done, son!
%

20.4.2.3 Two-Way Communication
We now discuss a program in which the reader and writer processes carry out two-way
communication using two pipes. The pipe _ 2way _ talk.c program opens two pipes,
pipe1 and pipe2, and creates a child process. The child process sends a message to the
parent process using pipe1 and reads the parent’s response from pipe2. The parent
does it the other way round. Whatever data the parent and child processes read from their
respective pipes, they throw to standard output. Figure 20.5 shows the setup in a pictorial
form.

% cat pipe_2way_talk.c
#include <unistd.h>

#define SIZE 32

System Programming III    ◾    877

const char *Child_Greeting="Hello, mom!\n";
const char *Parent_Greeting="Well done, son!\n";

int main(void)
{
 int pipe1[2], pipe2[2];
 int pid, nr, nw, status, sizec, sizep;
 char buf[SIZE];

 sizec = strlen(Child_Greeting);
 sizep = strlen(Parent_Greeting);
 if (pipe(pipe1) == -1) {
 perror("Pipe1 failed");
 exit(1);
 }
 if (pipe(pipe2) == -1) {
 perror("Pipe2 failed");
 exit(1);
 }
 pid = fork();
 if (pid == -1) {
 perror("Fork failed");
 exit(1);
 }
 if (pid == 0) {
 close(pipe1[0]);
 close(pipe2[1]);
 nw = write(pipe1[1], Child_Greeting, sizec);
 if (nw == -1) {
 perror("Write to pipe1 error in child");
 exit(1);
 }

Child_Greeting
pipe(1) pipe(0)

Display
screen

standard
output

1

5 4

pipe 1

pipe 2
pipe2(0) pipe2(1) Parent_Greeting

2

36
Child Parent

FIGURE 20.5 Pictorial representation of the IPC setup in pipe _ 2way _ talk.c.

878 ◾ UNIX: The Textbook, Third Edition

 nr = read(pipe2[0], buf, sizep);
 if (nr == -1) {
 perror("Read pipe2 error in child");
 exit(1);
 }
 nw = write(1, buf, nr);
 if (nw == -1) {
 perror("Write to stdout failed in child");
 exit(1);
 }
 close(pipe1[1]);
 close(pipe2[0]);
 exit(0);
 }
 /* Parent process */
 close(pipe1[1]);
 close(pipe2[0]);
 nr = read(pipe1[0], buf, sizec);
 if (nr == -1) {
 perror("Read pipe1 error in parent");
 exit(1);
 }
 nw = write(1, buf, nr);
 if (nw == -1) {
 perror("Write to stdout failed in parent");
 exit(1);
 }
 nw = write(pipe2[1], Parent_Greeting, sizep);
 if (nw == -1) {
 perror("Write to pipe2 error in parent");
 exit(1);
 }
 close(pipe1[0]);
 close(pipe2[1]);
 wait(&status);
 exit(0);
}
% gcc46 pipe_2way_talk.c -w -o p2wt
% ./p2wt
Hello, mom!
Well done, son!
%

20.4.2.4 Widowed Pipe
A pipe that has one end closed is called a widowed pipe. When a writer process writes to a
widowed pipe, the UNIX kernel sends the SIGPIPE signal to the writer process that results

System Programming III    ◾    879

in the termination of the writer process. The default action on this signal is that the kernel
terminates the process and displays the “Broken pipe” message. When a reader process
reads from a widowed pipe, it receives an end-of-file (eof) message after the reader has read
all of the data in the pipe. This means that a read() system call on a widowed pipe returns
the value 0.

In the broken _ pipe.c program shown, we demonstrate how a widowed pipe may
be created. The program creates a pipe, displays the read end and write end descriptors of
the pipe, closes the read end of the pipe (i.e., no reader can read from the pipe), and writes a
greeting message using the write end of the pipe. We compile the program to generate the
executable code in the brokenp file. The execution of the program works perfectly until it
tries to write to the pipe after closing its read end. The write() system call generates the
SIGPIPE signal and, due to the kernel’s default action, the “Broken pipe” message is
displayed before the program terminates.

% cat broken_pipe.c
#include <unistd.h>

int main(void)
{
 int data_channel[2], nw;

 if (pipe(data_channel) == -1) {
 perror("Pipe failed");
 exit(1);
 }
 printf("The pipe descriptors are: \n");
 printf(" Read end: %d\n", data_channel[0]);
 printf(" Write end: %d\n", data_channel[1]);
 close(data_channel[0]);
 nw = write(data_channel[1], "Hello, world!\n", 14);
 printf("This and subsequent statements are never

executed.\n");
 exit(0);
}
% gcc46 broken_pipe.c -w -o brokenp
% ./brokenp
The pipe descriptors are:
 Read end: 3
 Write end: 4
Broken pipe
%

Note that the compilation and execution of the program was done on a BSD system. On
Solaris, the program compiles and works in the same way as on the BSD system, except
that it terminates the process without displaying the “Broken pipe” error message.
You can use the signal() call to intercept the SIGPIPE signal, display the desired error

880 ◾ UNIX: The Textbook, Third Edition

message, and terminate the program. You will be asked to do this in one of the problems
at the end of this chapter.

EXERCISE 20.1

Compile and run the create _ pipe.c, pipe _ talk.c, pipe _ 2way _ talk.c,
and broken _ pipe.c programs in the previous session to make sure they work on your
system as expected.

20.5 COMMUNICATION BETWEEN UNRELATED
PROCESSES ON THE SAME COMPUTER

Two or more related or unrelated processes on the same machine can communicate with
each other using several UNIX IPC channels, including a named pipe (also known as a
FIFO) and a socket. We discuss FIFOs in this section and sockets in Section 20.6. Earlier,
we discussed FIFOs in Section 9.15. Our treatment of the topic was focused on the com-
mand line use of FIFOs for connecting shell commands with each other to perform com-
plex tasks that cannot be performed by existing commands. Here, we discuss the details of
the underlying structure of a FIFO as an IPC channel and the UNIX application program-
mer’s interface (API) that allows creation of FIFOs and their use.

As stated earlier, a FIFO is a named pipe. It is a pipe that has a name in the file system
name space, an associated file type, related kernel data structures that contain its attri-
butes, and the main memory bounded-buffer that contains data in transition through the
pipe. The pipe part of the FIFO, a main memory buffer, is created when a process opens the
FIFO and is destroyed when the process closes the FIFO. Thus, unlike a pipe that is purely
a main memory object and is process persistent, a FIFO is an amalgamation of disk and
memory objects. The pipe part of it is process persistent and the name part is file system
persistent. To sum up, when you create a FIFO, the kernel creates a pipe in main memory
and connects it with a file system through a pathname in the file system name space and
associated resources including an inode. This allows you to access a FIFO as a file system
object.

To use a FIFO as an IPC channel, you create it with a pathname and then open it for
reading, writing, or both. However, as expected, just like a pipe, a FIFO also does not have
a file pointer associated with it. New data is written at the current end of the FIFO and
existing data is read from the front of the FIFO.

When you create a FIFO, it does not contain anything, in the same way as an empty
regular file; and, depending on the UNIX system you use, its disk usage is zero or one
block. When you write data to a regular file, its disk usage depends on the amount of data
written to the file with a minimum usage of five blocks on BSD and nine blocks on Solaris.
This amount may be different for other UNIX systems. However, the disk usage for a FIFO
does not change whether it is empty or full, because its data is maintained in the memory-
resident pipe.

The following session was captured on a BSD machine. We create a FIFO, called fifo1,
and an empty file, called greeting. Both are allocated inodes numbered 4933 and 4934. The

System Programming III    ◾    881

output of the ls –l fifo1 greeting command shows that both are empty. The out-
put of the du fifo1 greeting command shows that both use one disk block. We put
“Hello, world!” (14 bytes) in the greeting file as well as fifo1. The output of the second
ls –l fifo1 greeting command shows that fifo1 is still empty, but greeting contains
14 bytes. The output of the du fifo1 greeting command shows that whereas fifo1
still uses one disk block, the greeting file uses five disk blocks. Even after we empty fifo1
using the cat fifo1 command, the disk usage of fifo1 remains unchanged. This session
shows that when we put data into fifo1, the data does not go into a disk object associated
with it but into the memory buffer (pipe) associated with fifo1.

% mkfifo fifo1
% touch greeting
% ls -i fifo1 greeting
4933 fifo1 4934 greeting
% ls -l fifo1 greeting
prw-r--r-- 1 sarwar faculty 0 Apr 18 17:29 fifo1
-rw-r--r-- 1 sarwar faculty 0 Apr 18 17:29 greeting
% du fifo1 greeting
1 fifo1
1 greeting
% cat > greeting
Hello, world!
% cat greeting > fifo1 &
[1] 68928
% ls -l fifo1 greeting
prw-r--r-- 1 sarwar faculty 0 Apr 18 17:29 fifo1
-rw-r--r-- 1 sarwar faculty 14 Apr 18 17:31 greeting
% du fifo1 greeting
1 fifo1
5 greeting
% cat fifo1
Hello, world!
[1] + Done cat greeting > fifo1
% du fifo1 greeting
1 fifo1
5 greeting
%

The following session was captured on a Solaris machine to show that FIFOs work the
same way on Solaris too. The only difference is that, whereas on a BSD system an empty
FIFO uses one disk block, it does not use any disk space on Solaris, as shown in the output
of the du fifo1 greeting command.

$ mkfifo fifo1
$ touch greeting
$ ls -i fifo1 greeting

882 ◾ UNIX: The Textbook, Third Edition

 318 fifo1 319 greeting
$ ls -l fifo1 greeting
prw-r--r-- 1 sarwar faculty 0 Apr 18 17:42 fifo1
-rw-r--r-- 1 sarwar faculty 0 Apr 18 17:42 greeting
$ du fifo1 greeting
0 fifo1
1 greeting
$ cat > greeting
Hello, world!
$ cat greeting > fifo1 &
[1] 10044
$ ls -l fifo1 greeting
prw-r--r-- 1 sarwar faculty 0 Apr 18 17:42 fifo1
-rw-r--r-- 1 sarwar faculty 14 Apr 18 17:43 greeting
$ du fifo1 greeting
0 fifo1
9 greeting
$ cat fifo1
Hello, world!
[1]+ Done cat greeting > fifo1
$ du fifo1 greeting
0 fifo1
9 greeting
$

EXERCISE 20.2

Replicate these shell sessions on your UNIX system(s). Do they produce the same results?
If not, list the differences between the results of our sessions and your sessions.

You can use any of the mknod(), mknodat(), mkfifo(), or mkfifoat() system
calls to create a FIFO. However, the mknod() and mknodat()system calls require super-
user privileges. The primary purpose of these system calls is to create special files, but they
can also be used to create FIFOs. The mkfifo() and mkfifoat() calls do eventually
invoke the mknod() system call. Once a FIFO has been created, you can use the open(),
read(), write(), and close() system calls to perform I/O with it through multiple
reader and writer processes. The last process that uses a FIFO, usually a reader process,
closes the FIFO and removes it from the file system using the unlink() system call.
Because multiple processes can write to a FIFO, the UNIX kernel ensures that data up to
PIPE _ BUF bytes written by multiple processes each is written atomically and does not
interleave. PIPE _ BUF is defined in /usr/include/sys/param.h to be 5120 bytes on Solaris
and in /usr/include/sys/syslimits.h to be 512 bytes on BSD.

We first describe the mkfifo() and mkfifoat() system calls, listed as library calls
under Solaris, and their manual pages may be viewed by using the man –s 3c mkfifo
command. We then discuss a few sample programs to describe the use of FIFOs as IPC

System Programming III    ◾    883

channels. We primarily use the mkfifo() call in our sample programs. Here are brief
descriptions of the mkfifo() and mkfifoat() system calls.

#include <sys/types.h>
#include <sys/stat.h>
int mkfifo(const char *path, mode_t mode);
int mkfifoat(int fd, const char *path, mode_t mode);

Success: 0
Failure: -1 and kernel variable errno set to indicate the type of error

The mkfifo() creates a FIFO with the name given in the path argument having access
permissions specified in the mode argument. As is the case with other types of files, access
permissions are restricted by the current umask. In the mkfifoat() system call, the
path argument is relative to the directory associated with the file descriptor fd and not
the current working directory of the user. If the fd argument is AT _ FDCWD, the behavior
of the mkfifoat() call is identical to the mkfifo() call.

The mkfifo() and mkfifoat() calls may fail mostly for the same reasons that the
creat() and open() system calls may fail, as discussed in Section 18.8.1 and listed in
Table 18.4. A few additional reasons for the failure of these calls are listed in Table 20.7.

The behavior of a FIFO that is not fully opened for I/O is similar to that of a pipe under
the same condition. A write to a FIFO that no process has opened for reading results in a
SIGPIPE signal to the writer process. When the last process to write to a FIFO closes it, an
eof is sent to the reader process.

We now discuss a sample client–server model to illustrate the use of FIFOs for IPC
between unrelated processes on the same machine. Figure 20.6 shows the algorithms for
the client and server processes.

Here are the fifo.h, client.c, and server.c files that implement this client–server model.

% cat fifo.h
#include <string.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <sys/errno.h>

TABLE 20.7 Reasons for the mkfifo() and mkfifoat() System Calls to Fail

Reason for Failure Value of errno

The directory under which the FIFO is to be created does not have write permission, or a
component directory in the path prefix is not searchable

EACCES

The FIFO named in path exists EEXIST

For the mkfifoat() call, the fd argument is neither AT_FDCWD nor a valid
descriptor for searching and the path argument is not an absolute pathname

EBADF

For the mkfifoat() call, the fd argument is neither AT_FDCWD nor a valid
descriptor for a directory and the path argument is not an absolute pathname

ENOTDIR

884 ◾ UNIX: The Textbook, Third Edition

extern int errno;

#define FIFO1 "/tmp/fifo.1"
#define FIFO2 "/tmp/fifo.2"
#define PERMS 0666
#define SIZE 512

static char* message1 = "Hello, world!\n";
static char* message2 = "Hello, class!\n";
% cat client.c
#include "fifo.h"

int main(void)
{
 char buff[SIZE];
 int readfd, writefd;
 int n, size;

 /* Open FIFOs. Assume that the server
 has already created them. */
 if ((writefd = open(FIFO1, 1)) == -1) {
 perror ("client open FIFO1");
 exit (1);
 }
 if ((readfd = open(FIFO2, 0)) == -1) {
 perror ("client open FIFO2");
 exit (1);
 }

 /* client (readfd, writefd); */
 size = strlen(message1);
 if (write(writefd, message1, size) != size) {
 perror ("client write1");
 exit (1);
 }
 if ((n = read(readfd, buff, size)) == -1) {
 perror ("client read");
 exit (1);

Server process Client process

1. Create two FIFOs, FIFO1 and FIFO2
2. Open FIFO1 for reading and FIFO2 for writing
3. Read “Hello, world!” from client through FIFO1
4. Display this message on the screen by writing it

to standard output
5. Write “Hello, class!” to client through FIFO2
6. Close FIFO1 and FIFO2
7. Exit

1. Open FIFO1 for writing and FIFO2 for reading
2. Write “Hello, world!” to server through FIFO1
3. Read FIFO2 for a message from server
4. Display this message, “Hello, class!”, on the screen

by writing it to standard output
5. Close FIFO1 and FIFO2
6. Remove FIFO1 and FIFO2 from the file system
7. Exit

FIGURE 20.6 Algorithms for the client and server processes.

System Programming III    ◾    885

 }
 else
 if (write(1, buff, n) != n) {
 perror ("client write2");
 exit (1);
 }
 close(readfd);
 close(writefd);

 /* Remove FIFOs now that we are done using them */
 if (unlink (FIFO1) == -1) {
 perror("client unlink FIFO1");
 exit (1);
 }
 if (unlink (FIFO2) == -1) {
 perror("client unlink FIFO2");
 exit (1);
 }
 exit (0);
}
% cat server.c
#include "fifo.h"

int main(void)
{
 char buff[SIZE];
 int readfd, writefd;
 int n, size;

 /* Create two FIFOs and open them for
 reading and writing */
 if ((mknod (FIFO1, S_IFIFO | PERMS, 0) == -1)
 && (errno != EEXIST)) {
 perror ("mknod FIFO1");
 exit (1);
 }
 if (mkfifo(FIFO2, PERMS) == -1) {
 unlink (FIFO1);
 perror("mknod FIFO2");
 exit (1);
 }
 if ((readfd = open(FIFO1, 0)) == -1) {
 perror ("open FIFO1");
 exit (1);
 }
 if ((writefd = open(FIFO2, 1)) == -1) {
 perror ("open FIFO2");
 exit (1);

886 ◾ UNIX: The Textbook, Third Edition

 }

 /* server (readfd, writefd); */
 size = strlen(message1);
 if ((n = read(readfd, buff, size)) == -1) {
 perror ("server read");
 exit (1);
 }
 if (write (1, buff, n) < n) {
 perror("server write1");
 exit (1);
 }
 size = strlen(message2);
 if (write (writefd, message2, size) != size) {
 perror ("server write2");
 exit (1);
 }
 close (readfd);
 close (writefd);
}
%

Figure 20.7 shows the compilation and execution of the client–server model by using two
terminal windows on our system. We compile the client.c and server.c programs
and save the executable codes in the client and server files, respectively. We then run the
server program in Window 1, followed by running the client program in Window 2. The
client process sends the “Hello, world!” message to the server process through FIFO1
and then waits for a message from the server process. The server process receives the client
message and displays it on standard output. It then sends the “Hello, class!” mes-
sage to the client process through FIFO2, closes both FIFOs, and exits. The client process
receives the message and displays it on the screen. It then closes both FIFOs and removes
them from the file system. Figure 20.8 shows the pictorial representation of the running of
the client–server model.

The client–server model discussed is for communication between two processes run-
ning on the same machine. In this case, the communication is an exchange of one message
each from client to server and vice versa. The model may be extended to the exchange of
multiple messages between the two processes. You can extend this model such that the
server process may serve multiple clients. Figure 20.9 shows the general view of such a
model.

Terminal window 1 Terminal window 2

% gcc46 server.c -w -o server
% ./server
Hello, world!
%

% gcc46 client.c -w -o client
% ./client
Hello, class!
%

FIGURE 20.7 Compilation and running of the client–server model in two terminal windows.

System Programming III    ◾    887

EXERCISE 20.3

Compile and run this client–server model on your UNIX system. Does it work as expected?
If not, identify and list reasons for the issues.

EXERCISE 20.4

Are mkfifo() and mkfifoat() are available on your UNIX system as system calls or
library calls?

EXERCISE 20.5

What is the value of PIPE _ BUF on your UNIX system? Which file contains it? What
does this value indicate?

The basic algorithms for the client and server processes for this client–server model are
shown in Figure 20.10. Note that Steps 3–5 in the server code are typically implemented as
an infinite loop.

Display
screen

standard
output

Display
screen

standard
output

1 2

5

6 3
ServerClient

Hello, class!

Hello, class!

Hello, world!

4

Hello, world!
FIFO1

FIFO2

FIGURE 20.8 Pictorial representation of the execution of the client–server model using FIFOs.

client
FIFO

client
FIFO

client 1 client K

Server

well-
known
FIFO

send reply

send
request

send
request

read request

send reply

read response read response
• • •

FIGURE 20.9 Client–server model with a server and multiple simultaneous clients using FIFOs.

888 ◾ UNIX: The Textbook, Third Edition

20.6 COMMUNICATION BETWEEN UNRELATED
PROCESSES ON DIFFERENT COMPUTERS

UNIX provides several IPC channels for communication between unrelated processes on
the same or different machines on a network. The most commonly used channel is the
socket. In this section, we discuss what a socket is and how it may be used for commu-
nication between processes. The communication between processes may be connection
oriented or connectionless. We also explore the software architecture of the client–server
models for the various Internet services by using the socket as the communication channel
between the client and server processes. We will code some of the basic models and explain
the source codes. We leave implementation of other models as end of chapter problems.

20.6.1 Socket-Based Communication

As stated in Chapter 4, a socket is a file type in UNIX. From the IPC point of view, a socket
is a full-duplex IPC channel that may be used for communication between related or unre-
lated processes on the same or different machines. Both communicating processes need
to create a socket to handle their side of communication; reading and writing. A socket is,
therefore, called an endpoint of communication. It is the IPC channel of choice for network-
based communication between processes under the client–server paradigm.

Like a FIFO, once a socket has been created, it is used by following the open–read–
write–close paradigm used for typical file I/O. A socket remains in the system for as long
as the process that creates it is up and running. Thus, a socket is process persistent.

20.6.2 Creating a Socket

You can create a socket by using the socket() system call. Here is a brief description of
the socket() system call.

#include <sys/types.h>
#include <sys/socket.h>
int socket(int domain, int type, int protocol);

Success: Socket descriptor
Failure: -1 and kernel variable errno set to indicate the type of error

Server process Client process

1. Create a “well-known” FIFO, i.e., create a FIFO and
make its pathname well known

2. Open the well-known FIFO for reading
3. Read a client request via the well-known FIFO; as

part of its request a client sends the pathname of
its FIFO to server

4. Prepare response and send it to client FIFO
5. Go to Step 3

1. Create a FIFO, called “client” FIFO, for reading
server response(s)

2. Open server’s well-known FIFO for writing
3. Prepare a request for the server that contains the

pathname of client FIFO
4. Send request to server via server’s well-known

FIFO
5. Receive server’s response via client FIFO
6. Response to last request? No, go to 3.
7. Close well-known and client FIFOs
8. Remove client FIFO from the file system
9. Exit

FIGURE 20.10 Algorithms for the client and server processes.

System Programming III    ◾    889

The call returns a file descriptor from the PPFDT, known as the socket descriptor. Before
a socket may be used, it needs to be set for a particular type of communication: connec-
tionless or connection oriented. The domain argument specifies the domain (i.e., protocol
family) under which the communication between a pair of sockets will take place. The
value of this argument selects the protocol family that would be used for communication
between sockets. These families are defined in /usr/include/sys/socket.h. A socket of a par-
ticular domain may support different types of communication under different protocols.
The type argument specifies the type of communication for which the socket would be
used. Communication may only take place between a pair of sockets of the same type. The
protocol argument specifies the protocol to be used for the socket type within a given
protocol family. However, a particular protocol needs to be specified if multiple protocols
exist to support the requested type of communication under the given domain. If you set
the protocol argument to 0, the system chooses the correct type of protocol for the given
type of communication under the selected domain.

Table 20.8 lists some of the commonly used socket domains and Table 20.9 shows the
types of communication supported between a pair of sockets. The protocols for stream-
oriented and datagram-oriented communication are TCP and User Datagram Protocol
(UDP), respectively.

You use the PF _ LOCAL domain to create a socket for communication between
processes on the same host using internal protocol(s). The PF _ INET and PF _ NET6
domains are used for communication between processes on the Internet using the IPv4
and IPv6 protocols, respectively.

You can OR the flags given in Table 20.10 to mark a newly created socket as “close-on-
exec” and/or set it for “nonblocking” I/O. When a socket is marked as “close-on-exec,” it

TABLE 20.8 Commonly Used Socket Domains

Protocol Family Purpose

PF_LOCAL (Old PF_UNIX) Host-internal protocols
PF_INET IPv4 protocols
PF_INET6 IPv6 protocols

TABLE 20.9 Commonly Used Types of Communication between a
Pair of Sockets

Socket Type Communication Type

SOCK_STREAM Stream-oriented
SOCK_DGRAM Datagram-oriented
SOCK_RAW Datagram-oriented (only available to superuser)

TABLE 20.10 Flags for the type Field

Flag Purpose

SOCK_CLOEXEC Mark the descriptor as “close-on-exec”
SOCK_NONBLOCK Set the descriptor “nonblocking” I/O

890 ◾ UNIX: The Textbook, Third Edition

is closed when the process overwrites itself with an executable code using a call from the
exec() family such as execlp(). The read() and write() system calls do not block
on an empty and full socket, respectively, if the socket is marked as “nonblocking.”

The socket() system call may fail for various reasons. Some of the reasons for the
failure of a socket() are listed in Table 20.11.

20.6.3 Domains of Socket-Based Communication

Socket-based IPC may take place in several domains, but two are most commonly used:
UNIX domain and Internet domain. We briefly describe when these domains of communi-
cation are used. In the next section, we show how a socket may be created for communica-
tion under a particular domain.

20.6.3.1 UNIX Domain Socket (PF _ LOCAL or PF _ UNIX)
To create a socket for communication under the UNIX domain, PF _ LOCAL or PF _
UNIX is used as the domain argument in the socket() system call. The IPC under this
domain is between processes on the same machine with the socket address specified as the
pathname in the file system, in the same way as that for a FIFO. UNIX domain protocols
are not an actual protocol suite but a technique used to perform client–server communica-
tion between processes on the same machine using the socket API.

The UNIX domain sockets are preferred over FIFOs and the Internet domain sockets
for IPC between processes on the same machine for the following reasons:

• UNIX domain sockets are full duplex.

• UNIX domain sockets are twice as fast as TCP sockets. For this reason, they are
used in the client–server model for X Window System as well as for communication
between a client and server when both are on the same host. An example of the lat-
ter case is when a printer client running on a machine sends a print job to the print
server that also runs on the same machine.

• UNIX domain sockets are used for passing descriptors between processes on the
same host.

20.6.3.2 Internet Domain Socket (PF _ INET or PF _ INET6)
To create a socket for communication under the Internet domain, PF _ INET or PF _
INET6 is used as the domain in the socket() system call. The IPC under this domain

TABLE 20.11 A Few Reasons for socket() to Fail

Reason for Failure Value of errno

Wrong type and/or protocol argument EACCES

domain is not supported EAFNOSUPPORT

PPFDT is full (i.e., no free file descriptor) or system-wide file table is full EMFILE

Insufficient buffer space in kernel ENOBUFS

Specified protocol not supported in the given domain EPROTONOSUPPORT

Specified socket type not supported by the given protocol EPROTOTYPE

System Programming III    ◾    891

takes place between processes on the same machine or on different machines on a TCP/IP
network, including the Internet. The address of an Internet domain socket is an IP address
and a port number. The Internet domain protocols use the TCP/IP protocol suite for com-
munication using the client–server paradigm.

The Internet domain sockets are the most commonly used channels for IPC and are the
glue required for the construction of client–server applications for Internet services. In the
next section, we discuss the most common types of communication that are carried out
using sockets and the underlying protocols that support such communication.

20.6.4 Types of Communication Using a Socket

IPC using sockets may be connection oriented or connectionless. In the connection-oriented
style of communication, the two communicating processes create sockets of the required
type and have them connected before starting communication. The connection between
the two sockets is established using the three-way TCP handshake. Thus, a virtual connec-
tion is established between the two sockets, and the sender and receiver processes commu-
nicate using the write() and read() system calls, respectively. The SOCK _ STREAM
type of socket is used for connection-oriented, reliable, error-free, and in-sequence stream-
oriented communication with no message/packet boundaries.

In the connectionless style of communication, the sender process simply sends mes-
sages to the receiver process and hopes that they will be delivered. The SOCK _ DGRAM
type socket is used for connectionless, unreliable (no guarantees), and datagram-oriented
communication. A datagram is a small, fixed-length packet/message. Connection-oriented
communication is like the guaranteed delivery service provided by FedEx, UPS, or DHL,
and connectionless communication is like the normal, best-effort delivery service pro-
vided by a country’s mail service such as the U.S. Post Service.

20.6.4.1 Stream Socket (SOCK _ STREAM)
To create a socket for stream-oriented communication using IPv4, you specify
PF _ INET as the domain and SOCK _ STREAM as the type of communication. TCP
is the transport-level protocol that provides this type of communication. Thus, you
can create an Internet domain socket for stream-type connection-oriented communi-
cation by using the following code snippet. Note that a value of 0 is used in the pro-
tocol argument to let the kernel choose the appropriate protocol for the requested
style of communication.

int s; /* Socket descriptor */
s = socket(PF_INET, SOCK_STREAM, 0);

If you also want to mark this socket as nonblocking, you would use the following
call:

int s;
s = socket(PF_INET, SOCK_STREAM | SOCK_ NONBLOCK, 0);

892 ◾ UNIX: The Textbook, Third Edition

20.6.4.2 Datagram Socket (SOCK _ DGRAM)
To create an IPv4 socket for datagram-oriented communication, you would need to specify
PF _ INET as the domain and SOCK _ DGRAM as the type of communication. UDP is the
transport-level protocol that provides this type of communication. Thus, you can create an
Internet domain socket for datagram-oriented, connectionless communication by using
the following code snippet:

int s; /* Socket descriptor */
s = socket(PF_INET, SOCK_DGRAM, 0);

If you want to also mark this socket “close-on-exec,” you would use the following call:

int s;
s = socket(PF_INET, SOCK_DGRAM | SOCK_CLOEXEC, 0);

20.6.4.3 Compiling and Running Programs on PC-BSD and Solaris
You can compile your programs using the gcc46 (or gcc48) command on PC-BSD and
gcc on Solaris. On PC-BSD, you can compile a source program by using the following
command syntax:

gcc46 –w source.c –o binary

where source.c is the name of the C program file that contains the source code and
binary is the name of the file that contains the executable code for the given source code.
The –w switch is used to suppress warnings. On Solaris, programs that use network-related
system calls, including socket(), bind(), accept(), and so on, require that the gcc
compiler is run using the –lsocket switch. To compile a program that uses socket library
calls such as gethostbyname(), you need to specify the –lnsl switch also. So, you use
the following compiler command syntax to generate executable code for a server program
on Solaris.

gcc –w –lsocket server.c –o server

In the client–server software that we develop in this chapter, we do not use the network
library calls that require the –lnsl switch. However, we do use the network library calls in
our client software. Thus, you use the following compiler command to generate executable
code for client software on Solaris.

gcc –w –lsocket –lnsl client.c –o client

For all the programs that we discuss in the intervening sections, we show compilation
and execution of the programs on our PC-BSD system.

The IPv4 addresses of our PC-BSD and Solaris machines are 202.147.169.196 and
202.147.169.197, respectively. Since we test run our server processes on these machines,

System Programming III    ◾    893

we use these IP addresses as command line arguments for the client processes. We also
use the local host address, 127.0.0.1, when we run the client and server processes on
the same machine. When you test these programs in your environment, you can either
specify the IP address of the machine that runs the server process or 12.0.0.1 if the cli-
ent and server processes run on the same machine. Please note that you will not be able
to run your client processes by using these IP addresses as command line arguments on
your systems.

20.6.4.4 First Socket-Based Program
The sockets.c program shown in the following session creates a socket each for stream-
oriented and datagram-oriented communication between processes on the Internet and
displays the descriptors allocated in the PPFDT for these sockets. The compilation and
execution of this program show that the socket descriptors 3 and 4 have been assigned to
the two sockets. Note that descriptors 3 and 4 are the next two descriptors available after
the standard descriptors.

% cat sockets.c
#include <sys/types.h>
#include <sys/socket.h>

int main(void)
{
 int s1, s2;

 if ((s1 = socket(PF_INET, SOCK_STREAM, 0)) == -1) {
 perror("SOCK_STREAM socket failed");
 exit(1);
 }
 if ((s2 = socket(PF_INET, SOCK_DGRAM, 0)) == -1) {
 perror("SOCK_DGRAM socket failed");
 exit(1);
 }
 printf(" The socket descriptor for the stream socket is:

%d\n", s1);
 printf(" The socket descriptor for the datagram socket is:

%d\n", s2);
 exit(0);
}
% gcc46 sockets.c -w -o sockets
% ./sockets
The socket descriptor for the stream socket is: 3
The socket descriptor for the datagram socket is: 4
%

On Solaris, you would generate the executable code using the gcc -w –lsocket
sockets.c -o sockets command.

894 ◾ UNIX: The Textbook, Third Edition

When an Internet domain socket is created, the UNIX kernel establishes a link between
the socket descriptor for the newly created socket and the socket data structure allocated
by the kernel when the socket is created. Figure 20.11 shows the high-level linkage between
the socket descriptor and the associated socket data structure.

The socket data structure contains several pieces of information for the expected style of
IPC, including domain, service type, local IP, remote IP, local port, and remote port. The
UNIX kernel initializes the first two fields when a socket is created. The local IP and local
port are stored in the data structure explicitly by the client or server process that creates
it using the bind() system call. The <local IP, local port> pair forms the local address
of the socket. When the local address has been stored in the socket data structure, we say
that the socket is half associated. The remote IP and remote port fields are filled out when a
client process calls the connect() system call. The <remote IP, remote port> pair is the
address of the remote socket. When both local and remote addresses have been stored in
the client- and server-side sockets, we say that full association has been established between
the two processes. When full association has been established between two sockets, we
say that they have been connected and a virtual connection has been established between
them. For SOCK _ STREAM (i.e., TCP) sockets, this happens through the rendezvous of
the connect() and accept() calls on the client and server sides, respectively, as dis-
cussed later in this chapter. Connection-oriented communication between two processes
may take place only when full association exists between their sockets. We discuss socket
addresses and their binding with sockets in more detail in the next two subsections.

20.6.4.5 Reading Data from a Socket
When a connection has been established between the server- and client-side sockets for the
SOCK _ STREAM style of communication, they can communicate using the TCP protocol.
This communication is based on a stream of bytes without any message boundaries. The
sender process may send data using one or more write() calls. The receiver process may
collect this data using a single or multiple read() calls. Suppose the server process needs

File
descriptor

PPFDT Socket data
structure

Socket buffer

To standard
files

family : PF_INET
service : SOCK_STREAM
local IP :
remote IP :
local port :
remote port :

0
1
2
3
4
5

•
•
•

•
•
•

•
•
•

•
•
•

FIGURE 20.11 Partial description of socket descriptor, PPFDT, and socket data structure.

System Programming III    ◾    895

to send 128 bytes of data to the client process and it does so by sending four 32-byte chunks
using four write() system calls. The receiver side may receive all 128 bytes of data in one
read() call or in multiple read() calls. It may read 4 bytes, 15 bytes, 78 bytes, 10 bytes,
and 21 bytes in five successive read() calls. The number of bytes returned by a read()
call depends on several factors, including the delays caused by the underlying network,
the size of the datagrams in the underlying intranet, and the buffer space available associ-
ated with the sender- and receiver-side sockets. Thus, data from a SOCK _ STREAM socket
should be read in a loop until the desired amount of data has been received. The following
code snippet shows one way of reading N bytes from a SOCK _ STREAM socket and dis-
playing the data on the screen.

char buf[N];
int n, nread, nremaining;

for (nread=0, n=0; nread < N; nread += n) {
 nremaining = N - nread;
 n = read(s, &buf[nread], nremaining);
 if (n == -1) {
 perror("read failed");
 exit(1);
 }
}
(void) write(1, buf, N);

The UDP protocol is used for communication between SOCK _ DGRAM sockets. It is a
“best-effort delivery service” protocol, under which messages are transmitted and received
in terms of datagrams with fixed boundaries. Thus, a reader process tries to read the entire
data sent by a writer process using a single read() system call. The process either reads
the whole datagram or, in case of an error, does not read any data. The following code may
be used to read from a SOCK _ DGRAM socket.

n = read(s, buf, N);
if (n == -1) {
 perror("read failed");
 exit(1);
}
(void) write(1, buf, n);

20.6.5 Socket Address

The address (or name) of a socket is dependent on the socket domain. When a socket is
created, it does not have any address. Until an address is assigned to a socket, it may not
be referred to. For a UNIX domain (PF _ LOCAL or PF _ UNIX) socket, the address is a
pathname in the file system. For an Internet domain (PF _ INET or PF _ INET6) socket,
the address consists of two parts: the IP address of the host on which the socket is created
and a port number. As discussed in Chapter 11, an IP address is used to uniquely identify a

896 ◾ UNIX: The Textbook, Third Edition

host on the Internet. IPv4 addresses are 32 bits long and IPv6 addresses are 128 bits long.
On a host with a given IP address and running multiple servers, a port number allows the
operating system kernel of the host to direct an incoming client request to a particular
server on the host. Thus, the <IP address, port number> pair uniquely identifies the loca-
tion of a service on the Internet, offered using different transport-layer protocols such as
TCP and UDP.

A port number is a positive integer in the range 0 to 65535. The purpose of a port number
is to distinguish different services offered on a host. The International Assigned Numbers
Authority (IANA) assigns port numbers and service names. Service names are assigned
on a first-come, first-served basis and port numbers are assigned according to a particular
scheme, described in RFC6335 (see Table 20.26). Table 20.12 describes the general scheme
used by IANA for the allocation of ports.

According to RFC6335, system ports and user ports are assigned by IANA using different
processes. Dynamic ports are never assigned and may be used by any process randomly.
System ports are used to offer well-known services and are, therefore, also known as well-
known ports. Normally, the well-known ports are offered at the same port number regard-
less of the transport-level protocol used by the service (TCP, UDP, etc.). Note that only a
superuser (i.e., root) can use ports < 1024. A few well-known services and their respective
port numbers are listed in Table 20.13.

TABLE 20.12 Port Numbers and their Purpose

Port Number Range Purpose

0–1023 System/well-known Ports
1024–49151 User/registered Ports
49152–65535 Dynamic/private Ports

TABLE 20.13 Some Well-Known Services
and their Ports

Well-Known Service Port

ECHO 7
DAYTIME 13
QOTD (Quote-of-the-Day) 17
FTP-DATA 20
FTP (File Transfer Protocol) 21
SSH (Secure Shell) 22
TELNET 23
SMTP (Simple Mail Transfer Protocol) 25
TIME 37
FINGER 79
HTTP, WWW 80
KERBEROS 88
POP3 110
SFTP 115

System Programming III    ◾    897

Typically, client processes and unknown/private servers use dynamic ports. These ports
are also used to test server processes.

EXERCISE 20.6

Browse the IANA website. What is the total number of services that have been assigned
port numbers?

EXERCISE 20.7

Browse through the /usr/include/sys/socket.h file. How many communication domains
and service types have been defined?

20.6.6 Important Data Structures and Related Function Calls

UNIX provides many functions to network programmers to manipulate IP addresses.
Most of these functions use data structures for storing socket names, that is, IP addresses,
port numbers, address sizes, and other related information. A few are used to maintain
information about a host on the Internet and an Internet service.

20.6.6.1 Important Data Structures for IP Addresses, Hosts, and Services
A brief summary of the most important data structures for network-based IPC and net-
work programming is given in Table 20.3. These data structures deal with socket addresses,
information about hosts on the Internet, and information about Internet services. We dis-
cuss the use of these data structures and their internal details in this section. The system
calls, library calls, and macros that deal with them are discussed in the sections that follow.

struct sockaddr

This generic structure holds information about a socket’s address. It is the basic template
on which other address data structures used for storing addresses of sockets of different
domains are based. Here is how the structure is defined in the /usr/include/sys/socket.h
file.

struct sockaddr{
 unsigned short sa_family;
 char sa_data[14];
};

The sa _ family field contains the socket address family and the sa _ data con-
tains the actual socket address. The value of sa _ data is interpreted based on the value
of sa _ family. The address family used for UNIX domain sockets is AF _ LOCAL
(or AF _ UNIX). For Internet domain sockets, it is AF _ INET or AF _ INET6. When
sa _ family is AF _ LOCAL, the sa _ data field is supposed to contain a pathname
as the socket’s address. When sa _ family is AF _ INET, the sa _ data field contains

898 ◾ UNIX: The Textbook, Third Edition

both an IP address and a port number. The sockaddr _ in structure is specifically used
for this purpose.

struct sockaddr_un

The address structure for the address of a UNIX domain socket is defined in sys/
un.h as

struct sockaddr_un {
 unit8_t sun_len;
 sa_family_t sun_family;
 char sun_path[104];
};

Here, sun _ len is the length of sockaddr _ un including the NULL byte, sun _
family is AF _ LOCAL (or AF _ UNIX), and sun _ path[104] is the null-terminated
pathname in the file system structure that refers to the socket.

struct sockaddr_in

This structure may be used to hold the address information for an Internet domain
socket. It is defined in the /usr/include/sys/socket.h file as follows:

struct sockaddr_in {
 uint8_t sin_len;
 sa_family_t sin_family; /* short int */
 in_port_t int sin_port; /* unsigned short */
 struct in_addr sin_addr;
 unsigned char sin_zero[8];
};

The sin _ family field specifies the address family; usually this is AF _ INET. The
sin _ port and sin _ addr fields contain a 16-bit port number and a 32-bit IPv4
address in network byte order, respectively. The sin _ zero field is set to NULL (i.e., '0')
as it is not used. The in _ addr structure is defined as follows.

struct in_addr {
 unsigned long s_addr;
};

struct hostent

The hostent structure may be used to hold official information about a host on the
Internet. It is defined in the /usr/include/netdb.h file as follows:

System Programming III    ◾    899

struct hostent
{
 char *h_name;
 char **h_aliases;
 int h_addrtype;
 int h_length;
 char **h_addr_list
#define h_addr h_addr_list[0] /* For backward compatibility */
};

The meaning of each field of the structure is given in Table 20.14.

struct servent

The servent structure may be used to hold official information about a host on the
Internet. It is defined in the /usr/include/netdb.h file as follows:

struct servent
{
 char *s_name;
 char **s_aliases;
 int s_port;
 char *s_proto;
};

The meaning of each field of the structure is given in Table 20.15.

20.6.6.2 Library Functions to Manipulate IP Addresses
UNIX provides several library functions for manipulating IP addresses from ASCII, that
is, strings in dotted decimal notation (DDN) to binary and vice versa. These functions are
listed in Table 20.2. Here, we briefly discuss these calls and demonstrate their use with
small code snippets.

TABLE 20.14 Meaning of Each Field of the hostent Structure

Field Purpose

h_name Official name of host
h_aliases NULL-terminated array of other names of host
h_addrtype Address type (family) of host, usually AF_INET (currently defined as PF_INET)
h_length Length (in bytes) of address; 4 bytes for IPv4 and 16 bytes for IPv6
h_addr_list NULL-terminated array of network addresses for host
h_addr Used for backward compatibility; first address in h_addr_list

900 ◾ UNIX: The Textbook, Third Edition

A brief description of the inet _ aton() call is given next. Note that it works for
address domains PF _ INET and PF _ INET6.

#include <netinet/in.h>
#include <arpa/inet.h>
int inet_aton(const char *cp, struct in_addr *pin);

Success: 1
Failure: 0 if address string is invalid

This function call converts the IP address in DDN specified as string cp to the IP
address in network byte order and stores it in the structure specified as pin. The following
code snippet shows sample use of this function.

#include <netinet/in.h>
#include <arpa/inet.h>
...
int n;
struct in_addr address;
...
memset(&address, '\0', sizeof(address));
n = inet_aton("39.59.169.110", &address);
if (n == 0) {
 /* Error handling code */
}
...

The inet _ addr() call converts and returns the specified string for an IP address in
DDN to a 32-bit unsigned binary value in network byte order. Here is a brief description
of the call.

#include <sys/types.h>
#include <arpa/inet.h>
in_addr_t inet_addr(const char *cp);

Success: IP address in Network Byte Order
Failure: INADDR_NONE

TABLE 20.15 Meaning of Each Field of the servent Structure

Field Purpose

h_name Official name of host
h_aliases NULL-terminated array of other names of host
h_addrtype Address type (family) of host, usually AF_INET (currently defined as PF_INET)
h_length Length (in bytes) of address; 4 bytes for IPv4 and 16 bytes for IPv6
h_addr_list NULL-terminated array of network addresses for host
h_addr Used for backward compatibility; first address in h_addr_list

System Programming III    ◾    901

The return type of the function, in _ addr _ t, is defined as a 32-bit unsigned integer
in the /usr/include/sys/types.h file. In the following code segment, we show a sample use
of this call.

#include <sys/types.h>
#include <arpa/inet.h>
...
struct sockaddr_in address;
...
memset(&address, '\0', sizeof(address));
if ((address.sin_addr.s_addr = inet_addr("39.59.169.110")) ==

INADDR_NONE) {
 /* Error handling code */
}
...

The call returns INADDR _ NONE on failure. This symbolic constant is defined in /usr/
include/netinet/in.h as all 1s (i.e., 0xffffffff). This means that this return value is -1.

The inet _ ntoa() call converts and returns an IP address in network byte order
binary form to the string of corresponding IP address in DDN. Here is a brief description
of the call.

#include <sys/types.h>
#include <arpa/inet.h>
char * inet_ntoa(struct in_addr in);

Success: IP address string in DDN
Failure: NULL

The following piece of code shows a sample use of the call.

#include <arpa/inet.h>
#include <arpa/inet.h>
...
char *ip_ddn;
struct in_addr address;
...
ip_ddn = inet_ntoa(address);
printf("IP Address is: %s\n",ip_ddn);
...

20.6.6.3 New Library Functions to Manipulate IP Addresses
The inet _ addr() function received criticism and new programs used inet _ aton()
instead. The new versions of inet _ ntoa() and inet _ aton() that work with both
IPv4 and IPv6 addresses are inet _ ntop() and inet _ pton(), respectively. Note
that “n” stands for numeric and “p” for presentation. You should use the new calls in your
code even if your system does not support IPv6.

902 ◾ UNIX: The Textbook, Third Edition

Here are brief descriptions of the inet _ ntop() and inet _ pton() functions.

#include <sys/types.h>
#include <arpa/inet.h>
const char * inet_ntop(int af, const void * restrict src, char *
restrict dst, socklen_t size);

Success: IP address string in DDN
Failure: NULL on system error; -1 the specified address family not supported

#include <sys/types.h>
#include <arpa/inet.h>
int inet_pton(int af, const char * restrict src, void * restrict dst);
Success: 1
Failure: 0 if input is not in a valid presentation format and -1 on error

The first argument in both functions, af, stands for address family. Currently, only
AF _ INET and AF _ INET6 are supported. These functions return -1 if the specified
address family is not supported and errno variable is set to EAFNOSUPPORT. The size
argument in inet _ atop() is the size in bytes of the destination. It is used to prevent over-
flow of caller function’s buffer. If the size argument is too small to store the address in the
resultant presentation, the function returns NULL and errno is set to ENOSPC. To prevent
this problem, the following constants, defined in /usr/include/arpa/inet.h, should be used.

#define INET_ADDRSTRLEN 16 /* for IPv4 dotted-decimal */
#define INET6_ADDRSTRLEN 46 /* for IPv6 hex string */

Now, we show a few examples of the old calls and their equivalents using the new calls.
The first line shows the old call and the second (and third) shows its equivalent of the new
call.

address.sin_addr.s_addr = inet_addr("39.59.169.110");
inet_pton(AF_INET, "39.59.169.110", address.sin_addr);
inet_aton("39.59.169.110", &address);
inet_pton(AF_INET, "39.59.169.110", address.sin_addr);
ip_ddn = inet_ntoa(address);
char dest[INET_ADDRSTRLEN];
ip_ddn = inet_ntop(AF_INET, &address, dest, sizeof(dest));

EXERCISE 20.7

Browse through the header files that contain the data structures that we have discussed in
this section.

EXERCISE 20.8

Write small programs to test the use of the various library calls and macros that we have
discussed in this section. Show compilation and execution of your programs along with
their outputs.

System Programming III    ◾    903

20.6.7 Binding an Address to a Socket

When a socket is created, it belongs to a particular protocol domain but does not have any
protocol address assigned to it. The protocol address of a socket is also known its address
or name. If no process would refer to a socket, then it is not necessary for such a socket
to have an address. For example, if a socket were created in a client process, then, most
likely, no other process would refer to it. Thus, binding an address to a client-side socket
is not necessary. If other processes would need to refer to a socket, it is necessary that it
have an address. A socket created by a server process requires that an address be bound
(i.e., assigned) to it. This address is advertised for the service that the server process offers
so that a client process could contact the server process using the address of the server-side
socket. Figure 20.12 shows a server process with three sockets having addresses and a client
process with a socket without an address assigned to it. The sockets in the server process
are of the types PF _ LOCAL, PF _ INET with SOCK _ STREAM type of communica-
tion, and PF _ INET with SOCK _ DGRAM type of communication. The client socket does
not have an address.

You can use the bind() system call to assign an address to a socket. Here is a brief
description of the bind() system call.

#include <sys/types.h>
#include <sys/socket.h>
int bind(int s, const struct sockaddr *addr, socklen_t addrlen);

Success: 0
Failure: -1 and kernel variable errno set to indicate the type of error

Here, s is a socket descriptor, addr is the address to be bound to s, and addrlen is
the length of addr. For maximum portability, the addr field must be initialized to zero.

Server
process

Client
process

UNIX Domain
socket

/tmp/sock1

TCP socket
IP: 202.194.167.176

Port: 6001

UDP socket
IP: 202.194.167.176

Port: 6002(a) (b)

UDP socket

FIGURE 20.12 Sockets with and without addresses bound to them: (a) server process with three
sockets with addresses; a PF _ LOCAL socket, a PF _ INET socket of SOCK _ STREAM type,
a PF _ INET socket of SOCK _ DGRAM type; and (b) client process with PF _ INET socket of
SOCK _ DGRAM type without address.

904 ◾ UNIX: The Textbook, Third Edition

The bind() call may fail for various reasons. Some of the commonly occurring reasons
are listed in Table 20.16.

In case of the UNIX domain socket, the bind() system call would fail for the rea-
sons that the open(), creat(), mkfifo(), and mkfifoat() system calls would fail, as
shown in Tables 18.4 and 20.7. When a UNIX domain socket is no longer required, it must
be removed from the system using the unlink() system call. The address of a socket can-
not be read/written by anyone other than the processes with which the socket is associated.

The following code snippet shows how you can use the bind() system call to bind
address to an Internet domain socket.

#define PORT 6001
...
struct sockaddr_in saddr, caddr;
...
/* Initialize socket structure */
memset(&saddr, 0, sizeof(saddr));
saddr.sin_family = AF_INET;
saddr.sin_addr.s_addr = INADDR_ANY;
saddr.sin_port = htons(PORT);

/* Bind address to socket */
if (bind(s, (struct sockaddr *)&saddr, sizeof(saddr)) == -1) {
 perror("bind failed");
 exit(1);
}

Note that the address structure variable must be properly initialized before using it in
the bind() call. The symbolic constant INADDR _ ANY, defined in /usr/include/netinet/
in.h, is a wildcard IP address that matches any of the IP addresses of the host on which the
server process runs. Thus, in case of multihomed hosts, that is, hosts that are connected to
multiple networks and, hence, have multiple IP addresses, the use of the wildcard address
INADDR _ ANY makes it possible for the server to accept connection requests from cli-
ents arriving at any of these IP addresses. The htons(PORT) function is used to convert
the PORT value from the host network byte order to network byte order before assigning

TABLE 20.16 Common Reasons for the bind()System Call to Fail

Reason for Failure Value of errno

Sufficient kernel resources not available to complete the request EAGAIN

The s argument is not a valid descriptor EBADF

The s argument represents a socket that has been shut down (or closed) or is already
bound to an address

EINVAL

The s argument does not represent a socket ENOTSOCK

The addr argument represents an address that is already in use EADDRINUSE

The addr argument is not within the process address space EFAULT

System Programming III    ◾    905

the port value to the sin _ port field of the saddr address variable. Only a superuser
(i.e., root) can bind to ports < 1024.

EXERCISE 20.9

Write a program that creates a UNIX domain socket, assigns a name to it, and displays the
socket descriptor and its address using the UNIX address variable.

20.6.8 Enabling a Server-Side Socket to Listen for
Connection Requests from Clients

Once a server-side stream-oriented socket has been assigned an address, it needs to be
put in passive (listening) mode before client processes may connect to and commu-
nicate with it. You can put a socket in passive mode using the listen() system call.
Once the listen() call has been called on a socket, it starts to listen for incoming
connection requests from client processes. Such a socket is known as a passive socket.
Once a socket has been placed in passive mode, a client request for connection may be
accepted by it.

Here is a brief description of the listen() system call.

#include <sys/types.h>
#include <sys/socket.h>
int listen(int s, int backlog);

Success: 0
Failure: -1 and kernel variable errno set to indicate the type of error

Here, s is a socket descriptor and backlog specifies the maximum length of the
queue where client connection requests may wait. According to the manual page for the
listen() call, the real maximum queue length is 1.5 times what the programmer speci-
fies as backlog. The maximum length of this queue is defined in the /usr/include/sys/
socket.h file as SOMAXCONN. This value of SOMAXCONN is 128 on BSD and Solaris. Several
well-known servers use the maximum queue length with their passive sockets. You can use
the netstat -aL command to determine the queue lengths associated with all the serv-
ers running on your system.

The listen() call may fail for the reasons listed in Table 20.17.

TABLE 20.17 Reasons for listen() to Fail

Reason for Failure Value of errno

s is not a valid descriptor EBADF

s is not a socket descriptor ENOTSOCK

s is already connected or is in the process of being connected EINVAL

s is of a type that does not support the listen() operation EOPNOTSUPP

906 ◾ UNIX: The Textbook, Third Edition

The following code snippet shows a typical use of the listen() system call. Note that
the queue length associated with the passive socket is 5.

#define QLEN 5
...
/* Put socket in passive mode */
if (listen(s, QLEN) == -1) {
 perror("listen failed");
 exit(1);
}
...

20.6.9 Sending a Connection Request to Server Process

In the connection-oriented style of communication, the server- and client-side sockets
are first connected, and only then does communication start between the two processes
through their respective sockets—both processes do I/O with their own sockets. Once the
server-side stream-oriented socket has been assigned an address and put in passive mode,
it is ready to receive and accept client requests to establish connection. A client process can
send a connection request using the connect() system call.

Here is a brief description of the connect() system call.

#include <sys/types.h>
#include <sys/socket.h>
int connect(int s, const struct sockaddr *name, socklen_t namelen);

Success: 0
Failure: -1 and kernel variable errno set to indicate the type of error

For maximum portability, the addr field must be initialized to zero.
When used with the SOCK _ STREAM type of socket, the connect() call performs

the three-way TCP handshake to connect the client- and server-side sockets. After the call
has completed its execution, the underlying data structure associated with each socket has
the address of the other side and a full association has been established between the two
sockets. This also means that a virtual connection has been established between the client
and server processes. This only happens through the rendezvous of the connect() and
accept() system calls. We discuss the accept() system call in the next section. Once
a connection has been established between the client- and server-side sockets, the client
and server processes can communicate with each other using the read() and write()
system calls.

When used with the SOCK _ DGRAM type of socket, the connect() call simply stores
the address of the remote socket in the local socket’s data structure. No handshake takes
place between the local and remote sockets. This means that after a UDP client has made a
connect() call on a socket, it may communicate with the other side using read() and
write() instead of using recvfrom() and sendto().

System Programming III    ◾    907

Normally, connect()is called only once to successfully establish full association
between two SOCK _ STREAM sockets. However, connect() may be called multiple
times to change associations between two SOCK _ DGRAM sockets. An association of
a SOCK _ DGRAM socket may be dissolved by using connect() on it with an invalid
address, such as a null address.

The connect() call may fail for several reasons. Table 20.18 shows some of the rea-
sons that the connect() call may fail for non-UNIX domain—usually PF _ INET or
PF _ INET6—sockets.

Failure of the connect() call for a UNIX domain socket has mostly to do with invalid
pathname issues, as discussed for system calls such as open() and creat(). Two addi-
tional reasons for failure of the connect() call for a UNIX domain socket are: (a) the
socket s does not exist, and (b) write access for s is denied.

The following piece of code shows how you can use the connect() system call to send
a connection request to a connection-oriented server process to establish a connection
with it. We assume that, as is the case with all production clients, the name of the host or
its IP address in DDN and the port number on which the server process runs are passed as
the first and second command line arguments to the client program.

...
struct sockaddr_in saddr;
struct hostent *server;
...
if ((server = gethostbyname(argv[1])) == NULL) {
 printf("No such host\n");
 exit(0);
}

memset(&saddr, 0, sizeof(saddr));
saddr.sin_family = AF_INET;
saddr.sin_port = htons(atoi(argv[2]));

TABLE 20.18 Some Reasons for connect() to Fail

Reason for Failure Value of errno

s is not a valid descriptor EBADF

s is not a socket descriptor ENOTSOCK

Address specified in name is not available on the computer EADDRNOTAVAIL

Address specified in name cannot be used with this socket EAFNOSUPPORT

s is already connected EISCONN

Host is not connected to the network ENETUNREACH

Remote host is not reachable from this host EHOSTUNREACH

Address specified in name is already in use EADDRINUSE

A signal interrupted the connection establishment EINTR

A previous connection request has not yet been completed EALREADY

A broadcast address is specified using INADDR_BROADCAST or INADDR_
NONE for a socket that does not support broadcast functionality

EACCES

908 ◾ UNIX: The Textbook, Third Edition

if (server = gethostbyname(argv[1]))
 memcpy(&saddr.sin_addr.s_addr, server->h_addr,

server->h_length);
else
 if ((saddr.sin_addr.s_addr = inet_addr(argv[1])) ==

INADDR_NONE) {
 printf("No such host\n");
 exit(1);
 }

/* Send connection request to the server process */
if ((connect(s, &saddr, sizeof(saddr))) == -1) {
 perror("connect failed");
 exit(1);
}
...

Note that gethostbyname() returns a pointer to the hostent structure, which
contains relevant information about the host, including its address and address length,
as discussed in Section 20.6.6. We copy the address of the host to the relevant field of the
address variable for the server-side socket, saddr, using the bcopy() or the newer mem-
cpy() function. The atoi() function received criticism and the newer recommended
replacement is strtol(). We use the strtol() function in the client–server software
that we design and develop in this chapter. You can also replace

saddr.sin_addr.s_addr = inet_addr(argv[1]);

with the following call:

inet_pton(AF_INET, argv[1], address.sin_addr);

20.6.10 Accepting a Client Request for Connection

Whether it is used on an iterative server or a concurrent server, the passive socket may only
be used to wait for client requests for connections and not for client–server communica-
tion. This is so because, after accepting a client’s request for connection and before starting
communication with the client, the server process needs to go back and listen for more
incoming connection requests from clients. Thus, a client-side socket does not communi-
cate with the passive socket on the server side. Instead, a new socket is created on the server
side that is connected with the client-side socket for communication between the two pro-
cesses. Because it is used to interact with the client process, the newly created socket is also
known as the active socket. As stated earlier, this new socket on the server side is created
and connected to the client-side socket through the rendezvous of the accept() call on
the server side and the connect() call on the client side.

The main server socket—the passive socket—remains allocated throughout the life
of a server process. However, the sockets created by accept() have the life span of a

System Programming III    ◾    909

connection between a client and the server process. For this reason, they are also known
as ephemeral sockets.

A variant of the connect() call is accept4(). Here is a brief description of the
accept() and accept4() system calls.

#include <sys/types.h>
#include <sys/socket.h>
int accept(int s, struct sockaddr * restrict addr, socklen_t * restrict

addrlen);
int accept4(int s, struct sockaddr * restrict addr, socklen_t *

restrict addrlen,int flags);

Success: Socket descriptor for the accepted socket
Failure: -1 and kernel variable errno set to indicate the type of error

Here, s is the server-side passive socket, addr is the address variable, and addrlen
is the length of the address variable in bytes. The call returns the descriptor for the
newly created socket, which inherits the properties of s for nonblocking and asyn-
chronous I/O (O _ NONBLOCK and O _ ASYNC), and settings of the I/O and urgent
signals (SIGIO and SIGURG). For the accept4() call, the nonblocking I/O property
is specified by using the SOCK _ NONBLOCK flag in the flags argument. The “close-
on-exec” property of the newly created socket is set using the SOCK _ CLOEXEC flag in
the flags argument. The signal settings and asynchronous I/O properties of the newly
created socket are cleared. For maximum portability, the addr field must be initialized
to zero.

The accept() and accept4() calls may fail for several reasons. Table 20.19 lists some
of the reasons for these calls to fail.

The following code snippet shows how you can use the accept() system call to wait,
listen for, and accept connection requests from an Internet client through its socket.

...
int caddrlen;
struct sockaddr_in caddr;
...

TABLE 20.19 Some Reasons for accept() and accept4() to Fail

Reason for Failure Value of errno

s is not a valid descriptor EBADF

A signal interrupted the accept operation EINTR

The PPFDT or the system-wide file table is full EMFILE

s is not a socket descriptor ENOTSOCK

s is not a passive socket, i.e., the listen() system call has not been executed on s.
In the case of the accept4() call, the flags argument is invalid

EINVAL

addr is not the writable part of the address space of the caller process EFAULT

s is nonblocking with no connection requests waiting to be accepted EWOULDBLOCK

910 ◾ UNIX: The Textbook, Third Edition

/* Obtain length of client's address variable */
caddrlen = sizeof(caddr);
/* Block, listen for, and accept a connection request from a

client */
if ((sock = accept(s, (struct sockaddr *)&caddr, &caddrlen))

== -1) {
 perror("accept failed");
 exit(1);
}
...

Figure 20.13 shows the pictorial view of the complete client–server setup for the SOCK _
STREAM type of communication using a single server process. The figure clearly shows the
sequence of steps that the client and server processes have to take for the establishment of
a virtual connection between the client- and server-side sockets. We discuss similar setups
for multiprocess servers later in the chapter.

20.6.11 Closing a Socket

When a socket is no longer needed, it should be closed so that its descriptor and associ-
ated kernel resources may be reused. The close() or shutdown() system calls may be
used to close a socket. The close() system call closes the socket completely, whereas the

Server
process

Client
process

connect ()

Client-side (active)
socket executes

connect ()

accept ()listen ()

1 3

Passive
socket

New socket
created by
accept ()

Virtual
connection

Full-association established
between clent and server

through the rendezvous of
connect () and accept ()

2

4

FIGURE 20.13 View of the passive socket and virtual connection between client and server sides.

System Programming III    ◾    911

shutdown() call may be used to close a socket for input (read) only, output (write) only,
or both input and output.

Here is a brief description of the shutdown() system call.

#include <sys/types.h>
#include <sys/socket.h>
int shutdown(int s, int how);

Success: 0
Failure: -1 and kernel variable errno set to indicate the type of error

Table 20.20 shows the different values for the how parameter and its effect on the
socket s.

The shutdown() call is used when a process has completed either input or output, but
not both. For example, a client process can close its socket for output after sending its last
request to the server process. The server process may close its socket for both input and
output after it has sent its response to the last client request it has received. Finally, the cli-
ent process closes the socket for input after receiving the response to its last request.

20.6.12 Putting it All Together: A Simple Connection-
Oriented Client–Server Software

We now put together the code snippets shown for the various system calls and build sim-
ple connection-oriented client–server software. This service is similar to the well-known
ECHO service, except that the server process does not run at the well-known port 7, and
terminates after serving one client request.

20.6.12.1 Design of a Server Process
In the design of our code for the client and server processes, we write some generic functions
that may be used in the TCP and UDP client and server processes. The server processes we
discuss in this section run with two command line arguments, the transport-level protocol
for which the service is offered (tcp, udp, etc.) and the protocol port at which the service
is offered. Thus, the syntax for the execution of a server process is shown next.

server-name transport-protocol protocol-port

If transport-protocol or protocol-port is invalid, the program displays an
error message and terminates.

TABLE 20.20 Possible Values of the how Parameter and Its Effect on Socket s

Value of how Effect on Socket s

SHUT_RD No input (i.e., read) operation may be performed on socket s
SHUT_WR No output (i.e., write) operation maybe performed socket s
SHUT_RDWR No I/O may be performed on socket s

912 ◾ UNIX: The Textbook, Third Edition

The first function that we will design is CreatePassiveSock(). It takes three argu-
ments: a transport protocol, a protocol port, and the queue length for the passive socket.
The protocol and port are passed to the server process as command line arguments. The
server supports only TCP and UDP as transport-level protocols. It creates a socket for
the type of communication for the given protocol, binds a name to the socket, and puts the
socket in passive mode if it is a TCP socket. Finally, it returns the descriptor for the socket
as its return value.

As discussed earlier in Section 20.6.7, the wild card IP address INADDR _ ANY makes it
possible for the server to accept connection requests from clients at any of the IP addresses
of a multihomed host. Note that we use the strtol() library call to convert a port num-
ber string to an integer and make sure to exit if a string of nondigits is passed as the port
number at the command line. The criticized atoi() function would not work properly
because it converts some character strings of nondigits into valid port numbers.

The second function, EchoServerTCP(), is specific to the service to be offered by the
server process. It takes an active socket created by the accept() system call as an argu-
ment, reads data from the client process, and writes it back to the client process. Normally,
we would read data from a TCP socket in a loop. However, to keep things simple, we read
client data using a single read() call. If you want to make it a production server, you must
read and write data in a loop as discussed in Section 20.6.4.

Here is the code for the server process saved in the echo_server_TCP.c file.

% cat echo_server_TCP.c
/*
Usage: Server-name Protocol Port
Here, Protocol is the transport level protocol
and Port is the procotol port number where the
service is to be offered.
*/

#include <stdio.h>
#include <string.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>

#define BUFF 256
#define QLEN 16

int main(int argc, char *argv[])
{
 int psock, asock, caddrlen;
 struct sockaddr_in caddr;

 /* Exit if program is not run with two command line
arguments. */

 if (argc != 3) {

System Programming III    ◾    913

 printf("Usage: server protocol port\n");
 exit(1);
 }

 /* Create a TCP socket, bind name to it, and put it in passive
mode */

 psock = CreatePassiveSock(argv[1], argv[2], QLEN);

 caddrlen = sizeof(caddr);
 while (1) {
 /* Accept actual connection from the client */
 if ((asock = accept(psock, (struct sockaddr *)&caddr,

&caddrlen)) == -1) {
 perror("accept failed");
 exit(1);
 }

 /* TCP echo service code */
 EchoServerTCP(asock);

 /* Close active socket */
 close(asock);
 } /* while */
}

/* Create a TCP or UDP socket, bind a name to it, and put it in */
/* passive mode if it is a TCP socket. */
/* 'protocol' is transport layer protocol ("tcp", "udp", etc). */
/* 'portptr' is pointer to port number as a character string. */
/* 'qlen' is the queue length associated with the passive socket. */
int CreatePassiveSock(char *protocol, char *portstr, int qlen)
{
 int s, port, type, saddrlen;
 char *endptr;
 struct sockaddr_in saddr;

 /* Convert portstr to port number as integer. Display */
 /* error message and exit if portstr is not a number. */
 port = (int) strtol(portstr, &endptr, 10);
 if (*endptr) {
 printf("\nPlease specify a positive integer for port.\n");
 exit(1);
 }

 /* Initialize socket structure */
 saddrlen = sizeof(saddr);
 memset(&saddr, 0, saddrlen);
 saddr.sin_family = AF_INET;
 saddr.sin_addr.s_addr = INADDR_ANY;

914 ◾ UNIX: The Textbook, Third Edition

 saddr.sin_port = htons(port);

 if (strcmp("tcp", protocol) == 0)
 type = SOCK_STREAM;
 else if (strcmp("udp", protocol) == 0)
 type = SOCK_DGRAM;
 else {
 printf("Unsupported protocol\n");
 exit(1);
 }

 /* Create a TCP or UDP socket for IPv4 */
 if ((s = socket(PF_INET, type, 0)) == -1) {
 perror("socket call failed");
 exit(1);
 }

 /* Bind address to socket */
 if (bind(s, (struct sockaddr *)&saddr, saddrlen) == -1) {
 perror("bind failed");
 exit(1);
 }

 /* If it is a TCP socket, put it in passive mode, */
 /* i.e., ready to listen for incoming connection */
 if (type == SOCK_STREAM) {
 if (listen(s, qlen) == -1) {
 perror("listen failed");
 exit(1);
 }
 }

 /* Return the TCP passive or UDP socket with a */
 /* name bound to it. */
 return s;
}

/* Provide echo service to a client. 'sock' is the */
/* active socket connected to the client-side socket. */
void EchoServerTCP(int sock)
{
 int nr, nw;
 char buf[BUFF];

 /* Communicate with client: read and write back */
 memset(buf, 0, BUFF);
 if ((nr = read(sock, buf, BUFF-1)) == -1) {
 perror ("socket read error");
 exit(1);

System Programming III    ◾    915

 }

 /* Write back (echo) the same data to client */
 if ((nw = write(sock, buf, nr)) == -1) {
 perror("socket write error");
 exit(1);
 }
}
%

First, the program makes sure that it has been run with the correct number of argu-
ments. Second, it verifies that the second argument, port _ number, is a number. It then
calls the CreatePassiveSock() function to create a passive socket in the case of the
TCP protocol. Finally, it starts an infinite loop and blocks on the accept() call. As soon
a client request arrives and has been accepted, an active socket is created with its descrip-
tor in asock. The program then calls EchoServerTCP() to service the client request,
passing it the active socket’s descriptor as an argument. This function serves the client and
returns. On return from this function, the program closes the active socket and blocks on
accept() again, waiting for the next connection request.

Here is the compilation and a sample run of the client–server model. On a Solaris
machine, you would use gcc –w –lsocket echo _ server _ TCP.c -o tcpechos
to create the executable file. Note that in our sample run, we offer the TCP ECHO ser-
vice at port 6001. The output of the netstat –a | head command shows our server
running on port 6001. The –a option is used to also show the states of sockets associated
with all server processes. Since we have not yet written the code for the client process
corresponding to this server, we test it with a telnet client. The telnet client sends the
text entered by the user from the keyboard (shown in boldface) to the server process,
the server process receives it, sends it back to the telnet client, deallocates the active
socket, and goes back to wait for another client’s connection request. The telnet client
receives the text from the server process, displays it on the screen, and terminates. You
can use the loopback address (127.0.0.1) with the telnet command instead of using
the IP address of the host (202.147.169.196), because the client and server processes
run on the same host. The last ps command is used to show that after serving a client,
the server continues to run, as expected. The kill command is used to terminate the
server process.

% gcc46 echo_server_TCP.c -w -o tcpechos
% ./tcpechos tcp 6001 &
[1] 33690
% ps
 PID TT STAT TIME COMMAND
 8437 1 Ss 0:01.11 -csh (csh)
33690 1 S 0:00.00 ./tcpechos tcp 6001
33691 1 R+ 0:00.01 ps
% netstat -a | head

916 ◾ UNIX: The Textbook, Third Edition

Active Internet connections (including servers)
Proto Recv-Q Send-Q Local Address Foreign Address (state)
tcp4 0 0 *.6001 *.* LISTEN
tcp4 0 0 202.147.169.196.ssh 39.59.72.116.60434
 ESTABLISHED
tcp4 0 0 *.ssh *.* LISTEN
[output truncated]
% telnet 202.147.169.196 6001
Trying 202.147.169.196...
Connected to 202.147.169.196.
Escape character is '^]'.
Hello, world!
Hello, world!
Connection closed by foreign host.
% ps
 PID TT STAT TIME COMMAND
 8437 1 Ss 0:01.13 -csh (csh)
33690 1 S 0:00.00 ./tcpechos tcp 6001
33725 1 R+ 0:00.01 ps
% kill -9 33690
%

EXERCISE 20.10

Repeat this session on your UNIX system to verify that it works as expected.

20.6.12.2 Design of a Client Process
The client processes that we discuss in this chapter run with three command line argu-
ments, the IP address in DDN or domain name of the server process, the protocol port at
which the service is offered, and the transport-level protocol for which the service is offered
(tcp, udp, etc.). Thus, the syntax for the execution of a client process is shown next.

client-name ip-address (or domain name) protocol-port
 transport-protocol

If any of the command line arguments is invalid, the program displays an error message
and terminates.

The first function that we design for the client software is CreateConnectedSock(),
which takes the three arguments that you pass to the client process as command line
arguments. It converts the port number from a string to an integer using the strtol()
library call and initializes the address variable for the server process. It then creates
a TCP or UDP socket, depending on the value of the transport-level protocol. Next,
it establishes a connection with the server-side socket using the connect() system
call and returns the socket descriptor. As has been discussed earlier, in the case of
the UDP client–server software, no connection is established between the client- and

System Programming III    ◾    917

server-side processes. However, the server’s address is stored in the client-side socket’s
data structure. This allows the client to communicate with the server process using
the read() and write() system calls, instead of the sendto() and recvfrom()
system calls.

The second function, EchoClientTCP(), handles the client side of the ECHO service.
It takes a connected socket descriptor at the client side as an argument, prompts the user
for input from the keyboard, writes the user input to the server process, reads the server’s
response (which is the client-side data sent back), displays it on the screen, and returns. As
stated earlier, normally, we would read and write data from and to a TCP socket in a loop.
However, to keep things simple for this rather trivial service, we do I/O with the socket
using single read() and write() calls. If you want to make it part of a production cli-
ent–server software, you must read and write data in loops as discussed in Section 20.6.4.
Here is the code for the function.

Here is the code for the server process saved in the echo_client_TCP.c file. After making
sure that the client program is run with the requisite number of command line arguments,
it calls the CreateConnectedSock() function, which returns the descriptor for the
appropriate socket connected to the server-side socket. It then calls the EchoClientTCP()
function to perform the client-side functionality of the ECHO service. At the end, it deal-
locates the connected socket and returns.

% cat echo_client_TCP.c
#include <netdb.h>
#include <stdio.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>

#define BUFF 256

int main(int argc, char *argv[])
{
 int csock; /* Descriptor for connected socket */

 if (argc != 4) {
 printf("Usage: %s hostname port protocol\n", argv[0]);
 exit(0);
 }

 csock = CreateConnectedSock(argv[1], argv[2], argv[3]);

 /* Perform client-side echo using csock, the connected socket */
 EchoClientTCP(csock);

 /* Deallocate socket and return */
 close(csock);
 return 0;
}

918 ◾ UNIX: The Textbook, Third Edition

/* Create a TCP or UDP socket, based on the third command line */
/* argument. Connect the socket to the server whose name (IP */
/* address and port number) is passed as command line arguments. */
/* Return the descriptor of the connected socket. In case of the */
/* UDP socket is not connected but the address of the remote */
/* socket is stored in the local socket's data structure. This */
/* allows us to communicate with the server using the read() */
/* and write() system calls, instead of recvfrom() and sendto(). */
int CreateConnectedSock(char *ip, char *portstr, char *protocol)
{
 int s, port, type, saddrlen;
 char *endptr;
 struct sockaddr_in saddr;
 struct hostent *server;

 /* Convert portstr to port number as integer. Display */
 /* error message and exit if portstr is not a number. */
 port = (int) strtol(portstr, &endptr, 10);
 if (*endptr) {
 printf("\nPlease specify a positive integer for port.\n");
 exit(1);
 }

 saddrlen = sizeof(saddr);
 memset(&saddr, 0, saddrlen);
 saddr.sin_family = AF_INET;
 saddr.sin_port = htons(port);
 if (server = gethostbyname(ip))
 memcpy(&saddr.sin_addr.s_addr, server->h_addr,

server->h_length);
 else
 if (!(inet_pton(AF_INET, ip, saddr.sin_addr))) {
 printf("No such host\n");
 exit(1);
 }

 if (strcmp("tcp", protocol) == 0)
 type = SOCK_STREAM;
 else if (strcmp("udp", protocol) == 0)
 type = SOCK_DGRAM;
 else {
 printf("Unsupported protocol\n");
 exit(1);
 }

 /* Create a TCP or UDP socket for IPv4 */
 if ((s = socket(PF_INET, type, 0)) == -1) {
 perror("socket call failed");

System Programming III    ◾    919

 exit(1);
 }

 /* Send connection request to the server process */
 if (connect(s, &saddr, saddrlen) == -1) {
 perror("connect failed");
 exit(1);
 }
 return s;
}

/* Client side of the echo service. 'sock' is the */
/* socket connected to the server-side socket. */
void EchoClientTCP(int sock)
{
 int n;
 char buf[BUFF];

 /* Get input from the user */
 memset(buf, 0, BUFF);
 printf("Enter text for server : ");
 fgets(buf, BUFF-1, stdin);

 /* Send message to server */
 if ((n = write(sock, buf, strlen(buf))) == -1) {
 perror("socket write error");
 exit(1);
 }

 /* Rread server's response */
 memset(buf, 0, BUFF);
 if ((n = read(sock, buf, BUFF-1)) == -1) {
 perror ("socket read failed");
 exit(1);
 }

 /* Display server's response */
 printf("Text from server : %s", buf);
}
%

In the following session, we show the compilation of the client software and the running
of the executable codes for the server and client processes. The client–server software runs
as expected. Again, you can use the loopback address (127.0.0.1) with the client command
instead of using the IP address of the host (202.147.169.196), because the client and server
processes run on the same host.

% gcc46 echo_client_TCP.c -w -o tcpechoc
% ./tcpechos tcp 6001 &

920 ◾ UNIX: The Textbook, Third Edition

[1] 27230
% ps
 PID TT STAT TIME COMMAND
 8437 1 Ss 0:00.74 -csh (csh)
27230 1 S 0:00.00 ./tcpechos tcp 6001
27237 1 R+ 0:00.01 ps
% ./tcpechoc 202.147.169.196 6001 tcp
Enter text for server : Hello, world!
Text from server : Hello, world!
% kill -9 27230
%

Because the client program uses library calls gethostbyname() and inet _
pton(), the compilation of the program on Solaris requires linking with the -lsocket
and -lnsl switches, as shown next. We also show a few sample runs of the client program.

$ gcc -lsocket -lnsl echo_client_TCP.c -w -o tcpechoc
$./tcpechoc 127.0.0.1 6001 tcp
Enter text for server : Hello, world!
Text from server : Hello, world!
$./tcpechoc 202.147.169.197 6001 tcp
Enter text for server : Hello, world!
Text from server : Hello, world!
$

EXERCISE 20.11

Repeat this session on your UNIX system to verify that it works as expected.

EXERCISE 20.12

Run the client and server processes in different windows on the same machine and on dif-
ferent machines on the Internet.

EXERCISE 20.13

Design and code the client–server model for the ECHO service using UNIX domain
sockets. Show the compilation and execution of the model on your machine.

20.7 TYPES OF SOCKET-BASED SERVERS
The type of service to be offered dictates the design of a client–server application. The core
of the client-side and server-side software is dependent on the communication between
them, as outlined in the application protocol to be implemented. Such communication,
barring a few services, is always based on a client sending a request to a server and the
server sending a response to the client request. For some applications, such interaction is

System Programming III    ◾    921

limited to one request and one response. However, for several well-known services, this
request–response session continues until the client sends some sort of “quit” request to
the server. When the server process has served a client, it is ready to accept a request from
another client. If a single server process handles a client’s requests, it is known as an inter-
active server.

Interactive servers can be connection oriented or connectionless. A connection-ori-
ented service may be triggered simply by the presence of an incoming connection, with-
out an explicit request from the client. Such a service is known as a connection-triggered
service and the corresponding server as a connection-triggered server. For example, the
well-known DAYTIME service is a connection-triggered service. A connection-oriented
service may be based on serving a single request from a client. The server for such a service
is known as a one-shot, connection-oriented server. TIME and ECHO are examples of such
well-known services.

If a connection-oriented server has to respond to several requests from a client before
moving to the next client, the iterative version of such a server will cause unnecessarily long
delays at the client side. This would result in a long average waiting time for clients and,
possibly, lost connection requests from clients if the queue associated with the server-side
passive socket overflows. This necessitates the design of servers that can handle multiple
clients simultaneously. Such servers are known as connection-oriented, concurrent servers.
These servers use slave processes to handle multiple clients simultaneously. Several well-
known services, including HTTP (WWW), FTP, SSH, and TELNET are offered through
connection-oriented, concurrent servers.

This discussion leads us to the following types of servers:

 1. Iterative connectionless

 2. Iterative connection-oriented

 a. Connection-triggered

 b. Interaction based

 3. Concurrent connectionless

 4. Concurrent connection-oriented

 a. Master–slave-based

 b. Master–slave, multiservice

In case of the connection-oriented, concurrent, master–slave model, the main server
process is known as the master server process and a process created to serve a client is
known as the slave process. The master server accepts a client request, creates a new socket,
forks the slave process, and the slave process services the client by communicating with it
using the newly created socket. The slave process may also overwrite itself with the execut-
able for the service using a call in the exec() family. The master–slave model may be
scaled to handle multiple clients simultaneously.

922 ◾ UNIX: The Textbook, Third Edition

A server may offer a service using both stream (SOCK _ STREAM) and datagram
(SOCK _ DGRAM) styles of communication. Similarly, a server may offer multiple services.
Such a server is known as a multiservice server. Lastly, a multiservice server may offer all of
the services that it offers using the stream and datagram styles of communication.

20.8 ALGORITHMS AND EXAMPLES FOR SOCKET-
BASED CLIENT–SERVER SOFTWARE

We now discuss the algorithms, system call graphs, client–server interaction sequences,
and example source code for the client–server models based on the types of servers dis-
cussed in the previous section. Note that the call graphs show the sequence of system calls
for socket-based I/O in the client and server processes. Library and/or system calls for
performing I/O with standard devices and for performing other ancillary operations,
including conversion from host to network byte order and vice versa, ASCII to integer con-
version, and translation of an IP address from the DDN to binary are not included in these
call graphs. The interaction sequences show how system calls between the client and server
processes rendezvous. The call graphs for the client and server processes are shown in solid
lines, and interaction sequences are displayed in dotted lines between the two processes.

20.8.1 Iterative Connectionless Client–Server Model

In this model, the client and server processes communicate using the connectionless style
of communication based on the UDP protocol. The server process waits for a client request,
forms a reply after receiving the request, sends the response to the client process, and goes
back to wait for the next request from the same or another client. Figures 20.14 and 20.15
show the algorithms, system call graphs, and interaction sequences for this client–server
model.

We now discuss the example of an iterative connectionless client–server model to
deliver the current time in human-readable form. In this example, we implement the well-
known TIME service, except that it is offered at an arbitrary port and not at the well-
known port 37. We discuss the source code for both the client and server processes for the
application.

Before discussing the protocol for the TIME service and the relevant source code, we
need to understand how UNIX and the Internet maintain time. UNIX maintains time

Server process Client process

1. Create a socket for SOCK_DGRAM style of
communication

2. Bind an address to the socket
3. Receive a request from a client using the

recvfrom() system call
4. Prepare a response and send it to the client

using the sendto() system call
5. Go to Step 3

1. Create a socket for SOCK_DGRAM style of
communication

2. Send a request to the server using the sendto()
system call

3. Receive server’s response using the recvfrom()
system call and process it according to the protocol
for the service

4. Close the socket
5. Exit

FIGURE 20.14 Algorithms for the client and server processes for the iterative connectionless cli-
ent–server model.

System Programming III    ◾    923

in terms of the number of seconds since the UNIX epoch; that is, midnight, January 1,
1970. The Internet, on the other hand, maintains time in terms of the number of seconds
since midnight, January 1, 1900. The number of seconds between these two baselines is
2,208,988,800 seconds. In other words, the UNIX epoch is 2,208,988,800 seconds away
from the Internet baseline. Thus, if you use a function on a UNIX machine that returns
time and you want to convert it to the Internet time, you need to add 2,208,988,800 to
it. Conversely, if you receive time from the Internet and want to process it on a UNIX
machine, you need to subtract 2,208,988,800 from it.

In the client–server model for the TIME service, the client process sends an arbitrary
request to the server process. The server process, without even deciphering the client
request, uses a function to get the current time with respect to the UNIX epoch, adds
2,208,988,800 to it, converts the resultant value (i.e., time in the Internet domain) to the
network byte order, and sends it to the client process. The client process receives it, con-
verts it from the network byte order to the host byte order, subtracts 2,208,988,800 from
it, uses a function to convert it into human-readable form and displays the time, closes its
socket, and quits. In the following and subsequent code examples, we define the symbolic
constant UNIXEPOCH as 2,208,988,800.

Here is the source code for both the client and server software, their compilation, and a
sample run. Note that we use the connect() system call in the client process. However,
because the socket descriptor specified in the call is a UDP socket, no network traffic is
therefore generated and no three-way handshake takes place between the client- and server-
side sockets. Nonetheless, the address of the remote socket is stored in the local socket’s
data structure. This allows us to use the read() and write() system calls instead of
recvfrom() and sendto() calls.

% more time_server_UDP.c
/*
Usage: Server-name Protocol Port
Here, Protocol is the transport level protocol
and Port is the procotol port number where the

socket()

Client process

sendto()

recvfrom()

close()

request

response

socket()

Server process

bind()

recvfrom()

sendto()

FIGURE 20.15 System call graphs and interaction sequences for the iterative connectionless cli-
ent–server model.

924 ◾ UNIX: The Textbook, Third Edition

service is to be offered.
*/
#include <time.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>

#define UNIXEPOCH 2208988800
#define QLEN 0
#define BUFF 256

int main(int argc, char *argv[])
{
 int s;

 /* Exit if program is not run with two command line
arguments. */

 if (argc != 3) {
 printf("Usage: server protocol port\n");
 exit(1);
 }

 /* Create a TCP socket, bind name to it, and put it in passive
mode */

 s = CreatePassiveSock(argv[1], argv[2], QLEN);

 /* Read client request and send current time to client */
 while (1) {
 /* UDP time service code */
 TimeServerUDP(s);
 }
}

int CreatePassiveSock(char *protocol, char *portstr, int qlen)
{
 /* Insert code for the function */
}

/* Provide TIME service to a client. 'sock' is the */
/* server-side socket. */
void TimeServerUDP(int sock)
{
 int n, saddrlen;
 char buf[BUFF];
 time_t current_time;
 struct sockaddr_in saddr;

 saddrlen = sizeof(saddr);
 /* Read client request and send current time to client */

System Programming III    ◾    925

 n = recvfrom(sock, buf, sizeof(buf), 0,
 struct scokaddr *) &saddr, &saddrlen);
 if (n == -1) {
 perror("recvfom failed");
 exit(1);
 }
 (void) time(¤t_time);
 current_time = htonl((u_long) (current_time + UNIXEPOCH));
 (void) sendto(sock, (char *) ¤t_time, sizeof(current_

time), 0,
 struct sockaddr *)&saddr, saddrlen);
}
% more time_client_UDP.c
#include <time.h>
#include <netdb.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>

#define UNIXEPOCH 2208988800
#define Message "Message to time sever\n"

int main(int argc, char *argv[])
{
 int csock; /* Descriptor for connected socket */

 if (argc != 4) {
 printf("Usage: %s hostname port protocol\n", argv[0]);
 exit(0);
 }

 csock = CreateConnectedSock(argv[1], argv[2], argv[3]);

 /* Perform client-side echo using csock, the connected
socket */

 TimeClientUDP(csock);

 /* Deallocate socket and return */
 close(csock);
 return 0;
}

int CreateConnectedSock(char *ip, char *portstr, char *protocol)
{
 /* Insert code for the function */
}

/* Client side of the TIME service. 'sock' is the */
/* socket "connected" to the server-side socket. */

926 ◾ UNIX: The Textbook, Third Edition

void TimeClientUDP(int sock)
{
 int n;
 time_t current_time;

 (void) write(sock, Message, strlen(Message));

 n = read(sock, (char *)¤t_time, sizeof(current_time));
 if (n < 0) {
 perror("read failed");
 exit(1);
 }
 current_time = ntohl((u_long) current_time);
 current_time = current_time - UNIXEPOCH;
 printf("%s", ctime(¤t_time));
}
%

Here are the compilation of the server and client software and a few sample runs. On a
Solaris machine, you would use the gcc –w -lsocket time _ server _ UDP.c -o
udptimes command to generate the executable code for the server program and the gcc
-w -lsocket -lnsl time _ client _ UDP.c -o udptimec command to gener-
ate the executable code for the client program. As expected, execution of the client process
with the TCP protocol failed.

% gcc46 time_server_UDP.c -w -o udptimes
% gcc46 time_client_UDP.c -w -o udptimec
% ./udptimes udp 6001 &
[1] 96361
% ps
 PID TT STAT TIME COMMAND
90518 1 Is+ 0:00.54 -csh (csh)
93596 2 Is+ 0:00.34 -csh (csh)
87939 3 Ss 0:00.79 -csh (csh)
96361 3 S 0:00.00 ./udptimes udp 6001
96362 3 R+ 0:00.01 ps
% ./udptimec 127.0.0.1 6001 udp
Sat Aug 15 18:51:13 2015
% ./udptimec 127.0.0.1 6001 tcp
connect failed: Connection refused
% kill -9 96361
%

EXERCISE 20.14

Repeat this session on your UNIX system to verify that it works as expected.

System Programming III    ◾    927

EXERCISE 20.15

Run the client and server processes on different windows on the same machine and on dif-
ferent machines on the Internet.

20.8.2 Iterative Connection-Triggered Client–Server Model

In this model, the client and server processes communicate using the connection-oriented
style of communication based on the TCP protocol. The server process waits for the con-
nection request from a client process. As soon as it receives a connection request, it forms
a reply without receiving an explicit request from the client process, sends the response
to the client process, and goes back to wait for a connection request from another client.
Figures 20.16 and 20.17 show the algorithms, system call graphs, and interaction sequences
for this client–server model.

Server process Client process

1. Create a socket for SOCK_STREAM style of communication
2. Bind an address to the socket using the bind() system call
3. Put the socket in passive mode using the listen() system

call
4. Receive a connection request from a client using the

accept() system call and communicate with the client
using the newly created active socket

5. Prepare a response and send it to the client using the
write() system call and close the active socket

6. Go to Step 4

1. Create a socket for SOCK_STREAM style of
communication

2. Send a connection request to the server
process using the connect() system call

3. Receive server’s response using the read()
system call and process it according to the
protocol

4. Close the socket
5. Exit

FIGURE 20.16 Algorithms and system call sequences for the iterative connection-triggered client–
server model.

close()

Connectio
n esta

blish
ment

�
ree-way TCP handshake

response

read()

close()

Server process

socket() socket()

bind()

listen()

accept()

write()

connect()

Client process

FIGURE 20.17 System call graphs and interaction sequences for the iterative connection-triggered
client–server model.

928 ◾ UNIX: The Textbook, Third Edition

We now discuss the example of an iterative connection-triggered client–server model to
deliver the current time in human-readable form. In this example, we implement the well-
known DAYTIME service, except that our service is offered at an arbitrary port and not at
the well-known port 13. We discuss the source code for the client and server processes for
the application.

The protocol for the client–server model for the TCP connection-triggered DAYTIME
service is very similar to the TCP TIME service, except for two differences. First, the client
process does not send any message to the server process after successfully establishing a
connection with the server process. Second, whereas in the case of the TIME service, the
current clock-tick count is converted into a human-readable form of time on the client
side, in the case of the DAYTIME service, the conversion is carried out on the server side.
The general structure of the client and server software is very similar to that of the TIME
service, except, of course, for the functions to handle the current time on both sides.

Here is the source code for the client and server software:

% cat daytime_server_TCP.c
#include <stdio.h>
#include <time.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>

#define BUFF 256
#define QLEN 5

int main(int argc, char *argv[])
{
 int psock, asock, caddrlen;
 struct sockaddr_in caddr;

 /* Exit if program is not run with two command line
arguments. */

 if (argc != 3) {
 printf("Usage: server protocol port\n");
 exit(1);
 }

 /* Create a TCP socket, bind name to it, and put it in passive
mode */

 psock = CreatePassiveSock(argv[1], argv[2], QLEN);

 caddrlen = sizeof(caddr);
 while (1) {
 /* Accept actual connection from the client */
 if ((asock = accept(psock, (struct sockaddr *)&caddr,

&caddrlen)) == -1) {
 perror("accept failed");

System Programming III    ◾    929

 exit(1);
 }

 /* The Daytime service: Send current time as string to
client */

 (void) TCPdaytime(asock);

 /* Deallocate the active socket and accept next

connection */
 close(asock);
 } /* while */
}

int CreatePassiveSock(char *protocol, char *portstr, int qlen)
{
 /* Insert code for the function */
}

/* TCPdaytime(active socket descriptor) */
int TCPdaytime(int s)
{
 int n;
 time_t current_time; /* Current time in ticks */
 char *str; /* Pointer to time string */
 char *ctime();

 /* Get the current time in terms of clock ticks from */
 /* UNIX Epoch, i.e., midnight January 1, 1970 and */
 /* save it in current_time. */
 (void) time(¤t_time);

 /* Convert current time into a humanly readable string */
 /* and return pointer to this string, saved in ptr */
 str = ctime(¤t_time);

 /* Send humanly readable time string to client process */
 if ((n = write(s, str, strlen(str))) == -1) {
 perror("write call failed");
 exit(1);
 }
 return 0;
}
% cat daytime_client_TCP.c
#include <netdb.h>
#include <stdio.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>

930 ◾ UNIX: The Textbook, Third Edition

#define BUFF 256

int main(int argc, char *argv[])
{
 int csock; /* Descriptor for connected socket */

 if (argc != 4) {
 printf("Usage: %s hostname port protocol\n", argv[0]);
 exit(0);
 }

 csock = CreateConnectedSock(argv[1], argv[2], argv[3]);

 /* Perform client-side of the DAYTIME service using csock, */
 /* the client socket connected the server-side active socket */
 DaytimeClientTCP(csock);

 /* Deallocate socket and return */
 close(csock);
 return 0;
}

int CreateConnectedSock(char *ip, char *portstr, char *protocol)
{
 /* Insert code for the function */
}

/* Client side of the DAYTIME service. 'sock' is the */
/* client socket connected to serve's active socket. */
void DaytimeClientTCP(int sock)
{
 int n;
 char buf[BUFF];

 /* Read time string from server and display on screen */
 while ((n = read(sock, buf, BUFF)) > 0)
 write (1, buf, n);
}

Here is the compilation and a sample run of the DAYTIME client–server software. As
explained previously, on a Solaris machine you would use the gcc –w -lsocket day-
time _ server _ TCP.c -o udpdaytimes command to generate the executable
code for the server program and the gcc -w -lsocket -lnsl daytime _ cli-
ent _ TCP.c -o udpdaytimec command to generate the executable code for the client
program.

% gcc46 daytime_server_TCP.c -w -o tcpdaytimes
% gcc46 daytime_client_TCP.c -w -o tcpdaytimec

System Programming III    ◾    931

% ./tcpdaytimes tcp 6001 &
[1] 6566

% ps
 PID TT STAT TIME COMMAND
1291 1 Ss 0:00.66 -csh (csh)
6566 1 S 0:00.00 ./tcpdaytimes tcp 6001
6573 1 R+ 0:00.01 ps
2963 4 Is+ 0:00.42 -csh (csh)
% ./tcpdaytimec 127.0.0.1 6001 tcp
Sat Aug 15 20:58:22 2015
% kill -9 6566
%

EXERCISE 20.16

Repeat this session on your UNIX system to verify that it works as expected.

EXERCISE 20.17

Run the client and server processes in different windows on the same machine and on dif-
ferent machines on the Internet.

We have tried to structure our software from the three applications that we have discussed
so far. However, we still see code clones in the client and server software, particularly in
the CreateConnectedSock() and CreatePassiveSock() functions. This means
that we can further improve the design of our client–server software by using refactoring
and making functions out of these clones. We can further improve our design by using
additional abstractions. These functions can be archived in a library on top of the existing
libraries for network programming and system calls. We leave this work as an exercise for
the reader.

20.8.3 Iterative One-Shot Connection-Oriented Client–Server Model

In this model, the client and server processes communicate using the connection-oriented
style of communication based on the TCP protocol. The server process waits for the con-
nection request from a client process, accepts a connection request from the client, forms
a response after receiving an explicit request from the client process, sends the response
to the client process, and goes back to wait for a connection request from another client.
Figures 20.18 and 20.19 show the algorithms, system call graphs, and interaction sequences
for this client–server model.

We now discuss the example of an iterative one-shot connection-oriented client–server
model for the ECHO service. Our model implements the well-known ECHO service, except
that it is offered at an arbitrary port and not at the well-known port 7. In this model for
the ECHO service, the client process sends a connection request to the server process. The
server process accepts the connection request, receives some text from the client process,
sends back the same text to the client process, closes the active socket, and goes back to

932 ◾ UNIX: The Textbook, Third Edition

accept another client request. The client process receives the text from the server process,
displays it on the screen, closes its socket, and quits.

EXERCISE 20.18

Write the code for the iterative one-shot connection-oriented client–server model for the
ECHO service. Compile and run the implementation on your UNIX system to verify that

Server process Client process

1. Create a socket for SOCK_STREAM style of
communication

2. Bind an address to the socket using the bind()
system call

3. Put the socket in passive mode using the listen()
system call

4. Receive a connection request from a client using the
accept() system call and communicate with the
client using the newly created active socket

5. Receive an explicit request from a client process
6. Prepare a response and send it to the client using the

write() system call and close the active socket
7. Go to Step 4

1. Create a socket for SOCK_STREAM style of
communication

2. Send a connection request to the server process using
the connect() system call

3. Send a request to the server process using the
write() system call

4. Receive server’s response using the read() system call
and process it according to the protocol

5. Close the socket
6. Exit

FIGURE 20.18 Algorithms and system call sequences for the iterative one-shot connection-ori-
ented client–server model.

read()

close()

Connectio
n esta

blish
ment

�
ree-way TCP handshake

response

request

write()

close()

Server process

socket() socket()

bind()

listen()

accept()

write()

read()

connect()

Client process

FIGURE 20.19 System call graphs and interaction sequences for the iterative one-shot connection-
triggered client–server model.

System Programming III    ◾    933

it works as expected. Show compiler commands for generating the executable codes for the
client and server programs for both PC-BSD and Solaris machines.

EXERCISE 20.19

Run the client and server processes in different windows on the same machine and on dif-
ferent machines on the Internet.

20.8.4 Iterative Connection-Oriented Client–Server Model

In this model, the client and server processes communicate using the connection-oriented
style of communication based on the TCP protocol. The server process waits for the connec-
tion request from a client process, accepts the connection request from a client process, and
waits for a service request from the client. After receiving a request from the client, the server
process forms a response, sends it to the client process, and waits for another request from the
same client. The client process receives the response, processes it according to the underly-
ing algorithm, and sends the next request to the server process. This interaction between the
client and server processes continues until the client sends some sort of “quit” request to the
server process. On receiving this request, the server and client processes disconnect grace-
fully by closing their respective sockets in an orderly manner. Figures 20.20 and 20.21 show
the algorithms, system call graphs, and interactions sequences for this client–server model.

We now discuss an example of an iterative connection-oriented client–server model
that deals with three requests from a client: “echo”, “daytime”, and “quit”. A client process
may repeat each of these requests multiple times. The client takes requests from the user,
accepts a request only if it is one of these three, sends it to the server process, and waits
for the server response. For any other request, the client process displays an error mes-
sage on the screen and prompts the user for another request. If the user input is “echo”,

Server process Client process

1. Create a socket for SOCK_STREAM style of
communication

2. Bind an address to the socket using the bind()
system call

3. Put the socket in passive mode using the listen()
system call

4. Receive a connection request from a client using the
accept() system call and communicate with the
client using the newly created active socket

5. Receive an explicit request from the client process
using the read() system call

6. If the received request is some kind of “quit”, then go
to Step 9

7. Prepare a response and send it to the client process
using the write() system call

8. Go to Step 5
9. Close the active socket created by the accept()

system call and go to Step 4

1. Create a socket for SOCK_STREAM style of
communication

2. Send a connection request to the server process using
the connect() system call

3. Send an explicit request to the server process using
the write() system call

4. Receive server’s response using the read() system
call and process it according to the service protocol

5. If the request sent was not some sort of “quit”, then go
to Step 3

6. Close the socket
7. Exit

FIGURE 20.20 Algorithms and system call sequences for the iterative connection-oriented client–
server model.

934 ◾ UNIX: The Textbook, Third Edition

the model implements the well-known ECHO service. If the user input is “daytime”, the
model implements the DAYTIME service. If the user input is “quit”, the client and server
processes disconnect gracefully. The service is offered at an arbitrary port.

EXERCISE 20.20

Write the code for the iterative connection-oriented client–server model for the ECHO
service. Compile and run the implementation on your UNIX system to verify that it works
as expected.

EXERCISE 20.21

Run the client and server processes in different windows on the same machine and on dif-
ferent machines on the Internet.

20.8.5 Concurrent Connectionless Client–Server Model

In this model, the client and server processes communicate using the connectionless
style of communication based on the UDP protocol. The master server process waits for
a request from a client process, creates a slave process, hands over the client request and
socket to the slave process, and goes back to receive another client request. The slave pro-
cess forms a response according to the application protocol, sends it to the client process,
and exits. Figures 20.22 and 20.23 show the algorithms, system call graphs, and interaction

read()

close()

Connectio
n esta

blish
ment

�
ree-way TCP handshake

response

request

write()

close()

Server process

socket() socket()

bind()

listen()

accept()

write()

read()

connect()

Client process

FIGURE 20.21 System call sequences and interaction sequences for the general iterative
connection-oriented client–server model.

System Programming III    ◾    935

sequences for this client–server model. Note that the algorithm for the client process is the
same as for an iterative connectionless server discussed in Section 20.7.1.

20.8.6 Concurrent Connection-Oriented Client–Server Model

In this model, the client and server processes communicate using the connection-oriented
style of communication based on the TCP protocol. The server process waits for the con-
nection request from a client process, accepts the connection request, creates a slave process,
hands over the connection and socket to the slave process, and goes back to accept another
connection request. The slave process receives an explicit request form the connected client
process, forms a response according to the application protocol, sends the response to the
client process, and waits for the next request from the client process. This request–response
session continues until the client sends a “quit” request of some sort. On receiving the
“quit” request, the slave and client processes disconnect gracefully and close their sockets.

Server process

Master process
1. Create a socket for SOCK_DGRAM style of communication
2. Bind an address to the socket using the bind() system call
3. Receive a request from a client using the recvfrom() system call and create a slave

process using the fork() system call to handle the client request
4. Go to Step 3

Slave process
1. Receive the client request as well as access to the socket
2. Prepare a response according to the application protocol and send it to the client

process using the sendto() system call
3. Exit after serving a request

FIGURE 20.22 Algorithm for the concurrent connectionless server process.

Slave process

Master
server

Server process Client process

socket()

bind()

recvfrom()

fork()

socket()

sendto()

sendto ()

exit ()

recvfrom()

close()

re
sp

on
se

request

FIGURE 20.23 System call graphs and interaction sequences for the concurrent connectionless
client–server model.

936 ◾ UNIX: The Textbook, Third Edition

Figures 20.24 and 20.25 show the algorithms, system call graphs, and interaction sequences
for this client–server model. Note that the algorithm for the client process is the same as for
an iterative connectionless server as discussed in Sections 20.6.12 and 20.8.1.

Figure 20.26 shows the pictorial view of the concurrent connection-oriented client–
server model with k clients being handled by k slave processes and the master process
waiting to accept a connection request from another client process.

Server process

Master process
1. Create a socket for SOCK_STREAM style of communication
2. Bind an address to the socket using the bind() system call
3. Put the socket in passive mode using the listen() system call
4. Receive a connection request from a client using the accept() system call and create a slave process using

the fork() system call to handle the request.
5. Go to Step 4

Slave process
1. Receive the socket that was created by the accept() system call and is connected to the client-side socket
2. Receive a request from the client using the read() system call
3. If the received request is some kind of “quit”, then go to Step 5
4. Prepare a response according to the application protocol, send it to the client using the write() system call,

and go to Step 2
5. Close the active socket created by the accept() system call, disconnect with the client process gracefully,

and exit

FIGURE 20.24 Algorithm for the concurrent connection-oriented server process.

socket()

bind()

listen()

accept()

fork()

read() re
sp

on
se

re
qu

es
t

�ree-way TCP handshake

Connection establish
ment

write()

close()

exit()

Master
server

Slave process

socket()

connect()

write()

read()

close()

exit()

Server process Client process

FIGURE 20.25 System call graphs and interaction sequences for the concurrent connection-
oriented client–server model using slave processes.

System Programming III    ◾    937

Here is the source code for the concurrent connection-oriented server software based on
slave processes for the DAYTIME service. We have replaced the call to the TCPdaytime()
function in the while() loop to a piece of code for creating a child (slave) process that
closes the passive socket and calls the TCPdaytime() function to handle the client
request. The parent process closes the active socket and goes back to accept the next con-
nection from a client process.

% cat daytime_concurrent_server_TCP.c
#include <stdio.h>
#include <time.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>

#define BUFF 256
#define PORT 6001
#define QLEN 5

int main(int argc, char *argv[])
{
 int asock, psock, pid, caddrlen;
 struct sockaddr_in caddr;

 /* Exit if program is not run with two command line
arguments. */

 if (argc != 3) {
 printf("Usage: server protocol port\n");
 exit(1);

Slave processes
Master
server

fork()

Active sockets
Passive socket

• • •

FIGURE 20.26 Connection-oriented concurrent server.

938 ◾ UNIX: The Textbook, Third Edition

 }

 /* Create a TCP socket, bind name to it, and put it in passive
mode */

 psock = CreatePassiveSock(argv[1], argv[2], QLEN);

 while (1) {
 /* Accept actual connection from the client */
 if ((asock = accept(psock, (struct sockaddr *)&caddr,

&caddrlen)) == -1) {
 perror("accept failed");
 exit(1);
 }
 /* Create a slave process and have it server the client */
 /* The parent process closes the newly created active */
 /* socket and goes back to accept the next client request */
 pid = fork();
 if (pid == -1) {
 perror("fork failed");
 exit(1);
 }
 if (pid == 0) { /* Child process */
 close(psock); /* Deallocate passive socket */
 /* The Daytime service: Send current time as string */
 /* to client using active socket */
 (void) TCPdaytime(asock);
 exit(0);
 }
 else /* Parent process: Deallocate the active socket */
 close(asock);
 } /* while */
}

int CreatePassiveSock(char *protocol, char *portstr, int qlen)
{
 /* Insert code for the function */
}

int TCPdaytime(int s)
{
 /* Insert code for the function */
}

Here is the compilation of the source, the running of the resultant executable code,
and its testing with the DAYTIME client developed in Section 20.8.2. The outputs of the
various commands are self-explanatory. The session shows that you can use the loopback

System Programming III    ◾    939

address with the client command instead of explicitly specifying the IP address of the host
on which the client and server processes run.

% gcc46 daytime_concurrent_server_TCP.c -w -o tcpdaytimecons
% ./tcpdaytimecons tcp 6001 &
[1] 18738
% ./tcpdaytimec 202.147.169.196 6001 tcp
Sat Aug 15 22:56:46 2015
% ps
 PID TT STAT TIME COMMAND
 1291 1 Is+ 0:00.73 -csh (csh)
16351 2 Ss 0:00.46 -csh (csh)
18738 2 S 0:00.00 ./tcpdaytimecons tcp 6001
18822 2 Z 0:00.00 <defunct>
18827 2 R+ 0:00.01 ps
16380 3 Is+ 0:00.16 -csh (csh)
% ./tcpdaytimec 127.0.0.1 6001 tcp
Sat Aug 15 22:56:55 2015
%
 PID TT STAT TIME COMMAND
 1291 1 Is+ 0:00.73 -csh (csh)
16351 2 Ss 0:00.47 -csh (csh)
18738 2 S 0:00.00 ./tcpdaytimecons tcp 6001
18822 2 Z 0:00.00 <defunct>
18840 2 Z 0:00.00 <defunct>
18849 2 R+ 0:00.01 ps
16380 3 Is+ 0:00.16 -csh (csh)
% kill -9 18738 18822 18840
%

EXERCISE 20.22

Repeat this session on your UNIX system to verify that it works as expected. Show the
compiler commands to generate the executable codes for the client and server programs
on a Solaris machine.

EXERCISE 20.23

Run the client and server processes in different windows on the same machine and on
different machines on the Internet. Verify working of the concurrent server with multiple
simultaneous clients.

Note that the outputs of the ps commands show that the child/slave processes become
zombies when they terminate. This happens because its parent is not waiting when it termi-
nates. It seems that an obvious solution for this problem is to use the wait() (or a variant
of this call) before the close(sock) statement in the parent’s code. However, this will

940 ◾ UNIX: The Textbook, Third Edition

make the parent process wait until the child (slave) process terminates, thereby making
the model iterative. The real solution for the problem is to let the child become a zombie
and then immediately remove it from the system. This can be achieved via the use of signal
handling, as discussed in Section 20.5. Recall that when a child process terminates, the
UNIX kernel generates a SIGCHLD signal. You can insert a few lines of code in the server
process to intercept this signal and run the wait3() system call to remove the relevant
zombie from the system. We discuss this issue in detail in Section 21.12. For now, you can
either remove zombies manually by using the kill command or use the code segments
given in Section 21.12 to clean up a zombie process as it is created. For now, we use the
kill command to remove zombie processes from the system.

The structure of the server process in this model may be extended by having each slave
process overwrite itself with another executable file using a call from the exec() family.
The executable file corresponds to the service to be provided for a given client request.
A pictorial view of such a server process is shown in Figure 20.27.

20.9 SYNCHRONOUS VERSUS ASYNCHRONOUS
I/O: THE SELECT() SYSTEM CALL

UNIX system calls such as read(), write(), recvfrom(), sendto(), and accept()
block if the socket descriptors associated with them are not ready to perform input, output,
or connection establishment [in the case of accept()]. As soon as the socket descriptors
associated with any of these calls are ready for I/O or connection establishment, the calls
unblock and perform their designated operation.

The I/O based on signals also works in a similar manner. As soon as a signal occurs,
the associated signal-handling code executes. The I/O based on blocking calls and signals
is known as synchronous I/O. Both work similarly to interrupt handling in a computer
system.

fork()

exec()

executable
code for the

service

Active sockets
Passive socket

executable
code for the

service

Slave processesMaster
server

• • •

FIGURE 20.27 Concurrent connection-oriented server process using fork() and exec().

System Programming III    ◾    941

There are times when you need to perform nonblocking, asynchronous I/O and
connection establishment. You may perform asynchronous I/O using the select() sys-
tem call. Before we discuss the algorithm for the connection-oriented concurrent server
that works based on the principles of asynchronous I/O, we need to discuss the select()
system call. It is a powerful system call that, depending on the value of one of its param-
eters, allows you to perform synchronous as well as asynchronous I/O.

The select() system call deals with descriptor sets. A descriptor set is a bit mask in
which a bit represents a descriptor and its value indicates the state of the corresponding
descriptor. The size of the bit mask is defined in /usr/include/sys/select.h as FD _ SETSIZE.
This value is usually at least as large as the number of descriptors in the PPFDT on the sys-
tem. On our BSD and Solaris systems, it is defined as unsigned 1024. Descriptor numbers
and bit numbers start with 0. Thus, bit k in a descriptor set represents descriptor number
k, as shown in Figure 20.28.

The select() call takes three descriptor sets as arguments, one each for reading, writ-
ing, and exceptions. This call is normally used for socket I/O. Thus, the descriptors in
the sets are usually socket descriptors. The call monitors the descriptors in these sets for
input (reading), output (writing), and exceptions. If a bit in a descriptor set has a value of 0
(i.e., not set), it means that the corresponding descriptor is not ready for reading, writing,
or exception, depending on which descriptor set in the select() call we are referring to.
If a bit has a value of 1 (i.e., it is set), this means that the corresponding descriptor is ready
for the purpose for which it is intended—input, output, or exception.

Here is a brief description of the select() system call.

#include <sys/select.h>
int select(int nfds, fd_set *readfds, fd_set *writefds,

fd_set *exceptfds, struct timeval *timeout);
Success: Number of ready descriptors out of those specified in the descriptor sets;
 0 if time limit expires and no descriptor is ready
Failure: -1 and kernel variable errno set to indicate the type of error; descriptor sets remain

unmodified

Here, nfds is the number of file descriptors in the descriptor sets that need to be moni-
tored, readfds is the read descriptor set, writefds is the set of descriptors on which
the write operation is possible, exceptfds is the set of descriptors on which exceptions
are possible, and timeout is the time for which the select() call waits for the selection
process to complete. If you are not interested in one or more items in the descriptor set, you
may specify them as null pointers. The fd _ set type is defined as unsigned long in
/usr/include/sys/select.h. Thus, descriptor sets are stored as bit fields in arrays of unsigned

1023 … k … 3 2 1 0

FIGURE 20.28 Pictorial view of a descriptor set.

942 ◾ UNIX: The Textbook, Third Edition

long. As stated in Table 20.2, the following macros are used to manipulate descriptor sets:
FD _ ZERO(), FD _ SET(), FD _ CLR(), and FD _ ISSET(). Table 20.21 gives the syn-
tax and semantics of these macros. The behavior of these macros is undefined if fd is
greater than FD _ SETSIZE or less than 0.

The amount of time that select() monitors the descriptor sets is dependent on the
value of the timeout argument, as shown in Table 20.22.

The timeval structure is defined in the /usr/include/sys/time.h file as shown next.
Thus, a variable of the timeval structure may be used to specify time with microsecond
granularity.

struct timeval {
 time_t tv_sec; /* seconds */
 suseconds_t tv_usec; /* microseconds */
};

The select() call may fail for several reasons. Table 20.23 lists some of the reasons
why the accept() call may fail.

The following program illustrates the semantics of the select() system call.
Figure 20.29 shows the algorithm for a single-process connection-oriented concurrent

server using the select() system call. Note that this server serves one client request at a
time and then moves to serve the request from the next client.

We now discuss the single-process connectionless concurrent server for the TIME and
ECHO services using the select() system call. The following session contains the code

TABLE 20.21 Macros for Manipulating Descriptor Sets

Macro Purpose

FD_ZERO(&fdset) Initializes the fdset descriptor set to the null set (i.e., all zeros)
FD_SET(fd, &fdset) Includes the given descriptor in the set (i.e., sets the relevant numbered bit

to 1)
FD_CLR(fd, &fdset) Excludes the given descriptor from the set (i.e., sets the relevant numbered

bit to 0)
FD_ISSET(fd, &fdset) Tests if fd in fdset has a value of 0 or 1. Returns 0 if fd is not set in

fdset, nonzero otherwise. It is usually used after the select() call has
returned to see if the given descriptor is ready for I/O or exception

TABLE 20.22 The Value of the timeout Argument and Its Effect

Value of timeout Effect

Not a null pointer The value in the variable of struct timeval type specifies the
maximum time for the selection process to complete

A null pointer The select() call blocks indefinitely until a descriptor in a descriptor
set is ready for the activity it is designated for (input, output, or
exception)

A pointer to a zero-valued
timeval structure

The select() call continuously polls the descriptors in the descriptor
sets to determine if any is ready

System Programming III    ◾    943

for the server, its compilation, execution, and testing using the TIME and ECHO client
discussed in Section 20.8.2.

% more select_server.c
#include <time.h>
#include <netdb.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <sys/select.h>

#define UNIXEPOCH 2208988800
#define TIME "8001"
#define ECHO "8002"
#define BUFF 256
#define QLEN 5

TABLE 20.23 Reasons for the select() Call to Fail

Reason for Failure Value of errno

One of the descriptor sets contains an invalid descriptor EBADF

One (or more) of the following arguments points to an illegal address: readfds,
writefds, exceptfds, or timeout

EFAULT

A signal occurred before the time limit expired and before any of the descriptors
became ready

EINTR

timeout is invalid (i.e., one of the fields of this argument is too big or negative) EINVAL

nfds is invalid EINVAL

Server process

1. Create a socket for SOCK_STREAM style of communication.
2. Bind an address to the socket using the bind() system call.
3. Put the socket in passive mode using the listen() system call.
4. Add the socket descriptor to the set of those sockets on which I/O or exception is possible—to keep the

discussion simple, we will not deal with sockets meant to monitor exception conditions.
5. Use the select() system call to monitor and select those descriptors that are ready for I/O.
6. See which of the sockets are ready by checking the descriptors in the descriptor sets. If the passive

socket is ready, use the accept() system call to accept the connection request from a client and add
the newly created socket to the set of those on which I/O is possible.

7. If a socket other than the passive socket is ready, receive the next request from an already connected
client using the read() system call, form a response, and send it to the client using the write()
system call.

8. If the client request is to close a connection, close the connection gracefully, set the corresponding
descriptor value to 0 in the original descriptor set on which I/O was possible.

9. Set the ‘readfds’, ‘writefds’, and ‘exceptfds’ descriptor sets to the original set of descriptors on which I/O
is possible (after accommodating any changes outlined in Step 8)

10. Go to Step 5.

FIGURE 20.29 Algorithm for the single-process connection-oriented concurrent server process
using the select() system call.

944 ◾ UNIX: The Textbook, Third Edition

int main(int argc, char *argv[])
{
 int s1, s2, nfds;
 fd_set rfds;

 /* Create UDP sockets for the TIME and ECHO services at */
 /* ports 8001 and 8002, respectively, bind names to them, */
 /* and return their descriptors in s1 and s2. */
 s1 = CreatePassiveSock("udp", TIME, QLEN);
 s2 = CreatePassiveSock("udp", ECHO, QLEN);

 /* Set number of descriptors to be monitored by select */
 nfds = s2+1;

 /* Set the read descriptor set to zero */
 FD_ZERO(&rfds);

 /* Set bits for TIME and ECHO in the read descriptor set */
 FD_SET(s1, &rfds);
 FD_SET(s2, &rfds);

 while (1) {
 if (select(nfds, &rfds, NULL, NULL, NULL) == -1) {
 perror("select failed");
 exit(1);
 }
 if (FD_ISSET(s1, &rfds)) {
 /* UDP time service code */
 TimeServerUDP(s1);
 }
 if (FD_ISSET(s2, &rfds)) {
 /* UDP time service code */
 EchoServerUDP(s2);
 }
 /* Reset descriptors */
 FD_SET(s1, &rfds);
 FD_SET(s2, &rfds);
 }
}

int CreatePassiveSock(char *protocol, char *portstr, int qlen)
{
 /* Insert code for the function */
}

void TimeServerUDP(int sock)
{
 /* Insert code for the function */
}

System Programming III    ◾    945

/* Provide echo service to a UDP client. */
void EchoServerUDP(int sock)
{
 int n, caddrlen;
 char buf[BUFF];
 struct sockaddr_in caddr;

 /* Communicate with client: read and write back */
 memset(buf, 0, BUFF);
 n = recvfrom(sock, buf, sizeof(buf), 0,
 (struct sockaddr *)&caddr, &caddrlen);
 if (n == -1) {
 perror("recvfom failed");
 exit(1);
 }
 (void) sendto(sock, buf, sizeof(buf), 0,
 struct sockaddr *)&caddr, caddrlen);
}
%

The program for the server process is fairly straightforward and similar to the code
previously written in this chapter, except for the code related to the select() system
call. We create two UDP sockets, one each for the two services, and bind addresses to
them using the CreatePassiveSock() function. We then initialize the nfds vari-
able to the number of bits to be monitored in the read descriptor set, rfds, initialize
the read file descriptor set to 0, and the set bits in rfds corresponding to the two socket
descriptors. This is followed by the select() system call with 0 (i.e., NULL) values for
the write descriptor set, exception descriptor set, and timeval structure. The value of
0 for the timeval structure means that the select() call blocks indefinitely until a
descriptor becomes ready. When a client request arrives at either or both sockets, then
select() returns. Depending on the bit(s) in rfds that are set, the corresponding
client is served. After serving a client request, we reset the bits in rfds. Note that we
have written a new function, EchoServerUDP(), to serve UDP clients for the ECHO
service.

Here is a sample run of our client–server model. We test the two services by using the
UDP TIME client and the TCP ECHO client. The TCP ECHO client works for the UDP ser-
vice also, because we run a connect on the UDP socket in our code. We use the udpechoc
and udptimec clients developed in Section 20.6.12 and 20.8.1, respectively.

% gcc46 select_server.c -w -o selects
% ./selects &
[1] 67008
% ps
 PID TT STAT TIME COMMAND
59200 3 Is+ 0:00.81 -csh (csh)
59284 4 Ss 0:00.97 -csh (csh)

946 ◾ UNIX: The Textbook, Third Edition

67008 4 S 0:00.00 ./selects
67009 4 R+ 0:00.00 ps
% ./udptimec 202.147.169.196 8001 udp
Wed Aug 19 00:11:09 2015
% ./udptimec 127.0.0.1 8001 udp
Wed Aug 19 00:11:13 2015
% ./udpechoc 202.147.169.196 8002 udp
Enter text for server : That's all folks!
Text from server : That's all folks!
% kill -9 67008
%

EXERCISE 20.24

Repeat this session on your UNIX system to verify that it works as expected.

EXERCISE 20.25

At which port is each service offered?

EXERCISE 20.26

Run the client and server processes in different windows on the same machine and on
different machines on the Internet. Verify working of the concurrent server with multiple
simultaneous clients.

20.10 THE UNIX SUPERSERVER: INETD
When you offer a network service on a system, the corresponding daemon runs on the
system. This means that the main memory and several kernel data structures allocated to
the daemon are used. If some services are sparingly used, you can offer them through a
single server that monitors the client requests on the sockets associated with the services
and runs the corresponding server daemons only on demand. This scheme makes efficient
use of the main memory and kernel data structures. A server that offers multiple network
services is called a superserver.

In UNIX, inetd offers several basic Internet services and is known as the UNIX super-
server. It is dynamically configurable; that is, it can reconfigure itself while it runs. It exe-
cutes as a single master process, creates sockets for each of the services that it is to offer
according to the type of communication (SOCK _ STREAM, SOCK _ DGRAM, etc.) and
relevant protocol to be used (TCP, UDP, etc.), binds a name to each socket, and monitors
client requests on these sockets using the select() system call. When a client request
arrives on a socket, the master server process forks a slave (child) process, hands over the
request to it, and goes back to wait for new client requests. The slave process uses a call in
the exec() family to overlay itself with the executable code for the corresponding service.
The /etc/inetd.conf file specifies complete information about all the services that inetd

System Programming III    ◾    947

offers, one line per service, as discussed in the next subsection. Figure 20.30 shows the
basic setup for inetd as it starts running. Figure 20.31 shows the state of inetd while
it handles one UDP client for the TELNET service, two requests from TCP clients for the
ECHO service, and one TCP client each for the TIME, TELNET, and FINGER services.

As an administrator (i.e., superuser), you should offer only lightly loaded services through
this server. For example, you should offer SSH as a stand-alone service and the TELNET service
through inetd, because most users today use the SSH service and TELNET is rarely used.
When you offer a service through inetd and it becomes heavily loaded, then the performance

Master server

inetd

Passive sockets for
connection-oriented

(TCP) services

Sockets for
connectionless
(UDP) services

Sockets for
other services

• • • • • • • • •

FIGURE 20.30 Basic setup of inetd as it starts running to offer TCP-based services.

Master server

inetd

inetd

telnetd

Passive sockets
connection-oriented

(TCP) services

Sockets for
connectionless
(UDP) services

Slave process for
connectionless service

Active sockets for
connection-oriented services

telnetd fingerdechod echodtimed

inetd inetd

Slave processes

inetd inetd

fork()

exec()
inetd

• • • • • •

FIGURE 20.31 Setup of inetd as it serves two connection-oriented ECHO clients, one connec-
tionless TELNET client, and one connection-oriented client each for TIME, TELNET, and FINGER.

948 ◾ UNIX: The Textbook, Third Edition

of other services under inetd deteriorates. This is so because, with a higher number of slave
processes serving the clients for a particular service, inetd has to multiplex a greater num-
ber of sockets associated with the slave processes. This means longer average waiting times for
other services. Under these scenarios, you should remove such services from inetd.

We discuss briefly how inetd works, the kind of services it offers, and how you can
change the set of services that it offers. On some UNIX systems, the tcpwrapper package is
used to enhance the security of inetd, and on other UNIX systems this functionality is
built into inetd.

20.10.1 Managing inetd on Solaris via Service Management Facility

The inetd daemon is invoked at system start-up time, and is configured via Oracle
Solaris service management facility (SMF). We give a brief description and usage example
of SMF with respect to inetd, particularly the svcadm command and its options in
Sections 23.2.5.4, 23.2.5.4.2, and 23.2.5.5.

The SMF framework manages system and application services. SMF manages critical
system services essential to the working operation of the system and manages application
services such as databases or Web servers. SMF improves the availability of a system by
ensuring that essential system and application services run continuously, even in the event
of hardware or software failures.

SMF replaces the use of configuration files for managing services and is the recom-
mended mechanism to use to start applications. SMF replaces the init scripting start-up
mechanism, inetd.conf configurations, and most rc.d scripts. SMF preserves compatibil-
ity with existing administrative practices wherever possible.

The SMF command line utility that controls and configures inetd services is named
inetadm. The inetadm command is used to monitor, configure, and control inetd
services. If you type inetadm on the command line, you get a complete listing of inetd
services, their properties, and values.

The contents of the file /etc/services lists the ports that the network services use. It
would be very instructive for you to scroll through the content of the /etc/services file to
learn what services are provided on what ports on your Solaris system.

See the inetd and inetadm manual page in Solaris for more details on how to man-
age inetd services. If necessary, you can use the inetconv command to convert an
inetd configuration file content into SMF format services, and then manage these ser-
vices using inetadm and svcadm commands.

20.10.1.1 Configuring inetd on PC-BSD
The /etc/inetd.conf file contains the list of services offered by inetd on a UNIX system.
It is a text file that contains one seven-field line per service, having the following format:

service-name socket-type protocol wait/nowait user:group server-
program arguments

Each of the services listed in /etc/inetd.conf must also be recorded in the /etc/services
file. Table 20.24 contains the purpose of each field.

System Programming III    ◾    949

Here are the contents of the /etc/inetd.conf file on our BSD system.

% cat /etc/inetd.conf
$FreeBSD$
#
Internet server configuration database
#
Define *both* IPv4 and IPv6 entries for dual-stack support.
To disable a service, comment it out by prefixing the line
with '#'.
To enable a service, remove the '#' at the beginning of the
line.
#
ftp stream tcp nowait root /usr/libexec/ftpd ftpd -l
ftp stream tcp6 nowait root /usr/libexec/ftpd ftpd -l
ssh stream tcp nowait root /usr/sbin/sshd sshd -i -4
ssh stream tcp6 nowait root /usr/sbin/sshd sshd -i -6
telnet stream tcp nowait root /usr/libexec/telnetd telnetd
telnet stream tcp6 nowait root /usr/libexec/telnetd telnetd
... [output truncated]
%

Note that the service name in the first field is different from the program name given in
the last field, which is the name of the program (daemon), along with command line argu-
ments, that executes when inetd receives a client request for this service. Any user may
display the contents of this file.

Some of the services offered by inetd are labeled as “internal.” The following session
shows such services on our BSD system.

TABLE 20.24 Fields of a Line in /etc/inetd.conf and Their Purpose

Field Purpose

Service name A port number in decimal or name corresponding to the service as listed in the /etc/
services file

Socket type The type of socket that the service is offered for, usually, stream for TCP style
communication or dgram for UDP style communication. It could also be raw,
rdm, or seqpacket

Protocol For TCP, this field is tcp or tcp6 for IPv4 and IPv6, respectively. For UDP, this
field is udp or udp6 for IPv4 and IPv6, respectively. For protocols based on remote
procedure call (RPC), this field may be rpc/tcp or rpc/udp

Wait/nowait This field specifies if inetd should wait until the service program terminates
(wait) or continue (nowait). For stream type sockets, this field is normally
nowait

User:group The user name and optional group name that the respective service process runs as.
Most of the services run under root ownership

Server-program Absolute pathname of the program that is executed for the offered service
Arguments This field contains the name of the program and the arguments with which it runs

950 ◾ UNIX: The Textbook, Third Edition

% grep "internal"$ /etc/inetd.conf
daytime stream tcp nowait root internal
daytime stream tcp6 nowait root internal
daytime dgram udp wait root internal
daytime dgram udp6 wait root internal
time stream tcp nowait root internal
time stream tcp6 nowait root internal
time dgram udp wait root internal
time dgram udp6 wait root internal
echo stream tcp nowait root internal
echo stream tcp6 nowait root internal
echo dgram udp wait root internal
echo dgram udp6 wait root internal
... [output truncated]
%

These services are quite trivial and are handled directly by inetd without running any
external program (daemon). They are useful for testing purposes, but are prone to “denial
of service” (DoS) attacks. Accordingly, you should disable them by commenting them out.
You can list the services that are enabled by using the grep -v "^#" /etc/inetd.
conf command.

20.10.1.2 Locating inetd Services on PC-BSD and Solaris
The /etc/services file is the database that contains the name of a service, the port number
for the service, and the transport-layer protocol it uses for communication (usually tcp or
udp). Any service that inetd offers must have an entry in the /etc/services file. It has one
line per service in the following format:

service-name port-number/protocol-name [aliases]

Here, service-name is the name of the service such as smtp, port-number is
the IANA assigned port number, such as 25 for smtp, and protocol-name is the
transport-layer protocol, such as tcp, udp, and so on. Here is an example line from the
/etc/services file:

pop3 110/tcp #Post Office Protocol - Version 3

This line shows that pop3 is a TCP (i.e., connection-oriented) service, offered at port 110.
The following session shows that there are three entries for the SSH service in the /etc/

services file on our PC-BSD system. This means that the SSH service is offered on port 22
under the tcp, udp, and sctp protocols. Stream Control Transmission Protocol (SCTP)
has been designed to transmit multiple streams of data between two connected sockets. It
is also known as the “next generation TCP” or “TCPng.” The SSHELL service on port 614
is for secure socket layer shell (SSLshell).

System Programming III    ◾    951

% grep ^ssh /etc/services
ssh 22/sctp #Secure Shell Login
ssh 22/tcp #Secure Shell Login
ssh 22/udp #Secure Shell Login
sshell 614/tcp #SSLshell
sshell 614/udp
%

20.10.1.3 Locating inetd Protocols on PC-BSD and Solaris
Another file that inetd reads when it runs is /etc/services. This file is the database of
protocol names and contains the name of a protocol, the IANA assigned number for the
protocol, and aliases for the protocol. Any protocol that inetd uses for a service must
have an entry in the /etc/protocols file. It has one line per protocol in the following format:

protocol-name number [aliases]

Here, protocol-name is the name of the protocol such as tcp, number is the IANA
assigned number for the protocol such as 6 for tcp, and aliases are alternative names for
the protocols, such as TCP for tcp. Here is the line for the tcp protocol in the /etc/pro-
tocols file:

% grep ^tcp /etc/protocols
tcp 6 TCP # transmission control protocol
%

20.10.1.4 Adding or Deleting inetd Services on PC-BSD
As an administrator, you can delete a service that inetd offers by simply removing the
line for the relevant service from the /etc/inetd.conf file. Similarly, you can add a new
service in inetd by adding a line for the corresponding service in the /etc/inetd.conf file.

After making the requisite changes in the /etc/inetd.conf file, you can reconfigure
inetd dynamically so that it offers the updated set of services without having to terminate
and restart it. You can do so by sending SIGHUP (no hang-up signal) to inetd using the
kill or killall command. Table 20.25 shows four ways of performing this task. Note
that the killall command is used with a process name and the kill with a process ID
(PID). Note the use of grave accents (̀) for the substitution of the cat/var/run/inetd.
pid command, with the resultant execution of the command.

EXERCISE 20.27

Display the lines for all “internal” services listed in the /etc/inet.conf file on your system.

TABLE 20.25 Ways of Restarting inetd
1 killall -HUP inetd

2 killall -1 inetd

3 kill -HUP 'cat /var/run/inetd.pid'

4 kill -1 'cat /var/run/inetd.pid'

952 ◾ UNIX: The Textbook, Third Edition

EXERCISE 20.28

Display the line in the /etc/protocols file for the UDP protocol. What numerical value is
associated with the UDP protocol? How many protocols are defined in this file?

20.11 CONCURRENT CLIENTS
It seems obvious to think of concurrent servers to serve multiple clients simultaneously
in an efficient manner, thereby reducing the average response time experienced by a cli-
ent. However, the need for concurrent clients is not so obvious. There are several real-life
examples of concurrent clients that are necessitated due to the application protocol. Many
of the well-known services require concurrent clients, including SSH, TELNET, FTP, and
HTTP. A client for each of these services has to deal with two descriptors: a standard input
descriptor (keyboard) to read user input and a socket descriptor used by the client to com-
municate with the server process. Either descriptor may become ready for I/O asynchro-
nously; a user may type the next command for the client using the keyboard any time that
he/she desires to do so and the server response for a previous client request may arrive at
the client-side socket at any instant of time, depending on the load on the server process
and network traffic.

We explain the need for a concurrent client by using the example of a connection-oriented
(TCP) SSH client. A TCP client for SSH expects input from two descriptors, one for the key-
board and the other for the socket that is connected to the SSH server-side socket. The client
needs to receive user input (i.e., the next shell command to be executed on the remote host)
entered through the keyboard and the server’s response through the connected socket, as
shown in Figure 20.32. Since the two descriptors become ready asynchronously, you may
implement such concurrent clients by using the select() system call.

Another scenario under which a concurrent client becomes necessary arises because
BSD UNIX does not allow independent processes to share main memory. The X Window
System allows multiple clients to paint (i.e., redraw) a bitmapped display, so that the
windows of the respective clients may be updated when required. Since the X display is

Passive
socket Active sockets

created by the
accept() call

SSH
server

SSH
client

fork() after
accept()

SSH
slave

SSH
slave

Virtual connection

Socket
descriptor

Standard input
descriptor keyboard

• • •

FIGURE 20.32 SSH client dealing with two descriptors.

System Programming III    ◾    953

memory mapped, the X server puts the information it receives from the various clients
into one contiguous display buffer in the main memory. Depending on its location on the
screen, each client window occupies a particular region of the buffer. The single-process
server then uses the select() system call to handle asynchronous input from the client-
side sockets and paint the screen accordingly.

You may also like to write the client for a particular service that simultaneously con-
nects with multiple servers for a given service. Such concurrent clients are written using
the master–slave model, where a slave process is created to handle a particular server. The
domain names and/or IP addresses of the servers are passed to the client as command line
arguments. One reason for writing such concurrent clients is to measure the response time
for different servers.

EXERCISE 20.29

Write the names of five well-known Internet services that use concurrent clients. Explain
why these services use concurrent clients.

20.12 WEB RESOURCES
Table 20.26 lists useful Web sites for UNIX IPC and related topics.

TABLE 20.26 Web Resources for the UNIX IPC and Related Topics
http://www.iana.org/ Webpage for Internet Assigned Numbers

Authority (IANA): responsible for the global
coordination of the DNS Root, IP addressing,
transport protocol port numbers, and other
Internet protocol resources

http://www.iana.org/assignments/
service-names-port-numbers/
service-names-port-numbers.xhtml

Service Name and Transport Protocol Port
Number Registry

http://tools.ietf.org/html/rfc6335 RFC6335: Internet Assigned Numbers Authority
(IANA) Procedures for the Management of the
Service Name and Transport Protocol Port
Number Registry; forums, user groups, etc.

http://www.iana.org/assignments/
protocol-numbers

Official names and numbers of the protocols

https://www.freebsd.org/ Home page for FreeBSD. Contains a lot of useful
material, including FreeBSD source, manual
pages, support, SVN repository, forums, user
groups, etc.

http://www.t1shopper.com/tools/
port-number/N/
http://www.adminsub.net/
tcp-udp-port-finder/N

Reports IANA assigned service on port ‘N’
(e.g., for N = 22 the page reports the service that
is assigned port 22)

http://www.tutorialspoint.com/ Excellent site for tutorials on all kinds of
programming languages, including UNIX system
programming in C

http://stackoverflow.com/ Free question and answer site for rookie and
professional programmers

http://www.adminsub.net/tcp-udp-port-finder/N
http://www.t1shopper.com/tools/port-number/N/
http://www.iana.org/assignments/protocol-numbers
http://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.xhtml
http://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.xhtml
http://www.stackoverflow.com/
http://www.tutorialspoint.com/
http://www.adminsub.net/tcp-udp-port-finder/N
http://www.t1shopper.com/tools/port-number/N/
https://www.freebsd.org/
http://www.iana.org/assignments/protocol-numbers
http://www.tools.ietf.org/html/rfc6335
http://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.xhtml
http://www.iana.org/

954 ◾ UNIX: The Textbook, Third Edition

SUMMARY
We discussed a number of important topics, primarily related to UNIX IPC, between
related processes on the same machine, using related or unrelated processes on the same
machine and related or unrelated processes on the same or different machines on a net-
work. In doing so, we covered the use of pipes, named pipes (FIFOs), and sockets as com-
munication channels and the related data structures, system calls, macros, and library
functions. These calls and data structures deal with the creation of a communication chan-
nel, preparing it for communication where required, and using it for reading and writing
messages between processes.

We discussed the issue of client–server design in detail, both for connectionless and
connection-oriented communication between client and server processes. Our focus in
this regard was the transport-level protocols, UDP and TCP. We described the need for
different types of servers, including iterative and concurrent servers.

We explained the working of the various types of client–server models by designing
and implementing application-level services similar to the well-known Internet services
ECHO, TIME, and DAYTIME. We also discussed the design and implementation of a
concurrent server using slave processes. Throughout the chapter, our discussions included
algorithms for the client and server processes, call graphs, and interaction sequences. The
call graphs describe the sequence of system calls for implementing client and server soft-
ware individually, and interaction sequences describe the interaction between the client
and server processes to implement the application protocol at hand.

We then covered the design of servers that offers multiple services using the select()
system call. We built a simple concurrent server using the select() system call to imple-
ment the TIME and ECHO services for the UDP protocol. We also described how the
UNIX superserver, inetd, works. Finally, we discussed the need for concurrent clients
and how they work.

QUESTIONS AND PROBLEMS

 1. What are little endian and big endian byte orders? Are these for data storage, data
transmission, or both? What is network byte order? Give one example each of the
processors that use these byte orders.

 2. Show the contents of memory locations for the 32-bit hex number F9327CA5 using
the little endian and big endian byte orders. Assume that the main memory is byte
oriented.

 3. What byte orders are used by the following CPUs: AMD64, Intel i7, Sun SPARC,
Motorola 68000, IBM, PDP, and VAX? How did you obtain your answers?

 4. What shell command can you use to display the name of the CPU used by your com-
puter system? What byte order does this CPU use? How did you find out?

 5. Write a C program that displays the size of the PPFDT and the largest descriptor
value on your UNIX system. Show your program and a sample run of the program.

System Programming III    ◾    955

 6. What happens to a reader process when it reads from a pipe that has no data in it?
Explain the reason for your answer.

 7. What happens to a writer process when it writes to a full pipe? Explain the reason for
your answer.

 8. What is the effect of using the following flags in the pipe2() system call?

 a. O _ CLOEXEC

 b. O _ NONBLOCK

 9. How should the pipe2() system call be used so that it behaves like the pipe() sys-
tem call?

 10. What is the synchronization issue in the bounded-buffer reader–writer problem?
Who handles synchronization when two UNIX processes communicate with each
other using pipes: the reader process, the writer process, or someone else (specify)?

 11. Write a program that demonstrates how the reader and writer processes behave while
communicating through a widowed pipe.

 12. Write a C program, widowed.c, that creates a widowed pipe and demonstrates that
when a process reads from a pipe that cannot be written to, it results in the reader
process receiving the eof message.

 13. When you compile and run the broken _ pipe.c program in Section 20.4.2 on a
Solaris machine, it terminates without generating the “Broken pipe” error mes-
sage. How can you verify that the pipe was actually widowed and the program termi-
nated when the write() system call was executed?

 14. Use signal handling to generate the “Broken pipe” error message by the bro-
ken _ pipe.c program when you compile and run it on a Solaris machine. Write
two versions of the program. The first version should terminate the program after
displaying the “Broken pipe” message and the second version should continue
after displaying the message and execute the statement after the write() system call
that causes SIGPIPE. Hint: Use signal().

 15. Write a C program to demonstrate that a widowed pipe with its write end closed
sends the eof message to the reader process. Show compilation and execution of the
program.

 16. Write a program that takes two command line arguments: the name of a text file
that contains single-digit integer data and an integer to be searched from the sorted
version of the data in the file. The program creates two children processes. The first
child process reads the text file passed as the first argument, sorts the numbers (any
sorting algorithm is allowed), and communicates the sorted numbers to the second
child process via a pipe and exits. The second child process searches for the “majority
number” in the sorted list of numbers, displays the majority number and sends the

956 ◾ UNIX: The Textbook, Third Edition

sorted numbers to the parent process via another pipe, and exits. The parent process
searches the sorted data that it receives from the child process and displays the num-
ber to be searched for, or a message in case the number is not found. All printing,
input, reading (from files or the console) should be done by system calls. You cannot
use any library functions.

 17. Are FIFOs process persistent or file system persistent? Explain your answer.

 18. When a pipe is created, two file descriptors are used in the PPFDT. How many
descriptors are used when a FIFO is created? How many are used when a FIFO is
opened?

 19. What is the amount (size) of data that can be written into a FIFO atomically on BSD
and Solaris? Where did you find answer to the question?

 20. Compile and run the client–server model shown next. Make sure to run the server
process first because it creates the FIFO used for communication between the client
and server processes. What does the model do? Does the model work as expected? If
not, what is wrong with it? Clearly identify the issues and their remedy.

% more fifo.h
#include <string.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <sys/errno.h>

extern int errno;

#define FIFO "/tmp/fifo"
#define PERMS 0666
#define SIZE 512

static char* message1 = "Hello, world!\n";
static char* message2 = "Hello, class!\n";
% more client.c
#include "fifo.h"

int main(void)
{
 char buff[SIZE];
 int fd;
 int n, size;

 /* Open FIFO. Assume that the server
 has already created them. */
 if ((fd = open(FIFO, 2)) == -1) {
 perror ("client open FIFO");
 exit (1);
 }

System Programming III    ◾    957

 /* client (fd); */
 size = strlen(message1);
 if (write(fd, message1, size) != size) {
 perror ("client write fd");
 exit (1);
 }
 if ((n = read(fd, buff, size)) == -1) {
 perror ("client read");
 exit (1);
 }
 else
 if (write(1, buff, n) != n) {
 perror ("client write stdout");
 exit (1);
 }
 close(fd);

 /* Remove FIFO now that we are done using it */
 if (unlink (FIFO) == -1) {
 perror("client unlink FIFO");
 exit (1);
 }
 exit (0);
}
% more server.c
#include "fifo.h"

int main(void)
{
 char buff[SIZE];
 int fd;
 int n, size;

 /* Create two FIFOs and open them for
 reading and writing */
 if ((mknod (FIFO, S_IFIFO | PERMS, 0) == -1)
 && (errno != EEXIST)) {
 perror ("mknod FIFO");
 exit (1);
 }

 if ((fd = open(FIFO, 2)) == -1) {
 perror ("open FIFO");
 exit (1);
 }

 /* server (fd); */
 size = strlen(message1);

958 ◾ UNIX: The Textbook, Third Edition

 if ((n = read(fd, buff, size)) == -1) {
 perror ("server read");
 exit (1);
 }
 if (write (1, buff, n) < n) {
 perror("server write stdout");
 exit (1);
 }
 size = strlen(message2);
 if (write (fd, message2, size) != size) {
 perror ("server write fd");
 exit (1);
 }
 close (fd);
}
%

 21. Implement the client–server model given in Figure 20.9. The server offers the ECHO
service. Test the model by running three concurrent clients through three terminal
windows on your systems.

 22. What system call would you use to create an IPv4 socket for stream-oriented com-
munication that closes when the process executes a system call (or library call) in the
exec() family?

 23. What system call would you use to create an IPv6 socket for nonblocking stream-
oriented communication that closes when the process executes a system call (or
library call) in the exec() family?

 24. What are the values of the following symbolic constants:

 a. PF _ INET

 b. PF _ INET6

 c. SOCK _ STREAM

 d. SOCK _ NONBLOCK

 e. AF _ UNIX

 f. PF _ UNIX

 g. AF _ INET

 25. How many domains of communication are supported by your system? How did you
obtain your answer? If a symbolic constant is defined for this purpose, show this
definition. Hint: Browse the /usr/include/sys/socket.h file.

 26. Write the code snippet to create a socket for the stream-oriented style of communication
using the TCP protocol under IPv4. Mark the socket “close-on-exec” and “nonblocking.”

System Programming III    ◾    959

 27. When is a socket half associated? When is it fully associated?

 28. What feature of the TCP/IP protocol allows multiple distinct servers to run simul-
taneously on a host on the Internet and establish multiple concurrent communica-
tion sessions between the client and server programs running on the hosts on the
Internet?

 29. What type of socket-based communication requires that the sockets of the two com-
municating processes are fully associated?

 30. What are the new versions of the inet _ aton() and inet _ ntoa() calls? Why
would you prefer to use the new calls as opposed to the old calls?

 31. Design and implement a client–server model for the ECHO service using the UNIX
domain sockets.

 32. What is the maximum length of the queue associated with the listen() system
call on your system? What flavor of UNIX are you using? How did you obtain your
answer?

 33. Log on to a machine that runs at least one Internet server, such as SSH. Use the net-
stat command with appropriate options to determine the size of the queue associ-
ated with the passive socket of the server. Show the output of the command that you
used for this purpose.

 34. The shutdown() system call is used to close a socket. Why is it needed when you
can use the close() system call to close a descriptor?

 35. What type of network traffic is generated by the connect() system call for
SOCK _ STREAM and SOCK _ DGRAM types of sockets under the PF _ INET and
PF _ LOCAL domains?

 36. What are the differences between the accept() and accept4() system calls?

 37. Why must a process read data from a SOCK _ STREAM socket in a loop? Why is this
not required in the case of a SOCK _ DGRAM socket?

 38. What is the difference between active and passive sockets? How are they created?
Why is the socket on which a server process waits for connection requests known as
a passive socket?

 39. Why are active sockets also known as ephemeral sockets?

 40. Give two reasons each for the following system calls to fail:

 a. socket()

 b. mkfifo()

 c. mkfifoat()

960 ◾ UNIX: The Textbook, Third Edition

 d. bind()

 e. listen()

 f. connect()

 g. accept()

 h. select()

 i. shutdown()

 41. Suppose S is a connection-oriented concurrent server. If it is currently serving K cli-
ents, how many sockets and slave processes is the server using? What would these
numbers be if S were a connectionless concurrent server? Explain your answers.

 42. Write the code for the concurrent connectionless server for the ECHO service and
test it with multiple clients accessing it simultaneously.

 43. Write the code for the concurrent connection-oriented server for the ECHO service
and test it with multiple clients accessing it simultaneously.

 44. Design, code, and test the connection-oriented iterative client–server model dis-
cussed in Section 20.8.4.

 45. What are the queue lengths associated with the passive sockets for all the servers run-
ning on your UNIX system? How did you obtain your answer? Show your work.

 46. Some of the library functions for network programming, such as inet _ ntop(),
have a size (or length) argument to specify the length in bytes of the destination
address variable. Why is it needed?

 47. What happens to the descriptor sets when the select() system call fails and
returns –1?

 48. What is returned by the select() system call when it returns due to the expiration
of the timer?

 49. When is it necessary to have concurrent clients? Give a few examples and give the
structure of the code for an HTTP client.

 50. Write the code for the single-process TCP ECHO server using the select() system
call and test it using the ECHO client discussed in this chapter.

 51. Write a thread-safe implementation of the sleep() system call that uses the
select() system call. Explain why your implementation is thread safe.

 52. Add the TCP DAYTIME service to select _ server.c in Section 20.9.

 53. Modify select _ server.c so that it returns after 10.5 s instead of blocking until
a descriptor becomes ready.

System Programming III    ◾    961

 54. Why is there a need for concurrent clients? Write the concurrent client for the ECHO
service that connects with multiple ECHO servers and displays the response time for
each server. Show the source code for the client, its compilation, and a few sample
runs.

 55. What is the format of a line in the configuration file for inetd, the UNIX super-
server? What is the meaning of each field?

 56. What types of services are offered through the UNIX inetd? Explain your answer.

 57. What would happen if a heavily loaded service were offered through inetd? Explain
your answer. What should the system administrator do under such circumstances?

 58. Write down the code snippet that makes inetd dynamically reconfigurable by using
the SIGHUP signal. Show only signal-handling code and the structure of the code
that actually reconfigures.

 59. How many server and client processes run when inetd is serving two TIME clients
and one client each for the ECHO, TELNET, and FTP services? How many sockets
are used on the server side under this setting? Explain your answer.

 60. The kill -HUP `cat /var/run/inetd.pid` command may be used to make
inetd reinitialize and restart it dynamically on a BSD system. What is the equiva-
lent of this command on the Solaris system?

 61. What is the PID of inetd on your system? Write down the command that you used
for this purpose.

 62. What is a concurrent client? Why are concurrent clients needed? List three reasons.
Also, list three well-known Internet services that require the use of concurrent clients.

http://taylorandfrancis.com

963

C h a p t e r 21

System Programming IV
Practical Considerations

Objectives

• To explain the concept of restarting system calls

• To describe thread-safe system calls

• To discuss the concept of writing a program that starts running in the background
and becomes a daemon

• To discuss setting signals and umask for a daemon

• To describe the concept of allowing only a single copy of a program to run

• To discuss saving a daemon’s identity at a known location

• To explain the issue of detaching the terminal from a process

• To describe the issue of changing the working directory

• To explain the need to close inherited standard descriptors and open standard
descriptors

• To describe the removal of completed child processes from the system

• To show and discuss the structure of a truly concurrent, connection-oriented
production server

• To cover the system calls, library calls, commands, and primitives

 chdir(), close(),fcntl(), flock(), fork(), free(), getpid(),
goto, malloc(), open(), perror(), read(), setsid(), signal(),
sprintf(), sleep(), strlen(), umask(), wait3(), write()

964 ◾ UNIX: The Textbook, Third Edition

21.1 INTRODUCTION
In this chapter, we discuss some important issues related to system programming in general
and the design of server processes in particular. The issues are blocking I/O, restarting sys-
tem calls that are interrupted during their execution due to the arrival of a signal, using
thread-safe system calls, reentrant code, ignoring signals and setting the umask of server
processes, running server processes as daemons, ensuring that only one copy of a program
may run at a given time, closing inherited descriptors in a process, ignoring I/O in a dae-
mon, redirecting errors to a file, and cleaning up the child processes that have terminated.
We have already discussed some of these issues in detail in Chapters 18–20. Here, we dis-
cuss some specific issues, particularly related to the design of server software. We describe
two methods of file locking and use them both in the final version of our example server
to ensure that the server will port to both PC-BSD and Solaris machines. Throughout the
chapter we use defensive coding.

21.2 RESTARTING SYSTEM CALLS
We should write code that has the ability to restart system calls that are interrupted during
their execution. Such situations arise under different scenarios depending on the system
call. However, in all cases the system call is in some kind of waiting state. The wait may be
any one of the many types, including waiting for an I/O device, a communication chan-
nel, or a child process to terminate. The system calls involved may be read(), readv(),
write(), writev(), ioctl(), fcntl(), wait(), waitpid(), wait3(), wait4(),
wait6(), select(), and so on.

We discussed blocking I/O in detail in Chapters 19 and 20 while explaining the con-
cept of a communication channel called the UNIX pipe, which is used for communica-
tion between related processes. A read() or write() call may be interrupted when you
perform a blocking I/O on a pipe. In the case of a pipe, blocking input means that the
read() system call blocks, as there is nothing to read because the pipe is empty. The
write() system call blocks if the pipe is full. Another example of blocking read is when
the read() system call reads input interactively from a keyboard. The read() call blocks
until the user enters keyboard input. Similarly, the select() system call blocks while
waiting for an I/O request on a descriptor. Finally, a process may block while waiting for a
child process to terminate using any of the calls in the wait() class.

If a system call is in a blocking state, it may be interrupted while waiting for a particular
event to happen (the arrival of data into a pipe, the flow of data out of a pipe, the termi-
nation of a child process, etc.). Most modern UNIX implementations restart interrupted
system calls automatically. If you are not sure whether your code will run on such a system,
you need to write code to explicitly handle the restarting of an interrupted system call. The
following code snippet may be used for this purpose.

repeat:
 if ((nr = read(fd, buf, SIZE)) == -1)) {
 if(errno == EINTR) /* if interrupted system call */
 goto repeat;

System Programming IV    ◾    965

 /* handle other errors */
 }

4.2BSD was the first UNIX system that supported automatic restart for interrupted
system calls. I/O-related calls are interrupted by a signal when they operate on slow devices
or a communication channel such as a pipe. However, the calls in the wait() class are
always interrupted when they receive a signal. This is a problematic situation and system
designers introduced a feature in 4.3BSD that allows a process to disable the automatic
restarting of system calls on a per-signal basis.

21.3 THREAD-SAFE SYSTEM CALLS
In this section, we provide practical considerations that are an extension of the material
presented in Chapter 19 on threads. We define, discuss, and give simple examples of two
important concurrency topics: thread safety and reentrant functions.

Simply stated, a thread-safe function can be called simultaneously from multiple threads,
even when the invocations use shared data, because all references to the shared data are
serialized. In other words, each thread accesses shared data on a mutually exclusive basis
after locking the data using synchronization primitives like spinlocks or semaphores.

A reentrant function can also be called simultaneously from multiple threads, but only
if each invocation uses its own data. Therefore, a thread-safe function is always reentrant,
but a reentrant function is not always thread safe. This means that with only one copy of
a thread-safe or reentrant function in main memory, multiple threads or commands may
execute it simultaneously. Most applications running on time-sharing systems are thread
safe or reentrant, including compilers, word processors, and editors. All functions defined
in the Single UNIX Specification (SUSv3) are guaranteed to be thread safe, with the excep-
tion of those listed in Table 21.1.

You should not use non-reentrant functions in signal handlers because a signal may
occur while the control is in a non-reentrant function and another signal is received.
Clearly, in such cases the program may produce a wrong result because of a race condition
caused by the multiple simultaneous executions of a non-reentrant function. For example,
the malloc() function maintains a linked list of the dynamically allocated areas. We
should not use malloc() in a signal handler because it may cause problems due to race
condition. Suppose we use malloc() in a signal handler, a signal occurs, and control
goes to the signal handler; the malloc() function runs as part of the signal handler and
it is in the middle of updating the list pointers when the second signal occurs. The linked
list will then become corrupt. Similarly, functions that access global (static) variables are
also prone to being non-reentrant and non–thread safe. No system calls and no library
functions are guaranteed to be reentrant that (a) use malloc() or free(), (b) use global
data structures, or (c) are part of the Standard I/O library. All of the system calls we have
discussed in this book are reentrant.

Operating systems and thread libraries provide synchronization primitives for writing
thread-safe and reentrant functions, including semaphores and mutexes. We do not cover
these primitives in this book but you may read more about them in books or Internet

966 ◾ UNIX: The Textbook, Third Edition

sources on pthread programming and/or UNIX system programming that discuss these
topics more comprehensively.

21.4 RUNNING PROCESSES IN BACKGROUND: DAEMONS
We discussed in detail the execution of background processes and daemons in Chapter 10.
A system process that provides services to users or processes is known as a daemon. A com-
mon use of daemons is in server processes. Examples of some commonly known daemons
are the http (Web) server (httpd), Secure Shell server (sshd), UNIX superserver (inetd),
printer server (lpd), and page server (pageda).

In this section, we discuss how you can write code for a process that, when executed,
automatically becomes a daemon. One of the characteristics of daemons is that they are
disconnected from standard files. Creating a daemon is rather simple. The issue boils
down to creating a child process, letting the parent process exit, and allowing the child
process to continue and become a daemon. The daemon.c program in the following ses-
sion illustrates the concept. After the parent process exits, the child process, now a dae-
mon, displays its PID before entering an infinite loop to read client requests and respond
to them.

% cat daemon.c
#include <unistd.h>
#define SIZE 32

TABLE 21.1 Non-Thread-Safe Functions

asctime() fcvt() getpwnam() nl_langinfo()
basename() ftw() getpwuid() ptsname()
catgets() gcvt() getservbyname() putc_unlocked()
crypt() getc_unlocked() getservbyport() putchar_unlocked()
ctime() getchar_unlocked() getservent() putenv()
dbm_clearerr() getdate() getutxent() pututxline()
dbm_close() getenv() getutxid() rand()
dbm_delete() getgrent() getutxline() readdir()
dbm_error() getgrgid() gmtime() setenv()
dbm_fetch() getgrnam() hcreate() setgrent()
dbm_firstkey() gethostbyaddr() hdestroy() setkey()
dbm_nextkey() gethostbyname() hsearch() setpwent()
dbm_open() gethostent() inet_ntoa() setutxent()
dbm_store() getlogin() l64a() strerror()
dirname() getnetbyaddr() lgamma() strtok()
dlerror() getnetbyname() lgammaf() ttyname()
drand48() getnetent() lgammal() unsetenv()
ecvt() getopt() localeconv() wcstombs()
encrypt() getprotobyname() localtime() wctomb()
endgrent() getprotobynumber() lrand48()
endpwent() getprotoent() mrand48()
endutxent() getpwent() nftw()

System Programming IV    ◾    967

int main(void)
{
 pid_t pid;
 char buf[SIZE];

 pid = fork();
 if (pid == -1) {
 perror("Fork failed");
 exit(1);
 }
 /* Parent process */
 if (pid > 0) {
 exit(0);
 }
 /* Child process: Continues and becomes the server */
 /* process running forever as a daemon */
 (void) sprintf(buf, "Daemon PID: %d\n", getpid());
 (void) write(1, buf, strlen(buf));
 while (1) {
 /* Wait for a client request */
 /* Serve the client request */
 sleep(10); /* Dummy code */
 }
}
% gcc46 -w daemon.c -o daemon
% ./daemon
Daemon PID: 97272
% ps
 PID TT STAT TIME COMMAND
93220 1 Ss 0:00.69 -csh (csh)
97272 1 S 0:00.00 daemon
97273 1 R+ 0:00.01 ps
% kill -9 97272
% ps
 PID TT STAT TIME COMMAND
93220 1 Ss 0:00.69 -csh (csh)
97273 1 R+ 0:00.01 ps
%

EXERCISE 21.1

Provide the names of 10 UNIX daemons and their purposes.

EXERCISE 21.2

Compile and run the preceding daemon.c program to make sure it works on your system
as expected.

968 ◾ UNIX: The Textbook, Third Edition

21.5 IGNORING SIGNALS
We discussed the issue of signals and signal handling in detail in Chapter 20. In this sec-
tion, we emphasize that when you write code for a server process, you must handle signals
appropriately.

Sometimes, you need to write server processes that can initialize their data structures
using a text-based configuration file, and you want such servers to be able to reconfigure
themselves dynamically without stopping. You can do so by sending the process a particu-
lar type of signal and invoking a function that reconfigures the server. The UNIX super-
server, inetd, is an example of a server process that reconfigures itself on SIGHUP. Thus, it
contains a line of code similar to the following:

signal(SIGHUP, sig_hup);

where the sig _ hup() function reconfigures the internal data structures of inetd. The
configuration file for inetd is /etc/inetd.conf.

21.6 CHANGING UMASK
It is important to set the umask in the server process so that all the files, including logs,
created by the server process have the desired access privileges, regardless of the mode
specified in an open() or creat() system call. You can do so by using the umask()
system call, as follows:

(void) umask(027);

We discussed in detail the setting of the umask at the command line and how the
permission bits of a newly created file are set in Chapter 5. In the following session,
we show the code for daemon.c after including signal handling and setting the umask.
The compilation and running of the program on a PC-BSD system shows that the pro-
gram works correctly and the daemon does not terminate when we send it the SIGHUP
and SIGINT signals using the kill commands. Eventually, we terminate daemon
using the kill -9 16624 command. The code works as expected on the Solaris
machine too.

% cat daemon.c
#include <unistd.h>
#include <sys/signal.h>

#define SIZE 32

int main(void)
{
 pid_t pid;;
 char buf[SIZE];

 pid = fork();
 if (pid == -1) {

System Programming IV    ◾    969

 perror("Fork failed");
 exit(1);
 }
 /* Parent process */
 if (pid > 0) {
 exit(0);
 }
 /* Child process: Continues and becomes the server */
 /* process running forever as a daemon */

 /* Ignore signals */
 signal(SIGHUP, SIG_IGN);
 signal(SIGINT, SIG_IGN);

 /* Set umask */
 (void) umask(027);

 /* Display Daemon's PID */
 (void) sprintf(buf, "Daemon PID: %d\n", getpid());
 (void) write(1, buf, strlen(buf));

 /* Code for the server */
 while (1) {
 /* Wait for a client request */
 /* Serve the client request */
 sleep(10); /* Dummy code */
 }
}
% gcc46 -w daemon.c -o daemon
% ./daemon
Daemon PID: 16624
% kill -0 16624
% ps
 PID TT STAT TIME COMMAND
12930 2 Ss 0:00.55 -csh (csh)
16624 2 S 0:00.00 daemon
16639 2 R+ 0:00.01 ps
% kill -2 16624
% ps
 PID TT STAT TIME COMMAND
12930 2 Ss 0:00.56 -csh (csh)
16624 2 S 0:00.00 daemon
16658 2 R+ 0:00.01 ps
% kill -9 16624
% ps
 PID TT STAT TIME COMMAND
12930 2 Ss 0:00.58 -csh (csh)
16671 2 R+ 0:00.01 ps
%

970 ◾ UNIX: The Textbook, Third Edition

EXERCISE 21.3

Repeat the preceding shell session to make sure that the daemon.c program works correctly
on both PC-BSD and Solaris systems.

EXERCISE 21.4

What services does inetd, the UNIX superserver, offer on your system? List all the connection-
oriented and connectionless services that the configuration file for inetd contains.

21.7 RUNNING A SINGLE COPY OF A PROGRAM
In this section, we discuss how we can make sure that only a single copy of a process
runs. Some daemons are designed so that only a single copy of the daemon runs. One of
the reasons for this may be that the daemon needs exclusive access to an object such as
a file or device. There may be other reasons—for example, if multiple instances of cron
start running, each would run a scheduled operation. This would not only result in dupli-
cate operations but possibly an error too. Similarly, if a server goes down and two system
administrators restart it, then the end result would be unpredictable.

You can ensure that a single instance of a daemon runs by including a code snippet at the
beginning of the server program that accesses a lock of some sort. The lock may be a spin lock
(i.e., a binary semaphore), a lock for exclusive access of a record, or a lock for exclusive access
of a file. The actual code for the service offered by the server is executed only after this lock
has been acquired, ensuring that only one copy of the program executes. In UNIX, daemons
are usually designed to use a lock file for this purpose. The lock files for UNIX daemons are
located in the /var/spool directory in PC-BSD and in the /var/run directory in Solaris.

Files may be locked for mutually exclusive access by using the flock() system call.
Here is a brief description of the flock() system call.

#include <sys/file.h>
int flock(int fd, int operation);

Success: 0
Failure: –1 and kernel variable errno set to indicate the type of error

Here, fd is the descriptor of an open file and operation specifies the type of access
requested. The possible values of the operation argument are shown in Table 21.2.

The flock() system call may fail for the reasons listed in Table 21.3.

TABLE 21.2 Possible Values of the operation Parameter and Their Effect on the
File Referred to by the Descriptor fd

Value of operation Effect on the File Referred to by fd

LOCK_SH Lock the file for shared access
LOCK_EX Lock the file for mutually exclusive access
LOCK_NB Do not block while locking the file (i.e., nonblocking locking)
LOCK_UN Unlock the file

System Programming IV    ◾    971

You can use the following piece of code to lock a file for mutual exclusion. You open or
create the LOCKFILE and lock it for exclusive access using the flock() system call. We use
the nonblocking call so that if the given file is already locked, the program terminates. Since
we do not have write permission to the /var/spool and /var/run directories, we place the lock
file in the /usr/home/sarwar/Servers directory—that is, a user’s home directory in PC-BSD.

#include <sys/file.h>
#include <sys/stat.h>
#define LOCKFILE "/usr/home/sarwar/Servers/testd.lock"
#define LOCKMODE (S_IRUSR|S_IWUSR|S_IWGRP|S_IROTH)
...
/* Open (or create) LOCKFILE */
lock = open(LOCKFILE, O_RDWR | O_CREAT, LOCKMODE);
if (lock < 0) {
 perror("open failed to create LOCKFILE");
 exit(1);
}
/* Lock LOCKFILE for mutually exclusive access */
if (flock(lock, LOCK_EX | LOCK_NB)) {
 perror("flock failed to obtain exclusive lock for file");
 exit(1);
}

The flock() system call is simple and portable across fork(). However, it is not avail-
able on all UNIX platforms, including Solaris. The fcntl() system call may be used for
performing such operations on open files that may not be performed with other system
calls, including locking files for shared or exclusive access. The fcntl() system call is
a little harder to use— it does not hold locks across fork(), the lock on a file is released
when a close() system call is used on its descriptor—but it works on most UNIX sys-
tems, including Solaris. Here is a brief description of the fcntl() system call.

#include <sys/types.h>
#include <unistd.h>
#include <fcntl.h>
int fcntl(int fd, int cmd, /* arg */ ...);

Success: 0
Failure: –1 and kernel variable errno set to indicate the type of error

TABLE 21.3 Reasons for flock() to Fail

Reason for Failure Value of errno

The LOCK_NB option was specified and the file was already locked EWOULDBLOCK

The fd argument is not a valid descriptor EBADF

The fd argument does not refer to a file EINVAL

The fd argument refers to an object that does not support file locking EOPNOTSUPP

No locks are available ENOLCK

972 ◾ UNIX: The Textbook, Third Edition

The cmd argument is the operation to be performed on the open file with descriptor
fd. The data type, value, and use of the last argument depend on the value of the cmd
argument. In this section, we are only interested in discussing commands that are used for
file locking. There are two commands that may be used for this purpose: F _ SETLK and
F _ SETLKW. Each command sets or clears a file segment lock according to the descrip-
tion of the lock given in the third argument via a pointer to a variable of type struct
flock. The lock may be shared (read) or exclusive (write).

With F _ SETLK as the third argument, the fcntl() call returns immediately with a
value of –1 if a lock cannot be set. The F _ SETLKW command is similar to the F _ SETLK
command, except that in the case of F _ SETLKW the calling process waits (i.e., blocks)
if other locks have blocked a shared or mutually exclusive lock. The process stays blocked
until the request is satisfied. During this wait, if fcntl() is interrupted, it returns –1 and
errno is set to EINTR.

The flock structure has at least the following fields:

struct flock {
 short l_type; /* lock operation type */
 short l_whence; /* lock base indicator */
 off_t l_start; /* starting offset from base */
 off_t l_len; /* lock length in consecutive bytes; */
 /* l_len == 0 means until end of file */
 int l_sysid; /* system ID running process holding lock */
 pid_t l_pid; /* process ID of process holding lock */
 ...
}

The value of l _ whence may be SEEK _ SET, SEEK _ CUR, or SEEK _ END, to
indicate that the relative offset l _ start bytes is from the start of the file, the current
position of the file pointer, or the EOF, respectively. The file will be locked if l _ len and
l _ start are set to 0 each and l _ whence is set to SEEK _ SET. The l _ type field
is set to F _ RDLCK for shared (read) lock and F _ WRLCK for exclusive (write) lock.

In order for our code to be portable to Solaris, we have made a few changes to it. These
changes are as follows. After these changes have been made, the code will run on both
PC-BSD and Solaris systems.

 1. Include the following header files in the already existing list of header files.

#include <fcntl.h>
#include <unistd.h>
#include <sys/file.h>
#include <sys/stat.h>

 2. Create the ~/Servers directory on your system.

 3. The preprocessor directive to define LOCKFILE on Solaris and PC-BSD systems
should be as follows:

System Programming IV    ◾    973

#ifdef __sun
#define LOCKFILE "/export/home/sarwar/Servers/testd.lock"
#else
#define LOCKFILE "/usr/home/sarwar/Servers/testd.lock"
#endif

 4. Use a variable of the struct flock type.

struct flock lock;

 5. The conditional compilation of file-locking code for Solaris and PC-BSD replaces the
code for file locking on PC-BSD.

#ifdef __sun
 /* Set lock */
 lock.l_start = 0;
 lock.l_len = 0;
 lock.l_type = F_WRLCK;
 lock.l_whence = SEEK_SET;

 /* Lock LOCKFILE for mutually exclusive access */
 if (fcntl(lockfd, F_SETLK, &lock)) {
 perror("Daemon already running");
 close(lockfd);
 exit(1);
 }
#else
 /* Lock LOCKFILE for mutually exclusive access */
 if (flock(lock, LOCK_EX | LOCK_NB)) {
 perror("Daemon already running");
 close(lockfd);
 exit(1);
 }
#endif

We enhance the daemon.c program discussed in Section 21.6 with the code fragments
discussed in this section, according to steps a) to e), for compilation and execution on
both PC-BSD and Solaris machines. The following session shows the new version of the
daemon.c program, its compilation, and the running of the executable code on a PC-BSD
machine. The program works correctly on our Solaris machine too. Because of the lock,
only one instance of the daemon may run at any given time.

% cat lock_daemon.c
#include <fcntl.h>
#include <unistd.h>
#include <sys/file.h>
#include <sys/signal.h>
#include <sys/stat.h>

974 ◾ UNIX: The Textbook, Third Edition

#define SIZE 32
#define LOCKMODE (S_IRUSR|S_IWUSR|S_IWGRP|S_IROTH)
#ifdef __sun
#define LOCKFILE "/export/home/sarwar/Servers/testd.lock"
#else
#define LOCKFILE "/usr/home/sarwar/Servers/testd.lock"
#endif

int main(void)
{
 pid_t pid, lockfd;
 char buf[SIZE];
 struct flock lock;

 pid = fork();
 if (pid == -1) {
 perror("Fork failed");
 exit(1);
 }
 /* Parent process */
 if (pid > 0) {
 exit(0);
 }
 /* Child process: Continues and becomes the server */
 /* process running forever as a daemon */

 /* Ignore signals */
 signal(SIGHUP, SIG_IGN);
 signal(SIGINT, SIG_IGN);

 /* Set umask */
 (void) umask(027);

 /* Allow only a single copy of the daemon */
 /* Open (or create) LOCKFILE */
 lockfd = open(LOCKFILE, O_RDWR | O_CREAT, LOCKMODE);
 if (lockfd == -1) {
 perror("open failed to create LOCKFILE");
 exit(1);
 }

#ifdef __sun
 /* Set lock */
 lock.l_start = 0;
 lock.l_len = 0;
 lock.l_type = F_WRLCK;
 lock.l_whence = SEEK_SET;

 /* Lock LOCKFILE for mutually exclusive access */
 if (fcntl(lockfd, F_SETLK, &lock)) {

System Programming IV    ◾    975

 perror("Daemon already running");
 close(lockfd);
 exit(1);
 }
#else
 /* Lock LOCKFILE for mutually exclusive access */
 if (flock(lockfd, LOCK_EX | LOCK_NB)) {
 perror("Daemon already running");
 close(lockfd);
 exit(1);
 }
#endif

 (void) sprintf(buf, "Daemon PID: %d\n", getpid());
 (void) write(1, buf, strlen(buf));
 while (1) {
 /* Wait for a client request */
 /* Serve the client request */
 sleep(10); /* Dummy code */
 }
}
% gcc46 -w lock_daemon.c -o daemon
% ./daemon
Daemon PID: 18521
% ps
 PID TT STAT TIME COMMAND
12930 2 Ss 0:00.62 -csh (csh)
18521 2 S 0:00.00 daemon
18528 2 R+ 0:00.01 ps
% ./daemon
Daemon already running: Resource temporarily unavailable
% ps
 PID TT STAT TIME COMMAND
12930 2 Ss 0:00.63 -csh (csh)
18521 2 S 0:00.00 daemon
18555 2 R+ 0:00.01 ps
% kill -9 18521
% ps
 PID TT STAT TIME COMMAND
12930 2 Ss 0:00.66 -csh (csh)
18587 2 R+ 0:00.01 ps
%

EXERCISE 21.5

Repeat the preceding session on your system. Does it work?

976 ◾ UNIX: The Textbook, Third Edition

21.8 LOCATING A DAEMON
In order to easily locate a daemon that is misbehaving or has crashed, system programmers
normally record its PID in the lock file as soon as the daemon has been created and the
relevant file has been locked for exclusive access. You may use the following code snippet
after the file-locking code shown in Section 21.7 has been executed.

(void) sprintf(buf, "Daemon Name: %d\n", getpid());
(void) write(lock, buf, strlen(buf));

EXERCISE 21.6

Insert the preceding code in the daemon.c program used in Exercise 21.5. Compile and
execute the program. Does it work? How do you know?

21.9 DETACHING THE TERMINAL FROM A DAEMON
Since daemons run in the background, there is no need to have any terminal attached to
them because they are used to either provide operating system services to system adminis-
trators without human intervention (e.g., cron), provide services to the UNIX kernel (e.g.,
pageda), or communicate with other processes (clients) in a client–server model such as a
Web server (httpd). You can detach the terminal from a daemon by using the setsid()
system call. The setsid() system call creates a new session with the calling process as
its session leader. The calling process is also the group leader of the newly created process
group and has no controlling terminal. Here is a brief description of this call.

#include <unistd.h>
pid_t setsid();

Success: Process group ID of the new process group, which is the same as the PID of the caller process
Failure: –1 and kernel variable errno set to indicate the type of error

The call may fail and errno set to EPERM if the caller process is already a process group
leader or the process group ID of another process matches the PID of the caller process.

You may use the following piece of code to detach the terminal from the process.

pid_t sid;
...
if ((sid = setsid()) == -1) {
 perror("setsid failed");
 exit(1);
}

EXERCISE 21.7

Enhance the daemon.c program created in Exercise 21.6 with the preceding code fragment.
Compile and execute the program.

System Programming IV    ◾    977

21.10 CHANGING THE CURRENT WORKING DIRECTORY
It is important to change the current working directory for a server to a known and safe
directory, but not your home directory. Doing so is useful for several reasons:

 1. It is easy to locate the core file if the system administrator terminates a misbehaving
server or a server crashes (aborts) for some reason.

 2. If a process is running in a directory, the file system that contains this directory
cannot be unmounted without first terminating the service. Thus, you as system
administrator would not be able to perform any tasks that require this file system
(containing your home directory) to be unmounted.

It is difficult to identify a single directory that is appropriate for all servers. For this
reason, the root directory is chosen for almost all servers. You make the root directory the
current working directory for your server by adding the following piece of code to your
server:

if ((chdir("/")) == -1) {
 perror("chdir failed");
 exit(1);
}

EXERCISE 21.8

Enhance the daemon.c program created in Exercise 21.7 with the preceding piece of code.
Compile and execute the program.

21.11 CLOSING INHERITED STANDARD DESCRIPTORS
AND OPENING STANDARD DESCRIPTORS

Since the child process, now the server process, inherits all open descriptors of its parent, it
is important for the server process to close all of these open descriptors so that it does not
fall short of descriptors while serving client requests. However, you first need to identify
the open descriptors and then close them. If the child process does not inherit any open
descriptor, then it needs to close only the standard descriptors. This is usually the case,
unless you overlay the code for the child process with another executable using a call from
the exec() family and the descriptors are not marked close-on-exec. You can close the
standard descriptors using the following code snippet:

int fd;
...
for (fd = 2; fd >= 0; fd--)
if (close(fd) == -1) {
 perror("close failed");
 exit(1);
}

978 ◾ UNIX: The Textbook, Third Edition

Most daemons do not explicitly deal with standard descriptors. However, many library
functions assume that standard descriptors are open. Thus, in order to make such library
calls work properly in your daemons, you should open the three standard files but attach
them to a benign device. The UNIX black hole, /dev/null, is one such device that returns
EOF on a read and consumes whatever you write to it. After closing all inherited descrip-
tors you may use the following code fragment to open standard files and attach them all
to /dev/null.

int fd;
...
if ((fd=open("/dev/null",O_RDWR)) == -1) {
 perror("open failed");
 exit(1);
}
(void) dup(fd);
(void) dup(fd);

EXERCISE 21.9

Enhance the daemon.c program created in Exercise 21.8 with the preceding code snippet.
Compile and execute the program.

21.12 WAITING FOR ALL CHILD PROCESSES TO TERMINATE
As discussed in Chapter 20, several Internet services such as ftp are offered via server
processes that provide services to client processes through multiple slave processes, one per
client. The slave processes are precreated and/or created dynamically by the main server
process when needed. The main server process is also known as the master server process.
Such servers are known as concurrent, connection-oriented servers. Such a server runs in
an infinite loop with the code structure shown in Figure 21.1.

Because such concurrent servers keep creating slave processes as client requests arrive,
it is important to terminate a slave process properly and remove it from the system after
it has provided its service to the client process. You can do so by using the exit() and
wait()calls in tandem, in the slave and master processes, respectively. If the master server
process does not remove the slave processes after they have provided their services, a large
number of zombie processes will be created in the system. The problem is that since a
concurrent server has to wait for the next client request after creating a slave process, it

while (1) {
 wait for a client request
 create a slave process when a client request arrives
 slave handles the client request
 dispose the slave process
}

FIGURE 21.1 Structure of a concurrent server.

System Programming IV    ◾    979

cannot explicitly wait for a slave process to terminate by using the wait() system call.
Fortunately, UNIX signals come to our rescue!

Recall that when a process terminates, the UNIX kernel sends the SIGCHLD signal to its
parent. A concurrent server process may use this feature to intercept all SIGCHLD signals
to remove the terminating slave processes from the system by using the code structure
shown in Figure 21.2.

Recall that the WNOHANG option for the wait3() system call makes it a nonblock-
ing call in the sense that if it does not find a child process that has performed exit(),
it returns –1. When wait3() returns –1, the control returns from the zombie _
gatherer() function to the line of code in the main function that was interrupted by
SIGCHLD.

A server like Apache will retain a number of child processes (slaves). The server always
ensures a minimum number of children (e.g., ten), so that if you only have eight, it gener-
ates two more, and it also maintains a child until a number of uses has been reached. Also,
a server can start a new child process as soon as an old one is killed off rather than waiting
for a new request to come in. This is more efficient in that the request will not have to wait
for a child to be spawned. In order to make it fail safe, Apache also uses three to five master
processes, with one acting as leader server and the rest as standby servers. When the leader
crashes or is brought down for maintenance, one of the standby servers automatically takes
over as leader without disrupting the running services.

EXERCISE 21.10

Enhance the daemon.c program created in Exercise 21.9 with the code to remove the chil-
dren that have completed their tasks and terminated. Compile and execute the program.

void zombie _ gatherer(int);
...
int main(...)
{
 ...
 signal (SIGCHLD, zombie _ gatherer);
 while(1) {
 wait for a client request
 create a slave process when a client request arrives
 slave handles the client request
 }
 ...
}

void zombie _ gatherer(int signal)
{
 int status;

 while (wait3(&status, WNOHANG, 0) >= 0)
 ;
}

FIGURE 21.2 Structure of a concurrent, connection-oriented server.

980 ◾ UNIX: The Textbook, Third Edition

Since you are using the wait3() system call, make sure to include the <sys/wait.h> file in
your program.

21.13 COMPLETE SAMPLE SERVER
In this section, we demonstrate the complete server program after including in the
daemon.c program all of the features discussed in this chapter. Since we use the
wait3() system call in the zombie _ gatherer() function, we need to include
the <sys/wait.h> file in the list of existing header files. The complete server code is in
the test_server.c file shown in the following session. It runs on both UNIX platforms,
PC-BSD and Solaris.

% cat test_server.c
#include <fcntl.h>
#include <unistd.h>
#include <sys/file.h>
#include <sys/signal.h>
#include <sys/stat.h>
#include <sys/wait.h>

#define SIZE 32
#define LOCKMODE (S_IRUSR|S_IWUSR|S_IWGRP|S_IROTH)
#ifdef __sun
#define LOCKFILE "/export/home/sarwar/Servers/testd.lock"
#else
#define LOCKFILE "/usr/home/sarwar/Servers/testd.lock"
#endif

void zombie_gatherer(int);

int main(void)
{
 int fd, lockfd;
 pid_t pid, sid;
 char buf[SIZE];
 struct flock lock;

 pid = fork();
 if (pid == -1) {
 perror("fork failed");
 exit(1);
 }
 /* Parent process */
 if (pid > 0) {
 exit(0);
 }
 /* Child process: Continues and becomes the server */
 /* process running forever as a daemon */

System Programming IV    ◾    981

 /* Ignore signals */
 signal(SIGHUP, SIG_IGN);
 signal(SIGINT, SIG_IGN);

 /* Intercept SIGCHLD and cleanup the terminating child/
Children */

 signal (SIGCHLD, zombie_gatherer);

 /* Set umask */
 (void) umask(027);

 /* Allow only a single copy of the daemon */
 /* Open (or create) LOCKFILE */
 lockfd = open(LOCKFILE, O_RDWR | O_CREAT, LOCKMODE);
 if (lockfd == -1) {
 perror("open failed to create LOCKFILE");
 exit(1);
 }

#ifdef __sun
 /* Set lock */
 lock.l_start = 0;
 lock.l_len = 0;
 lock.l_type = F_WRLCK;
 lock.l_whence = SEEK_SET;

 /* Lock LOCKFILE for mutually exclusive access */
 if (fcntl(lockfd, F_SETLK, &lock)) {
 perror("Daemon already running");
 close(lockfd);
 exit(1);
 }
#else
 /* Lock LOCKFILE for mutually exclusive access */
 if (flock(lockfd, LOCK_EX | LOCK_NB)) {
 perror("Daemon already running");
 close(lockfd);
 exit(1);
 }
#endif

 /* Save daemon PID in the lock file */
 (void) sprintf(buf, "testd PID: %d\n", getpid());
 (void) write(lockfd, buf, strlen(buf));

 /* Detach terminal from the daemon
 if ((sid = setsid()) == -1) {
 perror("setsid failed");
 exit(1);
 }

982 ◾ UNIX: The Textbook, Third Edition

 /* Change working directory */
 if ((chdir("/")) == -1) {
 perror("chdir failed");
 exit(1);
 }

 /* Close inherited standard descriptors */
 for (fd = 2; fd >= 0; fd--)
 if (close(fd) == -1) {
 perror("close failed");
 exit(1);
 }

 /* Open standard descriptors */
 if ((fd=open("/dev/null",O_RDWR)) == -1) {
 perror("open failed");
 exit(1);
 }
 (void) dup(fd);
 (void) dup(fd);

 /* Main server loop */
 while (1) {
 /* Wait for a client request */
 /* Serve the client request */
 sleep(10); /* Dummy code */
 }
}

void zombie_gatherer(int signal)
{
 int status;

 while (wait3(&status, WNOHANG, 0) >= 0)
 ;
}
%

In the following session, we compile and run this program on a PC-BSD machine to show
how the daemon works as coded. The executable code is saved in the testd file. We run this
daemon with the testd command. The output of the ps command shows that the PID of
the daemon is 53163. The outputs of the ls -l /usr/home/sarwar/Servers and more
/usr/home/sarwar/Servers/testd.lock commands show that the testd.lock file is
in fact created and contains the PID of the daemon. When we try to rerun the daemon, we
get an error message that the daemon is already running, confirming that, as programmed,
only one instance of the daemon may run at any given time. We remove the daemon from
the system with the kill -9 53163 command. If you don’t remove the daemon, it will
continue to run even after you have logged out because it ignores the SIGHUP signal.

System Programming IV    ◾    983

% gcc46 -w test_server.c -o testd
% ./testd
% ps
 PID TT STAT TIME COMMAND
51375 1 Ss 0:00.37 -csh (csh)
53163 1 S 0:00.00 testd
53182 1 R+ 0:00.01 ps
% more ~/Servers/testd.lock
testd PID: 53163
% ls -l ~/Servers
total 5
-rw------- 1 sarwar faculty 17 Apr 14 00:15 testd.lock
% ./testd
Daemon already running: Resource temporarily unavailable
% ps
 PID TT STAT TIME COMMAND
51375 1 Ss 0:00.39 -csh (csh)
53163 1 S 0:00.00 testd
53242 1 R+ 0:00.01 ps
% kill -9 53163
%

Here is a test of the testd daemon on Solaris. Note that the daemon works as expected
on the Solaris system too.

$ gcc -w test_server.c -o testd
$./testd
$ ps
 PID TTY TIME CMD
 1661 pts/2 0:00 testd
 1662 pts/2 0:00 ps
 1528 pts/2 0:00 bash
$ more ~/Servers/testd.lock
testd PID: 1661
$ ls -l ~/Servers
total 9
-rw------- 1 sarwar faculty 16 Apr 14 05:03 testd.lock
$./testd
Daemon already running: Resource temporarily unavailable
$ ps
 PID TTY TIME CMD
 1661 pts/2 0:00 testd
 1667 pts/2 0:00 ps
 1528 pts/2 0:00 bash
$ kill -9 1661
$

984 ◾ UNIX: The Textbook, Third Edition

EXERCISE 21.11

Compile and execute the test_server.c program discussed in this section. Does the pro-
gram work on your system as expected? Report any error that your program generates and
give reasons for the errors.

21.14 STRUCTURE OF A PRODUCTION SERVER
A production server must handle all of the issues discussed in this chapter. The structure of
a concurrent, connection-oriented production server with true process-level concurrency
is shown in Figure 21.3.

21.15 WEB RESOURCES
Table 21.4 lists useful Web sites for UNIX system programming and related topics.

SUMMARY
We discussed a number of important topics, primarily related to server design. We dis-
cussed the issue of interrupted system calls, the system calls that may be interrupted and
the circumstances under which these interruptions may occur, and restarting interrupted
system calls. We then discussed thread-safe and reentrant functions, their importance,
and what may cause a function to be non–thread safe and non-reentrant.

 1. Create a child process
 2. Terminate the parent process, making the child execute in the

background as a daemon
 3. Set signals according to the requirements of the server (ignored,

default action taken, or programmer defined action taken)
 4. Set the umask
 5. Open a file for mutually exclusive access to ensure that only one

copy of the daemon may run at a given time; such a file is known as
the lock file

 6. Save the PID of the daemon in the lock file for quick identification
of the daemon/server

 7. Detach the terminal from the daemon
 8. Change current working directory
 9. Close inherited standard descriptors
 10. Open the standard files and attach them to a benign device such as

/dev/null
 11. Execute the true server code using an infinite loop as shown below

while (1) { /* Master server process */
 a. Wait for a client request
 b. Accept the client request
 c. Create a slave process, hand over the client request to the slave

process, and go back to wait for another client request
 d. Slave process serves the client request(s) and exits
 e. Remove from the system the slave process that has completed

its wok
 }

FIGURE 21.3 Structure of a truly concurrent, connection-oriented production server.

System Programming IV    ◾    985

We then discussed the various issues important for the design of a production server.
These issues are: creating a daemon, setting signals and umask, ensuring that only a
single copy of a process may run at a given time, saving the PID of the daemon at a
known place, detaching the terminal from the daemon, changing the working direc-
tory, closing inherited standard descriptors, and opening standard descriptors and
attaching them to a benign device; finally, we presented a simple server that has all
of these features. Along the way, we discussed two methods of file locking using the
flock() and fcntl() system calls. At the end, we outlined the steps necessary for
the creation of a concurrent, connection-oriented production server that uses slave
processes to serve clients.

Throughout the chapter, we showed the uses of the various system calls and library
functions in small C code fragments and programs to illustrate different issues related to
the design of UNIX servers. Finally, we combined all the code fragments to get the final
version of a server that runs on both Solaris and PC-BSD systems. In order to make the
code portable across all UNIX systems, remove the conditional compilation and only com-
pile the file-locking code based on fcntl().

QUESTIONS AND PROBLEMS

 1. When does the issue of restarting a system call arise?

 2. What is a thread-safe system call? What are the issues that make a system call not
thread safe.

 3. What is reentrant code? Why is this property important in a program? Give examples
of a few common applications or tools that are reentrant.

 4. What are the implications of reentrant code from the point of view of memory
management on a time-sharing system? Give a small example to illustrate your
answer.

 5. Which of the following functions are thread safe and/or reentrant? Explain your
answers.

TABLE 21.4 Web Resources for Practical Consideration in Server Design

https://www.freebsd.org/ Home page for FreeBSD. Contains a lot of useful
material, including FreeBSD source, manual
pages, support, SVN repository, forums, user
groups, etc.

https://www.freebsd.org/doc/
handbook/

The page for FreeBSD documentation. An excellent
resource for anything you want to know about
FreeBSD

https://www.netbsd.org/docs/guide/
en/chap-inetd.html

An excellent page on the UNIX superserver, inetd

https://www.freebsd.org/doc/
handbook/network-inetd.html

Another excellent page on the UNIX superserver,
inetd

https://www.freebsd.org/doc/handbook/network-inetd.html
https://www.netbsd.org/docs/guide/en/chap-inetd.html
https://www.freebsd.org/doc/handbook/
https://www.freebsd.org/doc/handbook/network-inetd.html
https://www.netbsd.org/docs/guide/en/chap-inetd.html
https://www.freebsd.org/doc/handbook/
https://www.freebsd.org/

986 ◾ UNIX: The Textbook, Third Edition

a. int test;
void swap(int *first, int *b)
{
 test = *first;
 *first = *b;
 *b = test;
}

b. int test;
void swap(int *first, int *b)
{
 int q;

 q = test;
 test = *first;
 *first = *b;
 *b = test;
 test = q;
}

c. int sec_var = 1;

int first()
{
 sec_var = sec_var + 2;
 return sec_var;
}

d. int sec()
{
 return first() + 2;
}

e. int first(int i)
{
 return i + 2;
}

f. int sec(int i)
{
 return first(i) + 2;
}

 6. What is a daemon? Name five daemons in a typical UNIX system. Write down the
purpose of each.

 7. Why should a server close all inherited descriptors?

 8. Why does a server process open the standard descriptors after closing all inherited
descriptors? Why are the newly opened standard descriptors attached to a device
like /dev/null?

 9. What kind of locks can be placed on a file using the flock() system call? What is
the purpose of each lock?

 10. Suppose a process has locked a file ABC for exclusive access using the flock() sys-
tem call. The process forks a child and the child unlocks the file. Will the parent still
have exclusive access to file? Explain your answer.

 11. Why should a daemon be coded such that only one instance of it may execute at any
given time? What is the most common method of doing so? Write a small server pro-
gram in C that uses this method. Compile and run the program, and show that your
method works.

 12. Consider the code shown in Section 21.7 for locking a file for mutually exclusive
access by a process. Change

#define LOCKFILE "/usr/home/sarwar/Servers/testd.lock"

 to

#define LOCKFILE "~/Servers/testd.lock"

System Programming IV    ◾    987

 Make a program out of the code with this change. Compile and run the program.
Does the program work as expected? If it produces any errors, identify the buggy
statement in the program, correct it, and show that the corrected version works
properly.

 13. The flock() and fcntl() system calls may be used to lock files for mutually exclu-
sive access. Which of these locks may be passed on to children? Which are supported
on most UNIX platforms?

 14. Write a connection-triggered server that becomes a daemon and provides the date
service; further, it allows only a single copy of the daemon to run. Test run the server
with a client and show the complete session that captures the running of the server
and client. Test the client–server model by running it on the same machine and on
different machines.

 15. In some UNIX systems, including Solaris, the signal handler is established again
after the signal has occurred. Why? On such systems, what would happen if:

 a. The signal handler is not reestablished after the signal has occurred?
 b. The signal occurs before the signal handler is reestablished?

 16. The malloc() and free() functions are not reentrant. What do you think are the
reasons?

 17. What is the purpose of the WNOHANG option in the wait3() system call?

http://taylorandfrancis.com

989

C h a p t e r 22

UNIX X Window
System GUI Basics

Objectives

• To explain the relationship of the components of an X Window System–based graphi-
cal user interface to UNIX

• To describe the basic concepts and implementation of the X Window System

• To give an overview of the PC-BSD FVWM window management system

• To describe and give examples of client application program coding for the X Window
System

• To cover the commands and primitives

 xterm

22.1 INTRODUCTION
This chapter presents the major objectives as follows. To get the most out of it, a beginner
should go through each topic listed in the order shown.

• X Window System model: We first define the X Window System, a network protocol
for graphical interaction between a user and one or more computer systems running
UNIX. This means that it is a software system specifically designed to work over a
network to pass user-generated events to an application program, and then channel
graphical responses as graphical output back to the user. The forms of interactiv-
ity, via event-driven input and multiwindow display output, are detailed from the
user’s perspective. We illustrate and explain the basic X Window System at a high
level —that is, closer to the user rather than the hardware in terms of operability and
functionality.

990 ◾ UNIX: The Textbook, Third Edition

• Desktop management systems: Since the chief arbiter of the user–computer interac-
tive dialog is the desktop management system or window management system, we then
define and detail the functionality of these kinds of programs. We give a functional
overview of a generic window manager, named FVWM—most often used in what is
termed a nonintegrated installation—to expose you to the look and feel of a “vanilla”
window manager and its capabilities. We describe the operations of the KDE4 desk-
top management systems used in PC-BSD, the most important implementations of a
desktop manager in our base UNIX system. We describe and give an overview of the
default window manager in this desktop management system.

• X Window System client application program coding: We then go on to describe how
to work with the X Window System at a lower level of operability by giving a basic
description of how to write a client application program for the X Window System,
and then by showing the use of some programming toolkits that facilitate this pro-
cess. We give basic examples of various methodologies: programming using Xlib/
XCB and programming using Qt toolkit libraries for the KDE4 desktop manager in
PC-BSD.

22.1.1 User–Application Software Interaction Model

When you sit at a computer and work with an application program to accomplish specific
tasks, you are primarily concerned with achieving the results that the computer provides.
You are shielded from the details of exactly how the computer turns the motions of your
hands and fingers into those results. One way of seeing the process that the computer goes
through is shown in Figure 22.1, where you, the user, harness the intermediary facilities of
software components, either locally on the same workstation, or globally over a network or
the Internet, to work with the application program.

The fundamental assumption of this chapter is that a graphical user interface (GUI)
can be used to most efficiently control the dialog between a single user and an application
program running on a stand-alone or networked computer, using the intermediaries of
the X Window System and the UNIX operating system. The components of a user’s dialog

USER

X protocol

Window
manager

Desktop
manager

Application
software

UNIX

FIGURE 22.1 General components of a GUI.

UNIX X Window System GUI Basics    ◾    991

with an application program can be simplified to the software component blocks shown
in Figure 22.1.

For example, a user presses a mouse button to signify a graphical “pick” in an applica-
tion window shown on screen. That choice, or event, is recognized by and acted upon by
the window manager controlling that window. This event is passed along to the desktop
manager, which uses the protocols of the X Window System to pass the request to UNIX.
UNIX then passes the request to the application software program for further disposition.
Another example is the reverse of the previous one. An application software program gen-
erates a request for graphical service, passes this request to UNIX, which in turn passes the
request via the X Window System protocols to the desktop manager and window manager
to display the graphical request on the screen of the user’s computer.

It is important to note that you can either use the facilities of a nonintegrated GUI system
(i.e., one that only uses the functions of a window manager and the X Window System to
work within the UNIX environment) or an integrated GUI system, which uses the desktop
manager (and perhaps a session manager) as an intermediate software link in the chain
shown in Figure 22.1. For example, if you install UNIX on your computer, you may wish
to only install the X Window System and a default window manager, such as FVWM. This
would constitute a nonintegrated GUI installation. The event generation chain of inter-
activity as seen in Figure 22.1 would start at the user and proceed through the window
manager and then jump to the X Window System. An integrated approach would involve
installation of a desktop manager such as KDE4. The event generation chain of interactiv-
ity as seen in Figure 22.1 would start at the user and proceed through the window man-
ager, then desktop manager, and then to the X Window System. Most users will use the
integrated installation. Section 22.2 deals exclusively with a nonintegrated installation.
Section 22.3 deals with an integrated installation.

If you have done a nonintegrated installation of the X Window System and UNIX—for
example, by installing TrueOS without a GUI and then built the X Window System from
source code or package—and have not specified that the X Window System start auto-
matically when your computer boots up, you must type startx at the UNIX command
prompt in order for the X Window System and a default window manager to “take control”
of your display.

We have done an integrated installation of UNIX, with PC-BSD and the KDE desktop
environment. Be advised that when we show a nonintegrated installation example, we are
really showing a “mock” installation example, because we started from an integrated envi-
ronment to begin with!

We do not show the installation of an operating system like TrueOS (which, by default,
has a CUI exclusively) with the X Window System and FVWM built on top of it.

22.2 BASICS OF THE X WINDOW SYSTEM
22.2.1 What is the X Window System Similar to and What Advantage(s) Does it Have?

Contemporary user–computer interactivity falls into two basic categories, as mentioned in
previous chapters. In one category, where a character user interface (CUI) is implemented,
the user types commands on a command line using a keyboard, and components of the

992 ◾ UNIX: The Textbook, Third Edition

operating system handle this input and take appropriate action. In the other category, the
user gives input via a graphical user interface (GUI), and components of the operating sys-
tem take appropriate action. Of course there are also hybrid styles of interactivity which
are a mixture of these two categories. Up to this point in the book, you have relied almost
entirely on a CUI to activate the functionality of UNIX. In this chapter, you will be intro-
duced to a UNIX GUI system, known as the X Window System. The two foremost ques-
tions for the beginner concerning the X Window System are: What is it similar to, and
what advantage does it give me over the traditional UNIX CUI?

The answer to the first question is twofold. The X Window System is a network proto-
col developed to provide a GUI to the UNIX operating system; on the surface it appears
to the user like other popular operating system window managers, such as those found
on an Apple or in Microsoft Windows. (The current version of the X Window System
(Release 7.7) is what we used for our base PC-BSD UNIX system. There is an impor-
tant differentiation to make here between window system, window manager, and desktop
manager. Briefly stated, a window system provides the generic functionality of the GUI,
a window manager simply has particular implementations of the functionality provided
by the window system, and a desktop manager provides a graphical method of inter-
acting with the operating system. For example, interactive resizing of a window by the
user is a generic function of a window system, whereas using icons or slider buttons
is how it is accomplished in a particular window manager. The desktop manager pro-
vides the user with the graphic means to work with operating system functions such as
file maintenance. A desktop manager might present a picture of folders connected in a
tree-like structure and allow the user to manipulate files in those folders by dragging
and dropping icons. Certainly, a modern window manager can include some or all of
the functional features of a desktop manager. The role that a window manager plays
in the X Window System and examples of window manager functionality are given in
Section 22.2.3.

EXERCISE 22.1

What is the name of the desktop management system in PC-BSD?

EXERCISE 22.2

What is the name of the desktop management system in Solaris?

The first question can also be answered by giving an analogy: what the X Window System
does for a user of networked computers is exactly like what an operating system does for
the user of a stand-alone computer. On a stand-alone computer, the complex details of
managing the resources of the hardware of the computer to accomplish tasks are left to the
operating system. The user is shielded by the operating system from the complex hardware
details of actually accomplishing a task, such as copying a file from one place to another
on a fixed disk. On a system of networked computers, the X Window System manages

UNIX X Window System GUI Basics    ◾    993

the resources of the hardware of possibly many computers across the network to accom-
plish tasks for an individual user. Also, in a networked, distributed-system environment,
where many machines are hooked up via a communications link, the X Window System
serves transparently as a manager of the components of your interaction with application
programs and system resources; in other words, you can run an application program on
a machine that you are not sitting in front of, and the mechanics of interaction with the
application work exactly as if the application were executing on a stand-alone machine that
was right on the desk in front of you.

The most obvious answer to the second question is that you are able to quickly and
easily accomplish predefined tasks by using a GUI under UNIX. For example, dragging
icons to delete files is faster than typing commands to do the same thing, particularly if
the file names are long and complex! Another not so obvious answer is that your style of
interaction with the operating system will be very similar to your style of interaction with
applications. For example, modern computer programming and engineering applications
are graphics based, and have a common look and feel; pull-down menus almost always
include functions such as cut, copy, paste, and so on. Having a GUI for UNIX makes for
uniformity of interaction between operating system and application.

22.2.2 The Key Components of Interactivity: Events and Requests

When you work with a computer, you provide input in a variety of ways, and the computer,
after doing some processing, gives you feedback in return. Limiting this feedback to text
and graphics, usually the computer responds by displaying information on the screen.

On a modern computer workstation, you are able to use several devices, such as keyboard,
mouse buttons, digitizing tablet, trackball, and so on, to provide input to an application
program in a style of interaction known as interrupt-driven interaction. The application is
processing data or in a wait state until signaled by a particular input device. Interrupts are
known as input events from one or more devices, which can be ordered in time by forming
a list or queue. With applications written for the X Window System, the client application
can then process this queue of input events, do the work necessary to form responses to
the events, and then output the responses as requests for graphical output to the server.
A schematic illustration of this is shown in Figure 22.2.

Event queue Input events (e.g.,
mouse button click)

Client requests as text/graphics
X server display

X window
client application

FIGURE 22.2 Event–request model.

994 ◾ UNIX: The Textbook, Third Edition

A key concept of the X Window System that sometimes causes confusion is the differ-
ence between server and client. One possible cause for confusion here is that traditionally,
on a computer network, a server is thought of as a machine that serves files to many other
machines, which is certainly a different function than an X Window System server. In the
X Window System, a server is the hardware and/or software that actually takes input from
and displays output to the user. For example, the keyboard, mouse, and display screen in
front of the user are part of the server; they graphically serve information to the user. The
client is an application program that connects to, receives input events from, and makes
output requests to the server. Be aware that sometimes in X Window System jargon, the
client is spoken of as a hardware device, like a workstation or computer. We will always use
the term client to refer to application program code, rather than to a piece of hardware. In
the X Window System, a server and client can exist on the same workstation or computer,
and use interprocess communication (IPC) mechanisms, such as UNIX pipes or sockets,
to transfer information between them. A local client is an application that is running on
the same machine that you are sitting in front of. A remote client is an application that is
running on a machine connected to your server via a network connection. Whether a cli-
ent application is local or remote, it still looks and feels exactly the same to the user of the X
Window System.

Looking at Figure 22.3, you will see three client applications, X, Y, and Z, displaying
their output on an X Window System server. Each of these applications is running on
a different machine. Client X is running on a machine linked to the X Window System
server via a LAN hookup, an Ethernet. Client Y is running on a machine linked to the X
Window System server via a wide area network, the Internet. Client Z is running directly
on the workstation that is the server, and uses UNIX sockets to display output requests on
the server screen. Something not illustrated in Figure 22.3 is that each of the clients X, Y,
and Z gets input events via this server as well.

Another critical aspect of the X Window System is that the GUI for each client is inde-
pendent of the GUI of the window manager itself. In other words, each client application
can open a window on the server screen, use its own style of GUI buttons, icons, pull-down

Window manager

Client Z

Client X

LAN WAN

Server display screen

Client Y

IPC

FIGURE 22.3 Client and server topologies.

UNIX X Window System GUI Basics    ◾    995

menus, and so on, and the window manager, which is simply just another client applica-
tion, handles the display of all other client windows. Figure 22.3 illustrates this point.

EXERCISE 22.3

If the client can queue events, do you think it would be advantageous for the server to
queue requests? Why?

EXERCISE 22.4

From what you know of network programming in UNIX, is the meaning of client–server
the same in network programming as it is in the X Window System? If it is not the same,
what is the salient difference?

The important aspect of the window manager being just another client of the X Window
System server is that you can use any of the available X Window System window manag-
ers to suit your particular needs. You can even use your own window manager, if you have
the time and resources to write the program code for one! It is worth noting that only one
window manager can be active on a given server at one time.

22.2.3 The Role of a Window Manager in the User Interface, and FVWM for PC-BSD

FVWM, the X Window System window manager, is not installed by default on our
PC-BSD system. So, in order to follow along with the following sections, you need to use
the AppCafe to install it. On a PC-BSD system, if that has not already been done by the
system administrator on your system you can do this for yourself by using the procedures
of the AppCafe.

Once you have installed the FVWM window manager, you can log out and then log in
again to your PC-BSD system, and the initial login window that appears will allow you to
choose FVWM as the window manager.

The desktop management system that we install by default under our base PC-BSD
UNIX system is KDE4, and the window manager that we use to show a nonintegrated
environment look and feel is release 2.6.5_3 of FVWM.

As implied in the previous section, the user interface of the X Window System has two
basic parts: the application user interface, which is how each client application presents
itself in one or more windows on the server screen display, and the window manager or
management interface, which controls the display of and organizes all client windows. The
application user interface is built into (i.e., written in a high-level programming language
like C or C++ along with) a client application, and utilizes subroutine calls to a library of
basic X Window protocol operatives. In this section we concentrate on and discuss the
general functions that a window manager provides to control the appearance and operabil-
ity of client application windows; in particular, we examine FVWM, a standard window
manager that comes ready to run with the X Window System. All window managers in the
X Window System are highly customizable, both by the system administrator, and by the

996 ◾ UNIX: The Textbook, Third Edition

user. Compare this to other window managers that are built into the operating system and
cannot be customized to any real extent. The appearance and functionality of FVWM can
be modified by you, as we will show in the final subsections of this section.

22.2.3.1 Functions and Appearance of the Window Manager Interface
Similar to the look and feel and functionality of Microsoft Windows or OS X, you will rec-
ognize many of the general functions that a UNIX X Window System window manager pro-
vides, shown in Table 22.1. These functions are particular implementations of possibly more
than one generic window system service, those provided by the X Window System protocol.

22.2.3.2 The Appearance and Operation of FVWM
It is worth examining and identifying the components of a typical X Window System win-
dow display. Figure 22.4 shows a full-screen display using the FVWM window manager,
and illustrates some particular examples of the implementation of the functions found in
Table 22.1.

There are a few general things to notice about the screen display shown in Figure 22.4.
The background of this screen display is known as the root window, labeled “R.” All other
windows that open on the screen are children of this parent window. In fact, a single par-
ent window of one client can itself spawn many subwindows, which are all children of that
client’s parent. An interesting and important aspect of this relationship is found when par-
ent windows obscure or cover child windows, or when child windows cannot exist outside
of the frame defined for the parent window. In the first instance, simply uncovering the
child, if this is possible, allows you to operate in the child window. In the second instance,
the parent window may become very cluttered due to the existence of too many uncovered
children on top of it. Figure 22.4 shows no covered windows, and visually is similar to what
is known as a tiled display.

When you hold down the left-most (first), middle, or right-most (third) mouse button
when the graphics cursor is in the root window, you are given the opportunity to utilize

TABLE 22.1 Window Manager General Functions

Item Function Description

A (De)iconify window Reduce window to a small, representative picture, or enlarge to a full size
window

B Create new window Launch or run a new client application
C CUI to operating system Allows user to open one or more windows and type commands into

those windows
D Desktop management Graphical file maintenance, speed buttons, special clients like time-of-day

clock
E Destroy window Close connection between server and client
F Event focus Specifies which client is receiving events from devices like mouse,

keyboard, etc.
G Modify window Resize, move, stack, tile one or more windows
H Virtual screens More than one screen area mapped onto the physical screen of the server
I Pop-up/pull-down

menus
Utility menus activated by holding down mouse buttons to run client
applications

UNIX X Window System GUI Basics    ◾    997

pop-up or cascading pull-down menus (function I in Table 22.1). Typically, these menus
fall into three general categories. Depending on how FVWM has been configured at instal-
lation, one button may present a cascading pull-down menu of predefined client applica-
tions that you can run by making a menu choice.

An example of the cascading choices found on a typical pull-down menu of this type is
shown in Figure 22.5. The cascading menus found in this figure are activated by pressing
and holding down the left-most mouse button when the cursor is in the root window.

Hint: At the bottom of the root menu, there is a choice to Exit Fvwm. When you make
this choice, another fly-out menu of choices is presented that allows you to Restart
Fvwm, so you don’t have to completely log off the system to restart FVWM!

The middle mouse button displays a menu of window modification operations that you
can perform by making a menu choice. Typically these modification operations are move,
resize/reproportion, raise in the stack to expose the window, lower the window in the stack,
(de)iconify the window, (un)maximize the window, and destroy or close the window.

The right-most mouse button displays a list of all open windows, and allows you to bring
any of them to the top of the stack of windows displayed on the screen and make that win-
dow the current window of operation.

The (de)iconify window function is accomplished by use of the button labeled A in
Figure 22.4, and it is found in the title bar of the frame surrounding a client application
window. Clicking the left-most mouse button on this screen button reduces the window to

FIGURE 22.4 The X Window System FVWM screen display.

998 ◾ UNIX: The Textbook, Third Edition

an icon, which is shown and also labeled A in the figure. Each client application window
is surrounded by a frame containing several window manager components that allow the
user to perform function G (Modify window) from Table 22.1.

Labeled C in Figure 22.4 is a client application window (an xterminal, or xterm for
short), which provides a CUI to the operating system of the computer this server is linked
to by default. Some window modification components surrounding an xterm window are
further described in Figure 22.6. The focus of the server is sometimes known as the current
position of the graphics cursor in the screen display, represented by function F in Table 22.1.
When the focus of the server is in an xterm window, and the shell prompt appears at the
upper-left corner of the window, you are able to type in the UNIX commands you have
learned in the previous 20 chapters of this book to have the operating system of the client
machine that is controlling this xterm take actions.

A typical virtual screen menu, which performs function H from Table 22.1, is displayed
at label H in Figure 22.4. To use this menu of virtual screens, the user simply uses the
mouse to position the graphics cursor over one of the tiles in the virtual screen menu,
clicks the left-most mouse button, and another portion of the root window is displayed,
enabling the user to place other client application windows in that tile. The desktop is not
limited by the size of the physical screen display, since a virtual screen display consists of
the space that is defined by the area of all the tiles in the virtual screen menu.

FIGURE 22.5 Pull-down menu to launch utilities.

FIGURE 22.6 Xterm window and modify components.

UNIX X Window System GUI Basics    ◾    999

The FVWM window modification components included in a frame that is placed around
an xterm window are shown in Figure 22.6. These components provide functions A, E, and
G from Table 22.1.

The button labeled A in Figure 22.6 is used to iconify or deiconify the xterm window.
When one screen tile becomes too cluttered with windows, it is possible to iconify some of
the windows to unclutter the screen display.

The button labeled G in Figure 22.6 allows you to perform typical window modifica-
tion operations. Be aware that, for many client applications, using the “destroy window”
option available with this button does not gracefully terminate the client–server connection.
Usually, within the application user interface provided by the client application; that is,
inside the window there is a pull-down menu choice or other action that allows for a grace-
ful exit from the application and a clean disconnect of client from server. There are several
dangers inherent in not gracefully exiting an application, foremost of which is that you
might lose important data that has not been saved. Also, on networks with software license
managers, not gracefully leaving an application does not free up its token to other users of
the network, which is bad network etiquette.

The button labeled M in Figure 22.6 allows you to modify the size of the window by
maximizing the window in the current virtual screen tile. This simply means that you can
quickly enlarge the window frame and its contents to take up the entire area of the current
tile. To return the window to its original size, click the maximize button again.

The important functional elements not labeled in Figure 22.6 are the resize handles,
which are activated by moving the graphics cursor to the extreme edges of the frame. They
allow you to use the mouse and pointer button to interactively resize and reproportion the
window.

There is also another important component of this typical window frame that pro-
vides supplemental functions of the window manager. This is the title bar, labeled K in
Figure 22.6. A function of the title bar is to allow you to reposition the entire window and
its contents by using the pointing button on the mouse.

22.2.4 Customizing the X Window System and FVWM

Now that you are familiar with the appearance and operations of the FVWM window
manager, and since the X Window System itself, and FVWM in particular, are highly
customizable to suit the interactive needs of a wide range of users, it is worthwhile to
know how an individual user can effectively achieve that customization. We will exam-
ine three approaches to changing the appearance and functionality of the window sys-
tem and the window manager. The first approach involves changing the characteristics of
applications that run under the X Window System by specifying command line options.
The second approach involves modifying or creating an initialization file for the window
system and then invoking that file, either by restarting the window system or logging
off and then logging back in. The third approach involves modifying or creating an ini-
tialization file for the window manager, in our case FVWM, and then invoking that file.

A word of caution is necessary at this point: if you do not know what a modification does
to the operation of the window manager or system, don’t make it! Certainly before making

1000 ◾ UNIX: The Textbook, Third Edition

any modifications to the X Window System environment, become familiar with the default
operations that have been set up at installation. Then, make backup copies of any initializa-
tion files you want to change, modify the files, and if unexpected behavior results, you can
always return to the defaults.

22.2.4.1 Command Line Changes to the X Window System Application
Once you have seen and worked with the default operations of a particular application, it is
possible to run that application with customized display characteristics by typing a com-
mand along with the appropriate options and arguments. In this section we will modify
the display and operating characteristics of the xterm terminal emulator window, using
the xterm command and its options. We will also run three other applications using com-
mand line options and arguments. A brief description of the xterm command follows:

SYNTAX

xterm [[+][−]toolkitoption ...] [[+][−]option ...]

Purpose: Run a terminal emulation program in its own window to allow you to type UNIX
commands. The + adds the option, the − subtracts the option.

Output: A window with display characteristics determined by toolkitoption and options.
Commonly used options/features:
-ah This option indicates that xterm should

always highlight the text cursor.
-e program [arguments ...] This option specifies the program (and its

command line arguments) to be run in the
xterm window.

-sb This option indicates that some number of
lines that are scrolled off the top of the window
should be saved and that a scrollbar should be
displayed so that those lines can be viewed.

For example, in order to affect the kind of shell that is run in the xterm window when it
starts up, you would type the following at the command line:

$ xterm -ls &

This option indicates that the shell that is started in the xterm window will be a login
shell. In order to start an xterm window with an ordinary subshell running in it, you would
type the following at the command line:

$ xterm +ls &

To have the window manager start the xterm window with a scroll bar, which would
allow you to scroll backward or forward through the text displayed on screen and retained
in a buffer, type the following:

$ xterm -sb &

UNIX X Window System GUI Basics    ◾    1001

A more complete listing of toolkit options and options for the xterm command is given
in the man page on your system for xterm.

The following session shows how to run other applications using command line options.
The three applications we run—xclock, xbiff, and xterm—are sized and positioned with
the -geometry command line option and its arguments, which are the same for all three
applications. Xclock displays an analog time-of-day clock on the screen as an icon. Xterm
opens a CUI to the UNIX operating system. In order to size and position the application
windows on your display screen, you must be aware of the way in which the screen coor-
dinates are derived. The coordinate system for screen locations in the X Window System is
shown in Figure 22.7.

Notice that the origin, 0 in X and 0 in Y, is in the upper-left corner of the screen, and the
direction of increasing X is to the right and increasing Y is down. Of course the screen resolu-
tion of your display, in other words how many pixels in X and Y can be addressed, is depen-
dent on what kind of monitor and graphics card you have available, and what your X Window
System preferences are set to. To run the applications, in an xterm window type the following:

$ xclock -geometry 100x100+10+10 &
$ xterm -geometry 80x24+200+10 &
$

The upper-left corner of Figure 22.8 shows the appearance and relative size and position
of each of the application windows after the previous two commands have been typed in.
The arguments for the -geometry option are as follows: X-pixel size of window, Y-pixel
size of window, X-position of upper-left corner of window, Y-position of upper-left corner of
window. So the line xclock -geometry 100×100+10+10 sizes the xclock to be 100 by
100 pixels, and positions its upper-left corner at the coordinates X = 10, Y = 10 relative to 0,0.

To close down an X Window System application gracefully, you can use the client applica-
tion mechanisms, which might be a pull-down menu choice or a button press. To close xclock
or xbiff, you can find the PID of each by using the ps command, and then issue a kill signal
for that PID. For example, if xclock had a PID of 904, as shown in the output from ps, then
typing the following command in an xterm window would close the xclock application:

$ kill –9 904

Screen display

+X

+Y

X = 0, Y = 0

FIGURE 22.7 Screen coordinate system.

1002 ◾ UNIX: The Textbook, Third Edition

To find out more about the options for xclock and xterm, see the appropriate UNIX man
pages on your system.

EXERCISE 22.5

How do you run an xclock sized at 75 × 75 located at 200,200?

EXERCISE 22.6

If you run an xterm with no arguments, what is the default window size of the display on
screen?

EXERCISE 22.7

After consulting the man page for xterm, how do you run an xterm with background color
set to green?

EXERCISE 22.8

How do you run an xterm with the scroll bars disabled or enabled?

22.2.4.2 How to Customize the FVWM Window Manager
Many of the operations, directives, and commands found in the following sections are
described in much more detail on the man page for FVWM on your system. We refer you
to this particular reference because it gives an easy-to-follow, numbered table of contents
to the entire man page for FVWM that organizes the entries into a more useful structure.

FIGURE 22.8 Applications run with command line options.

UNIX X Window System GUI Basics    ◾    1003

22.2.4.2.1 Introduction It is possible to make specific, personalized changes to the look,
feel, and most importantly, the functionality and operability of the FVWM window man-
ager as it runs in any user’s individual account on a UNIX system.

To accomplish this individualized customization of your account on the system, do the
following simple steps. These steps were done on PC-BSD, and reflect the configuration
files and the path to it on that system. If you are using another UNIX system, file specifica-
tions and paths will vary according to your system, but will be very similar. Also, if you
do not change the default configuration file that FVWM uses to configure itself, you can
always go back to using that one if your customization efforts do not work. Thus you can
use the default configuration file as your backup!

Step 1: If you do not have a .fvwm directory in your home directory, create an empty one.
If you do have one, putting a file named config in it, as shown in the following steps, will
allow you to customize FVWM. If you already have files such as .fvwmrc or .fvwm2rc
in the .fvwm directory, disable those by renaming them to anything but config.

Step 2: Copy the system example configuration file for FVWM, named system.fvwm2rc,
from /usr/local/etc/system.fvwm2rc to the directory ~/.fvwm, rename the file con-
fig, and give yourself execute privilege on that file.

Step 3: Use your preferred text editor to make customization changes in the file accord-
ing to what is shown in the following sections. After making changes, you can start
or restart FVWM and your changes will take effect.

EXERCISE 22.9

Do the three preceding steps so you have an executable version of the ~/.fvwm/config
file. Then start or restart FVWM as shown in the hint in Section 22.2.3.2, and as you go
through the following sections, you will be presented with examples of the coded direc-
tives and commands in that config file.

The structure of coded directives and commands that are found in the config file is
referred to and explained in the sections that follow, and is summarized in Table 22.2. In
general, these directives and commands dictate the full extent to which customization can

TABLE 22.2 FVWM Config File Directives and Commands

Directives or Commands What It Does

Global Settings Changes colors and fonts used in window borders and menus
Functions Focus and icon placement
Bindings Sets the style of the virtual desktop and pager
Window Decor Sets the paths to modules and icons
Menu Sets the window styles and decorations, such as width of borders
Modules Define functions bound to mouse and mouse buttons
FvwmTaskbar Defines user menus shown in the root window

1004 ◾ UNIX: The Textbook, Third Edition

be done. We provide additional example code for any particular grouping of directives or
commands that is not found in the sample config file.

Commented lines in the config file begin with the pound sign (#); therefore, placing a #
before a line in the file turns the directive or command found on that line into a comment,
thus negating its effect.

22.2.4.2.2 Global Settings These establish environmental variables and desktop setups.
Example lines from ~/.fvwm/config:

EdgeResistance 250 10
EdgeScroll 100 100
ClickTime 750
DeskTopSize 2x2

For example, if you do not want all icons to follow you around the virtual desktop
into every virtual screen, simply add a # in front of the line which reads StickyIcons.
This is where the “search and replace” or “find” feature of your text editor comes in
handy.

If you want to be able to move into any virtual screen simply by “rolling” the mouse, find
the line in your .fvwmrc file that reads

EdgeScroll 100 100

and make sure that line is not commented out. The arguments of the EdgeScroll com-
mand let you flip through 100 percent of each virtual screen display as you roll the mouse
and change the current position into any of the virtual screen tiles. Otherwise, you would
have to use the tiled display found in the lower-right hand corner of Figure 22.4, labeled
H, and click in the appropriate virtual tile in order to map it into the physical screen
coordinates.

22.2.4.2.3 Functions Functions are part of the programming or scripting language in
FVWM and allow execution of multiple commands and directives. The following exam-
ples are initialization functions.

Example lines from ~/.fvwm/config:

AddToFunc StartFunction
+ I Module FvwmButtons
AddToFunc InitFunction
+ I exec xsetroot -mod 2 2 -fg rgb:55/40/55 -bg rgb:70/50/70
For some SM-s (like gnome-session) there is an internal
background setter.
AddToFunc SessionInitFunction
+ I Nop

UNIX X Window System GUI Basics    ◾    1005

To build complex functions into the config file, you must remember to forward reference
them in the file, which means that you should place them in the file before they are called
in any way. The following is an example of a complex function that moves (changes screen
placement) or raises (brings to the top of the window stack) a window using mouse move-
ment and pointer/button clicks.

Function "Move-or-Raise"
 Move "Motion"
 Raise "Motion"
 Raise "Click"
 RaiseLower "DoubleClick"
EndFunction

22.2.4.2.4 Bindings Bindings associate either a key or mouse button with an action.
Example lines from ~/.fvwm/config:

some simple default key bindings:
Key Next A SCM Next (AcceptsFocus) Focus
Key Prior A SCM Prev (AcceptsFocus) Focus
some simple default mouse bindings:
for the root window:
Mouse 1 R A Menu RootMenu Nop
Mouse 2 R A Menu Window-Ops Nop
Mouse 3 R A WindowList

The most useful aspect of window manager customization is being able to define your
own menus to be activated by the mouse buttons when the current position is located in
a specific place on screen. For example, when the current position is in the root window,
the pop-up menus Utilities, Window Ops, and winlist are activated by, or bound to, the
mouse buttons. This is accomplished by the following three lines of code in the config file:

Mouse 1 R A Popup "Utilities"
Mouse 2 R A Popup "Window Ops"
Mouse 3 R A Module "winlist" Fvwm2Winlist transient

These menus are made up of a collection of menu choices that either run applications
or generate other cascading submenu choices. For example, the module winlist calls on
a resource to display a list of all open windows on screen. The R on each line means that
this menu is activated in the root window. The A on each line means that you can use any
keystroke modifier in addition to pressing the mouse button.

22.2.4.2.5 Window Decor This defines the look of the windows.
Example lines from ~/.fvwm/config:

AddToDecor ExampleDecor
+ TitleStyle LeftJustified Height 18

1006 ◾ UNIX: The Textbook, Third Edition

+ ButtonStyle 1 ActiveUp Vector 4 30x30@3 60x60@3 60x30@4 30x60@3
-- Flat

+ ButtonStyle 1 ActiveDown Vector 4 30x30@3 60x60@3 60x30@4
30x60@3 -- Flat

+ ButtonStyle 1 Inactive Vector 4 30x30@3 60x60@3 60x30@4 30x60@3
-- Flat

+ ButtonStyle 3 ActiveUp Vector 5 30x60@3 60x60@3 60x50@3 30x50@3
30x60@3 -- Flat

+ ButtonStyle 3 ActiveDown Vector 5 30x60@3 60x60@3 60x50@3
30x50@3 30x60@3 -- Flat

+ ButtonStyle 3 Inactive Vector 5 30x60@3 60x60@3 60x50@3 30x50@3
30x60@3 -- Flat

+ ButtonStyle 5 ActiveUp Vector 7 30x30@3 30x60@3 60x60@3 60x30@3
30x30@3 30x35@3 60x35@3 -- Flat

+ ButtonStyle 5 ActiveDown Vector 7 30x30@3 30x60@3 60x60@3
60x30@3 30x30@3 30x35@3 60x35@3 -- Flat

+ ButtonStyle 5 Inactive Vector 7 30x30@3 30x60@3 60x60@3 60x30@3
30x30@3 30x35@3 60x35@3 -- Flat

+ TitleStyle -- Flat
+ BorderStyle Simple -- NoInset Flat
+ ButtonStyle All -- UseTitleStyle

22.2.4.2.6 Menus These are lists or pop-ups on a predefined taskbar, or one of your own
design!

Example lines from ~/.fvwm/config:

AddToMenu RootMenu "Root Menu" Title
+ "XTerm" Exec exec xterm
+ "Rxvt" Exec exec rxvt
+ "" Nop
+ "Remote Logins" Popup Remote-Logins
+ "" Nop
+ "Utilities" Popup Utilities
+ "" Nop
+ "Fvwm Modules" Popup Module-Popup
+ "Fvwm Window Ops" Popup Window-Ops
+ "Fvwm Simple Config Ops" Popup Misc-Ops
+ "" Nop
+ "Refresh Screen" Refresh
+ "Recapture Screen" Recapture
+ "" Nop
+ "Exit Fvwm" Popup Quit-Verify

A useful menu addition:
In order to define your own menu, the following example shows a customized menu

definition which can be bound to the right-most mouse button. You can add this menu
definition at the end of the menu section in the sample config file:

UNIX X Window System GUI Basics    ◾    1007

ProgramMenu
A collection of three useful programs activated with the right-
most mouse button
AddToMenu ProgramMenu "Useful Programs" Title
+ "GNU emacs" Exec exec emacs
+ "Dolphin" Exec exec dolphin
+ "FileZilla" Exec exec filezilla

A description of each element of the menu definition is as follows:
After the comments explaining the contents of the menu in brief, any menu definition

must begin with a line that has the command AddToMenu. A handle that can be refer-
enced by other menus or components like mouse buttons follows the command; in other
words, if you wish to call this menu as a submenu somewhere else in the config file, you
would refer to it with the name ProgramMenu. Next, the title Useful Programs, which
will appear as text at the top of the menu, is placed on its own line. A plus (+) symbol
appears as the first character in each line on which you want a menu choice to appear. Then
the title for the menu choice appears on each line, such as Dolphin. The three programs we
are adding to this menu, emacs, dolphin, and filezilla, are placed after three Exec exec
commands, which follow the entry that will appear in the menu for each. Table 22.3 shows
how this menu will appear on screen.

To actually bind this menu to the right-most mouse button, and have it activated when
the current position is in the root window, the following lines must appear in the config file
where you bind mouse buttons. Notice that the previous binding of the winlist module to
this mouse button has been commented out of the file!

#Mouse 3 R A winlist
Mouse 3 R A ProgramMenu

EXERCISE 22.10

Using the preceding menu example as a model, design your own menu activated by the
right-most mouse button to launch some of the important applications you run on your
system. Name the menu MyApplications. Hint: A program that does not open its own
window when it begins to execute will not show anything or launch!

TABLE 22.3 Your Own Pop-Up Menu

Useful Programs

GNU emacs
Dolphin
FileZilla

1008 ◾ UNIX: The Textbook, Third Edition

EXERCISE 22.11

In the sample config file, change the default program launched by the Utilities menu
from Xemacs to emacs. Test your modification by restarting FVWM and making the new
Utilities choice emacs.

22.2.4.2.7 Modules A module in FVWM is a user-written program that runs as a separate
UNIX process but passes commands to FVWM to execute. Modules work by transmitting
commands to FVWM through UNIX IPC.

Example lines from ~/.fvwm/config:

Establish the Colorset
Colorset 27 fg rgb:00/00/00, hi rgb:00/00/00, sh rgb:00/00/00, bg
rgb:e9/e9/d9
#Define the Module
DestroyModuleConfig FvwmIdent: *
*FvwmIdent: Colorset 27
*FvwmIdent: Font "xft:Sans:Bold:size=12:antialias=True"

22.2.4.2.8 FvwmTaskBar This is the bar at the bottom-right of the FVWM root window,
as seen in Figure 22.4

Example lines from ~/.fvwm/config:

Style "FvwmTaskBar" NoTitle, !Handles, !Borders, Sticky,
WindowListSkip, \
 CirculateSkip, StaysOnBottom, FixedPosition, FixedSize,
!Iconifiable
DestroyModuleConfig FvwmTaskBar: *
*FvwmTaskBar: Geometry +0-0
*FvwmTaskBar: Rows 3
*FvwmTaskBar: Font "xft:Sans:Bold:pixelsize=12:minispace=True:ant

ialias=True"
*FvwmTaskBar: SelFont "xft:Sans:Bold:pixelsize=12:minispace=True:

antialias=True"
*FvwmTaskBar: StatusFont "xft:Sans:Bold:pixelsize=12:minispace=Tr

ue:antialias=True"
*FvwmTaskBar: Colorset 9
*FvwmTaskBar: IconColorset 9
*FvwmTaskBar: FocusColorset 9
*FvwmTaskBar: TipsColorset 9
*FvwmTaskBar: UseSkipList
*FvwmTaskBar: UseIconNames
*FvwmTaskBar: ShowTips
*FvwmTaskBar: StartName FVWM
*FvwmTaskBar: StartMenu FvwmRootMenu

UNIX X Window System GUI Basics    ◾    1009

*FvwmTaskBar: Button Title ATerm, Icon mini/xterm.png, Action
(Mouse 1) FvwmATerm

*FvwmTaskBar: Action Click3 Menu FvwmWindowOpsMenu
*FvwmTaskBar: StartIcon mini/fvwm.png

22.2.4.2.9 FvwmPager
FvwmPager is used to show the layout of your virtual desktop. It will show all the pages
and desktops you have set up, and the windows opened in each.

Example lines from ~/.fvwm/config:

*FvwmPager: Back #908090
*FvwmPager: Fore #484048
#*FvwmPager: Font -adobe-helvetica-bold-r-*-*-10-*-*-*-*-*-*-*
turn off desktop names for swallowing in the previous button bar
example:
*FvwmPager: Font none
*FvwmPager: Hilight #cab3ca
*FvwmPager: Geometry -1-1
*FvwmPager: Label 0 Misc
*FvwmPager: Label 1 Maker
*FvwmPager: Label 2 Mail
*FvwmPager: Label 3 Matlab
*FvwmPager: SmallFont 5x8
*FvwmPager: Balloons All
*FvwmPager: BalloonBack Yellow
*FvwmPager: BalloonFore Black
*FvwmPager: BalloonFont lucidasanstypewriter-12
*FvwmPager: BalloonYOffset +2
*FvwmPager: BalloonBorderWidth 1
*FvwmPager: BalloonBorderColor Black

22.2.4.2.10 FvwmButtons Buttons and button bars can create freeform panels of any
size or shape (including nonrectangular windows). It can swallow other applications,
even applications not designed for docking, have “panels” that slide out and consist of
other panels, has a “startup notification” feature, hundreds of possible bindings, uses the
FVWM Colorsets feature, and can alter dynamically and respond to window manager
events.

Example lines from ~/.fvwm/config:

################## FvwmButtons button-bar ########################
*FvwmButtons: Geometry 520x100-1-1
*FvwmButtons: Back bisque3
*FvwmButtons: (Frame 2 Padding 2 2 Container(Rows 2 Columns 5
Frame 1 \
Padding 10 0))

1010 ◾ UNIX: The Textbook, Third Edition

*FvwmButtons: (3x2 Frame 2 Swallow "FvwmIconMan" "Module
FvwmIconMan")
*FvwmButtons: (1x2 Frame 2 Swallow(UseOld) "FvwmPager" "Module
FvwmPager 0 0")
*FvwmButtons: (1x2 Frame 0 Container(Rows 2 Columns 2 Frame 0))
*FvwmButtons: (Frame 2 Swallow(UseOld,NoHints,Respawn) "xbiff"
'Exec exec xbiff -bg bisque3')
*FvwmButtons: (Frame 3 Swallow(UseOld,NoHints,Respawn) "xclock"
'Exec exec xclock -bg bisque3 -fg black -hd black -hl black
-padding 0 -update 1')
*FvwmButtons: (2x1 Frame 2 Swallow(UseOld,NoHints,Respawn) "xload"
'Exec exec xload -bg bisque3 -fg black -update 5 -nolabel')
*FvwmButtons: (End)
*FvwmButtons: (End)

For a more detailed description of the options available for customizing FVWM, see the
man page for FVWM.

To gain more familiarity with the features and utilities of a nonintegrated GUI installa-
tion, go to Problems 1–12 at the end of this chapter.

22.3 THE KDE4 DESKTOP MANAGER
The default desktop management system installed with PC-BSD is KDE4.

KDE stands for the K Desktop Environment, and was developed by a volunteer orga-
nization of many programmers. The KDE4 desktop manager is an integrated system, in
the sense that it provides a consistent and uniform implementation of functions, such as
an application programmers interface (API), an object request broker (ORB), window
management, desktop configuration tools, session management, and most importantly,
application programs. The uniformity of these functions in an integrated system neces-
sarily goes beyond the rudimentary provisions that the X Window System makes for
creating and maintaining a graphical interface to UNIX. The drawbacks to this kind of
system are its size and complexity, not making it feasible, for example, for installation
on an embedded system with limited memory and disk capacity. In the sections that
follow, we assume that you have installed PC-BSD as your UNIX system. The default
installation method on PC-BSD specifies that the KDE4 desktop manager will start
automatically.

If your particular UNIX system does not start KDE4 automatically when the system
boots up, but you have installed KDE4 as your default GUI, you can always begin a KDE4
session by typing startx at the UNIX shell prompt after you have logged in. We do not
cover the installation of KDE4 as a package on any UNIX system, but leave this as a prob-
lem at the end of the chapter.

22.3.1 Logging In and Out

After successfully installing and after the first login process to your UNIX system, every
subsequent login is done by using a login window, similar to one of the methods shown in

UNIX X Window System GUI Basics    ◾    1011

Chapter 2, Section 2.3. Depending on which integrated system and window manager you
have designated as the default when you or your system administrator installed UNIX, you
will see a login dialog box similar to the one provided in PC-BSD. We show a KDE login
window in Figure 22.9, which is similar to what you saw in Chapter 2, Section 2.3. You
can now enter your username and password into the login dialog box. This dialog box also
allows you to make other important system choices, such as changing the type of window
manager you will use, rebooting the operating system, or halting the operating system
in preparation for powering down the hardware of the computer. Most ordinary users of
UNIX on a network will only log in and out using this dialog box. If you have UNIX run-
ning on a stand-alone computer, you will sometimes have to restart, or reboot, the com-
puter using the other dialog box choices. When halting the system, it is always a good idea
to allow UNIX to completely “unload” itself before turning off the power to the computer.

After you have successfully logged into a KDE4 session, your screen display should look
similar to Figure 22.10.

The KDE4 desktop has a very similar look and feel to many other desktop systems that
you might be familiar with, such as those found in OS X or a Windows computer system.

The difference between KDE4 and OS X or Windows operation is that when pointing
and clicking to launch a program in KDE4, you use a single click of the left-most mouse
button to accomplish the launch.

Looking at Figure 22.10, the first similarity you might notice is the grouping of pictures
in the bar at the bottom of the screen display. This bar is known as the Panel, and it per-
forms as an information center and “launchpad” for many of the desktop’s facilities and
application programs. Most importantly, there are two open windows on the screen dis-
play, one with the title bar heading bob-Dolphin, and the other with the title bar head-
ing bob: csh-Konsole. The first window is a KDE4 application window that serves as
the default file manager, and is known as Dolphin. The second window is an xterminal,
or xterm for short, that allows you to type UNIX commands and have the computer take
actions based upon the commands, similar to the console you would work in if you did not
have a GUI to UNIX.

At this point, these two open windows allow you to do file management in UNIX with
a GUI file manager (Dolphin) or, more traditionally, with a CUI using the text-based com-
mands for file management in a console or xterm window.

FIGURE 22.9 KDE4 login window.

1012 ◾ UNIX: The Textbook, Third Edition

If you click and hold down the right-most mouse button (assuming you have a three-
button mouse) when the cursor is in the background area of the desktop, a menu appears
allowing you to accomplish some common tasks, such as create a new folder on the desk-
top, or view and edit desktop icon properties. Figure 22.11 shows this menu.

At this point, if you wanted to log out of the current session, or take other system actions
such as reboot or halt the UNIX operating system, you would make the Leave menu
choice, as seen near the bottom of Figure 22.11. You could also use the Kickoff Application
Launcher icon found in the extreme lower-left corner of the screen display in Figure 22.10.
If you left-click on this icon, a series of choices appears as a pop-up menu, and the Leave
choice is on this menu. In the following sections, we will describe the components of the
KDE4 desktop.

FIGURE 22.10 The KDE4 screen display.

FIGURE 22.11 Right-click menu.

UNIX X Window System GUI Basics    ◾    1013

22.3.2 The KDE4 Panel

By far the most important component on the KDE4 desktop is the Panel.
Referring to Figure 22.10, the default display of the Panel is across the bottom of the

screen display. The Panel components, shown in Figure 22.12 from left to right, are named
and briefly described in Table 22.4.

The most important component of the Panel is the Kickoff Application Launcher, the
left-most component in Figure 22.12. If you left-click on it, the Main Menu, as seen in
Figure 22.13, appears, and contains fly-out menus enabling you to launch a preset list of
applications and utilities. For example, as seen in Figure 22.14, the Applications>Utilities
fly-out menu of the Main Menu contains a large listing of useful utilities which can
be launched from it. There are a number of other fly-out menus activated from the
Applications>Utilities menu that allow you to launch user applications, graphics applica-
tions, Internet tools, multimedia tools, and other system-wide applications and develop-
ment applications. Finally, there are two buttons on the Main Menu, one of which allows
you to lock the screen with password protection so it cannot be tampered with when you
are away from the display, and the other to logout.

Another extremely important and signature component of the KDE4 Panel is the Mount
Tray: item F in Table 22.4 and seen on the right side of Figure 22.12. This icon allows you
to graphically manage removable media, such as USB thumb drives or external USB hard
drives, on your system. When a usable USB thumb drive is inserted into one of the com-
puter’s USB ports, the Mount Tray indicates that it is attached (meaning it shows up in a
listing of /dev), and either is automatically mounted or can be manually mounted via the
Mount Tray. This signature graphical management feature, above all others, clearly differ-
entiates twenty-first-century UNIX from twentieth-century UNIX. In 1980s UNIX, you
would have to know the exact command line syntax for the mount and umount com-
mands, and all of the options, option arguments, and command arguments possible for
those commands. In 2015, you point and click on a graphical icon.

FIGURE 22.12 KDE4 Panel components.

TABLE 22.4 KDE4 Panel Component Descriptions

LtoR Icon Name Description

A Kickoff Application Launcher Allows you to launch applications and desktop utilities
B Virtual Window Pager Allows you to move between virtual tiles of the desktop
C Open Windows Displays icons for all open windows, such as Dolphin and Konsole
D Life Preserver Allows you to create backups of system and user files
E System Update Manager Shows the status of and allows system updates
F Mount Tray Allows mounting and unmounting of removable media, such as

USB thumb drives
G System Paste Buffer Lists contents of system paste buffer
H Battery Status Shows status of a battery, if attached
I Clock/Date Clock/date display and control

1014 ◾ UNIX: The Textbook, Third Edition

Right-clicking on any of the objects in the Panel activates a menu that allows you to manip-
ulate that particular object. For example, if you right-click over any icon in the Panel, you get
menu choices that allow you to remove that button from the Panel, move that button to a new
location on the Panel, or obtain and change the properties of that application (Figure 22.15).

22.3.3 Adding a Desktop Icon that Launches an Application

One of the most useful aspects of the KDE4 desktop is the ease with which you can recon-
figure almost every component of it. The following practice session will show you how to
add a new icon to your KDE4 desktop that launches an application. Some of the most use-
ful applications that can be launched by icons are shown in Figure 22.10.

FIGURE 22.13 Main K menu.

FIGURE 22.14 Utilities submenu of the KDE4 Main Menu.

FIGURE 22.15 Right-click menu on a panel object.

UNIX X Window System GUI Basics    ◾    1015

If vim or emacs are not installed as packages on your system, use the AppCafe in PC-BSD
(or its equivalent on your UNIX system) to install them.

Practice Session 22.1

Step 1: From the Kickoff Application Launcher Main Menu, make the fly-out menu
choices Applications>Utilities.

Step 2: Scroll down to the icon that represents the vim editor.

Step 3: Hold down the left-most mouse button when the cursor is over the vim editor
icon, and drag the cursor to any place on the main window of KDE4. Release the left-
most mouse button. A screen menu appears with the choices Copy Here, Link Here,
and Cancel. Click the left-most mouse button on the Link Here choice.

Step 4: The same icon for vim that was in the Applications>Utilities window is
now an icon on the desktop.

Step 5: Click the left-most mouse button on the vim icon on the desktop. The vim text
editor launches.

EXERCISE 22.12

Add any application icon choices that you like from the Applications menu to the desktop,
using the methods described in Practice Session 22.1.

EXERCISE 22.13

Add emacs as a desktop icon using the method in Practice Session 22.1.

22.3.4 KDE4 Window Manager

The program which you most directly work with in the KDE4 desktop environment is the
window manager. The appearance and interactivity of KDE4 windows, from simple ter-
minal windows to application windows, is controlled by the window manager. The default
window management system is called Plasma. There are several other desktop/window
managers available to you, the most popular being Awesome, Cinnamon, Fluxbox, Mate,
and FVWM. For more information on these window managers, see the Web Resources
section at the end of this chapter.

The default KDE4 window manager gives a window “dressing,” or standard interac-
tive techniques and their related features, to expedite your work within that window. For
example, a scroll bar is provided in a Konsole window to allow you to graphically scroll
backward or forward through the text that has been displayed on the screen. For more
examples of these features, see Table 22.5 and the graphical references to Figure 22.16.

The window manager provides a frame within which the application can display its
graphical output and the user can interact with the application program through user-
generated events. The look (appearance of buttons, style, and color; i.e., its theme) and feel

1016 ◾ UNIX: The Textbook, Third Edition

(how buttons work, how menus are activated) of the window manager is independent of
the look and feel of the application running in area E as seen in Figure 22.16. Because of
this, it is possible to reconfigure the appearance, and also the interactivity, of the default
KDE4 window manager, and not affect the look or interactivity of any application running
inside of the window manager’s border.

To understand the steps necessary to reconfigure the default KDE4 window manager
so that it has a different look and feel, do Practice Session 22.3. In this practice session,
you will change a feature of the style of interaction with KDE4 known as the focus policy.
The focus policy is the response of the graphical server to locations of the current position.
For example, if you move the mouse, and the on-screen cursor rolls into a window, that
window becomes the current window for input and output events. You will also change the
appearance of KDE4 to another theme. We assume that you are using the default KDE4
window manager, and it has the “Default Theme” look as the default. We also assume that
your virtual desktop tile is one in the virtual screen display.

Practice Session 22.3

Step 0: As preliminary preparation for this session, observe the response of KDE4 as
you move the mouse and the screen cursor shifts between open windows, such as a
Konsole window or the Dolphin file manager window. As you roll the cursor with the
mouse over a window, what behavior does the window display?

Step 1: From the Kickoff Application Launcher, make the menu choice System
Settings. The System Settings window opens on screen. Click on the Window
Behavior icon, and make the Window Behavior sidebar choice. The KDE4
Window Behavior – System Settings window opens on screen, similar to Figure 22.17.

FIGURE 22.16 Konsole display of an xterminal window.

TABLE 22.5 Konsole Window Components of a KDE4 Window

Item Name Description

A Title bar Shows current path and allows window movement
B Control buttons Minimize, maximize, and kill window
C Toolbar Allows you to use xterminal-specific tools
D Body Xterminal CUI console display, where you type commands and see the results
E Border Allows resizing of window with “handles”

UNIX X Window System GUI Basics    ◾    1017

Step 2: Click on the Focus tab. Move the slider all the way to the right, to the Hover
pole.

Step 3: Left-click on the Apply button in the Window Behavior – System
Settings window.

Step 4: Now move the mouse so that the cursor shifts between windows on screen. The
behavior of the window manager has changed, depending on what you set the focus
policy to be.

Step 5: Left-click on the Overview arrow in the upper-left corner of the Window
Behavior – System Settings window. This returns you to the main window,
as seen in Step 1.

Step 6: From the Main Menu, click on the Workspace Appearance icon. Click
on the Desktop Themes sidebar choice. The Desktop Theme – System
Settings window appears on screen, similar to Figure 22.18.

FIGURE 22.17 Window Behavior – System Settings window.

FIGURE 22.18 KDE4 theme manager window showing the default theme.

1018 ◾ UNIX: The Textbook, Third Edition

 In this figure, we have already added the “SteampunK” theme to the available
choices (“Air,” “Air for netbooks,” “Oxygen”).

Step 7: Left-click once on the Get New Themes... icon in the lower left of this win-
dow. Search for a new theme and install it. It now appears in the Desktop Theme
– System Settings window. Click on this newly installed theme to make it the
current theme.

Step 8: Left-click on the Apply button at the bottom of the Desktop Theme –
System Settings window, and if you do not want to test the appearance of other
themes on your desktop, then click on the Quit button at the top of the System
Settings window. Your desktop now has the theme of your choice!

22.3.5 KDE4 System Settings

The most important configuration tool that you have available to you from the KDE4 desk-
top is the System Settings facility, activated by making the Kickoff Application Launcher
icon System Settings choice. This utility allows configuration of single-user attributes,
as well as system-wide attributes for all users. A single user with ordinary privileges is
allowed to make a variety of changes in the performance of the PC-BSD system itself and
the performance of the KDE4 desktop. For example, as shown in Practice Exercise 22.3,
you can use a series of on-screen menu choices to change the focus behavior within KDE4
windows and select a new theme.

There are five areas of configuration change groupings in the KDE4 System Settings
window. By clicking on one of the icons, you can see a configuration display in the right-
hand panel associated with that particular group member. For example, if you left-click
on the Application Appearance icon in Common Appearance and Behavior, you
have several other icon options available to you: one of these, Colors, allows you to colors
used in applications. Once you click the Apply button at the bottom of the KDE4 System
Settings window, that attribute or option change will immediately take effect. To return to
the top level of icons, click on the left-facing arrow named Overview.

EXERCISE 22.14

Use the KDE4 system settings to change the Power Management>Screen Energy Saving
to 5 minutes, or to any setting that is convenient for your usage pattern.

EXERCISE 22.15

What KDE4 facility allows you to change the background desktop wallpaper? What is the
name of the default file management system used by the KDE4 desktop manager?

22.3.6 KDE4 File Management with Dolphin

To obtain a graphical view of the files on your UNIX system, particularly the files you have
in your home and working subdirectories, the Dolphin file manager allows you to quickly

UNIX X Window System GUI Basics    ◾    1019

find, view, and edit not only the ordinary files themselves, but also the directory structure
that contains them. This capability is given to you by the UNIX file maintenance com-
mands that were detailed earlier in this textbook, but Dolphin uses a graphical approach
that saves time for the ordinary user, and it is also something that most users are more
familiar with. To launch the Dolphin file manager, from the Kickoff Application Launcher,
click on the File Manager icon. Your screen display of the Dolphin window will look
similar to Figure 22.19.

On our PC-BSD UNIX system, by default Dolphin shows the contents of the current
working directory, which is the home directory, as seen in Figure 22.19.

There are five important functional areas of the Dolphin window, as shown in Table 22.6.
There are also two other areas of interest in the Dolphin window. In the lower-right

corner there is a slider control that allows you to change the displayed size of icons in the
main window: slide it to the right and icons get bigger. And above the main window pane,
there is a display of the path to the current working directory.

The most useful of the toolbar icons choices is the Find icon, which allows you to des-
ignate a place in the file structure of the system at which to start the search, and allows you
to designate a file name pattern to search for. This utility is very similar to the text-based
UNIX find command, but much simpler to use. For example, if you wanted to find all

FIGURE 22.19 Dolphin file manager window.

TABLE 22.6 Dolphin Window

Area of Dolphin Window Location and Description

Title bar Across the top of the window; window controls like iconify, destroy, etc.
Toolbar icons At the top; allows you to take actions, most important the Find function

indicated with the “binoculars” icon, and allows you to change the appearance
of file displays very quickly.

Places pane Along the left side of the screen display; shows you the folders Home, Network,
Root, and Trash, and recently accessed documents, etc.

Main window pane Right in the middle; shows you icons by default of files in the current directory.
Status bar Along the bottom of the window; contains general information about whatever

is at the current cursor position.

1020 ◾ UNIX: The Textbook, Third Edition

files starting at the home directory that ended in the file extension .jpeg, you would click
on the Find icon and then supply the information in the text bar, similar to what is shown
in Figure 22.20. When you click on the Find button, you get a view in the main window
showing all that match your search criteria or file specification, along the designated path,
starting where you specify! A status display shows the progress of your search. If no files
are found that match your designation, you are notified as such.

EXERCISE 22.16

Use the Dolphin Find icon utility to find all files starting at the root (/) directory that end
with the file extension .bmp. How many files were found on your system?
(Hint: We found 36 files under the root on our PC-BSD system.) Then, right-click on one
of the files to view the path to that image in a new window. To view the image, open it with
Gimp or an image viewer of your choice.

EXERCISE 22.17

Use the Dolphin Find icon utility to find all files starting in your home directory that
begin with the letter M (uppercase).

EXERCISE 22.18

If you have used the Dolphin file manager to find a certain file on the system, how do you
change the file’s access privileges to execute for user, group, and others on that file from
within Dolphin (assuming you own the file or are running Dolphin as root)?

To gain more familiarity with the features and utilities of the KDE4 desktop, go on to
Problems 13–19 at the end of this chapter.

FIGURE 22.20 Find display in the Dolphin window.

UNIX X Window System GUI Basics    ◾    1021

22.4 CREATING X WINDOW SYSTEM CLIENT APPLICATION PROGRAMS
The two important points in this section are

• A client application program is made up of two separate parts: a data generation part
and a user interface (UI) part, which must work together.

• The basic structure of a client application program is initialization, start an event–
request loop, cleanup.

There are two ways to approach creating an X Windows client application program:

• Use a GUI-based integrated development environment (IDE; e.g., Qt Designer or Qt
Creator) to generate the UI and program data generation code

• Code the graphical interface by programming directly in Qt, GTK, XCB, or the older
Xlib, create the program data generation code in C, C++, or Python, and finally com-
bine the GUI and program data generation code

The first way is ostensibly easier. But to create the user interface (UI) component of a
client application, and in order to “hook” the data-generating or processing component of
your program to the UI, you have to be very familiar with two things:

 1. How to do advanced data structure programming in C++, or another available lan-
guage library interface like Python

 2. Knowing the data structure and operability of programming in Qt or GTK+

The second way requires that you know the structure of an X Window System client
application program, and if you use Xlib, are familiar with C.

The structure of a client application program is: initialize a connection with the X
Server, create an event loop, cleanup, and leave. Most of what follows details this structure
more fully, and gives some simple examples.

The short way through this section: carefully examine the following examples, and find
in them the two important things to remember in those examples. Then you will have a
top-down view of how to create client application programs.

We will now show some examples of Qt programming data structure and the program
code interface to give you a feel for working in the first way.

22.4.1 Client Application Program Structure and Development Model

In this section, we show where and how a user-written client application program fits into
the overall scheme of the components of the X Window System. We then show the simpli-
fied structure of such a program. Following from these two illustrations, we detail in a
simple and direct fashion how to develop C code for an X Window System client applica-
tion program.

1022 ◾ UNIX: The Textbook, Third Edition

22.4.1.1 Model Overview
Here are two descriptions of the model.

• First, a picture (Figure 22.21) showing how the components, such as a client applica-
tion, Xlib, XCB, Qt, or GTK+, the X.org server, and the actual display, are connected
via the X Protocol over a network (or not)

• Then a verbal description of the coding process that shapes the model

The X Window System, as seen from a software development model point of view, is a
combination of these components.

 1. Toolkit IDEs such as Qt and GTK+

 2. X client libraries such as XCB and Xlib

 --

 3. The X protocol or display server protocol

 4. X display server, X.org server

 5. Window manager FVWM

This model is arranged, from top to bottom, in a suitable order for a user writing an
application program. The user generates the code either in component 1 or 2; components
3 to 5 are processes that the application program code interprets and executes.

More detailed descriptions of the components are as follows.

 1. Toolkit IDEs such as Qt and GTK+ are used to write and put together the code itself,
and integrate it with a particular application.

Client application

Qt, GTK+

XCB, Xlib

X protocol X protocol

X.org server

Display, keyboard, mouse

Network interface

FIGURE 22.21 Client application interaction with other X components.

http://www.X.org
http://www.X.org

UNIX X Window System GUI Basics    ◾    1023

 2. X client libraries are graphical routines or C language bindings that the toolkits gener-
ate. The two most important ones are XCB and Xlib. For example, Xlib is a legacy library
of more than three hundred utility routines that programmers can use to activate the
X protocol. The Xlib utilities are used to accomplish the major tasks in an X Window
System user-written application. XCB is the contemporary replacement for Xlib.

 3. X clients communicate with X servers (usually, but not necessarily, through a net-
work) using the X protocol. In the X protocol, data is exchanged in an asynchronous
manner over a two-way communication channel.

 4. The X display server (or X server) is the process executing on a computer and man-
aging the graphics output and input from the computer display (its monitor[s], key-
board, and mouse).

 5. The window manager, like any of those used in KDE4 or Gnome, is a program that
handles the graphic activities sent to the X display server.

X clients are application programs that use the computer display. The X clients, whether
running locally or on a remote computer, send requests to the X server using a communi-
cation channel.

The X client application program and the X server program can run on the same
machine.

The X protocol software uses a channel between the X client(s) and X server. As long as
there is a common networking protocol (e.g., TCP/IP) to provide the channel, the X server
can display output from any X client regardless of where it is actually running and the
operating system under which the client runs.

With the X protocol running on a particular computer, the X server is listening to the
network connections at a specific port and acting on the X protocol requests sent by X
clients. The X server manages regions of the screen known as windows, where the output
from an X client is displayed. When X application programs are running, everything on
the screen appears in windows and each window is associated with a specific X client.

Creating a window is one of the basic X protocol requests that an X server handles. The
X server considers anything you do with the keyboard and mouse as events to be reported
to the X clients. When you press and release a mouse button, the X server sends these input
events to the X client that created the window containing the mouse pointer. The X server
also sends other kinds of events to X clients. These events inform an X client if anything
happens to its window.

X application programs have routines from a toolkit in them. The toolkit may be com-
posed in Qt, which in turn calls Xlib. An X application can also make some direct calls to
some Xlib routines for generating text and graphics output in a window.

22.4.1.2 The Structure of a Typical X Client Application Program
A simple description of an X application program would divide it into three major sections:

• Initialization: Open a display that the application can use

1024 ◾ UNIX: The Textbook, Third Edition

• Event loop: Start an event-driven loop that allows the application to communicate
with the display

• Cleanup: Clean up and gracefully exit

This description can be further expanded as follows:

• Initialization

• Perform initialization routines

• Connect to the X server

• Perform X-related initialization

• Event loop (while not finished)

• Receive the next event from the X server

• Handle the event, possibly sending various drawing requests to the X server

• If the event was a quit message, exit the loop

• Cleanup

• Close down the connection to the X server

• Perform cleanup operations

The initialization section sets up the window system for user interaction. After initial-
ization, the program enters a loop in which it repeatedly tries to get events from the win-
dow system and process them.

Finally, before exiting, the program performs any necessary cleanups. Usually the exit
code is in a program that is called when the user clicks on the Exit button provided by the
application (or on the Close button on the window frame on the top right of the window).

22.4.1.3 Specifying Resources
All X Window application programs have resource files where options for colors, fonts, and
so on can be specified. To take advantage of this capability, programs should be written
such that hard coding of resources is avoided, so that resources specified in the configura-
tion files are used.

The resource configuration file for an X application will have the same name as the
application specified in the call to XtAppInitialize(). It can be located in the direc-
tory where the application is launched, or else X will search for this file in the directory
specified by the variable XAPPLRESDIR.

22.4.1.4 Writing the Code for an X Windows Client Application
Why show three different libraries and methods of writing client application programs?
Xlib and XCB are basically procedural programming paradigm libraries, where XCB

UNIX X Window System GUI Basics    ◾    1025

has a more complex data structure and API than Xlib. Qt uses an object-oriented client
programming paradigm with attendant data structures and classes, and is coded in
C++.

Application code for Xlib or XCB is written in C or C++ and compiled using any of the
available C/C++ compilers on the system.

When programming in C++ for Qt, that library has its own facilities to compile, link,
and assemble a client application and place it in the context of a Qt project, as shown in
Section 22.4.5, “Using the Qt Toolkit.”

22.4.2 Xlib versus XCB

The reason we include examples of Xlib and XCB client programs is that they are the two
official C libraries for the X Window protocol. Xlib, the predecessor of XCB, was the origi-
nal X client library, and was the only official X client library until the introduction of XCB.
The two libraries are based upon very different schemes: Xlib is a layer further from the
X protocol that uses a traditional and programmer-friendly C API, whereas XCB is a very
thin layer on top of the X protocol that does not have as transparent and friendly an API.
As you can see from our presentation on both Xlib and XCB, the documentation that
exists currently for XCB is far less friendly, complete, and descriptive. These two aspects
of XCB, documentation and user-friendliness, are a function of its closer relationship with
the complex data structure implementation of the X protocol itself.

In practice, the difference in organizing schemes is most evident in how the two librar-
ies handle the fundamental asynchronous event–request model between server and client
of the X protocol itself. Xlib attempts to implement the asynchronous X protocol behind a
mixed synchronous and asynchronous API, whereas the XCB API is asynchronous.

For example, to lookup the attributes (e.g., size and position) of a window, you would
write the following code using Xlib:

XWindowAttributes attrs;
XGetWindowAttributes(display, window, &attrs);
/*Execute some code*/

The Xlib call to XGetWindowAttributes() in the client-side program sends a
request to the X server and blocks until it receives a reply from the X server. This is a syn-
chronous request–event sequence.

The following is the code for the same thing in XCB:

xcb_get_window_attributes_cookie_t cookie =
 xcb_get_window_attributes(
 connection, window);
/*Execute other code while waiting for the reply from the server*/
xcb_get_window_attributes_reply_t* reply =
 xcb_get_window_attributes_reply(
 connection, cookie, nullptr);
/*Execute some code based on the reply*/

1026 ◾ UNIX: The Textbook, Third Edition

free(reply);

The function xcb _ get _ window _ attributes sends the request to the X
server, and returns immediately without waiting for the reply. This is an asynchronous
request–event sequence. The client program must call xcb _ get _ window _ attri-
butes _ reply to block on the reply.

The advantage of the asynchronous approach is gained when we need to retrieve the
attributes of multiple windows at the same time. Using XCB, we can make multiple
requests to the X server at once and then wait for multiple replies. With Xlib, we have to
wait for the response to each request before we can send the next one. XCB only blocks
for one round-trip network latency period, compared to multiple latency period waits
with Xlib.

To be fully asynchronous, the XCB approach leads to a more complex data struc-
ture approach, and a less programmer-friendly API. The preceding Xlib code looks
like your average C library call; the XCB code has a more complex data structure
implementation.

XCB is fully asynchronous, whereas Xlib is not fully synchronous. Xlib has a mix-
ture of synchronous and asynchronous APIs. Functions that do not return values (e.g.,
XResizeWindow, which changes the size of a window) are asynchronous, while func-
tions that return values (e.g., XGetGeometry, which returns the size and position of a
window) are synchronous. Here is a quote from Volume 1 of the Xlib Programming Manual
dealing with Xlib’s synchronicity:

Buffering
Xlib saves up requests instead of sending them to the server immediately, so
that the client program can continue running instead of waiting to gain access
to the network after every Xlib call. This is possible because most Xlib calls do
not require immediate action by the server. This grouping of requests by the cli-
ent before sending them over the network also increases the performance of most
networks, because it makes the network transactions longer and less numerous,
reducing the total overhead involved.

22.4.3 Xlib

In this section, we give programming examples using Xlib. It would be useful for you to
compare the complexity of the code given here with the code given for XCB programming
in the following section. Also, compare the extant documentation for Xlib to the docu-
mentation available for XCB.

22.4.3.1 Basic Xlib Theoretical Consideration
Xlib operates on the client–server model, which can be directly contrasted to the tradi-
tional networking model of those components. Essentially, the client–server model used
for Xlib reverses the role of client and server assumed in the networking model. Below, we
give you a practical introduction to programming in the Xlib model.

UNIX X Window System GUI Basics    ◾    1027

22.4.3.2 Compiling an Xlib Client Application Program
Be aware that, on a PC-BSD system, you may have to download and install the GNU C
compiler (either version 47 or the latest version available) for the following example pro-
grams to run, if that has not already been done by your system administrator. If you are the
system administrator, you can do this for yourself by using the procedures in the AppCafe
in PC-BSD or by using the repository in Solaris.

On our PC-BSD system, we used the following compiler command with the options and
arguments shown. On Solaris, you can substitute gcc for gcc47.

gcc47 input_file.c –o output_file –lX11

Here, input_file.c is the name of your C source code file and output_file is the name of
the executable program.

22.4.3.3 Sample Xlib Client Application Programs
The following are three elementary sample Xlib programs. Each is preceded by a statement
of what the program does and a table listing the X Window functions called along with a
description of what the functions do. To get more information about the function calls—
for example, what their specific argument list data structure and contents are—consult the
online documentation for Xlib given at the end of this chapter.

22.4.3.3.1 Xlib Example Program test2.c Objective: Draw a black 500 × 500 pixel window,
surrounded by the window manager decorations for whatever window manager you have
running on your system. Then, after five seconds, the window will disappear.

Functions called (Table 22.7):
Code:

/*Standard includes*/
#include <stdio.h>
#include <stdlib.h>
#include <X11/Xlib.h>
#include <X11/Xutil.h>
#include <X11/Xos.h>
#include <X11/Xatom.h>
#include <X11/keysym.h>
/*Variable and pointer declarations*/
Display *dis;

TABLE 22.7 Xlib Display Functions

Xlib Function Name Description

XOpenDisplay Returns a display structure that serves as a connection to the X server
XCreateSimpleWindow Creates an unmapped InputOutput subwindow for a specified parent window
XMApWindow Maps the window and all its subwindows
XFlush Flushes the output buffer

1028 ◾ UNIX: The Textbook, Third Edition

Window win;
int main() {

/*Initialization*/

dis = XOpenDisplay(NULL);
win = XCreateSimpleWindow(dis, RootWindow(dis, 0), 1, 1, 500, 500,
 0, BlackPixel (dis, 0), BlackPixel(dis, 0));
XMapWindow(dis, win);
/*Cleanup and exit*/
XFlush(dis);
/*Sleep 5 seconds before closing.*/
sleep(5);
return(0);
}

EXERCISE 22.19

What basic structural component of an X Window System program is missing from the
preceding program?

EXERCISE 22.20

What are the arguments supplied to the XCreateSimpleWindow function in the pre-
ceding program? Consult the Xlib documentation to give a complete listing and descrip-
tion of all arguments.

22.4.3.3.2 Xlib Example Program test4.c Objective: Open a window on the display with the
title Report, and then place the text string UNIX Rocks at any mouse click–indicated
position in the window. In addition, you can press keyboard keys and they will be echoed
on the console screen, telling you what key you pressed. This introduces in a straightfor-
ward and easy-to-understand manner the program model for X Window System client
applications, and illustrates the concept of a GC that specifies many of the characteristics
of windows and other objects.

New functions called (Table 22.8):
Code:

/* Xlib and standard C headers */
#include <X11/Xlib.h>
#include <X11/Xutil.h>
#include <X11/Xos.h>
#include <stdio.h>
#include <stdlib.h>
/* Declare the X variables and pointers*/
Display *dis;
int screen;

UNIX X Window System GUI Basics    ◾    1029

Window win;
GC gc;
/* X routines */
void init_x();
void close_x();
void redraw();
main () {

/*Initialization*/

 XEvent event; /* declare the XEvent */
 KeySym key; /* KeyPress Events */
 char text[255]; /* char buffer for KeyPress Events */
 init_x();

/* Start the Event-Request Loop*/

 while(1) {
 /* get the next event.
 We set the mask for events that we want detected
 */
 XNextEvent(dis, &event);
 if (event.type==Expose && event.xexpose.count==0) {

TABLE 22.8 Xlib Event Functions

Xlib Function Name Description

XNextEvent Copies the first event from the event queue into the specified XEvent
structure and then removes it from the queue

XLookupString Translates a key event to a KeySym and a string
XSetForeground Sets the foreground attributes of a given GC
XDrawString Draws text characters in a given drawable
XSetStandardProperties Provides a means by which simple applications set the most essential

properties with a single call
XSelectInput Requests that the X server report the events associated with the

specified event mask
XCreateGC Creates and returns a GC; can be used with any destination drawable

with the same root and depth as the specified drawable
XSetBackground Sets the background attributes of a given GC
XClearWindow Clears the entire area in the specified window
XMapRaised Maps the window and all of its subwindows that have had map

requests and raises the window to the top of the stack
XFreeGC Destroys the specified GC as well as all the associated storage
XDestroyWindow Destroys the specified window as well as all of its subwindows and

causes the X server to generate a DestroyNotify event for each
window

XCloseDisplay Closes the connection to the X server for the display
specified in the display structure and destroys all windows and
resource IDs

XClearWindow Clears the entire area in the specified window

1030 ◾ UNIX: The Textbook, Third Edition

 /* the window was exposed redraw it! */
 redraw();
 }
 if (event.type==KeyPress&&
 XLookupString(&event.xkey,text,255,&key,0)==1) {
 /* use the XLookupString routine to convert the invent
 KeyPress data into regular text.
 */
 if (text[0]=='q') {
 close_x();
 }
 printf("You pressed the %c keyn",text[0]);
 }
 if (event.type==ButtonPress) {
 /* report where the mouse Button was Pressed */
 int x=event.xbutton.x,
 y=event.xbutton.y;
 strcpy(text,"UNIX Rocks");
 XSetForeground(dis,gc,rand()%event.xbutton.x%255);
 XDrawString(dis,win,gc,x,y, text, strlen(text));
 }
 }
}
void init_x() {
/* Set the colors black and white */
 unsigned long black,white;

 dis=XOpenDisplay((char *)0);
 screen=DefaultScreen(dis);
 black=BlackPixel(dis,screen),
 white=WhitePixel(dis, screen);
 win=XCreateSimpleWindow(dis,DefaultRootWindow(dis),0,0,
 300, 300, 5,black, white);
 XSetStandardProperties(dis,win,"Report","E",None,NULL,0,NULL);
 XSelectInput(dis, win, ExposureMask|ButtonPressMask|KeyPress

Mask);
 gc=XCreateGC(dis, win, 0,0);
 XSetBackground(dis,gc,white);
 XSetForeground(dis,gc,black);
 XClearWindow(dis, win);
 XMapRaised(dis, win);
};

void close_x() {

/* Cleanup */

 XFreeGC(dis, gc);
 XDestroyWindow(dis,win);

UNIX X Window System GUI Basics    ◾    1031

 XCloseDisplay(dis);
 exit(1);
};

void redraw() {
 XClearWindow(dis, win);
};

22.4.3.3.3 Xlib Example Program test1.c Objective: Produce a simple window on the dis-
play that prints Hello, World! and draw a small filled-in rectangle in black. It may be
closed by pressing <Ctrl+C>.

New functions called (Table 22.9):
Code:

/*
 * Simple Xlib application drawing a box in a window.
*/
#include <X11/Xlib.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

int main(void)
{
 Display *display;
 Window window;
 XEvent event;
 char *msg = "Hello, World!";
 int s;

/*Initialization*/

 /* open connection with the server */
 display = XOpenDisplay(NULL);
 if (display == NULL)
 {
 fprintf(stderr, "Cannot open display\n");
 exit(1);
 }
 s = DefaultScreen(display);

 /* create window */

TABLE 22.9 Xlib Drawing Function

Xlib Function Name Description

XFillRectangle Fills the specified rectangle or rectangles as if a four-point
FillPolygon protocol request were specified for each

1032 ◾ UNIX: The Textbook, Third Edition

 window = XCreateSimpleWindow(display, RootWindow(display, s),
10, 10, 200, 200, 1,

 BlackPixel(display, s), WhitePixel(display,
s));

 /* select kind of events we are interested in */
 XSelectInput(display, window, ExposureMask | KeyPressMask);

 /* map (show) the window */
 XMapWindow(display, window);

 /* Start the Event-Request Loop*/
 for (;;)
 {
 XNextEvent(display, &event);

 /* draw or redraw the window */
 if (event.type == Expose)
 {
 XFillRectangle(display, window, DefaultGC(display, s),

20, 20, 10, 10);
 XDrawString(display, window, DefaultGC(display, s), 50,

50, msg, strlen(msg));
 }
 /* exit on key press */
 if (event.type == KeyPress)
 break;
 }

 /* Cleanup */

 XCloseDisplay(display);

 return 0;
}

22.4.4 Using XCB

In this section, we give basic examples of programming in XCB. Compare the complexity
and extant documentation to the example programs we provide for Xlib.

22.4.4.1 Compiling an XCB Program
Be aware that, on a PC-BSD system, you will have to download and install the GNU C
compiler for the example programs to run, if that has not already been done by the system
administrator. You can do this for yourself by using the procedures in the AppCafe in
PC-BSD or by using the repository in Solaris.

On our PC-BSD system, we used the following compiler command with the options and
arguments shown. On Solaris, you can substitute gcc for gcc47:

UNIX X Window System GUI Basics    ◾    1033

gcc47 -Wall input_file.c –o output_file –lxcb

You may also use the following compiler command:

gcc47 -Wall input_file.c –o output_file 'pkg_config –cflags –libs
xcb'

22.4.4.2 Sample XCB Client Application Programs
Following are three elementary sample XCB programs. Each is preceded by a statement of
what the program does.

22.4.4.2.1 XCB Example Program xcb_simple.c Objective: Place a simple window on
screen. Launch it by typing xcb _ simple & and notice what happens.

Code:

#include <unistd.h> /* pause() */
#include <xcb/xcb.h>
int
main ()
{
 xcb_connection_t *c;
 xcb_screen_t *screen;
 xcb_window_t win;

/* Initialization */

 /* Open the connection to the X server */
 c = xcb_connect (NULL, NULL);

 /* Get the first screen */
 screen = xcb_setup_roots_iterator (xcb_get_setup (c)).data;

 /* Ask for our window's Id */
 win = xcb_generate_id(c);

 /* Create the window */
 xcb_create_window (c, /* Connection */
 XCB_COPY_FROM_PARENT, /* depth (same as root)*/
 win, /* window Id */
 screen->root, /* parent window */
 0, 0, /* x, y */
 250, 250, /* width, height */
 10, /* border_width */
 XCB_WINDOW_CLASS_INPUT_OUTPUT, /* class */
 screen->root_visual, /* visual */
 0, NULL); /* masks, not used yet */

1034 ◾ UNIX: The Textbook, Third Edition

 /* Map the window on the screen */
 xcb_map_window (c, win);

/* Make sure commands are sent before we pause, so window is
shown */
 xcb_flush (c);

 pause (); /* hold client */
/* Cleanup */

 xcb_disconnect(c);
 return 0;
}

EXERCISE 22.21

What basic component of an X Windows client application is missing from the preceding
program, and particularly what aspect or part of that component? How do you close the
window without using the KDE4 window manager kill button?

22.4.4.2.2 XCB Example Program 2ndxcbdraw.c Objective: Draw a rectangular box in a
window

Code:

#include <stdlib.h>
#include <stdio.h>
#include <xcb/xcb.h>
int
main ()
{
 xcb_connection_t *c;
 xcb_screen_t *screen;
 xcb_drawable_t win;
 xcb_gcontext_t foreground;
 xcb_generic_event_t *e;
 uint32_t mask = 0;
 uint32_t values[2];

 /* geometric objects */

 xcb_rectangle_t rectangles[] = {
 { 10, 50, 40, 20},
 { 80, 50, 10, 40}};

/* Initialization */

 /* Open the connection to the X server */
 c = xcb_connect (NULL, NULL);

UNIX X Window System GUI Basics    ◾    1035

 /* Get the first screen */
 screen = xcb_setup_roots_iterator (xcb_get_setup (c)).data;

 /* Create black (foreground) graphic context */
 win = screen->root;

 foreground = xcb_generate_id (c);
 mask = XCB_GC_FOREGROUND | XCB_GC_GRAPHICS_EXPOSURES;
 values[0] = screen->black_pixel;
 values[1] = 0;
 xcb_create_gc (c, foreground, win, mask, values);

 /* Ask for our window's Id */
 win = xcb_generate_id(c);

 /* Create the window */
 mask = XCB_CW_BACK_PIXEL | XCB_CW_EVENT_MASK;
 values[0] = screen->white_pixel;
 values[1] = XCB_EVENT_MASK_EXPOSURE;
 xcb_create_window (c, /* Connection */
 XCB_COPY_FROM_PARENT, /* depth */
 win, /* window Id */
 screen->root, /* parent window */
 0, 0, /* x, y */
 150, 150, /* width, height */
 10, /* border_width */
 XCB_WINDOW_CLASS_INPUT_OUTPUT, /* class */
 screen->root_visual, /* visual */
 mask, values); /* masks */

 /* Map the window on the screen */
 xcb_map_window (c, win);

 /* Flush the request */
 xcb_flush (c);

/* Start the Event-Request loop */

 while ((e = xcb_wait_for_event (c))) {
 switch (e->response_type & ~0x80) {
 case XCB_EXPOSE: {

 /* Draw the rectangles */
 xcb_poly_rectangle (c, win, foreground, 2, rectangles);

 /* Flush the request */
 xcb_flush (c);

 break;
 }

1036 ◾ UNIX: The Textbook, Third Edition

 default: {
 /* Unknown event type, ignore it */
 break;
 }
 }
 /* Free the Generic Event */
 free (e);
 }

/* Cleanup */

 xcb_disconnect(c);
return 0;
}

22.4.4.2.3 XCB Example Program xcb_example.c Objective: Draw a rectangular box in a
window

Code:

/* Simple XCB application drawing a box in a window */
/* to compile it use: gcc47 -Wall xcb_example.c –o xcb_example -lxcb
*/
#include <xcb/xcb.h>
#include <stdio.h>
#include <stdlib.h>
int main(void)
{
xcb_connection_t *c;
xcb_screen_t *s;
xcb_window_t w;
xcb_gcontext_t g;
xcb_generic_event_t *e;
uint32_t mask;
uint32_t values[2];
int done = 0;
xcb_rectangle_t r = { 30, 30, 70, 70 };

/* Initialization*/

/* open connection with the server */
c = xcb_connect(NULL,NULL);
 if (xcb_connection_has_error(c)) {
 printf("Cannot open display\n");
 exit(1);
}
/* get the first screen */
s = xcb_setup_roots_iterator (xcb_get_setup(c)).data;

UNIX X Window System GUI Basics    ◾    1037

/* create black graphics context */
g = xcb_generate_id(c);
w = s->root;
mask = XCB_GC_FOREGROUND | XCB_GC_GRAPHICS_EXPOSURES;
values[0] = s->black_pixel;
values[1] = 0;
xcb_create_gc(c, g, w, mask, values);

/* create window */
w = xcb_generate_id(c);
mask = XCB_CW_BACK_PIXEL | XCB_CW_EVENT_MASK;
values[0] = s->white_pixel;
values[1] = XCB_EVENT_MASK_EXPOSURE | XCB_EVENT_MASK_KEY_PRESS;
xcb_create_window(c, s->root_depth, w, s->root,
 10, 10, 150, 150, 1,
 XCB_WINDOW_CLASS_INPUT_
OUTPUT, s->root_visual,
 mask, values);

/* map (show) the window */
xcb_map_window(c, w);

xcb_flush(c);

/* Start the Event-Request loop */

while (!done && (e = xcb_wait_for_event(c))) {
 switch (e->response_type & ~0x80) {
 case XCB_EXPOSE: /* draw or redraw the window */
 xcb_poly_fill_rectangle(c, w, g, 1, &r);
 xcb_flush(c);
 break;
 case XCB_KEY_PRESS: /* exit on key press */
 done = 1;
 break;
 }
 free(e);
 }
 /* Cleanup */
 xcb_disconnect(c);

 return 0;
}

22.4.4.3 X Events in XCB
The following is a simple example of how to monitor XCB events of the types shown.

22.4.4.3.1 XCB Example Program xcb_events.c Objective: Report screen coordinates of
three-button mouse presses, and movement of the current position in the window created

1038 ◾ UNIX: The Textbook, Third Edition

Code:

#include <stdlib.h>
#include <stdio.h>
#include <xcb/xcb.h>
void
print_modifiers (uint32_t mask)
{
 const char **mod, *mods[] = {
 "Shift", "Lock", "Ctrl", "Alt",
 "Mod2", "Mod3", "Mod4", "Mod5",
 "Button1", "Button2", "Button3", "Button4", "Button5"
 };
 printf ("Modifier mask: ");
 for (mod = mods; mask; mask >>= 1, mod++)
 if (mask & 1)
 printf(*mod);
 putchar ('\n');
}

int
main ()

{
 xcb_connection_t *c;
 xcb_screen_t *screen;
 xcb_window_t win;
 xcb_generic_event_t *e;
 uint32_t mask = 0;
 uint32_t values[2];

 /* Open the connection to the X server */
 c = xcb_connect (NULL, NULL);

 /* Get the first screen */
 screen = xcb_setup_roots_iterator (xcb_get_setup (c)).data;

 /* Ask for our window's Id */
 win = xcb_generate_id (c);

 /* Create the window */
 mask = XCB_CW_BACK_PIXEL | XCB_CW_EVENT_MASK;
 values[0] = screen->white_pixel;
 values[1] = XCB_EVENT_MASK_EXPOSURE | XCB_EVENT_MASK_
BUTTON_PRESS |
 XCB_EVENT_MASK_BUTTON_RELEASE | XCB_EVENT_MASK_
POINTER_MOTION |
 XCB_EVENT_MASK_ENTER_WINDOW | XCB_EVENT_MASK_
LEAVE_WINDOW |

UNIX X Window System GUI Basics    ◾    1039

 XCB_EVENT_MASK_KEY_PRESS | XCB_EVENT_MASK_KEY_
RELEASE;
 xcb_create_window (c, /* Connection */
 0, /* depth */
 win, /* window Id */
 screen->root, /* parent window */
 0, 0, /* x, y */
 150, 150, /* width, height */
 10, /* border_width */
 XCB_WINDOW_CLASS_INPUT_OUTPUT,/* class */
 screen->root_visual, /* visual */
 mask, values); /* masks */

 /* Map the window on the screen */
 xcb_map_window (c, win);

 xcb_flush (c);

 while ((e = xcb_wait_for_event (c))) {
 switch (e->response_type & ~0x80) {
 case XCB_EXPOSE: {
 xcb_expose_event_t *ev = (xcb_expose_event_t *)e;

 printf ("Window %ld exposed. Region to be redrawn at
location (%d,%d), with dimension (%d,%d)\n",

 ev->window, ev->x, ev->y, ev->width, ev->height);
 break;
 }
 case XCB_BUTTON_PRESS: {
 xcb_button_press_event_t *ev = (xcb_button_press_event_t *)e;
 print_modifiers(ev->state);

 switch (ev->detail) {
 case 4:
 printf ("Wheel Button up in window %ld, at coordinates

(%d,%d)\n",
 ev->event, ev->event_x, ev->event_y);
 break;
 case 5:
 printf ("Wheel Button down in window %ld, at coordinates

(%d,%d)\n",
 ev->event, ev->event_x, ev->event_y);
 break;
 default:
 printf ("Button %d pressed in window %ld, at coordinates

(%d,%d)\n",
 ev->detail, ev->event, ev->event_x, ev->event_y);
 }
 break;
 }

1040 ◾ UNIX: The Textbook, Third Edition

 case XCB_BUTTON_RELEASE: {
 xcb_button_release_event_t *ev = (xcb_button_release_event_t

*)e;
 print_modifiers(ev->state);

 printf ("Button %d released in window %ld, at coordinates
(%d,%d)\n",

 ev->detail, ev->event, ev->event_x, ev->event_y);
 break;
 }

 default:
 /* Unknown event type, ignore it */
 printf("Unknown event: %d\n", e->response_type);
 break;
 }
 /* Free the Generic Event */
 free (e);
 }

 return 0;
}

22.4.5 Using the Qt Toolkit

As seen in Figure 22.21, there are basically two ways an X Windows client application pro-
gram can use its program code to work in conjunction with the X protocol running on the
X server: directly using XCB or Xlib library calls, or by using a toolkit specifically designed
to act as a simple-to-use intermediary that minimizes the coding complexity of dealing
with X protocol structure and functions. Qt is just such an intermediary toolkit. It is a
library of C++ code that allows you to create a client application program without dealing
with the details of XCB, Xlib, or the X protocol.

In the following exercises, we give you an overview of Qt programming as implemented
in a CUI terminal or console window. It is also possible to use a GUI-based IDE tool, such
as Qt Designer or the more complete Qt Creator to expedite a project that involves the
harnessing of a Qt-generated GUI to a client application program’s data generation code.

22.4.5.1 Creating an Executable Qt Program
The Qt libraries are installed by default on a PC-BSD system. Qt has its own compiling,
linking, and assembling procedure, as shown. The following steps show how to use the Qt
procedure to compile a Qt program, create a Qt project, and execute a client application
program on our base PC-BSD system.

You do not use the GNU C++ compiler to do any of these operations.

Step 0: Create an empty directory under your home directory, with a name like qtprogs1.
Make that directory the present working directory. Use a text editor of your choice to
enter and save the Qt code of any of the following example exercises into a file with

UNIX X Window System GUI Basics    ◾    1041

the file extension .cpp—for example, exercise1.cpp, which contains Qt client applica-
tion program code.

Step 1: At the shell prompt, type qmake-qt4 -project.

Step 2: At the shell prompt, type qmake-qt4.

Step 3: At the shell prompt, type make.

Step 4. In the directory you will now have five files: exercise1.cpp, Makefile, exercise1.o,
qtprogs1.pro, and qtprogs1.

Step 5: At the shell prompt, type ./qtprogs1.

Step 6: The graphics contained in the Qt program you entered into exercise1.cpp are
now shown on the screen. Use the kill window button to close this Qt window.

22.4.5.2 Qt Examples
Here is the simplest Qt client application program you can enter. Notice how much shorter
it is than the XCB or Xlib code shown in the preceding sections. Follow the instruction
steps in Section 22.4.5.1 to create the program and execute it.

Qt EXERCISE 22.1: SIMPLEST Qt PROGRAM

// helloWorld/main.cpp
#include <QApplication>
#include <QLabel>
int main(int argc, char *argv[])
{
 QApplication a(argc, argv);
 QLabel label("Hello World");
 label.show();
 return a.exec();
}

Qt EXERCISE 22.2: SIMPLE Qt PROGRAM WITH A GUI

In this example, we create and show a built-in Qt text edit capability in an open window.
This represents a simple Qt program that has a GUI. The line numbers shown to the left of
the code should be omitted, they are only there for reference in the dialog of explanation
that follows.

Here is the code:

 1 #include <QApplication>
 2 #include <QTextEdit>
 3

1042 ◾ UNIX: The Textbook, Third Edition

 4 int main(int argv, char **args)
 5 {
 6 QApplication app(argv, args);
 7
 8 QTextEdit textEdit;
 9 textEdit.show();
 10
 11 return app.exec();
 12 }

Dialog of explanation and description:

Lines 1 and 2 include the header files for QApplication and QTextEdit, which are
the two classes that Qt uses. Qt is an object-oriented programming language that
uses C++ class and object descriptions and functionality. All Qt classes have a header
file named after them.

Line 4 declares the variables and opens the program.

Line 6 creates a QApplication object. This object manages application-wide resources
and is necessary to run any Qt program that has a GUI. It needs argv and args
because Qt accepts a few command line arguments for this object.

Line 8 creates a QTextEdit object. A text edit is a visual element in the GUI. In Qt, we
call such elements widgets, short for window gadgets. Examples of other Qt widgets
are scroll bars, labels, spin boxes, sliders, and radio buttons. A widget can also be a
container for other widgets, a dialog area, or a main application window.

Line 9 shows the text edit on the screen in its own window frame. Since widgets also
function as containers (for instance QMainWindow, which has toolbars, menus, a
status bar, and a few other widgets), it is possible to show a single widget in its own
window. Widgets are not visible by default; the function show() makes the widget
visible.

Line 11 makes the QApplication object enter its event loop, similar to XCB and Xlib
client application programs. When a Qt client application is running, events are
generated and sent to the widgets of the application. Examples of events, as seen in
XCB and Xlib, are mouse button presses, mouse cursor movements, and key strokes
pressed on the keyboard. When you type text in the text edit widget, it receives key
press events and responds by drawing the text that was typed.

Qt EXERCISE 22.3: ADDING A QUIT BUTTON

In a real application, you would usually create more than one widget to allow a rich and
varied dialog between client application data-generating code and Qt code. We will now
show a simple example of a QPushButton beneath the text edit window created in Qt

UNIX X Window System GUI Basics    ◾    1043

Exercise 22.2. The button will exit the QTextEdit application when pushed (i.e., clicked
on with the mouse). Again, disregard the line numbers shown, since they are only used to
reference the code in the dialog that follows the code.

Here is the code.

 1 #include <QtGui>
 2
 3 int main(int argv, char **args)
 4 {
 5 QApplication app(argv, args);
 6
 7 QTextEdit *textEdit = new QTextEdit;
 8 QPushButton *quitButton = new QPushButton("&Quit");
 9
 10 QObject::connect(quitButton, SIGNAL(clicked()), qApp,

SLOT(quit()));
 11
 12 QVBoxLayout *layout = new QVBoxLayout;
 13 layout->addWidget(textEdit);
 14 layout->addWidget(quitButton);
 15
 16 QWidget window;
 17 window.setLayout(layout);
 18
 19 window.show();
 20
 21 return app.exec();
 22 }

Dialog of explanation and description:

Line 1 includes QtGui, which contains all of Qt’s GUI classes.

Lines 7 and 8 create two pointer objects to be used to reference the classes of objects
below.

The next line illustrates probably the most important Qt call.

Line 10 uses Qt’s signals and slots mechanism to make the application exit when the
Quit button is pushed. A slot is a function that can be invoked at run time using
its name (as a literal string). A signal is a function that when called will invoke slots
registered with it; we call that to connect the slot to the signal and to emit the signal.
So, quit() is a slot of QApplication that exits the application; clicked() is a
signal that QPushButton emits when it is pushed.

As a programming reminder for C++, :: is called the (binary) scope resolution operator.
By using the scope resolution operator, you can address member functions outside of

1044 ◾ UNIX: The Textbook, Third Edition

a class. Also remember that the scope resolution operator specifies that the identifier
which is on the right belongs to the data type or class on the left.

The static QObject::connect() function takes care of connecting the slot to the sig-
nal. SIGNAL() and SLOT() are two macros that take the function signatures of the
signal and slot to connect. We also need to give pointers to the objects that should
send and receive the signal.

Line 12 creates a QVBoxLayout. As mentioned, widgets can contain other widgets.
It is possible to set the bounds (the location and size) of child widgets directly, but it
is usually easier to use a layout. A layout manages the bounds of a widget’s children.
QVBoxLayout places the children in a vertical row.

Line 13 and 14 adds the text edit and button to the layout.

Line 17 sets the layout on a widget.

Line 19 uncovers the window.

Line 21 starts the event loop.

Qt EXERCISE 22.4: CONNECTING SIGNALS AND SLOTS

The following Qt code places three widgets in a window, and defines interconnections
between the signal elements and slot elements of those widgets.

// signalSlot2/main.cpp
#include <QApplication>
#include <QVBoxLayout>
#include <QLabel>
#include <QSpinBox>
#include <QSlider>
int main(int argc, char *argv[])
{
 QApplication a(argc, argv);
 QWidget window;
 QVBoxLayout* mainLayout = new QVBoxLayout(&window);
 QLabel* label = new QLabel("0");
 QSpinBox* spinBox = new QSpinBox;
 QSlider* slider = new QSlider(Qt::Horizontal);
 mainLayout->addWidget(label);
 mainLayout->addWidget(spinBox);
 mainLayout->addWidget(slider);
 QObject::connect(spinBox, SIGNAL(valueChanged(int)),
 label, SLOT(setNum(int)));
 QObject::connect(spinBox, SIGNAL(valueChanged(int)),
 slider, SLOT(setValue(int)));
 QObject::connect(slider, SIGNAL(valueChanged(int)),

UNIX X Window System GUI Basics    ◾    1045

 label, SLOT(setNum(int)));
 QObject::connect(slider, SIGNAL(valueChanged(int)),
 spinBox, SLOT(setValue(int)));
 window.show();
 return a.exec();
}

SUMMARY
The operability of UNIX is greatly improved from the user perspective by deployment of
a graphical user interface (GUI). A common GUI system is built upon a network protocol
called the X Window System. This GUI system can be classified as either integrated or non-
integrated. A nonintegrated system generally utilizes only the functionality of a window
manager. An integrated system generally couples the window manager with other higher-
level programs that achieve desktop management and session management. An example of
an integrated system is KDE4.

The X Window System is a network protocol and contains device-specific drivers for
Intel-based PC hardware. The X Window System is used for networked graphical interac-
tion between a user and one or more computer systems running UNIX. The chief arbiter
of the interactive dialog between user and computer system is the window manager. The
FVWM window manager offers all of the amenities of other popular window systems, and
additionally allows you to manage the graphical output from UNIX application programs.
The user interface has two basic parts: the application user interface (AUI), which is how
each client application presents itself in one or more windows on the server screen display,
and the window manager or management interface, which controls the display of and orga-
nizes all client windows.

The basic model of interactivity in the X Window System is an event–request loop
between the application client and the graphical server. With applications written for the
X Window System, the client application can process input events, do the work necessary
to form a response to the events, and then output the responses as requests for graphical
output to the server.

The X Window System, and FVWM in particular, are highly customizable to suit the
interactive needs of a wide range of users. In this chapter we covered two approaches
to changing the appearance and functionality of a nonintegrated window system, and
the window manager as well. The first approach involved changing the characteristics of
applications that run under the X Window System by specifying command line options.
The second approach involved modifying a predefined sample initialization file, named
~.fvwm/config, for the window manager FVWM, and then invoking that initialization
file.

We covered the functionality of the predominant open-source integrated desktop man-
agement system KDE4. We showed how this system can be used to expedite your work
within the UNIX environment, particularly with regard to personal productivity and file
management operations. We specifically showed the customization possible within this
system to allow a user to work more efficiently.

1046 ◾ UNIX: The Textbook, Third Edition

We showed several elementary sample client application programs for the X Window
System, coded to call upon three standard and very common toolkit libraries, Xlib, XCB,
and Qt. We stressed the two most important aspects of client application program creation
for the beginner:

• A client application program has two parts: a data generation part that uses code in
C, C++, or another high-level programming language to produce the numbers, text,
files, and data structures; and a user interface (UI) part which produces the actual
graphics that display the data generation part.

• A client application program is made up of initialization, event–request loop, and
cleanup sections.

We also showed many detailed examples of the toolkit code itself and what the code
accomplished in the context of the sample programs.

QUESTIONS AND PROBLEMS

 1. Give definitions, in your own words, for the following terms as they relate to the X
Window System: window system, window manager, desktop manager, client, server,
focus, iconify, maximize, minimize, xterm, application user interface, management
interface.

 2. Which X Window System window manager is used on your computer system? How
can you identify and recognize which window manager you are using by default?

 3. Make the following changes to your ~/.fvwm/config file to set DeskTopSize to
3 × 3. What effect does that have when you restart FVWM?

 Then, use the Root menu>Fvwm Simple Config Ops fly-out menu to change the
focus of Click to Focus. What effect does that have?

 4. Which command allows another user to have their windows displayed on your
screen under the X Window System? What would be the advantages of doing this?
What would be the disadvantages of doing this? Explain why this is even possible at
all under the X Window System.

 5. Identify the xterm options that are set on your computer system. What is the default
size of an xterm window? What is the default background color for an xterm win-
dow? What do you think are the most useful xterm options for you?

 6. Use the AppCafe on a PC-BSD system to download and install another window
manager, such as Awesome or FVWM-Crystal. Then login and invoke that new win-
dow manager and compare its operability, functionality, and ease of use to FVWM.
Which window manager do you like best and why?

 7. a. When you hold down the left-most mouse button when the screen cursor is in
the root window of your X Window System display, what appears on your screen?

UNIX X Window System GUI Basics    ◾    1047

What appears when you hold down the middle mouse button? What appears when
you hold down the right-most mouse button?

 b. What controls the appearance and content of the menus that are presented to you
when you take these actions?

 c. If you hold down the middle mouse button when the screen cursor is over the title
bar of a window on your display, what happens? What is presented to you?

 8. Do all windows launched on your X Window System display have the same
components—that is, scroll bars, iconify button, title bar, and resize handles? What
facility controls the look and feel of these components? How do these components
compare in function and operation to what you might be familiar with from another
GUI—for example, when using OS X or Windows?

 9. Use your favorite Web browser to explore the site www.X.org. What are the objectives
of this organization? What is another good source of information on the X Window
System?

 10. Use Gimp to design a bitmapped image for use as an icon in a pull-down menu.
For example, if you were going to design a menu choice for reading from a file,
your bitmapped image might look like a book that is open for reading. Save
the image, and then use an image-viewing application to view the image you
designed.

 11. After completing Problem 10, find an X-based application on your network that
allows you to customize menu items. Then, design icon images for use with the appli-
cation using Gimp and install them for use with the application.

 12. For KDE4, compare the file maintenance facilities available through Dolphin with
the UNIX commands that do file maintenance. What are the advantages of the desk-
top manager’s file facilities? What are the advantages of the UNIX commands that do
file maintenance, particularly ZFS commands and Disk Manager in PC-BSD? Can
you see the advantage of using both at the same time?

 13. What is a session manager, and how is it different from a desktop management sys-
tem or a window manager?

 14. What are the three major components of KDE4? Give a brief description of each one
of them.

 15. How can you add an application icon and menu choice to the Kickoff Application
Launcher application menus?

 16. Outline the installation procedure for the KDE4 system if you obtain the software as a
package over the Internet. When would it be necessary for you to do this installation?

 17. How can you upgrade KDE4 components? What components of KDE4 would you
add or upgrade? From what repository are these components available?

http://www.X.org

1048 ◾ UNIX: The Textbook, Third Edition

 18. Why would someone want to do a nonintegrated installation of UNIX—that is, either
without a GUI (with only a text-based interface to the system) or running only a bare-
bones window manager like FVWM?

 19. Why are server-class installations of UNIX done without a GUI?

 20. The primary task, and biggest challenge, of programming a client application in
the X Window System is connecting the output of code that generates or actually
is data—such as numbers, text strings, files, file structures, and so on—to a user UI
implemented by one of the toolkits we show in this chapter. Of course, if the only
objective of the UI of a client application program is to produce output graphics,
then it is advisable to partition the client application into a data generation part
(if there is one) and a graphics production part. Separating these two parts out is
helpful and useful when the code for each needs to be modified, maintained in the
future, or documented and understood by other developers or team programming
members, and the connectivity between the two discrete parts must remain the
same.

 Examine all of the program examples we provide for Xlib, XCB, and Qt, and
make a brief list of where the data in each program is generated, so that each of
the toolkits can make graphics out of it. Also describe how that data is passed
to the toolkit that uses the data, either as literal arguments, or as data structure
mechanisms.

For example, since Xlib uses mostly a procedural paradigm to pass the data-generating
components to the UI components, an entry in your answer tableau for the program exam-
ple Xlib test1.c should appear like this:

Xlib test1.c XFillRectangle(…,20, 20, 10, 10),
XDrawString(…, msg, …)

Integers, string

Main Page Table of Contents for FVWM

 1. Name

 2. Synopsis

 3. Description

 4. Options

 5. Anatomy of a Window

 6. The Virtual Desktop

 7. Use on Multi-Screen Displays

 8. Xinerama Support

 9. Initialization

UNIX X Window System GUI Basics    ◾    1049

 10. Compilation Options

 11. Icons and Images

 11.1. SVG Rendering Options

 12. Modules

 13. ICCCM Compliance

 14. Gnome Compliance

 15. Extended Window Manager Hints

 16. MWM Compatibility

 17. Open Look and XView Compatibility

 18. M4 Preprocessing

 19. CPP Preprocessing

 20. Configuration

 20.1. Configuration Files

 20.2. Supplied Configuration

 21. Fonts

 21.1. Font Names and Font Loading

 21.2. Font and String Encoding

 21.3. Font Shadow Effects

 22. Bidirectional Text

 23. Keyboard Shortcuts

 24. Session Management

 25. Boolean Arguments

 26. Builtin Key and Mouse Bindings

 27. Command Execution

 27.1. Module and Function Commands

 27.2. Delayed Execution of Commands

 28. Quoting

 29. Command Expansion

 30. Scripting & Complex Functions

1050 ◾ UNIX: The Textbook, Third Edition

 31. List of Fvwm Commands

 31.1. Menus

 31.2. Miscellaneous Commands

 31.3. Window Movement and Placement

 31.4. Focus & Mouse Movement

 31.5. Window State

 31.6. Mouse, Key & Stroke Bindings

 31.7. Controlling Window Styles

 31.8. Window Styles

 31.9. Controlling the Virtual Desktop

 31.10. User Functions and Shell Commands

 31.11. Conditional Commands

 31.12. Module Commands

 31.13. Session Management Commands

 31.14. Colorsets

 32. Environment

 33. Authors

 34. Copyright

 35. Bugs

1051

C h a p t e r 23

UNIX System Administration
Fundamentals

Objectives

• To illustrate the most efficient way to do a fresh install of a 64-bit, X86 architecture
version from an ISO-created DVD medium, using a GUI installer onto a single hard
disk system, with a KDE4 (PC-BSD) or GNOME (Solaris) GUI desktop

• To suggest system build design philosophy.

• To describe how to gracefully bring the system down

• To illustrate how to add additional users and groups to the system

• To show how to design and maintain user accounts

• To show post installation hardware, such as disk drives

• To provide strategies for backup and archival of system files and user files

• To show how to upgrade and maintain the operating system software

• To show how to add/update/remove user application package repository software

• To show how to monitor the performance of the system, particularly with system log
files

• To provide strategies for system security, particularly ACLs, and system firewall

• To cover the commands and primitives (PC-BSD shown; Solaris only in parentheses)

 adduser, appcafe, beadm, cpio, (dispadmin), dmesg, dump,
(format), getfacl, gpart, gparted, (groupadd), (groupdel),
gtar, ifconfig, (ipadm), ipfw, netstat, (ndd), pf,
pc-fwmanager, pc-systemupdatertray, pc-updategui,

1052 ◾ UNIX: The Textbook, Third Edition

pc-updatemanager, pc-zmanager, pfctl, pkg, restore,
(rmformat), rmuser, rsync, setfacl, shutdown, su, sudo,
(svcadm), (svcs), sysctl, tar, (ufsdump), (ufsrestore),
uncompress, (useradd), (userdel), (usermgr), (usermod), zfs,
zpool

23.1 INTRODUCTION
In order to install and maintain a UNIX system composed of both hardware and soft-
ware components, it is necessary to perform the set of common tasks shown in the fol-
lowing sections. These common tasks may be performed by an individual exclusively
for their own use on their own personal desktop/laptop/tablet computer, or may be
performed by an appointed administrator for a more complex computer system used
by many people. It is also possible to divide these common tasks into those performed
by an autonomous administrator and a group of ordinary users. In this chapter, we use
a “learning by doing” approach aimed at the individual rather than at an appointed
system administrator. Even though we show the basics of those common tasks, it is
possible to extrapolate from what is presented to the wider context of a larger computer
system.

In order to do any of the system administration tasks in this chapter, it is necessary to
either have superuser or root user privileges on the system. That means you need to know
the superuser password, which you (or a designated system administrator) can establish at
installation for PC-BSD and Solaris.

Both the su and sudo commands are used to execute programs and other commands
with root permissions. The root user has maximum permissions, and can do anything to
the system that a system administrator needs to. Normal users execute programs and com-
mands with reduced permissions.

To execute something that requires maximum permissions, you will first have to exe-
cute the su or sudo commands.

Using the su command makes you the superuser—or root user—when you execute it
with no additional options. You are prompted to enter the root account’s password. Also,
the su command allows you to switch to any user account. If you execute the command su
bob, you’ll be prompted to enter bob’s password, and the command shell current working
directory will switch to bob’s home directory.

Once you’re done running commands in the root shell, you should type exit to
leave the root shell and go back to limited-privileges mode. The root shell is not the
login shell.

In comparison, sudo runs a single command with root privileges. When you execute
sudo command, the system prompts you for the current user account’s password before
running command as the root user. More information on the sudo command can be
found in Section 23.9.2.1.

In our “learning by doing” approach, the common tasks are

UNIX System Administration Fundamentals    ◾    1053

 1. Doing a fresh install of a 64-bit, X86 architecture version from an ISO-created DVD
medium, using a GUI installer, onto a single hard disk system, with a KDE4 or
GNOME GUI desktop; doing a preliminary configuration of that system

 2. Gracefully bringing the system down

 3. Adding additional users and groups to the system, and show how to design and main-
tain user accounts

 4. Adding hardware to the system, such as disk drives

 5. Providing strategies using the traditional and generic UNIX commands, to backup
and archive the system files and user files

 6. Upgrading and maintaining the operating system, and adding/updating/remov-
ing user application package repository software to both increase functionality and
update existing packages

 7. Monitoring the performance of the system and tune it for optimal performance
characteristics

 8. Providing strategies for system security to harden the individual desktop computer

 9. Providing network connectivity strategies, both on a LAN and the Internet

We show how to do these nine common tasks both in PC-BSD and Solaris, the represen-
tative systems of the two major families of UNIX.

Some examples of advanced extensions on these basic tasks, and which we do not cover,
might be listed as

 1. Installing from a user-created, bootable USB thumb drive, running a “live” version
from DVD or a persistent USB thumb drive, or installing over a LAN or from a server

 2. Doing an advanced, text-based installation of a server with a complex configuration

 3. Maintaining a large user base across multiple machines and networks, using ACLs

 4. Configuring higher levels of RAIDZ or multipartitioned disks and volumes with
multiple operating systems on them

 5. Using commercial build or backup software, such as Norton Ghost

 6. Hot swapping hard drives and software

 7. Hand building software systems from source or using advanced package repository
resources

 8. Using the UNIX system exclusively to stream media via NAS to multiple displays

 9. Doing the common system administration tasks on OS X, iOS, Linux, or Android

1054 ◾ UNIX: The Textbook, Third Edition

 10. Writing and administering malware-fighting programs

 11. Integrating the system with cloud storage and computing, or implementing a full
UNIX, Apache, MySQL, Python (UAMP) stack

To extend some of the system administration topics covered in this book so that they are
reflective of modern UNIX systems, we provide two additional chapters as follows: Chapter
24 on ZFS details how a modern UNIX file system can be utilized to efficiently manage
system and user files; Chapter 25 on virtualization methodologies shows PC-BSD Jails,
Solaris 11 Zones, and VirtualBox virtual machines (VMs). These two additional chapters
show how to implement further levels of system security, as well as to expedite the system
administration techniques and methods shown in this chapter.

23.2 DOING A FRESH INSTALL FROM ISO-CREATED DVD
MEDIA AND PRELIMINARY SYSTEM CONFIGURATION

This section assumes that you have already obtained and burned to disk the ISO file of
the DVD media for PC-BSD or Solaris, and that your system is a 64-bit, X86 architecture
computer with at least one entire hard disk that you are willing to install the UNIX system
on. If you have not obtained a DVD or do not have a 64-bit computer, you should follow
the online documentation at www.pcbsd.org or www.oracle.com to get the ISO image of
the DVD media, or use an earlier release of either of the software systems that are designed
for 32-bit machines. “Obtaining the DVD media” means downloading an ISO file for the
release of the software you want to use, and then burning that ISO image to a DVD. We do
not give instructions here for that process. Be aware that some of the systems administra-
tion tasks illustrated for PC-BSD and Solaris are done in a different way in earlier releases
of the software!

This section also assumes that you will not be permanently running the “live” version
of either of the UNIX systems from persistent or nonpersistent media, like a USB drive or
CD/DVD.

A few words about ISO files and media at this point would be instructive. We have cho-
sen to do our installs in this chapter from DVDs created by burning ISO files downloaded
from both www.pcbsd.org and www.oracle.com. That is because the vast majority of desk-
top, server, and laptop computers being sold today, and that have been sold for the past 15
years, come equipped with a DVD drive as standard. This may change in the future, where
the predominant form of removable media hardware may become something else, such as
USB 3.0 thumbdrives, for example. It is presently possible to use a downloaded ISO file for
the installation of the operating systems placed on a USB external medium, but we chose
not to use this method. If you want to use this method, you can if it fits your use case,
hardware requirements, and data storage model, and most importantly, is convenient and
easy for you.

Also, as shown in Chapter 25, it is possible to use the downloaded ISO file without burn-
ing it to DVD media to install the operating system into a VM environment. And you can
use the downloaded ISO file in this chapter as well to directly install the operating system

http://www.oracle.com
http://www.pcbsd.org
http://www.oracle.com
http://www.pcbsd.org

UNIX System Administration Fundamentals    ◾    1055

without using DVD media. Again, the method of installation you choose is your personal
preference, based upon what works best for you on your particular computer hardware,
what your use case is, and how you store your data.

If you want to install either PC-BSD or Solaris in a virtual environment, so that it runs
simultaneously with some other operating system on your computer’s hardware, we give
specific instructions on how to do this in Chapter 25, “Virtualization Methodologies.” In
Chapter 25, Section 4.5, we give the specifics of installing PC-BSD and Solaris as “guest”
operating systems on Ubuntu Linux and Windows hosts, using VirtualBox.

23.2.1 Preinstallation Considerations

Each of the UNIX systems we will show an installation of, PC-BSD and Solaris, have
minimum hardware and driver requirements that can be determined before you begin an
install. These hardware requirements are listed in the documentation online for each of the
systems. Once you have determined that your computer system hardware meets or exceeds
those minimum requirements, the following questions suggest some other important con-
siderations you can make over and above the default installation choices before proceeding
with the installation:

 1. How many hard disks does your computer have, and how are you planning to use the
Zettabyte File System (ZFS) on those disks? For example, if you only have one hard
disk drive, that will be the bootable system disk and the file system data disk. If you
have two or more hard disk drives, will you mirror the bootable system disk and all
other data from the main drive on the other drives? In PC-BSD, mirroring on two or
more disks can be accomplished at system installation.

 Most importantly, if your hardware can support multiple hard drives, we recom-
mend that you install the operating system on one hard drive (preferably a solid state
drive [SSD]), and all of the user data on another single disk or an array of hard disk
drives. That way, if the operating system and its bootable hard disk drive become
corrupted or unusable for some reason, your user data is on a separate hard disk or
array of hard disks. As shown in Section 23.7.3.1, which deals with the most practical
methods of operating system upgrades, you can then simply replace the operating
system hard disk and reinstall either the current version of the operating system or
a newer version. You can then use the ZFS facilities to reattach the data hard drives
to the new operating system and its hard disk drive. This is highly valuable not only
for desktop computers but also server-class systems as well. The way that your data is
deployed on your disks is a critical design consideration when you are building your
system, and is highly dependent on the particular use case that is guiding it.

 2. Do you have a wireless connection to a LAN and the Internet? A wired connection
through DHCP is automatically done in both systems during the default install.

 3. How many users are you going to initially establish at installation, and what are their
user profiles going to be? For example, what users will have administrative privileges
other than yourself, and what kind of security will each profile have? Also, what user

1056 ◾ UNIX: The Textbook, Third Edition

groups are you going to establish at installation, and how are you going to manage
groups in a post installation environment?

 4. Who will be responsible for the nine systems administration tasks listed previously?
For example, this will influence your disk management tasks concerning file systems
for users and projects, according to the data storage model you employ.

 5. What kind of software tools do you want to include for the kinds of tasks you and
your user base will be doing? For example, during installation, you are able to add
packages on top of the default package installation to help accomplish those tasks.
How are the user groups established in item 3 going to have access privileges to this
software? What are your policies with respect to group access to software tools, and
how do you enforce this policy?

 6. What kind of GUI windowing system do you want to install with the system? You
have a choice at installation of KDE4, Gnome, and others, and your previous experi-
ence and preferences with a particular style of desktop environment can be imple-
mented at installation. Will you be doing a server install, based on your use case? A
server install, and the management of a server system, involves another whole uni-
verse of considerations and design decisions.

EXERCISE 23.1
Make a detailed listing on paper of your answers to these six questions before you begin
to install your operating system. Then, read through the following sections showing the
procedures for actual installation, and for each of your answers, determine ahead of time
how you will proceed. This exercise is meant to serve as a “dry run” through any particular
path you might take through the installation process.

23.2.2 GUI Install of PC-BSD

The most efficient, and patented, way to install PC-BSD on your computer is to follow
the installation instructions in the PC-BSD handbook for the release of the software you
want to install. Practically speaking, you can proceed through the installation from start
to finish in a very intuitive manner, without using the handbook. Then, once the system
is installed, you can consult the handbook, which is opened via clicking on an icon on
the KDE4 desktop, for further detailed descriptions of the GUI installation process. In
addition, versions of the PC-BSD handbook are available online for earlier releases of the
software, and the general process of doing a GUI installation has not changed considerably
since the earlier releases. This may change somewhat in later releases of the software, but
certainly will not detrimentally affect using a purely intuitive initial installation scenario.

EXERCISE 23.2
Why would it be dangerous to do a full disk install of a new installation on a disk that has
legacy archived user data on it?

UNIX System Administration Fundamentals    ◾    1057

23.2.3 Postinstall Configuration

To do an efficient and expeditious postinstallation of PC-BSD, refer to the instructions in
the PC-BSD handbook for the version of the software you are interested in.

23.2.4 GUI Install of Solaris

In order to permanently install Solaris on your computer system, you must take the fol-
lowing steps:

 1. Boot to the Live Media ISO-created DVD. After booting to the DVD, the Live Media
GNU Grand Unified Bootloader (GRUB) menu will appear briefly. The default boot
environment (first option listed) will be used if you do not interrupt the GRUB menu
and choose an alternate boot environment. Use the default.

 2. The first screen allows you to select the keyboard layout that you will be using. The
information at the top of the screen describes the version of Solaris being installed.
Press <Enter> to choose the default of US English.

 3. The next screen prompts you to enter the language that you wish to use. Press
<Enter> to choose English.

 4. The Live Media installer will boot the system, configure devices, and launch the desk-
top GUI.

 When the command line login prompt appears, wait a few minutes for the desktop
GUI to start up.

 The system is booted from the DVD and you can start using Solaris; however,
Solaris is running in RAM and is not installed on the local disk. While booted from
Live Media, any changes made will be lost when the system is rebooted.

 5. There are four icons on the desktop. Click on the Device Driver Utility to view the
status of the devices on your system. If you are prompted for a password, enter
solaris. It will take a few minutes for the system to gather the device information
before it will display the Device Driver Utility.

 The Device Driver Utility will report any device issues. It is important to resolve
any device issues of importance before continuing with the installation. If the system
reports zero driver problems, or the device driver issues are not important for instal-
lation, click on the Close button to close the Device Driver Utility.

 The Device Driver Utility is only available on the x86 platform and will indicate
which Solaris driver supports the various x86 components. If the utility detects a
device that does not have a driver attached, that device is selected on the device
list. You can choose to display more information about the device and install the
missing driver. You can specify a Solaris IPS package or a file/URL path to the
driver.

1058 ◾ UNIX: The Textbook, Third Edition

 6. Begin the installation by clicking on the Install Solaris icon. The Welcome
screen will open.

 The list on the left side of the window lists the following steps that you will follow
to configure the system before installing the OS:

 a. Configure the root disk where the OS will be installed (sometimes called the boot
disk)

 b. Set the time zone

 c. Create a user login account

 d. Begin the installation

 7. Click on the Next button and the Disk Discovery window will appear. Select whether
you will be installing the OS onto a local disk (internal or external disk) or an Internet
Small Computer System Interface (iSCSI) disk accessible over the network using the
iSCSI protocol. Select Local Disks.

 8. Click on the Next button and the Disk Selection window will appear. You will
be using the whole disk for the Solaris OS, so make that selection and click
Next.

 Note: This procedure will erase everything on the disk.

 9. The Time Zone screen appears. Select the correct region, location, time zone, date,
and time, then click Next.

 10. The Users screen will appear. On this screen, you will create a user account and
enter a computer name for this system. When installing the OS using the Live Media
installer, you must create a user account. This will be your login account. After the
installation, you will not be allowed to log in directly as root.

 When creating a user account, follow these rules:

• The username cannot be root.

• The username must start with a letter.

• The username may contain alphabetical characters, numbers, underscores (_),
periods (.), or hyphens (-).

 After the installation using Live Media is complete and the system has been
rebooted, the default behavior is to not allow root to log in from the login screen.
You will first log in using the user account that was created during installation,
and then, if desired, switch to the root account when root privileges are required.
See Chapter 2, Figures 2.2 and , to see the appearance of the login screen dialog
boxes.
2.3

UNIX System Administration Fundamentals    ◾    1059

 Enter your own computer name or accept the default, solaris. The computer name,
also called the hostname, cannot be blank.

 11. Click Next and the Support Registration screen will be displayed.

 12. Click Next and the installation summary screen will be displayed.

 13. After reviewing the contents of the installation summary screen, click the Install
button and the installation will begin. When the installation is complete, the
Finished screen will be displayed.

 14. Click the Reboot button to reboot the system. Be sure to remove the DVD so that
the system boots from the internal disk and not the DVD. After rebooting, the system
will display the GUI login screen.

 If the GRUB menu appears, the system is still booting from the installation media.
Remove the installation media and make sure that the system is set up to boot from
the local boot disk.

 15. Logging in: By default, Solaris 11 does not allow the root user to log in at the login screen.
You will first log in using the user account that was created during the installation. See
Chapter 2, Figures 2.2 and 2.3, to see the appearance of the login screen dialog boxes.

 After you’ve logged in, use the su command to switch to the root account when
root privileges are required. The first time that you assume the root role, you will
authenticate using the password that you specified for the user account during the
installation. At that point, you will receive a message that the password has expired,
and you will be required to set a new password for the root account, as shown in the
following code:

su root
Password: xxx
Su: Password for user 'root' has expired
New Password: yyy
Re-enter new Password: yyy
su: password successfully changed for root
#

23.2.5 System Services Administration, Booting and Shutdown Procedures

This section details the general procedures for starting up, and gracefully shutting down
PC-BSD and Solaris. It gives a brief overview of the steps those systems go through in suc-
cessfully shutting down. It then outlines some of the important system services adminis-
tration utilities available to the system administrator, most prominently SMF for Solaris.
Additionally, we give examples of commands for manipulating and changing those system
services by enabling and running new services.

1060 ◾ UNIX: The Textbook, Third Edition

23.2.5.1 The Boot Process
Basically, a UNIX system is booted in this sequence:

• The firmware on the main system board finds the bootable media.

• The bootloader program loads the monolithic kernel from the boot media into RAM
and starts it.

• The kernel uses the commands passed by the bootloader to find the main file system,
at which point it can find and run the initialization procedure, which is different for
PC-BSD and Solaris.

• The initialization procedure runs other programs to find the file systems and start
network and local service processes.

The term booting means bringing the operating system from a complete power-off con-
dition to a steady-state, fully normal operating condition. It is worth noting here how a
UNIX system is different from systemd in Linux, and launchd in OS X.

For both PC-BSD and Solaris family UNIX systems, the boot processes and graceful
shutdown sequences are essentially the same, with just a minor difference in the program
that handles system service initialization procedures.

23.2.5.2 Graceful Shutdown
For both PC-BSD and Solaris systems, graceful shutdown procedures are generally done
as follows.

 1. Shutdown system and user processes

 2. Flush system memory to disk

 3. Unmount file systems

 4. Power off

These procedures may be subsumed under three distinct system call, system service
phases in PC-BSD. The graceful shutdown or reboot procedures can be done graphically
from the active window system, or from the command line or console window using the
halt or shutdown commands and their options. An example of this on PC-BSD is as
follows.

$ shutdown -h now

where -h means halt the processor, an now means immediately.
On Solaris, and example of using shutdown is a follows:

shutdown -i0 -g180 "System down in 2 minutes"

UNIX System Administration Fundamentals    ◾    1061

where -i0 means bring the system to the 0 run level, -g180 means wait 2 minutes (180
seconds), and the message System down in 2 minutes is broadcast to all users.

23.2.5.3 Managing System Services
The two system service managers that are available in our base UNIX systems are init at
boot time for PC-BSD, and SMF for Solaris. In this section, we cover introductory concepts
and commands for both.

First, one question must be answered: Is a service a daemon?
The answer: Sometimes.
More accurately and generally, a service can be a process or collection of processes, the

overall state of the system, or the state of a device, virtual device, dataset, etc. And as a
provider of resources or a collection of an application’s capabilities, it can have more than
one instance. For example, many layered file systems, or multiple means of remote login
to the system.

And that brings about an ancillary question as well: What is a daemon?
The answer: Basically a daemon is an ongoing background process that is not linked

or controlled by a terminal, and particularly not connected in the usual way to standard
output or stand error.

23.2.5.3.1 PC-BSD Overview of System Startup, Services, and Run Levels Most current
LINUX distributions use systemd to start services, and OS X uses launchd. PC-BSD uses
the traditional BSD-style init. Under the BSD-style init, there are no run levels (software
configurations under which only a selected group of processes are running) and the file /
etc/inittab, which controls the System V init protocol, does not exist. Instead, startup is
controlled by rc scripts, as illustrated by the examples in Section 23.2.5.5.

But if init is run as a user process, it will emulate System V init behavior. It can invoke
run levels, as System V init does. You can use init to change the run level of the system.
A superuser can specify the desired run level on a command line, and init will signal the
original (PID 1) init as displayed in Table 23.1.

To get a more detailed account of PC-BSD init, see the man page for init on your system.
When PC-BSD reaches the init stage of booting, /etc/rc reads /etc/rc.conf and /etc/

defaults/rc.conf to determine which services are to be started. The specified services are
then started by running the corresponding service initialization scripts located in /etc/
rc.d/ and /usr/local/etc/rc.d/. These scripts are similar to the scripts located in /etc/init.d/
on LINUX systems.

The scripts found in /etc/rc.d/ are for applications that are part of the base system, such
as cron, sshd, and syslog. The scripts in /usr/local/etc/rc.d/ are for user-installed applica-
tions such as Apache.

PC-BSD is a complete operating system, and user-installed applications are not consid-
ered to be part of the base system. User-installed applications are generally installed using
packages or ports. In order to keep them separate from the base system, user-installed
applications are installed under /usr/local/. User-installed binaries reside in /usr/local/
bin/, configuration files are in /usr/local/etc/.

1062 ◾ UNIX: The Textbook, Third Edition

Services are enabled by adding an entry for the service in /etc/rc.conf. The system
defaults are found in /etc/defaults/rc.conf and these default settings are overridden by
settings in /etc/rc.conf. Refer to rc.conf for more information about the available entries.
When installing additional applications, review the application’s install message to deter-
mine how to enable any associated services.

The following entries in a sample /etc/rc.conf enable sshd, enable Apache 2.4, and spec-
ify that Apache should be started with SSL.

enable SSHD
sshd_enable="YES"
enable Apache with SSL
apache24_enable="YES"
apache24_flags="-DSSL"

Once a service has been enabled in /etc/rc.conf, it can be started without rebooting the
system:

service sshd start
service apache24 start

If a service has not been enabled, it can be started from the command line using
onestart:

service sshd onestart

23.2.5.3.2 Solaris System Startup, SMF, and Run Levels When Solaris boots and reaches the
init phase, init on Solaris starts the svc.startd daemon, which is SMF (system management
framework). SMF is the master process starter and restarter. Not only does SMF start ser-
vices at boot time, but it also provides a mechanism to administer to services.

The Solaris init is the default first user process, or PID 1. Options given to the kernel
during boot may result in an alternative first user process. The init process starts the core
components of SMF and svc.configd. It restarts these components if they fail. For back-
ward compatibility, init also starts and restarts general processes similar to PC-BSD init.

At any given time, the system is in one of eight possible run levels, similar to those
defined previously for PC-BSD. Processes started by init for each of these run levels can be

TABLE 23.1 Run Level Signal Emulation

Run-level Signal Action

0 SIGUSR2 Halt and turn the power off
1 SIGTERM Go to single-user mode
6 SIGINT Reboot the machine
c SIGTSTP Block further logins
q SIGHUP Rescan the ttys(5) file

UNIX System Administration Fundamentals    ◾    1063

defined in /etc/inittab. The init process can be in one of eight run levels 0–6 and S or s. The
run level changes when a privileged user runs /usr/sbin/init.

The run level S or s invoked by init switches the system into the single-user state. In
this state, the system console device (/dev/console) is opened for reading and writing. Run
levels 0, 5, and 6 are reserved states for shutting the system down. Run levels 2, 3, and 4 are
available as multiuser operating states.

Solaris SMF manages applications and system services. It works in addition to the tra-
ditional UNIX startup scripts, init run levels, and configuration files. SMF works so that
dependent services can automatically be restarted when necessary. Information needed
to manage each service is stored in the service configuration repository, which provides a
simplified way to manage each service. SMF also allows you to start or stop services that
were not started by default at boot time. The examples shown for Solaris in Section 23.2.5.5
illustrate this.

SMF has a set of actions that can be invoked on a service by an administrator, generally
the root user. These actions, which can be manually manipulated on the command line
by, for example, the svcadm command, include enable, disable, refresh, and restart. Each
service is managed by a service restarter, which carries out the administrative actions. In
general, the restarters carry out actions by executing methods for a service. Methods for
each service are defined in the service configuration repository. These methods allow the
restarter to move the service from one state to another state.

The following is a listing of the commands used by SMF to manage services.

• inetadm: Controls the inetd daemon services

• svcadm: Does the common service management tasks, like enabling, disabling, or
restarting service instances

• svccfg: Displays and makes changes to a service configuration repository

• svcprop: Provides shell script code by retrieving property values from a service
configuration repository

• svcs: Gives verbose details of the service state of all instances in the service configu-
ration repository

• svcbundle: Generates SMF manifests

See the following examples for a more complete description of using some of these
commands. You can also examine the man pages on your system for any of these
commands.

23.2.5.4 Examples of System Service Management
In this section we illustrate the use of both PC-BSD and Solaris service management by
giving examples of how to enable server-side host services for the telnet, ftp, rlogin and rsh
daemons.

1064 ◾ UNIX: The Textbook, Third Edition

In Chapter 25, we will show how you can implement these services securely inside of a
PC-BSD Jail, a Solaris Zone, or within a VirtualBox VM.

In preparation for the PC-BSD components of this section, you should refer back to
Chapter 20, Section 10, “The UNIX Super Server inetd” for more information on the inetd
service operation and its configuration.

As will be noted, you should be cautious when executing these examples, particularly
if you are not using one of the virtualization methodologies shown in Chapter 25, and are
on an insecure network connected to the Internet. You must have root privileges on the
computer to execute the following examples as well.

EXERCISE 23.3
What is the danger of using ftp, telnet, rlogin, or rsh from a remote site on the Internet on
your home server?

23.2.5.4.1 Examples of Enabling telnet and ftp Servers on PC-BSD and Solaris
For the PC-BSD host or server:

• CAUTION: This step drops the firewall on the host computer for incoming traffic on
ports 23 and 21.

• Use the PC-BSD Control Panel on the desktop and go to the Firewall Manager.

• In the Firewall Manager, add new TCP ports for telnet on 23 and ftp on 21, so incom-
ing traffic can enter.

• At this point, restart the Firewall Manager and exit from it.

• Check to see if telnet is active:

$ netstat -anf inet|grep LIST|grep 23
tcp4 0 0 *.23
. LISTEN

• If you don’t get this output, proceed with the following:

As superuser:

$ vi /etc/inetd.conf

• Uncomment , or remove the # sign as the first character in the lines:

ftp stream tcp nowait root /usr/libexec/ftpd ftpd-1
telnet stream tcp nowait root /usr/libexec/telnetd telnetd

• Save the file.

UNIX System Administration Fundamentals    ◾    1065

• Enable inetd in /etc/rc.conf so you can initially start it in this session, and it always
starts in every subsequent session, to enable telnet and ftp:

$ echo "inetd_enable="YES"" >> /etc/rc.conf
$ /etc/rc.d/inetd start
Starting inetd

• With the next command, you are basically telneting to your own machine to check
telnet! You can check ftp the same way.

• Exit as superuser.

$ telnet localhost
Trying 127.0.0.1...
Connected to localhost.
Escape character is '^]'.
Trying SRA secure login:
User (bob):
Password: xxx
[SRA accepts you]
…
$ logout

• You’re back at the original shell prompt.

• From a remote machine, telnet or ftp into the PC-BSD host you just enabled telnet
and ftp on.

For Solaris host or server:

• By default, there are no firewall changes that have to be made.

• See if the telnet daemon is enabled and running.

bob@solaris:~$ svcadm enable network/telnet:default
svcadm: svc:/network/telnet:default: is not complete, missing
general/complete (see svcs -xv svc:/network/telnet:default for
details)

• Check with svcs.

bob@solaris:~$ svcs -xv svc:/network/telnet:default
svc:/network/telnet:default (?)
State: -
Reason: Service is incomplete, defined only by profile /etc/
svc/profile/generic.xml. To install this service, identify and
install the package which provides the service's primary
manifest. Use "pkg search 'svc\:/network/telnet:default'" to

1066 ◾ UNIX: The Textbook, Third Edition

identify the package, then "pkg install <pkg>" to install the
indicated package.
Impact: This service is not running.

• From the preceding two commands, we see it is not enabled or running, and why this
is so!

• Do what is suggested, find out what the pkg is, and install the pkg as superuser.

bob@solaris:~$ su
Password: xxx
root@solaris:~# pkg search 'svc:/network/telnet:default'
INDEX ACTION VALUE
PACKAGE
org.opensolaris.smf.fmri set svc\:/network/telnet\:default
pkg:/service/network/telnet@0.5.11-0.175.2.0.0.42.2
root@solaris:~# pkg install pkg:/service/network/
 telnet@0.5.11-0.175.2.0.0.42.2
 Packages to install: 1
 Services to change: 1
 Create boot environment: No
Create backup boot environment: No
DOWNLOAD PKGS FILES XFER (MB) SPEED
Completed 1/1 10/10 0.0/0.0 92.3k/s
PHASE ITEMS
Installing new actions 32/32
Updating package state database Done
Updating package cache 0/0
Updating image state Done
Creating fast lookup database Done
Updating package cache 1/1

• Now that pkg has been installed, enable it.

root@solaris:~# svcadm enable network/telnet:default

• Exit root.

root@solaris:~# exit
exit

• Test telnet by logging on locally.

bob@solaris:~$ telnet 0
Trying 0.0.0.0...

UNIX System Administration Fundamentals    ◾    1067

Connected to 0.
Escape character is '^]'.
login: bob
Password: xxx
Last login: Fri Sep 26 05:28:33 from 192.168.0.12
Corporation SunOS 5.11 11.2 June 2014

• It works! Log out.

bob@solaris:~$ logout
Connection to 0 closed by foreign host.
bob@solaris:~$

Enabling ftp and running it:

• Basically, repeat what was done for enabling telnet.

• Check if ftp is enabled and running.

bob@solaris:~$ svcadm enable network/ftp:default
svcadm: svc:/network/ftp:default: is not complete, missing
general/complete (see svcs -xv svc:/network/ftp:default for
details)
bob@solaris:~$ svcs -xv svc:/network/ftp:default
svc:/network/ftp:default (?)
State:-
Reason: Service is incomplete, defined only by profile /etc/
svc/profile/generic.xml. To install this service, identify and
install the package which provides the service's primary
manifest. Use "pkg search 'svc\:/network/ftp\:default'" to
identify the package, then "pkg install <pkg>" to install the
indicated package.
Impact: This service is not running.

• From the preceding two commands, we see it is not enabled or running, and why this
is so!

• Do what is suggested, find out what the pkg is, and install the pkg as superuser.

bob@solaris:~$ su
Password: xxx
root@solaris:~# pkg search 'svc\:/network/ftp\:default'
INDEX ACTION VALUE PACKAGE
org.opensolaris.smf.fmri set svc:/network/ftp:default pkg:/
service/network/ftp@1.3.4.0.3-0.175.2.0.0.42.1
root@solaris:~# pkg install pkg:/service/network/
 ftp@1.3.4.0.3-0.175.2.0.0.42.1

1068 ◾ UNIX: The Textbook, Third Edition

 Packages to install: 1
 Services to change: 2
 Create boot environment: No
Create backup boot environment: No
DOWNLOAD PKGS FILES XFER (MB) SPEED
Completed 1/1 113/113 0.8/0.8 308k/s
PHASE ITEMS
Installing new actions 178/178
Updating package state database Done
Updating package cache 0/0
Updating image state Done
Creating fast lookup database Done
Updating package cache 1/1

• Now that pkg has been installed, enable it.

root@solaris:~# svcadm enable network/ftp:default

• Get out of superuser.

root@solaris:~# exit
exit

• Now test it on the local host machine.

bob@solaris:~$ ftp 0
Connected to 0.0.0.0.
220 ::ffff:127.0.0.1 FTP server ready
Name (0:bob): <Enter>
331 Password required for bob
Password: xxx
230 User bob logged in
Remote system type is UNIX.
Using binary mode to transfer files.
ftp>

• It works! Get out of it locally.

ftp> quit
221 Goodbye.
bob@solaris:~$

• From a remote machine, telnet or ftp into the Solaris host you just enabled telnet
and ftp on.

UNIX System Administration Fundamentals    ◾    1069

Examples of Enabling rlogin and rsh on a PC-BSD and Solaris Server.
For the PC-BSD host or server:

• CAUTION: This step drops the firewall on the host computer for incoming traffic on
port 513.

• Use the PC-BSD Control Panel on the desktop and go to the Firewall Manager.

• In the Firewall Manager, add a new TCP port for rlogin and rsh on port 513, so
incoming traffic can enter.

• At this point, restart the Firewall Manager and exit from it.

• Check to see if rlogin is active:

$ rlogin 0

• If your connection is refused, proceed with the following as superuser:

vi /etc/inetd.conf

• Uncomment, or remove the # sign as the first character in the line:

login stream tcp nowait root /usr/libexec/rlogind rlogind

• Save the file.

• If you haven’t enabled inetd for telnet and ftp, do the following:

• Enable inetd in /etc/rc.conf so you can initially start it in this session, and it always
starts in every subsequent session, to enable rlogin and rsh:

echo "inetd_enable="YES"" >> /etc/rc.conf

• Start, or restart, inetd.

/etc/rc.d/inetd start
Starting inetd

• With the next command, you are basically using rlogin on your own machine to
check the rlogin daemon! You can check rsh the same way.

• Exit as superuser.

$ rlogin localhost
connect to address ::1: Connection refused
Trying 127.0.0.1...
Password for bob@pc-2823: xxx

1070 ◾ UNIX: The Textbook, Third Edition

…
[bob@pcbsd-2823] ~%

• You are in! Log out.

[bob@pcbsd-2823] ~% logout
$

• You’re back at the original shell prompt.

• From a remote machine, rlogin or rsh into the PC-BSD host you just enabled
rlogin and rsh on.

For a Solaris server:

• Put the proper hostnames, IP addresses, and user permissions in your home direc-
tory’s .rlogin file and also in the /etc/hosts.equiv file. See the man pages for rlogin and
rsh for directions.

• Check to see if rlogin is enabled and running with the following two commands:

bob@solaris:~$ svcadm enable svc:/network/login:rlogin
svcadm: svc:/network/login:rlogin: is not complete, missing
general/complete (see svcs -xv svc:/network/login:rlogin for
details)
bob@solaris:~$ svcs -xv svc:/network/login:rlogin
svc:/network/login:rlogin (?)
State: -
Reason: Service is incomplete, defined only by profile /etc/
svc/profile/generic.xml. To install this service, identify and
install the package which provides the service's primary
manifest. Use "pkg search 'svc\:/network/login\:rlogin'" to
identify the package, then "pkg install <pkg>" to install the
indicated package.
Impact: This service is not running.

• Based on this, follow the instructions given in the svcs command as superuser.

bob@solaris:~$ su
Password: xxx

• Do a pkg search.

root@solaris:~# pkg search 'svc\:/network/login\:rlogin'
INDEX ACTION VALUE PACKAGE

UNIX System Administration Fundamentals    ◾    1071

org.opensolaris.smf.fmri set svc:/network/login:rlogin
pkg:/service/network/legacy-remote-utilities
@0.5.11-0.175.2.0.0.42.2

• Get that pkg!

root@solaris:~# pkg install pkg:/service/network/legacy-
 remote-utilities@0.5.11-0.175.2.0.0.42.2
 Packages to install: 1
 Services to change: 1
 Create boot environment: No
Create backup boot environment: No
DOWNLOAD PKGS FILES XFER (MB) SPEED
Completed 1/1 36/36 0.1/0.1 132k/s
PHASE ITEMS
Installing new actions 63/63
Updating package state database Done
Updating package cache 0/0
Updating image state Done
Creating fast lookup database Done
Updating package cache 1/1

• Install rlogin.

root@solaris:~# svcadm enable svc:/network/login:rlogin

• Get out of root.

root@solaris:~# exit
exit

• Test rlogin on the local loopback.

bob@solaris:~$ rlogin 0
Password: xxx
Last login: Fri Sep 26 13:23:30 on rad/0
Corporation SunOS 5.11 11.2 June 2014
bob@solaris:~$

• It works! Log out.

bob@solaris:~$ logout
Connection to 0 closed.
bob@solaris:~$

1072 ◾ UNIX: The Textbook, Third Edition

• Now test both rlogin and rsh from a remote client machine to the server you just
enabled and ran rlogin on.

23.3 USER ADMINISTRATION
The two most important objectives of user administration are service and security: provid-
ing a service to ensure that the user base has access to and can fully take advantage of the
resources that a modern UNIX system can provide, and securing the files and processes
that the user base needs to utilize those resources. Later in this chapter we go over some
of the security methodologies that a system administrator can deploy to keep the system
secure. In Chapter 25, we will also show security methods that revolve around virtualiza-
tion technologies such as Jails, Zones, and VirtualBox VMs.

The traditional UNIX technique for providing service and security is through access
privileges, for the individual user, the group, or all others on the system, to specific objects
on the system, such as files. We showed how to set access privileges on files in Chapter 5,
Sections 5.4 and 5.5. Designing and implementing user groups, and access privileges for
user groups, are the most important parts of this technique.

Certainly, user account creation and configuration is the first step in providing maxi-
mum service and security to the user base.

In the following section, we concentrate on how to manage user accounts and groups
on both PC-BSD and Solaris. These activities are done a significant time after the initial
installation of your UNIX system, but that does not mean that they cannot be done during
initialization of the system. The examples in the following section illustrate:

• Two simple cases of text-based user account creation and configuration on PC-BSD

• A GUI account creation and configuration in PC-BSD

• A text-based account creation and configuration in Solaris

Adding a new user account to a UNIX system generally involves the following steps:

 1. Assign the user a username, a user ID number, and a primary group, and decide
which other groups the new user should be a member of. Enter this data into the sys-
tem user account configuration files.

 2. Assign a password to the new account.

 3. Create a home directory for the user.

 4. Place default or custom initialization files in the user’s home directory.

 5. Give the new user ownership of their home directory and initialization files.

 6. Set other user account configuration details that would be useful for your system.
This would include things like disk quotas and other resource limits, and system
privileges.

UNIX System Administration Fundamentals    ◾    1073

 7. Add the user to any other facilities in use as appropriate, such as the UNIX mail sys-
tem and printing.

 8. Grant or deny access to additional system resources as appropriate, using file protec-
tions or the resources’ own internal mechanisms (e.g., the /etc/ftpusers file lists those
users denied access to the ftp service).

 9. Perform any other site-specific initialization tasks.

 10. Test the new account.

EXERCISE 23.4
Given these 10 steps, make a table or chart of what users and groups need to be added to
your system, and what their default account parameters and group memberships should
be. What command can you use to identify all existing groups on the system?

23.3.1 Adding and Deleting a User in a Text-Based Interface on PC-BSD

The following are two simple examples of how to add a new user to PC-BSD in a text-
based command line interface. The first one is an interactive session that uses the
adduser command to add a single user account. The second one uses adduser in
batch mode, in conjunction with a file that contains a listing of several user accounts
that can be added all at one time. An abbreviated listing of the syntax of the adduser
command is as follows.

SYNTAX
adduser [options] [option argument(s)]

Purpose: The adduser utility is a shell script for adding new users. It creates passwd/
group entries, a home directory, copies dotfiles and sends the new user a welcome
message. It supports two modes of operation. It may be used interactively at the com-
mand line to add one user at a time, or it may be directed to get the list of new users
from a file and operate in batch mode without requiring any user interaction.

Commonly used options/features:
-C Interactively create the /etc/adduser.conf file, whose contents become a tem-

plate for new user creation. By default, this file does not exist. But if you execute
adduser -C , you will be able to interactively design the contents of this file.

-f filename Enter batch mode, where the contents of filename are used to create
multiple user accounts. When the -f option is used, the user account information
must be stored in a specific format. All empty lines or lines beginning with a # will
be ignored. All other lines must contain ten fields separated by colons (:), as will be
described. Command line options do not take precedence over values in the fields.
Only the password field may contain a colon as part of the string.

name:uid:gid:class:change:expire:gecos:home _ dir:shell:password
name Login name. This field may not be empty.
uid Numeric login user ID. If this field is left empty, it will be automatically generated.

1074 ◾ UNIX: The Textbook, Third Edition

gid Numeric primary group ID. If this field is left empty, a group with the same name
as the user name will be created and its GID will be used instead.

class Login class. This field may be left empty.
change Password ageing. This field denotes the password change date for the account.

The format of this field is the same as the format of the -p argument to pw. It may be
dd-mmm-yy[yy], where dd is for the day, mmm is for the month in numeric or alpha-
betical format (e.g., 10 or Oct), and yy[yy] is the four- or two-digit year. To denote
a time relative to the current date the format is: +n[mhdwoy], where n denotes a
number, followed by the minutes, hours, days, weeks, months or years after which
the password must be changed. This field may be left empty to turn it off.

expire Account expiration. This field denotes the expiry date of the account. The
account may not be used after the specified date. The format of this field is the
same as that for password ageing. This field may be left empty to turn it off.

gecos Full name and other extra information about the user.
home _ dir Home directory. If this field is left empty, it will be automatically created

by appending the username to the home partition. The /nonexistent home direc-
tory is considered special and is understood to mean that no home directory is to
be created for the user.

shell Login shell. This field should contain either the base name or the full path to a
valid login shell.

password User password. This field should contain a plaintext string, which will be
encrypted before being placed in the user database. If the password type is yes
and this field is empty, it is assumed the account will have an empty password. If
the password type is random and this field is not empty, its contents will be used
as a password. This field will be ignored if the -w option is used with a no or none
argument. Be careful not to terminate this field with a closing colon (:) because it
will be treated as part of the password.

The following example illustrates how to interactively create a single user account from
the command line as superuser. If you make a mistake in creating a user account, you can
always remove the account immediately by using the rmuser command.

Example 23.1: PC-BSD adduser Command for a Single User Account
[bob@pcbsd-1727] ~% su
password: xxx
[bob@pcbsd-1727] /usr/home/bob# adduser
Username: sarwar
Full name: Mansoor Sarwar
Uid (Leave empty for default):
Login group [bob]:
Login group is bob. Invite sarwar into other groups? []:
Login class [default]:
Shell (sh csh tcsh git-shell bash rbash nologin) [sh]:
Home directory [/home/sarwar]:

UNIX System Administration Fundamentals    ◾    1075

Home directory permissions (Leave empty for default):
Use password-based authentication? [yes]:
Use an empty password? (yes/no) [no]:
Use a random password? (yes/no) [no]:
Enter password: yyy
Enter password again: yyy
Lock out the account after creation? [no]:
Username : sarwar
Password : ***
Full Name : Mansoor Sarwar
Uid : 1002
Class :
Groups : bob
Home : /home/sarwar
Home Mode :
Shell : /bin/sh
Locked : no
OK? (yes/no): yes
adduser: INFO: Successfully added (sarwar) to the user database.
Add another user? (yes/no): no
Goodbye!
[bob@pcbsd-1727] /usr/home/bob#

EXERCISE 23.5
Create a single new account on your PC-BSD UNIX system, with the adduser command.
Be sure to use the entries you made in your answer to Exercise 23.4 to override the defaults
for user account configurations on your system.

The following example shows how to create multiple user accounts simultaneously by
using the adduser -f filename command. It assumes you have a group named bob
on your system, and that you have superuser privilege. If you don’t have a group named
bob on your system, use any other existing group that fits the service and security require-
ments of your system for this example. If you make a mistake in creating user accounts,
you can always remove the accounts immediately by using the rmuser command, either
individually or in batch mode.

Example 23.2: PC-BSD adduser Batch Mode User Account Creation
 1. Use your favorite text editor to create a file named addusertest in your home

directory.
 Then, enter the following single line of text, exactly as shown, into the file

addusertest:
 tob::bob::::AMR:/usr/home/tob:/bin/csh:xxx

 Save the file and quit the text editor.

1076 ◾ UNIX: The Textbook, Third Edition

 According to the adduser -f option requirements, as shown previously
and in the adduser man pages on your system, you need to supply 10 fields
separated by colons (:) on a line. For the line you just entered into addusert-
est, the meanings of each entry into these 10 fields are as follows (blank
means nothing between the colon characters).
tob The new username.
blank The UID, when left blank, is automatically assigned.
bob The primary GID, in our case bob.
blank The login class, in our case blank.
blank Password aging, in our case blank, meaning turned off.
blank Account expiration, in our case blank, meaning turned off.
AMR The account gecos, or full name and description.
/usr/home/tob The user account home directory, /usr/home/tob.
/bin/csh The default login shell, in our case the C shell.
xxx A password, literally xxx in our case.

 2. As superuser, type the following on the command line:
 # adduser –f addusertest

 Your system will respond that you have successfully added a user account
named tob to the user database.

 3. To test this new user account, log off your system and log on as tob (AMR) with
the password xxx.

EXERCISE 23.6
According to the table or chart of user accounts and their configuration requirements you
did for Exercise 23.4, create a file of new user accounts. As shown in Example 23.2, for each
user account you must have a single line in the file with 10 colon-delimited fields that con-
tain the configuration for each user. The table or chart design determines what is in the file.

23.3.1.1 Using rmuser to Delete Users
To completely remove a user from the system, use the command rmuser as the superuser.
This command performs the following steps:

 a. Removes the user’s crontab entry, if one exists.

 b. Removes any at jobs belonging to the user.

 c. Kills all processes owned by the user.

 d. Removes the user from the system’s local password file.

 e. Optionally removes the user’s home directory, if it is owned by the user.

 f. Removes the incoming mail files belonging to the user from /var/mail.

 g. Removes all files owned by the user from temporary file storage areas such as /tmp.

UNIX System Administration Fundamentals    ◾    1077

 h. Finally, removes the username from all groups to which it belongs in /etc/group. If a
group becomes empty and the group name is the same as the username, the group is
removed. This complements the per-user unique groups created by adduser.

rmuser cannot be used to remove superuser accounts.
By default, an interactive dialog mode is used, as shown in the following example.

rmuser amy
Matching password entry
amy:*:1001:1001::0:0:J. Random User:/home/amy:/usr/local/bin/zsh
Is this the entry you wish to remove? yes
Remove user's home directory (/home/amy)? yes
Removing user (amy): mailspool home passwd.
#

For more information on the rmuser command, see the man page for rmuser on
your system.

23.3.1.2 Creating, Modifying, and Deleting Groups Using
a Text-Based Interface in PC-BSD

We also provide an abbreviated syntax description of the pw command, showing its group
subcommand options. This command allows you to use a text-based interface to manage
(create, remove, modify, and display) groups on the system.

SYNTAX
pw [-R rootdir] [-V etcdir] groupadd [group|gid] [-C config] [-q] [-n
group] [-g gid] [-M members] [-o] [-h fd | -H fd] [-N] [-P] [-Y]
pw [-R rootdir] [-V etcdir] groupdel [group|gid] [-n name] [-g gid] [-Y]
pw [-R rootdir] [-V etcdir] groupmod [group|gid] [-C config] [-q] [-n
name] [-g gid] [-l name] [-M members] [-m newmembers] [-d oldmembers]
[-h fd | -H fd] [-N] [-P] [-Y]
pw [-R rootdir] [-V etcdir] groupshow [group|gid] [-n name] [-g gid]
[-F] [-P] [-a]
pw [-R rootdir] [-V etcdir] groupnext [-C config] [-q]
pw [-R rootdir] [-V etcdir] lock [name|uid] [-C config] [-q]
pw [-R rootdir] [-V etcdir] unlock [name|uid] [-C config] [-q]

Purpose:
The pw utility is a command-line-based editor for the system user and group files,

allowing the superuser an easy-to-use and standardized way of adding, modify-
ing, and removing users and groups. Note that pw only operates on the local user
and group files. NIS users and groups must be maintained on the NIS server. The
pw utility handles updating the passwd, master.passwd, group, and the secure and
insecure password database files, and must be run as root. The first keyword option
to pw on the command line provides the context for the remainder of the argu-
ments. The keywords user and group may be combined with add, del, mod,

1078 ◾ UNIX: The Textbook, Third Edition

show, or next in any order. (For example, showuser, usershow, show user,
and user show all mean the same thing.) This flexibility is useful for interactive
scripts calling pw for user and group database manipulation. Following these key-
words, you may optionally specify the group name or numeric ID as an alternative
to using the -n name, -u uid, or -g gid options.

Output: Modified user or group profiles and information on the system
Options and Option Arguments:
The following options are common to most or all modes of operation:

-R rootdir Specifies an alternate root directory within which pw will operate. Any
paths specified will be relative to rootdir.

-V etcdir This flag sets an alternate location for the password, group and configu-
ration files, and may be used to maintain a user/group database in an alternate
location. If this switch is specified, the system /etc/pw.conf will not be sourced
for default configuration data, but the file pw.conf in the specified directory will
be used instead (or none, if it does not exist). The -C flag may be used to override
this behavior. As an exception to the general rule where options must follow the
operation type, the -V flag must be used on the command line before the opera-
tion keyword.

-C config By default, pw reads the file /etc/pw.conf to obtain policy information on
how new user accounts and groups are to be created. The -C option specifies a dif-
ferent configuration file. While most of the contents of the configuration file may be
overridden via command line options, it may be more convenient to keep standard
information in a configuration file.

-q Use of this option causes pw to suppress error messages, which may be useful in
interactive environments where it is preferable to interpret status codes returned by
pw rather than messing up a carefully formatted display.

-N This option is available in add and modify operations, and tells pw to output the
result of the operation without updating the user or group databases. You may use
the -P option to switch between standard passwd and readable formats.

-Y Using this option with any of the update modes causes pw to run make(1) after
changing to the directory /var/yp. This is intended to allow automatic updating of
NIS database files. If separate passwd and group files are being used by NIS, then
use the -y path option to specify the location of the NIS passwd database so that
pw will concurrently update it with the system password databases.

Group Options:
The -C and -q options (explained at the start of the previous section) are available with

the group manipulation commands. Other common options to all group-related
commands are:

-n name Specify the group name.
-g gid Specify the group numeric ID. As with the account name and ID fields, you

will usually only need to supply one of these, as the group name implies the UID
and vice versa. You will only need to use both when setting a specific group ID
against a new group or when changing the UID of an existing group.

-M memberlist This option provides an alternative way to add existing users to
a new group (in groupadd) or replace an existing membership list (in group-
mod). memberlist is a comma-separated list of valid and existing user names
or UIDs.

UNIX System Administration Fundamentals    ◾    1079

-m newmembers Similar to -M, this option allows the addition of existing users to a
group without replacing the existing list of members. Login names or user IDs may
be used, and duplicate users are silently eliminated.

-d oldmembers Similar to -M, this option allows the deletion of existing users from a
group without replacing the existing list of members. Login names or user IDs may
be used and duplicate users are silently eliminated.

groupadd also has a -o option that allows allocation of an existing group ID to a new
group. The default action is to reject an attempt to add a group, and this option
overrides the check for duplicate group IDs. There is rarely any need to duplicate
a group ID.

The groupmod command adds one additional option:
-l name This option allows changing of an existing group name to name. The new

name must not already exist, and any attempt to duplicate an existing group name
will be rejected.

Options for groupshow are the same as for usershow, with -g gid replacing -u
uid to specify the group ID. The -7 option does not apply to the groupshow
command.

The command groupnext returns the next available group ID on standard output.
For a summary of options available with each command, you can use:
pw [command] help
For example, pw useradd help lists all available options for the useradd operation.
Command Arguments: None

Examples

 1. Adding a group:

pw groupadd project0
pw groupshow project0
project0:*:1100:

 In this example, 1100 is the GID of project0. Right now, project0 has no members.

 2. Adding user accounts to a new group:

pw groupmod project0 -M mansoor
pw groupshow project0
project0:*:1100:mansoor

 These commands will add mansoor as a member of project0 and show his UID
number.

 The argument to -M is a comma-delimited list of users to be added to a new
(empty) group or to replace the members of an existing group. To the user, this group
membership is different from (and in addition to) the user’s primary group listed in
the password file. This means that the user will not show up as a member when using

1080 ◾ UNIX: The Textbook, Third Edition

the groupshow subcommand, but will show up when the information is queried
via the id command or a similar tool. When pw is used to add a user to a group, it
only manipulates /etc/group and does not attempt to read additional data from /etc/
passwd.

 3. Adding a new member to a group:

pw groupmod project0 -m bob
pw groupshow project0
project0:*:1100:mansoor,bob

 4. Using the id command to determine group membership:

% id mansoor
uid=1001(mansoor) gid=1001(mansoor) groups=1001(mansoor),
1100(project0)

In this example, mansoor is a member of the groups mansoor and project0.

23.3.2 Adding/Deleting and Maintaining Users and Groups
in a GUI-Based Interface on PC-BSD

The easiest and most efficient way to create and manage user accounts and groups on
PC-BSD is by using the GUI-based User Manager. The first step in launching the User
Manager is to open a root window from the Kickoff Application Launcher in the lower-left
corner of the screen, under Applications>Utilities>Root Terminal. Then, in the terminal
window that appears, type the following, as shown in Figure 23.1:

pc-usermanager

The system then launches the User Manager in its own window, as shown in Figure 23.2.
If you click the Remove button for a highlighted user, a pop-up menu will ask if you

would like to also delete the user’s home directory (along with all of their files). If you click
No, the user will still be deleted but their home directory will remain. If you have only cre-
ated one user account, the Remove button will be grayed out as you need at least one user
to be able to login to the PC-BSD system.

FIGURE 23.1 Root terminal window.

UNIX System Administration Fundamentals    ◾    1081

While a removed user will no longer be listed, the user account will not actually be
deleted until you click the Apply button. A pop-up message will indicate that you have
pending changes if you close User Manager without clicking Apply. If you change your
mind, click No and the user account will not be deleted; otherwise, click Yes and the user
will be deleted and User Manager will close.

The password for any user can be changed by first highlighting the user name then
clicking the Change Password button. You will not be prompted for the old password
in order to reset a user’s password; this can be handy if a user has forgotten their pass-
word and can no longer log into the PC-BSD system. If you click the Change Admin
Password button, you can change the root user’s password.

If you click the Advanced View button, this screen will change to show all of the
accounts on the system, not just the user accounts that you created. An example is seen in
Figure 23.3.

The accounts that you did not create are known as system accounts and are needed by
the operating system or installed applications. You should not delete any accounts that
you did not create yourself, as doing so may cause a previously working application to stop
working. Advanced View provides additional information associated with each account,
such as the user ID number, full name (description), home directory, default shell, and
primary group.

Figure 23.4 shows the Add User Account Creation screen that opens when you
click the Add button under Advanced View.

FIGURE 23.2 User Manager window.

FIGURE 23.3 User Manager – Advanced Mode window.

1082 ◾ UNIX: The Textbook, Third Edition

This screen is used to input the following information when adding a new user or system
account:

• Full Name: This field provides a description of the account and can contain spaces. If
it is a user account, use the person’s first and last name. If it is a system account, input
a description to remind you which application uses the account.

• Username: The name the user will use when they log in to the system; it is case sensi-
tive and can not contain any spaces. If you are creating a system account needed by
an application, use the name provided by the application’s installation instructions.
If the name that you choose already exists as an account, it will be highlighted in red
and the utility will prompt you to use another name.

• Home Directory: Leave this field empty for a user account as the system will automat-
ically create a ZFS dataset for the user’s home directory under /usr/home/username.
We supply more information on the structure and administration of the ZFS file
system in Chapter 24. However, if you are creating a system account it is important to
override this default by typing in /var/empty or /nonexistent unless the application’s
installation instructions specify that the account needs a specific home directory.

• Shell: This drop-down menu contains the shells that are available to users when they
are at a command prompt. You can either keep the default or select a shell which the
user prefers.

• Primary Group: If you leave the default button of New Group selected, a group will be
created with the same name as the user. This is usually what you want unless you are
creating a system account and the installation instructions specify a different group
name. The drop-down menu for specifying a group name will only show existing
groups, but you can quickly create a group using the Groups tab.

• Password: The password is case sensitive and needs to be confirmed.

• Encrypt Files: If this box is selected, the user’s home directory will automatically be
encrypted with PEFS. When the user logs in, the contents of their home directory
are automatically decrypted after they enter their password. When they logout, the
contents of their home directory are automatically encrypted and will appear as gib-
berish to other users who do not know the password. For this reason, it is important

FIGURE 23.4 Add User window.

UNIX System Administration Fundamentals    ◾    1083

to select a good password that the user will not forget. At this time, there is no easy
mechanism for changing the user’s password if their home directory is encrypted.

Once you have made your selections, press the OK button to create the account.
In the Advanced View of the User Manager, if you click the Groups tab, you are pre-

sented with various ways of managing groups, as seen in Figure 23.5
This screen has three columns:

Column 1: Groups: shows all of the groups on the system.

Column 2: Available: shows all of the system and user accounts on the system in alpha-
betical order.

Column 3: Members: indicates if the highlighted group contains any user accounts.

To add an account to a group, highlight the group name in the first column. Then, high-
light the account name in the Available column. Click the right arrow and the selected
account will appear in the Members column. You should only add user accounts to groups
that you create yourself or when an application’s installation instructions indicate that an
account needs to be added to a group.

If you click the Add button, a pop-up menu will prompt you for the name of the new
group. Once you press OK, the group will be added to the Groups column.

If you click the Remove button, the highlighted group will automatically be deleted
after you press the Apply button, so be sure to do this with care. Again, do not remove any
groups that you did not create yourself or applications that used to work may stop working.

EXERCISE 23.7
Scenario 1: You have an air-gapped PC-BSD computer in a room. You want only certain
users in a defined group named proj to be able to access files in a directory named proj1 in
your account on the file system of that computer. Use the graphical User Manager to add
those certain users, and yourself, to the group proj. Create the proj1 directory. Then, set

FIGURE 23.5 User Manager Groups tab window.

1084 ◾ UNIX: The Textbook, Third Edition

the permission bits appropriately on your home directory, the proj1 directory, and any files
put in that directory, so that only those certain users can read, write, and execute the files
in it. The room is open to the public, but to login to the computer, each individual user has
to use their own password.

Scenario 2: There is another air-gapped computer in the room, older, but it still runs the
latest PC-BSD! Unfortunately, it does not have a graphics-capable monitor. It can only use
a text-based command line interface. Achieve the same results as Scenario 1, but by using
only text-based commands. Name the group project2, and the directory proj2.

23.3.3 Adding/Deleting and Managing Users and Groups
in a Text-Based Interface on Solaris

The following examples will create and manage user accounts using the command line
on Solaris. However, the User Manager panel available through the pkg:/system/manage-
ment/visual-panels/panel-usermgr IPS package can also be used. This GUI is much easier
to use and can be started using one of the following methods:

From the desktop, choose System>Administration>User Manager.

Start the User Manager GUI from the command line by typing vp usermgr &

Solaris supplies the user administration commands described in Table 23.2 for setting
up and managing user accounts from the command line.

23.3.3.1 Adding User Accounts
You can add new user accounts on the local system by using the useradd command. This
command adds an entry for the new user into the /etc/passwd and /etc/shadow files.

The syntax for the useradd command is as follows, and Table 23.3 describes the
options in more detail.

SYNTAX
useradd [option(s)] [option argument(s)] <loginname>

Purpose: To add a user account to the system
Commonly used options/features:

-D See default values for user account configuration
-k Copy initialization files from /etc/skel into user account

TABLE 23.2 Account Administration Commands

Command Description

useradd Add a new user account
userdel Delete a user account
usermod Modify a user account
groupadd Add a new group
groupmod Modify a group

UNIX System Administration Fundamentals    ◾    1085

Many additional options are available, although most of them are not used as often as
the ones in Table 23.3. You can refer to the man pages to find a listing of all the options to
the useradd command.

The useradd command can be used with just one argument and no options, as
follows:

useradd sarwar

This creates the user account named sarwar using all default options. To see all of the
default values, type:

useradd –D
group=staff,10 project=default,3 basedir=/export/home
skel=/etc/skel shell=/usr/bin/bash inactive=0
expire= auths= profiles= roles= limitpriv=
defaultpriv= lock_after_retries=
#

These defaults can be modified by using the -D option with the useradd command as
follows:

useradd –D –b /apache24/home

The defaults for the useradd command are stored in the /usr/sadm/defadduser file.
This file does not initially exist and is created the first time the command is executed using
the -D option. This file can then be edited manually or modified. For example, to change
the default group, execute the following command:

TABLE 23.3 useradd Command Options

Option Description

-A
<authorization>

One or more comma-separated authorizations.

-b <base-dir> Specifies the default base directory for the system, unless -d
is not specified.

-u <uid> Sets the unique UID for the user.
-o Allows the UID to be duplicated. The default is to not allow a

duplicate UID.
-g <gid> Specifies a predefined GID as the user’s primary group.
-G <gid> Specifies the new user’s secondary group.
-m Creates a new home directory if one does not already exist.
-s <shell> Defines the full pathname to the user’s login shell. The default

is /bin/sh.
-c <comment> Specifies user’s full name, location, phone number in a

comment.
-d <dir> Specifies the home directory of the new user.
-D Displays the default values for group, basedir, skel-dir, etc.

1086 ◾ UNIX: The Textbook, Third Edition

useradd -D -g development

You can also temporarily override the default options by specifying them on the com-
mand line when executing the useradd command. The following example creates a new
login account for sarwar:

useradd -u 4000 -g other -d /export/home/sarwar -m -s /usr/bin/
bash -c "Mansor Sarwar, ext. xxx" sarwar

The login name is sarwar, the UID is 3000, and the group is other. In this example,
you instruct the system to create a home directory named /export/home/sarwar. The
default shell is /usr/bin/bash, and the initialization files are to be copied from the /etc/skel
directory.

Use the -k option to the useradd command to copy all of the user initialization files
found in the /etc/skel directory into the new user’s home directory. This directory can be
customized or changed by specifying an alternate directory containing the files to be cop-
ied by supplying an argument to the -k option.

23.3.3.2 Assigning a UID
If the -u option is not used to specify a UID, the UID defaults to the next available num-
ber above the highest number currently assigned. For example, if UIDs 100, 110, and
200 are already assigned to login names, the next UID that is automatically assigned
is 201.

23.3.3.3 Password Management and Creation
After creating the new account with the useradd command, the user account has not yet
been activated and cannot be used. The next step is to set a password for the account using
the passwd command as follows:

passwd sarwar
passwd: Changing password for sarwar
New Password: yyy
Re-enter new Password: yyy
passwd: password successfully changed for sarwar
#

Some of the more common options that can be used with the passwd command are
described in Table 23.4.

For a complete listing of the options, refer to the online man pages for the passwd
command.

To force a user to change his or her password at the next login, type:

passwd -f sarwar
passwd: password information changed for sarwar
#

UNIX System Administration Fundamentals    ◾    1087

To change a user’s home directory, type

passwd -h sarwar

The system responds with the following:

Default values are printed inside of '[]'.
To accept the default, type <return>.
To have a blank entry, type the word 'none'.
Home Directory [/home/sarwar]: /home/smsarwar
passwd: password information changed for smsarwar

23.3.3.4 Modifying User Accounts
You can use the usermod command to modify existing user accounts, and you can also
change most of the options that were used when the account was originally created.

The following example changes the login name for user sarwar to smsarwar:

usermod -d /home/smsarwar -m -s /bin/zsh -l smsarwar sarwar

This example also changed the home directory to /home/smsarwar and the default shell
to /bin/zsh.

23.3.3.5 Modifying the Home Directory
When you’re changing the home directory, unless the -d and -m options are used, existing
files still must be manually moved from the old home directory to the new home direc-
tory. In all cases, symbolic links, application-specific configuration files, and various other
references to the old home directory must be manually updated.

To set a user’s account expiration date, enter the following:

usermod -e 11/15/2022 smsarwar

TABLE 23.4 passwd Options

Option Description

-s <name> Shows password attributes. Along with –a, shows all
users accounts.

-d <name> Deletes password for name and unlocks the account.
-e <name> Changes the login shell, in /etc/passwd file, for a

user.
-f <name> Expires the password; forces change of password at

next login.
-h <name> Changes the home directory, in /etc/passwd file, for

user.
-l <name> Locks a user’s account. Use -d or -u to unlock.
-N <name> Makes the password entry for <name> a value that

cannot be used for login.
-u <name> Unlocks an account.

1088 ◾ UNIX: The Textbook, Third Edition

The account is now set to expire October 15, 2022. Notice the entry made to the /etc/
shadow file:

smsarwar:5VWZPYaFo$EVDwt4h/NVxegGOjNI0jA99G/U.6aQTlVdAOc.
GGin3:15593:::::15993:

The last field for the smsarwar entry in the /etc/shadow file is 15993. This is an absolute
date expressed as the number of days since the UNIX epoch (January 1, 1970). When this
number is reached, the login is expired.

23.3.3.6 Deleting User Accounts
You can use the userdel command, similar to PC-BSD rmuser, to delete a user’s login
account from the system. You can specify options to save or remove the user’s home direc-
tory. The syntax for the userdel command is as follows.

userdel [-r] [-S repository] <login-name>

The option -r removes the user’s home directory from the local file system. If this option
is not specified, only the login is removed; the home directory remains intact.

Make sure you know where the user’s home directory is located before removing it.
Some users have / as their home directory, and removing their home directory would
remove important system files.

The following example removes the login account for smsarwar but does not remove
the home directory:

userdel smsarwar

23.3.3.7 Adding Group Accounts
You use the groupadd command to add new group accounts on the local system. This
command adds an entry to the /etc/group file. The syntax for the groupadd command
is as follows.

groupadd [-g gid [-o]] [-S repository] [-U user1[,user2..]] group

Table 23.5 describes the groupadd command options.
The following example adds to the system a new group named acct with a GID of 1000:

groupadd -g 1000 acct

23.3.3.8 Assigning a GID
If the -g option is not used to specify a GID, the GID defaults to the next available num-
ber above the highest number currently assigned. For example, if GIDs 100, 110, and
200 are already assigned to group names, the next GID that is automatically assigned
is 201.

UNIX System Administration Fundamentals    ◾    1089

23.3.3.9 Modifying Group Accounts
You use the groupmod command to modify the definitions of a specified group. The syn-
tax for the groupmod command is as follows.

groupmod [-S [files | ldap]] [-U user1[,user2]] [-g gid [-o]] [-n
name] group

Table 23.6 describes the groupmod command options.
The following example changes the engrg group GID from 200 to 2000:

groupmod -g 2000 engrg

Any files that had the group ownership of engrg are now without a group name. A long
listing would show a group ownership of 200 on these files, the previous GID for the engrg
group. The group 200 no longer exists on the system, so only the GID is displayed in a long
listing.

23.3.3.10 Deleting Group Accounts
You use the groupdel command to delete a group account from the local system. The
syntax for the groupdel command is as follows.

groupdel [-S repository] <group-name>

The -S option allows the name service to be specified. The valid repositories that can
be specified are files and ldap. When the repository is not specified, groupdel reads the
file nsswitch.conf.

TABLE 23.5 groupadd Command Options

Option Description

-g <gid> Assigns the GID <gid> for the new group
-o Allows the GID to be duplicated
-S Specifies which name service repository will be

updated
-u Adds a list of users to a group

TABLE 23.6 groupmod Command Options

Option Description

-g <gid> Assigns the new GID <gid> for the group.
-o Allows the GID to be duplicated.
-n <name> Specifies a new name for the group.
-S Valid repositories are files and ldap. The repository

specifies the name service to be updated
-U Updates the list of users for the group as follows: +

adds, - removes, null replaces.

1090 ◾ UNIX: The Textbook, Third Edition

The following example deletes the group named acct from the local system:

groupdel acct

EXERCISE 23.8
You have an air-gapped Solaris computer in a room. You want only certain users in a
defined group named proj to be able to access files in a directory named proj1 in your
account on the file system of that computer. Use the text-based commands shown previ-
ously to add those certain users, and yourself, to the group proj. Create the proj1 directory.
Then, set the permission bits appropriately on your home directory, the proj1 directory,
and any files put in that directory, so that only those certain users can read, write and
execute the files in it. The room is open to the public, but to login to the computer, each
individual user has to use her own password.

23.4 ADDING A HARD DISK TO THE SYSTEM
A common task done by a UNIX system administrator is to add various hardware compo-
nents any significant time after the system has been installed and configured. To help the
administrator of a UNIX system with that task, the following sections will detail:

• Some preliminary considerations that need to be made, such as the availability of
software device drivers for the new hardware to be added

• How the hardware will be recognized, configured and deployed on the system

• Identification of possible paths to replacement and upgrading of existing hardware

In this section, we will illustrate how to add disk drives for use with the ZFS file system,
and for other file system types as well. ZFS is described completely in Chapter 24. The addi-
tions will be done for SATA hard disks installed internally, and USB removable media such
as external, enclosure-mounted hard drives.

Generally, when you add a SATA hard disk inside the computer case some significant
time after you have installed the operating system on the computer, you will want to format
it to ZFS. But when you add an external USB medium, such as a thumb drive or hard disk,
it will already be formatted to FAT32 (in the case of most popular commercially available
USB thumb drives), or to some other format depending on the hard disk media. You will
format either kind of media to ZFS, as shown in Chapter 24.

If all you want to use a FAT32-formatted USB thumb drive for is to transfer files (such
as text files, C program code, LibreOffice documents, etc.), to and from the computer,
then the automatic mounting (in Solaris) and semiautomatic mounting (in PC-BSD) of
USB thumb drives will help you to accomplish this. In both systems, unmounting of USB
thumb drives is done manually. In Solaris, right-click on the USB thumb drive icon on the
Gnome desktop, and make the choice Unmount. In PC-BSD, use the Mount Tray icon, and
make the Unmount choice for the USB thumb drive.

UNIX System Administration Fundamentals    ◾    1091

When a USB thumb drive is automatically mounted on Solaris or PC-BSD, the path to
it is /media.

It is possible, though, to add a removable medium for use with ZFS to either PC-BSD or
Solaris, and we actually do this in Chapter 24, Section 24.2.2, Examples 24.5 and 24.6. But
you must be cautious when creating zpools and ZFS datasets on removable media and then
removing the media without properly unmounting the ZFS datasets. These procedures are
addressed more fully in Chapter 24.

23.4.1 Preliminary Considerations when Adding New Disk Drives

If you insert a USB thumb drive that you know is functioning properly into your com-
puter running either Solaris or PC-BSD, and it doesn’t automount or is not recognized,
the chances are that your UNIX system does not have a device driver available to enable
communication between the computer and the thumb drive.

The same is true when you connect a SATA bus hard drive properly, but the probability
of this is much lower. The best and easiest thing to do in a case like this is to use another
USB or SATA device. Both Solaris and PC-BSD have facilities to find and install device
drivers on your system for a device, but this process is time consuming and may not be
fruitful for the particular device in question. Also, it is possible to write a driver for your
device, which is even more time consuming. The important thing here is not that the USB
thumb drive is formatted to FAT32, but that a manufacturer has the device drivers avail-
able automatically when their device is inserted. This is not always true.

It is important to know the physical device name, the instance name, and the logical
device name of disk drives on your system, but practically speaking, for the system admin-
istrator, easily finding out the logical device name of a disk drive is most important. This
is because in the ZFS file system on Solaris and PC-BSD, the logical device name is what
you use to create zpools, the critical first step in using ZFS. This is shown in full detail in
Chapter 24.

You may want to add a hard disk to your UNIX system that has been used on another
computer operating system previously. In that case, the following examples can be deployed
to repartition and prepare that hard disk for new use on your UNIX system. Because ZFS
is a volume manager, it is also possible to deploy a disk drive formatted and sliced for
another operating system, and use ZFS on it simultaneously with the other operating sys-
tem partitions.

23.4.2 A Quick and Easy Way to Find Out the Logical Device
Names of Disks Actually Installed on Your System

Before attaching a new disk drive to your UNIX system, it is important to know how to
determine, in a very quick and easy manner, what the currently installed logical device
names of the disk drives actually attached and usable on your system are. What we mean
by “attached and useable” is that the disk drive is properly connected and recognized by
the system, and has a device driver that the system can use to communicate with it.

Before and after: If you want to find out the logical device name of a new disk you want
to add to the system, use one of the following methods to see what disks are on your system

1092 ◾ UNIX: The Textbook, Third Edition

before you add the new disk, and then use the same method after the new disk has been
added and note the difference. The different or new logical name that appears will be the
logical name of the new disk.

The simple methods that follow show how to determine what disk drives are attached
and usable on your system, and what the logical device names of those and any others you
might want to add to your system are. These methods are done differently in Solaris and
PC-BSD.

PC-BSD methods: Change your current working directory to /dev. Type ls. Hard
drives, for example, show up in the ls listing as ada0, ada1, etc. The full path to the
first slice on one of these disks is specified as /dev/ada0s1. A USB bus device, like a
thumb drive, would show up in the ls listing as da0, and the full path to the first slice
on it would be /dev/da0s1.

Additionally, you can type gpart show on the command line in a terminal window,
and it will list the drives available for slicing, such as ada0, ada1s1, or da0s1 for disks
and USB devices. The logical device names to all of those devices is provided in a
compact and easily understood listing.

Solaris methods: For SCSI, SATA, or IDE bus hard disk drives, type format on the com-
mand line as superuser. The output of this command shows your main hard drive—for
example, disk 0—as /dev/dsk/c0d0s0. Type exit to leave the format facility.

For USB bus thumb drives or hard drives, type rmformat on the command line as
superuser. The output of this command shows, for example, a USB thumb drive as /dev/
rdsk/c9t0d0p1. A CD or DVD writer would show up here too, not on the USB bus, but on
the SATA bus.

Additionally, you can use the Gparted Partition Editor, as shown in Example 23.3.

EXERCISE 23.9
Insert a USB thumb drive into either a PC-BSD or Solaris computer, and mount it if neces-
sary. What is the logical device name for this thumb drive, and how did you find it out?

23.4.3 Adding a New Disk to the System

The following three examples show how to add a new hard disk to your system:

Example 23.3 uses a GUI method in Solaris. This GUI technique not only lets you find
out what the logical device names of disks are, but also allows you to slice newly
added disks at the same time. It uses the Gparted Partition Editor program that
comes installed with Solaris.

Example 23.4 uses a GUI method in PC-BSD, by launching the PC-BSD Disk Manager.
It also lets you find out the logical device names of disks on your system, and allows
you to slice newly added disks.

UNIX System Administration Fundamentals    ◾    1093

Example 23.5 uses a combination of GUI and command line instructions in PC-BSD to
allow you to do a postinstallation addition of an external USB hard drive with a ZFS
file system to your computer.

In PC-BSD you can use the gpart command to do the same operations that the GUI
Disk Manager does. The general form of the gpart command is as follows.

SYNTAX
gpart sub-command [option(s)] [option argument(s)] [geom]

Purpose: The gpart utility is used to partition GEOM providers, normally disks.
Commonly used options/features:

gpart create -s GPT ada0 Create a GPT scheme on ada0.
gpart add -s 512M -t freebsd-zfs ada1 Create a 512 MB freebsd-ufs parti-

tion to contain a ZFS file system from which the system can boot.
gpart add -s 15G -t freebsd-ufs -a 4k da0 Create a 15 GB freebsd-ufs

partition to contain a ZFS file system and aligned on 4KB boundaries.
gpart add -t freebsd-zfs -l zfs1 ada1 Create a ZFS partition on all the

free space on ada1.
gpart show Show the status of disks on the system.
gpart delete -i 1 da0 Delete partition 1 on da0.
gpart destroy -F da0 Delete the partition table on da0.

You can use gpart to partition and format new disk drives you add to the system.
See the man page for gpart on your system for more description of its subcommands,
options, option arguments, and command arguments.

Example 23.3: Adding a New Disk and Using Gparted to Slice the Disk in Solaris
 1. From the Applications Menu>System Tools, make the choice Gparted Partition

Editor. If necessary, in a terminal window, type gparted as superuser.
 2. The Gparted screen appears, as shown in Figure 23.6.

FIGURE 23.6 Gparted main screen display.

1094 ◾ UNIX: The Textbook, Third Edition

 3. The current disks attached to the system appear in the menu bar at the upper
right. Make note of all the complete paths to the current disks. For exam-
ple, the boot or root disk might be designated as /dev/dsk/c1d0p0, as seen in
Figure 23.6.

 4. Power down the system if necessary, and add the new disk. Power the system
back up.

 5. Relaunch Gparted.
 6. When the Gparted screen reappears, your new disk drive should show in the

menu bar in the upper-right corner of the Gparted screen. If the disk drive you
just added doesn’t appear in the Gparted listing, you can’t use that disk drive. If
it does appear, continue to the next step.

 7. Scroll in that bar until you reach the disk you just added to the system.
 8. Pick that new disk in the menu bar. It is shown in the main Gparted pane. Click

on that disk in the main Gparted pane. You can now partition and format that
new disk. In our example it is shown as /dev/dsk/c10t0d0p0, a new disk we
inserted at step 4. It has a FAT32 file system on it, and it is 29.95 GB in size. See
Figure 23.7.

 9. From the pull-down menus at the top of the Gparted window, make the menu
choice Partition>Delete. This will delete the partition information on that disk.
It is now a pending operation.

 10. In order to execute the pending operation, make the pull-down menu choice
Edit>Apply All Operations. In the warning window, click Apply. A window
appears showing you the progress, and hopefully successful application, of the
pending operation. Click close in that window when the operation is complete.

 11. The new disk should now be unallocated. Click on its listing in the main Gparted
pane. Make the pull-down menu choice Device>Create Partition Table. Click
Create in the warning window. Everything on that disk will be erased! When
Gparted has created a new partition table, click on that disk again in the main
Gparted pane.

 12. Make the pull-down menu choice Partition>New. The Create New
Partition window appears on screen, as shown in Figure 23.8. The defaults

FIGURE 23.7 Partition information in Gparted window.

UNIX System Administration Fundamentals    ◾    1095

for the new partition as seen in Figure 23.8 are to take the whole disk up with
this partition, create it as a primary partition (the only partition allowed in the
ZFS file system), and set the file system as ntfs.

 13. Add a label designation of your choice in the Label field. Leave all of the
other defaults in place. Click the Add button. Make the pull-down menu choice
Edit>Apply All Operations, and follow up on this choice as you did in step 10.

 14. You now have a partitioned and formatted disk usable on the system, for our
system shown in Figure 23.9.

 15. Quit Gparted by making the pull-down menu choice Gparted>Quit.

Example 23.4: Adding a New Disk and Partitioning It in PC-BSD
The following instructions assume you have only one hard disk on your system to
begin with; on our system it is listed as ada0. You should deploy the methods shown
in Section 23.4.2 to find out the logical name of the new disk. You can identify the
original disk on your system when you reach step 4 because it has a zpool named
tank already on it. The tank zpool is the default pool created when you install the
system, and it contains the boot slice, swap space, and operating system.

These instructions work for adding SATA hard disks internally. USB external hard
disks are covered in the next example. If the disk you are adding does NOT appear
in the listing as a new disk in step 4, you cannot easily use it on your system without
obtaining the device drivers for it.

Before you begin this example, it is worth noting that you can also use the gpart com-
mand on the command line to accomplish the same operations shown. See the man page

FIGURE 23.8 Gparted create new partition window.

FIGURE 23.9 Gparted main window showing completed partition.

1096 ◾ UNIX: The Textbook, Third Edition

for gpart on your system for command options and arguments, as well as examples of
how to partition and format a disk. gpart does allow formatting to freebsd-zfs. Also,
knowing the logical device name of the disk you are adding is important, so that you can
supply this logical device name as the geom argument to the gpart command.

 1. Power down the system, and add the new disk drive. Power the system back up.
 2. From the Kickoff Application Launcher menu on the extreme lower-left corner

of the KDE4 desktop, make the choice Applications>Utilities>Root Terminal.
Provide the root password when prompted.

 3. A root terminal window opens on your screen. Type pc-zmanager in it. The
PC-BSD Disk Manager screen opens, as shown in Figure 23.10.

 4. Click on the Disks tab at the top of the PC-BSD Disk Manager window. The
designation and listing for your newly added disk should appear near the bot-
tom of the disks pane, similar to Figure 23.11. The designation display of the new
disk on our system in that figure is ada1 (931.51 GB) ST31000333AS, and
it is listed as Avaliable (sic). On our system the cd0 disk was already there at
installation, and so was ada0 (the disk with a slice containing tank). Your new
disk may have a different designation, depending on how many disks are on the
system.

FIGURE 23.10 Disk Manager window.

FIGURE 23.11 Disk Manager disks tab display.

UNIX System Administration Fundamentals    ◾    1097

 5. To create a slice (partition) table on the disk, right-click on it and make the
choice Create GPT Partition Table. The designation display of that disk is now
followed by [GPT]. Anything on it is now erased.

 6. Right-click on the new disk, and make the choice Add a new slice. The Add
Partition window appears on screen, as shown in Figure 23.12. Only change
the partition type to freebsd-zfs, and then click OK.

 7. You have just created a new partition table and slice using the whole disk with
a FreeBSD file system known as ZFS on it, and know the path to it in /dev. That
path information is crucial to doing zpool creation. See Figure 23.13.

 You use the path when you are doing ZFS file system maintenance opera-
tions, such as creating zpools and file systems on those pools, and associating
them with virtual devices (vdevs). This new disk is now a vdev on your system.
Vdevs are explained in detail in Chapter 24.

 8. You now have the choice of using the ZFS Pools tab or the ZFS File sys-
tems tab to graphically create and manipulate zpools and file systems on them.
You can also use ZFS commands typed at the command line to achieve every-
thing available in the Disk Manager, and substantially more as well. Both facili-
ties are interoperable and designed to fit the style of interaction you are most
comfortable with.

FIGURE 23.12 Disk Manager add partition display.

FIGURE 23.13 Disk Manager with added partition.

1098 ◾ UNIX: The Textbook, Third Edition

 9. When ready, you can quit the PC-BSD Disk Manager by clicking on the destroy
button in the upper right-hand corner of the window, and you can also exit
from the root terminal you launched in step 2.

Example 23.5: Adding an External USB Hard
Drive and Partitioning It in PC-BSD
A common postinstallation addition to a PC-BSD system is of an external USB hard
drive that needs to be formatted and partitioned before it can be mounted and used
on the system.

The following instructions assume you already have an internally mounted hard
disk on your system to begin with; on our system it is listed as ada0. You should
deploy the methods shown in Section 23.4.2 to find out the logical name of the new
disk you want to add. USB drives usually are designated as daXpY, where X is a num-
ber starting at 0, and Y is a number starting at 1.

The instructions work for adding external USB hard disks, SATA or IDE, usually
mounted in a powered enclosure. They also show how to detach that drive from the
system. After the first step, they also assume that it is partitioned and formatted in
such a way as to be incompatible with the PC-BSD system. If the disk you are add-
ing does not appear in the /dev listing as a new disk you cannot easily use it on your
system without obtaining the device drivers for it.

Also, from the KDE4 Kickoff Applications Launcher, you can make the System Settings
menu choice to affect the automounting process of USB removable media. One of the System
Settings icons is Removable Devices. When you click on this icon, you can turn auto-
mounting on or off, and also configure other settings for removable media. By default, auto-
mounting is off. The Mount Tray, a KDE4 desktop icon, is shown in the Panel as item F in Table
22.4, and illustrated in Chapter 22, Figure 22.12, “KDE4 Panel components.” It allows for easy,
GUI-based management of removable media that you can add to or remove from the system.

 1. Power on the external hard drive enclosure, and connect the USB cable from the
enclosure to a USB port on the computer. At this point you could determine the logi-
cal device name of the newly added external USB drive using the methods shown in
Section 23.5.2. But we show how to do this in the following steps using Disk Manager.

 The Mount Tray should notify you that it has been discovered but it is not mounted.
At this point you could attempt to mount it from the Mount Tray, and if it has been
properly partitioned and formatted, it may mount and be usable. Game over!

 It is important to realize at this point that if you are going to transfer files to or
from this external drive, it should be usable and work for that purpose. You can use
the PC-BSD File Manager to accomplish transferring files to and from this USB drive.
But if the Mount Tray recognizes it, and when you try to mount it you get an error
like Could not mount device devicename on /root/media/devi-
cename, proceed to step 2.

UNIX System Administration Fundamentals    ◾    1099

 2. Launch a command line console window and become the superuser.

 3. In the console window, type pc-zmanager and press <Enter>. The PC-BSD Disk
Manager screen opens.

 4. Click on the Disks tab at the top of the PCBSD Disk Manager window. The designa-
tion and listing for your newly added disk should appear near the bottom of the disks
pane.

 The designation display of the logical device name for the new external USB hard
disk on our system is da0 (38.29 GB), Maxtor 6 E040L0 and it is listed
as Sliced (meaning partitioned). It also is shown in the Disks pane of the Disk
Manager as having a single partition already on it, named da0s1. Your new disk may
have a different designation, depending on how many disks are on the system.

 5. This step allows you to destroy all partitions and the partition table on the disk, and
allows you to create a GPT partition table on it. Right-click on any of the partitions
already existing and make the Destroy this slice choice for all of them. When all
existing partitions are destroyed, right-click on da0, and make the choice to Delete
partition table. Then, right-click on da0 and make the choice Create GPT partition
table. The designation display of that disk is now followed by [GPT]. Anything on it
is now erased. It is shown as Avaliable (sic).

 6. Right-click on the new disk, and make the choice Add a new slice. The Add
Partition window appears on screen. Change the partition type to freebsd-zfs,
and put a check mark in the box that is labeled Create and initialize a new file
system. The new partition on our system showed in the Disks pane of the Disk
Manager as da0p1. Then click OK. You can now quit the Disk Manager by using the
destroy button in the upper-right corner of the window.

 It is also possible to change the size of the partition, and add multiple partitions to
this drive if you want to from the Add Partition window. For our purposes here,
we only showed how to create a single primary partition that took up the whole disk.

 7. You can now create ZFS zpools and ZFS datasets on this disk with the zpool cre-
ate and zfs create commands. For example, to create a ZFS zpool on it named
testing, type:

 #zpool create testing /dev/da0p1

 8. To own the files you copy to and from the new external USB drive, you may need to
use the chown and chgrp commands on the directory that a zpool create com-
mand mounts the file system to.

 9. You have just created, on an external USB hard drive, a new partition table and slice
using the whole disk with a ZFS file system on it. You also know the logical device
name of it in /dev, and know its mount point on the system after you create a ZFS
zpool on it.

1100 ◾ UNIX: The Textbook, Third Edition

 10. To detach the USB external hard drive, and destroy the zpool, partition, and data on it,
destroy the zpool on it using the command zpool destroy testing, and repeat
step 5 on it. Then you can safely remove the USB external hard drive from the computer.

EXERCISE 23.10

 1. Use the gpart command in PC-BSD to partition with a primary partition, format
to freebsd-zfs, and add a new internal SATA bus hard disk to your system.

 2. If you haven’t done so already, use the GUI methods of Example 23.5, to add an exter-
nal USB hard drive to your PC-BSD system.

 3. What gpart commands would need to be executed to accomplish the same things
that the Disk Manager GUI does in adding an external USB hard disk, according to
the methods of Example 23.5? To test those commands in sequence, redo Example
23.5 using the gpart command only. The

In place of informational step 7, create a zpool on the external USB drive using the
command:

zpool create test7 /dev/da0p1

The USB external hard drive will be mounted at /test7. That is the pathname to where
you can copy files to and from the USB external hard drive.

23.5 ADDING A PRINTER TO THE SYSTEM
A printer is a common peripheral addition to any computer system.

PC-BSD uses the Common UNIX Printing System (CUPS) to handle printing. The
PC-BSD Control Panel provides a graphical front-end for adding and managing printers.
You can launch the PC-BSD Control Panel from its Desktop icon, or as superuser by typ-
ing pc-controlpanel in a console or terminal window. In the Control Panel, printer
control is found in the Hardware group, and it is named Printing.

While the Control Panel graphical utility is easy to use, it may or may not automatically
detect your printer, depending upon how well your printer is supported by an open-source
print driver. Your printer may be found quickly and easily, along with its driver, thus allow-
ing you to breeze through the configuration operations. If your printer configuration does
not work, read the following section for advice on how to locate the correct driver for your
printer.

23.5.1 Researching Your Printer

Before configuring your printer, you have to find out if a print driver exists for your par-
ticular model, and if so, which driver is recommended. If you are planning to purchase a
printer, this is definitely good information to know beforehand. You can look up the ven-
dor and model of the printer in the Open Printing Database, found at www.openprinting.

http://www.openprinting.org/printers

UNIX System Administration Fundamentals    ◾    1101

org/printers, which will indicate if the model is supported and if there are any known
problem with the print driver. We found the HP LaserJet 1200 in the database, and the
HPLIP driver was recommended for it.

In PC-BSD, the HPLIP driver is available as an optional system component called
pcbsd-meta-hplip. You can see if the driver is installed, and install it if it is not, using the
AppCafe. You launch the AppCafe as superuser by typing pc-softwaremanager in a
console or terminal window.

In order to see the driver, make sure that the Raw Packages box is checked in the pull-
down Browser View menu. In the main AppCafe window, make the Browse Categories
choice. Then, under the Miscellaneous category, find the pcbsd-meta-hplip driver. Once
you have located the driver in AppCafe, install it.

23.5.2 Adding a Printer

The most efficient way to add a printer to your printer to your PC-BSD system is to follow
the instructions in the PC-BSD handbook for your version of the software.

EXERCISE 23.11
Add a printer to your PC-BSD system.

23.5.3 Adding a Printer to Solaris

The most efficient way to add a printer to Solaris is to consult the online documentation for
your version of the Solaris software.

EXERCISE 23.12
Add a printer to your Solaris system.

23.6 FILE SYSTEM BACKUP STRATEGIES AND TECHNIQUES
The general necessity of backing up user and system files on your UNIX system as a part
of system administration and maintenance should seem obvious to anyone responsible for
the administration of the system. And it should also be obvious to an ordinary user, if they
want to maintain the integrity of her important personal files on a desktop or laptop in a
home computer use case.

According to UNIX system professionals, there is an easy-to-remember and important
set of considerations you must make when backing up the system as the system adminis-
trator. This set of considerations can be posed in simple question form as: how, what, why,
when, where, and who? Some of the answers to these simple questions can be dovetailed
together, and we repeat here the selected list of example answers as follows:

“How,” most importantly, means the command, utility, application, or combination
of hardware and software used to accomplish the backup and archive. These facili-
ties are described in the subsections that follow. It also means backing up/archiving
incrementally, in a rolling fashion for example, or using various strategies.

http://www.openprinting.org/printers

1102 ◾ UNIX: The Textbook, Third Edition

“What” refers to whether you back up just some of the user files and user account files,
all of them, only certain kinds of documents, the whole disk drive, multiple disk
drives, all or a selected subset of the system files, etc.

“Why” means deciding on the relative importance of “what” you are backing up.

“When” means every time you save a particular file, hourly, once a day, once a week,
once a month, and at what time of day exactly, such as 3:00 a.m.

“Where” means saving to a local disk, to Dropbox/Google/Amazon, to a USB thumb
drive manually, to another computer or NAS on your home network, automatically
by cron, to another hard disk manually, totally, incrementally, to RAID of various
levels, or any variant or combination of these.

“Who” refers to the initiator or executor, such as by cron automatically, by the des-
ignated system administrator either manually or semiautomatically, on Dropbox,
Google, or Amazon.

23.6.1 A Strategic Synopsis and Overview of File Backup Facilities

There are several strategies that a system administrator can use in confidently and effi-
ciently backing up the system and user file components of UNIX . Table 23.7 gives
a basic overview of those strategies and the facilities that implement them on a mod-
ern UNIX system. In the sections that follow the table, we briefly give details of these
facilities.

23.6.2 tar and gtar

The UNIX operating system has several utilities that allow you to archive your files and
directories in a single file, and tar is the most popular, widely used, and traditional com-
mand that allows you to do this.

TABLE 23.7 tar Facilities

Backup Facility Description

tar, gtar Command and options to pack a file or a directory hierarchy as an
ordinary disk file for backup, archiving, or moving to another
location or system. The GNU version is gtar.

cpio Less popular than tar, but with much of the same functionality.
rsync A disk space-efficient command to copy files and directories.
dump/restore PC-BSD incremental file backup and restore.
dd A simple and abbreviated backup utility.
ufsdump/ufsrestore Solaris version of incremental file dump.
zfs snapshot Built-in commands and options in ZFS that offer a variety of

backup modes.
Script files Administrator or user-written shell scripts or other programming

language backup systems that can use all of these commands in
them.

Third-party
software

Many products, both local and online. The most significant for
ordinary use are Clonezilla and FileZilla.

UNIX System Administration Fundamentals    ◾    1103

The tar (short for tape archive) utility was originally designed to save file systems on
tape as a backup so that files could be recovered in the event of a system crash. It is still
used for that purpose, but it is also commonly used now to pack a directory hierarchy as
an ordinary disk file. Doing so saves disk space and transmission time while a directory
hierarchy is being transmitted electronically. The saving in disk space results primarily
from the fact that empty space within a cluster is not wasted. A brief description of the
tar utility follows.

Additionally, gtar (the GNU version of tar) has some important functional features
not included in tar. System administrators normally use a cost-effective archival medium
for archiving complete file system structures as backups so that, when a system crashes
for some reason, files can be recovered. UNIX-based computer systems normally crash
for reasons beyond the operating system’s control, such as a disk head crash because of a
power surge. UNIX rarely causes a system to crash because it is a well-designed, coded,
and tested operating system. In a typical installation, backup is done every day during off
hours (late night or early morning) when the system is not normally in use.

The general structure of the tar command is as follows.

SYNTAX
tar [options] [‘device’] [‘pattern’]

Purpose: Archive (copy in a particular format) files to or restore files from an archi-
val medium (which can be an ordinary file). Directories are archived and restored
recursively.

Options and Option Arguments:
Option Format: Function _ letter [Modifier]
Function _ letter:

c Create a new tape and record archive files on it
r Record files at the end of tape (append operation); list tape’s contents (names of

files archived on it) in a format such as ls -l; update tape by adding files on it if
not on or if modified since last written to tape

x Extract (restore) files from tape; entire tape if none specified
Modifier:

b N Use N as the blocking factor (1 default; 20 maximum).
f ‘Arch’ Use ‘Arch’ as the archive for archiving or restoring files; default is /dev/

mto. If ‘Arch’ is -, standard input is read (for extracting files) or standard output
is written (for creating an archive)—a feature used when tar is used in a pipeline.

h Follow symbolic links.
l Display error message if links are not found.
o Change ownership (user ID and group ID) to the user running tar.
v Use verbose mode: Display function letter x for extraction or for an archive.

Command Arguments:
‘device’: A destination for the archive, which can be a filename, a pathname, or a

remote location
‘pattern’: The source to be archived, based on filename expansion syntax; can be

a file, files, or directories

1104 ◾ UNIX: The Textbook, Third Edition

23.6.2.1 Archiving and Restoring Files Using tar
A normal UNIX user can archive their work if they want to. They would normally
need to do this to archive files related to a project so that they can transfer them to
someone via e-mail, ftp, ssh, or via secondary storage media (USB thumb drive, DVD,
or CD-ROM). The primary reason for making an archive is the convenience of deal-
ing with (sending or receiving) a single file instead of a complete directory hierarchy.
Without an archive, the sender might have to send several files and directories (a file
structure) that the receiver would have to restore in their correct hierarchical structure.
Without an archiving facility, depending on the size of the files and directory structure,
the task of sending, receiving, and reconstructing the file structure can be very time
consuming.

In Chapter 7, we discussed file compression by using the compress and pack com-
mands and pointed out that compression saves disk space and transmission time. However,
compressing small files normally does not result in much compression. Moreover, com-
pressing files of one cluster in size (the minimum unit of disk storage; one or more sectors)
or less does not help save disk space even if compression does result in smaller files, because
the system ends up using one cluster to save the compressed file anyway. But if compres-
sion does result in a smaller file, you do save time in transmitting the compressed version.
If the disk block size is 512 bytes and a cluster consists of more than two blocks, you can
use the tar command to pack files together in one file, with a 512-byte tar header at the
beginning of each file, as shown in Figure 23.14.

23.6.2.2 Archiving Files
You can use the tar command for archiving (also known as packing) a list of files and/
or directories by using the c or r option. The c option creates a new archive, whereas the
r option appends files at the end of the current archive. The most common use of the tar
command is with the c option.

tarheader

tarheader

tarheader

File1

File2

.

.

.

FileN

FIGURE 23.14 Tar disk block.

UNIX System Administration Fundamentals    ◾    1105

In the examples presented in this chapter, we use the directory structure shown in
Figure 23.15. The following session shows that there are two directories under the unix-
book directory called current and final. In addition, each of these directories contains six
files (see Figure 23.15), displayed by the ls -l command.

$ cd unixbook
$ pwd
/users/sarwar/unixbook
% ls -l
drwx------ 2 sarwar 512 Jul 22 13:21 current
drwx------ 2 sarwar 512 Jul 22 13:21 final
$ cd current
$ ls –l
-rw------- 1 sarwar 204288 Jul 19 13:06 ch07.doc
-rw------- 1 sarwar 87552 Jul 19 13:06 ch08.doc
-rw------- 1 sarwar 86016 Jul 19 13:06 ch09.doc
-rw------- 1 sarwar 121344 Jul 19 13:06 ch10.doc
-rw------- 1 sarwar 152576 Jul 19 13:06 ch11.doc
-rw------- 1 sarwar 347648 Jul 19 13:06 ch12.doc
$ cd ..
$ cd final
$ ls -l
-rw------- 1 sarwar 41984 Jul 19 13:06 ch1.doc
-rw------- 1 sarwar 54272 Jul 19 13:06 ch2.doc
-rw------- 1 sarwar 142848 Jul 19 13:06 ch3.doc
-rw------- 1 sarwar 86528 Jul 19 13:06 ch4.doc
-rw------- 1 sarwar 396288 Jul 19 13:06 ch5.doc

Your home

personal. . .

. . .

.

. . .

. . . courses

ee231 ee446

exams labs

solutions

mid1 mid2

letter taxes99

ch7.doc ch12.doc ch1.doc ch6.doc

current final

unixbook

FIGURE 23.15 Directory structure.

1106 ◾ UNIX: The Textbook, Third Edition

-rw------- 1 sarwar 334848 Jul 19 13:06 ch6.doc
$

If you want to create an archive of the unixbook directory on a tape drive /dev/rmt/t0
(the name might be different on your system), you can use the following command after
changing the directory to unixbook. The v (verbose) option is used to view the files and
directories that are being archived. Unless you are the system administrator, in all likeli-
hood you do not have access permission to use (read or write) the tape drive. Thus, the shell
will give you the following error message:

$ tar cvf /dev/rmt/t0 .
tar: /dev/rmt/t0: Permission denied
$

However, if you do have proper access permissions for the tape drive, an archive of the
unixbook directory is created on the tape. Not only do you need access privileges to /dev/
rmt/t0, but you also need to mount it first.

However, you can also create an archive on a disk file—in a directory that you have the
write permission for—by using the following command. Here we made ~/unixbook our
current directory and created a tar archive of this directory in a file called unixbook.tar.
Note that .tar is not an extension required by the tar utility. We have used this exten-
sion because it allows us to identify tar archives by looking at the file name. With no such
extension, we have to use the file command to identify our tar archive files, as shown in
the last command line in the session (in case you need reminding what the file command
does).

$ cd ~/unixbook
$ tar cvf unixbook.tar.
tar: ./unixbook.tar same as archive file
a ./final/0K
a ./final/ch1.doc 41K
a ./final/ch2.doc 53K
a ./final/ch3.doc 140K
a ./final/ch4.doc 85K
a ./final/ch5.doc 387K
a ./final/ch6.doc 327K
a ./current/0K
a ./current/ch07.doc 200K
a ./current/ch08.doc 86K
a ./current/ch09.doc 84K
a ./current/ch10.doc 119K
a ./current/ch11.doc 149K
a ./current/ch12.doc 340K
$ ls –l

UNIX System Administration Fundamentals    ◾    1107

drwx------ 2 sarwar 512 Jul 22 13:21 current
drwx------ 2 sarwar 512 Jul 22 13:21 final
-rw------- 1 sarwar 2064896 Jul 22 13:47 unixbook.tar
$ file unixbook.tar
unixbook.tar: USTAR tar archive
$

You can also create the tar archive of the current directory by using the following com-
mand. The - argument informs tar that the archive is to be sent to standard output,
which is redirected to the unixbook.tar file. As we discussed in Chapter 12, the back
quotes (grave accents) are used for command substitution—that is, to execute the find
command and substitute its output for the command, including the back quotes. The
output of the find . -print command (the names of all the files and directories in
the current directory) are passed to the tar command as its parameters. These file and
directory names are taken as the list of files to be archived by the tar command. Thus,
the net effect of the command line is that a tar archive of the current directory is created
in unixbook.tar.

$ tar cvf - 'find . -print' > unixbook.tar
$

In the following in-chapter exercise, you will use the tar command with the c option
to create an archive of a directory.

EXERCISE 23.13
Create a tar archive of a subdirectory hierarchy of your choosing under your own home
directory on your UNIX system. What command line(s) did you use? What is the name of
your archive file?

23.6.2.3 Restoring Archived Files
You can restore (unpack) an archive by using the function option x of the tar command.
To restore the archive created in Section 23.6.2.2 and place it in a directory called ~/back-
ups, you can run the following command sequence. The cp command copies the archive
file, assumed to be in your home directory, to the directory (~/backups) where the archived
files are to be restored. The cd command is used to make the destination directory the
current directory. Finally, the tar command is used to do the restoration. Notice that the
destination directory is the current directory.

$ cp unixbook.tar ~/backups
$ cd ~/backups
$ tar xvf unixbook.tar
x ., 0 bytes, 0 tape blocks

1108 ◾ UNIX: The Textbook, Third Edition

x ./final, 0 bytes, 0 tape blocks
x ./final/ch1.doc, 41984 bytes, 82 tape blocks
x ./final/ch2.doc, 54272 bytes, 106 tape blocks
x ./final/ch3.doc, 142848 bytes, 279 tape blocks
x ./final/ch4.doc, 86528 bytes, 169 tape blocks
x ./final/ch5.doc, 396288 bytes, 774 tape blocks
x ./final/ch6.doc, 334848 bytes, 654 tape blocks
x ./current, 0 bytes, 0 tape blocks
x ./current/ch07.doc, 204288 bytes, 399 tape blocks
x ./current/ch08.doc, 87552 bytes, 171 tape blocks
x ./current/ch09.doc, 86016 bytes, 168 tape blocks
x ./current/ch10.doc, 121344 bytes, 237 tape blocks
x ./current/ch11.doc, 152576 bytes, 298 tape blocks x ./current/
ch12.doc, 347648 bytes, 679 tape blocks
$ ls -l
drwx------ 2 sarwar 512 Jul 22 13:21 current
drwx------ 2 sarwar 512 Jul 22 13:21 final
-rw------- 1 sarwar 2064896 Jul 22 13:47 unixbook.tar
$

The unixbook.tar file remains intact after it has been unpacked. This result makes sense
considering that the primary purpose of the tar archive is to back up files, and it should
remain intact after restoration in case the system crashes after the file is restored but before
it is archived again. After restoration of the unixbook.tar file, your directory structure
looks like that shown in Figure 23.16.

At times, you might need to restore a subset of files in a tar archive. System adminis-
trators often do this after a system crashes (usually caused by a disk head crash resulting
from a power surge) and destroys some user files with it. In such cases, system adminis-
trators restore only those files from the tape archive that reside on the damaged portion
of the disk. Selective restoration is possible with the function option x as long as the
pathnames of the files to be restored are known. If you do not remember the pathnames
of the files to be restored, you can use the function option t to display the pathnames
of files and directories on the archive file. The output of the tar command with the
t option is in a format similar to the output of the ls -l command, as shown in the
following session. As marked in the sample, the first field specifies file type and access

FIGURE 23.16 Restored directory structure.

UNIX System Administration Fundamentals    ◾    1109

permissions, the second field specifies user ID/group ID of the owner of the file, the third
field shows the file size in bytes, the next several fields show the time and date that the
file was last modified, and the last field shows the pathname of the file as stored in the
archive.

If an archive contains a large number of files, you can pipe the output of the tar t
command to the more command for page-by-page view. If you know the name of the file
but not its pathname, you can pipe output of the tar command with the t option to the
grep command. Files can also be restored, or their pathnames viewed, selectively. The
following session illustrates these points.

$ tar –tvf unixbook.tar
drwx------ 121/152 0 Jul 22 13:47 2015 ./
drwx------ 121/152 0 Jul 22 13:21 2015 ./final/
-rw------- 121/152 41984 Jul 19 13:06 2015 ./final/ch1.
doc
-rw------- 121/152 54272 Jul 19 13:06 2015 ./final/ch2.
doc
-rw------- 121/152 142848Jul 19 13:06 2015 ./final/ch3.
doc
-rw------- 121/152 86528 Jul 19 13:06 2015 ./final/ch4.
doc
-rw------- 121/152 396288Jul 19 13:06 2015 ./final/ch5.
doc
-rw------- 121/152 334848Jul 19 13:06 2015 ./final/ch6.
doc
drwx------ 121/152 0 Jul 22 13:21 2015 ./current/
-rw------- 121/152 204288Jul 19 13:06 2015 ./current/
ch07.doc
-rw------- 121/152 87552 Jul 19 13:06 2015 ./current/
ch08.doc
-rw------- 121/152 86016 Jul 19 13:06 2015 ./current/
ch09.doc
-rw------- 121/152 121344Jul 19 13:06 2015 ./current/
ch10.doc
-rw------- 121/152 152576Jul 19 13:06 2015 ./current/
ch11.doc
-rw------- 121/152 347648Jul 19 13:06 2015 ./current/
ch12.doc
$ tar -tvf unixbook.tar | grep ch10.doc
-rw------- 121/152 121344 Jul 19 13:06 2015 ./
current/ch10.doc
$

If you want to restore the file ch10.doc in the ~/unixbook/current directory, you can
use the following command sequence. Be sure that you give the pathname of the file to be
restored, not just its name.

1110 ◾ UNIX: The Textbook, Third Edition

$ cd ~/unixbook
$ tar -xvf ~/backups/unixbook.tar current/ch10.doc
$

The output of this tar command shows that the file ch10.doc has been restored in the
~/backups/current directory. You can confirm this result by using the ls -l

~/backups/ current command.
In the following in-chapter exercises, you will use the tar command with t and x

options to appreciate how attributes of the archived files can be viewed and how archived
files can be restored.

EXERCISE 23.14
List the attributes of the files in the archive that you created in Exercise 23.13 and identify
the sizes in bytes of all the files in it. What command did you use to do this?

EXERCISE 23.15
Copy the archive file that you created in Exercise 23.13 to a file called mytar. Unarchive
it in a directory called dir.backup under your home directory. Show the commands you
used for this task.

23.6.2.4 Copying Directory Hierarchies
You can use the tar command to copy one directory to another directory. You can also
use the cp -r command to do so, but the disadvantage of using this command is that the
file access permissions and file modification times are not preserved. The access permis-
sions of the copied files and directories are determined by the value of umask, and the
modification time is set to current time. Also, the -r option is not available on all UNIX
systems.

Additionally, you can also use the cp –p command to preserve file permissions.
More commonly, the tar command is used to archive the source directory, create the

destination directory, and untar (unpack) the archived directory in this latter directory. The
entire task can be performed with one command by using command grouping and piping.
In the following session, the ~/unixbook/examples directory is copied to the ~/unixbook/
examples.bak directory. The tar command to the left of pipe sends the archive to stdout,
and the tar command to the right of pipe unpacks the archive it receives at its stdin.

$ (cd ~/unixbook/examples; tar -cvf - .) | (cd ~/unixbook/
examples.bak; tar -xvf -)
a ./ 0K
a ./Bshell/Domain, 14 bytes, 1 tape blocks a ./Bshell/IP, 18
bytes, 1 tape blocks
a ./Bshell/dns_demo1, 227 bytes, 1 tape blocks
...
a ./Bshell/fs.csh, 1531 bytes, 3 tape blocks a ./Bshell/dir1, 0
bytes, 0 tape blocks

UNIX System Administration Fundamentals    ◾    1111

a ./Bshell/copy, 2222 bytes, 5 tape blocks x ., 0 bytes, 0 tape
blocks
x ./Bshell/Domain, 14 bytes, 1 tape blocks x ./Bshell/IP, 18
bytes, 1 tape blocks
x ./Bshell/dns_demo1, 227 bytes, 1 tape blocks
...
x ./Bshell/fs.csh, 1531 bytes, 3 tape blocks x ./Bshell/dir1,
0 bytes, 0 tape blocks
x ./Bshell/copy, 2222 bytes, 5 tape blocks
$

The advantages of using this command line are that both cd and tar commands are
available on all UNIX systems and that the copied files have the access permissions and file
modification times for the source files.

You can also use the tar command to copy directories to a remote machine on a net-
work. In the following command line, the ~/unixbook/examples directory is copied to
the ~/unix- book/examples.bak directory on a remote machine called upsun21. The rsh
command (see Chapter 11) is used to execute the quoted command group on upsun21.
Because the tar command is not run in verbose mode, it runs silently and you do not see
any output on the display screen.

$ (cd ~/unixbook/examples; tar cf - .) | rsh upsun21 "cd
~/unixbook/example.bak; tar xf -"
$

23.6.2.5 Software Distributions in the tar Format and gtar
Companies often use the tar command to distribute their software because it results in a
single file that the customer needs to copy, and it saves disk space compared to the unar-
chived directory hierarchies that might contain the software to be distributed. Also, most
companies keep their distribution packs (in the tar format) on their Internet sites, where
their customers can download them via the ftp command. Thus, the tar format also
results in less “copying” time and reduced work by the customer, who uses only one get
(or mget) command (an ftp command) versus several sequences of commands if directory
hierarchies have to be downloaded.

Because the sizes of software packages are large due to their graphical interfaces and
multimedia formats, archives are compressed before they are put on ftp sites. The users of
the software need to uncompress the downloaded files before restoring them.

Now consider a file, tcsh-6.06.tar.Z, that we downloaded from an ftp site. In order to restore
this file, we have to uncompress and untar it, as shown in the following command sequence.

$ uncompress tcsh-6.06.tar.Z
$ tar xvf tcsh-6.06.tar
... [Output truncated]
$

1112 ◾ UNIX: The Textbook, Third Edition

If a software pack is distributed on a secondary storage medium (USB thumb drive,
DVD, or CD- ROM), you need to copy the appropriate files to the appropriate directory
and repeat these commands.

If you want to distribute some software that is stored in a directory hierarchy, you first need
to make an archive for it by using the tar command and then compress it by using the com-
press command (or some other similar utility). These steps create a tar archive in a compressed
file that can be placed in an ftp repository or on a Web page or sent as an e-mail attachment.

Disk file backups are the most modern and cost-effective way to create archives and
backups.

The -z option of the GNU version of tar, gtar, can be used to generate the com-
pressed version of the tar archive. This option can be used to restore the compressed ver-
sion of the tar archive. The use of this option eliminates the use of the gzip (or gunzip)
utility to compress or uncompress an archive and then the tar command; the two-step
process can be performed by the tar command alone. In the following session, the first
tar command generates a compressed tar archive of the current directory in the ~/unix-
book/backups/ub.tar.gz file, and the second tar command restores the compressed tar
archive from the same file into the current directory.

$ gtar -zcf ~/unixbook/backups/ub.tar.gz .
$ gtar -zxvf ~/unixbook/backups/ub.tar.gz
... [Output truncated]
$

23.6.3 Other UNIX Archiving and Backup Facilities

In addition to the traditional tar facility, there are several other facilities and methods a
system administrator can use to archive and backup individual user accounts, files, file sys-
tems, and the entire system itself. As previously stated, to get a more complete listing of the
capabilities and options available for the command line facilities, consult the man pages
on your system for these commands. We will briefly describe and give a simple example
of some of the more modern and useful of these facilities and methods. Also, we provide a
nontraditional methodology for doing archiving and backups in ZFS in Chapter 24.

23.6.3.1 cpio
As universally available as tar on UNIX systems, cpio allows the system administrator
the ability to backup the entire system and transfer files between file systems. It may be
used in conjunction with the find command, but not necessarily if you are backing up
an entire file system. Its general format is cpio –o [aBcv] for creating an archive, and
cpio –I [Btv] [pattern] for restoring an archive.

For example, the following commands backup the /home directory to a USB thumb
drive generically named device:

$cd /home
$touch level.1.cpio.timestamp

UNIX System Administration Fundamentals    ◾    1113

$find . –newer level.0.cpio.timestamp –print \ | cpio –oacvB >
device
…
$

23.6.3.2 rsync
As introduced in Chapter 16, the rsync command is a very space-efficient way to backup
files and directories, particularly from one machine to another using ssh across a network.
Its operation can also be automated by designing and implementing an appropriate entry
in the crontab file. The general syntax of rsync for local or remote copying is

Local:

rsync [option(s)...] src... [dest]

Remote:

Pull(copying to a remote location): rsync [option(s)...] [user@]
host:src... [dest]
Push(copying from a remote location): rsync [option(s)...] src...
[user@]host:dest

where option(s) are the valid options for the rsync command, src is the source file or
directory, and dest is the destination path.

An example of using rsync to copy a file named rsynctest from the current working
directory to the local destination /usr/home/bob/USBint is

$ rsync -av rsynctest /usr/home/bob/USBint
sending incremental file list
rsynctest
sent 192 bytes received 35 bytes 454.00 bytes/sec
total size is 92 speedup is 0.41
$

An example of using rsync to copy an entire directory named syncdir locally is

$ rsync -av syncdir /usr/home/bob/USBint
sending incremental file list
syncdir/
syncdir/Chap16.doc
syncdir/backup1.py
syncdir/ossystem.py
sent 280,176 bytes received 77 bytes 186,835.33 bytes/sec
total size is 279,855 speedup is 1.00
0
$

1114 ◾ UNIX: The Textbook, Third Edition

An example of copying an entire directory in push mode remotely is:

$ rsync -av -e ssh syncdir2 bob@192.168.0.7:/Users/b/unix3e
Password:
building file list ... done
syncdir2/
syncdir2/Chap16.doc
syncdir2/backup1.py
syncdir2/ossystem.py
sent 280,171 bytes received 96 bytes 16,985.88 bytes/sec
total size is 279,855 speedup is 1.00
0
$

23.6.3.3 dump and restore (PC-BSD)
The dump and restore facilities are a simple set of complementary commands that
have a small number of options, and are primarily used to back up the system. What dif-
ferentiates dump and restore from facilities like cpio and tar is that dump writes a
table of contents at the beginning of each volume so that you can selectively restore files
from the archive. For the creation of a backup, the dump command’s basic syntax is as
follows:

dump options file blocking-factor density size device filesystem

where 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, a, c, L, n, r, R, S, and u are various options, file,
blocking-factor, density, and size are option arguments that must be supplied in
the same order as their respective options given on the command line, and device and
filesystem are the command arguments.

The restore command’s basic syntax is as follows.

restore options blocking-factor file-number device

for restoration of a backup, where options are various options, blocking-
factor and file-number are option arguments that must be supplied in the same
order as their respective options given on the command line, and device is the com-
mand argument.

An example of how to use dump to create a full backup of /home to a tape drive named
/dev/rmt/t0 is

dump 1unbdsf 512 100000 10000 /dev/rmt/t0 /home

where the level is 1, the blocking factor b is 512 bytes, the volume density and size, d and s,
are 100000 and 10000, the device to backup to is /dev/rmt/t0, and the directory to backup
is /home.

UNIX System Administration Fundamentals    ◾    1115

An example of how to use restore to restore the files in /home/bob from a tape
mounted in /dev/rmt/t0, with a blocking factor of 512, to a subdirectory under the current
directory is

restore xvbfy 512 /dev/rmt/t0 ./home/bob

23.6.3.4 dd
The dd facility is used to copy a single file, part of a file, a partition, or part of a partition
and can treat the data stream using, for example, compression or format conversion.

The basic syntax of dd is

dd if=device of=device bs=blocksize

where if is the input file pathname, of is the output file pathname, and bs specifies the
block size.

An example of using dd in conjunction with ssh and tar is as follows.

$ ssh bob@192.168.0.13:/home/bob "dd if=backup.tar ibs=512" | tar
-xvBf

This command extracts the remote file backup.tar file at /home/bob in 512 byte blocks
and streams it through dd to the system you typed this command on.

23.6.3.5 ufsdump and ufsrestore (Solaris)
ufsdump is an incremental file system dump facility for Solaris, similar to the dump com-
mand in PC-BSD. Its purpose is to back up all files specified (usually either a whole file
system or files within a file system changed after a certain date) to magnetic tape or a
disk file. The ufsdump command can only be used on unmounted file systems, or those
mounted as read only. Attempting to dump a mounted, read–write file system might result
in a system disruption or the inability to restore files from the dump. It is used in conjunc-
tion with ufsrestore.

Basic Syntax: ufsdump ['options'] ['option arguments']
'files _ to _ dump'

Output: Backed-up files at a specified location
Examples:
Example 1: Using ufsdump
The following command makes a full dump of a root file system on c0t3d0, on a 150 MB

cartridge tape unit 0:

ufsdump 0cfu /dev/rmt/0 /dev/rdsk/c0t3d0s0

Example 2: Making an incremental dump
The following command makes and verifies an incremental dump at level 5 of the usr

1116 ◾ UNIX: The Textbook, Third Edition

partition of c0t3d0, on a 1/2 inch reel tape unit 1:

ufsdump 5fuv /dev/rmt/1 /dev/rdsk/c0t3d0s6

Basic Syntax: ufsrestore i | r | R | t | x [abcdfhlmostvyLT]
['archive _ file'] ['factor'] ['dumpfile'] ['n'] ['label'] ['time-
out'] ['filename']...

where filename specifies the pathname of files (or directories) to be restored to
disk.
Ufsrestore is an incremental file system restore facility used in conjunction with the

ufsdump facility.

23.6.3.6 Script Files for Backup and Recovery
As shown in Chapter 16, user-written script files can be deployed by the system admin-
istrator to quickly and efficiently do backup and archiving. Whether they are coded in
Python as shown in Chapter 16, or in a shell programming language that embeds any
of the preceding command line facilities, they can be used to facilitate and automate the
backup, recovery, and archiving of files, directories, or file systems. Additionally, there are
several online sources for backup and archiving script files available, and we will not jus-
tify the need for planning, coding, or maintaining such script files versus using an online,
ready-made program.

The following are two examples of script files, the first one a legacy application of tar,
and the next one a modern UNIX program for doing backup and archiving. One is coded
as Bourne shell scripts, and one is coded as a Python script. They work equally well on
PC-BSD or Solaris, with the minor differences in coding for those two systems duly noted
in the code.

Example 23.6: Simple Bourne Shell Example for Automating Tar Backups
The following Bourne shell script will backup /home/bob to a directory previously
created named simple_backup in a compressed format. Use an editor of your choice
to create it, and name the script file backup.sh:

#!/bin/sh
To backup additional directories, put more pathnames in the
following command,
separated by spaces, such as /home/bob /home/sarwar /home/
blahblah.
backup_source="/home/bob"
backup_destination="/home/bob/simple_backup"
filename="back1.tgz"
echo "Backing up your UNIX home directory"
tar cvpzf $backup_destination/$filename $backup_source
echo "Backup Complete"

UNIX System Administration Fundamentals    ◾    1117

EXERCISE 23.16
Give the commands necessary to automate the preceding script file using cron, to run the
backup.sh script at 3:00 a.m. every week. Feel free to modify the time, day, and source and
destination directories and files, so that you can use the script file to backup information
important to you on your UNIX system.

Example 23.7: Extended Python Script Example
Using rsync to do a “Rolling” Backup
This example is similar to Chapter 16, Example 16.30, with the notable exceptions
that it is more extensive and copies more hard-linked files and directories across a
network using ssh.

Basically, there are five operations the Python script file performs:

 1. Checks to see if several numbered directories exist. If they don’t exist, it creates
them.

 2. Removes the last or oldest directory.
 3. Hard copies directory 1 into directory 2. A hard copy makes a copy in which the

two files share the same disk space (i.e., your files take up no extra room).
 4. Uses rsync to backup the files you want to directory 1. rsync only overwrites

changed files. This example goes through local directories and then networked files.
 5. Backs up the source code.

You should create a file in /home/me/.rsync/exclude with patterns for rsync to ignore
(see the rsync manual for more info). We mainly exclude patterns like *.tmp or *.o. Also,
you should setup ssh so that you can do a login to your server without having to type in a
password. Otherwise this won’t work as a cron task.

#!/usr/bin/python
#
import time
import datetime
import os
import shutil
import UserString
def backupserver():
 debug_flag = "debug"
 sources = ["/etc/aliases", "/etc/resolv.conf", "/etc/hosts",
 "/etc/named.conf", "/etc/group","/etc/dovecot.conf",
 "/var/www/cgi-bin","/etc/httpd","/var/www/html"]
 localsources = ["/Volumes/NO NAME/onix", "/Volumes/NO NAME/

projects", "/Users/me/myprojects",
 "/Users/me/bin"]

1118 ◾ UNIX: The Textbook, Third Edition

 localcode = ["/Volumes/NO NAME/projects"]
 codetarget = "/Volumes/PC Backups/Code Backups/"
 target = "/Volumes/PC Backups/Daily Backups/"
 host = "www.mysite.com"
 user = "me"
 # target can be reached, trigger a rotation of the snapshot
 # directories
 if (debug_flag == "debug"):
 print "Date: " + str(datetime.date.today())
 print host +" is up, rotating snapshots."
 # check to see if directories exist
 i = 1
 while i <= 5:
 temp_path = target + str(i) + "/"
 if not os.path.exists(temp_path):
 try:
 os.makedirs(temp_path)
 print "Created " + temp_path
 except:
 print "Couldn't create " + temp_path
 i = i + 1
 # cycle backups
 # first delete #5
 print "Deleting oldest archive"
 shutil.rmtree(target + "5")
 # cycle 2 - 4
 print "Cycle backups"
 os.rename(target + "4", target + "5")
 os.rename(target + "3", target + "4")
 os.rename(target + "2", target + "3")
 # do hard copy of 1
 os.system('find "' + target + '1" -print | cpio -pdl ' +

target +"2")
 print "Copy first backup"
 # copy tree does a full copy whereas cpio does hard-link
 # copies (i.e., each copied file
 # takes up no extra space)
 shutil.copytree(target + "1", target + "2")
 os.system('cd "' + target + '1"; find . -print | cpio -pdl "'

+ target + '2"')
 print "Rsyncing"
 # Rsync from local directories to local backup
 for source in localsources:
 print "Local directories " + source
 os.system('rsync -azv -e --delete --delete-excluded ' +
 '--exclude-from=/Users/me/.rsync/exclude "' + source +
 '" "' + target+'1"')

UNIX System Administration Fundamentals    ◾    1119

 # Rsync from the server to the local backup
 for source in sources:
 print "Downloading " + source
 os.system('rsync -azv -e ssh --delete --delete-excluded ' +
 '--exclude-from=/Users/me/.rsync/exclude ' + user +

"@" + host + ':"' + source + '" "' +
target+'1"')

 # Backup *just* the programming code
 newfolder = codetarget + str(datetime.date.today())
 # make the new directory
 if not os.path.exists(newfolder):
 os.makedirs(newfolder)
 # Here's the key line. Find all the source files from our
 # rsync backup and copy them as
 # hard links.
 print "Backing up source"
 os.system('cd "' + target + '1"; find . \(' + " -name '*.cpp'

-or -name 'Makefile'" +
 "-or -name '*.c' -or -name '*.h' -or -name '*.lex' -or

-name '*.y'" +
 " -or -name '*.bat' -or -name '*.py'\) " + ' -print | cpio

-pdl "' + newfolder +'"')
backupserver()

23.6.3.7 Software for Backup and Recovery: The “Zillas” and Ghost
There are many commercial software and hardware packages that can be deployed to
backup and archive your system. One very easy-to-use commercial product that allows
you to clone entire hard disks in a “broadcast” fashion over a network, from a server to one
or more machines, is Norton Ghost. But the two most readily available, useful, and free
software facilities that can do a variety of file system backup and recovery, disk recovery,
and disk cloning operations are FileZilla and Clonezilla.

23.6.3.7.1 FileZilla FileZilla is nominally a graphics-based ftp client and server pro-
gram that can use ssh as the tunnel, or conduit between systems. It has a number of
useful functions and menu choices that allow the system administrator to successfully,
confidentially, and efficiently backup and restore single files or directories, via a net-
work globally. It is most useful for backing up and restoring single-user files and direc-
tories. It is not a replacement or substitute for the command line facilities shown in the
preceding sections. Figure 23.17 illustrates the screen display and menus available in
the PC-BSD “client” version of FileZilla, which can be installed quickly and easily via
the AppCafe.

Both client and server, in our case a local machine running PC-BSD, and a remote
UNIX machine, must have ssh communications protocol enabled between them. You can
have login access to an account on the remote server, or you can anonymously login as well
if that is enabled.

1120 ◾ UNIX: The Textbook, Third Edition

After launching FileZilla on the client, to login to a remote host server you need to sup-
ply the IP address of the server, the login name and password, and the port number (22 for
ssh).

Once you have successfully logged in, the local machine’s directory and file structure is
shown on the left side of the figure. The remote machine’s directory structure is shown on
the right side of the figure. To transfer files or directories between machines, you simply
drag and drop between the appropriate panes on the left or right. If you are overwriting
previously transferred files or directories, the FileZilla default is to give you the chance to
overwrite or rename the files being transferred.

There are a number of other menu choices at the top of the FileZilla screen that allow
you to affect preferences, set bookmarks, etc. For example, via the menu choice Manage
Bookmarks and the Site Manager, you can automatically make multiple local directories
and remote directories available for ssh transfer as soon as you log in to the remote server
sites.

23.6.3.7.2 Clonezilla Clonezilla is the most useful and readily available tool for the ordi-
nary single computer user to do partition and whole-disk cloning. The “live” version of
it can be deployed to do non-broadcast cloning of entire disks, including the boot sector.
This technique allows an ordinary user or a system administrator to take fast snapshots of
entire disks, thus greatly enhancing and facilitating any backup strategy employed.

As an example, on a large single disk, Clonezilla is capable of quickly duplicating the
entire disk so that the clone can be used in exactly the same way as the original disk. So,
instead of using any of the other backup schemes shown above, at any single instant in
time, you can create an exact copy of any of the disks on your system. Of course, you would
have to weigh the merits of this versus any of the other backup strategies.

For PC-BSD, cloning the entire system disk, including the boot partition, is possible
in Clonezilla. This would allow you to have a bootable duplicate of your system disk,

FIGURE 23.17 FileZilla main window.

UNIX System Administration Fundamentals    ◾    1121

possibly with all of your user data files on it as well. In CloneZilla, the source disk can be
an internal hard drive, and the target clone can be an externally mounted hard disk in a
USB-connected enclosure. This is a very useful procedure if you are running PC-BSD on a
laptop computer that is only capable of having one internal hard drive.

In Chapter 24, Example 24.4, “Mirroring of Hard Disks on PC-BSD,” we show a ZFS
method (using mirroring) of doing exactly the same thing that CloneZilla does. Example
24.4 assumes the system disk and the disk you want to clone onto are internally mounted
on the SATA bus. We also present a problem at the end of Chapter 24 (Problem 24.13)
that asks you to repeat the procedures of Example 24.4 using the internally mounted
system disk as the source and an externally mounted USB disk as the target for ZFS
mirroring.

For Solaris, cloning partitions other than the boot partition is possible, but at this time,
bootable system disk cloning is not possible.

23.7 SYSTEM UPGRADES AND SOFTWARE UPDATES
USING A PACKAGE MANAGER

After a UNIX system has been installed and configured, two critical ongoing tasks for the
system administrator are upgrading the system to incorporate patches, or fixes, that keep
the system itself working optimally, and adding and updating the application software that
users rely on to do their work. This section will show how to upgrade the parts of or the
entire operating system and add/update the application software via package management.
This will be done in the subsections that follow:

23.7.1: Upgrading the Operating System in Solaris 11

23.7.2: Updating the Installed Application Packages and Installing New Application
Packages in Solaris

23.7.3: Upgrading the Operating System in PC-BSD

23.7.4: Updating the Installed Application Packages and Installing New Application
Packages in PC-BSD.

Simply stated, a package is ready-to-install software that, as will be shown, installs itself
with a minimum of administrator or user interference. Both PC-BSD and Solaris pro-
vide several ways of upgrading the operating system itself, and installing and updating
application software. It is also possible to obtain the source code for system upgrades or
application software updates, and via the program development process, compile, link,
and assemble the source modules without using a package manager. This technique is not
shown in this section.

23.7.1 Upgrading the Operating System in Solaris

The easiest and quickest way to achieve an upgrade of the operating system is to
use the Update Manager, which is launched by making the pull-down menu choice

1122 ◾ UNIX: The Textbook, Third Edition

System>Administration>Update Manager. The Update Manager GUI appears on screen,
as shown in Figure 23.18.

As seen in Figure 23.18, no updates are currently available for the system. If upgrades
were available, a dialog would appear in the main pane of the System Manager window
showing you the availability of new system upgrades. You would then be allowed to accept
or decline downloading and installation of the available software modules. Then, if you
accept, their download status and installation status would be shown. They would auto-
matically be installed, and you would have to reboot the system before they took effect.

The pkg command allows you to add, remove, and update existing software packages
on the system, including upgrading the operating system itself. Section 23.7.2 will give a
brief introduction to the pkg command and its options that allow you to update the user
application package software.

You can type the following two lines as superuser on the command line in a termi-
nal window to see the version numbers of available operating system upgrades, and the
upgrade release you are currently working on:

root@solaris:~# pkg list -af entire
NAME (PUBLISHER) VERSION IFO
entire 0.5.11-0.175.1.0.0.24.2 i--
entire 0.5.11-0.175.0.10.1.0.0 ---
entire 0.5.11-0.175.0.0.0.2.0 ---
entire 0.5.11-0.151.0.1 ---
root@solaris:~# uname -v
11.1

The output of the first command shows that the latest upgrade release is 0.5.11-
0.175.1.0.0.24.2, and the i in the IFO column means that you are on that release currently.
The output of the second command shows that you are using major release 11.1 of Solaris.

Then, if a new major release is available to you without an Solaris service contract, you
can type the following command to update to that new major release:

root@solaris:~# pkg update

FIGURE 23.18 Update Manager window.

UNIX System Administration Fundamentals    ◾    1123

If any major update is available at the default repository, the operating system will be
updated automatically.

23.7.2 Updating the Installed Application Packages and
Installing New Application Packages in Solaris

The easiest and most effective way to update or add new application packages to the system
is with the Package Manager, which is launched by making the pull-down menu choice
System>Administration>Package Manager. The Package Manager GUI appears on
screen, as shown in Figure 23.19.

As seen in Figure 23.19, the repository (or publisher) that is being used is Solaris, the
major package category selected is System, and the subcategory selected is Administration
and Configuration. A total of 56 packages are in this category, none of which has been
selected. To add a new package, choose one of the major categories, and then a subcategory,
and examine the list of available packages. Under the Status column, you can see if a pack-
age has been installed already or has not.

In Figure 23.20, we show the choices you would make in order to install tkinter-27, the
tkinter bindings to tcl/tk that were used in Chapter 16 to add GUI elements to Python
programs. This package is found in the Solaris repository, in major package category
Development, subcategory Python.

Before installing this package, you would have to install the python-27 package shown
in the listing above tkinter-27 in the Development subcategory. Python 2.6 comes pre-
installed with Solaris, so installing the python-27 package first to overwrite Python 2.6
is necessary. As seen in Chapter 16, the main Python program, via importing, uses the
tkinter library modules in a subsidiary way.

Highlight and put a check in the box next to the package and then click on the Install/
Update button at the top of the screen. That package will be installed. You will see the
progress of downloading and installation in the main pane of the Package Manager
window.

FIGURE 23.19 Package Manager window.

1124 ◾ UNIX: The Textbook, Third Edition

In a very similar manner, using a text-based command line interface, you can add,
update, or remove packages that are already on your system using the pkg command and
its options. Most importantly, you can more completely specify and control the addition,
removal, and updating of user application software packages using pkg. In the following
session, since we have previously determined that the name of the gcc compiler package
for Solaris is gcc-48, we use the pkg command and install subcommand to add the gcc
compiler to our system.

bob@solaris_11_3:~$ su
Password: xxx
root@solaris_11_3:~# pkg install gcc-48
 Packages to install: 17
 Mediators to change: 1
 Services to change: 1
 Create boot environment: No
Create backup boot environment: No
DOWNLOAD PKGS FILES XFER (MB) SPEED
Completed 17/17 2941/2941 66.2/66.2 337k/s
PHASE ITEMS
Installing new actions 3498/3498
Updating package state database Done
Updating package cache 0/0
Updating image state Done
Creating fast lookup database Done
Updating package cache 1/1
root@solaris_11_3:~#

We can now use the command gcc to compile C programs.

FIGURE 23.20 Python 27-tkinter package view in package manager window.

UNIX System Administration Fundamentals    ◾    1125

23.7.3 Upgrading the Operating System in PC-BSD

The most reliable, fastest, time-efficient, and strategic way of upgrading PC-BSD at the cur-
rent time is to follow the steps shown below in Section 23.7.3.1. Using the Update Manager,
the traditional way of upgrading the PC-BSD system, is discouraged. This may change
with time in later releases of the software, and we will make you aware of these changes on
the authors’ GitHub site for this book.

23.7.3.1 The Best Procedures for Upgrading PC-BSD
Contrary to the patented and officially recommended methods for upgrading your version
of the PC-BSD operating system software, we advocate using the procedures of this section
to accomplish a reliable upgrade. You may also wish to explore using the Update Manager
or the pkg command and its various forms to do an incremental upgrade of the system
software, or the FreeBSD base system that PC-BSD is built upon. But as a preliminary
step before doing any of the procedures shown here, we recommend that you first set auto
“Updates” (a misnamed operation according to standard usage of the term) to “None” in
the Update Manager, and then quit the Update Manager.

The steps shown here are premised upon certain conditions that your computer may
or may not fulfill. The procedures assume that you have at least two hard drives in your
machine or the equivalent of that. This could mean that in a laptop, for example, you have
some other high-speed medium that could serve as a second hard drive, such as an external
USB 3.0 drive. Many available laptops have the capability to have two hard drives in them.
Most desktop computers have the capability to add additional hard drives to them—either
SSDs or the traditional spinning-disk variety—on the SATA bus. The steps shown apply
most commonly to desktop or server-class machines. It is also possible in a contemporary
computer to have SSD capability added on the PCI Express bus of a desktop system.

It is worth adding that the steps shown here can be applied to PC-BSD upgrades on sys-
tems installed in a virtual machine container, such as in VirtualBox or Docker. We do not
detail the upgrade steps for those kind of installations, but we leave it to you to experiment
in those kinds of environments to achieve the same results as shown here.

Certainly, the success of any operation shown in this section is based on the fact that
you can actually install PC-BSD using an ISO-created DVD you have successfully obtained
from www.pcbsd.org on your computer hardware. These procedures also work if you can
install PC-BSD from a USB thumbdrive.

To gain a better understanding of how to use the zpool and zfs commands shown in
the upgrade process steps, it is very important to first work through everything shown in
Chapter 24.

The following upgrade process steps were carried out using an SSD as the original sys-
tem disk and a spinning hard disk drive as the data disk:

 1. Archive all of your user data on a removable medium, such as a USB thumbdrive.

 2. Install the new release of PC-BSD from an ISO DVD downloaded from www.pcbsd.
org. This effectively overwrites and destroys everything on your system disk. In our

http://www.pcbsd.org
http://www.pcbsd.org
http://www.pcbsd.org

1126 ◾ UNIX: The Textbook, Third Edition

case, the system disk was an SSD. This is probably the best choice for the main system
disk and any other auxiliary disks, such as a separate disk to contain the ZFS Intent
Log (ZIL).

 3. Install a second hard drive into the computer. This drive must now be formatted by
the PC-BSD Disk Manager, and a new zpool must be created on it using either ZFS
commands on the command line or using the PC-BSD Disk Manager. Be aware that
partitioning and formatting this new drive will effectively erase any data on that
drive! These methods are covered completely in Chapter 24.

 4. Once the second hard drive is partitioned and formatted, create ZFS datasets on the
second hard drive to accommodate your archived user data.

 5. Move the archived user data from step 1 onto the second hard drive, into the data sets
you created in step 4.

The use cases where the above steps for upgrading PC-BSD might not work effi-
ciently, as far as we can see, are if your original user data is (1) stored in a complex
ZFS RAIDZ configuration on several disks, (2) found on volumes on multiple disks,
(3) spread across local disks and cloud storage, or (4) inseparable from the operating
system program in some way. But it is still possible to deal with those use cases in a
hybridized version of the above five step procedure. If you want a reliable upgrade to
the system software without jeopardizing your user data in any way, it is up to you to
find the hybridized procedures that work best for your use case, and most importantly,
your data storage model.

If you are installing PC-BSD for the first time, you might consider separating your oper-
ating system and your user data onto two physically different hard drives. That design
would then allow you to operate according to the following hybridized upgrade process
model:

 1. On your SSD or spinning hard disk, install the PC-BSD system only. In our case, this
was a smaller-capacity SSD, 120 GB in size. Be sure to size this system disk adequately
to accommodate the PC-BSD installation of your choice.

 2. Install another hard disk in your computer, if possible, and partition and format
this second hard disk using the command line ZFS commands, or the PC-BSD Disk
Manager appropriately. This hard disk will serve as your user data disk. You could
use a single partition, formatted to BSD ZFS, or install multiple disks in a RAIDZ
configuration at this point, partitioned and formatted similarly.

 3. Create zpools on the user data disk or disks.

 4. Create ZFS datasets on your disk or disks in the zpools from step 3.

 5. Create your data in those ZFS datasets.

 6. Use your system.

UNIX System Administration Fundamentals    ◾    1127

Now, to deploy this hybridized process when upgrading the PC-BSD system, do the following:

 1. Export all of your data disk zpools using the zpool export command. This effec-
tively allows you to transfer all of the zpools you have created for your data to a new
system. In our case, that new system would be an upgraded version of PC-BSD resi-
dent on the same computer hardware.

 2. Gracefully shutdown your system.

 3. Install a new version of PC-BSD on the system disk from an ISO-created DVD
obtained from www.pcbsd.org.

 4. When the new version is installed, use the zpool import command to import all
of the zpools you created on your data disk(s) in step 1.

Note very carefully here that we have found this procedure to work most reliably and
most time efficiently as well. What you achieve using these techniques—which are much
simpler than any of the patented and recommended methods, which, from our experience,
are fraught with anecdotal and insurmountable problems for the beginner—is reliability
and ease of use. Compare the procedures we show here to the various ways of using reposi-
tories for not only upgrading the operating system but updating the installed package base
that you may have. If you find the patented and recommended ways easier to understand
and use, then by all means use those.

23.7.3.2 Command Line Method of Manual Updates
If you wish to use the Update Manager to upgrade the operating system, for example to
do FreeBSD base system upgrades to your PC-BSD system, we provide the following com-
mand line technique, which uses the pc-updatemanager command. Many traditional
UNIX users like to use a command line utility to do upgrades. If you type the following on
the command line, it will show its available options:

%pc-updatemanager
pc-updatemanager Usage

branches - List available system branches
chbranch <tag> - Change to new system branch
check - Check for system updates
install <tag>,<tag2> - Install system updates
pkgcheck - Check for updates to packages
pkgupdate - Install packages updates
syncconf - Update PC-BSD pkgng configuration
confcheck - Check PC-BSD pkgng configuration
-j <jail> - Operate on the jail specified

The PC-BSD Update Manager will automatically upgrade the operating system and
upgrade installed packages, if you have configured it in any of the possible ways except the

http://www.pcbsd.org

1128 ◾ UNIX: The Textbook, Third Edition

“None” option. The “None” option and removing the Update Manager icon from the System
Tray by quitting is, from the authors perspective, the most effective way of doing upgrades.
It is possible to do upgrades of the operating system and related software packages by using
the sequence of commands shown in the following command line session, but even that is
not advisable at this time. The surest, most reliable, and time-efficient way to do operating
system upgrades is to use the techniques shown in Section 23.7.3.1 This is particularly true
when doing a major update—for example, between release 10 and release 11 of the PC-BSD
system.

If you still want to update the FreeBSD base system on the command line, for example,
we provide the following short command line session, which allows you to do an upgrade
of the FreeBSD base system, using the pc-updatemanager command.

% sudo pc-updatemanager check

The system informs you that an upgrade for FreeBSD is available. This particular form
of the command was done to upgrade the FreeBSD base system from 10.1 to 10.2:

%sudo pc-updatemanger install fbsd-10.2-RELEASE

After FreeBSD downloads and installs automatically, it is necessary to reboot the system.

%sudo reboot

After rebooting the computer, if you have the Update Manager set to “Automatic,” and
“All,” packages and security updates for the PC-BSD system will be done automatically.

If no system updates are available, the check command will indicate: Your system
is up to date!.

To determine if package updates for the PC-BSD system are available, use this command:

% sudo pc-updatemanager pkgcheck
Updating repository catalogue
Upgrades have been requested for the following 253 packages:
... [Output truncated] ...
The upgrade will require 70 MB more space
439 MB to be downloaded
To start the upgrade run "/usr/local/bin/pcupdatemanager
pkgupdate"

In the above example output, newer versions are available for 253 packages. The list of
package names was truncated in the sample output. If no updates were available, the out-
put would have instead said All packages are up to date!.

If updates are available, you can install them with this command:

% sudo pc-updatemanager pkgupdate
Updating repository catalogue

UNIX System Administration Fundamentals    ◾    1129

snip downloading and reinstalling output
[253/253] Upgrading pcbsdbase
from 1374071964 to 1378408836... done
Extracting desktop overlay data... DONE

The output has been truncated in this example. The package update process will down-
load the latest versions of the packages which need updating, displaying the download
progress for each file. Once the downloads are complete, it will display the reinstallation
process for each file. The last step of the package update process is to extract the desktop
(or server) overlay and then to return the prompt. After performing any updates, reboot
the system.

23.7.4 Updating the Installed Application Packages and
Installing New Application Packages in PC-BSD

AppCafe is a GUI tool for installing and removing application software, and as such allows
you to quickly and easily add a wide range of programs to the installed PC-BSD base in
one easy step. You launch AppCafe from the PC-BSD desktop by clicking once on its icon.
You can also use AppCafe to easily update or remove any installed application software
package on your system.

The GUI window of AppCafe is very intuitive, and allows you to see what software
packages are available and ones that are already installed. Using the Categories pane
of the GUI window, you can choose from general areas within which a desired type of
application software package might be found. If you click on any of the icons presented in
the GUI window, you get more information about the software, and are also able to install
it. You can search for an application software package from among those available at the
AppCafe repository by using the App Search icon and typing in the exact name of the
application desired.

The installation of updates and new software packages with AppCafe is highly version
dependent. Therefore, the best procedure to follow to update or install new software pack-
ages is to refer to the PC-BSD handbook that comes with your release of the software
to find the most current detailed steps for accomplishing these procedures. Methods of
updating, installing, and removing packages are more completely detailed in the PC-BSD
handbook.

There is also a way to manually update packages on your PC-BSD system using the pkg
command. We do not show examples of this, but you can refer to both the man pages for
the pkg command and the version of the PC-BSD handbook that comes with your system.

23.8 SYSTEM AND SOFTWARE PERFORMANCE MONITORING
The most important considerations the UNIX system manager has to make when deal-
ing with system performance revolves around CPU process management, memory
management, disk usage/management, and network performance. Table 23.8 lists the
controlling facilities and functions UNIX provides for system tuning and performance
monitoring.

1130 ◾ UNIX: The Textbook, Third Edition

The commands and configuration files that implement and affect some of the functions
from Table 23.8 are

For PC-BSD- ps, sysctl, /etc/sysctl.conf
For Solaris- ps, dispadmin, ndd, /etc/system

23.8.1 Process and Memory Management

The most important, complete, and readily available display of system activity is given by
the ps command. The following code example shows you the display of the nine top cur-
rent processes using the most CPU resources running on the system. When we type this in
on our PC-BSD system, we get the output shown:

[bob@pcbsd-4976] ~% ps aux | head -10
USER PID %CPU %MEM VSZ RSS TT STAT STARTED TIME COMMAND
root 11 198.0 0.0 0 32 - RL Fri05PM 5437:

07.08
[idle]

root 6737 2.0 1.0 162592 61176 - I< Fri05PM 6:50.26 X :0 -auth
/tmp/.
PCDMA

bob 99659 1.8 0.1 23656 3948 1 Ss 2:51PM 0:00.15 /bin/csh
bob 99654 1.1 1.1 505084 66592 - S 2:51PM 0:00.55 kdeinit4:

kdeinit4:
kk

bob 17229 0.8 2.6 1047556 157644 - I Fri05PM 1:01.80 kdeinit4:
kdeinit4:
pdt

root 0 0.0 0.1 0 4880 - DLs Fri05PM 5:52.47 [kernel]

TABLE 23.8 Performance-Tuning Functions

System Component Control Facility

CPU Nice numbers
Process priorities
Batch queues
Scheduler parameters

Memory Process resource limits
Memory management parameters
Paging space

ZFS vdevs, zpools and I/O ZFS pool and file system organization
ZFS deduplication, efficiency, optimization
I/O parameters

Network I/O Network memory buffers
Network-related parameters
Network infrastructure

UNIX System Administration Fundamentals    ◾    1131

root 1 0.0 0.0 9432 756 - SLs Fri05PM 0:00.08 /sbin/init --
root 2 0.0 0.0 0 16 - DL Fri05PM 0:00.00 [crypto]
root 3 0.0 0.0 0 16 - DL Fri05PM 0:00.00 [crypto

returns]
[bob@pcbsd-4976] ~%

A similar output can be obtained in Solaris by giving the following command:

%ps –ef | head -10

The pgrep command displays the PIDs of running processes. Here are some examples
of how to use pgrep to find the process IDs of the running processes and pipe those PIDs
to another command to produce the output.

Search for kdeinit and run ps (assumes you are running the KDE4 desktop environment).

$ ps -p 'pgrep kdeinit'
PID TT STAT TIME COMMAND
17189 - Is 00:00.96 kdeinit4: kdeinit4 Running…
(kdeinit4)
... [Output truncated]
$

Search for okular and run ps

$ ps -fp 'pgrep okular'
PID TT STAT TIME COMMAND
46917 - I 0:27:14 okular /usr/local/share/pcbsd/
doc/handbook_en.pdf
$

Search for okular, improve its priority (assumes Okular, the PDF viewer, is running and
you are the superuser).

$ renice -1 'pgrep okular'
46917: old priority 0, new priority -1
$

The nice and renice commands, as seen in the previous example, change process
priorities in the CPU.

Here is an example of using a command with nice to change a command’s nice
value.

Launch FileZilla at higher priority:

$ nice -n -1 filezilla
$

1132 ◾ UNIX: The Textbook, Third Edition

When a process is already running, you can change the process’s nice value using the
renice command. Here are some examples of the renice command.

Renice sarwar’s processes +2:

$ renice +2 -u sarwar
$
Renice PID 2576 by +5
$ renice +5 2576
$

Renice sarwar’s ksmserver processes to –3:

$ renice -3 'pgrep -u sarwar ksmserver '
2545: old priority -1, new priority -3
2546: old priority -1, new priority -3
2547: old priority -1, new priority -3

The back quotes are used in the previous command lines to indicate that the output of
the pgrep command (presumably PIDs) be fed to the nice and renice command. The
nice settings for your processes are displayed by default when you run top.

In PC-BSD, you can control kernel parameters with the system running using the sys-
ctl command. You can also add parameters permanently to the /etc/sysctl.conf file, so
they can load as a group or at each reboot. Some useful examples are as follows.

List all kernel parameters:

$ sysctl -a | less
kernel.ostype: FreeBSD
kernel.osrelease: 10.0-RELEASE-p12
kern.osrevision: 199506
kern.version: FreeBSD 10.0-RELEASE-p12 #0: Wed June 4 14:50:48 UTC
2014
... [Output truncated]

List the value of particular parameter:

$ sysctl kern.hostname
kern.hostname:

For our system, it was listed as pcbsd-4976.
Set the value of kernel.geom.debugflags to 16:

$ sysctl kern.geom.debugflags=16

If you want to change any of your kernel parameters permanently, you should add them
to the /etc/sysctl.conf file. Parameter settings in that file are in the form parameter =
value.

UNIX System Administration Fundamentals    ◾    1133

For Solaris, the dispadmin command displays or changes process scheduler
parameters while the system is running. Some useful examples using dispadmin are
as follows.

Retrieves the current scheduler parameters for the real-time class from kernel memory
and writes them to the standard output (time quantum values are in microseconds):

$ dispadmin -c RT -g -r 1000000
Real Time Dispatcher Configuration
RES=1000000
TIME QUANTUM PRIORITY LEVEL
(rt_quantum)
1000000 # 0
1000000 # 1
... [Output truncated]

Retrieves the current scheduler parameters for the time-sharing class from ker-
nel memory and writes them to the standard output (time quantum values are in
nanoseconds):

$ dispadmin -c TS -g -r 1000000000
Time Sharing Dispatcher Information
RES=1000000000
#ts_quantum ts_tqexp ts_slpret ts_maxwait
ts_lwait PRIORITY LEVEL
2000000000 0 50 0 50 # 0
... [Output truncated]

23.8.2 Disk Usage and Management

The following are samples of the ZFS commands from Chapter 24, and the traditional
UNIX du command, that allow a system administrator to monitor the disk usage and
status of the system disks.

• zpool list: Lists existing or all or indicated pools, along with health status and
space usage

• zpool status: Displays the detailed health status of all or indicated pools

• zpool iostat: Displays I/O statistics for all or indicated pools

• zpool upgrade -a: Upgrades all pools to the latest available version

• zpool set deduplication on/off: Sets the deduplication property of a pool

• zpool scrub: Examines all data in the named pool and verifies that the checksums
are correct

1134 ◾ UNIX: The Textbook, Third Edition

• zfs upgrade: Upgrades file systems to a new on-disk version

• du: Displays the block usage for file systems and directories

For ZFS, PC-BSD is currently at version 5000, Solaris 11 at version 34.
The following set of commands show the output of the preceding commands executed

on a PC-BSD system. The output for a Solaris system is very similar, using the default pool
name of rpool instead of tank.

[bob@pcbsd-4976] /usr/home/bob# zpool list
NAME SIZE ALLOC FREE CAP DEDUP HEALTH ALTROOT
sender 95.5M 374K 95.1M 0% 1.00x ONLINE -
tank 928G 10.5G 917G 1% 1.00x ONLINE -
[bob@pcbsd-4976] /usr/home/bob# zpool list tank
NAME SIZE ALLOC FREE CAP DEDUP HEALTH ALTROOT
tank 928G 10.5G 917G 1% 1.00x ONLINE -
[bob@pcbsd-4976] /usr/home/bob# zpool iostat
 capacity operations bandwidth
pool alloc free read write read write
---------- ----- ----- ----- ----- ----- -----
sender 374K 95.1M 0 0 15 2
tank 10.5G 917G 0 17 9.92K 120K
---------- ----- ----- ----- ----- ----- -----
[bob@pcbsd-4976] /usr/home/bob# zpool iostat tank
 capacity operations bandwidth
pool alloc free read write read write
---------- ----- ----- ----- ----- ----- -----
tank 10.5G 917G 0 17 9.91K 120K
[bob@pcbsd-4976] /usr/home/bob# zpool status
 pool: sender
state: ONLINE
 scan: none requested
config:
 NAME STATE READ WRITE CKSUM
 sender ONLINE 0 0 0
 /usr/home/bob/master ONLINE 0 0 0
errors: No known data errors
 pool: tank
state: ONLINE
 scan: resilvered 9.09G in 0h5m with 0 errors on Fri May 2
20:55:14 2014
config:
 NAME STATE READ WRITE CKSUM
 tank ONLINE 0 0 0
 ada0s1a ONLINE 0 0 0

UNIX System Administration Fundamentals    ◾    1135

errors: No known data errors
[bob@pcbsd-4976] /usr/home/bob# zfs list
NAME USED AVAIL REFER MOUNTPOINT
sender 324K 63.2M 33K /sender
sender/bacup 70K 63.2M 31.5K /sender/bacup
sender/data 52K 63.2M 31.5K /sender/data
tank 10.5G 903G 144K legacy
tank/ROOT 9.18G 903G 144K legacy
tank/ROOT/default 9.18G 903G 9.18G /mnt
tank/tmp 396K 903G 396K /tmp
tank/usr 1.34G 903G 144K /mnt/usr
tank/usr/home 170M 903G 160K /usr/home
tank/usr/home/bob 168M 903G 168M /usr/home/bob
tank/usr/home/sarwar 1.84M 903G 1.84M /usr/home/sarwar
tank/usr/jails 144K 903G 144K /usr/jails
tank/usr/obj 144K 903G 144K /usr/obj
tank/usr/pbi 1.18G 903G 1.18G /usr/pbi
tank/usr/ports 296K 903G 152K /usr/ports
tank/usr/ports/distfiles 144K 903G 144K /usr/ports/distfiles
tank/usr/src 144K 903G 144K /usr/src
tank/var 5.36M 903G 144K /mnt/var
tank/var/audit 160K 903G 160K /var/audit
tank/var/log 580K 903G 580K /var/log
tank/var/tmp 4.50M 903G 4.50M /var/tmp
[bob@pcbsd-4976] /usr/home/bob# zpool upgrade
This system supports ZFS pool feature flags.
All pools are formatted using feature flags.
Every feature flags pool has all supported features enabled.
[bob@pcbsd-4976] /usr/home/bob# zfs upgrade
This system is currently running ZFS filesystem version 5.
All filesystems are formatted with the current version.
[bob@pcbsd-4976] /usr/home/bob# zpool status sender
 pool: sender
state: ONLINE
 scan: scrub repaired 0 in 0h0m with 0 errors on Thu Jun 19
19:44:29 2014
config:
 NAME STATE READ WRITE CKSUM
 sender ONLINE 0 0 0
 /usr/home/bob/master ONLINE 0 0 0
errors: No known data errors
[bob@pcbsd-4976] /usr/home/bob# du > dufile
[bob@pcbsd-4976] /usr/home/bob# more dufile
18 ./.i3
54 ./.gnome/apps
62 ./.gnome

1136 ◾ UNIX: The Textbook, Third Edition

9 ./.sylpheed-2.0/newscache
9 ./.sylpheed-2.0/plugins
14 ./.sylpheed-2.0/uidl
9 ./.sylpheed-2.0/imapcache
9 ./.sylpheed-2.0/mimetmp
9 ./.sylpheed-2.0/tmp
132 ./.sylpheed-2.0
13 ./Images
5872 ./Downloads
13 ./.dbus/session-bus
22 ./.dbus
12432 ./Desktop/unix
12477 ./Desktop
13 ./Music
13 ./.gconf/desktop/gnome/background
22 ./.gconf/desktop/gnome
30 ./.gconf/desktop
39 ./.gconf
13 ./.putty
... [Output truncated]

23.8.3 Network Configuration

The most important and useful command for the system administrator in postinstall net-
work configuration are the ifconfig command in PC-BSD and the ipadm command in
Solaris. The following sections illustrate the basic usage of these commands.

23.8.3.1 ifconfig in PC-BSD
To view the syntax of the ifconfig command, type any invalid option on the command
line as follows:

$ ifconfig -8
ifconfig: illegal option -- 8
usage: ifconfig [-L] [-C] [-g groupname] interface address_family
[address [dest_address]]
 [parameters]
 ifconfig interface create
 ifconfig -a [-L] [-C] [-g groupname] [-d] [-m] [-u] [-v]
[address_family]
 ifconfig -l [-d] [-u] [address_family]
 ifconfig [-L] [-C] [-g groupname] [-d] [-m] [-u] [-v]
$

To see a listing of the NICs attached to your system, type the following:

UNIX System Administration Fundamentals    ◾    1137

$ ifconfig -l
bge0 lo0
$

To see the configuration of the NIC bge0, type the following:

$ ifconfig bge0
bge0: flags=8843<UP,BROADCAST,RUNNING,SIMPLEX,MULTICAST> metric 0
mtu 1500
options=c019b<RXCSUM,TXCSUM,VLAN_MTU,VLAN_HWTAGGING,VLAN_HWCSUM,
TSO4,VLAN_HWTSO,LINKSTATE>
 ether e4:11:5b:12:c2:77
 inet6 fe80::e611:5bff:fe12:c277%bge0 prefixlen 64 scopeid
0x1
 inet 192.168.0.13 netmask 0xffffff00 broadcast
192.168.0.255
 nd6 options=23<PERFORMNUD,ACCEPT_RTADV,AUTO_LINKLOCAL>
 media: Ethernet autoselect (100baseTX <full-duplex>)
 status: active

To display a capabilities listing of NIC bge0, type the following:

$ ifconfig -m bge0
bge0: flags=8843<UP,BROADCAST,RUNNING,SIMPLEX,MULTICAST> metric 0
mtu 1500
 options=c019b<RXCSUM,TXCSUM,VLAN_MTU,VLAN_HWTAGGING,VLAN_
HWCSUM,TSO4,VLAN_HWTSO,LINKSTATE>
 capabilities=c019b<RXCSUM,TXCSUM,VLAN_MTU,VLAN_HWTAGGING,
VLAN_HWCSUM,TSO4,VLAN_HWTSO,LINKSTATE>
 ether e4:11:5b:12:c2:77
 inet6 fe80::e611:5bff:fe12:c277%bge0 prefixlen 64 scopeid
0x1
 inet 192.168.0.13 netmask 0xffffff00 broadcast
192.168.0.255
 nd6 options=23<PERFORMNUD,ACCEPT_RTADV,AUTO_LINKLOCAL>
 media: Ethernet autoselect (100baseTX <full-duplex>)
 status: active
 supported media:
 media autoselect mediaopt flowcontrol
 media autoselect
 media 1000baseT mediaopt full-duplex,master
 media 1000baseT mediaopt full-duplex
 media 1000baseT mediaopt master
 media 1000baseT
 media 100baseTX mediaopt full-duplex
 media 100baseTX

1138 ◾ UNIX: The Textbook, Third Edition

 media 10baseT/UTP mediaopt full-duplex
 media 10baseT/UTP
$

The ifconfig command can be used to change NIC settings as well as display them.
A NIC is a Network Interface Card, what the system hardware uses to interface with a net-
work. After executing each of the next series of ifconfig commands, view the changes
in the NIC settings by using the ifconfig -l command.

To hard set the NIC bge0 to 100 MBps with full duplex, type this:

$ ifconfig bge0 media 100baseTX mediaopt full-duplex

To hard set the speed to 10 MBps, type this:

$ ifconfig bge0 media 10baseT/UTP

To change the IP address and netmask, type this:

$ ifconfig bge0 inet 10.0.0.208 netmask 255.0.0.0

The changes just made to your NIC settings are good for the current session. When you
reboot, however, those settings will be lost.

23.8.3.2 ipadm in Solaris
The ipadm command administers the network IP interfaces and TCP/IP parameters.

To display information about the current IP interface configuration, use the following
option:

$ ipadm show-if
IFNAME STATE CURRENT PERSISTENT
lo0 ok -m-v------46 ---
bfe0 ok bm--------46 ---
iwi0 ok bm--------46 ---
$

To display the address associated with the IP interface, use the following option:

$ ipadm show-addr
ADDROBJ TYPE STATE ADDR
lo0/v4 static ok 127.0.0.1/8
bfe0/_b dhcp ok ?
iwi0/_b dhcp ok 192.168.0.12/24
lo0/v6 static ok ::1/128
bfe0/_a addrconf ok fe80::212:3fff:fed1:8578/10

UNIX System Administration Fundamentals    ◾    1139

iwi0/_a addrconf ok fe80::212:f0ff:fe75:1442/10
$

23.8.4 Practical System Administration Logging and the syslog() Function

Logging and log files refer to the recording of general and specific actions and events on
a UNIX system. PC-BSD and Solaris have very similar traditional methods available for
logging. Logs are produced for a UNIX system administrator in order to audit the general
operation of the system, particularly with regard to performance enhancement and the
maintenance of system security.

A log is a record of the events occurring on a system. Logs are composed of log entries;
each entry contains information related to a specific event that has occurred within the
system. Originally, logs were used primarily for troubleshooting problems, but logs now
serve many functions, such as optimizing system and network performance, recording
the actions of users, and providing data useful for investigating malicious activity. Logs
have evolved to contain information related to many different types of events occurring
within networks and systems. Many logs contain records related to computer security;
common examples of these computer security logs are audit logs that track user authenti-
cation attempts and security device logs that record possible attacks.

Because of the widespread deployment of networked servers, workstations, and other
computing devices, and the ever-increasing number of threats against networks and sys-
tems, the number, volume, and variety of computer security logs has increased greatly.
This has created the need for computer security log management, which is the process for
generating, transmitting, storing, analyzing, and disposing of computer security log data.

Logs can contain a wide variety of information on the events occurring within systems
and networks. Many logs created within the operating system environment could have some
relevance to computer security. For example, logs from network devices such as switches
and wireless access points, and from programs such as network monitoring software, might
record data that could be of use in computer security or other IT initiatives, such as operations
and audits, as well as in demonstrating compliance with regulations. However, for computer
security these logs are generally used on an ad hoc basis as supplementary sources of infor-
mation. The system administrator should consider the value of each potential source of com-
puter security log data when designing and implementing a log management infrastructure.

Most of the sources of the log entries run continuously, so they generate entries on an
ongoing basis. However, some sources run periodically, so they generate entries in batches,
often at regular intervals.

The method of logging we show here is as follows.

• A system program, perhaps executed by a user, generates a call to write to a specific
log file, either locally or across the network.

• The syslogd daemon handles that write call and is guided by entries in /etc/syslog.
conf.

1140 ◾ UNIX: The Textbook, Third Edition

• A log entry is written in a specific location, usually to a log file in the /var/log directory.
The log entry can be written to a log file on another computer system across the network
as well.

For example, if someone requests superuser privilege on the system, syslogd writes that
request to a log file. These are just a couple of simple cases, among many other logging
processes that the system does for the administrator.

In this section we cover the traditional approach to doing general system logging, and
briefly mention the more modern approach using rsyslog.

In detail, we cover:

• What the contents of the /etc/syslog.conf file look like and what a simple entry means

• Making changes to the /etc/syslog.conf file to customize it

• Restarting the syslogd daemon

• How a system program generates a log message

• The end of a log file

Controlling, and most importantly customizing, this general operation of logging for a
particular installation is what a system administrator does. The process of custom modifi-
cation of the system has two parts to it.

The first part is to make a modification to the configuration file named /etc/syslog.conf.
This file designates what and where actions and events should be logged. Carefully specify-
ing and controlling where log entries are logged is an important issue for system adminis-
trators. When a system administrator can quickly and efficiently examine critical log files
it becomes much easier to audit the operations of the system. Log files for several machines
and systems can exist on a single remote computer across the network to facilitate the audit
process.

The second part is the rereading of this configuration file by the logging daemon sys-
logd, which actually executes the logging process. The syslogd daemon is always started
when the system boots, and is always monitoring and logging events and actions specified
in /etc/syslog.conf. Once you make a customizing modification to the default /etc/syslog.
conf, you must then refresh (or stop and restart) syslogd in order for that change to take
effect. We will show this for Solaris using an svcadm command, and for PC-BSD using
the service syslogd restart command.

23.8.4.1 The /etc/syslog.conf File
Entries in /etc/syslog.conf have two fields, the selector field and the action field. The selec-
tor field is composed of one or more list elements separated by the semicolon character.
Each list element has a facility and a level, separated by a period. The selector and action
fields are separated by one or more tab characters, applicable to both PC-BSD and Solaris.

UNIX System Administration Fundamentals    ◾    1141

An example of a line with selector and action fields in it that you could place in /etc/syslog.
conf on a Solaris or PC-BSD system is as follows.

user.notice /var/log/syslog

In this example line, there is a single selector field facility, level-facility user program-
generated messages, and level notice. The action field of the example is where the messages
should be logged—in this case, /var/log/syslog.

In Solaris, we edited /etc/syslog.conf and placed the preceding example line in that file,
and then refreshed the syslogd daemon by using the command:

%svcadm refresh system-log

After we made this change and refreshed syslogd, user programs that generated notice-
level messages had those messages logged in /var/log/syslog.

In PC-BSD there was already a line in the default /etc/syslog.conf file that would log
notice-level log entries by users to the file /var/log/messages. It would be instructive for
you to find that line in the default PC-BSD /etc/syslog.conf file. By default, there was no
file /var/log/syslog on our PC-BSD system, so we created an empty file with that name as
superuser. Then, when we added the example line to /etc/syslog.conf on a PC-BSD system,
and restarted syslogd, the example line in /etc/syslog.conf took effect.

The easiest way to stop and restart the syslogd daemon would be to use the command
service syslogd restart. Restarting syslogd can also be done from the Service
Manager in the PC-BSD Control Panel.

If you look in the default /var/adm or /var/log directories on a Solaris or PC-BSD sys-
tem, there already exist sub directories and many different log files which allow for the
compartmentalizing of logging messages, and their archiving over time. Instead of list-
ing the contents of those directories, we encourage you to look at the contents of those
directories and log files to gain an appreciation of what and where actions and events are
currently being logged on your system. Then examine the contents of /etc/syslog.conf and
try to make an association between log file contents and lines in the /etc/syslog.conf file.

Tables 23.9 and 23.10 list the generic facility and level descriptions allowed for both
Solaris and PC-BSD.

The syslogd daemon takes messages from programs running either locally or remotely,
and then writes the messages to a log file. The written message contains a time stamp, the
kind of message it is, and the message itself.

23.8.4.2 How to Use the syslog() Function
The syslog() function, called perhaps from within a user-written system program,
writes log messages via the syslogd daemon. The way to use this function is to open a log
file, write to it with syslog, and then close the log file. The messages can then be writ-
ten to the system console, log files, logged-in users, or forwarded to other machines as
appropriate.

1142 ◾ UNIX: The Textbook, Third Edition

The message is tagged with a priority. Priorities are encoded as a facility and a level, as
previously described. The facility describes the part of the system generating the message.
The level is selected from the following list (ordered high to low).

LOG_EMERG A panic condition; normally broadcast to all users
LOG_ALERT A condition that should be corrected immediately
(e.g., a corrupted system database)
LOG_CRIT Critical conditions (e.g., hard device errors)
LOG_ERR Errors
LOG_WARNING Warning messages
LOG_NOTICE Conditions that are not error conditions, but should
possibly be handled specially
LOG_INFO Informational messages

TABLE 23.9 Logging Levels

Name Facility

kern Kernel
user Regular user processes
mail Mail system
lpr Line printer system
auth Authorization system, or programs that ask for user names

and passwords (login, su, getty, ftpd, etc.)
daemon Other system daemons
news News subsystem
uucp UUCP subsystem
local0... local7 Reserved for site-specific use
mark A timestamp facility that sends out a message every 20

minutes

TABLE 23.10 General Facilities

Priority Meaning

emerg Emergency condition, such as an imminent system crash, usually
broadcast to all users.

alert Condition that should be corrected immediately, such as a corrupted
system database.

crit Critical condition, such as a hardware error.
err Ordinary error.
warning Warning.
notice Condition that is not an error, but possibly should be handled in a

special way.
info Informational message.
debug Messages that are used when debugging programs.
none Do not send messages from the indicated facility to the selected file. For

example, specifying *.debug;mail.none sends all messages except
mail messages to the selected file.

UNIX System Administration Fundamentals    ◾    1143

LOG_DEBUG Messages that contain information normally of use only
when debugging a program

The syslog() function is used in conjunction with several other functions to open,
write to, and then close a log file. The openlog() function provides for more specialized
processing of the messages sent by syslog(). The setlogmask() function sets the log
priority mask and returns the previous mask. The closelog() function can be used to
close the log file. See the man page for syslog on your system for more details of these
other functions.

Following is a simple example of a system program that writes two “notice” messages.
The messages are written to the file designated in the example line addition to /etc/syslog.
conf shown in Section 23.8.4.1:

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <syslog.h>
int main(void) {
 int i;
 setlogmask (LOG_UPTO (LOG_NOTICE));
 openlog ("program_name", LOG_CONS | LOG_PID | LOG_NDELAY,
LOG_USER);
 syslog (LOG_NOTICE, "Program started by User %d", getuid ());
 syslog (LOG_NOTICE, "This is a simple message written to the
system log");
 closelog ();
 return 0;

If you run this program on PC-BSD, the two “notice” messages will be written to /var/
log/messages by default. If you run this program on Solaris, the two “notice” messages will
be written to /var/log/syslog by default.

23.8.4.3 Examining the End of a Log File
Since log files can become very large depending upon how much system activity there is,
and how that activity is monitored, it is important for the system administrator to be able
to quickly see the latest information in any particular log file.

The following code snippet displays only the last 25 lines of the /var/log/messages file.
Change 25 to any number you want to have displayed:

% tail -25 /var/log/messages

To monitor the content of a particular log file in real time, the following command is
useful. It lets you view a growing log file and see only the newer contents.

% tail -f /var/log/syslog

1144 ◾ UNIX: The Textbook, Third Edition

23.8.4.4 rsyslog
System logging can be accomplished in a more precise, capable, and extensive way using
the rsyslog utility. By default, rsyslog is not installed on PC-BSD or Solaris systems.
It can be installed by using the pkg management utility on both systems via the following
command:

% pkg install rysylog

The syslogd daemon must then be disabled on both PC-BSD and Solaris before you can
use rsyslog. To accomplish this in Solaris, use the following command:

% svcadm disable svc:/system/system-log:default

On PC-BSD, follow the instructions given at the end of the pkg install command.
For more information on rsyslog, see the website www.rsyslog.com.

23.9 SYSTEM SECURITY
There are various techniques for securing a UNIX system, implemented from the single-
user level on up to the most general system level. These techniques fall into the following
areas:

• Password-Based Authentication

• Access Control: Discretionary (DAC), Mandatory (MAC), or Role-Based (RBAC)

• Using Access Control Lists (ACLs) in PC-BSD

• Intrusion Detection and Intrusion Detection Systems

• UNIX Security Software

• System Firewall

23.9.1 Password-Based Authentication

The first line of defense in system security, and the technique employed almost universally
across many types of computer system, is password-based authentication. The UNIX sys-
tem compares a user-entered password at login for a users ID, compares the password to a
previously established and stored one held in a password file for that user, and based on the
comparison authenticates the user. The ID not only determines whether the user can gain
access to the system itself, but also determines what privileges the user has—for example,
superuser privilege. Also, the ID is used in discretionary access control (DAC), as shown
in the Section 23.9.2. The password file and a hash/salt scheme using a SHA256 hashing
algorithm for encrypting the password, work together to authenticate a users ID. The pass-
word file on the system, in /etc/passwd, holds user information and works in conjunction
with the /etc/shadow (on Solaris) or /etc/master.passwd (on PC-BSD) file to authenticate
a user ID.

http://www.rsyslog.com

UNIX System Administration Fundamentals    ◾    1145

23.9.2 Access Control: Discretionary (DAC), Mandatory
(MAC), and Role-Based (RBAC)

Access control policies determine what access right is granted to what object, under what
circumstances (discretionary, mandatory, or role-based) and by what subject. Discretionary
access enables an entity (like a user) to grant another entity access rights. Mandatory access
will not allow an entity to grant another entity access rights. Rather than use the user ID
to determine what access rights users and groups have on the system, the role-based access
control (RBAC) paradigm grants access based on the role or roles that a user assumes. In
ZFS, for example, when you execute the zfs command, your action is checked to see that
the entity issuing the command has the role privilege, even if the user is root. In Solaris,
the roleadd command and its options and arguments define roles on the system. Not
only does the system administrator need to allocate login and resource use restrictions and
privileges on the system, they must control all file and data access in the traditional UNIX
system via the chmod command. Ordinarily this is done by root. On PC-BSD, you can
by default use the sudo command as well to assume the role of root to issue the chmod,
chown, or chgrp for files.

23.9.2.1 sudo
On Solaris and PC-BSD systems, programs, commands, and files are traditionally accessed
through user and group permissions. Each user has a unique identifier, given either as a
username or UID. Users belong to unique groups, given either as a group name or a GID.
Specific users and groups have permission to access available programs, commands, and
files.

The su command allows a user to switch roles and become the superuser on the system
without logging off from their own account. You must know the password of the root
account if you want to assume the role of root.

The sudo program allows a single command to be run as root, or even as some other
user. The system administrator utilizes a policy listing file (named sudoers) that contains
commands that each user can execute. When any user needs to run a command that
requires root permissions, that user types sudo command in a console terminal, allow-
ing them to run command. Then, sudo consults its permissions list in the policy listing
file. If the user has permission to run that command, it runs the command. If the user does
not have permission to run the command, sudo denies execution. Running sudo does
not require knowing root’s password, but by default requires the user’s own password to
execute successfully.

There are two aspects to sudo: the sudo program itself, and the sudoers policy file that
the program uses. The sudoers policy file can only be edited by root. The sudo program
includes a special tool, visudo, just for editing and validating the sudoers policy file. On
Solaris, the path to the executable program visudo is /usr/sbin, and on PC-BSD the path
to visudo is /usr/local/sbin.

The sudoers policy file must only be edited with visudo, because that special editing
tool has safeguards built into it. On Solaris and PC-BSD visudo launches the vi text edi-
tor to allow editing of the sudoers file. On Solaris, the sudoers file itself is found in /etc. In

1146 ◾ UNIX: The Textbook, Third Edition

PC-BSD, the sudoers file is found in /usr/local/etc. At this point, you should use the more
command to examine the contents of the sudoers file on your system.

The sudoers file recognizes seven types of user specification lists. They are usernames,
group names (such as wheel on PC-BSD), aliases defined within the sudoers file itself, UID
numbers, GID numbers, netgroups, and non-UNIX groups. See the following examples for
applications of some of these seven specification lists.

The sudoers file is composed of two types of entries: aliases (basically variables) and
user specifications that specify who may run what. When multiple entries match a user,
they are applied in order. Where there are multiple matches, the last match is used (which
is not necessarily the most specific match). A user specification determines which com-
mands a user may run (and as what user) on specified hosts. By default, commands are run
as root, but this can be changed on a per-command basis.

The user specifications in the sudoers file contain policy rules, one rule per line. Every
rule uses the general format as follows:

who where = (as_whom) what

where:
who is the user that this rule applies to. who can also be a user specification list—for exam-
ple, a group name that has been defined as shown for Solaris in Section 23.3.3.7, “Adding
Group Accounts,” and for PC-BSD in Section 23.3.2, “Adding/Deleting and Maintaining
Users and Groups in a GUI-Based Interface on PC-BSD.”
where is the hostname of the system this rule applies to.
= separates the where from (as _ whom) and what.
(as _ whom) designates the user specification list sudo will run the what.
what lists the full path to each command this policy rule applies to.
You must specify full pathnames to command.
Some sudoers file examples follow:
In the following rule, bob can run any command:

bob ALL = ALL

The following rule from a Solaris sudoers file allows user sarwar to run the visudo
program:

sarwar ALL = /usr/sbin/visudo

The following command run on a Solaris system, uses the -l option to sudo to allow
you to list the permissions currently defined as policy in the sudoers file. We see that user
sarwar can run all commands as root, all commands as the user admin, and visudo as
root.

$ sudo -l

UNIX System Administration Fundamentals    ◾    1147

User sarwar may run the following commands on this host:

(root) ALL
(admin) ALL
(root) /usr/sbin/visudo

This is an entry in the sudoers file on a Solaris system, where dgb can be an alias defined
in the sudoers file that includes more than one user, specifying that the user dgb may run /
bin/ls, /bin/kill, and /usr/bin/lprm—but only as the user operator on the host solaris11_2.

dgb solaris11_2 = (operator) /bin/ls, /bin/kill, /usr/bin/lprm

Use of a group name on Solaris, where everyone in the group man can run all of the
commands in /opt//bin as the user database, on the server solaris11_2:

%man solaris11_2 = (database) /opt//bin/*

Use of a user ID number in a sudoers file to allow the user with ID 1002 on a PC-BSD
system to run everything in the /usr/local/sbin directory:

#1002 ALL = /usr/local/sbin/*

To see more examples, and get a complete reference for the sudo command, use the
man page for sudo on your system.

23.9.3 Using Access Control Lists (ACLs) in PC-BSD

In contrast to the traditional UNIX permissions model, which defines secure access to an
object like a file or directory via permissions like read, write, and execute, the access con-
trol list (ACL) model gives the user base finer-grained control over object security.

In the permissions model, group permissions are the only way by which a file owner can
relegate access to different constituencies of the user base. That is because any file can only
belong to one group. Therefore, to serve different constituencies, many different groups
have to exist. Only administrators can create and assign group membership. And sharing
of files between collaborative working project teams becomes untenable using the permis-
sions model.

ACLs provide greater discretionary power, but at the cost of more complexity, larger
storage requirements, and slowing of performance of the underlying file system, whether
that be VFS or ZFS. Our two UNIX base systems, PC-BSD and Solaris, both with ZFS, sup-
port the permissions model and the ACL model (referred to here as NFSv4). Since there are
several ACL models, it is worth noting here that ZFS only supports NFSv4 ACLs.

We showed the permissions model in Chapter 5, Section 5.4. The methods shown in this
section apply to PC-BSD ZFS files. In Chapter 24, Section 5, we show a more advanced and
detailed method of managing ACLs for ZFS files and directories on a Solaris system.

1148 ◾ UNIX: The Textbook, Third Edition

We cover the basics of the following topics in the subsections indicated:

23.9.3.1: PC-BSD ACL Model

23.9.3.2: Setting ACLs on ZFS Files

23.9.3.3: Setting ACL Inheritance on ZFS Files

23.9.3.1 PC-BSD ACL Model
The PC-BSD default implementation of ACLs uses NSFv4 ACL syntax, as opposed to
POSIX.1e syntax. The PC-BSD ACL model fully supports the interoperability that NFSv4
offers between UNIX and non-UNIX clients. It provides more detailed access control than
is available with POSIX.1e standard file permissions. These ACLs are set and displayed
with the setfacl and getfacl commands.

The ACL model has two types of access control entries (ACEs) that affect access check-
ing: ALLOW and DENY. Therefore, you cannot infer from any single ACE that defines a set
of permissions whether the permissions that are not defined in that ACE are allowed or
denied.

23.9.3.1.1 ACL Formats
ACLs have two basic formats:

 1. Trivial (Minimal) ACL contains only entries for traditional UNIX user categories
that are represented as owner@, group@, and everyone@.

 For a newly created file, the default ACL has the following entries:

file: acl_default_for_file
owner: bob
group: bob
 owner@:rw-p--aARWcCos:------:allow
 group@:r-----a-R-c--s:------:allow
 everyone@:r-----a-R-c--s:------:allow

 For a newly created directory, the default ACL has the following entries:

file: acl_default_for_directories
owner: bob
group: bob
 owner@:rwxp--aARWcCos:------:allow
 group@:r-x---a-R-c--s:------:allow
 everyone@:r-x---a-R-c--s:------:allow

 2. Nontrivial (Extended) ACL contains entries for added user categories. The entries
might also include inheritance flags or be ordered in a nontraditional way.

UNIX System Administration Fundamentals    ◾    1149

A nontrivial entry might look like the following example, where permissions are specifi-
cally granted to user mansoor:

0:user:mansoor:read_data/write_data:file_inherit:allow

23.9.3.1.2 ACL Entry Descriptions: Components of NFSv4 ACL Command Entry
Descriptions The following describes the syntactic components, both general and
specific, of the setfacl command applied to files and directories. We also show
the general form of the output from the getfacl command after the example is
executed:

 Command To Whom Permissions To What
Files setfacl –a 0 user:bob:rwx---------:----:allow filename
 a b c d e f g h i

Directories setfacl –a 0 user:bob:r-------:fd---:allow dirname
 a b c d e f g h i
key-
a-command
b-option
c-position option argument starting at 0, cannot be a number at
the end!
d- ACL tag
e- ACL qualifier, in these cases user
f- 14 permissions, in short form, the hyphens(-) optional
g- 6 inheritance flags, for directories only, the hyphens(-)
optional
h- ACL type, either allow or deny
i- command argument, a filename or directory name specification

Format of getfacl output for the preceding file’s command:

%getfacl filename
#file filename
#owner owner name
#group group name
position 0 user:bob:rwx-----------:------:allow
filename
position 1 owner@ ---------------------------------------
position 2 group@ --
position 3 everyone@ -------------------------------------

Use the following additional sample entry as a reference to the elements that comprise
an ACL entry. These elements apply to both trivial and nontrivial ACLs.

user:mansoor:read_data/write_data:file_inherit:allow

1150 ◾ UNIX: The Textbook, Third Edition

ACL tag and qualifier: The user category. In trivial ACLs, only entries for owner@,
group@, and everyone@ are set. In nontrivial ACLs, user:username and
group:groupname are added. In the example, the entry tag and qualifier are
user:mansoor.

Access privileges: Permissions that are granted or denied to the entry type. In the
example, user mansoor’s permissions are shown in long form as read _ data and
write _ data.

Inheritance flags: An optional list of ACL flags that control how permissions are propa-
gated in a directory structure. In the sample entry, file _ inherit is also granted to
user mansoor.

ACL type (permission control): Determines whether the permissions in an entry are
allowed or denied. In the example, the permissions for mansoor are allowed.

Table 23.11 describes ACL forms, and Table 23.12 describes default ACL entries.
Table 23.13 describes each ACL entry type more fully. Table 23.14 describes ACL access
privileges more fully.

TABLE 23.11 ACL Forms

ACL Entry Description

u[ser]::perms File owner permissions.
g[roup]::perms File group permissions.
o[ther]:perms Permissions for users other than the file owner or members of file

group.
m[ask]:perms The ACL mask. The mask entry indicates the maximum

permissions allowed for users (other than the owner) and for
groups. The mask is a quick way to change permissions on all the
users and groups.

For example, the mask:r-- mask entry indicates that users and
groups cannot have more than read permissions, even though they
might have write/execute permissions.

u[ser]:uid:perms Permissions for a specific user. For uid, you can specify either a
user name or a numeric UID.

g[roup]:gid:perms Permissions for a specific group. For gid, you can specify either a
group name or a numeric GID.

TABLE 23.12 Default ACL Entries

Default ACL Entry Description

d[efault]:u[ser]::perms Default file owner permissions.
d[efault]:g[roup]::perms Default file group permissions.
d[efault]:o[ther]:perms Default permissions for users other than the file

owner or members of the file group.
d[efault]:m[ask]:perms Default ACL mask.
d[efault]:u[ser]:uid:perms Default permissions for a specific user. For uid, you

can specify either a user name or a numeric UID.
d[efault]:g[roup]:gid:perms Default permissions for a specific group. For gid,

you can specify either a group name or a numeric
GID.

UNIX System Administration Fundamentals    ◾    1151

Table 23.15 provides additional details about ACL delete and delete _ child
behavior.

23.9.3.1.2.1 ZFS ACL Sets An ACL set consists of a combination of ACL permissions. These
ACL sets are predefined and cannot be modified.

ACL Set Name Included ACL Permissions

full _ set All permissions

TABLE 23.13 Generic ACL Entry Types

ACL Entry Type Description

owner@ Specifies the access granted to the owner of the object
group@ Specifies the access granted to the owning group of the

object
everyone@ Specifies the access granted to any user or group that

does not match any other ACL entry
user With a user name, specifies the access granted to an

additional user of the object
group With a group name, specifies the access granted to an

additional group of the object

TABLE 23.14 Generic ACL Access Privileges

Access Privilege

Compact
Access

Privilege Description

add_file w Permission to add a new file to a directory
add_subdirectory p On a directory, permission to create a subdirectory
append_data p Permission to modify a file but only beginning from the EOF
delete d Permission to delete a file
delete_child D Permission to delete a file or directory within a directory
execute x Permission to execute a file or search the contents of a directory
list_directory r Permission to list the contents of a directory
read_acl c Permission to read the ACL (ls)
read_attributes a Permission to read basic attributes (non-ACLs) of a file
read_data r Permission to read the contents of the file
read_xattr R Permission to read the extended attributes of a file
synchronize s Permission to access a file locally at the server with

synchronized read and write operations
write_xattr W Permission to create extended attributes or write to the

extended attributes directory
write_data w Permission to modify or replace the contents of a file
write_attributes A Permission to change the times associated with a file or

directory to an arbitrary value
write_acl C Permission to write the ACL or the ability to modify the ACL

by using the chmod command
write_owner o Permission to change the file’s owner or group, or the ability to

execute the chown or chgrp commands on the file

1152 ◾ UNIX: The Textbook, Third Edition

modify _ set All permissions except write _ acl and write _ owner

read _ set read _ data, read _ attributes, read _ xattr,
read _ acl

write _ set write _ data, append _ data, write _ attributes,
write _ xattr

You can apply an ACL set rather than having to set individual permissions separately.
The advantage of using these predefined sets of ACLs is that you can apply a blanket group-
ing of ACLs to a file or a directory all at one time. In the following example, granting
Mansoor the read _ set ACL set gives him permissions to read ACLs as well as file
contents and their basic and extended attributes for file.0:

% setfacl -m user:mansoor:read_set:allow file.0
% getfacl file.0
file: file.0
owner: bob
group: bob
 user:mansoor:r-----a-R-c---:------:allow
 owner@:rw-p--aARWcCos:------:allow
 group@:r-----a-R-c--s:------:allow
 everyone@:r-x---a-R-c--s:------:allow

23.9.3.1.3 ACL Inheritance ACL inheritance means that a newly created file or directory
can inherit the ACLs they are intended to inherit without disregarding the existing per-
mission bits on the parent directory. By default, ACLs are not propagated. If you set a non-
trivial ACL on a directory, it is not inherited to any subsequent directory. You must specify
the inheritance of an ACL on a file or directory.

Table 23.16 describes the optional inheritance flags.
In addition, you can set a default ACL inheritance policy on the file system that is more

or less strict by using the aclinherit file system property. For more information about
this property, see Section 23.9.3.1.4, “ACL Properties.”

TABLE 23.15 ACL delete and delete_child Permission Behavior

Parent Directory Permissions Target Object Permissions

“ “ (empty) ACL Allows Delete ACL Denies Delete
Delete Permission

Unspecified

ACL allows delete_child Permit Permit Permit

ACL denies delete_child Permit Deny Deny
ACL allows only write and
execute

Permit Permit Permit

ACL denies write and execute Permit Deny Deny

UNIX System Administration Fundamentals    ◾    1153

For more information about setting ACL inheritance on ZFS files, see Section 23.9.3.2,
“Setting ACL Inheritance on ZFS Files.”

23.9.3.1.4 ACL Properties The ZFS file system includes the ACL properties to determine
the specific behavior of ACL inheritance and ACL interaction with setfacl command
operations.

These properties are

• aclinherit: Determines the behavior of ACL inheritance. Values include the
following:

discard: For new objects, no ACL entries are inherited when a file or directory is
created. The ACL on the file or directory is equal to the permission mode of the
file or directory.

noallow: For new objects, only inheritable ACL entries that have an access type of
deny are inherited.

restricted: For new objects, the write _ owner and write _ acl permis-
sions are removed when an ACL entry is inherited.

passthrough: When a property value is set to passthrough, files are created
with a mode determined by the inheritable ACEs. If no inheritable ACEs exist
that affect the mode, then the mode is set in accordance to the requested mode
from the application.

passthrough-x: Has the same semantics as passthrough except that when
passthrough-x is enabled, files are created with the execute (x) permission
only if the execute permission is set in file creation mode and in an inheritable
ACE that affects the mode.

TABLE 23.16 Generic ACL Inheritance Flags

Inheritance Flag
Compact

Inheritance Flag Description

file_inherit f Only inherit the ACL from the parent directory to the
directory’s files

dir_inherit d Only inherit the ACL from the parent directory to the
directory’s subdirectories

inherit_only I Inherit the ACL from the parent directory
no_propagate n Only inherit the ACL from the parent directory to the

first-level contents of the directory
- n/a No permission granted
successful_access S Indicates whether an alarm or audit record should be

initiated upon a successful access; used with audit or
alarm ACE types

failed_access F Indicates whether an alarm or audit record should be
initiated when an access fails; used with audit or
alarm ACE types

inherited I Indicates that an ACE was inherited

1154 ◾ UNIX: The Textbook, Third Edition

The default mode for the aclinherit is restricted.
For more information about the aclinherit modes, see Section 23.9.3.3.3, “Modifying

ACL Inheritance with the ACL Inherit Mode.”

• aclmode: Modifies ACL behavior when a file is initially created or controls how an
ACL is modified during a chmod operation. Values include the following:

discard: Deletes all ACL entries that do not represent the mode of the file. This is
the default value.

mask: Reduces user or group permissions. The permissions are reduced such that
they are no greater than the group permission bits unless it is a user entry that
has the same UID as the owner of the file or directory. In this case, the ACL
permissions are reduced so that they are no greater than owner permission bits.
The mask value also preserves the ACL across mode changes, provided that an
explicit ACL set operation has not been performed.

passthrough: Indicates that no changes are made to the ACL other than generat-
ing the necessary ACL entries to represent the new mode of the file or directory.

The default mode for the aclmode is discard.

23.9.3.2 Setting ACLs on ZFS Files
The primary rules of ACL access on a ZFS file are as follows.

 1. ZFS processes ACL entries in the order they are listed in the ACL, from the top down.

 2. Only ACL entries whose specified user matches the requester of the access are
processed.

 3. Once an allow permission has been granted, it cannot be denied by a subsequent ACL
deny entry in the same ACL permission set.

 4. The owner of the file is granted the write _ acl permission unconditionally even
if the permission is explicitly denied. Otherwise, any permission left unspecified is
denied.

In the cases of deny permissions or when an access permission is missing, the privilege
subsystem determines the access request that is granted for the owner of the file or for
superuser. This mechanism prevents owners of files from getting locked out of their files
and enables superuser to modify files for recovery purposes.

23.9.3.2.1 Command Syntax for Setting and Viewing ACLs To set or modify ACLs, use the
setfacl command. To see the results of using setfacl, use the getfacl command.
Following are an abbreviated syntax description of those two commands, with common
and allowable NFSv4 options shown:

UNIX System Administration Fundamentals    ◾    1155

SYNTAX
setfacl [-bdhkn] [-a position entries] [-m entries] [-M file] [-x entries
| position] [-X file] [file ...]

Purpose:
The setfacl utility sets discretionary access control information on the specified

file(s).
Output: Modified ACL specifications
Common Options and Option Arguments:
-a [position] [entries] Modify the ACL on the specified files by inserting new

ACL entries specified in entries, starting at [position], counting from zero.
-b Remove all ACL entries except for or six canonical entries (NFSv4 ACLs).
-m [entries] Modify the ACL on the specified file. New entries will be added,

and existing entries will be modified according to the entries argument. For NFSv4
ACLs, you can also use the -a and -x options instead.

-M file Modify the ACL entries on the specified files by adding new ACL entries and
modifying existing ACL entries with the ACL entries specified in file. If file is -,
the input is taken from stdin.

-x entries | position If entries is specified, remove the ACL entries specified
there from the access or default ACL of the specified files. Otherwise, remove entry
at index position, counting from zero.

SYNTAX
getfacl [-dhinqv] [file ...]

Purpose:
The getfacl utility writes discretionary access control information associated with

the specified file(s) to standard output.
Output: Indicated file ACL settings on stdout
Common Options:

-i Append numerical ID at the end of each entry containing user or group name.
-n Display user and group IDs numerically rather than converting to a user or group

name.
-q Do not write commented information about file name and ownership. This is useful

when dealing with filenames with unprintable characters.
-v Display access mask and flags in a verbose form.

In the following command line example, the default ACL entry for file.0 is modified so
that the C permission is granted to everyone@:

% setfacl -m everyone@:r-----a-R-cC-s:------:allow file.0

Permissions and inheritance flags are represented by the unique letters listed in Table
24.2 and Table 24.4.

The following is another example of modifying the ACL entries, which gives rx privi-
leges to user mansoor on file.0

1156 ◾ UNIX: The Textbook, Third Edition

% setfacl -m user:mansoor:rx:allow file.0

To grant user mansoor inheritable read, write, and execute permissions for the newly
created directory d.2 and its files, you can use the following command:

% setfacl -a 0 user:mansoor:read_set/execute:file_inherit/dir_
inherit:allow d.2

Notice that the syntax of this command uses the -a option of setfacl, and the option
argument for position is 0. This means that the new entry will occupy the first position in
the entry list. Also notice the permissions format is the long form of access permissions.

23.9.3.2.1.1 Displaying ACL Information With the getfacl command, you can display
ACL information in one of two formats. The following example shows how the same ACL
information is displayed first in verbose (short) form and then in compact (short) form:

% getfacl –v file.0
file: file.0
owner: bob
group: bob
 user:bob:read_data/execute::allow
owner@:read_data/write_data/append_data/read_attributes/write_
attributes/read_xattr/write_xattr/read_acl/write_acl/write_owner/
synchronize::allow
group@:read_data/read_attributes/read_xattr/read_acl/
synchronize::allow
everyone@:read_data/read_attributes/read_xattr/read_acl/write_acl/
synchronize::allow
% getfacl file.0
file: file.0
owner: bob
group: bob
 user:bob:r-x-----------:------:allow
 owner@:rw-p--aARWcCos:------:allow
 group@:r-----a-R-c--s:------:allow
 everyone@:r-----a-R-cC-s:------:allow

For an explanation of the permissions for each user category, see Table 23.14.

23.9.3.2.2 Modifying ACLs on ZFS Files The following are some basic ACL modifications
on PC-BSD ZFS files and directories.

Please note that on your system, in place of the user mansoor, you must substitute
another valid username.

 1. To begin, create a file in your home directory named file.1.

UNIX System Administration Fundamentals    ◾    1157

% touch file.1
%

 2. Delete the everyone@ entry in the ACLs for file.1:

% setfacl -x everyone@:r-----a-R-cC-s:------:allow file.1
% getfacl file.1
file: file.1
owner: bob
group: bob
 owner@:rw-p--aARWcCos:------:allow
 group@:r-----a-R-c--s:------:allow

 3. Add a new everyone@ entry. Notice the -m option places the new entry at position
0:

% setfacl -m everyone@:r-----a-R-c--s:------:allow file.1
% getfacl file.1
file: file.1
owner: bob
group: bob
 everyone@:r-----a-R-c--s:------:allow
 owner@:rw-p--aARWcCos:------:allow
 group@:r-----a-R-c--s:------:allow

 4. Delete file.1 and create a new version of it with the default ACLs:

% rm file.1
% touch file.1
% getfacl file.1
file: file.1
owner: bob
group: bob
 owner@:rw-p--aARWcCos:------:allow
 group@:r-----a-R-c--s:------:allow
 everyone@:r-----a-R-c--s:------:allow

 5. Modify the position 2 everyone@ entry to rw only:

% setfacl -m everyone@:rw:allow file.1
% getfacl file.1
file: file.1
owner: bob
group: bob

1158 ◾ UNIX: The Textbook, Third Edition

 owner@:rw-p--aARWcCos:------:allow
 group@:r-----a-R-c--s:------:allow
 everyone@:rw------------:------:allow

 6. Add an ACL entry to deny user mansoor the read _ set privileges on file.1:

% setfacl -m user:mansoor:read_set:deny file.1
% getfacl file.1
file: file.1
owner: bob
group: bob
 user:mansoor:r-----a-R-c---:------:deny
 owner@:rw-p--aARWcCos:------:allow
 group@:r-----a-R-c--s:------:allow
 everyone@:rw------------:------:allow
Notice what predefined permissions are included in the
read_set!

 7. Add an ACL entry to deny everyone@ the read _ set privileges on file.1:

% setfacl -m everyone@:read_set:deny file.1

% getfacl file.1
file: file.1
owner: bob
group: bob
 everyone@:r-----a-R-c---:------:deny
 user:mansoor:r-----a-R-c---:------:deny
 owner@:rw-p--aARWcCos:------:allow
 group@:r-----a-R-c--s:------:allow
 everyone@:rw------------:------:allow

 8. Delete the ACL entry to deny everyone@ the read _ set privileges:

 % setfacl -x everyone@:read_set:deny file.1
% getfacl file.1
file: file.1
owner: bob
group: bob
 user:mansoor:r-----a-R-c---:------:deny
 owner@:rw-p--aARWcCos:------:allow
 group@:r-----a-R-c--s:------:allow

 9. Add the following privileges to everyone@ for file.1:

% setfacl -m everyone@:r-----a-R-c--s:------:allow file.1
% getfacl file.1
file: file.1

UNIX System Administration Fundamentals    ◾    1159

owner: bob
group: bob
 everyone@:r-----a-R-c--s:------:allow
 user:mansoor:r-----a-R-c---:------:deny
 owner@:rw-p--aARWcCos:------:allow
 group@:r-----a-R-c--s:------:allow

 Another way to accomplish the setfacl command would be:
 % setfacl -a 0 everyone@:r-----a-R-c--s:------:allow file.1

 10. Delete the 0 position ACL entry for file.1:

% setfacl -x 0 file.1
% getfacl file.1
file: file.1
owner: bob
group: bob
 user:mansoor:r-----a-R-c---:------:deny
 owner@:rw-p--aARWcCos:------:allow
 group@:r-----a-R-c--s:------:allow

 11. Add a read _ set of permissions for everybody@ for file.1:

% setfacl -a 0 everyone@:read_set:allow file.1
% getfacl file.1
file: file.1
owner: bob
group: bob
 everyone@:r-----a-R-c---:------:allow
 user:mansoor:r-----a-R-c---:------:deny
 owner@:rw-p--aARWcCos:------:allow
 group@:r-----a-R-c--s:------:allow

 12. Delete the 0 position ACL entry for file.1:

% setfacl -x0 file.1
% getfacl file.1
file: file.1
owner: bob
group: bob
 user:mansoor:r-----a-R-c---:------:deny
 owner@:rw-p--aARWcCos:------:allow
 group@:r-----a-R-c--s:------:allow

 13. Add the read _ xattr permission for user mansoor to file.1:

% setfacl -m user:mansoor:read_xattr::allow file.1
% getfacl file.1
file: file.1

1160 ◾ UNIX: The Textbook, Third Edition

owner: bob
group: bob
 user:mansoor:--------R-----:------:allow
 user:mansoor:r-----a-R-c---:------:deny
 owner@:rw-p--aARWcCos:------:allow
 group@:r-----a-R-c--s:------:allow
read_
After these commands are executed, does user mansoor have
read_xattr permission on file.1?

 14. Delete read _ xattr permission for user mansoor on file.1:

% setfacl -x user:mansoor:read_xattr::allow file.1
% getfacl file.1
file: file.1
owner: bob
group: bob
 user:mansoor:r-----a-R-c---:------:deny
 owner@:rw-p--aARWcCos:------:allow
 group@:r-----a-R-c--s:------:allow

 15. Add r-----a-R-c---:------ privileges for user mansoor on file.1:

% setfacl -a 0 user:mansoor:r-----a-R-c---:------:allow file.1
% getfacl file.1
file: file.1
owner: bob
group: bob
 user:mansoor:r-----a-R-c---:------:allow
 user:mansoor:r-----a-R-c---:------:deny
 owner@:rw-p--aARWcCos:------:allow
 group@:r-----a-R-c--s:------:allow

 16. Delete position 1 ACL entry for file.1:

% setfacl -x 1 file.1
% getfacl file.1
file: file.1
owner: bob
group: bob
 user:mansoor:r-----a-R-c---:------:allow
 owner@:rw-p--aARWcCos:------:allow
 group@:r-----a-R-c--s:------:allow

 17. Delete position 0 ACL entry for file.1:

% setfacl -x 0 file.1

UNIX System Administration Fundamentals    ◾    1161

% getfacl file.1
file: file.1
owner: bob
group: bob
 owner@:rw-p--aARWcCos:------:allow
 group@:r-----a-R-c--s:------:allow

 18. Add position 0 entry of r-----a-R-c---:------ ACL for user mansoor on file.1:

% setfacl -a 0 user:mansoor:r-----a-R-c---:------:allow file.1
% getfacl file.1
file: file.1
owner: bob
group: bob
 user:mansoor:r-----a-R-c---:------:allow
 owner@:rw-p--aARWcCos:------:allow
 group@:r-----a-R-c--s:------:allow

 19. Add position 0 entry of the read _ set for everyone@ on file.1:

% setfacl -a 0 everyone@:read_set:allow file.1
% getfacl file.1
file: file.1
owner: bob
group: bob
 everyone@:r-----a-R-c---:------:allow
 user:mansoor:r-----a-R-c---:------:allow
 owner@:rw-p--aARWcCos:------:allow
 group@:r-----a-R-c--s:------:allow

 The following steps deal with PC-BSD directories.

 20. Create a new directory, under your home directory, named dir_acl, and view its
default ACL entries and permissions:

% mkdir dir_acl
% getfacl dir_acl
file: dir_acl
owner: bob
group: bob
 owner@:rwxp--aARWcCos:------:allow
 group@:r-x---a-R-c--s:------:allow
 everyone@:r-x---a-R-c--s:------:allow

 21. Add r-----a-R-c---:------ permissions to user mansoor for the directory
dir_acl:

1162 ◾ UNIX: The Textbook, Third Edition

% setfacl -a 0 user:mansoor:r-----a-R-c---:------:allow
dir_acl
% getfacl dir_acl
file: dir_acl
owner: bob
group: bob
 user:mansoor:r-----a-R-c---:------:allow
 owner@:rwxp--aARWcCos:------:allow
 group@:r-x---a-R-c--s:------:allow
 everyone@:r-x---a-R-c--s:------:allow

 22. Add some additional permissions at position 0 for user mansoor on directory dir_acl:

% setfacl -a 0 user:mansoor:read_set/execute:file_inherit/
dir_inherit:allow dir_acl
% getfacl dir_acl
file: dir_acl
owner: bob
group: bob
 user:mansoor:r-x---a-R-c---:fd----:allow
 user:mansoor:r-----a-R-c---:------:allow
 owner@:rwxp--aARWcCos:------:allow
 group@:r-x---a-R-c--s:------:allow
 everyone@:r-x---a-R-c--s:------:allow

 23. Delete the position 1 ACL entry for dir_acl:

% setfacl -x 1 dir_acl
% getfacl dir_acl
file: dir_acl
owner: bob
group: bob
 user:mansoor:r-x---a-R-c---:fd----:allow
 owner@:rwxp--aARWcCos:------:allow
 group@:r-x---a-R-c--s:------:allow
 everyone@:r-x---a-R-c--s:------:allow

 24. Delete the position 0 ACL entry for dir_acl:

% setfacl -x 0 dir_acl
% getfacl dir_acl
file: dir_acl
owner: bob
group: bob
 owner@:rwxp--aARWcCos:------:allow

UNIX System Administration Fundamentals    ◾    1163

 group@:r-x---a-R-c--s:------:allow
 everyone@:r-x---a-R-c--s:------:allow

 25. Add long-form permissions for user bob on dir_acl:

% setfacl -a 0 user:bob:read_data/write_data/execute:file_
inherit/dir_inherit:allow / dir_acl
% getfacl dir_acl
file: dir_acl
owner: bob
group: bob
 user:bob:rwx-----------:fd----:allow
 owner@:rwxp--aARWcCos:------:allow
 group@:r-x---a-R-c--s:------:allow
 everyone@:r-x---a-R-c--s:------:allow

 26. Create a new file in the directory dir_acl named file.2:

% touch dir_acl/file.2
% getfacl dir_acl/file.2
file: dir_acl/file.2
owner: bob
group: bob
 user:bob:r-------------:------:allow
 owner@:rw-p--aARWcCos:------:allow
 group@:r-----a-R-c--s:------:allow
 everyone@:r-----a-R-c--s:------:allow

Why did file.2 only inherit r privilege for user bob?

EXERCISE 23.17
Execute all 26 of the preceding command line examples and verify that the output of each
is the same on your PC-BSD system.

23.9.3.3 Setting ACL Inheritance on ZFS Files
You can determine how ACLs are inherited on files and directories.

The aclinherit property can be set globally on a file system, and in our examples
we are working on the file system tank/usr/home/bob. Our default aclinherit mode
was set at discard. Because the aclinherit property for any file system is set to some
default mode, do the following to ascertain the aclinherit mode, and then set it to
inherit. You must change the dataset name from tank/usr/home/bob to the whatever
ZFS dataset you are working in on your system, and execute the zfs set command as
superuser.

1164 ◾ UNIX: The Textbook, Third Edition

% zfs get aclinherit tank/usr/home/bob
NAME PROPERTY VALUE SOURCE
tank/usr/home/bob aclinherit noallow local
% su
Password: xxx
zfs set aclinherit=restricted tank/usr/home/bob
exit
Exit

For more information, see Section 23.9.3.1.3, “ACL Inheritance.”

23.9.3.3.1 Granting ACLs that Are Inherited by Files This section identifies the file ACEs
that are applied when the file _ inherit flag is set.

In the following example, read _ data/write _ data permissions are added for
files in the test2.dir directory for user bob so that he has read access on any newly created
files.

% mkdir test2.dir
% setfacl -m user:bob:read_data/write_data:file_inherit:allow
test2.dir
% getfacl test2.dir
file: test2.dir
owner: bob
group: bob
 user:bob:rw------------:f-----:allow
 owner@:rwxp--aARWcCos:------:allow
 group@:r-x---a-R-c--s:------:allow
 everyone@:r-x---a-R-c--s:------:allow

In the following example, user bob’s permissions are applied on the newly created test2.
dir/file.2 file. The ACL inheritance granted, read _ data:file _ inherit:allow,
means user bob can read the contents of any newly created file.

% touch test2.dir/file.2
% getfacl test2.dir/file.2
file: test2.dir/file.2
owner: bob
group: bob
 user:bob:r-------------:------:allow
 owner@:rw-p--aARWcCos:------:allow
 group@:r-----a-R-c--s:------:allow
 everyone@:r-----a-R-c--s:------:allow

Thus, user bob does not have write _ data permission on file.2 because the group
permission of the file does not allow it.

UNIX System Administration Fundamentals    ◾    1165

The inherit _ only permission, which is applied when the file _ inherit or
dir _ inherit flags are set, is used to propagate the ACL through the directory struc-
ture. As such, user bob is granted or denied permission from everyone@ permissions
only if he is the file owner or is a member of the file’s group owner. For example:

% mkdir test2.dir/subdir.2
% getfacl test2.dir/subdir.2
file: test2.dir/subdir.2
owner: bob
group: bob
 user:bob:rw------------:f-i---:allow
 owner@:rwxp--aARWcCos:------:allow
 group@:r-x---a-R-c--s:------:allow
 everyone@:r-x---a-R-c--s:------:allow

23.9.3.3.2 Granting ACLs that Are Inherited by Both Files and Directories This section pro-
vides examples that identify the file and directory ACLs that are applied when both the
file _ inherit and dir _ inherit flags are set.

In the following example, user bob is granted read, write, and execute permissions that
are inherited for newly created files and directories.

% mkdir test3.dir
% setfacl -m user:bob:read_data/write_data/execute:file_inherit/
dir_inherit:allow / test3.dir
% getfacl test3.dir
file: test3.dir
owner: bob
group: bob
 user:bob:rwx-----------:fd----:allow
 owner@:rwxp--aARWcCos:------:allow
 group@:r-x---a-R-c--s:------:allow
 everyone@:r-x---a-R-c--s:------:allow

The inherited text in the following output is informational, and indicates that the ACE
is inherited.

% touch test3.dir/file.3
% getfacl test3.dir/file.3
file: test3.dir/file.3
owner: bob
group: bob
 user:bob:r-------------:------:allow
 owner@:rw-p--aARWcCos:------:allow
 group@:r-----a-R-c--s:------:allow

1166 ◾ UNIX: The Textbook, Third Edition

 everyone@:r-----a-R-c--s:------:allow

In these examples, because the permission bits of the parent directory for group@ and
everyone@ deny write and execute permissions, user bob is denied write and execute
permissions. The default aclinherit property is restricted, which means that write _
data and execute permissions are not inherited.

In the following example, user bob is granted read, write, and execute permissions that
are inherited for newly created files, but are not propagated to subsequent contents of the
directory.

% mkdir test4.dir
% setfacl -m user:bob:read_data/write_data/execute:file_inherit/
no_propagate:allow / test4.dir
% getfacl test4.dir
file: test4.dir
owner: bob
group: bob
 user:bob:rwx-----------:f--n--:allow
 owner@:rwxp--aARWcCos:------:allow
 group@:r-x---a-R-c--s:------:allow
 everyone@:r-x---a-R-c--s:------:allow

As the following example illustrates, bob’s read _ data/write _ data/execute
permissions are reduced based on the owning group’s permissions.

% touch test4.dir/file.4
% getfacl test4.dir/file.4
file: test4.dir/file.4
owner: bob
group: bob
 user:bob:r-------------:------:allow
 owner@:rw-p--aARWcCos:------:allow
 group@:r-----a-R-c--s:------:allow
 everyone@:r-----a-R-c--s:------:allow

23.9.3.3.3 Modifying ACL Inheritance with the ACL Inherit Mode This section
describes the aclinherit property values, and the following command line examples
illustrate ACL inheritance with the ACL inherit mode set to discard. If the ZFS aclin-
herit property on a file system is set to discard, then ACLs can potentially be discarded
when the permission bits on a directory change.

You must change the dataset name from tank/usr/home/bob to the whatever ZFS data-
set you are working in on your system, and execute the zfs set command as superuser.
Also, our PC-BSD system already had the aclinherit mode set to discard, but we
presume that yours has not.

UNIX System Administration Fundamentals    ◾    1167

zfs set aclinherit=discard tank/usr/home/bob
% mkdir test5.dir
% setfacl -m user:bob:read_data/write_data/execute:dir_
inherit:allow test5.dir
% getfacl test5.dir
file: test5.dir
owner: bob
group: bob
 user:bob:rwx-----------:-d----:allow
 owner@:rwxp--aARWcCos:------:allow
 group@:r-x---a-R-c--s:------:allow
 everyone@:r-x---a-R-c--s:------:allow

If, at a later time, you decide to tighten the permission bits on a directory, the nontrivial
ACL is discarded. For example:

% chmod 744 test5.dir
% getfacl test5.dir
file: test5.dir
owner: bob
group: bob
 owner@:rwxp--aARWcCos:------:allow
 group@:r-----a-R-c--s:------:allow
 everyone@:r-----a-R-c--s:------:allow

Finally, we will illustrate ACL inheritance with the ACL inherit mode set to noallow.
In the following example, two nontrivial ACLs with file inheritance are set. One

ACL allows read _ data permission, and one ACL denies read _ data permission.
Again, you must change the dataset name from tank/usr/home/bob to the whatever
ZFS dataset you are working in on your system, and execute the zfs set command as
superuser.

zfs set aclinherit=noallow tank/usr/home/bob
% mkdir test6.dir
% setfacl -m user:bob:read_data:file_inherit:deny test6.dir
% setfacl -m user:mansoor:read_data:file_inherit:allow test6.dir
% getfacl test6.dir
file: test6.dir
owner: bob
group: bob
 user:mansoor:r-------------:f-----:allow
 user:bob:r-------------:f-----:deny
 owner@:rwxp--aARWcCos:------:allow
 group@:r-x---a-R-c--s:------:allow
 everyone@:r-x---a-R-c--s:------:allow

1168 ◾ UNIX: The Textbook, Third Edition

As the following example shows, when a new file is created, the ACL that allows read _
data permission to user mansoor is discarded.

% touch test6.dir/file.6
% getfacl test6.dir/file.6
file: test6.dir/file.6
owner: bob
group: bob
 user:bob:r-------------:------:deny
 owner@:rw-p--aARWcCos:------:allow
 group@:r-----a-R-c--s:------:allow
 everyone@:r-----a-R-c--s:------:allow

EXERCISE 23.18
Execute the all the command line examples shown in Sections 23.9.3.3.1 through 23.9.3.3.3
on your PC-BSD system and verify that they give the same output as shown.

23.9.4 Intrusion Detection and Intrusion Detection Systems

Intrusion detection is usually applied via a software system, and most importantly
through log file monitoring. Consult online sources for a more complete description
of the interplay of both. A conceptual layout of how malicious activity from outside of
the operating system interfaces through the components of a UNIX system in given in
Figure 23.21.

23.9.5 System Firewall

A firewall is a facility that prevents unauthorized access to or from a private network or a
computer. Firewalls can be implemented in both hardware and software, or a combination
of both. Firewalls are primarily used to prevent unauthorized access to a private network
or intranet from the Internet. All traffic entering or leaving a single computer or intranet
passes through the firewall, which examines each message and blocks those that do not
meet the firewall rules.

Hardware firewalls can be purchased as stand-alone products; they can also be found
integral to broadband routers, such as the Actiontec PK5000. Most hardware firewalls will
have a minimum of four network ports to connect other computers, but for larger net-
works, business networking firewall solutions are available.

For our two base UNIX systems, the salient difference, with respect to the default imple-
mentation of a software-implemented firewall, is as follows:

In PC-BSD, all incoming traffic is blocked until you specify a TCP or UDP port that
traffic is allowed to come in on, and in Solaris all incoming traffic is allowed in. On both
systems, all outgoing traffic on all ports is allowed. In the next section we show the specific
details of how to unblock a port in PC-BSD.

UNIX System Administration Fundamentals    ◾    1169

Solaris systems have a graphical firewall manager, accessed from the
System>Administration>System Firewall menu choice. We do not show how to establish
firewall rules or manage the firewall using the default firewall manager in Solaris.

23.9.5.1 Firewall Manager in PC-BSD
PC-BSD uses an IPFW firewall to protect your system. By default, the firewall is config-
ured to allow all outgoing connections, but to deny all incoming connection requests. The
default rulebase is located in /etc/ipfw.rules. Instead of showing the text-based method of
modifying firewall rules, we use the Firewall Manager GUI utility to view and modify the
existing firewall rules. If you want to know more about text-based modifications to firewall
rules, see the ipfw man page on your PC-BSD system.

It is not absolutely necessary to change the firewall rules, and the details of using a com-
mand line method of doing this are not shown here. Be aware that adding custom rules or
modifying the firewall jeopardizes your system’s security.

To access the Firewall Manager, go to Control Panel>Firewall Manager or type pc-su
pc-fwmanager. You will be prompted to input your password. Figure 23.22 shows the
initial screen when you launch this utility.

The General tab of this utility allows you to:

 1. Determine whether or not the firewall starts when the system boots. Unless you have
a reason to do so and understand the security implications, the Enable Firewall
on startup box should be checked so that your system is protected by the firewall.

 2. Start, Stop, or Restart the firewall.

Web cache

Hardware Environment: CCC

CPU
and

RAM

Networking
hardware

Responses
Low latency

Attacks
Stave off

and
Requests

Serve

Crackers
DDoS attacks

Cracking attempts
...

Internet

Botnets
DDoS attacks

Competitors
Compete for customers

Customers
Want attendanceStorage

ZFS
SATA
SAS

RAID
iSCSI
NAS

Web server

CGI scripting

Database

MySQL

Apache

Perl
PHP

Python

UNIX kernel components

Process scheduler

Netfilter

Network stack

Network scheduler

NIC
device
driver

FIGURE 23.21 Routes of attack and system components.

1170 ◾ UNIX: The Textbook, Third Edition

 3. The Restore Default Configuration button allows you to return to the
original, working configuration.

 4. To add or delete custom firewall rules, click the Open Ports tab to open the screen
shown in Figure 23.23. Note that your custom rules will allow incoming connections
on the specified protocol and port number.

Any rules that you create will appear in this screen. To add a rule, input the port number
to open. By default, TCP is selected. If the rule is for the UDP protocol, click the TCP drop-
down menu and select UDP. Once you have the protocol and port number selected, click
the Open Port button to add the new rule to your custom list. Figure 23.23 shows the
addition of a new rule allowing a TCP connection on port 22, the common default for ssh.

If you have created any custom rules and wish to delete one, highlight the rule to delete
and click the Close Selected Ports button to remove it from the custom rules list.

Whenever you add or delete a custom rule, the rule will not be used until you click the
Restart button shown in Figure 23.22. Whenever you create a custom rule, test that your
new rule works as expected. As shown in Figure 23.32, if you create a rule to allow incom-
ing ssh connections, try connecting to your PC-BSD system using ssh to verify that the
firewall is now allowing the connection.

26.9.5.2 PF
A kernel-level packet filter software system screens network packets by checking the prop-
erties of individual packets and the network connections built from those packets against
the filtering rules defined in its rule configuration files. The packet filter arbitrates the
disposition of those packets. This could mean passing them through or rejecting them, or

FIGURE 23.22 Firewall Manager utility.

FIGURE 23.23 Adding a new firewall rule.

UNIX System Administration Fundamentals    ◾    1171

it could trigger events that parts of the operating system or external applications work on
to dispose of the packets.

The OpenBSD UNIX implementation of packet filtering, named PF, is available in the
base FreeBSD, PC-BSD systems, and Solaris. PF lets you write filtering rules to control
network traffic based on essentially any packet or connection property, including address
family, source and destination address, interface, protocol, port, and direction.

A packet filter can keep unwanted traffic out of your individual computer or network-
connected computers. It can also help keep network traffic inside your own network. Both
these functions are important to the firewall concept, but blocking is not the only useful
feature of a packet filter.

Filtering can also be used to direct specific network traffic to specific hosts, assign classes
of traffic to queues, perform traffic shaping, and dispose of selected kinds of traffic to other
software for special treatment.

All this processing happens at the network level, based on packet and connection prop-
erties. PF is part of the network stack, firmly embedded in the operating system kernel.
The filtering is performed in the kernel because of performance considerations. One of the
most important and common actions that PF performs is to block traffic.

PF on PC-BSD

To enable PF on PC-BSD, do the following:

 1. Edit your /etc/rc_conf to include the following lines:

pf_enable="YES" # Enable PF (load module if
required)
pflog_enable="YES" # start pflogd(8)
At this point, you may have to reboot the computer.

 2. Enable PF with the following command. If PF is already enabled, go to step 3:

% sudo pfctl –e

 3. On FreeBSD and PC-BSD base systems, the /etc/rc.d/pf script requires at least a
line in /etc/rc.conf that reads pf _ enable="YES" and a valid /etc/pf.conf file.
If either of these requirements isn’t met, the script will exit with an error message.
There is no /etc/pf.conf file in a default FreeBSD and PC-BSD installation, so you’ll
need to create one before you reboot the system with PF enabled. You can create an
empty /etc/pf.conf with touch or could also work from a copy of the /usr/share/
examples/pf/pf.conf file supplied by the system.

 4. With the lines from step 1 in your /etc/rc.conf and created an /etc/pf.conf file, you
could also use the PF rc script to run PF. The following starts the PF daemon:

% sudo /etc/rc.d/pf start

1172 ◾ UNIX: The Textbook, Third Edition

 5. Use the pfctl command to modify the behavior of PF—for example, to add or mod-
ify packet filter rules.

 6. To stop the PF daemon, use the following command:

%sudo /etc/rc.d/pf stop

PF on Solaris

To run PF as your firewall on Solaris, you first install the PF firewall package, and then
configure the firewall to reflect your policy. Once configured, you then enable the
firewall service. The PF firewall package can coexist with the IP Filter (ipfilter) pack-
age that is preinstalled and enabled by default. However, only one firewall at a time
can be enabled on a Solaris system!

To install and configure the PF firewall package, you must become the superuser. The
following steps allow you to install, configure, and make the PF firewall the active
packet filtering software:

 1. Install the PF package with the following command:

pkg install firewall

 2. Create or update your packet filtering rule set by using the pfconf script with the
command:

pfconf

 The pfconf script modifies the pf.conf PF configuration file.

 Use the pfctl command to modify the behavior of PF—for example, to add or
modify packet filter rules.

 3. Disable the ipfilter service first, then enable PF. This is critical, because you don’t
want two active firewall programs with conflicting rules. Use the svcadm command
to accomplish this as follows:

svcadm disable network/ipfilter
svcadm enable network/firewall

 If the PF configuration file is empty and you enable the firewall service, some traffic
filtering occurs. For example, PF drops TCP packets with invalid flag combinations.

 4. (Optional) To disable the service, use the svcadm command:

svcadm disable network/firewall

This command removes all rules from the kernel and disables the service.

UNIX System Administration Fundamentals    ◾    1173

The following is an example session that achieves the preceding processes. Note that it
does not include modifying the pf.conf file:

bob@solaris113beta:~$ su
Password: xxx
root@solaris113beta:~# pkg install firewall
 Packages to install: 1
 Services to change: 1
 Create boot environment: No
 Create backup boot environment: Yes
DOWNLOAD PKGS FILES XFER (MB) SPEED
Completed 1/1 30/30 0.3/0.3 145k/s
PHASE ITEMS
Installing new actions 87/87
Updating package state database Done
Updating package cache 0/0
Updating image state Done
Creating fast lookup database Done
Updating package cache 1/1
root@solaris113beta:~# svcadm disable network/ipfilter
root@solaris113beta:~# svcadm enable network/firewall
root@solaris113beta:~#

23.10 VIRTUALIZATION METHODOLOGIES
A virtual environment for a computer program, and for an operating system, can be
defined as a shell within which the program functions autonomously. In Chapter 25 we
show three popular and important facilities for creating a virtual operating system envi-
ronment within a UNIX host environment: PC-BSD Jails implemented and controlled by
the iocage program, Solaris 11 Zones, and VirtualBox VMs. These facilities provide exten-
sions of some of the topics we covered in this chapter.

What differentiates these three facilities is that, for the first two, all virtual envi-
ronments are running under the same kernel on one host machine. In the third one,
any number of different kernels can be running simultaneously on one host machine.
That means that for Jails you can be running many versions of only PC-BSD at the
same time on one machine. And for Zones you can only be running multiple versions
of Solaris 11 at the same time on one machine. With VirtualBox, you can be running
PC-BSD, Solaris 11, and any number of other operating systems at the same time on
one machine.

The important application of these methodologies in the context of system administra-
tion is to provide a measure of system security. For example, it is possible with all three
facilities to isolate a system service or application program in a guest operating environ-
ment, completely autonomous from the host operating system. A service like an ftp server
can be run inside of a PC-BSD Jail or Solaris 11 Zone, and anything that intrudes upon
that server and its system space does not intrude upon the host operating system space.

1174 ◾ UNIX: The Textbook, Third Edition

If Internet traffic to and from the ftp server is compromised in any way, the server can be
stopped and possibly restarted without affecting the host operating system. Another exam-
ple would be if a faulty, bug-ridden application program were run in a guest environment,
it could bring the guest operating system kernel to a halt without in any way affecting the
host operating system. Those two example cases are probably the most useful aspects of
maintaining a virtual environment, but there are others. We encourage you to go through
all of the examples shown in Chapter 25.

SUMMARY
In this chapter, we used a “learning by doing” approach to accomplish the following com-
mon system administration tasks:

 1. Do a fresh install of a 64-bit version from DVD media using a GUI installer onto a
single hard disk system, with a KDE4 or GNOME GUI desktop. Do a preliminary
configuration of that system.

 2. Illustrate how to gracefully bring the system down.

 3. Add additional users to the system and show how to design and maintain user
accounts.

 4. Adding hardware to the system, particularly disk drives.

 5. Provide strategies using the traditional and generic UNIX commands, to backup and
archive the system files and user files.

 6. Provide a practical method to upgrade and maintain the operating system, and add/
update/remove user application package repository software to both increase func-
tionality and update existing packages.

 7. Monitor the performance of the system and tune it for optimal performance
characteristics.

 8. Provide strategies for system security to harden the individual desktop computer.

 9. Provide network connectivity strategies, both on a LAN and the Internet.

We showed how to do these common tasks both in PC-BSD and Solaris, the representa-
tive systems of the two major families of UNIX.

QUESTIONS AND PROBLEMS

 1. Write a brief outline of how you installed your version of the UNIX operating system
on your computer. If you didn’t do the installation, find out from the system manager
how the installation was done and why it was done in that way. If you did a server
install, explain how and why you did that.

 2. Do the following steps in order to complete the requirements for this problem:

UNIX System Administration Fundamentals    ◾    1175

 a. Use the adduser command to create an anonymous ftp user account on your
PC-BSD system with the following configuration:

Username: ftp
Full name: Anonymous FTP user
Shell (sh csh tcsh bash rbash zsh nologin) [sh]: nologin
Home directory [/home/ftp]: /var/ftp
Use password-based authentication? [yes]: no

 Everything else should be left at its default setting.

 b. Type the following as superuser to create a new directory and log file for the ftp
user:

mkdir –p /var/ftp/pub
chown ftp:ftp /var/ftp/pub
touch /var/log/ftpd

 c. Add a welcome message with your favorite text editor to /etc/ftpwelcome

 d. With your favorite text editor, create a blank file /etc/ftpmod

 e. If you have not already done so, enable and start up the ftpd server, as shown in
Section 23.2.5.5, Example 23.1. Also add -S -A -r options to the /etc/inetd.conf
file for the ftp service, at the end of the line in that file.

 f. Test your anonymous ftp account by using the command ftp 0 with username
ftp or anonymous and no password. Test it from the Internet. Put files in the
user account /var/ftp, and retrieve files from that account locally from another
account and from the Internet. It is isolated from the rest of the system.

 3. Given the 10 steps needed to accomplish user account management shown in Section
23.3, make a table or chart of what users and groups need to be added to your sys-
tem, and what their default account parameters and group memberships should
be. Then, use the Solaris methods shown in Sections 23.3.3.1 through 23.3.3.10 to
accomplish user account creation, modification, and deletion from the command
line. What command can you use to identify all existing groups on the system?
Is there a batch mode option to useradd that allows you to create multiple user
accounts simultaneously?

 4. Add a network printer to your PC-BSD system, and outline the steps necessary to get
the printer to actually work given your installation type.

 5. If you haven’t already done so, do the prerequisites and Examples 16.26 through 16.29
in Chapter 16, Section 16.4.2.1, without using Python. Just use the UNIX commands
shown imbedded in the Python code to achieve the same results. These examples
illustrate the use of the rsync command to do file backup.

1176 ◾ UNIX: The Textbook, Third Edition

 6. What is the meaning of the term archive?

 7. What is the tar command used for? Give all its uses.

 8. You want to create a tar archive of a project that contains several directories, sub-
directories, and files, and save the archive on a USB thumb drive mounted on your
system so that you can distribute the archive to your friends.

 a. What is the pathname to a USB thumb drive mounted on your system?

 b. How would you designate a USB thumb drive as the destination for where the tar
archive would be created, as an argument to the tar command?

 9. What are the access permissions for the files on the USB thumb drive from Problem 8?

 10. Give a command line for creating a tar archive of your current directory.

 11. Give commands for compressing and keeping the archive in the backups directory in
your home directory.

 12. Give commands for restoring the backup file in Problem 11 in the ~/backups
directory.

 13. Give a command line for copying your home directory to a directory called home.
back so that access privileges and file modify time are preserved.

 14. Why is the tar command preferred over the cp -r command for creating backup
copies of directory hierarchies?

 15. Suppose that you download a file, unixbook.tar.Z from an ftp site. Give the sequence
of commands for restoring this archive and installing it in your ~/unixbook directory.

 16. Use the gtar command to create a compressed archive of a directory of your choosing
in a new directory you create named backups under your home directory. Name the
compressed archive something.tar.gz, where something is the name of the directory
you chose to backup. Show the command lines that you used to perform these tasks.

 17. Use the gtar command to restore the compressed tar archive ~/backups/something.
tar.gz you produced in Problem 23.16 into a new directory named mirrors under your
home directory. Show the command lines that you used to perform these tasks.

 18. Use the latest version of Clonezilla “live” to make a bootable clone of your PC-BSD
system disk. The source and target disks for cloning can be either both internally
mounted, or in the case of a laptop computer, internally mounted for the source,
and externally mounted in a USB or SATA enclosure for the target. The instructions
for using Clonezilla to do this procedure are found online at the Clonezilla website.
Make sure the target disk has a large enough capacity to achieve the cloning!

 To test the clone, gracefully shut down your system and remove the original source
system disk. Then replace it with the cloned target and restart the system.

UNIX System Administration Fundamentals    ◾    1177

 19. Mansoor is working with Bob on a project. He needs to be able to read, write, create,
and delete files related to the project, which are located in the Project directory in
Bob’s home directory. Bob and Mansoor are ordinary users without administrative
privileges. They wish to do this project without contacting the system administrator
to request new groups, group membership changes, sudo changes, etc. When the
project is over, Bob will remove the modify permissions on his home and the Project
directory for user mansoor himself, instead of contacting the system administrator.

 On your own PC-BSD system, in conjunction with another user, use ACLs to
accomplish the following (substituting valid usernames on your system for bob and
mansoor):

 a. Create a project directory under bob’s home directory named Project.

 b. Set the ACL on bob’s home directory so mansoor has read, write, and execute
privileges on it.

 c. Set the ACL on the Project directory so that mansoor has rwxo privileges on it.

 d. Have bob create some files in the Project directory.

 e. Have mansoor make bob’s home directory the current directory.

 f. Have mansoor test whether or not he can:

– Delete files in bob’s home directory

– Delete the Project directory from bob’s home directory

– List, create new files, or remove the files that bob put in the Project directory

 g. Have bob revoke mansoor’s x privileges on bob’s home directory and the direc-
tory Project.

 h. Have mansoor test the revocation of modify privileges from step g.

 Show verification of ACL settings at as many steps as necessary to validate
what you have done.

 20. If you give a set of users permissions to a project directory using ACLs, how can you
ensure that subdirectories that are created by the project manager beneath that proj-
ect directory provide the same access privileges to those users?

 21. Create a project directory on your system and create a Git repository in it for any num-
ber of local users on your computer system. Then use ACLs to give access to the project
directory to the users that are collaborating in the project. This should allow those users
to push to and pull from the Git repository. Have your allowed users test the repository.
Also, test the security of the repository (i.e., can nonallowed users access it?).

 See Chapter 17, Section 5.7, for more information on creating a Git repository.

 22. Adapt the Python code shown in Example 23.7 for your own particular use case.

http://taylorandfrancis.com

1179

C h a p t e r 24

ZFS Administration and Use

Objectives

• To describe and give an overview of the Zettabyte File System (ZFS)

• To illustrate the use of the zpool and zfs commands in the context of system
administration

• To give a brief ZFS commands and operations reference encyclopedia

• To give a complete example of file system backups using zfs snapshot in a Bourne
Shell script

• To detail the Solaris management of ACLs on ZFS files and directories with several
examples

• To cover the commands and primitives

 zpool, zfs, ls –v, chmod

24.1 INTRODUCTION
This chapter will detail the hands-on mechanics of a modern UNIX file system commonly
known as the Zettabyte File System (ZFS). This chapter also assumes that you have already
looked at Chapter 23, Section 23.4.3, “Adding a New Disk to the System,” particularly the
PC-BSD procedures, to gain some exposure to the GUI disk manager and its facilities in
PC-BSD.

ZFS has the following attributes: it is self-correcting at the bit level, it is secure, it is a
volume manager, and it provides its own file backup system. We show examples of using
the two most important ZFS commands, zpool and zfs, using both Solaris and PC-BSD.

There are very few differences between using those commands in Solaris and PC-BSD.
At the time this book was written, the only difference in using ZFS commands between the
two systems was in Solaris’s use and management of ACLs, the Solaris-only zfs monitor
command, and pathname specifications for command or subcommand arguments.

1180 ◾ UNIX: The Textbook, Third Edition

24.1.1 zpool and zfs Command Syntax

The following are the general syntax forms for the zpool and zfs commands.

SYNTAX

zpool subcommand [options] [option arguments] [command arguments]

Purpose: To create and manage storage pools of virtual devices such as disk drives
Commonly used options/features:

zpool create name vdev Creates a new pool with name on the spec-
ified vdev

zpool create –o copies=2 name Creates a new pool name with the property
copies set to 2

zpool destroy name Destroys, or removes, a pool name
zpool list name Lists storage space and health of pool name
zpool scrub name Verifies that the checksums on pool name

are correct
zpool status name Displays the status of pool name

SYNTAX

zfs subcommand [options] [option arguments] [command arguments]

Purpose: To create and manage datasets or file systems mapped to devices such as disk
drives

Commonly used options/features:
zfs create name Creates a dataset with name
zfs create –o copies=2 name Creates a dataset name with the property

copies set to 2
zfs destroy name Destroys, or removes, a dataset name
zfs list Lists all datasets
zfs rollback name Returns dataset name to a previous snapshot

state

24.1.2 ZFS Terminology

The following describes the basic terminology used throughout this chapter:

Boot environment: A boot environment is a bootable environment consisting of a ZFS
root file system and, optionally, other file systems mounted underneath it. Exactly
one boot environment can be active at a time.

Checksum: A 256-bit hash of the data in a file system block. The checksum capability
can range from the simple and fast fletcher4 (the default) to cryptographically strong
hashes such as SHA256.

Clone: A file system whose initial contents are identical to the contents of a snapshot.

ZFS Administration and Use    ◾    1181

Dataset: A generic name for the following ZFS components: clones, file systems, snap-
shots, and volumes. Each dataset is identified by a unique name in the ZFS name
space. Datasets are identified using the following format:

pool/path[@snapshot]
pool Identifies the name of the storage pool that contains the dataset
path A slash-delimited pathname for the dataset component
snapshot An optional component that identifies a snapshot of a dataset

Deduplication: Data deduplication is a method of reducing storage capacity needs by
eliminating redundant data. Only one unique instance of the data is actually retained
on storage media. Redundant data is replaced with a pointer to the unique data copy.

Filesystem: A ZFS dataset of type file system that is mounted within the standard system
namespace and behaves like other file systems.

Mirror: A vdev that stores identical copies of data on two or more disks. If any disk in a
mirror fails, any other disk in that mirror can provide the same data.

Pool: A logical group of devices describing the layout and physical characteristics of the
available storage. Disk space for datasets is allocated from a pool.

RAIDZ: A virtual device that stores data and parity on multiple disks.

Resilvering: The process of copying data from one device to another device is known as
resilvering. For example, if a mirror device is replaced or taken offline, the data from
an up-to-date mirror device is copied to the newly restored mirror device. This pro-
cess is referred to as mirror resynchronization in traditional volume management.

Slice: A disk partition created with partitioning software.

Snapshot: A read-only copy of a file system or volume at a given point in time.

Vdev (virtual device): A whole disk, a disk partition, a file, or a collection of the previous,
usually all of the same type. On PC-BSD, there is no performance penalty for using
disk partitions rather than entire disks. On Solaris, the write cache is disabled for
partitions, thus incurring a performance penalty. In both systems, using files as vdevs
is discouraged, except for testing purposes. A collection of vdevs is a mirror.

Volume: A dataset that represents a block device. For example, you can create a ZFS
volume as a swap device.

24.1.3 How ZFS Works

Create zpool mapped to vdev > Create ZFS file system(s) on zpool > Add files
Simply stated, you create a named zpool first, which at the time it is created is mapped or

associated with a vdev, such as a hard disk drive. Then you create one or more file systems
in that zpool. Then you add files to the file system(s). Finally, you manage the files, file sys-
tems, pools, and vdevs using the appropriate ZFS commands.

1182 ◾ UNIX: The Textbook, Third Edition

Working with ZFS in UNIX is a matter of efficiently and easily managing zpools, vdevs,
file systems, and files.

Figure 24.1 shows this relationship between files, datasets (file systems), pools, and disks.
Pool 1 has two disks mapped to it, and a dataset with a number of files in it. Pool 2 has a
single disk mapped to it, and has a dataset in it. This layering of files and datasets, pools,
and disks is the basic structure of ZFS.

24.1.4 Important ZFS Concepts

Some very important points have to be made here:

 1. Only one zpool can be mapped or associated with any vdev. So if you want to create
a zpool on a physical hard disk or one of its slices, no other existing active zpool can
be mapped to that vdev!

 2. There are seven types of vdev in ZFS:

• Disk (default): The physical hard drives in your system, usually the whole drive
or primary slice

• File: The absolute path of preallocated files/images, similar to the Section 24.2.2,
Example 24.1

• Mirror: Standard software RAID1 mirror

• Raidz1/2/3: Nonstandard distributed parity-based software RAID levels

• Spare: Hard drives marked as a hot spare for ZFS software RAID

• Cache: Device used for a level-2 adaptive read cache (L2ARC)

• Log: A separate log (SLOG) called the ZFS intent log (ZIL)

files

pool 1

disk disk disk

pool 2

dataset

dataset

files

FIGURE 24.1 ZFS component relationships.

ZFS Administration and Use    ◾    1183

 3. Unlike a traditional file system, where the mount point of the file system begins at a
particular logical drive letter, the default mount point for a zpool is root (/).

 This is how the path to a file named test.txt appears when it is in the zpool named
data1 on the file system sarwar:

 /data1/sarwar/test.txt

 Here’s how the path to a file named test.txt appears on a traditional file system:

 C:\Users\Robert\Desktop\test.txt

 When you want a ZFS file system to expand onto more than one disk, for example,
you add more disks to the zpool.

 4. A zpool can be enlarged by adding more devices, but it cannot be shrunk (at least not
at this time)!

24.2 EXAMPLE ZFS POOLS AND FILE SYSTEMS: USING
THE ZPOOL AND ZFS COMMANDS

In this section, we first reiterate a set of simple methods given in Chapter 23, to allow you
to quickly determine the logical device names of disks attached to your UNIX system.

We then present five examples that will give you some basic experience in using the
zpool and zfs commands.

24.2.1 A Quick and Easy Way to Find Out the Logical Device
Names of Disks Actually Installed on Your System

These techniques, which were presented in Chapter 23, are worth repeating here in prepa-
ration for using the zpool and zfs commands.

It is important to know how to determine, in a very quick and easy manner, what the
currently installed logical device names of disk drives actually attached and usable on
your system are. What we mean by “attached and useable” is that the disk drive is properly
connected and recognized by the system and has a device driver that the system can use to
communicate with it.

The simple methods that follow show how to determine what disk drives are attached
and usable on your system, and what the logical device names of those and any others you
might want to add to your system are. These methods are done differently in Solaris and
PC-BSD:

Solaris methods: For SCSI, SATA or IDE bus hard disk drives, type format on the
command line as superuser. The output of this command shows your main hard drive, for
example, disk 0 as /dev/dsk/c0d0s0. Type 0 to see the specifications of disk 0. When the
format> prompt appears, type quit to leave the format facility.

For USB thumb drives or hard disk drives, type rmformat on the command line as
superuser. The output of this command shows, for example, a USB thumb drive as /dev/

1184 ◾ UNIX: The Textbook, Third Edition

rdsk/c9t0d0p1. A CD or DVD writer would show up here too, usually not on the USB bus,
but on the SATA bus.

Additionally, you can use the Gparted Partition Editor as shown in Chapter 23,
Example 23.3.

PC-BSD methods: Change your current working directory to /dev. Type ls. Hard drives,
for example, show up in the ls listing as ada0, ada1, and so on. The full path to the first
slice on one of these disks is specified as /dev/ada0s1. A USB device, like a thumb drive,
would show up in the ls listing as da0, and the full path to the first slice on it would be
/dev/da0s1 or /dev/da0p1.

Additionally, you can type gpart show on the command line in a terminal window,
and it will list the drives available for slicing, such as ada0, ada1s1, da0s1, etc., for disks
and USB devices. The logical device names to all of those devices is provided in a compact
and easily understood listing.

24.2.2 Basic ZFS Examples

In this section we present six instructive, introductory examples of how to work with ZFS.
It is expected that for you to get the full benefit from them, you do them and their atten-
dant in-chapter exercises in the order presented.

The examples are as follows:

Example 24.1 The zpool Command: Using Files Instead of Disks as Vdevs

Example 24.2 The zfs Command: send, receive, snapshot

Example 24.3 Mirroring of Hard Disks on Solaris

Example 24.4 Mirroring of Hard Disks on PC-BSD

Example 24.5 Creating a ZFS Pool on a USB Thumb Drive for Solaris

Example 25.6 Creating a ZFS Pool and Dataset on a USB Thumb Drive on PC-BSD

Example 24.1: The zpool Command: Using Files Instead of Disks as Vdevs

Objective: To introduce the zpool command, implemented on files instead of disks,
and to show forms of ZFS pool creation and mirroring.

Introduction: A vdev, as defined previously, can be a physical device such as a
disk drive, a file, a single slice on a hard disk drive, or a collection of devices. Before
beginning to use ZFS on physical devices, and to practice using ZFS on an existing
file system instead of deploying ZFS on actual SATA hard disk drives, we will create
and manipulate files with the important ZFS commands.

Also, if you do not have a second hard disk drive in your computer, you can do this
example to gain an appreciation of what ZFS is.

The only difference between Solaris and PC-BSD in this example is the use of
the mkfile command. The following commands that use mkfile to create empty

ZFS Administration and Use    ◾    1185

files quickly are for Solaris. The PC-BSD equivalent of the mkfile command is the
truncate command. In PC-BSD, substitute the command truncate -s 128m
filename for the following mkfile command lines.

In case you want to use four real disks mounted and partitioned in this pre-
liminary introductory example, make a note of the full path to their device names
(e.g., /dev/dsk/c2t1d0p1 under Solaris, or /dev/ada0s1 under PC-BSD). You will be
destroying all the partition information and data on these disks, so be sure they’re
not needed!

If you make a mistake anywhere along the way, you can always start over by exe-
cuting the cleanup steps shown at the end of the example and begin again.

Prerequisites: An installation of either Solaris or PC-BSD on your system.
Procedure: Follow the steps in the order shown to complete this example.

 1. To begin, create four 128 MB files as follows (the files must be a minimum of
64 MB in size):
root@solaris:~# mkfile 128m /home/bob/disk1
root@solaris:~# mkfile 128m /home/bob/disk2
root@solaris:~# mkfile 128m /home/bob/disk3
root@solaris:~# mkfile 128m /home/bob/disk4
root@solaris:~# ls -lh /home/bob
total 1049152
-rw------T 1 root root 128M Mar 7 16:48 disk1
-rw------T 1 root root 128M Mar 7 16:48 disk2
-rw------T 1 root root 128M Mar 7 16:48 disk3
-rw------T 1 root root 128M Mar 7 16:48 disk4

 In this example, we initially create and use files to simulate disks on an
already existing file system, and we named them disk1, disk2, disk3, and disk4
to enhance that illusion.

 Also, it is assumed in the example code that the current working directory is
/home/bob unless otherwise noted.

 2. Before creating new pools you should check for existing pools to avoid confus-
ing them with the example pools we create here. You can check what pools exist
with zpool list:
root@solaris:~# zpool list

 3. Pools are created using zpool create. We can create a single disk pool using
a file as follows (you must use the absolute path to the file):
root@solaris:~# zpool create data /home/bob/disk1
root@solaris:~# zpool list
NAME SIZE USED AVAIL CAP DEDUP HEALTH ALTROOT
The default pools on the system…
data 123M 51.5K 123M 0% 1.00X ONLINE -

1186 ◾ UNIX: The Textbook, Third Edition

 4. Now we will create an actual file in the new pool:
root@solaris:~# mkfile 32m /data/data20file
root@solaris:~# ls -lh /data/data20file
-rw------T 1 root root 32M Mar 7 16:56 /data/
data20file
root@solaris:~# zpool list
NAME SIZE USED AVAIL CAP DEDUP HEALTH ALTROOT
The default pools on the system...
data 123M 32.1M 90.9M 26% 1.00X ONLINE -

 5. We will now destroy the pool data with zpool destroy:
root@solaris:~# zpool destroy data
root@solaris:~# zpool list

 Only the default pools on the system are shown.

 6. Creating a Mirrored Pool with Files
 A pool composed of a single disk doesn’t offer any redundancy! One way of

providing protection against physical disk failure is to use a mirrored pair of
disks in a pool:
root@solaris:~# zpool create data2 mirror /home/bob/disk1
/home/bob/disk2
root@solaris:~# zpool list
NAME SIZE USED AVAIL CAP DEDUP HEALTH ALTROOT
The default pools on the system...
data2 123M 51.5K 123M 0% 1.00X ONLINE -

 7. To get more information about the pool data2, we use zpool status:
root@solaris:~# zpool status data2
pool: data2
state: ONLINE
scrub: none requested
config:
 NAME STATE READ WRITE CKSUM
 data2 ONLINE 0 0 0
 mirror ONLINE 0 0 0
 /home/bob/disk1 ONLINE 0 0 0
 /home/bob/disk2 ONLINE 0 0 0

errors: No known data errors

 8. Now create a file in the data2 pool.
root@solaris:~# mkfile 32m /data2/data2file

 Note the change in the pool after we have added a file to it.
root@solaris:~# zpool list
NAME SIZE USED AVAIL CAP DEDUP HEALTH ALTROOT

ZFS Administration and Use    ◾    1187

The default pools on the system...
data2 123M 32.1M 90.9M 26% 1.00X ONLINE -

 About a quarter of the disk has been used, but more importantly the data is
now stored redundantly over two disks.

 9. Let’s test that redundancy by overwriting the first “disk” label with random
data. If you are using real hard disks, you could physically remove the disk from
the computer.
root@solaris:~# dd if=/dev/random of=/home/bob/disk1
bs=512 count=1
1+0 records in
1+0 records out

 10. ZFS automatically checks for errors when it reads/writes files, but we can force
a check with the zfs scrub command.
root@solaris:~# zpool scrub data2

 11. Let’s check the status of the pool:
root@solaris:~# zpool status
pool: data2
state: DEGRADED
status: One or more devices could not be used because the
label is missing or invalid. Sufficient replicas exist for
the pool to continue
 functioning in a degraded state.
action: Determine if the device needs to be replaced,
and clear the errors using zpool clear or fmadm repaired,
or replace the device using 'zpool replace'.
 Run zpool status –v to see device specific details.
scan: scrub completed with 0 errors on Wed Mar 6 17:42:07 2014
config:
 NAME STATE READ WRITE CKSUM
 Data2 DEGRADED 0 0 0
 mirror -0 DEGRADED 0 0 0
 /home/bob/disk1 UNAVAIL 0 0 0 corrupted data
 /home/bob/disk2 ONLINE 0 0 0

errors: No known data errors

 12. The disk we used dd on is showing as UNAVAIL (unavailable) with corrupted
data, but no data errors are reported for the pool as a whole, and we can still
read and write to the pool:
root@solaris:~# mkfile 32m /data2/data2file2
root@solaris:~# ls -l /data2/
total 131112
-rw------T 1 root root 33554432 Mar 6 17:43 data2file
-rw------T 1 root root 33554432 Mar 6 17:35 data2file2

1188 ◾ UNIX: The Textbook, Third Edition

 13. To maintain redundancy we should replace the broken disk with another. If
you are using a physical disk you can use the zpool replace command (the
zpool man page has details). However, in this file-based example we will just
remove the disk file from the mirror and recreate it.

 Devices are detached with zpool detach:
root@solaris:~# zpool detach data2 /home/bob/disk1

 14. Let’s check the status of the pool:
root@solaris:~# zpool status data2
pool: data2
state: ONLINE
scrub: scrub completed with 0 errors on Thurs Mar 6
18:00:07 2014
config:
 NAME STATE READ WRITE CKSUM
 data2 ONLINE 0 0 0
 /home/bob/disk2 ONLINE 0 0 0

errors: No known data errors

 15. Let’s remove the disk to simulate a failure and then replace it:
root@solaris:~# rm /home/bob/disk1
root@solaris:~# mkfile 128m /home/bob/disk1

 16. In order to replace it in the mirror, we need to do the following. To attach
another device we specify an existing device in the mirror to attach it to with
zpool attach:
root@solaris:~# zpool attach data2 /home/bob/disk2 /home/

bob/disk1

 17. Check the status of the pool:
root@solaris:~# zpool status data2
pool: data2
state: ONLINE
scrub: resilver completed with 0 errors on Thurs Mar 6
18:08:16 2014
config:
 NAME STATE READ WRITE CKSUM
 data2 ONLINE 0 0 0
 mirror -0 ONLINE 0 0 0
 /home/bob/disk2 ONLINE 0 0 0
 /home/bob/disk1 ONLINE 0 0 0

errors: No known data errors

 18. Adding to a Mirrored Pool
 A very critical systems administration procedure accomplished by ZFS is to add

disks to a pool without taking it offline. Let’s double the size of our data2 pool:

ZFS Administration and Use    ◾    1189

root@solaris:~# zpool list
NAME SIZE USED AVAIL CAP DEDUP HEALTH ALTROOT
The default pools on the system...
data2 123M 64.5M 58.5M 52% 1.00X ONLINE -

 19. We can use the zpool add command to add disks to the existing pool.
root@solaris:~# zpool add data2 mirror /home/bob/disk3 /

home/bob/disk4
root@solaris:~# zpool list
NAME SIZE USED AVAIL CAP DEDUP HEALTH ALTROOT
The default pools on the system...
data2 246M 64.5M 181M 26% 1.00X ONLINE -

 20. The file systems within the pool are always available. If we look at the status
now, it shows the pool consists of two mirrors:
root@solaris:~# zpool status data2
pool: data2
state: ONLINE
scrub: resilver completed with 0 errors on Wed Mar 6
17:58:17 2014
config:
 NAME STATE READ WRITE CKSUM
 data2 ONLINE 0 0 0
 mirror -0 ONLINE 0 0 0
 /home/bob/disk2 ONLINE 0 0 0
 /home/bob/disk1 ONLINE 0 0 0
 mirror -1 ONLINE 0 0 0
 /home/bob/disk3 ONLINE 0 0 0
 /home/bob/disk4 ONLINE 0 0 0

errors: No known data errors

 21. We can see where the data is currently written in our pool using zpool
iostat -v:
root@solaris:~# zpool iostat -v data2
 capacity operations bandwidth
pool alloc free read write read write
------------ ----- ----- ----- ----- ----- -----
data2 64.5M 181M 0 0 14.7K 623
 mirror 64.4M 58.6M 0 0 40.5K 1.51K
 /home/bob/disk2 - - 0 2 22.4K 22.8K
 /home/bob/disk1 - - 0 1 187 43.6K
 mirror 102K 123M 0 0 0 2.32K
 /home/bob/disk3 - - 0 0 213 22.9K
 /home/bob/disk4 - - 0 0 213 22.9K
------------------- ----- ----- ----- ----- ----- -----

1190 ◾ UNIX: The Textbook, Third Edition

 22. All the data is currently written on the first mirror pair and none on the second.
This makes sense, as the second pair of disks was added after the data was
written. If we write some new data to the pool, the new mirror will be used:
root@solaris:~# mkfile 64m /data2/data2file3
root@solaris:~# zpool iostat –v data2
 capacity operations bandwidth
pool alloc free read write read write
------------ ----- ----- ----- ----- ----- -----
data2 129M 117M 0 1 14.4K 17.2K
 mirror 83.6M 39.4M 0 1 38.5K 15.4K
 /home/bob/disk2 - - 0 2 22.0K 27.6K
 /home/bob/disk1 - - 0 1 177 55.3K
 mirror 45.4K 77.6M 0 0 0 256K
 /home/bob/disk3 - - 0 9 121 268K
 /home/bob/disk4 - - 0 9 121 268K
------------------- ----- ----- ----- ----- ----- -----

 23. We see how a little more of the data has been written to the new mirror than to
the old: ZFS tries to make the best use of all the resources in the pool. Now do
these in-chapter exercises, and then continue onto the next step.

EXERCISE 24.1

If you have not already done so, execute all of the steps of Example 24.1 in PC-BSD using
proper commands and pathnames.

EXERCISE 24.2

In Example 24.1, step 4, what is the pathname to datafile20?

EXERCISE 24.3

If you were to use a text editor like emacs to create a text file named text1.txt in the file
system named data, how would you designate the complete pathname to that text file?

EXERCISE 24.4

In Example 24.1, after step 6 was executed correctly, and you created a text file with emacs
in the data2 file system, would the pathnames to the two mirrored versions of that text file
be different? In other words, could you edit each one of them separately by designating dif-
ferent pathnames to them?

EXERCISE 24.5

In Example 24.1, step 19, could you add a single disk into the mirrored data2 zpool, instead
of the two disks specified?

ZFS Administration and Use    ◾    1191

EXERCISE 24.6

In Example 24.1, step 20, are the mirrors named mirror-0 and mirror-1 mirrors of each
other?

 24. To clean up after doing our work, let’s delete everything we created in this
example.

 From the root directory, destroy the data2 file system and its files.
root@solaris:~# zfs destroy -r data2

 25. Next, destroy the data2 zpool.
root@solaris:~# zpool destroy data2

 26. Finally, destroy the disk simulation files.
root@solaris:~# rm /home/bob/disk*
root@solaris:~#

Conclusion: We can use the zpool command and its create subcommand to
associate or map file systems to vdevs, whether the vdev is a file itself or a disk drive.

Example 24.2: The zfs Command: Send and Receive, Snapshot

Objectives: The following is a complete Solaris example of using the commands zfs
send and zfs receive. Its objective is to show how to create a file system with
zfs and work with file systems.

Introduction: In the example, we backup a file system with an incremental update,
from one file system to another, on the same zpool and vdev. With just the minor
syntactic changes shown, it can be adapted to PC-BSD.

As with Example 24.1, this example creates a file in your home directory that emu-
lates a vdev, so you don’t have to have a second hard disk available! This is the easiest,
most cost-effective technique, and the best for practicing and developing your basic
skills with ZFS.

What the example does: It backs up a file system named data in the zpool named
sender to another file system named backup in the same pool. The data file system
contains a file we create named test.txt. It uses the snapshot subcommand of the
zfs command to achieve this.

If you make a mistake anywhere along the way, you can always start over by exe-
cuting the cleanup steps shown at the end of the example and begin again.

Prerequisites: An installation of either Solaris or PC-BSD on your system, having
complete Example 24.1.

Procedure: To accomplish the objectives of this example, do the following steps in
the order presented.

 1. Become the superuser.
bob@solaris:~$ su

1192 ◾ UNIX: The Textbook, Third Edition

 2. Create the vdev as a file.
root@solaris:~# mkfile -v 100m /home/bob/master
In PC-BSD use this command-
truncate –s 100m /usr/home/bob/master

 3. Create a zpool in that vdev named sender.
root@solaris:~# zpool create sender /home/bob/master
In PC-BSD use this command:
zpool create sender /usr/home/bob/master

 4. Create a ZFS file system, named data, in the sender zpool.
root@solaris:~# zfs create sender/data

 5. Create a test file in the sender/data ZFS file system.
root@solaris:~# echo "created: 09:58" > /sender/data/
 test.txt

 6. Create a snapshot of the ZFS file system named sender/data.
root@solaris:~# zfs snapshot sender/data@1

 7. Let’s examine the location where the snapshot has been saved. First, use the zfs
list command with the snapshot command argument.
root@solaris:~# zfs list -t snapshot
NAME USED AVAIL REFER MOUNTPOINT
...<Output truncated>...
sender/data@1 0 - 31.5K -

 8. By default the snapshot location is hidden. To unhide it, use the zfs set command.
root@solaris:~# zfs set snapdir=visible sender/data

 9. Let’s see what the contents of the data file system are.
root@solaris:~# ls -la /sender/data
total 8
drwxr-xr-x 3 root root 3 Oct 25 07:30 .
drwxr-xr-x 3 root root 3 Oct 25 07:28 ..
dr-xr-xr-x 4 root root 4 Oct 25 07:28 .zfs
-rw-r--r-- 1 root root 15 Oct 25 07:30 test.txt

 10. The snapshot directory that contains the first snapshot is under .zfs, as shown.
So let’s change to the directory that contains it, and use ls –la to see what is in
that directory.
root@solaris:~# cd /sender/data/.zfs/snapshot/1
root@solaris:/sender/data/.zfs/snapshot/1# ls -la
total 5
drwxr-xr-x 2 root root 3 Oct 25 07:30 .
dr-xr-xr-x 3 root root 3 Oct 25 07:30 ..
-rw-r--r-- 1 root root 15 Oct 25 07:30 test.txt

ZFS Administration and Use    ◾    1193

 The file test.txt in this directory is a “frozen” picture of what was contained
in the /sender/data file system at the time we did step 6.

 11. Return to the root directory.
root@solaris:/sender/data/.zfs/snapshot/1# cd
root@solaris:~#

 12. Create a ZFS file system named backup in the sender zpool.
root@solaris:~# zfs create sender/backup

 13. Send the snapshot to the backup file system.
root@solaris:~# zfs send sender/data@1 | zfs receive -F

sender/backup

 After this command executes, the file test.txt is in the backup file system.

 14. Set the sender/backup file system to read only to prevent data corruption.
Make sure to do this before accessing anything in the sender/backup file
system.
root@solaris:~# zfs set readonly=on sender/backup

 15. Now we will make some changes in the original file. Use echo to update the
original test.txt file to simulate changes in the data file system.
root@solaris:~# echo "'date'" >> /sender/data/test.txt

 16. Create a second snapshot of sender/data.
root@solaris:~# zfs snapshot sender/data@2

 17. Send the differences. You may get an error message saying that the destination
has been modified if you did not set the sender/data file system to read only
three commands previously in step 14.
root@solaris:~# zfs send -i sender/data@1 sender/data@2 |
zfs receive sender/backup

 18. Optionally, at this point you could use ssh to send the file system to another
zpool on another machine such as backup_server (where you need to supply
the IP address and go into the root account), as follows:
root@solaris:~# zfs send sender/data@1 | ssh backup_server
zfs receive backup/data@1

 19. Now let’s take a look at what is in the second snapshot directory.
root@solaris:~# cd /sender/data/.zfs/snapshot/2
root@solaris:/sender/data/.zfs/snapshot/2# ls -la
total 5
drwxr-xr-x 2 root root 3 Oct 25 07:30 .
dr-xr-xr-x 4 root root 4 Oct 25 07:46 ..
-rw-r--r-- 1 root root 58 Oct 25 07:45 test.txt

1194 ◾ UNIX: The Textbook, Third Edition

 20. Let’s look at the contents of the test.txt file.
root@solaris:/sender/data/.zfs/snapshot/2# more test.txt
created: 09:58
Saturday, October 25, 2014 07:45:16 AM PDT

 21. Now let’s compare what is in the second snapshot directory to the sender and
backup file systems.
root@solaris:/sender/data/.zfs/snapshot/2# cd
root@solaris:~# cd /sender/data
root@solaris:/sender/data# ls
test.txt
root@solaris:/sender/data# more test.txt
created: 09:58
Saturday, October 25, 2014 07:45:16 AM PDT
root@solaris:/sender/data# cd ..
root@solaris:/sender# cd backup
root@solaris:/sender/backup# ls
test.txt
root@solaris:/sender/backup# more test.txt
created: 09:58
Saturday, October 25, 2014 07:45:16 AM PDT

 22. Return to the root.
root@solaris:/sender/backup# cd
root@solaris:~#

 Now do these in-chapter exercises, and then continue onto the next step.

EXERCISE 24.7

If you have not already done so, execute all the steps of Example 24.2 in PC-BSD using
proper commands and pathnames.

EXERCISE 24.8

What commands would you use to make the current working directory the one that con-
tains the second snapshot?

EXERCISE 24.9

What are the contents of the first snapshot file, test.txt?

EXERCISE 24.10

Redo Example 24.2 using two different zpools named source and target. Create a file system
on a pool source named origin, and create a file system on a pool target named destina-
tion. Instead of using the echo command to create the file test.txt in the source/origin

ZFS Administration and Use    ◾    1195

file system, use your favorite text editor, like emacs. Then create a couple of snapshots of
origin and destination, making some changes in test.txt with emacs. Finally, use the tech-
niques shown in Example 24.2 to verify that the snapshots indeed contain the changes you
made with emacs in test.txt.

EXERCISE 24.11

If you have two or more hard disk drives on your UNIX system, redo Exercise 24.8 so that
the zpools are created on actual disks rather than on files that simulate disks.

 23. To clean up after doing our work, let’s delete everything we created in this
example. Notice that destroying the datasets destroys the snapshots.

 From the root directory, destroy the backup file system and its data.
root@solaris:~# zfs destroy -r sender/backup

 24. Next, destroy the data file system and its data.
root@solaris:~# zfs destroy -r sender/data

 25. Next, destroy the sender zpool.
root@solaris:~# zpool destroy sender

 26. Finally, delete the disk simulation file.
root@solaris:~# rm /home/bob/master
root@solaris:~#

 For PC-BSD systems, the syntax for deleting the disk simulation file is:
rm /usr/home/bob/master

Conclusion: You can use zfs send/receive as a backup mechanism, either locally
between two hard disks attached to the system, or between systems over a network.

Example 24.3: Mirroring of Hard Disks on Solaris

Objectives: To mirror the boot disk, sometimes called the system disk, onto another
hard disk that is added to the system sometime after the initial build of Solaris.

Introduction: The following example illustrates one of the most important disk
maintenance procedures a user can perform: the mirroring of a physical device using
zpool attach. In the example, we mirror a Solaris boot disk onto another hard
disk of equal size. This is important because if one of the hard disks, perhaps your
original system disk, fails, you have an exact, bootable duplicate of it in your machine
with which you can start up the system again.

The resilvering operation for the 1 TB hard disk in the example, with very little
data on it, takes about five to ten minutes.

If you make a mistake anywhere along the way, you can always start over by exe-
cuting the cleanup step shown at the end of the example and begin again.

1196 ◾ UNIX: The Textbook, Third Edition

Prerequisites:

 1. Using Solaris.
 2. That you have previously completed Example 24.2.
 3. That you have correctly connected and put a single primary partition on a

second hard disk on your system.
 4. That you have previously determined the logical device name and the full path

to it using the methods “A Quick and Easy Way to Find Out the Logical Device
Names of Disks Actually Installed on Your System” from Section 24.2.1. The
complete logical device names of our main hard disk (the boot disk with the
operating system and all your files on it) and the second hard disk drive we want
to mirror it to are /dev/dsk/c7t1d0 and /dev/dsk/c7t2d0. On your system they
may not be exactly the same, but they will be very similar.

 5. The size in bytes of rpool (the name of the default system pool for Solaris) is
smaller than or equal to the size of the primary partition on the second hard
disk drive you will mirror rpool to.

Procedure: Do the following steps in the order shown to meet the objectives.

 1. Become the superuser.
bob@solaris:~$ su
Password: xxx
root@solaris:~#

 2. Use the attach subcommand of zpool to create a mirror of your main system
disk. Be sure to specify the complete pathname to the devices, as shown.
root@solaris:~# zpool attach rpool /dev/dsk/c7t1d0 /dev/

dsk/c7t2d0

 Make sure to wait until resilver is done before rebooting.

 3. While the resilvering is happening, check the status of the resilvering process.
root@solaris:~# zpool status
pool: rpool
state: DEGRADED
status: One or more devices is currently being resilvered.

The pool will continue to function in a degraded
state.

action: Wait for the resilver to complete.
Run 'zpool status -v' to see device specific details.
scan: resilver in progress since Mon Oct 27 06:30:26 2014
32.4G scanned
9.98G resilvered at 102M/s, 30.80% done, 0h3m to go
config:
 NAME STATE READ WRITE CKSUM
 rpool DEGRADED 0 0 0
 mirror-0 DEGRADED 0 0 0

ZFS Administration and Use    ◾    1197

 c7t1d0 ONLINE 0 0 0
 c7t2d0 DEGRADED 0 0 0 (resilvering)

 4. Check the status of the resilvering again. This time, it is done and rpool is back
online as a two-disk mirror.
root@solaris:~# zpool status
pool: rpool
state: ONLINE
scan: resilvered 32.4G in 0h9m with 0 errors on Mon Oct 27
06:40:15 2014
config:
 NAME STATE READ WRITE CKSUM
 rpool ONLINE 0 0 0
 mirror-0 ONLINE 0 0 0
 c7t1d0 ONLINE 0 0 0
 c7t2d0 ONLINE 0 0 0

errors: No known data errors

root@solaris:~#

 5. Use the format command, and its verify subcommand, to check that the
new disk has been formatted, sliced, and contains a slice 0 for the boot partition
information. In the following format display, the original system disk is disk 0
and the newly added disk is disk 1.
root@solaris:~# format
Searching for disks...done
AVAILABLE DISK SELECTIONS:
 0. c7t1d0 <ATA-ST1000DM003-1CH1-CC49-931.51GB>
 /pci@0,0/pci103c,1609@11/disk@1,0
 1. c7t2d0 <ATA-ST1000DM003-1CH1-CC49-931.51GB>
 /pci@0,0/pci103c,1609@11/disk@2,0
Specify disk (enter its number): 1
selecting c7t2d0
[disk formatted]
/dev/dsk/c7t2d0s1 is part of active ZFS pool rpool. Please
see zpool(1M).
FORMAT MENU:
 disk - select a disk
 type - select (define) a disk type
 partition - select (define) a partition table
 current - describe the current disk
 format - format and analyze the disk
 fdisk - run the fdisk program
 repair - repair a defective sector
 label - write label to the disk
 analyze - surface analysis
 defect - defect list management

1198 ◾ UNIX: The Textbook, Third Edition

 backup - search for backup labels
 verify - read and display labels
 inquiry - show disk ID
 volname - set 8-character volume name
 !<cmd> - execute <cmd>, then return
 quit
format> verify

Volume name = < >
ascii name = <ATA-ST1000DM003-1CH1-CC49-931.51GB>
bytes/sector = 512
sectors = 1953525167
accessible sectors = 1953525134
Part Tag Flag First Sector Size Last Sector
 0 BIOS_boot wm 256 256.00MB 524543
 1 usr wm 524544 931.26GB 1953508750
 2 unassigned wm 0 0 0
 3 unassigned wm 0 0 0
 4 unassigned wm 0 0 0
 5 unassigned wm 0 0 0
 6 unassigned wm 0 0 0
 8 reserved wm 1953508751 8.00MB 1953525134

format>quit
root@solaris:~#

 6. We can see from the preceding format verify that the new disk has been format-
ted, sliced, and contains a slice 0 for the boot partition information. Now we
need to make the new disk bootable.
root@solaris:~# /usr/sbin/bootadm install-bootloader
root@solaris:~#

EXERCISE 24.12

To test the usability of the new hard disk in the mirrored pair, shut down your machine
gracefully. Then disconnect and remove the first boot disk from the machine. Finally,
reboot the machine with only the new hard disk in the system. What is the status of the
pool you attached the second hard disk to as a mirror after a successful reboot? After doing
this exercise, you may replace the original boot disk and boot into it normally. Do the
remaining step at your discretion.

 7. If you want to retain this two-disk mirror, stop. If you want to detach the second
hard disk from the pool, thus destroying the mirror, do the following:
root@solaris:~# zpool detach rpool /dev/dsk/c7t1d0
root@solaris:~#

Conclusion: You have created a two-disk mirror of the boot disk with another
equal-sized hard disk using zpool attach. Additionally, you have used the

ZFS Administration and Use    ◾    1199

format command subcommands to check on the integrity of the new disk you
added.

Example 24.4: Mirroring of Hard Disks on PC-BSD

Objectives: To mirror the boot disk, sometimes called the system disk, onto another
hard disk that is added to the system sometime after the initial build of PC-BSD.

Introduction: The following example illustrates one of the most important disk
maintenance procedures a user can perform: the mirroring of a physical device using
zpool attach. In the example, we mirror a PC-BSD boot disk onto another hard
disk of equal (or greater) size.

This is important because if one of the hard disks, perhaps your original system
disk, fails, you have an exact, bootable duplicate of it in your machine with which you
can start up the system again. This system disk may also have all of your user datasets
on it. You can then replace the failed disk and in a few simple ZFS steps, restoring the
integrity and redundancy of your system without taking it offline!

This example accomplishes the same thing that the Clonezilla Live program illus-
trated in Chapter 23 does, but with one significant difference. Whereas Clonezilla
Live “clones” an entire disk, including the boot sectors, at only one discreet instant in
time, ZFS zpool attach applied to a mirrored pair that includes the system disk
creates a constantly mirrored “clone” of the system disk and any other datasets on it.
This is critical, because you never know when your system disk is going to fail. You
can have any number of backup schemes in place, as shown in Chapter 23 and this
chapter as well, to save user datasets with rolling, incremental backups using rsync
or zfs snapshot. But this example’s methodology allows you to constantly have
an exact clone of your entire system available as long as it is running and active.

Of course, a more advanced and necessarily complex technique for doing what is
shown here would involve multiple disks, including a separate system disk, higher-
level RAIDZ dataset disks, and even the disk that holds the ZIL.

If you make a mistake anywhere along the way, you can always start over by exe-
cuting the cleanup step shown at the end of the example and begin again. Depending
on how far you go in the procedure, you can also reformat the new disk with the
gpart command and restart from the beginning.

Prerequisites:

 1. Using PC-BSD.
 2. That you have previously completed Example 24.3.
 3. That you have correctly connected and put a second hard disk onto your system,

and it is unpartitioned but perhaps has a GPT partition scheme and table on it.
It should also be large enough to accommodate everything on the original sys-
tem disk partition we are going to use.

 4. That you have previously determined the logical device name and the full path
to it using the methods “A Quick and Easy Way to Find Out the Logical Device

1200 ◾ UNIX: The Textbook, Third Edition

Names of Disks Actually Installed on Your System” from Section 24.2.1. The
complete logical device names, including the appropriate partitions on those
disks, of our original hard disk (the boot disk with the operating system and all
your files on it) and the second hard disk drive we want to mirror it to are /dev/
ada0s1 and /dev/ada1p3. On your system they may not be exactly the same, but
they will be very similar.

 5. The size in bytes of tank (the name of the default system pool for our PC-BSD)
is smaller than or equal to the size of the partition on the second hard disk drive
you will mirror tank to.

Procedure: Do the following steps in the order shown to meet the objectives.

 1. Become the superuser.
[bob@pcbsd-5867] ~# su
Password: xxx
[bob@pcbsd-5867] ~#

 2. Having previously determined the logical device name to the new hard disk
to be ada1, you should delete the ZFS metadata associated with all partitions
that may have previously existed on it. This also clears the partitions on
ada1.
[bob@pcbsd-5867] ~# zpool labelclear -f ada1

In the next steps, we will prepare partitions on the new hard disk to accommodate
the mirroring process. If the new disk does not have a GPT partition table on it, you
can use the following gpart command:

bob@pcbsd-5867]~# gpart create -s gpt ada1

 3. You then have to add a boot partition to the new hard disk, using the gpart
command, so that you will be able to boot to it in the event of a failure of the
original system disk.
[bob@pcbsd-5867] ~# gpart add -b 40 -l gptboot -s 512k -t

freebsd-boot ada1
ada1p1 added

 4. You then have to add a swap space partition to the new hard disk.
[bob@pcbsd-5867] ~# gpart add -s 1G -l swap1 -t freebsd-
swap ada1
ada1p2 added

 5. You then have to add the primary partition that will contain the tank1 zpool
and all file systems attached to it.
[bob@pcbsd-5867] ~# gpart add -t freebsd-zfs -l zfs1 ada1
ada1p3 added

ZFS Administration and Use    ◾    1201

 6. You then have to put the bootloader code on the boot partition you created in
step 3.
[bob@pcbsd-5867] ~# gpart bootcode -b /boot/pmbr -p /boot/
gptzfsboot -i 1 ada1
bootcode written to ada1

 7. You can then examine the partition scheme for all disks attached to your system.
[bob@pcbsd-5867] ~# gpart show
=>	 	 	 	 	 	 	 	 	63	 	 	 	 	 	 	 156301425	 	 ada0	 	 MBR	 	 (75G)
	 	 	 	 	 	 	 	 	 	 	 63	 	 	 	 	 	 	 	 	 	 	 	 	 	 63	 	 	 	 	 	 -	free	-	 	 (32K)
	 	 	 	 	 	 	 	 	 	 126	 	 	 	 	 	 	 156301299	 	 	 	 	 1	 	 freebsd	 	 [active]	 	 (75G)
	 	 	 	 156301425	 	 	 	 	 	 	 	 	 	 	 	 	 	 63	 	 	 	 	 	 -	free	-	 	 (32K)

=>	 	 	 	 	 	 	 	 	 	0	 	 	 	 	 	 	 156301299	 	 ada0s1	 	 BSD	 	 (75G)
	 	 	 	 	 	 	 	 	 	 	 	 0	 	 	 	 	 	 	 152086528	 	 	 	 	 1	 	 freebsd-zfs	 	 (73G)
	 	 	 	 152086528	 	 	 	 	 	 	 	 	 4194304	 	 	 	 	 2	 	 freebsd-swap	 	 (2.0G)
	 	 	 	 156280832	 	 	 	 	 	 	 	 	 	 	 20467	 	 	 	 	 	 -	free	-	 	 (10M)

=>	 	 	 	 	 	 	 	 	34	 	 	 	 	 	 	 156249933	 	 ada1	 	 GPT	 	 (75G)
	 	 	 	 	 	 	 	 	 	 	 34	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 6	 	 	 	 	 	 -	free	-	 	 (3.0K)
	 	 	 	 	 	 	 	 	 	 	 40	 	 	 	 	 	 	 	 	 	 	 	 1024	 	 	 	 	 1	 	 freebsd-boot	 	 (512K)
	 	 	 	 	 	 	 	 	 1064	 	 	 	 	 	 	 	 	 2097152	 	 	 	 	 2	 	 freebsd-swap	 	 (1.0G)
	 	 	 	 	 	 2098216	 	 	 	 	 	 	 154151751	 	 	 	 	 3	 	 freebsd-zfs	 	 (74G)

=>	 	 	 	 	 	 	 	 	34	 	 	 	 	 	 	 156249933	 	 diskid/DISK-5RW32T4J	 	 GPT	 	 (75G)
	 	 	 	 	 	 	 	 	 	 	 34	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 6	 	 	 	 	 -	free	-	 	 (3.0K)
	 	 	 	 	 	 	 	 	 	 	 40	 	 	 	 	 	 	 	 	 	 	 	 1024	 	 	 	 	 1	 	 freebsd-boot	 	 (512K)
	 	 	 	 	 	 	 	 	 1064	 	 	 	 	 	 	 	 	 2097152	 	 	 	 	 2	 	 freebsd-swap	 	 (1.0G)
	 	 	 	 	 	 2098216	 	 	 	 	 	 	 154151751	 	 	 	 	 3	 	 freebsd-zfs	 	 (74G)

[bob@pcbsd-5867] ~#

 What this listing shows is that the third partition on ada1 (ada1p3) is ade-
quately sized to accommodate the creation of a mirror with ada0s1a—that is,
73G of ada1p3 (74 GB is greater than 73 GB).

 8. To create the mirror, use the attach subcommand of zpool.
[bob@pcbsd-5867] ~# zpool attach tank /dev/ada0s1a /dev/
ada1p3

 Make sure to wait until resilver is done before rebooting.
 If you boot from pool tank, you may need to update boot code on newly

attached disk /dev/ada1p3.
 Assuming you use GPT partitioning and da0 is your new boot disk, you may

use the following command:
gpart bootcode -b /boot/pmbr -p /boot/gptzfsboot -i 1 da0
[bob@pcbsd-5867] ~#

1202 ◾ UNIX: The Textbook, Third Edition

 9. To check the progress of the resilvering operation, use the zpool status
command.
[bob@pcbsd-5867] ~# zpool status
pool: tank
state: ONLINE
status: One or more devices is currently being resilvered.
The pool will continue to function, possibly in a degraded
state.
action: Wait for the resilver to complete.
scan: resilver in progress since Wed Oct 29 13:37:27 2014
 2.06G scanned out of 2.83G at 23.2M/s, 0h0m to go
 2.06G resilvered, 72.79% done
config:
 NAME STATE READ WRITE CKSUM
 tank ONLINE 0 0 0
 mirror-0 ONLINE 0 0 0
 ada0s1a ONLINE 0 0 0
 ada1p3 ONLINE 0 0 0(resilvering)

errors: No known data errors

 Wait until the resilvering is complete.

EXERCISE 24.13

To test the usability of the new hard disk in the mirrored pair, shut down your machine
gracefully. Then, disconnect and remove the original boot disk (in our case, /dev/ada0)
from the machine. Finally, reboot the machine with only the new hard disk in the system.
What is the status of the pool you attached the second hard disk to as a mirror after a suc-
cessful reboot? After doing this exercise, you may replace the original boot disk and boot
into it normally. Do the remaining step at your discretion.

 10. To detach, or destroy, the two-disk mirror, use the detach subcommand of
zpool.

[bob@pcbsd-5867] ~# zpool detach tank /dev/ada1p3
[bob@pcbsd-5867] ~#

Conclusion: You have created a postinstallation two-disk mirror of the system/
boot disk, with another appropriately sized hard disk you have added to the system.
In addition, you have used the gpart command to prepare that new disk for ZFS
mirroring.

Along with the use of the gpart command to manage partitions of a new disk
you have added to your system, you can also use the PC-BSD 10 Disk Manager from
the Control Panel. The Disk Manager is a GUI tool that allows management of ZFS
file systems, ZFS pools, and the disks on the system. It can do many of the same ZFS
operations we showed as command line-based procedures in the previous example.

ZFS Administration and Use    ◾    1203

But to get more control over the whole range of subcommands and options of the
zpool and zfs commands, and to be able to integrate that control with other UNIX
commands, the command line is the more inclusive method of working with ZFS.

Example 24.5: Creating a ZFS Pool on a USB Thumb Drive for Solaris

Objectives: To use zpool create to create a ZFS pool on a USB thumb drive.
Introduction: The following example uses the most essential command in ZFS, the

zpool command, with the subcommand create applied to a USB thumb drive
on your Solaris system. The real power of ZFS as a file system/volume manager/file
backup system is most obvious in multidisk computer systems, where redundancy for
files and directories can be established across two or more different physical disks. In
addition, this redundancy can be extended to single-disk systems with the use of the
zfs set property command, as shown in Problem 24.9 at the end of the chapter.

Many UNIX systems with a GUI interface like Gnome or KDE (e.g., Oracle Solaris,
the current Solaris family UNIX system) automatically mount the USB thumb drive
on the file system, and make it available as a desktop icon. This is similar to what you
would experience on non-UNIX systems.

If the only thing you want to do is use the USB thumb drive to transfer files (e.g.,
text files, C program source code, LibreOffice documents, and so on) to and from the
computer, you do not have to use the procedures of this example to accomplish that.

If you make a mistake anywhere along the way, you can always start over by exe-
cuting the cleanup step shown at the end of the example and begin again.
Prerequisites:

 1. That you have a USB thumb drive that is usable on your system and has one partition
and no data on it. More specifically, if the USB thumb drive is by default formatted to
FAT32, then there is a high probability that it will automatically mount and show up
as an icon on your Gnome desktop in Solaris. You can also type the following on the
command line as superuser, to enable automounting of removable media:

svcadm enable rmvolmgr

If your USB thumb drive does not automount, or does not appear as an icon on
the Gnome desktop in Solaris, use another USB thumb drive.

 2. That there is no pool named backup (or any other pool) already defined on the pri-
mary partition of the USB thumb drive, and there is no pool named test1 on your
Solaris system. To find this out, type zpool list on the command line when the
USB thumb drive has been inserted and automounts.

 3. That you can determine the logical device name and the full path to it using the
methods “A Quick and Easy Way to Find Out the Logical Device Names of Disks
Actually Installed on Your System” from Section 24.2.1. The full path to our USB
thumb drive is /dev/rdsk/c9t0do for Solaris. This may not be the same designation as
the USB thumb drive on your system, but you can substitute your device designations
for them.

1204 ◾ UNIX: The Textbook, Third Edition

Procedure: To complete the objectives of this example, do the following steps in
the order presented.

 1. Become the superuser.

bob@solaris:~$ su
Password: xxx

 2. Put the thumb drive into a USB port on the computer, and it should automati-
cally mount and appear as an icon on your Gnome desktop in Solaris. Determine
the logical device name of the USB thumb drive, most easily done by typing the
rmformat command on the command line, as shown in Section 24.2.1.

 3. Create the pool, which we will name backup, on the USB thumb drive.

root@solaris:~# zpool create backup /dev/rdsk/c9t0d0

When the shell prompt reappears, the pool has been built.
Possible error messages:
• Not designating the proper full pathname to the USB thumb drive as a vdev.

To create a zpool you must designate the full path to the drive.
• You should designate the entire disk, not just a single partition on it, as the

vdev for zpool create.

 4. List the zpools on your system.

root@solaris:~# zpool list

 You should see your new zpool backup listed as /backup, along with any
other pools that have been created by default. The listing for your new pool
should also show the amount of disk space used on the drives, the total available
disk space, and its mount point.

 5. Check the listing using the df command.

root@solaris:~# df -h

 In the listing you should see the new pool you created shown as /backup,
right at the bottom of all the other pools created on your system by default at
installation.

 If you want to keep this USB thumb drive and the pool you created on it in
the preceding steps so that you can do Problem 24.9 at the end of the chapter, do
not continue onto the next step. If you want to reuse this USB thumb drive for
another purpose, and do not want to do Problem 24.9 at the end of the chapter,
proceed to the next step.

 6. Now destroy the pool and exit as superuser.

root@solaris:~# zpool destroy backup
root@solaris:~# exit

ZFS Administration and Use    ◾    1205

 Be aware that destroying the zpool will then allow you to remove the USB
thumb drive from the machine. If you want to use that thumb drive for another
purpose, you may have to reformat it to FAT32 and erase the data on it.

 Conclusion: You have created and destroyed a zpool on a USB thumb drive.
If you did not destroy it, you can now have datasets placed on it, and directo-
ries and files. All of the ZFS commands in this chapter can be used to manage
zpools and datasets on this drive. You can also use this drive as a backup for
user data files. See Problems 24.9 and 24.10 at the end of the chapter.

Example 24.6: Creating a ZFS Pool on a USB Thumb Drive for PC-BSD

Objectives: To create a zpool and a ZFS dataset in that pool on a thumb drive in
PC-BSD.
Introduction:

The following example uses the most essential command in ZFS, the zpool
command, with the subcommand create applied to a USB thumb drive on your
PC-BSD system. The real power of ZFS on PC-BSD can be harnessed to common,
readily available hardware vdevs that are available to place on the system by an ordi-
nary user.

If the only thing you want to do is use a USB thumb drive to transfer files (such as
text files, C program source code, LibreOffice documents, and so on) to and from the
computer, you do not have to use the procedures of this example to accomplish that.
Simply put the USB thumb drive in a USB port on the computer, and when the Mount
Tray recognizes it, make the choice to mount it.

When finished transferring files, unmount it in the Mount Tray and remove it
from the computer.

Many UNIX systems with a GUI interface, like Gnome or KDE, automatically
mount the USB thumb drive on the file system, and make it available as a desktop
icon. This is similar to what you would experience on non-UNIX systems. PC-BSD
does not do this, for security and other administrative reasons. PC-BSD under KDE
does make a system tray icon, known as the Mount Tray, available to allow you to
semiautomatically mount things like USB thumb drives, and so on. It can be found in
the lower-right corner of the screen, and if you right-click on it, you can make several
pop-up menu choices affecting the Mount Tray.

From the KDE Kickoff Applications Launcher, you can make the System Settings
menu choice. One of the System Settings icons is Removable Devices. When you
click on this icon, you can turn automounting on or off, and also configure other set-
tings for removable media. By default, automounting is off. This setting is indepen-
dent of what the Mount Tray does. If you turn off automounting and quit the Mount
Tray, mounting of removable media such as USB thumb drives or hard drives can be
done manually.

If you make a mistake anywhere along the way, you can always start over by exe-
cuting the cleanup step shown at the end of the example then begin again.

1206 ◾ UNIX: The Textbook, Third Edition

Prerequisites:

 1. That you have a USB thumb drive that is usable on your system, and possibly has
partitions and data on it. More specifically, if the USB thumb drive is by default for-
matted to FAT32, then there is a high probability that it will be recognized by the
PC-BSD Mount Tray.

 If your USB thumb drive is not recognized by the Mount Tray, use another USB
thumb drive.

 2. That you can determine the logical device name and the full path to it using the meth-
ods “A Quick and Easy Way to Find Out the Logical Device Names of Disks Actually
Installed on Your System” from Section 24.2.1. The full path to our USB thumb drive
is /dev/da0 for PC-BD. This may not be the same designation as the USB thumb drive
on your system, but you can substitute your device designations for them.

 3. That you have done Example 23.5 in Chapter 23, Section 23.4.3.

Procedure: All commands are shown in bold type and are typed at the command line.

 1. Put the thumb drive into the USB port on the computer. If it is FAT32 format-
ted, it will be recognized by the Mount Tray. Do not mount it with the Mount
Tray facility!

 2. Open a console window and type the following in it to become the superuser:

[bob@pcbsd-4382] ~% su
Password: xxx
root@pcbsd-4382:/usr/home/bob #

 3. Launch the Disk Manager with a GUI. You will use the Disk Manager to easily
delete partitions from the thumb drive, and destroy its partition table. So make
sure there is no data you want to keep on the thumb drive.

root@pcbsd-4382:/usr/home/bob # pc-zmanager
Locale: "en"
Disk Manager launches.

 4. In the Disks tab, right-click on any of the partitions that exist on da0 (the thumb
drive itself should appear as da0, and any partitions should appear as da0p1,
da0p2, etc.), and make the choice Destroy This Slice. Do this for all partitions.
If none exist, go to the next step.

 5. In the Disks tab, right-click on the thumb drive (da0) and make the choice
Delete Partition Table.

 6. In the Disks tab, right-click on the thumb drive (da0) and make the choice Create
GPT partition table. Now the thumb drive should be listed as “Available.”

 7. Kill the Disk Manager by clicking on the kill window button in the upper-right
corner of the Disk Manager GUI window.

ZFS Administration and Use    ◾    1207

 8. You will now use the gpart command to create a primary partition on the
thumb drive. The file system created on this partition will be a FreeBSD ZFS file
system. It will be added as da0p1.

root@pcbsd-4382:/usr/home/bob # gpart add -t freebsd-zfs
-l zfs1 /dev/da0

da0p1 added

 9. You can now create a zpool named test3 on this new primary partition on the
thumb drive.

root@pcbsd-4382:/usr/home/bob # zpool create test3/dev/
da0p1

 10. You can now create a file system named newfilesystem on the zpool test3.

root@pcbsd-4382:/usr/home/bob # zfs create test3/
newfilesystem

 11. Obtain a listing of the datasets on your computer. Several datasets will be listed,
including your home directory. Notice in the listing that the mount point of
each dataset is given in the last column. This is the path that you designate to
the datasets’ directory. If you put files in that directory, they are part of that file
system.

root@pcbsd-4382:/usr/home/bob # zfs list
NAME USED AVAIL REFER MOUNTPOINT
output truncated...
test3 81.5K 7.02G 19K /test3
test3/newfilesystem 19K 7.02G 19K /test3/newfilesystem

 To put files in the ZFS dataset newfilesystem, put them in the directory
/test3/newfilesystem.

 12. If you want to continue using this thumb drive as an additional drive on
your system, stop here. Be aware that if you remove the thumb drive without
unmounting it, unexpected results will occur. If you want to use the thumb
drive for other purposes, continue.

 The following three steps allow you to undo everything you have done in this
example (except, of course, the deletion of any data that was on the thumb drive
before you began this example!).

 13. To begin, first destroy the file system.

root@pcbsd-4382:/usr/home/bob # zfs destroy test3/
newfilesystem

 14. Then destroy the zpool.

root@pcbsd-4382:/usr/home/bob # zpool destroy test3

1208 ◾ UNIX: The Textbook, Third Edition

 15. Launch the Disk Manager as you did in step 3, and in the Disks tab, destroy the
slice da0p1 by right-clicking and making the choice Destroy This Slice. Check
in the ZFS Pools tab that there is no longer any record of test3.

 16. Pull the thumb drive out of the USB port.

Conclusion: You have created and destroyed a zpool and a ZFS dataset on a USB
thumb drive that you attached to your PC-BSD machine. If you did not destroy the
zpool and dataset on it, you can now create additional datasets on it and place files
in those datasets. All of the ZFS commands in this chapter can be used to manage
zpools and datasets on this drive. You can also use this drive as a backup for user
data files.

24.3 ZFS COMMANDS AND OPERATIONS
The following section is an abbreviated encyclopedia, or reference manual, that illustrates
many uses of the two important ZFS commands, zfs and zpool. It shows the kinds of
operations you can perform with those two commands and with their options and subcom-
mands. In order to get a complete listing, with examples, of the commands, subcommands,
and options, consult the man pages for zfs or zpool on your system! The Command
Appendix on the CRC website contains entries for zfs and zpool. Those entries show
more detail about options and subcommands.

We first present a summary of the command categories and basic definitions for zpool
and zfs. We then show several examples of zpool and zfs command, subcommand,
option, and command argument usage.

This section assumes that you have done at least one or more of the previous examples in
Section 24.2 to get a feel for what ZFS can do. The command syntax shown in this section is
valid for both PC-BSD and Solaris, and any differences between implementations on those
two systems will be duly noted by appending the applicable system name in parentheses to
the command in question.

All sample code you type on the command line is shown in bold text and is always
followed by pressing <Enter> on the keyboard. Comments specific to a command, opera-
tion, or term usually appear after the item of interest.

24.3.1 Command Categories and Basic Definitions

 1. Directories and Files

Where error messages appear: /var/adm/messages (Solaris), console

 2. ZFS States

DEGRADED One or more top-level devices is in the degraded state because they
have become offline. Sufficient replicas exist to keep functioning.

FAULTED One or more top-level devices is in the faulted state because they have
become offline. Insufficient replicas exist to keep functioning.

OFFLINE The device was explicitly taken offline by the zpool offline command.

ZFS Administration and Use    ◾    1209

ONLINE The device is online and functioning.
REMOVED The device was physically removed while the system was running.
UNAVAIL The device could not be opened.

 3. Scrubbing and Resilvering
	 Scrubbing: Examines all data to discover hardware faults or disk failures. Only one

scrub may be running at one time, and you can manually scrub.
 Resilvering: The same concept as rebuilding or resyncing data on to new disks into

an array. The smart thing resilvering does is it does not rebuild the whole disk, only
the data that is required (the data blocks not the free blocks), thus reducing the time
to resync a disk. Resilvering is automatic when you replace disks and so on. If a scrub
is already running, it is suspended until the resilvering has finished, then the scrub-
bing will continue.

 4. ZFS Devices and Device Terminology
Disk: A physical disk drive.
File: The absolute path of preallocated files/images.
Mirror: Standard RAID1 mirror.
Raidz1/2/3: Nonstandard distributed parity-based software RAID levels. Basically,

if a power failure occurs in the middle of a write then you have the data plus the
parity, or you don’t. Also, ZFS supports self-healing, which means that if it cannot
read a bad block it will reconstruct it using the parity, and repair or indicate that
this block should not be used.
Raidz1: 3, 5, 9 disks
Raidz2: 4, 6, 8, 10, 18 disks
Raidz3: 5, 7, 11, 19 disks

The more parity bits, the longer it takes to resilver an array. Standard mirroring
does not have the problem of creating the parity, so it is quicker in resilvering.
Raidz is more like RAID3 than RAID5, but does use parity to protect from disk
failures.
Raidz/Raidz1: A minimum of three devices (one parity disk); you can suffer a

one-disk loss.
Raidz2: A minimum of four devices (two parity disks); you can suffer a two-disk

loss.
Raidz3: A minimum of five devices (three parity disks); you can suffer a three-

disk loss.
Spare: hard drives marked as hot spare for ZFS RAID. By default, hot spares are not

used in a disk failure; you must turn on the autoreplace feature.

 5. Cache
 A zfs cache caches both the least recently used (LRU) and least frequently used (LFU)

block requests; the cache device uses level-2 adaptive read cache (L2ARC).

 6. Log
 There are two log types used:

1210 ◾ UNIX: The Textbook, Third Edition

	 	 ZFS intent log (ZIL): A logging mechanism where all the data to be written is
stored, then later flushed, as a transactional write; this is similar to a journal file sys-
tem (ext3 or ext4).

 Separate intent log (SLOG): A separate logging device that caches the synchronous
parts of the ZIL before flushing them to the slower disk; it does not cache asynchro-
nous data (asynchronous data is flushed directly to the disk). If the SLOG exists, the
ZIL will be moved to it rather than residing on the platter disk; everything in the
SLOG will always be in the system memory. Basically, the SLOG is the device and
the ZIL is data on the device.

24.3.2 ZFS Storage Pools and the zpool command

The subcommands and options shown in this section are presented in this general way,
with Solaris syntax shown by default. PC-BSD syntax is enclosed in ().

x. What the command, subcommand, and options accomplish.

The command, subcommand, options, and command arguments

Commentary or explanation.
Further examples:

More variations of the command, subcommand, options and command
arguments

Commentary or explanation.

 1. How to display zpools:

zpool list

 Further examples:

zpool list -o poolname, size, altroot

 There are a number of properties that you can select, the default is: name, size,
used, available, capacity, health, altroot.

 2. How to display zpool status:

zpool status

 Further examples:

zpool status -xv

 Shows only errored pools with more verbosity.

 3. How to show zpool statistics:

zpool iostat -v 5 5

 Use this command like you would iostat

 4. How to show zpool history:

ZFS Administration and Use    ◾    1211

zpool history -il

 Once a pool has been removed, the history is gone!

 5. How to create a zpool:

zpool create -n data2 /dev/dsk/c1t0d0s0

 You cannot shrink a pool, only grow it!
 The -n option performs a dry run but doesn’t actually perform the creation.
 Further examples:

zpool create data2 /dev/ada1p1 /dev/ada2p1

 Assumes there are two disks called /dev/ada1p1 and /dev/ada2p1 (PC-BSD).

zpool create data2a /dev/dsk/c1t0d0s0

 Using a standard disk slice on c1t0d0, slice s0.

zpool create -m /zfspool data2a /dev/dsk/c1t0d0s0

 Using a different mount point than the default /<pool name>.

zpool create data3 mirror c1t0d0 c2t0d0 mirror c1t0d1 c2t0d1
zpool create data4 mirror c1t0d0 c2t0d0 spare c3t0d0

 Mirror and hot spare disk examples; hot spares are not used by default, you need
to turn on the autoreplace feature with zpool set autoreplace=on for
each pool.

zpool create data5 mirror c1t0d0 c2t0d0 log mirror c3t0d0
 c4t0d0

 Setting up a log device and mirroring it.

zpool create data6 mirror c1t0d0 c2t0d0 cache c3t0d0 c3t1d0

 Setting up a cache device.

zpool create data7 raidz2 c1t0d0 c1t1d0 c1t2d0 c1t3d0 c1t4d0

 You can also create RAID pools (RAIDZ/RAIDZ1: mirror; RAIDZ2: single parity;
RAIDZ3: double parity).

 6. How to destroy a zpool:

zpool destroy data2

 Further examples:

zpool import -f -D -d /tank/data2

 You can reimport a destroyed pool.

 7. How to add a device to a zpool:

zpool add data01 c2t0d0

1212 ◾ UNIX: The Textbook, Third Edition

 zpool only supports the removal of hot spares and cache disks! Therefore, be sure
you want to add the device to the pool, because you cannot ordinarily remove it
with the zpool remove command. For adding to mirrors, see the attach and
detach subcommands that follow.

 8. How to resize a zpool:
 When replacing a disk with a larger one you must enable the autoexpand feature to

allow you to use the extended space. You must do this before replacing the first disk.

 9. How to remove a zpool:

zpool remove data01 c2t0d0

 zpool only supports the removal of hot spares and cache disks! Therefore, be sure
you want to add the device to the pool, because you cannot ordinarily remove it
with the zpool remove command. For adding to mirrors, see the attach and
detach subcommands that follow.

 10. How to clear faults:

zpool clear data01

 Further examples:

zpool clear data01 c2t0d0

 Clears a specific disk fault.

 11. Attaching additional drives as a mirror:

zpool attach data01 c2t0d0 c3t0d0

 c2t0d0 is an existing disk that is not mirrored, so by attaching c3t0d0 to the pool
data01, both disks will become a mirrored pair.

 12. How to detach a mirror disk:

zpool detach data01 c2t0d0

 See the previous note on attaching additional drives as a mirror.

 13. How to online a zpool (put the pool online):

zpool online data01 c2t0d0

 14. How to offline a zpool (take the pool offline):

zpool offline data01 c2t0d0

 Further examples:

zpool offline data01 -t c2t0d0

 This achieves temporary offlining using -t (will revert back to online after a
reboot).

ZFS Administration and Use    ◾    1213

 15. How to replace pools:
zpool replace data03 c2t0d0

 Replaces one disk that uses the same designation in /dev as another disk.
 Further examples:
zpool replace data03 c2t0d0 c3t0d0

 Replaces one disk with another disk in /dev that has a different designation.

 16. How to do scrubbing:
zpool scrub data01

 Further examples:
zpool scrub -s data01

 Stop a scrubbing in progress; check the scrub line using zpool status data01
to see any errors.

 17. How to do exporting:
zpool export data01

 You can list exported pools using the import command zpool import to find
what the names of exported zpools are, if any.

 18. How to do importing:
zpool import data01

 When using standard disk devices—that is, c2t0d0.
 Further examples:
zpool import -d /zfs

 If using files in the /zfs file system
zpool import -f -D -d /zfs1 data2

 Imports a destroyed pool.

 19. Getting zpool parameters:

zpool get all data01

 The source column denotes if the value has been changed from its default value; a
dash in this column means it is a read-only value.

 20. Setting zpool parameters:

zpool set autoreplace=on data01

 Use the command zpool get all <pool> to obtain a list of current settings.

 21. How to upgrade pools:

zpool upgrade –v

1214 ◾ UNIX: The Textbook, Third Edition

 Lists upgrade paths.
 Further examples:
zpool upgrade -a

 Upgrades all pools.
zpool upgrade data01

 Upgrades a specific pool; use zpool get all poolname to obtain the version
number of a pool.
zpool upgrade -V 10 data01

 Upgrades to a specific version.

 22. Replace a failed disk:
zpool list

 Lists the zpools and identifies the failed disk.
 Further examples:
zpool replace data01 c1t0d0
zpool replace data01 c1t0d0 c1t1d0

 Replaces the disk (you can use same disk or a new disk of equal or larger capacity).
zpool clear data01

 Clears any existing errors.
zpool scrub data01

 Scrub the pool to check for any more errors (this depends on the size of the zpool, as
it can take a long time to complete). You can now remove the failed disk in the normal
way, depending on your hardware.

 23. How to expand a pool’s capacity:
zpool replace data01 c1t0d0 c2t0d0
zpool set autoexpand=on data01

 You cannot remove a disk from a pool and you cannot shrink the pool, but you can
enlarge it by replacing existing disks with larger disks!

 24. How to use the monitor subcommand (as of Solaris 11.3):

SYNTAX

zpool monitor -t provider [-T d|u] [[-p] -o field[,…]] [pool] …
[interval [count]]

monitor displays status or progress information for the given pools. If no pool is entered,
information for all pools is displayed. When given an interval, the information is
printed every interval seconds until <Ctrl+C> is pressed. If count is specified, the
command exits after count reports are printed.

ZFS Administration and Use    ◾    1215

Options:
-o field[,...] Display only selected field(s).
-t provider Display data from the listed providers. Current providers are send,

receive (or recv), destroy, scrub, and resilver. An up-to-
date list of providers is available if you give the command zpool
help monitor.

-T d|u Display a time stamp. Specify d for standard date format. See date.
Specify u for a printed representation of the internal representation
of time. See time.

Example: Obtaining parsable output
The following command is used to obtain parsable output and will provide one interval.
zpool monitor -p -o pool, pctdone, other -t send poolA poolC

poolA:20.4:poolA/fs2/team2@fs2 _ all
poolA:0.0:poolA/fs2/team2@all
poolA:28.6:poolA/fs1/team3@fs1 _ all
poolC:33.3:poolC/fs1/team2@fs1 _ all
poolC:50.0:poolC/fs2/team1@fs2 _ all

24.3.3 ZFS File System Commands and the zfs Command

The subcommands and options shown in this section are presented in the following gen-
eral way, with Solaris syntax shown by default.

x. What the command, subcommand, and options accomplish.
The command, subcommand, options, and command arguments

Commentary or explanation.
Further examples:
More variations of the command, subcommand, options and
command arguments

Commentary or explanation.

 1. Displaying ZFS file systems:
zfs list

 Lists all ZFS file systems
 Further examples:
zfs list -t filesystem
zfs list -t snapshot
zfs list -t volume
zfs list -t all -r poolname

 Lists different types (file system, snapshot, volume) by poolname.
zfs list -r data01/sarwar

 Recursive display.

1216 ◾ UNIX: The Textbook, Third Edition

zfs list -o poolname,mounted,sharenfs,mountpoint

 Complex listing: there are a number of attributes that you can use in a complex list-
ing; see the man page for zfs.

 2. How to create a file system:
zfs create data01/sarwar

 Presumes a pool called data01, creates a /data01/sarwar ZFS file system.
 Further examples:
zfs create -o mountpoint=/users/data01/users

 Creates at a different mount point.

 3. How to destroy a file system:
zfs destroy data01/sarwar

 Further examples:
zfs destroy -r data01/sarwar
zfs destroy -R data01/sarwar

 Uses the recursive options -r (all children), -R (all dependents).

 4. How to mount a file system:
zfs mount data01

 Further examples:
zfs mount -o mountpoint=/tmpmnt data01/sarwar

 You can create temporary mount that expires after unmounting. You can apply all
the normal mount options—that is, ro/rw, setuid, and so on.

 5. How to unmount a file system:
zfs umount data01

 6. How to share a file system:
zfs share data01

 Further examples:
zfs set sharenfs=on data01

 This file system persists after reboots!
zfs set sharenfs="rw=@192.168.0.13/24" data01/sarwar

 Shares with specific hosts.

 7. How to unshare a file system:
zfs unshare data01

 Further examples:

ZFS Administration and Use    ◾    1217

zfs set sharenfs=off data01

 This file system persists after reboot!

 8. How to take snapshots of file systems:
 Taking a “snapshot” of a file system is like taking a picture: changes are recorded to

the snapshot when the original file system changes; to remove a dataset all previous
snapshots have to be removed. You can also rename snapshots. You cannot destroy a
snapshot if it has a clone.
zfs snapshot data01@10022010

 Creates a snapshot.
 Further examples:
zfs snapshot data01@10022010 data01@mybackup

 Renames a snapshot.
zfs destroy data01@10022010

 Destroys a snapshot.

 9. How to roll back a file system:
 By default, you can only roll back to the latest snapshot. To roll back to older ones, you

must delete all newer snapshots.
zfs rollback data01@10022010

 10. Cloning/promoting file systems:
 Clones are writable file systems that have been upgraded from a snapshot. A depen-

dency will remain on the snapshot as long as the clone exists. A clone uses the data
from the snapshot to exist. As you use the clone, it uses space separate from the
snapshot. Clones cannot be created across zpools, you need to use the zfs send/
receive commands to do this, as shown in Example 24.4.
zfs clone data7@10022010 data8/clone
zfs clone -o mountpoint=/clone data7@10022010 data8/clone

 Clones, changes the mount point of the clone.
 Further examples:
zfs promote data8/clone

 Promotes a clone. This allows you to destroy the original file system that the clone is
attached to. The clone must reside in the same pool!

 11. Renaming a file system:
zfs rename data03/koretsky_disk01 data03/koretsky_d01

 The dataset must be kept within the same pool. There are two options on this com-
mand: -p creates all the nonexistent parent datasets; -r recursively rename the snap-
shots of all descendant datasets (used with snapshots only).

1218 ◾ UNIX: The Textbook, Third Edition

 12. Compression of file systems:
zfs set compression=lzjb data03/sarwar

 You enable compression by setting a feature. Compressions are on, off, lzjb, gzip,
gzip[1–9] and zle. Compression only starts when you turn it on; other existing
data will not be compressed.

 Further examples:
zfs get compressratio data03/sarwar

 You can get the compression ratio.

 13. Deduplication:
 You can save disk space using deduplication, which can be on the level of file, block,

or byte. For example, at the file level, each file is hashed with a cryptographic hash-
ing algorithm such as SHA-256; if two files match, then just point to the existing file
rather than storing a whole new file. This is ideal for small files, but for large files, a
single character change would mean that all the data has to be copied over again!
Block deduplication allows you to share all the same blocks in a file minus the blocks
that are different; this allows the sharing of unique blocks on disk and the reference-
shared blocks in RAM. However, a lot of RAM is necessary to keep track of which
blocks are shared and which are not. This is the preferred option rather than file or
byte deduplication. Shared blocks are stored in what is called a deduplication table;
the more deduplicated blocks there are, the larger the table. The table is read every
time to make a block change, thus the table should be held in fast RAM. If you run
out of RAM, then the table will be saved onto disk. So how much RAM do you need?
You can use the zdb command to check and take the bp count. A good rule of thumb
is to allow 5 GB of RAM for every 1 TB of disk.
zdb -b data01

 Use this command to see the block the dataset consumes.
 Further examples:
zfs set dedup=on data01/myfiles

 To turn on deduplicate.
zfs get dedupratio data01/myfiles

 To see the deduplication ratio.
zdb -DD poolname

 To see a histogram of how many blocks are referenced how many times.

 14. Getting file system parameters:
zfs get all data03/sarwar

 Lists all the properties.
 Further examples:

ZFS Administration and Use    ◾    1219

zfs get setuid data03/sarwar

 Gets a specific property.
zfs get compression

 Gets a list of a specific properties for all datasets. The source column denotes if the
value has been changed from its default value; a dash in this column means it is a
read-only value.

 15. Setting file system parameters:
zfs set copies=2 data03/sarwar

 Sets the number of copies of dataset sarwar in the pool data03 to 2; the default
number of copies is 1. This is probably the most useful and important way to ensure
redundancy on a nonredundant vdev, such as a single hard disk in a laptop computer.
Although it doubles the storage space required to contain the dataset, error correc-
tion with zpool scrub can be achieved on the nonredundant vdev that contains
the pool and its datasets that have copies set to 2.

 Further examples:
zfs set quota=50M data03/sarwar
zfs set quota=none data03/sarwar

 Sets and unsets the disk usage quota. Use the command zfs get all <dataset>
to obtain a list of current settings.

 16. How to have a file system inherit attributes:
zfs inherit compression data03/sarwar
Sets back to the default value.

 17. How to upgrade the ZFS version:
zfs upgrade –v

 Lists the upgrade paths.
 Further examples:
zfs upgrade

 Lists all the datasets that are not at the current level.
upgrade -V <version> data03/oracle

 Upgrades a specific dataset.

 18. How to use allow/unallow:
zfs allow master

 Displays the permissions set and any user permissions.
 Further examples:
zfs allow -s @permset1 create,mount,snapshot,clone,promote
 master

1220 ◾ UNIX: The Textbook, Third Edition

 Creates a permission set.
zfs unallow -s @permset1 master

 Deletes a permission set.
zfs allow vallep @permset1 master

 Grants a user permissions.
zfs unallow vallep @permset1 master

 Revokes a user’s permissions. There are many permissions that you can set. Refer to
the zfs man page, or just use the zfs allow command, to get help.

24.4 FILE SYSTEM BACKUPS USING ZFS SNAPSHOT
Snapshots are the ZFS way of creating archives and backups automatically or with very
simple operations and commands. As stated previously, taking a snapshot of a file system
is like taking a picture; changes are recorded to the snapshot when the original file system
changes.

Here are some important things to remember about snapshots:

• To remove a dataset, all previous snapshots have to be removed.

• You can rename snapshots.

• You cannot destroy a snapshot if it has a clone.

24.4.1 Examples of snapshot

An example of creating a snapshot is:
zfs snapshot data01@10022010

An example of renaming a snapshot is:
zfs snapshot data01@10022010 data01@mybackup

An example of destroying a snapshot is:
zfs destroy data01@10022010

24.4.2 zfs rollback

It is possible to roll back a file system, or return it to a previous state. You must use the zfs
rollback command. By default you can only roll back to the latest snapshot, to roll back
to an older one you must delete all newer snapshots!

An example of rolling back to a snapshot is:
zfs rollback data01@10022010

24.4.3 Cloning/Promoting

As stated previously, clones are writable file systems that have been upgraded from a snap-
shot, and a dependency will remain on the snapshot as long as the clone exists. A clone
uses the data from the snapshot to exist. As you use the clone it uses space separate from

ZFS Administration and Use    ◾    1221

the snapshot. Clones cannot be created across zpools, you need to use the zfs send/
receive commands to do this.

Two examples of cloning are:

zfs clone data7@10022010 data8/clone
zfs clone -o mountpoint=/clone data7@10022010 data8/clone

Promoting a clone allows you to destroy the original file system that the clone is attached
to. An example of this is:

zfs promote data8/clone

The clone must reside in the same pool.

24.4.4 Renaming a Filesystem

The dataset must be kept within the same zpool! An example of this is:
zfs rename data03/koretsky_disk01 data03/koretsky_d01

There are two options on this command: -p creates all the nonexistent parent datasets;
-r recursively renames the snapshots of all descendant datasets (used with snapshots
only).

24.4.5 Compression of Filesystems

You enable compression by setting a feature. Compressions are on, off, lzjb, gzip,
gzip[1–9] and zle. Compression starts when you turn it on; other existing data will not
be compressed. An example of this is:
zfs set compression=lzjb data03/sarwar

You can get the compression ratio by using the following example:
zfs get compressratio data03/sarwar

24.4.6 Bourne Shell Script Example for Incremental ZFS Backups

Example 24.7: zfs snapshot Command Automation in a Bourne Shell Script

The following Bourne shell script achieves the incremental backing up of a file system
on one computer to a remote host system, using zfs snapshot send/receive.
It is very similar to, and a further extension of, the zfs send/receive example
code shown previously.

The prerequisites for running this script are:

 1. The host receiving the snapshot must be running the same or a higher version of ZFS
than the sender.

 2. You must have root access on the host receiving the backup.
 3. You must be sending to an account that has ZFS create/receive properties.
 4. You have previously created a snapshot of the source.
 5. You have previously created a Z file system on the destination named /tank/test.

1222 ◾ UNIX: The Textbook, Third Edition

#!/bin/sh
This assigns a local file system as the source to be
transmitted
pool="/usr/src"
This assigns a remote destination
destination="tank/test"
This names the IP address of the remote target host
host="192.168.0.7"
This sets the date format for today in PC-BSD
For Solaris the date format should be today = 'date +
"%Y-%m-%d"'
today='date +"$type-%Y-%m-%d"'
This sets the date format for yesterday in PC-BSD
For Solaris the date format should be yesterday = 'date
–d"-1 day" + "%Y-%m-%d"'
yesterday='date -v -1d +"$type-%Y-%m-%d"'
Create today's snapshot
snapshot_today="$pool@$today"
Look for a snapshot with this name, and if none exists,
take the snapshot
if zfs list -H -o name -t snapshot | sort | grep "$snapshot_
today$" > /dev/null
 then
 echo " snapshot, $snapshot_today, already exists"
 exit 1
 else
 echo " taking todays snapshot, $snapshot_today"
 zfs snapshot -r $snapshot_today
fi
Look for yesterday's snapshot
snapshot_yesterday="$pool@$yesterday"
If it exists, ZFS sends today's snapshot
if zfs list -H -o name -t snapshot | sort | grep "$snapshot_
yesterday$" > /dev/null
 then
 echo " yesterday snapshot, $snapshot_yesterday,
exists, send todays backup"
 zfs send -R -i $snapshot_yesterday $snapshot_today |
ssh root@$host zfs receive –Fduv\ $destination
 echo " backup complete destroying yesterdays snapshot"
 zfs destroy -r $snapshot_yesterday
 exit 0
 else
 echo " missing yesterday snapshot aborting,
$snapshot_yesterday"
 exit 1
fi

ZFS Administration and Use    ◾    1223

24.5 USING ACCESS CONTROL LISTS (ACLS) AND
ATTRIBUTES FOR SECURING SOLARIS ZFS FILES

In contrast to the traditional UNIX permissions model, which defines secure access to an
object like a file or directory via permissions like read, write, and execute, the access control
list (ACL) model gives the user finer-grained base control over object security.

In the permissions model, group permissions are the only way by which a file owner can rel-
egate access to different constituencies of the user base. That is because any file can only belong
to one group. Therefore, to serve different constituencies, many different groups have to exist.
Only administrators can create and assign group membership. And sharing of files between
collaborative working project teams becomes untenable using the permissions model.

ACLs provide greater discretionary power, but at the cost of more complexity, larger
storage requirements, and slower performance of the underlying file system, whether that
be VFS or ZFS. Our two UNIX base systems, PC-BSD and Solaris, with ZFS, support the
permissions model and the ACL model (referred to here as NFSv4). Since there are several
ACL models, it is worth noting here that ZFS only supports NFSv4 ACLs.

We showed the permissions model in Chapter 5, Sections 5.4 and 5.5. The methods
shown in this section apply to Solaris ZFS files. In Chapter 23, Section 9.3, we detailed a
similar method of managing ACLs for ZFS files and directories on a PC-BSD system.

We cover the following topics in the subsections indicated:

24.5.1 Solaris ACL Model
24.5.2 Setting ACLs on ZFS Files and Command Syntax for Setting ACLs
24.5.3 Setting ACL Inheritance on ZFS Files

24.5.1 Solaris ACL Model

The Solaris ACL model fully supports the interoperability that NFSv4 offers between
UNIX and non-UNIX clients. It is similar to Windows NT–style ACLs, and provides more
detailed access control than is available with standard file permissions. These ACLs are set
and displayed with the chmod A and ls -(v, V, dv, dV) commands.

The ACL model has two types of access control entries (ACEs) that affect access check-
ing: ALLOW and DENY. Therefore, you cannot infer from any single ACE that defines a set
of permissions whether the permissions that are not defined in that ACE are allowed or
denied.

24.5.1.1 ACL Formats
ACLs have two basic formats:

 1. Trivial ACL: Contains only entries for traditional UNIX user categories that are rep-
resented as owner@, group@, and everyone@.

 For a newly created file, the default ACL has the following entries:

0:owner@:read_data/write_data/append_data/read_xattr/
write_xattr

1224 ◾ UNIX: The Textbook, Third Edition

/read_attributes/write_attributes/read_acl/write_acl/
write_owner
/synchronize:allow
1:group@:read_data/read_xattr/read_attributes/read_acl/
synchronize:allow
2:everyone@:read_data/read_xattr/read_attributes/read_acl/
synchronize
:allow

For a newly created directory, the default ACL has the following entries:

0:owner@:list_directory/read_data/add_file/write_data/
add_subdirectory
/append_data/read_xattr/write_xattr/execute/delete_child
/read_attributes/write_attributes/read_acl/write_acl/
write_owner
/synchronize:allow
1:group@:list_directory/read_data/read_xattr/execute/
read_attributes
/read_acl/synchronize:allow
2:everyone@:list_directory/read_data/read_xattr/execute/
read_attributes
/read_acl/synchronize:allow

 2. Nontrivial ACL: Contains entries for added user categories. The entries might also
include inheritance flags or are ordered in a nontraditional way. A nontrivial entry
might look like the following example, where permissions are specifically granted to
user mansoor.

0:user:mansoor:read_data/write_data:file_inherit:allow

24.5.1.2 ACL Entry Descriptions
Components of NFSv4 ACL command specification for Solaris:
Files chmod A0+user:bob:rwx-----------:-------:allow filename
 a bcd e f g h i j
Directories chmod A0+user:bob:r-------------:fd-----:allow dirname
 a bcd e f g h i j

Key:
 a chmod command that sets ACL entries
 b Option A
 c Position option argument starting at 0; also serves as the index of the entry
 d Operator option argument, + to add, = to replace
 e ACL tag, in these cases user, the first part of the ACL entry type
 f ACL qualifier, in these cases bob, the second part of the ACL entry type
 g 14 permissions, shown in short form, the rest optional
 h 7 inheritance flags, for directories only, the rest optional

ZFS Administration and Use    ◾    1225

 i ACL type, allow or deny
 j Command argument, a filename or directory name specification

Format of ls -V output for the preceding files command

%ls -V filename
traditional permissions header
 user:bob:rwx-----------:-------:allow filename
 owner@ -------------default------------------
 group@ --------------default-----------------
 everyone@ -----------default---------------------

Use the following sample entry as a reference to understand the elements that comprise
an ACL entry. These elements apply to both trivial and nontrivial ACLs.

0:user:mansoor:read_data/write_data:file_inherit:allow

Index: A number at the beginning of the entry, such as the number zero (0) in the
example. The index identifies a specific entry and distinguishes the entry from others
in the ACL. The index appears in the long format output of ACL entries given by the
ls –V command.

ACL entry type: The user category. In trivial ACLs, only entries for owner@,
group@, and everyone@ are set. In nontrivial ACLs, user:username and
group:groupname are added. In the example, the entry type is user:mansoor.

Access privileges: Permissions that are granted or denied to the entry type. In the exam-
ple, user mansoor’s permissions are read _ data and write _ data.

Inheritance flags: An optional list of ACL flags that control how permissions are propa-
gated downward in a directory structure. In the sample entry, file _ inherit is
also granted to user mansoor.

Permission control type: Determines whether the permissions in an entry are allowed
or denied. In the example, the permissions for mansoor are allowed.

Table 24.1 describes each ACL entry type.
Table 24.2 describes ACL access privileges.

TABLE 24.1 ACL Entry Types

ACL Entry Type Description

owner@ Specifies the access granted to the owner of the object
group@ Specifies the access granted to the owning group of the object
everyone@ Specifies the access granted to any user or group that does not match any other ACL entry
user With a user name, specifies the access granted to an additional user of the object
group With a group name, specifies the access granted to an additional group of the object

1226 ◾ UNIX: The Textbook, Third Edition

Table 24.3 provides additional details about ACL delete and delete _ child
behavior.

24.5.1.2.1 ZFS ACL Sets
An ACL set consists of a combination of ACL permissions. These ACL sets are predefined
and cannot be modified.

ACL Set Name Included ACL Permissions
full _ set All permissions

TABLE 24.2 ACL Access Privileges

Access Privilege
Compact Access

Privilege Description

add_file w Permission to add a new file to a directory
add_subdirectory p On a directory, permission to create a subdirectory
append_data p Permission to modify a file but only beginning from the EOF
delete d Permission to delete a file
delete_child D Permission to delete a file or directory within a directory
execute x Permission to execute a file or search the contents of a directory
list_directory r Permission to list the contents of a directory
read_acl c Permission to read the ACL (ls)
read_attributes a Permission to read basic attributes (non-ACLs) of a file
read_data r Permission to read the contents of the file
read_xattr R Permission to read the extended attributes of a file
synchronize s Permission to access a file locally at the server with

synchronized read and write operations
write_xattr W Permission to create extended attributes or write to the

extended attributes directory
write_data w Permission to modify or replace the contents of a file
write_attributes A Permission to change the times associated with a file or

directory to an arbitrary value
write_acl C Permission to write the ACL or the ability to modify the ACL

by using the chmod command
write_owner o Permission to change the file’s owner or group; or the ability to

execute the chown or chgrp commands on the file

TABLE 24.3 ACL delete and delete_child Permission Behavior

Parent Directory Permissions Target Object Permissions

"" (empty) ACL Allows Delete ACL Denies Delete Delete Permission Unspecified
ACL allows
delete_child

Permit Permit Permit

ACL denies
delete_child

Permit Deny Deny

ACL allows only write and
execute

Permit Permit Permit

ACL denies write and execute Permit Deny Deny

ZFS Administration and Use    ◾    1227

modify _ set All permissions except write _ acl and write _ owner
read _ set read _ data, read _ attributes, read _ xattr, read _ acl
write _ set write _ data, append _ data, write _ attributes, write _

xattr

You can apply an ACL set rather than having to set individual permissions separately.
For example, granting mansoor the read _ set ACL set gives him permission to read
ACLs as well as file contents and their basic and extended attributes.

chmod A+user:mansoor:read_set:allow file.0
ls -V file.0
-r--r--r--+ 1 root root 206695 Jul 20 13:43 file.0
0:user:mansoor:read_data/read_xattr/read_attributes/read_acl:allow
...

24.5.1.3 ACL Inheritance
ACL inheritance means that a newly created file or directory can inherit the ACLs they are
intended to inherit without disregarding the existing permission bits on the parent direc-
tory. By default, ACLs are not propagated. If you set a nontrivial ACL on a directory, it is
not inherited to any subsequent directory. You must specify the inheritance of an ACL on
a file or directory.

Table 24.4 describes the optional inheritance flags.
In addition, you can set a default ACL inheritance policy on the file system that is more

strict or less strict by using the ZFS aclinherit file system property. For more informa-
tion about this property, see Section 24.5.1.4, “ACL Properties.”

For more information about setting ACL inheritance on ZFS files, see Section 24.5.3,
“Setting ACL Inheritance on ZFS Files.”

TABLE 24.4 ACL Inheritance Flags

Inheritance Flag Compact Inheritance Flag Description

file_inherit f Only inherit the ACL from the parent directory to
the directory’s files

dir_inherit d Only inherit the ACL from the parent directory to
the directory’s subdirectories

inherit_only I Inherit the ACL from the parent directory
no_propagate n Only inherit the ACL from the parent directory to

the first-level contents of the directory
- n/a No permission granted
successful_access S Indicates whether an alarm or audit record should

be initiated upon a successful access; used with
audit or alarm ACE type

failed_access F Indicates whether an alarm or audit record should
be initiated when an access fails; used with audit or
alarm ACE types

inherited I Indicates that an ACE was inherited

1228 ◾ UNIX: The Textbook, Third Edition

24.5.1.4 ACL Properties
The ZFS file system includes the ACL properties to determine the specific behavior of ACL
inheritance and ACL interaction with chmod command operations.

These properties are:

• aclinherit: Determine the behavior of ACL inheritance. Values include the
following:

discard: For new objects, no ACL entries are inherited when a file or directory is
created. The ACL on the file or directory is equal to the permission mode of the
file or directory.

noallow: For new objects, only inheritable ACL entries that have an access type of
deny are inherited.

restricted: For new objects, the write _ owner and write _ acl permis-
sions are removed when an ACL entry is inherited.

passthrough: Files are created with a mode determined by the inheritable ACEs.
If no inheritable ACEs exist that affect the mode, then the mode is set in accor-
dance to the requested mode from the application.

passthrough-x: Has the same semantics as passthrough except that when
passthrough-x is enabled, files are created with the execute (x) permission
only if the execute permission is set in file creation mode and in an inheritable
ACE that affects the mode.

The default mode for ZFS aclinherit is restricted.

• aclmode: Modifies ACL behavior when a file is initially created or controls how an
ACL is modified during a chmod operation. Values include the following:

discard: Deletes all ACL entries that do not represent the mode of the file. This is
the default value.

mask: Reduces user or group permissions. The permissions are reduced such that
they are no greater than the group permission bits unless it is a user entry that
has the same UID as the owner of the file or directory. In this case, the ACL per-
missions are reduced so that they are no greater than owner permission bits. The
mask value also preserves the ACL across mode changes, provided that an explicit
ACL set operation has not been performed.

passthrough: Indicates that no changes are made to the ACL other than gen-
erating the necessary ACL entries to represent the new mode of the file or
directory.

The default mode for ZFS aclmode is discard.

ZFS Administration and Use    ◾    1229

24.5.2 Setting ACLs on ZFS Files

The basic rules of ACL access on a ZFS file are as follows:

 1. ZFS processes ACL entries in the order they are listed in the ACL, from the top down.

 2. Only ACL entries whose specified user matches the requester of the access are
processed.

 3. Once an allow permission has been granted, it cannot be denied by a subsequent ACL
deny entry in the same ACL permission set.

 4. The owner of the file is granted the write _ acl permission unconditionally even
if the permission is explicitly denied. Otherwise, any permission left unspecified is
denied. In the cases of deny permissions or when an access permission is missing,
the privilege subsystem determines the access request that is granted for the owner
of the file or for the superuser. This mechanism prevents owners of files from get-
ting locked out of their files and enables the superuser to modify files for recovery
purposes.

24.5.2.1 Command Syntax for Setting ACLs
To set or modify ACLs, use the chmod command. The command syntax resembles the
syntax for setting permission bits on files, except that you specify A before typing the
operator (+, =, or -).

Command syntax for trivial ACLs:

chmod [options] A[index]{+|=}owner@ |group@ |everyone@:\
access-permissions/...[:inheritance-flags]:deny | allow file

chmod [options] A-owner@, group@, everyone@:\
access-permissions/...[:inheritance-flags]:deny | allow file ...
chmod [options] A[index]- file

Command syntax for nontrivial ACLs:

chmod [options] A[index]{+|=}user|group:name:\
access-permissions/...[:inheritance-flags]:deny | allow file
chmod [options] A-user|group:name:\
access-permissions/...[:inheritance-flags]:deny | allow file ...
chmod [options] A[index]- file

The chmod command uses the following operators:
A+ adds an ACL entry.
A= replaces an ACL entry.
To replace an entire ACL for a file, use this operator without specifying an index ID.

In the following example, ACL entries for file.1 are removed and replaced with the single
entry for everyone@.

1230 ◾ UNIX: The Textbook, Third Edition

chmod A=everyone@:read_data:allow file.0

A- removes an ACL entry.
To universally remove all nontrivial ACL entries for a file, use this operator and specify

the file name without listing each entry to be removed. Use the following command syntax
to restore a trivial ACL to the file.

chmod A- filename

After you issue the command, only the entries for owner@, group@, and everyone@
that comprise a trivial ACL remain.

For modifying existing ACLs: Using the operators without an index has a different effect
from using them with an index. For example, chmod A= replaces an entire ACL, while
chmod A3= replaces only the existing entry that has index number 3.

Permissions and inheritance flags are represented by unique letters listed in Table 24.2
and Table 24.4.

When you set ZFS ACLs, you can either use the letters that correspond to those permis-
sions (compact mode) or type the permissions in full (verbose mode).

In the following example, both commands grant read and execute permissions to user
bob on file.1:

chmod A+user:bob:rx:allow file.0
chmod A+user:bob:read_data/execute:allow file.0

To grant user bob inheritable read, write, and execute permissions for the newly created
d.2 and its files, you can use either one of the following commands:

chmod A+user:bob:rwx:fd:allow d.2
chmod A+user:bob:read_data/write_data/execute:file_inherit/
dir_inherit: allow d.2

24.5.2.1.1 Displaying ACL Information
With the ls command, you can display ACL information in one of two formats: the -v
option displays the permissions in full or verbose form; the -V option generates compact
output by using letters that represent the permissions and flags.

The following examples show how the same ACL information is displayed in both ver-
bose and compact format:

ls -v file.0
-rw-r--r-- 1 root root 206695 Jul 20 14:27 file.0
0:owner@:read_data/write_data/append_data/read_attributes
/write_xattr/read_xattr/write_attributes/read_acl/write_acl
/write_owner/synchronize:allow
1:group@:read_data/read_attributes/read_xattr/read_acl
/synchronize:allow

ZFS Administration and Use    ◾    1231

2:everyone@:read_data/append_data/read_xattr/read_acl
/synchronize:allow

ls -V file.0
-rw-r--r-- 1 root root 206695 Jul 20 14:27 file.0
owner@:rw-p--aARWcCos:-------:allow
group@:r-----a-R-c--s:-------:allow
everyone@:r-----a-R-c--s:-------:allow

For an explanation of the permissions for each user category, see Table 24.2.

24.5.2.2 Modifying ACLs on ZFS Files
This section provides several sample commands for setting and displaying ACLs. We
encourage you to do the in-chapter exercises at the end of the following sections to famil-
iarize yourself with these basic Solaris NFSv4 ACL methods. You must run the following
examples as superuser, unless otherwise specified.

In the following example, read _ set permissions are given to user bob on a newly
created file named file.1.

root@solaris_11_3:~# touch file.1
root@solaris_11_3:~# chmod A+user:bob:read_set:allow file.1
root@solaris_11_3:~# ls -V file.1
-rw-r--r--+ 1 root root 0 Nov 4 11:58 file.1
 user:bob:r-----a-R-c---:-------:allow
 owner@:rw-p--aARWcCos:-------:allow
 group@:r-----a-R-c--s:-------:allow
 everyone@:r-----a-R-c--s:-------:allow

The next example gives user mansoor read and execute permissions on file.1.

root@solaris_11_3:~# chmod A+user:mansoor:rx:allow file.1
root@solaris_11_3:~# ls -V file.1
-rw-r--r--+ 1 root root 0 Nov 4 11:58 file.1
 user:mansoor:r-x-----------:-------:allow
 user:bob:r-----a-R-c---:-------:allow
 owner@:rw-p--aARWcCos:-------:allow
 group@:r-----a-R-c--s:-------:allow
 everyone@:r-----a-R-c--s:-------:allow

In the next example, group@ permissions are changed to read and write for file.1.

root@solaris_11_3:~# chmod A3=group@:read_data/write_data:allow
file.1

root@solaris_11_3:~# ls -V file.1
-rw-rw-r--+ 1 root root 0 Nov 4 11:58 file.1
 user:mansoor:r-x-----------:-------:allow
 user:bob:r-----a-R-c---:-------:allow

1232 ◾ UNIX: The Textbook, Third Edition

 owner@:rw-p--aARWcCos:-------:allow
 group@:rw------------:-------:allow
 everyone@:r-----a-R-c--s:-------:allow

In the following example, read _ data/execute permissions are added for the user
mansoor on the test.dir directory.

root@solaris_11_3:~# mkdir test.dir
root@solaris_11_3:~# chmod A0+user:mansoor:rx:allow test.dir
root@solaris_11_3:~# ls -dV test.dir
drwxr-xr-x+ 2 root root 2 Nov 4 12:07 test.dir
 user:mansoor:r-x-----------:-------:allow
 owner@:rwxp-DaARWcCos:-------:allow
 group@:r-x---a-R-c--s:-------:allow
 everyone@:r-x---a-R-c--s:-------:allow

In the following example, access permissions are removed for user mansoor.

root@solaris_11_3:~# chmod A0- test.dir
root@solaris_11_3:~# ls -dV test.dir
drwxr-xr-x 2 root root 2 Nov 4 12:07 test.dir
 owner@:rwxp-DaARWcCos:-------:allow
 group@:r-x---a-R-c--s:-------:allow
 everyone@:r-x---a-R-c--s:-------:allow

24.5.2.3 ACL Interaction with Permission Bits
In ZFS files, the UNIX permission bits correspond to the ACL entries, but are stored in a
special cache. When you change a file’s permission bits, the file’s ACL is updated accord-
ingly. Similarly, modifying a file’s ACLs causes changes in the permission bits.

For more information about permission bits, see the man page for chmod.
It would be advisable at this point to review the setting of UNIX permission bits in octal

format, presented in Chapter 5, Sections 4 and 5.
The following examples show the relationship between a file or directory’s ACLs and the

permission bits, and illustrate how permission changes in one affect the other and vice versa.
The first example begins with the following ACL for file.2, whose permission bits are

set to 644.

root@solaris_11_3:~# touch file.2
root@solaris_11_3:~# ls -V file.2
-rw-r--r-- 1 root root 0 Nov 4 12:09 file.2
 owner@:rw-p--aARWcCos:-------:allow
 group@:r-----a-R-c--s:-------:allow
 everyone@:r-----a-R-c--s:-------:allow

The following chmod command removes the ACL entry for everyone@ on file.2. The
read permission bits for everyone@ are also removed and are changed to 640.

ZFS Administration and Use    ◾    1233

root@solaris_11_3:~# chmod A2- file.2
root@solaris_11_3:~# ls -V file.2
-rw-r-----+ 1 root root 0 Nov 4 12:09 file.2
 owner@:rw-p--aARWcCos:-------:allow
 group@:r-----a-R-c--s:-------:allow

In the next example, the ACL is replaced with just read _ data/write _ data per-
missions for everyone@ on file.2. No owner@ or group@ ACL entry exists to override
the permissions for owner and group. So the permission bits become 666.

root@solaris_11_3:~# chmod A=everyone@:rw::allow file.2
root@solaris_11_3:~# ls -V file.2
-rw-rw-rw-+ 1 root root 0 Nov 4 12:09 file.2
 everyone@:rw------------:-------:allow

Notice that all other ACL entries have been removed.
In the next example, the ACL is replaced with read permissions just for user mansoor.

The command, however, leaves no trivial ACL entries. Consequently, the permission bits are
set to 000, which denies mansoor access to file.2. The file effectively becomes inaccessible.

root@solaris_11_3:~# chmod A=user:mansoor:r::allow file.2
root@solaris_11_3:~# ls -V file.2
----------+ 1 root root 0 Nov 4 12:09 file.2
 user:mansoor:r-------------:-------:allow

Notice in the ls –V output that no trivial ACL entries exist.
The next example shows how setting permission bits also updates the ACL. The bits for

file.2 are set to 655. Automatically, default trivial ACL permissions are set.

root@solaris_11_3:~# chmod 655 file.2
root@solaris_11_3:~# ls -V file.2
-rw-r-xr-x 1 root root 0 Nov 4 12:09 file.2
 owner@:--x-----------:-------:deny
 owner@:rw-p--aARWcCos:-------:allow
 group@:r-x---a-R-c--s:-------:allow
 everyone@:r-x---a-R-c--s:-------:allow

The following examples illustrate how specific aclmode and aclinherit property
values affect ACL behavior. If these properties are set, ACL permissions for a file or direc-
tory are either reduced or expanded to be consistent with the associated group.

Suppose that the aclmode property is set to mask and the aclinherit property is
set to restricted in the pool, and that the original file and group ownership and ACL
permissions are as follows:

root@solaris_11_3:~# zfs set aclmode=mask rpool/export/home/bob
root@solaris_11_3:~# zfs set aclinherit=restricted rpool/export/

home/bob

1234 ◾ UNIX: The Textbook, Third Edition

root@solaris_11_3:~# ls -lV file.1
-rw-rw-r--+ 1 root root 0 Nov 4 11:58 file.1
 user:mansoor:r-x-----------:-------:allow
 user:bob:r-----a-R-c---:-------:allow
 owner@:rw-p--aARWcCos:-------:allow
 group@:rw------------:-------:allow
 everyone@:r-----a-R-c--s:-------:allow

A chown operation changes file.1’s ownership to bob and the group staff.

root@solaris_11_3:~# chown bob:staff file.1

Bob then changes file.1’s permission bits to 640. Because of the ACL properties that
were previously set, the permissions for the groups in the ACL are reduced in order to not
exceed the permissions of the owning group staff. Please notice how bob drops out of the
superuser role to accomplish the following:

root@solaris_11_3:~# su - bob
Oracle Corporation SunOS 5.11 11.3 September 2015
bob@solaris_11_3:~$ ls -lV file.1
-rw-rw-r--+ 1 bob staff 0 Nov 4 11:58 file.1
 user:mansoor:r-x-----------:-------:allow
 user:bob:r-----a-R-c---:-------:allow
 owner@:rw-p--aARWcCos:-------:allow
 group@:rw------------:-------:allow
 everyone@:r-----a-R-c--s:-------:allow
bob@solaris_11_3:~$ chmod 640 file.1

bob@solaris_11_3:~$ ls -lV file.1
-rw-r-----+ 1 bob staff 0 Nov 4 11:58 file.1
 user:mansoor:r-------------:-------:allow
 user:bob:r-----a-R-c---:-------:allow
 owner@:rw-p--aARWcCos:-------:allow
 group@:r-----a-R-c--s:-------:allow
 everyone@:------a-R-c--s:-------:allow

Bob then changes the permission bits to 770. Consequently, the permissions of the
groups in the ACL are also changed to match the permission of the owning group staff.

bob@solaris_11_3:~$ chmod 770 file.1
bob@solaris_11_3:~$ ls -lV file.1
-rwxrwx---+ 1 bob staff 0 Nov 4 11:58 file.1
 user:mansoor:r-x-----------:-------:allow
 user:bob:r-----a-R-c---:-------:allow
 owner@:rwxp--aARWcCos:-------:allow
 group@:rwxp--aARWc--s:-------:allow
 everyone@:------a-R-c--s:-------:allow

ZFS Administration and Use    ◾    1235

24.5.3 Setting ACL Inheritance on ZFS Files

You can determine how ACLs are inherited on files and directories. The aclinherit
property can be set globally on a file system. By default, aclinherit is set to restricted.

24.5.3.1 Granting ACLs That Are Inherited by Files
This section identifies the file ACEs that are applied when the file _ inherit flag is set.

In the following example, read _ data/write _ data permissions are added for
files in the test2.dir directory for user mansoor so that he has read access on any newly
created files. Also notice the switch back to superuser.

bob@solaris_11_3:~$ su
Password:xxx
root@solaris_11_3:~# mkdir test2.dir
root@solaris_11_3:~# chmod A+user:mansoor:rw:f:allow test2.dir
root@solaris_11_3:~# ls -dV test2.dir
drwxr-xr-x+ 2 root root 2 Nov 4 12:23 test2.dir
 user:mansoor:rw------------:f------:allow
 owner@:rwxp-DaARWcCos:-------:allow
 group@:r-x---a-R-c--s:-------:allow
 everyone@:r-x---a-R-c--s:-------:allow

In the following example, user mansoor’s permissions are applied on the newly
created test2.dir/file.2 file. The ACL inheritance granted, read _ data:file _
inherit:allow, means user mansoor can read the contents of any newly created file.

root@solaris_11_3:~# touch test2.dir/file.2
root@solaris_11_3:~# ls -V test2.dir/file.2
-rw-r--r--+ 1 root root 0 Nov 4 12:26 test2.dir/file.2
 user:mansoor:r-------------:------I:allow
 owner@:rw-p--aARWcCos:-------:allow
 group@:r-----a-R-c--s:-------:allow
 everyone@:r-----a-R-c--s:-------:allow

Because the aclinherit property for this file system is set to the default mode,
restricted, user mansoor does not have write _ data permission on file.2 because
the group permission of the file does not allow it.

The inherit _ only permission, which is applied when the file _ inherit or
dir _ inherit flags are set, is used to propagate the ACL through the directory struc-
ture. As such, user mansoor is granted or denied permission from everyone@ permis-
sions only if he is the file owner or is a member of the file’s group owner. For example:

root@solaris_11_3:~# mkdir test2.dir/subdir.2
root@solaris_11_3:~# ls -dV test2.dir/subdir.2
drwxr-xr-x+ 2 root root 2 Nov 4 12:27 test2.dir/subdir.2
 user:mansoor:rw------------:f-i---I:allow
 owner@:rwxp-DaARWcCos:-------:allow

1236 ◾ UNIX: The Textbook, Third Edition

 group@:r-x---a-R-c--s:-------:allow
 everyone@:r-x---a-R-c--s:-------:allow

24.5.3.2 Granting ACLs That Are Inherited by Both Files and Directories
This section provides examples that identify the file and directory ACLs that are applied
when both the file _ inherit and dir _ inherit flags are set.

In the following example, user mansoor is granted read, write, and execute permissions
that are inherited for newly created files and directories.

root@solaris_11_3:~# mkdir test3.dir
root@solaris_11_3:~# chmod A+user:mansoor:rwx:fd:allow test3.dir
root@solaris_11_3:~# ls -dV test3.dir
drwxr-xr-x+ 2 root root 2 Nov 4 12:29 test3.dir
 user:mansoor:rwx-----------:fd-----:allow
 owner@:rwxp-DaARWcCos:-------:allow
 group@:r-x---a-R-c--s:-------:allow
 everyone@:r-x---a-R-c--s:-------:allow

The inherited text in the following output is an informational message that indicates
that the ACE is inherited.

root@solaris_11_3:~# touch test3.dir/file.3
root@solaris_11_3:~# ls -V test3.dir/file.3
-rw-r--r--+ 1 root root 0 Nov 4 12:31 test3.dir/file.3
 user:mansoor:r-------------:------I:allow
 owner@:rw-p--aARWcCos:-------:allow
 group@:r-----a-R-c--s:-------:allow
 everyone@:r-----a-R-c--s:-------:allow

In these examples, because the permission bits of the parent directory for group@ and
everyone@ deny write and execute permissions, user mansoor is denied write and exe-
cute permissions. The default aclinherit property is restricted, which means that
write _ data and execute permissions are not inherited.

In the following example, user mansoor is granted read, write, and execute permissions
that are inherited for newly created files but are not propagated to subsequent contents of
the directory.

root@solaris_11_3:~# mkdir test4.dir
root@solaris_11_3:~# chmod A+user:mansoor:rwx:fn:allow test4.dir
root@solaris_11_3:~# ls -dV test4.dir
drwxr-xr-x+ 2 root root 2 Nov 4 12:33 test4.dir
 user:mansoor:rwx-----------:f--n---:allow
 owner@:rwxp-DaARWcCos:-------:allow
 group@:r-x---a-R-c--s:-------:allow
 everyone@:r-x---a-R-c--s:-------:allow

ZFS Administration and Use    ◾    1237

As the following example illustrates, mansoor’s read _ data/write _ data/exe-
cute permissions are reduced based on the owning group’s permissions.

root@solaris_11_3:~# touch test4.dir/file.4
root@solaris_11_3:~# ls -V test4.dir/file.4
-rw-r--r--+ 1 root root 0 Nov 4 12:35 test4.dir/file.4
 user:mansoor:r-------------:------I:allow
 owner@:rw-p--aARWcCos:-------:allow
 group@:r-----a-R-c--s:-------:allow
 everyone@:r-----a-R-c--s:-------:allow

24.5.3.3 Modifying ACL Inheritance with the ACL Inherit Mode
This section describes the aclinherit property values.
ACL Inheritance with the ACL Inherit Mode Set to discard:

If the aclinherit property on a file system is set to discard, then ACLs can poten-
tially be discarded when the permission bits on a directory change. For example:

root@solaris_11_3:~# zfs set aclinherit=discard rpool/export/home/
bob

root@solaris_11_3:~# mkdir test5.dir
root@solaris_11_3:~# chmod A+user:mansoor:rwx:d:allow test5.dir
root@solaris_11_3:~# ls -dV test5.dir
drwxr-xr-x+ 2 root root 2 Nov 4 12:37 test5.dir
 user:mansoor:rwx-----------:-d-----:allow
 owner@:rwxp-DaARWcCos:-------:allow
 group@:r-x---a-R-c--s:-------:allow
 everyone@:r-x---a-R-c--s:-------:allow

If, at a later time, you decide to tighten the permission bits on a directory, the nontrivial
ACL is discarded. For example:

root@solaris_11_3:~# chmod 744 test5.dir
root@solaris_11_3:~# ls -dV test5.dir
drwxr--r--+ 2 root root 2 Nov 4 12:37 test5.dir
 user:mansoor:r-------------:-d-----:allow
 owner@:rwxp-DaARWcCos:-------:allow
 group@:r-----a-R-c--s:-------:allow
 everyone@:r-----a-R-c--s:-------:allow

ACL Inheritance with the ACL Inherit Mode Set to noallow
In the following example, two nontrivial ACLs with file inheritance are set. One ACL
allows read _ data permission, and one ACL denies read _ data permission. This
example also illustrates how you can specify two ACEs in the same chmod command.

root@solaris_11_3:~# zfs set aclinherit=noallow rpool/export/home/
bob

1238 ◾ UNIX: The Textbook, Third Edition

root@solaris_11_3:~# mkdir test6.dir
root@solaris_11_3:~# chmod A+user:mansoor:r:f:deny,user:bob:r:f:

allow test6.dir
root@solaris_11_3:~# ls -dV test6.dir
drwxr-xr-x+ 2 root root 2 Nov 4 12:45 test6.dir
 user:mansoor:r-------------:f------:deny
 user:bob:r-------------:f------:allow
 owner@:rwxp-DaARWcCos:-------:allow
 group@:r-x---a-R-c--s:-------:allow
 everyone@:r-x---a-R-c--s:-------:allow

As the following example shows, when a new file is created, the ACL that allows read _
data permission is discarded.

root@solaris_11_3:~# touch test6.dir/file.6
root@solaris_11_3:~# ls -V test6.dir/file.6
-rw-r--r--+ 1 root root 0 Nov 4 12:48 test6.dir/file.6
 user:mansoor:r-------------:------I:deny
 owner@:rw-p--aARWcCos:-------:allow
 group@:r-----a-R-c--s:-------:allow
 everyone@:r-----a-R-c--s:-------:allow

EXERCISE 24.14

Execute all of the command line example code in Section 24.5.2.2 and its subsections on
your Solaris system, and verify that they give the same output as shown.

EXERCISE 24.15

Execute all of the command line example code shown in Section 24.5.3 and its subsections,
and verify that they give the same output as shown.

SUMMARY
This chapter provided a common user of PC-BSD or Solaris with the basic techniques of
working with the Zettabyte File System (ZFS).

We first went over some basic terms used in ZFS and then described what ZFS is from
the user perspective. What differentiates ZFS from other file systems is that ZFS file sys-
tems are mapped onto pool storage facilities, known as zpools, rather than onto physical
storage media like disk drives. The zpools are then mapped onto physical media. That
means that the file system’s storage requirements can grow as more physical media devices
are added to the zpools.

We then provided six working examples of using the two ZFS commands, zpool and
zfs. These working examples illustrate for the beginner some of the basic operations that
can be used to create pools and file systems.

We provided a command reference section that gives many ZFS command usage
examples.

ZFS Administration and Use    ◾    1239

We provided file system backup procedures and a Bourne shell script example that used
the zfs snapshot, zfs send, and zfs receive commands.

We finally illustrated how to manage ACLs on ZFS files and directories for Solaris, with
several examples.

QUESTIONS AND PROBLEMS

 1. Is it possible to create a zpool using only a single slice on a vdev? Does your answer
reflect the fact that only one file system can exist on that slice?

 2. List the advantages and disadvantages that ZFS has for you on your UNIX system.

 3. Give a brief description of the zdb command.

 4. Similar to Example 24.3, create a mirrored zpool using two files that simulate disk
drives, and are 256 MB in size each. Name the files disk1 and disk2. Then answer the
following questions:

 a. What is the pathname to any file you can create in the zpool?
 b. If you create a 32 MB file in your zpool, what size increase do you see in the files

disk1 and disk2?
 c. How much free space is now in the zpool?

 5. Define the following terms in ZFS:
 Scrubbing, resilvering, slicing, mirroring, zpool, vdev.

 6. Does PC-BSD allow you to create a mirrored zpool across two disks at the initial
installation of the system? Does Solaris?

 7. If you create a zpool named pool1, and a file system on that zpool named bobsfiles
with the zfs command, what is the pathname to a file named data27 in that file sys-
tem? What is the exact syntax of the command you used to create the file system?

 8. List eight of the basic zfs subcommands that allow you to do file and file system
backups and archiving on Solaris and PC-BSD.

 9. Following the completion of the first five steps of Example 24.5, do the following:
 a. Use the zfs command to create a dataset named usbdrive on pool backup

located on the thumb drive inserted into your Solaris system. The name of the
dataset would be backup/usbdrive.

 b. Type the command zfs set copies=2 backup/usbdrive.
 c. What you have achieved with this command is a signature validation of using ZFS

and creating a zpool on the USB thumb drive. The USB thumb drive is a redun-
dant device to the extent shown. But more importantly, by setting the property
of copies=2 on this dataset, you have made the USB thumb drive redundant
to itself, because ZFS now keeps two copies of everything you put in the dataset
backup/usbdrive. And you can use ZFS facilities to ensure integrity of the data to
the bit level on the USB thumb drive. Given how inexpensive USB thumb drives

1240 ◾ UNIX: The Textbook, Third Edition

are, even in larger capacities, having two automatically created copies of your files
on this thumb drive is not prohibitive.

 d. Copy a number of important files into this new dataset from your systems hard
drive using either the cp or rsync commands shown in Chapter 23.

 e. Instead of proceeding onto step 6 of the example, retain the zpool and dataset
you have created on the thumb drive, and use it as a backup drive for your
important files. You can periodically use rsync to keep the backup files syn-
chronized to the important files on your hard drive. You may even decide that
the important files you want to back up to the thumb drive are in a single direc-
tory or multiple directories. You can then use rsync to copy directories over
to the thumb drive.

 f. To remove the USB thumb drive temporarily at any time, use the zfs unmount
command. Then you can remove it from the computer. Remember to use the zfs
mount command when you want to reinsert the USB thumb drive and archive or
backup files to it.

 10. Repeat Problem 24.9 on your Solaris system, but instead of using cp or rsync to
move important files to the USB thumb drive from some arbitrary place(s), do the
following:

 a. Create a new zpool on the hard drive which will be the source of your important
files to be backed up.

 b. Put a dataset in that new pool and fill the dataset with important files you want to
backup.

 c. Use the methods of Example 24.2 to create a ZFS snapshot of the new data-
set created on your hard drive pool. Then, continuing the methods shown in
Example 24.2, use zfs send and zfs receive to copy the snapshot from the
hard drive to the USB thumb drive.

 11. On a PC-BSD system, back up your home directory (or a selected subdirectory of
your home directory) to a USB thumb drive using the commands zfs snapshot,
zfs send, and zfs receive. The ZFS dataset for your home directory should
be named something like tank/usr/home/your_username.

 Be sure to insert and test the USB thumb drive you want to use for this problem, to
find out if it is usable on your system. If it doesn’t show up in /dev after insertion, it is
not usable!

 After testing the USB thumb drive for usability, make sure that automounting of
removable media is turned off in System Settings. Prepare the USB thumb drive using
the Disk Manager to destroy any partition table on it, and create a GPT partitioning
table on it. Then use the gpart command to create one primary partition with a ZFS
file system.

 12. On a PC-BSD system, use an externally mounted USB hard drive to repeat the opera-
tions given in Example 24.6. Note any differences in using a hard disk on the USB bus
and using a USB thumb drive.

ZFS Administration and Use    ◾    1241

 13. An important use of the procedure that you will implement in this problem is to
enable you to create a ZFS mirror of your system disk, so that you have redundancy of
your system disk and data. This single, internally mounted hard disk vdev, which can
also contain all of your user data files, may be inside of a laptop computer that can
only have a single hard disk internally mounted. The mirror you will create in this
problem is maintained over the USB bus. If the hard drive in the external (but open-
able) enclosure we designate here is a SATA drive, then that drive can also be used
as a replacement for the internal, single SATA hard disk drive if that drive fails. The
problem assumes that the external USB hard disk in its enclosure, and the internal
hard disk in your computer, can be easily removed and reinstalled. They must also
both be SATA drives, either spinning disk or SSD. This problem achieves the same
objectives as those illustrated in Chapter 23 for Clonezilla Live.

 On a PC-BSD system, use an externally mounted USB hard drive in an openable
enclosure to repeat the operations given in Example 24.4. You must make sure that
the capacity of this USB external drive is large enough to accommodate the creation
of the mirror.

 To test whether or not you have correctly solved this problem, shut down the
system. Then remove the external USB hard drive from its enclosure, and replace the
internally mounted hard drive in your computer with it. Your system should then
boot from the new hard drive, but the mirror will show as being in a degraded state.
Then replace original and external disks in the original configuration.

 To repeat this procedure when your internal hard drive actually fails, follow the
processes shown previously in the chapter for replacements of vdevs in a mirror.

 14. Mansoor is working with Bob on a project. He needs to be able to read, write, create,
and delete files related to the project, which are located in the Project directory of
Bob’s home directory. Bob and Mansoor are ordinary users without administrative
privileges. They wish to do this project without contacting the system administrator
to request new groups, group membership changes, sudo changes, and so on.

 When the project is over, Bob will remove the modify permissions on his home
and the Project directory for user mansoor. By modify, we mean Mansoor can still
look at the contents of the Project directory, but cannot make any changes to the files
in it. He will do this himself, instead of contacting the system administrator.

 On your own Solaris system, in conjunction with another user, use ACLs to
accomplish the following (substituting valid usernames on your system for Bob and
Mansoor):

 a. Create a project directory under Bob’s home directory named Project. On our
system, the path to this new directory is /export/home/bob/Project.

 b. Set the ACL on Bob’s home directory so Mansoor has read, write, and execute
privileges on it.

 c. Set the ACL on the Project directory so that Mansoor has rwxo privileges on it.
 d. Have Bob create some files in the Project directory.
 e. Have Mansoor make Bob’s home directory the current directory.

1242 ◾ UNIX: The Textbook, Third Edition

 f. Have Mansoor test whether or not he can:
– Delete files in Bob’s home directory
– Delete the Project directory from Bob’s home directory
– List, create new files, or remove the files that Bob put in the Project directory

 g. Have Bob revoke Mansoor’s modify privileges on Bob’s home directory and the
Project directory.

 h. Have Mansoor test the revocation of modify privileges from step g.
 i. Why can Mansoor still see the files in Bob’s home directory, and the files in the

Project directory, but not delete or modify any files in those directories after
step g?

 j. What chmod command(s) would Bob have to execute to deny Mansoor access to
his home directory?

 Show verification of ACL settings at as many steps as necessary to validate what
you have done.

 15. If you give a set of users permissions to a project directory using ACLs, how can
you ensure that subdirectories that are created by the project manager beneath that
project directory provide the same access privileges to those users?

 16. Create a project directory on your system and create a Git repository in it for any
number of local users on your computer system. Then use ACLs to give access to the
project directory to the users that are collaborating in the project. This should allow
those users to push to and pull from the Git repository. Have your allowed users test
the repository. Also test the security of the repository; that is, can nonallowed users
access it?

 See Chapter 17, Section 5.7 for more information on creating a Git repository.

1243

C h a p t e r 25

Virtualization Methodologies

Objectives

• To give background information on operating system virtualization

• To provide a description of PC-BSD iocage jails virtualization method

• To illustrate iocage basic usage

• To give command references for iocage networking, and jail types

• To list iocage best practices, and provide examples of advanced usage

• To explicitly detail iocage installation on PC-BSD

• To give a set of complete worked examples of iocage usage

• To describe Solaris zones virtualization method

• To define and illustrate the nonglobal zone state model

• To show Solaris commands that affect the zone state

• To show how to create a Solaris Zone

• To provide an example of installing a web server in a Solaris zone

• To describe and illustrate VirtualBox with different types of installation examples

• How to install VirtualBox on PC-BSD

• How to install VirtualBox on Solaris

• How to install Solaris as a guest on a PC-BSD host

• To show how to secure an FTP server in a VirtualBox guest

• How to install PC-BSD as a guest on a LINUX or Windows host

1244 ◾ UNIX: The Textbook, Third Edition

• How to install Solaris as a guest on a LINUX or Windows host

• To cover the commands and primitives (Solaris-only commands in parentheses)

 dladm (Solaris), ipadm(Solaris), ifconfig, jail, pkg,
pkgadd(Solaris), VBoxManage, VirtualBox, iocage, xz ,
zoneadm(Solaris), zonecfg(Solaris), zonename(Solaris)

25.1 INTRODUCTION TO VIRTUALIZATION
METHODOLOGIES AND BACKGROUND

Computer hardware virtualization is the simulation, to various degrees, of hardware plat-
forms, parts of them, or only the functionality required to run one or more operating
systems (OSs). It abstracts and thus hides the physical characteristics of the hardware from
the users. Traditionally, the software that controlled virtualized machines was known as
the hypervisor. Currently, the hypervisor is often called a virtual machine monitor (VMM).
For example, in VirtualBox, the virtual machine (VM) VirtualBox manager is the graphi-
cal front-end for a VMM.

Platform virtualization is accomplished on any given hardware by host software (the
hypervisor), which creates a simulated computer environment, a VM, for its guest software.
The guest software can be as small as a single user application or as large as complete OSs.
The guest software executes as if it were running directly on the physical hardware.

Virtualization comes with some performance disadvantages, both in resources required
to run the hypervisor and in reduced performance on the VM guest compared with
running applications on a nonvirtualized host physical machine.

A VM can be more easily controlled and inspected from outside than a physical one,
and its configuration is more flexible. This is very useful in kernel development and for
teaching OS courses. A new VM can be implemented as needed without the need for an
up-front hardware purchase.

A VM can easily be moved from one physical machine to another as needed. An
unrecoverable fault inside a VM guest does not harm the host system, so there is no risk of
crashing the host OS.

Examples of virtualization implementations:

 1. Running one or more applications that are not supported by the host OS: A VM run-
ning the required guest OS could allow the desired applications to be run, without
altering the host OS.

 2. Evaluating an alternate OS: The new OS could be run within a VM, without altering
the host OS.

 3. Server virtualization: Multiple virtual servers in containers could be run on a single
physical server, to utilize more fully the hardware resources of the physical server.

 4. Duplicating specific environments: A VM could, depending on the virtualization
software used, be duplicated and installed on multiple hosts, or restored to a previ-
ously backed-up system state.

Virtualization Methodologies    ◾    1245

 5. Creating a protected environment: If a guest OS running on a VM becomes damaged
in a way that is difficult to repair, such as may occur when testing, the VM can be
discarded without harm to the host system, and a clean copy used next time.

Primary contemporary virtualization techniques:

Full virtualization: In full virtualization, the VM simulates enough hardware to allow
a complete “guest” OS, one designed for the same processor instruction set architec-
ture (ISA) to be run in isolation.

 Examples for UNIX systems running on X86 ISAs include VirtualBox, Parallels
Workstation, Oracle VM, Virtual Server, Hyper-V, VMware Workstation, and VMware.

Hardware-assisted virtualization: In hardware-assisted virtualization, the hardware
provides architectural support that facilitates building a VMM and allows guest OSs
to be run in isolation. In 2005 and 2006, Intel and AMD provided additional hard-
ware to support virtualization. Sun Microsystems added similar features in their
UltraSPARC processors in 2005. Examples of virtualization platforms adapted to
such hardware include KVM, VMware Workstation, VMware Fusion, Hyper-V, Xen,
Oracle VM server for SPARC, and VirtualBox.

Partial virtualization: In partial virtualization, including address space virtualization,
the VM simulates multiple instances of much of an underlying hardware environ-
ment, particularly address spaces.

Paravirtualization: In paravirtualization, the VM does not necessarily simulate hard-
ware, but instead (or in addition) offers a special application programmer’s interface
(API) that can only be used by modifying the “guest” OS. For this to be possible, the
“guest” OS’s source code must be available.

OS-level virtualization: In OS-level virtualization, a physical server is virtualized at the
OS level, enabling multiple isolated and secure virtualized servers to run on a single
physical server. The “guest” OS environments share the same running instance of
the OS as the host system. Thus, the same OS kernel is also used to implement the
“guest” environments, and applications running in a given “guest” environment view
it as a stand-alone system. Examples in UNIX are FreeBSD jails, iocage in PC-BSD,
and other examples include Solaris zones. In LINUX, examples include LXC, and its
derivative management system Docker.

In this chapter, we illustrate both full virtualization and OS-level virtualization. We use
three popular and important facilities for creating a virtual environment within which a
UNIX OS can work. What differentiates these three facilities is that, for the first two, all
virtual environments are running under the same kernel (OS-level virtualization). In the
third one, any number of different kernels can be running simultaneously on one machine
(full virtualization).

Practically speaking, an important application of these implementations, as already
stated, is to provide a measure of system security, in addition to what is described in

1246 ◾ UNIX: The Textbook, Third Edition

Section 23.9. But that is not the only reason an ordinary user or system administrator
would deploy the virtualization methods we demonstrate.

A user might want to take advantage of some of the facilities that an additional OS
offers, above and beyond what is available as the main OS into which the computer boots.
Instead of shutting down the main OS, and then booting into the additional OS, both can
be run simultaneously using the virtualization method shown here. For example, Solaris
does not offer LibreOffice as an application, but PC-BSD does by default. So if you run
both OSs simultaneously, you can use LibreOffice and Solaris applications and facilities
on the same machine. Of course, there are trade-offs in doing this, mainly in terms of
performance speed and disk usage.

Also advantageous is the deployment of VMs to allow you to “test drive” a particular OS
without devoting an entire hardware platform to it. This can also be achieved by running
a “live” version of it from a DVD or a USB thumb drive, but the performance speed and
persistence of data using these techniques is somewhat limited. In this chapter, we show
several examples of installing guest VMs on mainstream OSs, such as LINUX and Windows,
to allow you to “test drive” our base UNIX systems in a more fully functional way.

25.1.1 Virtualized Network Addresses in PC-BSD and Solaris

In the examples shown in the next sections, it is necessary to have the VM guest system
network connection “bridged” to the host system. We show how to do this in Example
25.8, but as a preliminary consideration, you need to be able to quickly discover what the
network address of a PC-BSD or Solaris machine is. That is true whether you are running
either of those systems as a stand-alone, or inside of a VM environment. We also detail the
commands we use here in Section 23.8.3, “Network Configuration.”

For Solaris, you use the ipadm show-addr command, and on PC-BSD you use the
ifconfig command, as follows:

On Solaris:
bob@solaris113beta:~$ dladm show-link
LINK CLASS MTU STATE OVER
net0 phys 1500 up --
bob@solaris113beta:~$ ipadm show-addr
ADDROBJ TYPE STATE ADDR
lo0/v4 static ok 127.0.0.1/8
net0/v4 dhcp ok 192.168.0.15/24
lo0/v6 static ok ::1/128
net0/v6 addrconf ok fe80::a00:27ff:febb:de8e/10
bob@solaris113beta:~$

The Internet Protocol (IP) address of this Solaris machine, as shown in bold type in the
ipadm command output, is 192.168.0.15.

On PC-BSD:
[bob@pcbsd-1233] ~% ifconfig

Virtualization Methodologies    ◾    1247

em0: flags=8843<UP,BROADCAST,RUNNING,SIMPLEX,MULTICAST> metric 0
mtu1500options=9b<RXCSUM,TXCSUM,VLAN_MTU,VLAN_HWTAGGING,VLAN_
HWCSUM>
 ether 08:00:27:38:ba:74
 inet6 fe80::a00:27ff:fe38:ba74%em0 prefixlen 64 scopeid 0x1
 inet 192.168.0.14 netmask 0xffffff00 broadcast

192.168.0.255
 nd6 options=23<PERFORMNUD,ACCEPT_RTADV,AUTO_LINKLOCAL>
 media: Ethernet autoselect (1000baseT <full-duplex>)
 status: active
lo0: flags=8049<UP,LOOPBACK,RUNNING,MULTICAST> metric 0 mtu 16384
 options=600003<RXCSUM,TXCSUM,RXCSUM_IPV6,TXCSUM_IPV6>
 inet6 ::1 prefixlen 128
 inet6 fe80::1%lo0 prefixlen 64 scopeid 0x2
 inet 127.0.0.1 netmask 0xff000000
 nd6 options=21<PERFORMNUD,AUTO_LINKLOCAL>
[bob@pcbsd-1233] ~%

The IP address of this PC-BSD machine, as shown in bold type on the command output,
is 192.168.0.14.

25.2 PC-BSD JAILS WITH IOCAGE
A jail is an implementation of OS-level virtualization that effectively isolates a process
tree from the rest of the system. Its historic precursor is the chroot command, which
allows a privileged user to change the root of the file system for a process to a specifically
isolated location, so that other processes and users are insulated from interacting with the
“chrooted” process. Previously, in PC-BSD, jails were managed by the Warden jail man-
agement system.

Jails are very similar to Linux containers, which are used in such management systems
as LXC and Docker. The major difference between jails in PC-BSD and containers in Linux
is that Linux has some very specialized system calls that allow namespace operations and
isolation in several domains, and the establishment of cgroups.

In the following sections, we describe the facilities of iocage, a modern PC-BSD jail
management program. We also give a number of examples of how to work with jails using
iocage. We conclude with worked examples of iocage installation and jail creation and
management.

25.2.1 iocage Introduction, Overview, and Use

iocage is a jail/container manager that uses some of the best features and technologies
the PC-BSD OS has to offer, particularly ZFS. It is easy to use, and has a simple and easy-
to-understand command syntax, as follows:

iocage sub-command [-option(s)] [command argument(s)]
[properties],

1248 ◾ UNIX: The Textbook, Third Edition

where the command argument(s) are usually UUID or TAG, which are the unique identifier
or name of a jail.

Listing:

iocage activate ZPOOL
iocage cap UUID|TAG
iocage chroot UUID|TAG [command]
iocage clean [-a|-b|-j]
iocage clone UUID|TAG [UUID|TAG@snapshot] [property=value]
iocage console UUID|TAG
 iocage create [-e] [base=[RELEASE|NAME]] [pkglist=file]
[property=value]
iocage deactivate ZPOOL
iocage defaults
iocage destroy [-f] UUID|TAG
iocage df
 iocage exec [-u username | -U username] UUID|TAG|ALL command [arg
...]
iocage export UUID|TAG
iocage fetch [release=RELEASE | ftphost=ftp.hostname.org |
ftpdir=/dir/ |
 ftpfiles="base.txz doc.txz lib32.txz src.txz"]
iocage get property|all UUID|TAG
iocage help
iocage import UUID [property=value]
iocage init-host IP ZPOOL
iocage inuse UUID|TAG
iocage limits [UUID|TAG]
iocage list [-b|-t|-r]
iocage package UUID|TAG
iocage promote UUID|TAG
iocage rcboot
iocage reboot UUID|TAG
iocage rcshutdown
iocage record start|stop UUID|TAG
iocage reset UUID|TAG|ALL
iocage restart UUID|TAG
iocage rollback UUID|TAG@snapshotname
iocage runtime UUID|TAG
iocage set property=value UUID|TAG
iocage show property
iocage snaplist UUID|TAG
iocage snapremove UUID|TAG@snapshotname|ALL
iocage snapshot [-r] UUID|TAG [UUID|TAG@snapshotname]
iocage start UUID|TAG
iocage stop UUID|TAG|ALL
iocage uncap UUID|TAG

Virtualization Methodologies    ◾    1249

iocage update UUID|TAG
iocage upgrade UUID|TAG [release=RELEASE]
iocage version | --version

For more information, read the manual page for iocage. This extensive manual page
gives you all of the options, subcommands, and properties that you can use with the
iocage command.

25.2.2 Basic Usage

This section details basic iocage command usage.
All of the commands are executed as superuser.
Fetch a release: The first step with iocage on a “pristine” system (where it has never

been run before) is to fetch a release. By default, iocage will attempt to fetch the host’s
current release from the freebsd.org servers. Once the release is downloaded, the most
recent patches are applied.

iocage fetch

If a specific release is required, run the following. In Section 25.2.9, we fetched Release 10.2
on our PC-BSD system. Be aware that a later release of iocage may be available to you.

iocage fetch release=10.2-RELEASE

In the case that a specific download mirror is required:

iocage fetch ftphost=ftp.hostname.org

You can also specify an FTP directory from which to fetch the base files:

iocage fetch ftpdir=/dir/

Creating a jail: There are three supported basic jail types: full, clone, and base jail.
In addition to these three, there are two more (empty and templates). Depending on
requirements, the create subcommand can be applied to create any of the three types.
By default, iocage will create a fully independent jail of the current host’s release and set
the TAG property to today’s date.

For example:

iocage create

This will create a fully independent jail.
To create a lightweight jail (clone):

iocage create -c

http://www.freebsd.org

1250 ◾ UNIX: The Textbook, Third Edition

To create a base jail:

iocage create -b

To create a lightweight jail and set its IP address and tag name to myjail:

iocage create -c tag=myjail ip4_addr="em0|10.1.1.10/24"

Listing jails: To list all jails:

iocage list

To see all downloaded releases:

iocage list -r

To see available templates:

iocage list -t

Starting, stopping, or restarting a jail: To start or stop any jail on the system, both UUID
and TAG can be used interchangeably. To simplify UUID handling, iocage also accepts a
partial UUID with any subcommand.

To start a jail tagged myjail:

iocage start myjail

To start a jail with a full UUID run:

iocage start 26e8e027-f00c-11e4-8f7f-3c970e80eb61

Or, to start the jail only with a partial UUID, enter the first few characters only:

iocage start 26e8

To stop a jail, just use the stop subcommand instead of start:

iocage stop myjail

To restart a jail run, which must already be running:

iocage restart myjail

Note: Short UUIDs are supported with all operations and subcommands within
iocage.

Virtualization Methodologies    ◾    1251

Configure a jail: Any property can be reconfigured with the set subcommand.
To set the jail’s tag property:

iocage set tag=myjail 26e8e027

Get a jail property: To verify any property, use the get subcommand:

iocage get tag 26e8e027

Get all properties, or display all supported properties:

iocage get all 26e8e027

System-wide defaults: Starting with Version 1.6.0 of iocage, system-wide defaults can
be set. These defaults will be reapplied for all newly created jails. To create a system-wide
default override for a property, simply specify the default keyword instead of a jail UUID
or tag.

To turn off VNET capability for all newly created jails:

iocage set vnet=off default

Destroy a jail:

iocage destroy myjail

The jail must be down or stopped before it can be destroyed.
Warning: This will irreversibly destroy the jail!

25.2.3 iocage Networking

Jails have multiple networking options based on what features are desired.

25.2.3.1 For IP Alias-Based Networking (Shared IP)
iocage will try to guess whether VNET support is available in the system, and if it is, will
enable it by default for newly created jails.

Make sure VNET is disabled:

iocage get vnet UUID | TAG

If set to “on”, disable it:

iocage set vnet=off UUID | TAG

A system-wide default can be configured if required. This will take effect for newly
created jails only.

1252 ◾ UNIX: The Textbook, Third Edition

iocage set vnet=off default

Configure an IP address:

iocage set ip4_addr="em0|10.1.1.10/24" UUID| TAG

If multiple addresses are desired, just separate the configuration directives with a
comma:

iocage set ip4_addr="em0|10.1.1.10/24,em0|10.1.1.11/24" UUID|
TAG

Start jail:

iocage start UUID | TAG

Verify visible IP configuration in the jail (the jail must be running for this to work):

iocage exec UUID | TAG ifconfig

25.2.3.2 For VNET Networking
Add bridge configuration to /etc/rc.conf (on the host):

cloned_interfaces="bridge0 bridge1"

ifconfig _ bridge0="addm em0 up"
ifconfig_em0="up"

Add these tunables to /etc/sysctl.conf:

net.inet.ip.forwarding=1

net.link.bridge.pfil _ onlyip=0
net.link.bridge.pfil _ bridge=0
net.link.bridge.pfil_member=0

Configure default gateway for jail:

iocage set defaultrouter=10.1.1.254 UUID | TAG

Configure an IP address:

iocage set ip4_addr="vnet0|10.1.1.10/24" UUID | TAG

Start jail and ping default gateway.
Start the jail:

iocage start UUID | TAG

Virtualization Methodologies    ◾    1253

Open a console into the jail:

iocage console UUID | TAG

Ping default gateway:

ping 10.1.1.254

25.2.3.3 Configuring Network Interfaces
iocage handles network configuration for both shared IP and VNET jails transparently.

Configuring a shared IP jail:

IPV4
iocage set ip4_addr="em0|192.168.0.10/24" UUID|TAG
IPV6
iocage set ip6_addr="em0|2001:123:456:242::5/64" UUID|TAG

This command will add an IP alias of 192.168.0.10/24 to interface em0 for the shared IP
jail at start time, as well as 2001:123:456:242::5/64.

Configuring a VNET jail:
To configure both IPV4 and IPV6:

iocage set ip4_addr="vnet0|192.168.0.10/24" UUID|TAG
iocage set ip6_addr="vnet0|2001:123:456:242::5/64" UUID|TAG
iocage set defaultrouter6="2001:123:456:242::1" UUID|TAG

For VNET jails, a default route has to be specified also.
Additionally, to start a jail with no IPV4/6 address, set these properties:

iocage set ip4_addr=none ip6_addr=none UUID|TAG
iocage set defaultrouter=none defaultrouter6=none UUID|TAG

25.2.4 Jail Types
iocage supports five different jail types:

• thick (default)

• thin

• base

• template

• empty

Full (thick): Full (thick) jail is the default type and it is created with the following
command:

1254 ◾ UNIX: The Textbook, Third Edition

iocage create

A full jail has a fully independent ZFS dataset suitable for network replication (ZFS
send/recv).

Clone (thin): Thin jails are lightweight clones created with:

iocage create -c

Thin jails are cloned from the appropriate release at creation time and consume only a
fraction of the space, preserving only the changing data.

Base: iocage basejails use independent read-only ZFS file system clones to achieve the
same functionality.

To create a basejail:

iocage create -b

Basejails reclone their base file systems at each startup. They are ideal for environments
where patching or upgrades are required at once to multiple jails.

Template: Template is simply a jail where the template property is set to “yes.”
To turn a jail into a template:

iocage set template=yes UUID|TAG

After this operation the jail can be listed with:

iocage list -t

To deploy a jail from this template:

iocage clone TEMPLATE_UUID tag=mynewjail

Templates can be converted back and forth by setting the template property.
Empty: Empty jails are intended for unsupported jail setups or testing.
To create an empty jail:

iocage create -e

These are ideal for experimentation with unsupported releases or LINUX jails.

25.2.5 Best Practices

These are some generic guidelines for working with iocage-managed jails.
Using PF (PF packet filter firewall) as a module: This is the default setting in the generic

kernel.
Always use an easily-recognizable tag for your jails and templates!
This will help you avoid mistakes and easily identify jails.

Virtualization Methodologies    ◾    1255

Set the notes property: Set the notes property to something meaningful, especially for
templates and jails you might use only once in a while.

Check your firewall rules: When using IP or Internet Protocol firewall (IPFW) inside a
VNET jail put firewall _ enable="YES" firewall _ type="open"

into /etc/rc.conf at the start. This way you can exclude the firewall from blocking. Lock
it down once you have tested everything. Also check PF firewall rules on the host if you
happen to mix both.

Get rid of old snapshots: Remove snapshots you do not need, especially from jails where
data is changing a lot!

Use the chroot subcommand: In case you need to access or modify files in a template
or a jail which is in a stopped state, use:

iocage chroot UUID | TAG

This way, you do not need to start the jail or convert the template.

25.2.6 Advanced Usage

Clones: When a jail is cloned, iocage creates a ZFS clone file system. Clones are cheap
lightweight snapshots.

A clone depends on its source snapshot and file system. If you wish to destroy the source
jail and preserve its clones, you need to promote the clone first, otherwise the source jail
cannot be destroyed.

Create a clone: Clone myjail to myjail2 as follows:

iocage clone myjail tag=myjail2

To clone a jail from an existing snapshot:

iocage clone myjail@snapshotname tag=myjail3

Promoting a clone: To promote a cloned jail:

iocage promote UUID | TAG

This step will reverse the clone and source jail relationship. Basically, the clone will
become the source and the source jail will be demoted to a clone.

Then, you can remove the demoted jail with:

iocage destroy UUID | TAG

Updating jails: Updates are handled with the freebsd-update utility. Jails can be
updated while they are stopped or running.

To update a jail to the latest patch level:

iocage update UUID | TAG

1256 ◾ UNIX: The Textbook, Third Edition

This will create a back-out snapshot of the jail automatically.
When you have finished updating and the jail is working correctly, simply remove the

snapshot:

iocage snapremove UUID|TAG@snapshotname

In the case where the update breaks the jail, simply revert back to the snapshot:

iocage rollback UUID|TAG@snapshotname

If you wish to test updating without affecting a jail, create a clone and update it in the
same way as outlined previously.

To clone a jail:

iocage clone UUID|TAG tag=testupdate

Upgrading jails: Upgrades are handled with the freebsd-update utility. By default,
the upgrade command will try to upgrade the jail to the host’s release version (uname -r).

Based on the jail type property, upgrades are handled differently for basejails and
nonbasejails.

Upgrading a nonbasejail: To upgrade a normal jail (nonbasejail) to the host’s release:

iocage upgrade UUID | TAG

This will upgrade the jail to the same release as the host.
To upgrade to a specific release:

iocage upgrade UUID|TAG release=10.2-RELEASE

Upgrade basejail: To upgrade a basejail, first verify whether the jail is a basejail:

iocage get type UUID|TAG

This command should return type “basejail”.
The upgrade can be forced while the jail is online by the following:

iocage upgrade UUID|TAG

This will forcibly reclone the basejail file systems while the jail is running (no downtime)
and update the jails with the changes from the new release.

iocage set release=10.1-RELEASE UUID|TAG

This will cause the jail to reclone its file systems from Release 10.1 on the next jail start.
This will not update the jail’s files with changes from the next release!

Virtualization Methodologies    ◾    1257

Autoboot:
Make sure iocage _ enable="YES" is set in /etc/rc.conf.
To enable a jail to autoboot during a boot:

iocage set boot=on UUID|TAG

Boot priority: Boot order can be specified by setting the priority value:

iocage set priority=20 UUID|TAG

A lower value means a higher boot priority.
Snapshot management: iocage supports transparent ZFS snapshot management out

of the box. Snapshots are point-in-time copies of data; safety points to which a jail can be
restored at any time. Initially, snapshots take up almost no space, as only changes in data
is recorded.

To list snapshots for a jail:

iocage snaplist UUID|TAG

To create a new snapshot run:

iocage snapshot UUID|TAG

This will create a snapshot based on the current time.
To create a snapshot with a custom naming run:

iocage snapshot UUID|TAG@mysnapshotname

Resource limits: iocage can enable optional resource limits for a jail. The outlined
procedure should provide enough for a decent starting point.

Limit core or thread: Limit a jail to a single thread or core number 1:

iocage set cpuset=1 UUID|TAG iocage start UUID|TAG

List applied rules: List applied limits:

iocage limits UUID|TAG

Limit DRAM use: Limit a jail to 4G dynamic random-access memory (DRAM) use
(limiting resident set size [RSS] memory use can be done on the fly):

iocage set memoryuse=4G:deny UUID|TAG

Turn on resource limits: Turn on resource limiting for jail:

iocage set rlimits=on UUID|TAG

1258 ◾ UNIX: The Textbook, Third Edition

Apply limits: Apply limit on the fly:

iocage cap UUID | TAG

Check limits: Check active limits:

iocage limits UUID | TAG

Limit central processing unit (CPU) use by %: Limit CPU execution to 20%:

iocage set pcpu=20:deny UUID|TAG iocage cap UUID|TAG

Check limits:

iocage limits UUID | TAG

Resetting a jail’s properties: The iocage reset command resets jail properties.
To reset to defaults:

iocage reset UUID | TAG

You can also reset every jail to the default properties:

iocage reset ALL

Resetting a jail will retain the jail’s UUID and TAG. Everything else will be lost. Make
sure to set any custom properties that you need.

Automatic package installation: Packages can be installed automatically at jail creation
time. Specify the pkglist property at creation time, which should point to a text file
containing one package name per line. Please note that you will need to have an Internet
connection for this to work. pkg install will try to get the packages from online
repositories.

Create a pkgs.txt file with your favorite text editor and add package names to it.

pkgs.txt:
nginx

Now simply create a jail and supply the pkgs.txt file:

iocage create pkglist=/path-to/pkgs.txt tag=myjail

This will install nginx in the newly created jail.

25.2.7 How to Create and Use Templates

First, set up a custom jail, and then create a template from it. This is the expedient way to
deploy all packages and preconfigured settings in the jail.

Virtualization Methodologies    ◾    1259

Any jail can be converted to a template and back to a jail again. A template is just another
jail which has the template property set to “yes”. The difference is that templates are not
started by iocage.

To create a template with iocage:

 1. Create a new jail.

iocage create tag=mytemplate

 2. Configure the jail’s networking to suit the way you want to deploy it.

 3. Customize the jail.

 4. When customization is completed, stop the jail.
iocage stop UUID | TAG

 5. Good practices dictate that you set some notes to explain the jail.
iocage set notes="customized nginx jail" UUID |TAG

 6. Turn the template property on.

iocage set template=yes UUID | TAG

 7. List your template.

iocage list -t

To use the created template:

 1. To create a new jail from the created template, clone it.

iocage clone UUID-of-mytemplate tag=mynewjail

 2. List new jail.

iocage list

 3. Start the new jail.

iocage start UUID | TAG

If you need to make further customization to the template or want to patch it, you have
two options:

• Convert the template back to a jail with iocage set template=no UUID-of-
template, and start the jail.

• If you do not need network access to make the changes, execute iocage chroot
UUID-of-template, make the changes, and exit.

25.2.8 Create a Jail Package

A jail package is a small template which can be used on top of ordinary jails. The
release and patch levels have to match between the package and an ordinary jail.

1260 ◾ UNIX: The Textbook, Third Edition

iocage uses the record function for this, which is a union file system (unionfs).
The resulting package can be stored on a web server with a checksum file ready to be
used anywhere.

To create a jail package, based on the Nginx web server, using iocage:

 1. Create a new jail.

iocage create -c tag=nginx

 2. Start the jail.

iocage start UUID | TAG

 3. Configure networking to enable internet access for this jail.

 4. Turn on recording.

iocage record start UUID | TAG

From now on, every change will be recorded under /iocage/jails/UUID/recorded.

 5. Install nginx with pkg install nginx.

 6. Install any other software you might require. With just nginx installed, this is a very
lightweight container!

 7. Customize configuration files in the jail.

 8. Once finished, stop recording changes with:

iocage record stop UUID | TAG

Optionally, stop the jail.

 9. Examine /iocage/jails/UUID/recorded:

find /iocage/jails/UUID/recorded -type f

 10. Remove any unnecessary files and make final customization/changes.

 11. Execute the package create command.

iocage package UUID | TAG

 This will create a package in /iocage/packages with a SHA256 checksum file.

 12. Optionally, discard the jail now.

iocage destroy UUID | TAG

The resulting UUID.tar.xz can now be deployed, as follows.

 1. Create a new jail.

iocage create -c

Virtualization Methodologies    ◾    1261

 2. Deploy package.

iocage import UUID tag=myjail

 3. List the jail.

iocage list|grep myjail, grab UUID

 4. Start the jail.

iocage start UUID | TAG

 5. Examine your changes and packages.

25.2.9 iocage Installation and Worked Examples

The following are explicit installation instructions for iocage on PC-BSD, and three
worked examples showing how to do some basic iocage operations to create, view, and
manage jails.

Installation: Depending on your version and installation type of PC-BSD, you may need
to install the iocage package before beginning the first step of installation as shown here.
For example, on a newly built TrueOS PC-BSD system, the package was already installed
and ready to be expanded. The easiest way for you to know that the package has already
been installed on your PC-BSD system is to proceed with the first iocage fetch com-
mand shown here. If you get an error message, then execute the following command as
superuser:

pkg install iocage

Then, proceed on to the instructions for installation.
Note: Some of the output from the system is truncated to improve readability.

[bob@pcbsd-1233] /usr/home/bob# iocage fetch
Supported releases are:
 10.2-RELEASE
 9.3-RELEASE
Please select a release [10.2-RELEASE]: <Enter>
src.txz 100% of 118 MB 626

kBps 03m14s
Extracting: base.txz
Extracting: doc.txz
Extracting: lib32.txz
Extracting: src.txz
* Updating base jail..
src component not installed, skipped
Looking up update.FreeBSD.org mirrors... none found.
Fetching public key from update.FreeBSD.org... done.
Fetching metadata signature for 10.2-RELEASE from update.FreeBSD.
org... done.

1262 ◾ UNIX: The Textbook, Third Edition

Fetching metadata index... done.
Fetching 2 metadata files... done.
Inspecting system…
…
/usr/share/man/man8/ntpq.8.gz
/usr/share/man/man8/sntp.8.gz
src component not installed, skipped
Installing updates... done.
[bob@pcbsd-1233] /usr/home/bob#

You have now installed iocage on your PC-BSD system.

EXERCISE 25.1

Follow the steps listed previously to install the latest release of iocage on your system.

Example 25.1: Creating Jails and Viewing Some of Their Properties

The following example allows you to create two jails and view some of their properties.
First jail:
[bob@pcbsd-1233] /usr/home/bob# iocage create
** interfaces=vnet0:bridge0,vnet1:bridge1
** vnet=off
** host_hostname=fabaf6b1-94c3-11e5-860b-08002738ba74
** hostname=fabaf6b1-94c3-11e5-860b-08002738ba74
** ip4_addr=none
...
[bob@pcbsd-1233] /usr/home/bob# iocage list
JID UUID BOOT STATE TAG
- 527c21ff-9573-11e5-9cc9-08002738ba74 off down

 2015-11-27@17:57:04
[bob@pcbsd-1233] /usr/home/bob#

The TAG is the name of the jail, and the UUID is another way of identifying it.
For the next jail, we will create it with a more manageable TAG and also add an IPV4
address to it.

Second Jail: This command will name the new jail bobsecond, using the tag
subcommand. It will also have an IP address of 192.168.0.100, which will be added
as an alias by iocage when the jail is started, and removed when the jail is stopped.
The alias will be added to the device network interface em0.
The tag allows you to refer to the newly created jail as bobsecond.

iocage create tag=bobsecond ip4_addr="em0|192.168.0.100"
Configuring jail..
** interfaces=vnet0:bridge0,vnet1:bridge1
…

Virtualization Methodologies    ◾    1263

[bob@pcbsd-1233] /usr/home/bob# iocage list
JID UUID BOOT STATE TAG
- 44599667-9574-11e5-9cc9-08002738ba74 off down bobsecond
- 527c21ff-9573-11e5-9cc9-08002738ba74 off down
 2015-11-27@17:57:04

The name of the new jail is bobsecond, with a reference UUID
(44599667-9574-11e5-9cc9-08002738ba74).

EXERCISE 25.2

Similar to the steps shown in Example 25.1, create a lightweight jail on your system.
Name or tag the jail with your own unique name. Then use the zfs list command to
display the ZFS file system for this jail, and its mount point. How large is the jail in bytes?

Example 25.2: Listing Jails and Starting Them Automatically at System Boot

As shown in Example 25.1, the following command lists information about the cur-
rent Jails:

iocage list
JID UUID BOOT STATE TA
- 44599667-9574-11e5-9cc9-08002738ba74 off down bobsecond

You can see that the boot flag is off. This means the jail will not be started at boot
time. The STATE identifier means that the jail has not been started, or is inactive.

Starting jails automatically at system boot: To allow iocage to start your jails at
boot time, add the following line to /etc/rc.conf:

iocage_enable="YES"

Individual jails can be marked for starting at system boot by using this command:

iocage set boot=on bobsecond

You can specify the order for jails to start by setting their priority:

iocage set priority=20 bobsecond

A lower value means a higher boot priority (i.e., boot the jail earlier).

EXERCISE 25.3

For the jail you created in in-chapter Exercise 25.2, change its properties so that it auto-
starts at system boot. Then reboot the system to see that the jail starts automatically.

1264 ◾ UNIX: The Textbook, Third Edition

Example 25.3: Looking Into, Starting, Stopping, and Destroying a Jail

You can chroot into your jail without starting or running the jail:

iocage chroot bobsecond
root@pcbsd-1233:/ #

This can be useful for modifying the jail. Explore the jail with the ls command:

root@pcbsd-1233:/ # ls
.cshrc bin etc media rescue sys var
.profile boot lib mnt root tmp
COPYRIGHT dev libexec proc sbin usr
root@pcbsd-1233:/ #

See how the network connection is configured:

root@pcbsd-1233:/ # ifconfig
em0: flags=8843<UP,BROADCAST,RUNNING,SIMPLEX,MULTICAST> metric
0 options=9b<RXCSUM,TXCSUM,VLAN_MTU,VLAN_HWTAGGING,VLAN_HWCSUM>
 ether 08:00:27:38:ba:74
 inet6 fe80::a00:27ff:fe38:ba74%em0 prefixlen 64

scopeid 0x1
 inet 192.168.0.16 netmask 0xffffff00 broadcast

192.168.0.255
 nd6 options=23<PERFORMNUD,ACCEPT_RTADV,AUTO_LINKLOCAL>
 media: Ethernet autoselect (1000baseT <full-duplex>)
 status: active
lo0: flags=8049<UP,LOOPBACK,RUNNING,MULTICAST> metric 0 mtu
16384
options=600003<RXCSUM,TXCSUM,RXCSUM_IPV6,TXCSUM_IPV6>
 inet6 ::1 prefixlen 128
 inet6 fe80::1%lo0 prefixlen 64 scopeid 0x2
 inet 127.0.0.1 netmask 0xff000000
 nd6 options=21<PERFORMNUD,AUTO_LINKLOCAL>
root@pcbsd-1233:/ #

To get out of the chroot, press <CTRL-D> or type exit.
Starting a jail

[bob@pcbsd-1233] /usr/home/bob# iocage start bobsecond
* Starting 44599667-9574-11e5-9cc9-08002738ba74 (bobsecond)
 + Started (shared IP mode) OK
 + Starting services OK
[bob@pcbsd-1233] /usr/home/bob#
[bob@pcbsd-1233] /usr/home/bob# iocage list
JID UUID BOOT STATE TAG

Virtualization Methodologies    ◾    1265

1 44599667-9574-11e5-9cc9-08002738ba74 off up bobsecond
- 527c21ff-9573-11e5-9cc9-08002738ba74 off down
 2015-11-27@17:57:04
[bob@pcbsd-1233] /usr/home/bob#

The jail named bobsecond is up.
Accessing a jail console: This command allows you access to the jail without log-

ging into it:

[bob@pcbsd-1233] /usr/home/bob# iocage console bobsecond
FreeBSD 10.2-RELEASE-p4 (GENERIC) #0: Tue Aug 18 15:15:36 UTC
2015
Welcome to FreeBSD!
Release Notes, Errata: https://www.FreeBSD.org/releases/
...
root@44599667-9574-11e5-9cc9-08002738ba74:~ #

You are now in the jail as if you had logged in at the console. For example, we can
now start sshd manually. Watch as it creates missing keys automatically:

root@44599667-9574-11e5-9cc9-08002738ba74:~ # service sshd
onestart
Generating RSA1 host key.
2048 09:ce:a8:b8:dc:5b:e6:22:9c:a8:f4:6b:76:da:c7:10
root@44599667-9574-11e5-9cc9-08002738ba74 (RSA1)
Generating RSA host key.
2048 a4:03:c5:61:76:ed:41:80:77:20:3f:d6:99:89:37:4d
root@44599667-9574-11e5-9cc9-08002738ba74 (RSA)
Generating DSA host key.
1024 78:4b:04:4b:e8:f5:09:a5:5f:0e:71:02:b4:c6:b2:7b
root@44599667-9574-11e5-9cc9-08002738ba74 (DSA)
Generating ECDSA host key.
256 c7:98:87:dc:16:37:df:95:21:d0:24:04:75:a8:50:c3
root@44599667-9574-11e5-9cc9-08002738ba74 (ECDSA)
Generating ED25519 host key.
256 53:08:ac:52:d3:3e:ba:53:9e:ec:0b:c6:42:22:bc:c8
root@44599667-9574-11e5-9cc9-08002738ba74 (ED25519)
Performing sanity check on sshd configuration.
Starting sshd.
root@44599667-9574-11e5-9cc9-08002738ba74:~ #

Check the network configuration:

root@44599667-9574-11e5-9cc9-08002738ba74:~ # ifconfig
em0: flags=8843<UP,BROADCAST,RUNNING,SIMPLEX,MULTICAST> metric
0 mtu 1500

1266 ◾ UNIX: The Textbook, Third Edition

 options=9b<RXCSUM,TXCSUM,VLAN_MTU,VLAN_HWTAGGING,
VLAN_HWCSUM>

 ether 08:00:27:38:ba:74
 inet 192.168.0.100 netmask 0xffffffff broadcast

192.168.0.100
 media: Ethernet autoselect (1000baseT <full-duplex>)
 status: active
lo0: flags=8049<UP,LOOPBACK,RUNNING,MULTICAST> metric 0 mtu
16384
 options=600003<RXCSUM,TXCSUM,RXCSUM_IPV6,TXCSUM_IPV6>
root@44599667-9574-11e5-9cc9-08002738ba74:~ #

Change the root password in the jail bobsecond while we are logged into its
console:

root@44599667-9574-11e5-9cc9-08002738ba74:~ # passwd
Changing local password for root
New Password: xxxxx
Retype New Password: xxxxx
root@44599667-9574-11e5-9cc9-08002738ba74:~ #

To close the console connection into bobsecond, type exit or logout.
Restarting and stopping a jail:

[bob@pcbsd-1233] /usr/home/bob# iocage restart bobsecond
* Soft restarting 44599667-9574-11e5-9cc9-08002738ba74
(bobsecond)
[bob@pcbsd-1233] /usr/home/bob#
[bob@pcbsd-1233] /usr/home/bob# iocage stop bobsecond
* Stopping 44599667-9574-11e5-9cc9-08002738ba74 (bobsecond)
 + Running pre-stop OK
 + Stopping services OK
 + Removing jail process OK
 + Running post-stop OK
rctl: RACCT/RCTL present, but disabled; enable using kern.
racct.enable=1 tunable
[bob@pcbsd-1233] /usr/home/bob#

Destroying a jail:

If you wish to remove a jail from a system, you destroy it.
You also have to make sure the jail is stopped, or down!

First use iocage list to see what jails we have defined:

[bob@pcbsd-1233] /usr/home/bob# iocage list

Virtualization Methodologies    ◾    1267

JID UUID BOOT STATE TAG
2 44599667-9574-11e5-9cc9-08002738ba74 off up bobsecond
- 527c21ff-9573-11e5-9cc9-08002738ba74 off down
 2015-11-27@17:57:04

Then use iocage destroy to completely remove the first jail we created:

[bob@pcbsd-1233] /usr/home/bob# iocage destroy
2015-11-27@17:57:04
 WARNING: this will destroy jail 527c21ff-9573-11e5-9cc9-
08002738ba74
 Dataset: tank/iocage/jails/527c21ff-9573-11e5
-9cc9-08002738ba74
 Are you sure ? y[N]: y
 Destroying: 527c21ff-9573-11e5-9cc9-08002738ba74
[bob@pcbsd-1233] /usr/home/bob#

Notice that in the iocage destroy command, we used the tag of the first jail
as its identifier.

EXERCISE 25.4

Create a jail, start it, and set properties on it so you can ssh into it from the host, and from
other computers on your local area network (LAN).

25.3 SOLARIS ZONES VIRTUALIZATION METHOD
Solaris zones are used to virtualize OS services and provide an isolated and secure envi-
ronment for running applications. A nonglobal zone, usually called just a zone, is a virtual-
ized OS environment created within a single instance of the Solaris OS. The single instance
of the OS is called the global zone. The global and any nonglobal zones share only one
instance of the Solaris kernel.

25.3.1 Nonglobal Zone State Model

Before doing some example installations of zones, it is important to know what operat-
ing states a nonglobal zone can have. The following model details those states, as seen in
Figure 25.1. Example commands that affect those states are also shown in the description
of the model that follows:

A nonglobal zone can be in one of the following seven states, as shown in Figure 25.1:

Configured: The zone’s configuration is complete and committed to stable storage.
However, those elements of the zone’s application environment that must be speci-
fied after initial boot are not yet present.

Incomplete: During an install or uninstall operation, zoneadm sets the state of the tar-
get zone to incomplete. On successful completion of the operation, the state is set to
the correct state.

1268 ◾ UNIX: The Textbook, Third Edition

A damaged installed zone can be marked incomplete by using the mark subcommand
of zoneadm. Zones in the incomplete state are shown in the output of zoneadm
list -iv.

Unavailable: Indicates that the zone has been installed, but cannot be verified, made
ready, booted, attached, or moved. A zone enters the unavailable state at the follow-
ing times:

When the zone’s storage is unavailable and svc:/system/zones:default begins, such as
during system boot

When the zone’s storage is unavailable

When archive-based installations fail after successful archive extraction

When the zone’s software is incompatible with the global zone’s software, such as
after an improper -F (force) attach

Installed: The zone’s configuration is instantiated on the system. The zoneadm com-
mand is used to verify that the configuration can be successfully used on the desig-
nated Solaris system. Packages are installed under the zone’s root path. In this state,
the zone has no associated virtual platform.

Ready: The virtual platform for the zone is established. The kernel creates the zsched
process, network interfaces are set up and made available to the zone, file systems are
mounted, and devices are configured. A unique zone ID is assigned by the system. At
this stage, no processes associated with the zone have been started.

Running: User processes associated with the zone application environment are running.
The zone enters the running state as soon as the first user process associated with the
application environment (init) is created.

Null

Create

Reboot Running

Unavailable

Ready

Shutting
down and

Down

Configured Incomplete Installed

FIGURE 25.1 Nonglobal zone states.

Virtualization Methodologies    ◾    1269

Shutting down and Down: These states are transitional states that are visible while the
zone is being halted. However, a zone that is unable to shut down for any reason will
stop in one of these states.

25.3.2 Commands That Affect Zone State

The following table is a listing of commands and subcommands in Solaris that affect the
zone states as described in the previous subsection. You can also see the zonecfg and
zoneadm manual pages on the system for more description and explanation. The man-
ual pages contain several examples. The general syntax of the zoneadm command is as
follows:

SYNTAX

zoneadm -z zonename [-u uuid-match] subcommand [subcommand_options]
zoneadm [-R root] [-z zonename] [-u uuid-match] list [list_options]
zoneadm [-R root] -z zonename [-u uuid-match] mark incomplete

Purpose: The zoneadm utility is used to administer system zones. A zone is an application
container that is maintained by the OS.

Commonly used options/features:
zoneadm list –cv List zones with verbose output.
zoneadm -z firstzone install Install a zone named firstzone with a ZFS.

Parameters changed through zonecfg do not affect a running zone. The zone
must be rebooted for the changes to take effect.

25.3.3 Creating a Solaris Zone

Example 25.4: A First Zone

Objectives: To create a Solaris zone using the zonecfg and zoneadm commands,
and to check its connection to the host with the ping command.

Introduction: A zone is a “container” which runs the same kernel as the host, but
operates in an entirely autonomous and secure environment separate from the host. An
illustration of the allowed states that a zone can be in at any time is given in Figure 25.1
and the commands that affect those states are shown in Table 25.1. Many of the steps
in the example will take the zone through those states, and it would be instructive for
you to refer back to this figure when you proceed through the steps of the example to
verify what state the zone you are creating is currently in during any one step.

Prerequisites:

 1. You must have superuser privileges on a Solaris system.
 2. Your computer must be connected to the Internet, and you must have access to

an Oracle IPS repository.

1270 ◾ UNIX: The Textbook, Third Edition

TABLE 25.1 zonecfg and zoneadm Subcommands and Arguments

Command, Arguments, and Subcommands Brief Description of What it Does

Configured
zonecfg -z zonename verify

zonecfg –z zonename set old=new Renames old zonename to new.
zonecfg -z zonename commit

zonecfg -z zonename delete

zoneadm -z zonename attach

zoneadm -z zonename verify

zoneadm -z zonename install

zoneadm -z zonename clone

zoneadm -z zonename mark incomplete

zoneadm -z zonename mark unavailable

Incomplete
zoneadm -z zonename uninstall

Unavailable
zoneadm -z zonename uninstall Uninstalls the zone from the specified system.
zoneadm -z zonename attach

zonecfg -z zonename Can be used to change zonepath and any other
property or resource that can be changed when in
the installed state.

Installed
zoneadm -z zonename ready (optional)
zoneadm -z zonename boot

zoneadm -z zonename uninstall Uninstalls the configuration of the specified zone
from the system.

zoneadm -z zonename move path

zoneadm -z zonename detach

zonecfg -z zonename Adds or removes an attr, bootargs, capped-
cpu, capped-memory, dataset,
dedicated-cpu, device, fs, ip-type,
limitpriv, net, rctl, or scheduling-
class property.

zoneadm -z zonename mark incomplete

zoneadm -z zonename mark unavailable

Ready
zoneadm -z zonename boot

zoneadm halt Returns a zone in the ready state to the installed
state.

zonecfg -z zonename Adds or removes attr, bootargs, capped-
cpu, capped-memory, dataset,
dedicated-cpu, device, fs, ip-type,
limitpriv, net, rctl, or scheduling-
class property.

Running
zlogin options zonename

zoneadm -z zonename reboot

zoneadm -z zonename halt Returns a ready zone to the installed state.

Virtualization Methodologies    ◾    1271

 3. You must know the IP address of your host. You can find this out by using the
ipadm command as follows:

root@solaris:~# ipadm show-addr
ADDROBJ TYPE STATE ADDR
lo0/v4 static ok 127.0.0.1/8
net0/v4 dhcp ok 192.168.0.13/24
lo0/v6 static ok ::1/128
net0/v6 addrconf ok fe80::e611:5bff:fe12:c277/10

In the output on our system, the network interface card (NIC) is net0, and the IP
address of the host is 192.168.0.13.

Procedures: Do the following steps, in the order presented here, to meet the objec-
tives of this example.

 1. Check what zones currently exist by listing their ZFS data sets.

root@solaris:~# zfs list | grep zones
rpool/VARSHARE/zones 144K 890G 144K /system/zones

 2. Check if virtual NICs exist.

root@solaris:~# dladm show-link
LINK CLASS MTU STATE OVER
net0 phys 1500 up --
vboxnet0 phys 1500 up --

 3. Begin creation of the first zone using the zonecfg command.

root@solaris:~# zonecfg -z firstzone
Use 'create' to begin configuring a new zone.

 4. You are then in the zonecfg program. Set important default options as shown,
and then exit.

zonecfg:firstzone> create
create: Using system default template 'SYSdefault'
zonecfg:firstzone> set zonepath=/zones/firstzone
zonecfg:firstzone> set autoboot=true

TABLE 25.1 (CONTINUED) zonecfg and zoneadm Subcommands and Arguments

Command, Arguments, and Subcommands Brief Description of What it Does

zoneadm halt Returns a zone in the running state to the installed
state.

zoneadm -z shutdown Cleanly shuts down the zone.
zonecfg -z zonename Adds or removes an anet, attr, bootargs,

capped-cpu, capped-memory, dataset,
dedicated-cpu, device, fs, ip-type,
limitpriv, net, rctl, or scheduling-
class property. The zonepath resource cannot
be changed.

1272 ◾ UNIX: The Textbook, Third Edition

zonecfg:firstzone> set bootargs="-m verbose"
zonecfg:firstzone> verify
zonecfg:firstzone> commit
zonecfg:firstzone> exit

 5. Check the status of the virtual NIC.
root@solaris:~# dladm show-link
LINK CLASS MTU STATE OVER
net0 phys 1500 up --
vboxnet0 phys 1500 up --

 6. Check the configured status of the zone.
root@solaris:~# zoneadm list -cv
ID NAME STATUS PATH BRAND IP
0 global running / solaris shared
- firstzone configured /zones/firstzone solaris excl

 7. Install the zone, which we will name firstzone, from an online IPS reposi-
tory using the zoneadm command. Your computer must be connected to the
Internet, and you must have access to an IPS repository. This is a long step (on
our system it took about 20 minutes) where you have to wait for the repository
packages to load and install.
root@solaris:~# zoneadm -z firstzone install
The following ZFS file system(s) have been created:
 rpool/zones
 rpool/zones/firstzone
Progress being logged to /var/log/zones/
zoneadm.20141017T083049Z.firstzone.install
 Image: Preparing at /zones/firstzone/root.
 Install Log: /system/volatile/install.3819/install_log
 AI Manifest: /tmp/manifest.xml.MVaWBh
 SC Profile: /usr/share/auto_install/sc_profiles/enable_
sci.xml
 Zonename: firstzone
Installation: Starting ...
 Creating IPS image
Startup linked: 1/1 done
 Installing packages from:
 solaris
 origin: http://pkg.oracle.com/solaris/
release/
DOWNLOAD PKGS FILES XFER (MB) SPEED
Completed 282/282 53274/53274 351.9/351.9 344k/s
PHASE ITEMS
Installing new actions 71043/71043
Updating package state database Done
Updating package cache 0/0

Virtualization Methodologies    ◾    1273

Updating image state Done
Creating fast lookup database Done
Updating package cache 1/1
Installation: Succeeded
 Note: Man pages can be obtained by installing

pkg:/system/manual
done.
 Done: Installation completed in 1297.609 seconds.
 Next Steps: Boot the zone, then log into the zone
console (zlogin -C)
 to complete the configuration process.
Log saved in non-global zone as /zones/firstzone/root/var/
log/zones/zoneadm.20141017T083049Z.firstzone.install

 8. Check the status of the zone.
root@solaris:~# zoneadm list -iv
ID NAME STATUS PATH BRAND IP
0 global running / solaris shared
- firstzone installed /zones/firstzone solaris excl

 9. If you again check the zone datasets with zfs list, you can see how they have
been augmented to reflect the addition of the zone.
root@solaris:~# zfs list | grep zones
rpool/VARSHARE/zones 144K 889G 144K /system/zones
rpool/zones 858M 889G 152K /zones
rpool/zones/firstzone 857M 889G 152K /zones/firstzone
rpool/zones/firstzone
/rpool 857M 889G 144K /rpool
rpool/zones/firstzone/
rpool/ROOT 857M 889G 144K legacy
rpool/zones/firstzone/
rpool/ROOT/solaris 857M 889G 789M /zones/
firstzone/root
rpool/zones/firstzone/
rpool/ROOT/solaris/var 67.8M 889G 66.8M /zones/
 firstzone/
root/var
rpool/zones/firstzone
/rpool/VARSHARE 144K 889G 144K /var/share
rpool/zones/firstzone/
rpool/export 288K 889G 144K /export
rpool/zones/firstzone/
rpool/export/home 144K 889G 144K /export/home

 10. Boot, or start, the zone and complete its system configuration using the system
configuration tool. The first window which appears is shown in Figure 25.2.

 Note that, at the end of the creation process, you should type ~. so that you
do not log into the console.

1274 ◾ UNIX: The Textbook, Third Edition

root@solaris:~# zoneadm -z firstzone boot; zlogin -C
firstzone
[Connected to zone 'firstzone' console]
Loading smf(5) service descriptions: 134/134

 When the system configuration tool first window opens on screen, press
<F2> to continue. Then, in the subsequent windows, enter the following:
Computer Name: firstzone Press <F2>

IP Address: 192.168.0.25 Press <F2>
Do Not Configure DNS Press <F2>
Alternate Name Service: Make the None choice.Press <F2>
Region: Where you are in the world. Press <F2>
Time Zones: Your time zone Press <F2>
Root Password, User Name and Password: Your choice
 Press <F2>
Verify that the configuration is the way you want it.
 Press <F2>

 The Configuration Tool window closes.

Booting continues…
<Output truncated...>
firstzone console login: ~.
[Connection to zone 'firstzone' console closed]

 11. Check that the zone is booted and running.

root@solaris:~# zoneadm list -v
ID NAME TATUS PATH BRAND IP
0 global running / solaris shared
1 firstzone running /zones/firstzone solaris excl

 12. Check that the virtualized network interface card (VNIC) has been created.

root@solaris:~# dladm show-link
LINK CLASS MTU STATE OVER
net0 phys 1500 up --
vboxnet0 phys 1500 up --

FIGURE 25.2 System configuration tool window.

Virtualization Methodologies    ◾    1275

firstzone/net0 vnic 1500 up net0

 13. Before logging into the new zone, check that it is running and the NIC name.

root@solaris:~# zoneadm list -v
ID NAME STATUS PATH BRAND IP
0 global running / solaris shared
1 firstzone running /zones/firstzone solaris excl
root@solaris:~# dladm show-link
LINK CLASS MTU STATE OVER
net0 phys 1500 up --
vboxnet0 phys 1500 up --
firstzone/net0 vnic 1500 up net0

 14. Log into the new zone, check the name of the OS.

root@solaris:~# zlogin firstzone
[Connected to zone 'firstzone' pts/2]
Oracle Corporation SunOS 5.11 11.2 June 2014
root@firstzone:~# uname -a
SunOS firstzone 5.11 11.2 i86pc i386 i86pc

 15. Check what IP address is assigned to firstzone. This would be the IP address
you use to access this zone from the host machine, your LAN, or the Internet.
The first three fields of the IP address, 192.168.0, indicate the subnetwork.

root@firstzone:~# ipadm show-addr
ADDROBJ TYPE STATE ADDR
lo0/v4 static ok 127.0.0.1/8
net0/v4 dhcp ok 192.168.0.25/24
lo0/v6 static ok ::1/128
net0/v6 addrconf ok fe80::8:20ff:fe86:6094/10

 16. This command shows the automatically created net0 VNIC.

root@firstzone:~# dladm show-link
LINK CLASS MTU STATE OVER
net0 vnic 1500 up ?

 17. List the ZFS datasets available from within the zone itself.
root@firstzone:~# zfs list
NAME USED AVAIL REFER MOUNTPOINT
rpool 899M 889G 144K /rpool
rpool/ROOT 897M 889G 144K legacy
rpool/ROOT/
solaris 897M 889G 819M /
rpool/ROOT/solaris/
var 68.7M 889G 67.5M /var
rpool/VARSHARE 1.41M 889G 1.12M /var/share
rpool/VARSHARE/
pkg 296K 889G 152K /var/share/pkg

1276 ◾ UNIX: The Textbook, Third Edition

rpool/VARSHARE/pkg/
repositories 144K 889G 144K /var/share/pkg/
repositories
rpool/export 456K 889G 152K /export
rpool/export/
home 304K 889G 152K /export/home
rpool/export/
home/bob 152K 889G 152K /export/home/bob

 18. Log out of zone firstzone.

root@firstzone:~# exit
logout
[Connection to zone 'firstzone' pts/2 closed]

 19. Log into firstzone again.

root@solaris:~# zlogin firstzone
[Connected to zone 'firstzone' pts/2]
Oracle Corporation SunOS 5.11 11.2 June 2014
root@firstzone:~#

 20. Ping the host.

root@firstzone:~# ping 192.168.0.25
192.168.0.25 is alive

 21. Log out of firstzone.

root@firstzone:~# exit
logout
[Connection to zone 'firstzone' pts/2 closed]
root@solaris:~#

Conclusions: With the zonecfg and zoneadm commands, we created a new
zone named firstzone, and were able to check its connection to the host system.

EXERCISE 25.5

Make a drawing of Figure 25.1 on a piece of paper, at a somewhat larger scale than shown
in the book. Then place the step number from Example 25.4 that put the zone in any of the
states shown in Figure 25.1 on your drawing.

25.3.4 Installing a Web Server Application in a Zone

Example 25.5: Installing a Web Server Application in a Zone

Objectives: To create a new Solaris zone intended for installation of a web server
application, and to install the Apache web server application into the zone.

Introduction: Using the same methods as in Example 25.4, we create a new Solaris
zone, named appzone. Then, we show how to install the Apache web server into

Virtualization Methodologies    ◾    1277

that new zone. The example details the use of the pkg install command to do
the installation.
We do not show the detailed use of the Apache web server.

Prerequisites:

 1. You must have completed Example 25.4.
 2. Your Solaris system must be connected to the Internet, and you must have

access to an Oracle Solaris IPS online repository.

Procedures: Do the following steps, in the order presented here, to meet the objec-
tives of this example.

 1. Create a zone, named appzone, using a minimum amount of information.

root@solaris:~# zonecfg -z appzone "create ; set
zonepath=/zones/appzone"

 2. Use the zonecfg command to get information about the new zone.

root@solaris:~# zonecfg -z appzone info
zonename: appzone
zonepath: /zones/appzone
…
Output truncated...

 3. Install the zone, as in Example 25.4, from an online Oracle IPS repository.

root@solaris:~# zoneadm -z appzone install
The following ZFS file system(s) have been created:
 rpool/zones/appzone
Progress being logged to /var/log/zones/
zoneadm.20141017T110817Z.appzone.install
 Image: Preparing at /zones/appzone/root.
 Install Log: /system/volatile/install.4635/install_log
 AI Manifest: /tmp/manifest.xml.YJa4bj
 SC Profile: /usr/share/auto_install/sc_profiles/enable_
sci.xml
 Zonename: appzone
Installation: Starting ...
 Creating IPS image
Startup linked: 1/1 done
 Installing packages from:
 solaris
 origin: http://pkg.oracle.com/solaris/
release/
DOWNLOAD PKGS FILES XFER (MB) SPEED
Completed 282/282 53274/53274 351.9/351.9 3.4M/s

1278 ◾ UNIX: The Textbook, Third Edition

PHASE ITEMS
Installing new actions 71043/71043
Updating package state database Done
Updating package cache 0/0
Updating image state Done
Creating fast lookup database Done
Updating package cache 1/1
Installation: Succeeded
 Note: Man pages can be obtained by installing
pkg:/system/manual
 done.
 Done: Installation completed in 346.285 seconds.
 Next Steps: Boot the zone, then log into the zone
console (zlogin -C)
 to complete the configuration process.
Log saved in non-global zone as /zones/appzone/root/var/
log/zones/zoneadm.20141017T110817Z.appzone.install

 4. Boot, or start, the new zone, log into it, and configure it with the same settings
as Example 25.3. But, this time, use a different IP address: 192.168.0.26. Recall
from Example 25.3 that the first three fields of the IP address of the new zone
should be the same as the first three fields of the host IP address. This will put
the zone on the same subnetwork as the host, which is mandatory if you want to
access the application in the zone through the host NIC. Remember to leave the
login console by typing ~. on the command line.

root@solaris:~# zoneadm -z appzone boot; zlogin -C appzone
[Connected to zone 'appzone' console]
Loading smf(5) service descriptions: 134/134
System Configuration window opens...
Make your choices...
SC profile successfully generated as:
/etc/svc/profile/sysconfig/sysconfig-20141017-112005/
sc_profile.xml
Exiting System Configuration Tool. Log is available at:
/system/volatile/sysconfig/sysconfig.log.6274
<Output truncated...>
Oct 17 04:25:09 appzone sendmail[8419]: unable to qualify
my own domain name (appzone) -- using short name
appzone console login: ~.
[Connection to zone 'appzone' console closed]

 5. Log into the zone with zlogin.

root@solaris:~# zlogin appzone
[Connected to zone 'appzone' pts/2]
Oracle Corporation SunOS 5.11 11.2 June 2014

Virtualization Methodologies    ◾    1279

 6. Obtain package information about the Apache web server software from the
repository available.

root@appzone:~# pkg info -r /web/server/apache-22
 Name: web/server/apache-22
 Summary: Apache Web Server V2.2
 Description: The Apache HTTP Server Version 2.2
 Category: Web Services/Application and Web Servers
 State: Not installed
 Publisher: solaris
 Version: 2.2.27
 Build Release: 5.11
 Branch: 0.175.2.0.0.42.1
Packaging Date: June 23, 2014 02:28:11 AM
 Size: 9.19 MB
 FMRI: pkg://solaris/web/server/apache-
22@2.2.27,5.11-0.175.2.0.0.42.1:20140623T022811Z

 7. Install the application package while in this zone.

root@appzone:~# pkg install /web/server/apache-22
 Packages to install: 8
 Services to change: 2
 Create boot environment: No
Create backup boot environment: No
DOWNLOAD PKGS FILES XFER (MB) SPEED
Completed 8/8 680/680 9.5/9.5 387k/s
PHASE ITEMS
Installing new actions 945/945
Updating package state database Done
Updating package cache 0/0
Updating image state Done
Creating fast lookup database Done
Updating package cache 1/1

 8. Check on the installed application package.

root@appzone:~# pkg info /web/server/apache-22
 Name: web/server/apache-22
 Summary: Apache Web Server V2.2
 Description: The Apache HTTP Server Version 2.2
 Category: Web Services/Application and Web Servers
 State: Installed
 Publisher: solaris
 Version: 2.2.27
 Build Release: 5.11
 Branch: 0.175.2.0.0.42.1
Packaging Date: June 23, 2014 02:28:11 AM
 Size: 9.19 MB

1280 ◾ UNIX: The Textbook, Third Edition

 FMRI: pkg://solaris/web/server/apache-
22@2.2.27,5.11-0.175.2.0.0.42.1:20140623T022811Z

 9. Check the IP address of the new zone.

root@appzone:~# ipadm show-addr
ADDROBJ TYPE STATE ADDR
lo0/v4 static ok 127.0.0.1/8
net0/v4 dhcp ok 192.168.0.26/24
lo0/v6 static ok ::1/128
net0/v6 addrconf ok
fe80::8:20ff:fed3:3836/10

 10. Leave the new zone and return to the global zone.

root@appzone:~# exit
logout
[Connection to zone 'appzone' pts/2 closed]
root@solaris:~#

Conclusions: We created a new Solaris zone and downloaded and installed the
Apache web server application into it.

EXERCISE 25.6

Install the package gnu-emacs into the zone named appzone created in Example 25.5.

25.4 VIRTUALBOX
VirtualBox is a software virtualization tool that can be used to install other OSs as guests
on a host computer system, running either of our two base UNIX systems. We first discuss
what advantages the VirtualBox method of virtualization provides, and then define some
basic terms used in it. Finally, using an example-based format, we detail the installation
and basic usage of VirtualBox on PC-BSD and Solaris.

Why use VirtualBox virtualization?
The advantages of the kind of virtual environment that VirtualBox gives you are:

• You can run multiple OSs simultaneously. VirtualBox allows you to run more than
one OS at a time. You can switch between OS environments by simply moving your
mouse into the window that contains one of the operating systems!

• From the system security point of view, you can isolate a particular application, such
as a Web server or FTP site inside a VirtualBox guest, and anything that intrudes on
its operation from the Internet only infects the guest system. VirtualBox is similar to
using the PC-BSD iocage and jails, and Solaris zones.

• Once installed, a VM and its virtual hard disks can be considered a “sandbox” that
can be arbitrarily frozen, unfrozen, copied, backed up, and moved between hosts.
With “snapshots,” you can save a particular state of a VM and revert back to that
state, if necessary.

Virtualization Methodologies    ◾    1281

When dealing with VirtualBox, the following basic terminology is important:

Host OS: This is the operating system of the physical computer on which VirtualBox
was installed. In our next examples, the hosts can be either PC-BSD, Solaris, Ubuntu
LINUX, or Windows.

We show VirtualBox on LINUX and Windows host computers because there are many
advantages to using these systems as hosts, and deploying our PC-BSD and Solaris
UNIX systems on them as guests. We speak about some of these advantages later.

Guest OS: This is the operating system that is running inside the VM. VirtualBox can
run any Intel or AMD x86 OS, but only officially supports and is optimized for a
limited number of OSs, Solaris being one of them. The FreeBSD project, together
with PC-BSD, has ported VirtualBox to the latest version of both OSs, and it can be
successfully deployed on either of those systems as well. As we show here, it is pos-
sible to use LINUX and Windows computers as hosts to deploy PC-BSD and Solaris
guest OSs on them.

VM: This is the special environment that VirtualBox creates for your guest OS while it
is running. You run your guest OS via the use of a VM. A VirtualBox VM appears as
a window on your computer’s desktop in both PC-BSD and Solaris.

If you install VirtualBox as a host on a LINUX, Windows, or Apple OS X computer, you
can install PC-BSD and/or Solaris as a VM on that host computer very easily. In fact,
we show examples of just such a situation.

Two ways of controlling the settings of the VM are via the VirtualBox manager window,
and via the VBoxManage command line program. A VM is essentially what you can
see in its settings dialog via these two controlling facilities.

Guest additions: This refers to special software packages which are shipped with
VirtualBox but designed to be installed inside a VM to improve performance of the
guest OS and to add extra features. A good example of this is the setting for a bidi-
rectional system paste buffer, which allows you to copy text in a guest window, and
paste it into a host window, or vice versa. We show how to do this in example form.

We found that in both PC-BSD and Solaris, we needed to completely create a new
VM and start it before we could enable the guest additions for that VM. This is done
after the VM has started by making the VirtualBox menu choice “Devices > Insert
Guest Additions CD”. VirtualBox will then place/mount a “virtual” CD on the desktop
of the VM, and if you click on it to launch the CD, you can install the contents of the
virtual CD.

25.4.1 Installing and Running VirtualBox on a PC-BSD Host OS

As of the latest PC-BSD available at the time of the writing of this book, VirtualBox does
not come preinstalled on PC-BSD.

1282 ◾ UNIX: The Textbook, Third Edition

The easiest way to install VirtualBox is to use the App Café to download and automatically
install it on your system. In App Café, use the search icon at the top of the App Café
window and enter VirtualBox as the search criterion.

You will then be presented with a choice of pcbsd-meta-virtualbox- 1429971087,
or the latest available metapackage for VirtualBox. Click the “Install” button in App Café
to install this package on your PC-BSD machine. After installation is complete, you will
then have to log out and log back in to the computer so that you are added to the VirtualBox
group.

To run VirtualBox, you can either click on its icon on the PC-BSD KDE desktop, or type
VirtualBox on the command line in a console window.

25.4.2 Installing and Running Solaris VirtualBox

The following example shows the steps necessary to install VirtualBox on a Solaris system
as a host system, in preparation for installing guest systems in it.

Example 25.6

Objectives: To install and run VirtualBox VM on a host Solaris system.
Introduction: We obtain the latest SunOS version of VirtualBox from www.virtu-

albox.org, and then install it. This can be done for other supported OSs in a very simi-
lar manner to allow you to have VirtualBox installed on those OSs. Check at www.
virtualbox.org for supported OSs, and the methods of installing VirtualBox on them.

Prerequisites:

 1. You must be working on a Solaris system.
 2. You must have superuser privilege on the system.

Procedures: Do the following steps, in the order presented here, to meet the objec-
tives of this example.

 1. The latest version of VirtualBox can be found at www.virtualbox.org. In a web
browser, download it. For example, at the time of the writing of this book, we
downloaded VirtualBox-4.3.16-95972-SunOS.tar.gz via our Firefox Web
browser. In our case, it was downloaded into the Downloads subdirectory of /
home/bob.

 2. Find out the name(s) of the current zones available on your system. On ours,
only the global zone was available at the outset.

$ zonename
global

 3. Become the superuser.

$ su
Password: xxx

http://www.virtualbox.org
http://www.virtualbox.org
http://www.virtualbox.org
http://www.virtu-albox.org
http://www.virtu-albox.org

Virtualization Methodologies    ◾    1283

 4. Change the current working directory to the directory to which you downloaded
VirtualBox, and list the names of the files there. You should find VirtualBox-
4.3.16-95972-SunOS.tar.gz there.

cd Downloads
~/Downloads# ls
IMG_20140604_105332_577.jpg IMG_20140607_105110_564.jpg
IMG_20140607_104953_765.jpg VirtualBox-4.3.16-95972-

SunOS.tar.gz

 5. Unzip the VirtualBox tarred/zipped file.

~/Downloads# gunzip -cd VirtualBox-4.3.16-95972-SunOS.tar.
gz | tar xvf -

x VirtualBox-4.3.16-SunOS-amd64-r95972.pkg, 214329344
bytes, 418612 tape blocks
x LICENSE, 20137 bytes, 40 tape blocks
x autoresponse, 151 bytes, 1 tape blocks
x ReadMe.txt, 1525 bytes, 3 tape blocks

 6. List the file names after unzipping is completed.

~/Downloads# ls
autoresponse
ReadMe.txt
LICENSE
VirtualBox-4.3.16-95972-SunOS.tar.gz
VirtualBox-4.3.16-SunOS-amd64-r95972.pkg

 7. Use the pkgadd command to add the VirtualBox software to the system. Be
sure to answer all, and y for “yes” to the prompts that appear as shown.

~/Downloads# pkgadd -d VirtualBox-4.3.16-SunOS-
amd64-r95972.pkg

The following packages are available:
 1 SUNWvbox Oracle VM VirtualBox
 (i386) 4.3.16,REV=2014.09.09.18.16.95972
Select package(s) you wish to process (or 'all' to process
all packages). (default: all) [?,??,q]: all

 Processing package instance <SUNWvbox> from </home/bob/Downloads/
VirtualBox-4.3.16-SunOS-amd64-r95972.pkg>

Oracle VM VirtualBox(i386) 4.3.16,REV=2014.09.09.18.16.959
72
Oracle Corporation
Executing checkinstall script.
Checking package dependencies...
Done.
Processing package information.
Processing system information.

1284 ◾ UNIX: The Textbook, Third Edition

Verifying disk space requirements.
Checking for conflicts with packages already installed.
Checking for setuid/setgid programs.

 The following files are being installed with setuid and/or setgid permissions:

 /opt/VirtualBox/amd64/VBoxHeadless <setuid root>
 /opt/VirtualBox/amd64/VBoxNetAdpCtl <setuid root>
 /opt/VirtualBox/amd64/VBoxNetDHCP <setuid root>
 /opt/VirtualBox/amd64/VBoxNetNAT <setuid root>
 /opt/VirtualBox/amd64/VBoxSDL <setuid root>
 /opt/VirtualBox/amd64/VirtualBox <setuid root>
Do you want to install these as setuid/setgid files
[y,n,?,q] y

 This package contains scripts which will be executed with superuser permis-
sion during the process of installing this package.

Do you want to continue with the installation of
<SUNWvbox> [y,n,?] y
Installing Oracle VM VirtualBox as <SUNWvbox>
Installing part 1 of 1.
/etc/hostname.vboxnet0
/opt/VirtualBox/64/VBoxPython.so
/opt/VirtualBox/64/VBoxPython2_4.so
/opt/VirtualBox/64/VBoxPython2_6.so
/opt/VirtualBox/LICENSE
/opt/VirtualBox/UserManual.pdf
Output truncated...
[verifying class <manifest>]
Executing postinstall script.
Checking for older bits...
Installing new ones...
Detected Solaris 11 Version 175
Loading VirtualBox kernel modules...
 - Loaded: Host module
 - Loaded: NetAdapter module
 - Loaded: NetFilter (Crossbow) module
 - Loaded: USBMonitor module
 - Loaded: USB module
Configuring services...
 - Loaded: Zone access service
Installing MIME types and icons...
Installing Python bindings...
 - Installed: Bindings for Python 2.6
Updating the boot archive...
Installation of <SUNWvbox> was successful.

Virtualization Methodologies    ◾    1285

 8. Exit from superuser.

~/Downloads# exit
$

 9. To run VirtualBox, on the Solaris desktop make the pull-down menu choice
“Applications > System Tools > Oracle VM VirtualBox”. Alternatively, you can
type VirtualBox as superuser on the command line in a console window to
launch the program.

Conclusion: We downloaded and installed the latest version of VirtualBox from
www.virtualbox.org.

25.4.3 Installing a VM Guest

With VirtualBox installed on your host system, there is a very patented and universal way
of creating VMs and then installing other OSs in those VMs. The following example shows
the steps necessary to install a Solaris system in a guest VM running on a PC-BSD sys-
tem. The technique shown is easily extended to allow you to install any supported OS as
a guest VM in any supported host environment. We show examples of this scenario in
Section 25.4.5.

Example 25.7: Creating a Solaris Virtual Machine Guest on a PC-BSD Host

Objectives: Using VirtualBox that has been installed on a PC-BSD host to create a
VM guest running the Solaris OS.

Introduction: The advantages of running two different OS kernels simultaneously
on the same hardware are evident when you can utilize the stronger features of one
or more of them in virtual environments to provide secure services over a LAN or the
Internet. One of the lessons to be learned from this example is that resources such as
memory and disk space are shared between host and guest(s), thereby affecting the
performance of each.

Prerequisites:

 1. You must have VirtualBox installed on your PC-BSD system.
 2. You must have installation media in the form of a DVD or an International

Organization for Standardization (ISO) file for Solaris, or any other supported
OS you want to substitute for it in the VM guest we create in this example.

Procedures: Do the following steps, in the order presented here, to meet the objec-
tives of this example.

 1. Once installed on PC-BSD, start VirtualBox by typing VirtualBox as super-
user on the command line in a console window. When VirtualBox launches for
the first time, the screen shown in Figure 25.3 appears.

http://www.virtualbox.org

1286 ◾ UNIX: The Textbook, Third Edition

 In any of the VirtualBox manager or wizard screens, you can always click the
“< Back” button to go back to the previous step, or click the “Cancel” button to
terminate the creation of a new guest VM.

 2. To create a new guest VM, click the “New” button to start the “Create Virtual
Machine” wizard (Figure 25.4).

 3. Since our guest VM will be an installation of Solaris, type in Solaris. Click
the “Operating System” drop-down menu and select “Solaris”. In the “Version”
drop-down menu, select “Oracle Solaris(64 bit)”. Click the “Next >” button to
continue (Figure 25.5).

FIGURE 25.3 VirtualBox VM manager screen.

FIGURE 25.4 Creating VM wizard.

FIGURE 25.5 Selecting the amount of memory reserved for the VM.

Virtualization Methodologies    ◾    1287

The base memory size must be changed to at least 1536 MB. If your system has a lot of
RAM, use more. In our case, we used 2000 MB. Any number within the green
area below the slider is considered a value that should not slow down your com-
puter too much. Click the “Next >” button to continue.

 4. This next screen is used to create the virtual hard drive, the amount of disk
space on the host OS hardware that will be available to the VM guest. If this is
your first VM, keep the default of “Create a virtual hard drive now” and click
“Create” to continue.

 5. On the next screen, select “VDI (Virtual Disk Image)” and click the “Next”
button.

 6. You can now choose whether you want “Dynamically allocated” or “Fixed size”
storage. The first option uses disk space as needed until it reaches the maximum size
that you will set in the next screen. The second option creates a disk the same size as
that specified amount of disk space, whether it is used or not. Choose the first option
if you are worried about disk space; otherwise, choose the second option as it allows
VirtualBox to run slightly faster. Click the “Next >” button to continue.

 7. You can now choose to set the size (or upper limit) of the VM. If you plan to
install Solaris into the VM, increase the size to at least 100 GB or you will receive
an error during the Solaris installation. Whatever size you set, make sure that
your computer has enough free disk space to support it. Use the folder icon to
browse to a directory on disk with sufficient space to hold your VM.

 8. Once you make your selection and press “Next”, you will see a summary of your
choices. You can use the “Back” button to return to a previous screen if you
wish to change any values. Otherwise, click “Create” to close the wizard. Your
VM should now show up in the left-hand box of the VirtualBox VM Manager
screen, as seen in example in Figure 25.6.

 9. Configuring the storage device: On our installation, this step was automatically
configured when we wanted to install Solaris from a DVD in a drive already
mounted on the system at Serial Advanced Technology Attachment (SATA)
port 1.

 You may want to configure it to use your installation media, depending on
what that is. Click the storage hyperlink (the word “Storage”) in the “Storage”

FIGURE 25.6 The new VM for Solaris.

1288 ◾ UNIX: The Textbook, Third Edition

frame of the VirtualBox VM Manager window. This allows you to access the
storage screen seen in Figure 25.7. Double-click the word “Empty”, which rep-
resents your DVD reader. If you wish to access the Solaris installer from your
DVD reader, double-check that the slot is pointing to the correct location (e.g.,
SATA port 1) and use the drop-down menu to change it if the location is incor-
rect. Click the “CD/DVD Device” drop-down menu to change it from “Empty”
to the correct host drive value.

 If you prefer to use an ISO file that is stored on your hard disk, click the DVD
icon “-> Choose a virtual CD/DVD disk file” to open a browser menu where you
can navigate to the location of the ISO file. Highlight the desired ISO file and
click “Open”. The name of the ISO file will now appear in the “Storage Tree”
section.

 10. You are now ready to install Solaris into your VM. Simply highlight the VM and
click on the green “Start” button. A window will open, indicating that the VM is
starting. If you have a DVD inserted, you should hear it spin and it should start
to boot into the installation program. If it does not or if you are using an ISO
file stored on the hard disk, press <F12> to select the boot device when you see
the message to do so, then press C to boot.

 11. When the Solaris installation is completed, reboot the Solaris guest (remember-
ing to remove the DVD medium before the reboot takes effect). You should then
be able to see a Solaris window showing inside of a PC-BSD screen display, as
seen in Figure 25.8.

 12. To close down both the VirtualBox Solaris guest and the VirtualBox program
itself, first make the Solaris pull-down menu choice “System >Shutdown”. Then,
after Solaris has completely shut down, from the VirtualBox Manager window,
make the pull-down menu choice “File>Exit”.

Conclusions: Making the proper configuration choices when installing a guest
operating into a VM affects the performance of that OS significantly. You must be
aware of memory and disk capacities on your host machine to optimize the perfor-
mance of both host and guest.

FIGURE 25.7 Storage settings of the VM.

Virtualization Methodologies    ◾    1289

25.4.4 Securing an FTP Server in a VirtualBox Guest

The following example shows how to take advantage of having a VM running on your host
machine. In it, we secure an FTP server by isolating it in a VirtualBox VM guest. The host
in the example is a PC-BSD system with VirtualBox preinstalled, and a Solaris guest OS
acting as the secured FTP server on a LAN.

This does not preclude you using Solaris as the host system instead, and installing
PC-BSD in VirtualBox as a guest. Or, for that matter, using any supported OS as the host,
and installing any other supported OS as the guest on that host. We have chosen to show
this methodology with these particular example systems to illustrate the process with two
UNIX systems. The particulars of accomplishing the same thing with other OSs are left up
to you.

This assumes you have done Section 23.2.5.5, “Examples of System Service Management”;
in particular, the first example in that section. It illustrates the enabling of TELNET and
FTP servers on PC-BSD and Solaris.

Example 25.8: Managing Services on a VirtualBox Guest

Objectives: To secure an FTP server on Solaris running as a VirtualBox VM guest on
a PC-BSD host machine.

Introduction: This method, and the details of the following example, highlight the
important use of virtualization-system security. By running an FTP server on a VM

FIGURE 25.8 Solaris guest window in a PC-BSD host display.

1290 ◾ UNIX: The Textbook, Third Edition

that is isolated from the host OS, and is running a completely different kernel than
the host system, you create a more secure host.
What we will accomplish in this example is as follows:

• Assign an IP address, within a range of addresses, to the VM guest.
• Check what the actual address assigned to our VM guest is.
• Ensure that the VM guest is attached to a bridged network adapter on the host.

What that means is that our host NIC (bge0) can now handle two IP addresses:
the host IP address and the VM guest IP address.

• Test the FTP server on the VM guest via a LAN.

Prerequisites:

 1. You must have completed Example 25.7.
 2. You must make sure you have VirtualBox installed on your PC-BSD system,

and know how to launch it.
 3. You must install Solaris as a VM guest, as shown in Example 25.7.
 4. You must enable the FTP services on both systems, as shown in the first exam-

ple in Section 23.2.5.5.
 Make sure the firewall on the PC-BSD host system has the exception to allow

FTP traffic incoming on port 21, as shown in that example. Also, make sure you
test the FTP connections on the Solaris VM guest as shown in the first example
in Section 23.2.5.5 by using the loopback localhost.

 5. Your host machine must be connected to a LAN and the Internet.

Procedures:

 1. To ensure that the guest VM IP address is in the subnetwork of the host, type
the following in a PC-BSD host console window as superuser when the Solaris
VM guest is not running:

VBoxManage modifyvm "VMname" –natnet1 "192.168/16"

 where "VMname" is the name you gave the guest VM when you installed it.
This ensures that when the Solaris guest VM is run, the IP address of the NIC will
be in the range of 192.168.0.0 to 192.168.254.254. In this example, the guest VM is
assigned an IP address of 192.168.0.28, and the host an IP address of 192.168.0.13.

 2. Launch VirtualBox on PC-BSD, and start the Solaris VM guest.
 3. In the Solaris guest VM window, make the Solaris menu choice “System >

Administration > Network”. The “Network Preferences” window opens on
screen, with the title “Network Preferences (Solaris)”, as seen in Figure 25.9.
Note the virtualized IP address of the Solaris guest, which is seen in this win-
dow as something like 192.168.0.28/16 (DHCP) for the first NIC. It was assigned
within the range by the VBoxManager command from Step 1.

Virtualization Methodologies    ◾    1291

 In other words, the guest and the host are on the same subnetwork, but will
have different IP addresses.

 3. From the VirtualBox menus at the top of the VM screen, make the menu choice
“Devices > Network > Network Settings”. The “Network Settings” window
appears on screen, named “Solaris–Settings”, as shown in Figure 25.10.

 4. Click on the down-facing arrow to the right of “NAT”, in the “Attached to:”
pull-down menu. This is for Adapter 1 as seen in Figure 25.10.

 5. Make the pull-down choice “Bridged Adapter” as the “Attached to:” option, as
shown in Figure 25.11.

 6. When you have made the “Bridged Adapter” choice, click on the “OK” button at
the bottom of the “Network Settings” window.

FIGURE 25.9 VirtualBox network preferences display.

FIGURE 25.10 VirtualBox network settings window.

FIGURE 25.11 Bridged adapter setting.

1292 ◾ UNIX: The Textbook, Third Edition

 7. Click the “OK” button to exit from the “Network Settings” window.
 What we have accomplished to this point is:

• Assigned an IP address, within a range of addresses, to the VM guest.
• Checked what the actual address assigned to our VM guest is.
• Ensured that the assigned IP address for the VM guest is attached to a

bridged adapter on the host. What that means is that bge0, the host NIC,
now can handle two IP addresses, the PC-BSD host IP address and the
Solaris VM guest IP address.

 8. From another machine on the LAN to which your host is connected, FTP to
your Solaris VM guest host. In our case, following from the previous steps, we
used the command:

$ ftp 192.168.0.28

With the Solaris VM running, the incoming FTP traffic to 192.168.0.28 will
be routed to the Solaris VM guest, and you will be able to use it as a secure FTP
server.

Conclusions: Using a bridged adapter on a VM guest allows you to access the guest
from either a LAN or the Internet, through the same physical NIC on the host. Using
this security technique, you can isolate services running on the guest VM from the
host system.

EXERCISES 25.7

Repeat Example 25.8 for the SSH service, to allow you to ssh from another system on your
network to the Solaris guest running on a PC-BSD host.

EXERCISES 25.8

Do Example 25.8 with Solaris as the host system, and PC-BSD as the guest.

EXERCISES 25.9

Repeat Exercise 25.7 for the TELNET service, to allow you to telnet from another sys-
tem on your network to the PC-BSD guest running on a Solaris host.

25.4.5 Installing PC-BSD or Solaris as a Guest VM on a LINUX or Windows Host

The methods shown in this section show how to install PC-BSD or Solaris as a guest
VM on a host machine running either LINUX or Windows. They provide the following
advantages:

• Excellent practice for installation of PC-BSD or Solaris in optional ways

• Determination of whether all of your specific hardware is supported by PC-BSD or
Solaris

• Allow you to try multiple versions of PC-BSD or Solaris

Virtualization Methodologies    ◾    1293

These methods differ from Section 25.4.3 (Example 25.7), which shows a guest installation
using an ISO image burned onto a DVD. The methods in this section use prebuilt, online,
and easily downloadable disk images of the entire guest OS. The process of installing an
OS from an ISO-created DVD is what we detailed for PC-BSD and Solaris in Chapter 23.

We use Ubuntu LINUX 15.04 and Windows 10 as our host OSs. The methods we apply
to those systems in this section can be also applied to OS X.

25.4.5.1 Installing a PC-BSD Guest on a LINUX Host
We describe how to prepare VirtualBox on the host OS for an installation of PC-BSD using
the downloadable .vdi and .ova images obtainable at http://www.pcbsd.org/en/download.
html.

We downloaded PCBSD10.2-RELEASE-x64-desktop.vdi.xz for LINUX and
PCBSD10.2-RELEASE-x64-desktop.ova for Windows, before beginning guest
installation.

Be aware that these file names may change at the website as later releases of PC-BSD
become available as prebuilt VirtualBox guests.

Before attempting this section, you should have installed VirtualBox on your LINUX
host machine. The instructions for doing that are available at www.virtualbox.org. At
the time of the writing of this book, VirtualBox 5 was available for LINUX systems. The
minimum system requirements for installing the premade PC-BSD guest OS are:

64-bit processor architecture

1024 MB base memory size

A virtual disk at least 50 GB in size for a PC-BSD installation

A bridged network adapter

Once you have downloaded and installed VirtualBox on the host LINUX system, use
the following steps to build a PC-BSD guest on that host:

 1. PC-BSD provides prebuilt VirtualBox disks which create a premade VM guest with
PC-BSD already installed as the guest. Download the premade file from the website
given. The VirtualBox file ends in a .vdi.xz extension. The .xz means that the file
needs to be decompressed first so that it just ends with a .vdi extension.

 2. On a LINUX system, such as Ubuntu, to decompress the compressed file, use the xz
command as shown here, using the name of the file which you downloaded as the
command argument:

xz -d -k PCBSD10.2-RELEASE-x64-desktop.vdi.xz

 This is a large file, so the command will take a few minutes to extract the
image. If you do not want to retain the compressed file after decompression,

http://www.pcbsd.org/en/download.html
http://www.virtualbox.org
http://www.pcbsd.org/en/download.html

1294 ◾ UNIX: The Textbook, Third Edition

omit the –k option. You will be back at the shell prompt when the command has
finished the decompression.

 3. Once the file is extracted, run VirtualBox with the command sudo VirtualBox.

 4. When the VirtualBox VMM appears on screen, use Steps 1–4 in Example 25.7 to cre-
ate a new VM, using the “New” icon, with the following characteristics:

 a. OS type “BSD” and FreeBSD version “64-bit”
 b. A minimum of 128 MB of main memory. A more realistic value for main

memory specification would be 2 GB, if you want to achieve more than min-
imal performance. This value also depends on how much main memory
your host system has installed.

 When you get to Step 4 of Example 25.7, make the selection “Use an existing
virtual hard drive file”, instead of the selection “Create a virtual hard drive
now”.

 5. Use the browse icon in the lower-right corner of the VirtualBox “Create Virtual Machine
Wizard” box to browse to the location of the .vdi file you extracted in Step 2. Highlight
that downloaded file in the browser window, then press “Open”. Click the “Create” but-
ton to finish the wizard. You will be returned to the VirtualBox VMM window.

 6. Start the new VM guest from within the Virtualbox VMM window on the host by
highlighting the new machine and selecting the “Start” icon. The VM guest will boot
into the postinstallation configuration screens so that the system can be configured,
as shown in Section 23.2.3. Once the display wizard is finished, and the login menu
appears, input the username and password that you configured at the “Create a User”
Screen. You will be logged into the new PC-BSD guest machine.

 7. Use PC-BSD. When ready to shut the PC-BSD system down, use the techniques
shown in Section 23.2.5.3, “Graceful Shutdown.” When PC-BSD completely shuts
down, you are returned to the VirtualBox VMM on the host.

 8. To delete the PC-BSD guest VM, make the VirtualBox VMM menu choice
“Machine>Remove” when the PC-BSD guest VM is highlighted. In the dialog box
that appears, if you make the choice “Delete all files”, be aware that the .vdi file you
extracted in Step 2 will also be deleted!

25.4.5.2 Installing a PC-BSD Guest Using an .ova File on a Windows Host
A file that ends in an .ova extension is a tarball of a VM that follows the open virtualization
format (OVF). This file can be used in any virtualization technology that supports OVF,
such as VirtualBox.

Once you have downloaded and installed VirtualBox on the host Windows system, use
the following steps to build a PC-BSD guest on that host:

 1. PC-BSD provides prebuilt VirtualBox disks which create a premade VM guest with
PC-BSD already installed as the guest. Download the premade .ova file from the

Virtualization Methodologies    ◾    1295

website given. On our Windows system, we downloaded PCBSD10.2-RELEASE-
x64-desktop.ova.

 2. If you double-click the .ova file on a Windows system, it will automatically open
the image for you in the default virtualization application, which we assume here is
VirtualBox.

 3. The first time a PC-BSD .ova file is opened on a Windows system, a screen will open
so that you can review the VM’s settings that came with the file.

Depending on the settings, you can either type in the desired value or select it from
a drop-down menu. Once you are finished, click the “Import” button. It will
take a few minutes for the import to complete and a status bar will indicate the
status of the import. Once imported, the VM will show in the left-hand frame of
VirtualBox. Highlight the VM and click “Start” to boot into the image.

 4. When using the “desktop” edition download of PC-BSD, the VM will boot into the
postinstallation configuration screens so that the system can be configured, as shown
in Section 23.2.3. Once the display wizard is finished and the login menu appears,
input the username and password that you configured at the “Create a User” screen.

 5. Use PC-BSD. When ready to shut the PC-BSD system down, use the techniques
shown in Section 23.2.5.3, “Graceful Shutdown.” When PC-BSD completely shuts
down, you are returned to the VirtualBox VMM.

 6. To delete the PC-BSD guest VM, make the VirtualBox VMM menu choice
“Machine>Remove” when the PC-BSD guest VM is highlighted. In the dialog box
that appears, if you make the choice “delete all files”, be aware that the .ova file is
retained!

EXERCISE 25.10

Use the methods shown in Section 25.4.5.2 to install a PC-BSD guest on a Windows or
LINUX system of your choice.

25.4.5.3 Installation of a Solaris Guest on LINUX and Windows Hosts
This section shows the procedure for installing a Solaris guest VM in a LINUX or Windows
host running VirtualBox. The techniques shown here work for both LINUX and Windows
systems.

The minimum requirements on the LINUX or Windows host are:

X86 system with a minimum of 4 GB RAM.

A minimum of 4 GB free disk space is needed for initial installation.

The available space on the virtual disk can grow to a maximum of 64 GB.

VirtualBox is already installed.

1296 ◾ UNIX: The Textbook, Third Edition

Follow the steps listed here to install, use, and remove the Solaris guest VM:

 1. Download a VM “template” for Solaris from the following website or its latest
equivalent:

http://www.oracle.com/technetwork/server-storage/solaris11/downloads/vm-
templates-2245495.html

The file you select to download will be a VM template, as an .ova file, for the latest ver-
sion of Solaris.

 2. Start the VirtualBox application on the LINUX or Windows host.

 3. From the file menu in the VirtualBox VMM, choose “Import >Appliance”.

 4. Select the .ova file from the directory to which it was downloaded in Step 1.

 5. In the “Appliance Import Wizard” window that opens, change “Appliance Import”
Settings to suit your system. For example:

RAM: Systems with more RAM should increase this amount (up to half of available
RAM is recommended).

Virtual Disk Image: Select a directory in which the image size can expand (up to 64GB).

 6. Once imported, the virtual machine will show in the left frame of the VirtualBox
VMM. Highlight the VM and click “Start” to boot into the image.

 The VM will boot into text-based postinstallation configuration screens, so that
the system can be configured. Proceed through configuration screens that prompt
for host name, time zone, default user and password, and root password. These are
described in graphical format in Section 23.2.4. Then login.

 7. Use Solaris. When ready to shut the Solaris system down, use the techniques shown
in Section 23.2.5.3, “Graceful Shutdown.” When Solaris completely shuts down, you
are returned to the VirtualBox VMM.

 8. To delete the Solaris guest VM, make the VirtualBox VMM menu choice
“Machine>Remove” when the Solaris guest VM is highlighted. In the dialog box that
appears, if you make the choice “delete all files”, be aware that the .ova file is retained!

EXERCISE 25.11

Use the methods shown in Section 25.4.5.3 to install a Solaris guest on a Windows or
LINUX system of your choice.

SUMMARY
In this chapter, we illustrated what a VM environment for our UNIX OSs can be. We
showed three popular and important facilities for creating a VM environment: PC-BSD
iocage-managed jails, Solaris zones, and VirtualBox.

http://www.oracle.com/technetwork/server-storage/solaris11/downloads/vm-templates-2245495.html
http://www.oracle.com/technetwork/server-storage/solaris11/downloads/vm-templates-2245495.html

Virtualization Methodologies    ◾    1297

We illustrated two modern virtualization techniques, full virtualization and OS-level
virtualization, with three example facilities. What differentiates these three facilities is that
for the first two (OS-level virtualization), all virtual environments are running under the
same kernel. In the third one (full virtualization), any number of different kernels can be
running simultaneously on the hardware of one computer.

But it is important to note that, for the three facilities we show, the OS(s) all use the same
underlying ISA of the hardware processor(s). In our cases, this is the X86 architecture, as
opposed to SPARC or ARM architectures.

For each facility, we used by-example descriptions of how to install it as a VM. We also
showed an instance of how to put an application into that VM. For each facility, we gave
reference material on the commands and operations used in the facility.

A very important application of these methodologies is to provide a measure of system
security.

QUESTIONS AND PROBLEMS

 1. Create a new jail in PC-BSD with iocage. Then, install packages using the pkg com-
mand in that jail that you find useful, or with which you would like to experiment.

 2. Following the methods of Section 23.2.5.5 (the first example in that section), create and
enable an FTP server inside of a VirtualBox VM that has a PC-BSD guest OS installed.
Then place sample files in the default account home directory you have created on the
guest. Test the FTP login to the guest, from your local host, from a LAN, and from the
Internet. Also, use FTP commands to download the sample files you put in the home
directory to another computer on your LAN, and to another computer over the Internet.

 3. Repeat Problem 23.2 inside of a PC-BSD jail. This allows you to create an anonymous
FTP server inside of a secure environment. Then, place sample files in the account
home directory, /var/ftp. Test the anonymous FTP login, both from your local host,
from a LAN, and from the Internet. Also, use FTP commands to download the sam-
ple files you put in /var/ftp to another computer on your LAN, and to another com-
puter over the Internet.

 4. Create a new zone in Solaris using the same methods shown in Example 25.5. Then
install packages in this new zone using the pkg command that you find useful, or
with which you would like to experiment.

 5. Install VirtualBox onto a computer running LINUX, and then install PC-BSD
TrueOS server in a VM guest on that computer.

 6. In a running VM guest, from the VirtualBox Devices pull-down menu, enable the
bidirectional shared clipboard feature. Then, copy text by using the mouse in the VM
guest OS, and paste it into an application running on the host system.

 7. Of the three virtualization methodologies shown in this chapter, which is the most
useful for you, given the host OS you have on your computer? For example, if you are

1298 ◾ UNIX: The Textbook, Third Edition

running PC-BSD, and have installed a ports jail, what kinds of application packages
would you run in the jail? Why would you be running them in a jail?

 8. Using the methods of this chapter, Section 17.5.7 on Git, Section 23.9.3 on PC-BSD
access control lists (ACLs), and Section 24.5 on Solaris ACLs:

 a. Create a new PC-BSD Jail or Solaris zone that has access via SSH to and from the
Internet.

 b. In that jail or zone, create a project directory for a Git repository that a user base
of remote users can push to and pull from.

 c. Use the appropriate ACL commands to set the ACLs on that project directory so
that local and remote users can access it, and can interact with the Git repository
in that project directory.

 d. Design the directory structure of the repository for the intended local and remote
user base.

 e. Create the Git repository in the project directory according to your design.

 f. Test the Git repository, both locally and from the Internet, to confirm that local
allowed users and the remote user base can work with the repository to push to
and pull from it.

 g. Test that unallowed local users or Internet traffic cannot interact with the
repository.

1299

Glossary

absolute pathname: A pathname that starts with the root directory.
access privileges: The type of operations that a user can perform on a file. In UNIX, access

rights for a file can be read, write, and execute.
access time: The time taken to access a main memory location for reading or writing.
ACE (access control entries): Define access permissions for a particular class of user to

objects such as files. The list of ACEs is numbered, starting from zero. The position
of an ACE within an ACL is called an index.

ACL (access control list): A finer-grained discretionary permission control mechanism on
objects such as files. Contrast with traditional UNIX permissions model.

aclinherit: A ZFS command variable that controls the behavior of ACL inheritance, when
used with the applicable modifying command, on a designated ZFS dataset.

aclmode: A ZFS command variable that controls the behavior of initial or modified ACL
application to a designated ZFS dataset.

active socket: A socket that serves a client’s request(s). For connected-oriented communi-
cation, it is created by the accept() system call. An active socket has the life span
of a connection between a client and the server process. For this reason, an active
socket is also known as an ephemeral socket.

adaptive Lempel-Ziv coding: The most widely used lossless compression scheme for
encoding variable-length block of characters a fixed-length block of bits. In this
compression scheme we assume that characters occur independently and with
known probabilities, and that the probabilities are the same for all positions.

address bus: A set of parallel wires that are used to carry the address of a storage location
in the main memory that is to be read or written.

address space: See process address space.
alias: See pseudonym.
application programmer’s interface (API): The language libraries and system call layer

form the application programmer’s interface.
application software: Programs that we use to perform various tasks on the computer

system, such as word processing, graphing, picture processing, and Web browsing.
application user’s interface (AUI): The application software that a user can use forms the

application user’s interface.
archive: A collection of files contained in a single file in a certain format.
array: A named collection of items of the same type stored in contiguous memory locations.

1300 ◾ Glossary

array indexing: The method used to refer to an array item by using its number. The items
in an array are numbered, with the first item numbered 1 (in some languages such
as C the first item is numbered 0).

assembler: A program that takes a program in assembly language and translates it into
object code.

assembly language: See low-level programming language.
assignment statement: A shell command that is used to assign values to one or more shell

variables.
asynchronous I/O: The I/O based on nonblocking I/O calls, for example, through non-

blocking read() and write() system calls. It may also be performed using the
select() system call.

atomic write: The amount of data a writer process can write to a file, pipe, or bounded buf-
fer without interruption.

attributes: The characteristics of a process (or file) such as the name of the owner of the
process and process size.

background process: When a process executes such that its standard input is not con-
nected to the keyboard, it is said to execute in background. The shell prompt is
returned to the user before a background process starts execution, thus allowing
the user to use the system (i.e., run commands) while the background processes
execute.

bash: The abbreviation for Bourne Again shell.
batch operating system: An operating system that does not allow you to interact with

your processes. The VMS system has a batch interface. UNIX and LINUX also
allow programs to be executed in the batch mode, with programs executing in the
background.

big endian byte order: A storage (or transmission) order in which the low byte of a multiple-
byte data item (char, int, long, etc.) is stored in the high byte of the memory and the
high byte of the data is stored in the low byte of memory.

BIOS (Basic Input/Output System): Usually resident in ROM hardware, and deployed
after POST performs some system hardware integrity checks, BIOS then searches,
loads, and executes the boot loader program GRUB.

bistate devices: The devices, such as transistors, that operate in “on” or “off” mode.
bit: Stands for binary digit, which can be 0 or 1. It is also the smallest unit of storage and

transmission.
bit mask: A sequence of bits (usually a byte or multiple bytes) used to retain values of cer-

tain bits in another byte (or multiple bytes), or to set them to 0s or 1s, by using a
logical operation such as AND or OR.

blind carbon copying e-mail: Sending a copy of an e-mail message composed by you to
someone other than the intended recipient. Who received the carbon copy of a
message is not known to the receiver because this information does not appear in
the e-mail header.

block special files: The UNIX files that correspond to block-oriented devices (see block-
oriented devices). These files are located in the /dev directory.

Glossary    ◾    1301

blocking input: An input (i.e., read) operation that blocks if the file it is reading from is
empty.

blocking output: An output (i.e., write) operation that blocks if the file it is writing to is full.
block-oriented devices: The devices, such as disk drives, that perform I/O in terms of

blocks of data (e.g., in 512-byte chunks).
blocks: See disk blocks.
boot environment: A boot environment is a bootable environment consisting of a ZFS

root file system and, optionally, other file systems mounted underneath it. Exactly
one boot environment can be active at a time.

bounded buffer: A fixed-size buffer that is typically used as a circular buffer.
bounded-buffer reader–writer problem: A synchronization problem in which reader

and writer processes run forever and communicate (i.e., read and write) through
bounded buffer. See bounded buffer.

break point: A program statement where the execution of the program stops while using
a symbolic debugger.

bsd socket: See socket.
bss: The uninitialized data area in the memory image of a UNIX process
byte: In contemporary literature, a byte refers to eight bits. For example, 10101100 is a

byte. In not-so-recent literature, the term also used to refer to nine bits. Because
of this, a byte is also called an octet. A storage location that can store eight bits is
also known as a byte.

C preprocessor: A program that takes a C program as input and processes all the state-
ments that start with the # sign. It produces output that is taken by the C compiler
as input to produce the assembly code. A typical C compiler performs all the tasks
necessary to produce the executable code for a C program. These tasks are prepro-
cessing, compilation, assembly, and linking.

carbon copying e-mail: Sending a copy of an e-mail message composed by you to some-
one other than the intended recipient. Who received the carbon copy of a message
is known to the receiver because this information appears in the e-mail header.

central processing unit (CPU): Also known as the brain of a computer system, the CPU
executes a program by reading the program instructions from the main memory.
It also interacts with the I/O devices in the computer system.

character special files: The UNIX files that correspond to character-oriented devices.
These files are located in the /dev directory.

character user interface (CUI): See commandline user interface (CUI).
character-oriented devices: The devices, such as keyboards, that perform I/O in terms of

one byte at a time.
checksum: A 256-bit hash of the data in a file system block. The checksum capability can

range from the simple and fast fletcher4 (the default) to cryptographically strong
hashes such as SHA256.

child process: A process created on behalf of another process. In UNIX, the fork system
call has to be used to create a child process. The child process is an exact copy of
the process executing fork (see parent process).

1302 ◾ Glossary

chroot: An operation that changes the apparent root directory for the current running
process and its children. A program that is run in such a modified environment
cannot name (and, therefore, normally cannot access) files outside the designated
directory tree. The term “chroot” may refer to the chroot system call or the
chroot wrapper program. The modified environment is called a chroot jail. Only
the root user can perform a chroot.

class: A template for creating user-defined objects. Class definitions normally contain
method definitions which operate on instances of the class.

client software: In the client–server software model, the client software, when executed,
takes the user commands and sends them as requests to the server process. The
server process computes the responses for requests and sends them to the client,
who handles them according to the semantics of the command. All Internet appli-
cations are based on the client–server model of computing.

clock tick: A clock in a computer system ticks as frequently as dictated by the frequency of
the clock (ticks per second). For a system clock that is dependent on the frequency
of the power-line signals (50 or 60 per second), it ticks every 1/50 (or 1/60) of a
second.

cluster: The minimum unit of disk storage, which is one or more sectors.
coding rules: A set of rules used by programmers for writing programs. Such rules are

usually designed to enhance the readability of programs and to keep consistency
in the “look” of the source programs produced by an organization or a coding
team. The use of coding rules helps a great deal during the maintenance phase of
a software product.

colon hexadecimal notation: A notation used to write 128-bit IPV6 addresses in a com-
pact notation, in which each 16-bit chunk is represented in hexadecimal separated
by colons, as in 76F4:9D5F:FFFF:FFFF:0:3276:70BD:FFFF.

command grouping: Specifying two or more commands in such a manner that the shell
executes them all as one process.

command interpreter: A program that starts running after you log on to allow you to type
commands that it tries to interpret and run. In UNIX, the command interpreter is
also known as a shell.

command line: A line that comprises a command with its arguments and is typed at a
shell prompt. You must hit the <Enter> key before the command is executed by
a shell.

command line arguments: The arguments that a command needs for its proper execution,
which are specified in the command line. For example, in the command cp f1
f2 , f1 and f2 are command line arguments. Within a shell script, you can refer
to these arguments by using positional parameters $1–$9.

command mode operation: Operation that consists of key sequences that are commands
to a text editor for taking a certain action.

command substitution: A shell feature that allows the substitution of a command by its
output. To do so, you enclose a command in back quotes (grave accents). Thus, in

Glossary    ◾    1303

the echo 'date' command, the output of the date command substitutes for the
date command, which is then displayed on the display screen.

commandline user interface (CUI): If you use a keyboard to issue commands to a comput-
er’s operating system, the computer is said to have a commandline user interface.

comments: Short notes placed in the program’s source code that explain segments of the
code. Comments must be distinguished so they are not executed as program com-
mands (statements). For shell scripts, a comment line must start with the # sign.

commit (as a noun): A single point in the Git history; the entire history of a project is rep-
resented as a set of interrelated commits. The word “commit” is synonymous with
the words “revision” or “version”. Also synonymous with a commit object.

commit (as a verb): The action of storing a new snapshot of the project’s state in the Git
history, by creating a new commit representing the current state of the index and
advancing HEAD to point at the new commit.

compatibility release: A release/version of a software that is meant to provide uniformity
between any particular implementation and its perceived competitors.

compiler: A program that takes a program written in a high-level language and translates
it into the corresponding assembly program. Almost all C and C++ compilers also
perform the tasks of preprocessing, assembly, and linking.

computer network: An interconnection of two or more computing devices. A device on a
network is commonly called a host.

concurrent client: A client that handles multiple descriptors, such as an FTP or SSH client.
concurrent server: A server process that, on receiving a client request, creates a child pro-

cess, delegates the rest of communication with the client to that child process, and
goes back to wait for another client request.

configuration file: A file that contains the definitions of various environment variables to
set up your environment while you use a shell. Every shell has a start-up configu-
ration file for every shell in your home directory that is executed when that shell
starts running (e.g., .cshrc for the C shell).

connection: A connection without an explicit request from the client.
control bus: A set of parallel wires that are used to carry control information from the

CPU to the main memory or an I/O device. For example, it carries the “read” or
“write” instruction from the CPU to the main memory.

control unit: The part of a CPU that interacts with the devices in a computer system (mem-
ory, disk, display screen, etc.) via controllers (see controllers) in these devices. It
also fetches a program instruction from the main memory, decodes it to deter-
mine whether the instruction is valid, and then passes it on to the execution unit
(see execution unit) for its execution.

controllers: The electronic part of an I/O device, which communicates with the CPU or
other devices.

CPU scheduling: A mechanism that is used to multiplex the CPU among several pro-
cesses. This results in all processes making progress in a fair manner and increased
utilization of hardware resources in the computer system.

1304 ◾ Glossary

CPU state: The values of the CPU registers at any given time, including the value of the
program counter.

CPU usage: The percentage of the time the CPU in a computer system has been used since
the system has been up.

critical section: A piece of code in a thread in a cooperating/concurrent process that
accesses shared data.

critical section problem: Writing code of cooperating/concurrent processes to ensure
serial execution of critical sections in these processes.

cryptography: The science of transforming information so that it is unintelligible to the
inexperienced and understandable to those who have some special knowledge,
known as the decryption key.

csh: The abbreviation of C shell.
current directory: The directory that you are in at a given time while using a computer

system. In UNIX, the pwd command can be used to display the absolute path-
name of your current directory.

current job: The job (process) that is currently being executed by the CPU.
cursor: The point that tells you at which part of the screen you are located at a given time.
daemon: A system process executing in the background to provide a service such as print-

ing. For example, in a typical UNIX system the lpd daemon offers the printing
service and fingerd offers the finger service. A process not connected to standard
input or output.

DAG (directed acyclic graph): Refers to commit objects that, in pictorial form, show par-
ents/descendants (directed).This picture of commit objects is acyclic (there is no
chain which begins and ends with the same object).

data bus: A set of parallel wires that are used to carry data from the CPU to a subsystem
(memory or I/O device), and vice versa.

dataset: A generic name for the following ZFS components: Clones, file systems, snapshots,
and volumes. Each dataset is identified by a unique name in the ZFS name space.
Datasets are identified using the following format: Pool/path[@snapshot]

decryption: The process of converting an encrypted file (see encryption) to its original
version.

deduplication: Data deduplication is a method of reducing storage capacity needs by elim-
inating redundant data. Only one unique instance of the data is retained on stor-
age media. Redundant data is replaced with a pointer to the unique data copy.

descriptor set: A bit mask in which a bit represents a descriptor and the value of a bit indi-
cates the state of the corresponding descriptor; that is, ready or not ready for an
I/O operation or exception handling.

desktop manager: A software system that provides a graphical method of interacting with
the operating system.

disk blocks: The unit of disk I/O. It is one or more sectors (512 bytes).
disk scheduling: In a time-sharing system, several requests can come to the operating

system for reading or writing files on a disk. The disk scheduling code in the oper-
ating system decides which request should be served first.

Glossary    ◾    1305

dispatcher: Operating system code that takes the CPU away from the current process and
gives it to the newly scheduled process (i.e., it saves the state of the current process
and loads the state of the newly scheduled process).

domain name system (DNS): A distributed database that can be used to convert the
domain name of a host to its IP address.

dot file: See hidden file.
dotted decimal notation (DDN): 32-bit (4-byte) IP addresses are difficult to remember.

This notation is used to express every byte of an IP address in equivalent decimal
and place dots between them. Thus, the IP address 11000000100011000000101000
000001 (in binary) is 192.140.10.1 in the dotted decimal notation.

dynamic analysis: The analysis of a program as it executes. The analysis comprises debug-
ging, tracing, and performance monitoring of the program, including testing it
against product requirements.

dynamic linking: Linking carried out at runtime.
editor buffer: Usually nonpersistent memory locations open during a text editor session

that store information on the state of information being edited.
encrypted file: A file that contains a file’s contents after it has gone through the encryption

process (see encryption).
encryption: The process of converting a file’s contents to a completely different form by

using a process that is reversible, thereby allowing recovery of the original file.
end-of-file (eof) marker: Every operating system puts a marker at the end of a file, called

the end-of-file (eof) marker.
environment variables: The shell variables (see shell variable) whose values control your

environment while you use the system. For example, it dictates which shell process
starts running and what directory you are put into when you log on.

ephemeral socket: See active socket.
Ethernet: The most famous protocol for physically connecting hosts on local area networks.
Ethernet broadcast address: The all 1s Ethernet address.
execute permission: A UNIX access privilege that must be set for a file to be executed by

using the file name as a command. When set for a directory, it allows the directory
to be searched.

execution unit: Also called the arithmetic and logic unit (ALU), it executes instructions in
a program delivered to it by the control unit.

exit status: A value returned by a process, indicating whether it exited successfully or
unsuccessfully. In UNIX, a process returns a status of zero on success and a non-
zero value on failure.

expression: A piece of syntax which can be evaluated to some value. In other words, an
expression is an accumulation of expression elements like literals, names, attribute
access, operators, or function calls which all return a value.

external command: A shell command for which the service code is in a file and not part
of the shell process. When a user runs an external command, the code in a cor-
responding file must be executed by the shell. The file may contain binary code or
a shell script.

1306 ◾ Glossary

external signal: A signal whose source is not the CPU. For example, pressing <Ctrl+C>
on the keyboard sends an external signal, also called keyboard interrupt, to the
process running in the foreground.

FCFS: See first-come-first-served mechanism.
Fibonacci series: A series of positive integers with the first two numbers being 0 and

1, and the next number in the series being calculated by adding the previous
two numbers. Thus, the first 10 elements of the series are 0, 1, 1, 2, 3, 5, 8, 13,
21, and 34.

FIFO: First-in-first-out order.
file compression: The process of shrinking the size of a file.
file descriptor: A small positive integer associated with every open file in UNIX. It is used

by the kernel to access the inode for an open file and determine its attributes, such
as the file’s location on the disk.

file descriptor: An object of type “int” returned when a file is opened using the system call
interface. Subsequent I/O tales place using this int. Used as an index for the per-
process file descriptor table (PPFDT). See per-process file descriptor table.

file descriptor table: A per-process table maintained by the UNIX system that is indexed
by using a file descriptor to eventually access the file’s inode.

file handle: A term used for file pointer or file descriptor.
file maintenance: The operation of organizing your files according to some logical scheme.
file pointer: A pointer to an object file returned when a file is opened using the standard

I/O interface. Subsequent I/O takes place using this object.
file system: A directory hierarchy with its own root stored on a disk or disk partition,

mounted under (glued to) a directory. The files and directories in the file system
are accessed through the directory under which they are mounted.

file-system-persistent object: An object that remains in existence for the life of the file
system under which it was created.

file system structure: The structure that shows how files and directories in a computer
system are organized. On most contemporary systems, the files and directories are
organized in a hierarchical (tree-like) fashion.

file table: Also known as the system-wide file table (SFT), a table maintained by the UNIX
operating system to keeps track of all the files open in a UNIX system at any given
time, which links the PPFDTs and the inode table.

file transfer protocol: An application-level protocol in the TCP/IP protocol suite that
allows you to transfer file(s) from a remote host to your host, or vice versa. The
UNIX ftp command can be used to access this Internet service.

filter: A UNIX term for a command that reads input from standard input, processes it in
some fashion, and sends it to standard output. Examples of UNIX filters are sort,
pr, and tr.

firewall: A security measure, instituted in PC-BSD and Solaris at the software level, to
control access to the system from a network connection.

first-come-first-served mechanism: A scheme that allows print requests (or any other
kinds of requests) on the basis of their arrival time, serving the first request first.

Glossary    ◾    1307

focus policy: In the X Window System and XFree86, the way in which the current position
of the cursor is made to appear in the current open window, or the relationship of
the current position of the cursor and the current active window.

folder: Also known as a directory; a place on the disk that contains files and other folders
arranged in some organized and logical fashion.

foreground process: A process that keeps control of the keyboard when it executes; that
is, the process whose standard input is attached to the keyboard. Only one fore-
ground process can run on a system at a given time.

forwarding e-mail: Sending a copy of an e-mail message received from someone to
another e-mail address.

FTP: See file transfer protocol.
full association: A full association has been established between two sockets when they

both have names bound to them and know the names of each other. Such sockets
are known as fully connected.

full-screen display editor: An editor that displays a portion of the file being edited in the
console window or terminal screen.

full-screen e-mail display systems: E-mail systems that allow you to edit any text you see
on a single screen display, as you would on a word processor.

fully parameterized client: A client software that has the flexibility of allowing identifica-
tion of a particular port number where a server runs. TELNET is an example of a
fully parameterized client, because, although the TELNET server normally runs
on the well-known port 23, you can run a TELNET server on another port and
connect to it by specifying the port number as a command line parameter with the
telnet command. For example, in the telnet foo.foobar.org 5045 com-
mand, the TELNET client will try to connect to the server running on port 5045.

fully qualified domain name (FQDN): The name of a host that includes the host name
and the network domain on which it is connected. For example, www.up.edu is the
FQDN for the host whose name is up.edu.

function: A series of commands that are given a name. The commands in a function are
executed when the function is invoked (called).

function body: The series of commands in a function.
gateway: See router.
general purpose buffer: An area in the main memory maintained by an editor; it contains

the most recent cut/copied text.
getty process: At system bootup time, the UNIX system starts running a process on each

working terminal attached to the system. This process runs in superuser mode
and sets terminal attributes such as baud rate as specified in the /etc/termcap file.
Finally, it displays the login: Prompt and waits for a user to log on.

Git: A UNIX tool for version control and software development sharing, both command-
line- and Web-based via Github.

Git branch: A name for a line of commits, also called a reference. It shows the parents/
descendants of a commit, and thus the typical notion of a “branch of project
development.”

http://www.foo.foobar.org
http://www.up.edu
http://www.up.edu

1308 ◾ Glossary

Git staging model: Git has three main states that files can be in: Modified, staged, and com-
mitted. The files are either in the working directory, the index, or the object store.

global variable: A variable that can be accessed by children of the process (executing shell
script) in which it is defined.

graphical user interface (GUI): If you use a point-and-click device, such as a mouse, to
issue commands to its operating system, a computer is said to have a graphical user
interface.

group: In UNIX, every user of the computer system belongs to a collection of users known
as the user’s group.

GRUB (grand unified bootloader): A bootloader program that loads and executes the
kernel and initrd images.

half association: A socket is said to be half associated when a name has been bound to it.
Such sockets are said to be half connected.

hard coding: Making a value part of a program as opposed to taking it from an outside
source such as the keyboard or a file.

hard link: A mechanism that allows file sharing by creating a directory entry in a direc-
tory to allow access to a file (or directory) via the directory. Loosely applied, it is a
“pointer” to the inode of a file to be accessed via multiple pathnames. The ln com-
mand is used to create a hard link to a file.

header: See program header.
header file: A file that contains definitions and/or declarations of various items (e.g., con-

stants, variables, and function prototypes) to be used in the program in the C,
C++, or Java programming language.

heap: The area in the memory image of a UNIX process used for dynamic memory
allocation/deallocation.

here document: A Bourne and C shell feature that allows you to redirect standard input of
a command in a script and attach it to data in the script.

hidden file: A file whose name starts with a dot (.). Such files are not listed when in the
output of the ls command unless you use the ls -a command. Examples of hid-
den files are ~/.bashrc, ~/.cshrc, ~/.login, and ~/.profile.

high-level programming languages: Programming languages such as C, C++, Python,
Java, FORTRAN, and LISP that are closer to spoken languages and are indepen-
dent of the CPU used in the computer system.

hole: An unused area in a file, created with the file pointer, is set, and data is written
beyond the current end-of-file.

home directory: See login directory.
home page: The contents of a file displayed on the screen (the actual contents can be mul-

tiple screens long) for an Internet site.
host: A hardware resource, usually a computer system, on a network.
Huffman coding: A lossless compression scheme for encoding a fixed-length block of

characters into a variable-length block of bits. In this compression scheme, we
assume that characters occur independently and with known probabilities, and

Glossary    ◾    1309

that the probabilities are the same for all positions. If statistics about fixed block of
characters are known a priori, Huffman coding results in optimal codes.

hypervisor: See virtual machine monitor.
I/O-bound process: A process that spends most of its time performing I/O operations, as

opposed to performing some calculations by using the CPU.
i-list: A list (array) of inodes on the disk in a UNIX system. See inode.
immutable object: An object with a fixed value. Immutable objects include numbers,

strings, and tuples. Such an object cannot be altered. A new object has to be cre-
ated if a different value has to be stored; for example, a key in a dictionary.

index number: See inode number.
index screen: The user interface in full-screen-display e-mail systems. It usually consists of

three areas: One that contains the message number, sender’s e-mail address, date
received, size of the message in bytes, and subject line; a second that contains a list
of possible commands; and third, a command area where your typed commands
are displayed. These screens vary from one system to another.

indexed buffer: A buffer used by a text editor that allows you to store more than one tem-
porary string.

infinite loop: See nonterminating loop.
information hiding: A technique used to implement software when the internal struc-

ture of a data item is not important. What is important is the types of operations
that can be performed on the data and the input/output characteristics of the
operations.

init process: The first user process that is created when you boot up the UNIX system.The
BSD-style init program brings up the system by running the /etc/rc script. The rc
script is a very easy to understand and manage facility. On a Solaris system, the SMF
service starter replaces init.

initrd (initial RAM disk): Used by the kernel as temporary root file system until kernel
is booted and the real root file system is mounted. It also contains necessary driv-
ers compiled inside, which helps it to access the hard drive partitions, and other
hardware.

inode: An element of an array on disk (called the i-list) allocated to every unique file at the
time it is created. It contains file attributes such as file size (in bytes). When a file is
opened for an operation (e.g., read), the file’s inode is copied from disk to a slot in a
table kept in the main memory, called the inode table (see inode table), so that the
file’s attributes can be accessed quickly.

inode number: A 2-byte index value for the i-list (or inode table) used to access the inode
for a file.

inode table: A table (array) of inodes in the main memory that keeps inodes for all open
files. The inode number for a file is used to index this array in order to access the
attributes of an open file.

insert mode of operation: Mode that allows you to input text to be inserted in the docu-
ment being edited.

1310 ◾ Glossary

instruction set: The language that a CPU understands. A CPU can understand instruc-
tions only in its own instruction set, which is usually a superset of its predecessors
made by the same company.

interactive operating system: An operating system that allows you to interact with your
processes. Almost all contemporary operating systems, such as LINUX, UNIX,
and Windows, are interactive.

internal (built-in) command: A shell command for which the service code is part of the
shell process.

internal signal (trap): An interrupt generated by the CPU. This may be caused, for exam-
ple, when a process tries to access a memory location that it is not allowed to access
(see process address space).

Internet: See internetwork.
Internet domain name system: A distributed database of domain name and IP address

mappings. It is maintained by hosts called name servers. Every site on the Internet
must have at least one computer that acts as a name server.

Internet domain socket: A socket (an interprocess communication endpoint in BSD-
compliant UNIX systems) that can be used for communication between pro-
cesses on the same computer or between different computers on a network or an
internet.

Internet login: Logging on to a computer on the Internet.
Internet message access protocol (IMAP): A method of accessing e-mail or bulletin-

board messages at a mail server by using a client software, without transferring
any files or messages between the two computers.

Internet Protocol (IP): The network layer protocol in the TCP/IP protocol suite that routes
packets (known as datagrams in TCP/IP terminology) from the source host to the
destination host.

Internet service provider (ISP): A company that offers Internet services such as e-mail
and Web browsing through dialup or cable connections.

internetwork: A network of computer networks. The ubiquitous internet is called the
Internet.

internetworking: Making a network of networks. In terms of software, the term inter-
networking is usually used to refer to writing client–server programs that allow
processes on various hosts on the Internet to communicate with each other.

interpreted program: A program that is executed one command (statement) at a time by
the interpreter.

interpreter: A program that executes statements (or commands) in a program one by one.
An example of an interpreter is a UNIX shell that reads commands from a key-
board or a shell script and executes them one by one.

interprocess communication (IPC) mechanisms: Facilities (channels and operations on
them) provided by an operating system that allow processes to communicate with
each other. UNIX has several channels for IPC including pipes, FIFOs, and BSD
sockets. These channels are created by using UNIX systems called pipe, mkfifo
(mknod in older systems), and socket.

Glossary    ◾    1311

interrupt: A “signal” that a peripheral hardware device sends to the CPU in order to get
its attention.

interrupt service routine: The kernel code to service an interrupt.
interrupt-driven interaction: A mechanism used in modern computer systems in which

applications wait for a signal from a particular input device and then take an
appropriate action.

intranet: A network of computer networks in an organization that is accessible to people
in the organization only.

intranet login: Logging on to a computer on an intranet.
IP address: A 32-bit positive integer (on IPV4) to uniquely identify a host on the Internet.

On IPV6, it is a 128-bit positive integer.
IP broadcast address: An IP broadcast address (also known as broadcast address) is used

by the IP layer in a host to send a datagram to all the hosts on a subnet or to a
remote network.

iteration: A single execution of the piece of code in a loop (see loop).
iterative server: A server process that, on receiving a request from a client process, pre-

pares a response, sends the response to the client process, and waits for the next
request.

job: A print request or a process running in the background.
job ID: A number assigned to a print job. On some systems, it is preceded by the name of

the printer.
job number: A small integer number assigned to a background process.
kernel-level threads: The threads created by user programs using thread libraries imple-

mented in the kernel. The kernel handles both processes and threads, including
their scheduling.

kernel on intel/AMD: Platforms; the kernel file starts with a 512-byte boot block, then a
secondary boot loader block, and then the compressed kernel image. The kernel
does all the kernel-space work: Interacting directly with hardware, managing run-
ning processes by allocating memory and CPU time, and enforcing access control
through ownership and permissions.

keyboard interrupt: An event generated when you press <Ctrl-C> that causes the termi-
nation of the foreground process.

keyboard macro: A collection of keystrokes that can be recorded and then accessed at any
time. This capability allows you to define repetitive multiple keystroke operations
as a single command and then execute that command at any time—as many times
as you want.

keystroke command: A command that corresponds to pressing one or more keys.
kill ring: Text held in a buffer by killing it and then restored to the document at the desired

position by yanking it.
ksh: Abbreviation of Korn shell.
lambda: An anonymous inline function consisting of a single expression which is evalu-

ated when the function is called. The Python syntax to create a lambda function is:
Lambda [arguments]: Expression.

1312 ◾ Glossary

language libraries: A set of prewritten and tested functions for various languages that can
be used by application programmers instead of having to write their own.

last line mode (command mode): A state that the vi and vim editors can be in that allows
entry of editor commands, such as for saving files or quitting the editor.

latency time: The time taken by a disk to spin in order to bring the right sector under the
read/write head is called the latency time for the disk. It is dictated by the rotation
speed of the disk.

lazy locking: In-version control systems that allow multiple users to check out a file for
editing. lazy locking does not lock the file until the file contents are changed by a
user.

legacy code: Program written long ago that has no written documentation describing the
purpose of various parts of the program.

librarian: A nickname commonly used for the UNIX ar utility that allows you to archive
your object files into a single library file and manipulate the archive file in various
ways.

library: See language libraries.
lightweight process: A kernel visible thread in a UNIX process on Solaris.
line display e-mail system: E-mail systems that allow you to edit one line at a time when

you are composing an e-mail message. The UNIX mail utility is a prime example
of such a system.

link: A way to connect a file (or directory) to a directory so that the file can be accessed as
a child of the directory. The actual file may be in another directory.

link file: A file in UNIX that contains the pathname for a file (or directory). A link file,
therefore, “points to” another file. The type of such a file is link (denoted by l in
the output of the ls -l command) (see symbolic link).

literal constants: Constant values such as digits, letters, and strings. For example: 103, “A”,
“x”, and “Hello”.

little endian byte order: A storage (or transmission) order in which the low byte of a
multiple-byte data item (char, int, long, etc.) is stored in the low byte of memory
and the high byte of the data is stored in the high byte of memory.

loader program: An operating system program that reads an application from the disk,
loads it into the main memory, and sets the CPU state so that it knows the location,
in the main memory, of the first program instruction in the main memory.

local area network (LAN): Multiple computing devices interconnected form a LAN if the
distance between these devices is small, usually less than 1 km.

local client: A client process that runs on the host that you are sitting in front of.
local file system: File system used for organizing files and directories of a single computer

system. By using a local file system on a computer system, you can access files and
directories on that system only. (A remote file system allows you to access files on
the remote computers on a local network.)

local host computer system: The computer system that you are logged on to.
local variable: A variable that is not accessible outside the executing shell script in which

it is defined.

Glossary    ◾    1313

login directory: The directory that you are placed in when you log on.
login name: See username.
login process: A process created by the getty process that accepts your password, checks

for its validity, and allows you to log on by running your login shell process.
login prompt: A character or a character string displayed by an operating system to inform

you that you need to enter your login name and password in order to use the sys-
tem. In a UNIX system, the getty process displays the login prompt.

login shell: The shell process that starts execution when you log on.
loop: A piece of code that is executed repeatedly.
low-level I/O: I/O done via the system call interface.
low-level programming language: A computer programming language that is closer to

the language that a CPU speaks, called the CPU’s instruction set. When written
in English-like words called mnemonics, this language is called the assembly lan-
guage for the CPU.

lpd: Short for line printer daemon (see printer daemon).
LWP: See lightweight process.
machine code: See machine programs.
machine cycle: A CPU continuously fetches the next program instruction from the main

memory, decodes it to verify if the instruction is valid, and then executes it. This
process of fetching, decoding, and executing instructions is known as the CPU
cycle.

machine language: The instruction set of a CPU denoted in the form of 0s and 1s.
machine programs: The programs written in the instruction set of a CPU and expressed

in 0s and 1s.
magic number: A number stored in the disk image of an executable file that describes the

type of the executable code in the file.
main buffer: Also known as the editing buffer or the work buffer; the main repository for

the body of text that you are trying to create or modify from some previous per-
manently archived file on disk.

main thread: The thread caused by the execution of the main() function in a program.
mainframe: See mainframe computer.
mainframe computer: A computer system that has powerful processing and I/O capabili-

ties and allows hundreds of users to use the system simultaneously.
make rules: The rules that are used by the UNIX make utility to compile and link various

modules of a software product.
master server: The main server process in a concurrent server (see concurrent server).
maximum transmission unit: The maximum size of an IP datagram (packet); dependent

on the technology used at the data link layer for connection to other hosts.
MBR (master boot record): In simple terms, MBR loads and executes the GRUB boot

loader.
menu bar: A collection of menu choices, arranged in either a horizontal or vertical for-

mat, that appears on-screen either permanently or when activated using a mouse
button.

1314 ◾ Glossary

message body: The message text of an e-mail message.
message header: An important structural part of an e-mail message that usually appears

at the top of the message text. It normally contains information such as send-
er’s and receiver’s e-mail addresses, subject, date and time the message was sent,
attachments, and e-mail addresses of the people who received carbon copies of the
mail message.

metacharacters: See shell metacharacters.
method: A function which is defined inside a class body. If called as an attribute of an

instance of that class, the method will get the instance object as its first argument
(which is usually called self).

millisecond: One-thousandth (10−3) of a second.
minicomputer: A midrange computer that is more powerful than a PC but less powerful

than mainframe computers. Like mainframe computers, the minicomputer also
allows multiple users to access the system at the same time.

mirror: A vdev that stores identical copies of data on two or more disks. If any disk in a
mirror fails, any other disk in that mirror can provide the same data.

mode control word: A string of characters used with the chmod command to specify file
privileges.

modeless editor: A text editor, such as emacs, that does not have specific modes for enter-
ing text or executing commands that affect the state of the editor. Contrast with an
editor with modes, such as vi, vim, or gvim.

MTU: See maximum transmission unit.
multimedia internet mail standard (MIME): An e-mail standard that defines various

multimedia content types and subtypes for attachments. In particular, digital
images, audio clips, and movie files can be transported via e-mail attachments,
even on dissimilar e-mail systems, if the systems are MIME-compliant.

multiport router: A router that can interconnect more than two networks.
multiprogramming: In a computer system, the mechanism that allows the execution of

multiple processes by multiplexing the CPU. Under multiprogramming, when the
process currently using the CPU needs to perform some I/O operation, the CPU is
assigned to another process that is ready to execute.

multiservice server: A server that offers multiple services, such as the UNIX superserver,
inetd.

multithreaded kernel: An operating system kernel that offers multiple concurrent instan-
tiation of kernel services; that is, multithreaded services.

mutable object: An object that can change its value but keep its class identity.
name server: A computer system on an Internet site that helps in mapping a domain name

to an IP address, or vice versa. Name servers implement the DNS.
named pipe (FIFO): A file-system-persistent channel on UNIX used for communication

between related or unrelated processes on a system.
named pipes: Communication channels that can be used by unrelated UNIX processes

on the same computer to communicate with each other. The UNIX system call
mkfifo (mknod in older systems) is used to create a named pipe.

Glossary    ◾    1315

nanosecond: One billionth (10−9) of a second.
net mask: A bit mask used by the TCP/IP protocol to identify whether a host is on a remote

network or on a local subnet.
network byte order: Same as big endian byte order.
network file system (NFS): Client−server software, commonly used on networked UNIX

machines, that allows you to access your files and directories from any computer
transparently.

network interface card: A circuit board in a computer system that has a link-level protocol
implemented in it. For example, a network card with the Ethernet protocol imple-
mented in it (also referred to as the Ethernet card).

network protocol: See protocol.
NIC: See network interface card.
nice value: A positive integer value used in calculating the priority number of a UNIX

process. The greater the nice value for a process, the higher its priority number,
resulting in a lower priority.

noclobber option: A feature in the C and Bash shells that forces the shell to ask you to have
the shell prompt you before deleting a file when you execute the rm command.

nonterminating loop: A loop that does not have a proper termination condition and,
therefore, does not terminate. This is usually caused by bad programming, but
there are certain applications, such as Internet servers (e.g., Web servers), that
must use infinite loops to offer the intended service.

null command: The Bourne shell command “:”; does not do anything except to return the
value “True”. When used in a C shell script, this command causes the C shell to
execute the remaining script under the Bourne shell.

null string: A string that contains no value. When displayed on the screen, it results in a
blank line.

object code: A program generated by the assembler program. It is in the machine language
of the CPU in the computer, but the library calls have not yet been resolved. The
task of resolving library calls is performed by another program called the linker
(or linkage editor).

open software system: Software whose source code is freely available to the community
of users so they can modify it as they wish. An example of such a system is the
LINUX operating system.

others: In UNIX, when we talk about a user’s access permissions for a file, “others” refers to
everyone except the owner of the file and the users in the owner’s group.

package management system: A program that installs new or improved applications or
utilities on your UNIX system, usually by compiling and linking program mod-
ules from packages. An example is App Café on PC-BSD.

package upgrades: Using the pkg command on both PC-BSD and Solaris to maintain
the user application packages, apps, and programs at their latest release, or delete
them, or add new ones.

packages: A collection of program components for an application that can be installed on
your UNIX system via the use of a package management system.

1316 ◾ Glossary

packet: A term used for a fixed-size message (containing data and control information)
in networking terminology. A TCP packet is called a segment, and a UDP or IP
packet is called a datagram.

panel, the: In the K Desktop management system, a menu bar, found by default at the bot-
tom of the screen display, which contains a set of buttons that accomplish common
tasks on the K Desktop.

parallel execution: Simultaneous execution of multiple commands with the help of CPU
scheduling. The processes corresponding to all the commands in the command
line are executed in the background.

parent process: A process that creates one or more child processes.
passive socket: A socket that listens for incoming connection requests from client pro-

cesses. It is a socket on which the listen() system call has been executed.
password: A sequence of characters (letters, digits, punctuation marks, etc.) that every

user of a time-sharing computer system must have in order for him/her to use the
system (see username).

path: A slash-delimited pathname for the dataset component.
pathname: The specification of the location of a file (or directory) in a system with a hier-

archical file system.
PCB: See process control block.
per-process file descriptor table (PPFDT): A kernel table that contains an entry each for

all open files in a process, including standard files (standard input, standard out-
put, and standard error). It is indexed by a file descriptor. An entry in this table
contains a pointer to an entry in the system-wise file table (SFT) for the opened file.

personal computer (PC): A computer system that, typically, allows a single user to use the
system at any one time, although some of the newer PCs allow multiple users to
use the system simultaneously. Examples of such systems are Macintosh and home
computers running under DOS, Windows 9X, and LINUX.

PF: A kernel-level software system that screens network packets by checking the proper-
ties of individual packets and the network connections built from those packets
against the filtering rules defined in its rule configuration files. The packet filter
arbitrates the disposition of those packets. This could mean passing them through
or rejecting them, or it could trigger events that parts of the operating system or
external applications work on to dispose of the packets.

physical communication medium: The medium used to connect the hardware resources
(computers, printers, etc.) on a network. It includes telephone lines, coaxial cable,
glass fiber, a microwave link, and a satellite link.

pipe: A process-persistent channel on UNIX used for communication between related
processes on a system.

pipe character (|): The symbol used to connect the standard output of a command to
the standard input of another command in a shell script or while using a shell
interactively.

point-and-click device: Under a graphical user interface, a device is needed to point to
an icon, button, window, or any other part of a window and press (click) a button

Glossary    ◾    1317

on the device to perform an operation such as executing a program. Joysticks and
mouses are examples of point-and-click devices.

pool: Identifies the name of the storage pool that contains the dataset.
port number: A 16-bit integer number associated with every Internet service, such as

TELNET. Port numbers are maintained by TCP and UDP. Well-known services
such as FTP, HTTP, and TELNET have well-known ports associated with them.
The port numbers for some well-known services are: 21 for FTP, 80 for HTTP, and
23 for TELNET.

port number: A port number is a positive integer in the range 0 to 65535 used to distin-
guish different services offered on a host.

portability: The ability to move the source code (see source code) for a system easily and
without major modifications from one hardware platform to another.

positional parameters: Shell environment variables $1–$9 that can be used to refer to the
command line arguments with which a shell script is executed.

POSIX (Portable Operating System Interface): A family of standards specified by the
IEEE Computer Society for maintaining compatibility between operating systems.
POSIX defines the API, along with command line shells and utility interfaces, for
software compatibility with variants of UNIX and other operating systems.

POST: After the power to an x86 system is turned on, the firmware executes a power-on
self-test (POST), locates and installs firmware extensions from peripheral board
ROMS, and then begins the boot process through a firmware-specific mechanism.

post office protocol (POP): A method of accessing e-mail messages at a mail server by
using client software to download the messages to the client machine for reading
offline.

PPFDT: See per-process file descriptor table.
present working directory: Also known as the current directory; the directory that you

are in at a given time. You can use the pwd command to display the full pathname
of this directory.

print queue: A queue associated with every printer where incoming print requests are
queued if the printer is busy printing, and printed one by one as the printer
becomes available.

printer daemon: See printer spooler.
printer spooler: A system process running in the background that receives print requests

and sends them to the appropriate printer for printing. If the printer is busy, its
request is put in the printer’s print queue.

proc: The structure part of a UNIX process’s PCB that contains the scheduling-related
information for the process. It always remains in memory regardless of the state
of the process.

process: An executing program.
process address space: The main memory space allocated to a process for its execution.

When a process tries to access (read or write) any location outside its address
space, the operating system takes over the control, terminates the process, and
displays an error message that informs the user of the problem.

1318 ◾ Glossary

process control block: A kernel data structure that keeps track of the runtime attributes
of the process.

process-persistent object: An object that remains in existence for the life of the process
that created it.

processor scheduler: A piece of code in an operating system that implements a CPU
scheduling algorithm.

program control flow commands: See program control flow statements.
program control flow statements: The shell commands (statements) that allow the control

of a shell script to go from one place in the program to another. Examples of such
statements are if-then-else-fi and case.

program generation tools: Software tools and utilities that can be used by application
programmers to generate program and executable files. Examples of such tools are
editors and compilers.

program header: Important notes at the top of a program file that include information
like file name, date program was written and last modified, author’s name, pur-
pose of program, and a very brief description of the main algorithm used in the
program.

protocol: A set of rules used by computers—network protocols in the operating system
software or network applications—to communicate with each other. Some of
the commonly used protocols in the networking world are ATM, Ethernet, FTP,
HTTP, IP, SMTP, TCP, TELNET, and UDP.

protocol port number: See port number.
pseudodevices: Special devices in the /dev directory that simulate physical devices.
pseudonym: Also known as an alias, a nickname given to a command or e-mail address.
public-key cryptography: An encryption technique that uses two keys: A public key and

a private key. The private key is kept on your computer and is used to decode
encrypted messages. The public key is made available to anyone who wants to
decrypt your messages.

python iterable: An object capable of returning its members one at a time. Examples of
iterables include all sequence types (such as a list, string, and tuple) and some non-
sequence types such as dict and file and objects of any classes you define with
an _ _ iter _ _ () or _ _ getitem _ _ () method.

pythonic: An idea or piece of code which closely follows the most common usages of the
Python language, rather than implementing code using structures common to
other languages.

quantum: See time slice.
queue: An arrangement of items/requests/messages for serving them on the first-come-

first-served (FCFS) basis.
race condition: A condition under which threads in concurrent cooperating processes

do not access data mutually exclusively; the final result produced by a process is
dependent on the order in which instructions in different threads access the shared
data, and the results may or may not be correct.

RAIDZ: A virtual device that stores data and parity on multiple disks.

Glossary    ◾    1319

random access memory (RAM): A storage place inside a computer system that is divided
into fixed-size locations where each location is identified by a unique integer
address and any location can be accessed by specifying its address. Although there
are RAMs in various I/O devices, RAM is normally used for the main memory in
a computer system, which is also a read–write memory.

read permission: The read permission on a UNIX file allows a user to read the file. The
read permission on a directory allows us to read the names of files and directories
in the directory.

real-time computer system: A computer system that must generate output for a command
within a specified interval of time, else the output is useless.

redirection operator: An operator used in a UNIX shell for attaching the standard input,
standard output, and standard error of a process to a desired file (see standard
files).

registers: Temporary storage locations inside a CPU that are used by it as scratch pads.
regular expression: A set of rules that can be used to specify one or more items in a single

character string (sequence of characters). Many UNIX tools such as awk, egrep,
fgrep, grep, sed, and vi support regular expressions.

relocatable code: An executable code that would run regardless of where it is loaded into
the memory.

remote client: A client process running on a host connected to your server via a network
connection.

requests for comments (RFCs): Technical documents describing the Internet architec-
ture, TCP/IP protocol suite, new protocols, revised protocols, and other Internet-
related information items. Initial versions of RFCs are called Internet drafts.

resilvering: The process of copying data from one device to another device. For example,
if a mirror device is replaced or taken offline, the data from an up-to-date mirror
device is copied to the newly restored mirror device. This process is referred to as
mirror resynchronization in traditional volume management.

resource manager: The operating system is also known as the resource manager because
it allocates and deallocates the computer resources in an efficient, fair, orderly, and
secure manner.

resource utilization: The utilization of a resource (usually a hardware resource, such as the
CPU) is the percentage of the time it has been in use since the computer system
has been running.

rlogin: A UNIX network protocol that allows you to log on to another host on a local area
network.

root: The login name of the superuser (see superuser) in a UNIX system.
root directory: The directory under which hang all the files and directories in a computer

system with a hierarchical file system. Thus, it is the “grandparent” of all the files
and directories.

root window: The window under which all other windows are opened as its children.
round-robin scheduling algorithm: A CPU scheduling algorithm in which a process gets

to use the CPU for one quantum and then the CPU is given to another process.

1320 ◾ Glossary

This algorithm is commonly used in time-sharing systems like UNIX and LINUX
to schedule multiple processes on a single CPU.

route: The sequence of routers that a packet goes through before it reaches its destination.
router: A special host on an internet that interconnects two or more networks and per-

forms routing of packets (called datagrams in the TCP/IP terminology) from the
sender host to the receiver host. Routers are also called gateways.

rsh: A UNIX network protocol that allows you to execute a command on another com-
puter on a local area network.

runtime performance: The time and space taken by a program to finish its execution.
search path: A list of directories that your shell searches to find the location of the execut-

able file (binary or shell script) to be executed when you type an external com-
mand at the shell prompt and hit the <Enter> key.

sector: Disks are read and written in terms of blocks of data, known as sectors. The typical
sector size is 512 bytes.

seek time: The time taken by the read/write disk head to move laterally to the desired track
(cylinder) before a read or write operation can take place.

sequential execution: One-by-one execution of commands; one command finishes its exe-
cution and only then does the execution of the second command start.

server software: In the client–server software model, the server process computes the
response for a client request and sends it to the client, who handles it according
to the semantics of the command. All Internet services are implemented on the
basis of a client–server software model. An example of a server software is a Web
server.

session leader: The login shell process.
set-group-ID (SGID) bit: A special file protection bit which, when set for an executable

file, allows you to execute the file on the behalf of the file’s group. Thus, you execute
the file with group privileges.

set-user-ID (SUID) bit: A special file protection bit which, when set for an executable file,
allows you to execute the file on the behalf of the file’s owner. Thus, you execute the
file with the owner’s privileges.

SFT: See file table and system-wide file table.
SGID: See set-group-ID.
sh: The abbreviation of Bourne shell.
shell: A computer program that starts execution when the computer system is turned on or

a user logs on. Its purpose is to capture user commands (via the keyboard under a
CUI and via a point-and-click device under a GUI) and execute them.

shell environment variables: Shell variables used to customize the environment in which
your shell runs and for proper execution of shell commands.

shell metacharacters: Most of the characters other than letters and digits have special
meaning to a shell and are known as shell metacharacters. They are treated spe-
cially, and therefore cannot be used in shell commands as literal characters with-
out specifying them in a particular way.

Glossary    ◾    1321

shell prompt: A character or character string displayed by a shell process to inform you that
it is ready to accept your command. The default shell prompt for Bourne shell is $
and for C it is %. You can change a shell prompt to any character or character string.

shell script: A program consisting of shell commands.
shell variable: A memory location that is given a name which can then be used to read or

write the memory location.
signal: In UNIX jargon, a mechanism that allows interruption of a process. It is also known

as software interrupt in computer science literature.
Simple Mail Transfer Protocol: See SMTP.
single stepping: A feature in symbolic debuggers that allows you to stop program execu-

tion after every instruction execution. The next instruction is executed by using a
command. This is also sometimes called tracing program execution.

single UNIX specification (SUS): A family of standards for computer operating systems,
compliance with which is required to qualify for the name “UNIX.” The core spec-
ifications of the SUS are developed and maintained by the Austin Group, which is
a joint working group of IEEE, ISO JTC 1 SC22, and The Open Group.

single-threaded process: A process that only has the main thread.
slave process: A child process created by the master process to handle a client request. See

master server.
slice: A disk partition created with partitioning software.
SMTP: Stands for Simple Mail Transfer Protocol, which is the protocol used in all e-mail

systems (e.g., elm, mail, and pine) running on the Internet.
snapshot: An optional component that identifies a snapshot, or exact duplicate, of a dataset.
sniffing: Also known as packet sniffing; the equivalent of wiretapping a telephone conver-

sation for Internet traffic.
socket: A process-persistent endpoint of communication on UNIX used for communica-

tion between related or unrelated processes on a system or on different systems on
a network.

socket address: The address of a UNIX domain socket is a pathname and that of an
Internet domain socket is the IP address of the host on which the socket resides
plus a protocol port number.

socket descriptor: A descriptor for a socket that is used as an index into the per-process file
descriptor table. See per-process file descriptor table.

socket name: See socket address.
soft link: See symbolic link.
software cost model: A model used to estimate the cost of a software product.
software interrupt: A mechanism used in UNIX to inform a process of some event, such

as the user pressing <Ctrl-C> or logging out.
software life cycle: A sequence of phases used to develop a software product. These phases

normally consist of analysis of the problem, specification of the product, design
of the product, coding of the product, testing of the software, installation of the
product, and maintenance of the product.

1322 ◾ Glossary

sort key: A field, or a portion of an item, used to arrange items in sorted order (see sort-
ing). For example, the social security number can be used as the sort key for sort-
ing employee records in an organization.

sorting: Arranging a set of items in ascending or descending order by using some sort key.
source code: A computer program written in a programming language to implement the

solution for a problem.
source code control system: A UNIX tool for version control.
special character: A character that when used in a command is not treated literally by the

command. An example of such a character is c in the System V–compliant echo
command that forces the command to keep the cursor on the same line.

special file: The UNIX files that correspond to devices (see block special files and charac-
ter special files). These files are located in the /dev directory.

spoofing: Creating the TCP/IP packets using some other machine’s IP address. This is also
known as IP spoofing. The term Web spoofing is used to describe a situation where
an attacker creates a shadow “copy” of the entire World Wide Web.

SSD: Stands for Solid State Drive, which is the modern replacement for spinning hard
disks.

SSH: A Secure Shell protocol used to send/receive information using highly secure encryp-
tion between local or remote users.

standard error: See standard files.
standard files: The files where the input of a process comes from and its output and error

messages go to. The standard file where a process reads its input is called standard
input. The process output goes to standard output, and the error messages gener-
ated by a process go to standard error. By default, the standard input comes from
your keyboard, and standard output and standard error are sent to the display
screen.

standard input: See standard files.
standard output: See standard files.
start-up file: A file that is executed when you log on or when you start a new shell process.

These files belong to a class of files, called dot or hidden files, as their names start
with a dot (.) and they are not listed when you list the contents of a directory by
using the ls command. Some commonly used start-up files are .bashrc (start-up
file for Bash), .cshrc (start-up file for C shell), .profile (executed when you log on to
a System V–compliant UNIX system), and .login (executed when you log on to a
BSD-compliant system). All of these files reside in your home directory.

states: The states (conditions) a process can be in, such as running, waiting, ready, and
swapped.

static analysis: Analysis of a program that involves analyzing its structure and properties
without executing it.

static linking: Linking carried out at compile time.
sticky bit: When an executable file with the sticky bit on is executed, the UNIX kernel

keeps it in the memory for as long as it can so that the time taken to load it from
the disk can be saved when the file is executed the next time. When such a file has

Glossary    ◾    1323

to be taken out of the main memory, it is saved on the swap space (see swap space),
thus resulting in less time to load it into the memory again.

strong cryptography: An encryption method that cannot be penetrated by anyone except
those who have the decryption key.

subnet mask: See net mask.
subshell: A child shell executed under another shell.
sudo: A command that allows a permitted user to execute a command as the superuser, or

to assume the role of another user, as specified by security policy in a special file.
SUID: See set-user-ID.
supercomputer: The name used for most powerful computers that typically have many

CPUs and are used to solve scientific problems that would take a long time to
complete on smaller computers. Supercomputers are used in organizations such as
NASA and various U.S. national laboratories.

superuser: A special user in every UNIX system who can access any file (or directory) on
the system. This user is the system administrator, commonly known as the supe-
ruser on the system.

sure kill: Sending signal number “9” to a process. This signal cannot be intercepted by the
process receiving the signal and the process is definitely terminated.

swap space: An area set aside on the disk at system boot time where processes can be saved
temporarily in order to be reloaded into the memory at a later time. The activity of
saving processes on the swap space is called swap out, and of bringing them back
into the main memory is known as swap in. The time taken to load a process from
the swap space into main memory is less than the time taken to load a file from the
disk when it is stored in the normal fashion.

swapper process: A process that swaps in a process from the swap space into the main
memory, or swaps out a process from the main memory to the swap space. See
swap space.

symbolic constant: A constant value that is given to a name so that the name can be used
to refer to the value.

symbolic debugger: A software tool that allows you to debug your program as the pro-
gram runs.

symbolic link: When a symbolic link to a shared file (or directory) is created in a direc-
tory, a link file is created that contains the pathname of the shared file. The link
file, therefore, “points to” the shared file. The ln -s command is used to create a
symbolic link.

synchronous I/O: The I/O based on blocking calls and signals.
syslogd: Logging and log files refer to the recording of general and specific actions and

events on a UNIX system. A system program generates a call to write to a specific
log file, either locally or across the network. The syslogd daemon handles that write
call and is guided by entries in /etc/syslog.conf.

system administration: For UNIX systems, generally composed of installing the system
and configuring it, arranging boot management and maintenance, maintain-
ing the user base, adding postinstall hardware, backing up system and user files,

1324 ◾ Glossary

updating the operating system, and upgrading and maintaining installed soft-
ware, monitoring and tuning system performance, and making the system secure
on a network.

system bus: A set of parallel wires used to take bits from the CPU to a device, or vice versa.
system call: A mechanism that allows a process to perform such privileged tasks that it is

not allowed to perform by directly accessing (reading or writing) an I/O device or
executing a piece of kernel code. A system call is an entry point into the operat-
ing system kernel code. System calls can be used by application programmers to
have the kernel perform the tasks that need access to a hardware resource, such as
reading a file on a hard disk.

system mailbox file: A file that contains all of the e-mail messages that the system has
received for you. It is usually under the /usr/spool/mail directory, in a file with
your login name.

system programming: The ability of writing the kernel code to manage system hardware
including main memory and disk space management, disk formatting and defrag-
mentation, CPU scheduling, and management of I/O devices through device
drivers.

system updates: Maintaining the operating system itself so that it is at the latest available
stable release.

system-wide file table (SFT): See file table.
TCP/IP: See Transport Control Protocol/Internet Protocol.
TCP/IP protocol suite: See Transport Control Protocol/Internet Protocol.
TELNET: An application-level Internet protocol that allows you to log on to a remote host

on the Internet.
text editor: Allows you to view and edit (add or delete text in) text files. In spite of all the

fuss created by word processors and desktop publishing systems, text files remain
the most critical part of computing. They are needed to store source programs
written in any type of language (e.g., C, C++, Java, Assembly, and Perl), e-mail
messages, test data, and program outputs.

text-driven operating system: An operating system that takes commands to be executed
from the keyboard.

theme: In a window manager, the style and appearance of windows and their accompany-
ing components.

thread: A flow of control in an executing program.
thread-safe function: A function that can be called simultaneously from multiple threads,

even when the invocations use shared data, because all references to the shared
data are serialized.

threshold priority: A positive integer number used in the expression for calculating the
priority number of a process in the UNIX scheduler. It is the smallest priority
number for a user-level process. All system processes have priority numbers less
than the threshold priority.

throughput: The number of processes finished in a computer system in unit time.

Glossary    ◾    1325

tiled display: A technique to arrange windows on the display screen so that they are opened
next to each other, just like the tiles on a floor.

time slice: In a time-sharing system, a time slice, also known as a quantum, is the amount
of time a process uses the CPU before it is given to another process.

time-sharing system: A multiuser, multiprocess, and interactive operating system. UNIX
and LINUX are the prime examples of time-sharing systems.

TLD: See top-level domain.
top-level domain: The rightmost string in a domain name.
topology: The physical arrangement of hosts in a network. Some commonly used topolo-

gies are bus, ring, mesh, and general graph.
transparent encryption: Encryption/decryption automatically done by Secure Shell (SSH)

without the knowledge of the sender and receiver processes.
Transport Control Protocol/Internet Protocol: The suite of communication and routing

protocols that are the basis of the Internet. They include many protocols such as
FTP, ICMP, IP, TCP, TELNET, and UDP.

transport layer interface (TLI): The equivalent of BSD sockets in System V–compliant
UNIX systems, it allows processes on the Internet to communicate with each other.

trap: The CPU generated signal to handle an exception in the code being executed. See
internal signal.

trusted host: Some remote login protocols allow login from a set of hosts without verifying
passwords. Such hosts are known as trusted hosts.

u area: Part of a UNIX process’s PCB that contains information about signal handling,
resources allocation, and a reference to the proc structure.

UEFI (unified extensible firmware interface): A specification that defines a software
interface between an operating system and platform firmware. UEFI replaces the
basic input/output system (BIOS) firmware interface.

universal resource locator: Protocol://IP_address/pathname or protocol://FQDN/path-
name. The protocol field usually contains “http”, but can contain “ftp” or “telnet”.
The pathname field is used to identify the location of a file on the host. URLs are
commonly used to identify the location of a Web page to be displayed on your
screen. An example of a URL is http://www.up.edu/index.html. In this example,
the protocol is http, the FQDN is www.up.edu, and the pathname is ~/index.html.

UNIX domain socket: A socket (an interprocess communication endpoint in BSD-
compliant UNIX systems) that can be used for communication between processes
on the same computer system.

upstream branch: The default branch that is merged into the branch in question (or that
the branch in question is rebased onto). In terms of data, your repo is “down-
stream” of data coming from upstream repos that you “pull from” and going back
to upstream repos that you “push to.”

URL: See universal resource locator.
user: In UNIX jargon, the term used for the owner of a file when we talk about file access

privileges.

http://www.pathnameis~/index.html
http://www.up.edu
http://www.up.edu/index.html

1326 ◾ Glossary

user-defined macros: In context with the make utility, a user-defined macro is usually a
collection of files, keystrokes, compiler options, or compiler names that is given a
name. This allows users to access these macros by using $(macro _ name) syn-
tax. This capability enhances the readability of the makefile and allows you to use
the named items at any time—as many times as you want.

user-defined variables: These shell variables are used within shell scripts as temporary
storage places whose values can be changed when the script executes.

userid: Every user in a time-sharing system, such as UNIX, is assigned an integer number
called his/her userid.

user-level thread: A thread created by a user program using these libraries that is not
known to the kernel and is managed solely by the user-level threads libraries.

username: A name by which a user of a multiuser computer system is known to it. Before
you can use the computer system, you must enter your username at the login
prompt and hit the <Enter> key, followed by entering your password and hitting
the <Enter> key.

vdev (virtual device): A whole disk, a disk partition, a file, or a collection of any of these,
usually all of the same type. On PC-BSD, there is no performance disadvantage
for using disk partitions rather than entire disks. On Solaris, the write cache is dis-
abled for partitions, thus incurring a performance penalty. In both systems, using
files as vdevs is discouraged, except for testing purposes. A collection of vdevs in
standardized configurations is known as a mirror.

version control: In general, the task of managing revisions to any soft product such as
documentation for a product; but, in particular, the task of managing revisions to
a software product.

virtual connection: Said to be established between client and server processes when the
two have made an initial contact to exchange each other’s location (usually IP
address and protocol port number). The connection request is almost always initi-
ated by the client process. After the virtual connection has been established, the
server process understands that it will receive service requests(s) from the client
process. The virtual connection is broken when the client process has received the
response to its last request and initiates a request for closing the virtual connection.

virtual machine (VM): An instance of a complete, encapsulated operating system, includ-
ing a kernel, that can run as a guest under another operating system.

virtual machine guest: The operating system that is accommodated by a host.
virtual machine host: The operating system that accommodates a guest operating system

in a virtual environment.
virtual machine monitor (VMM): The operating system supervisory or management soft-

ware that mediates between virtual machine host and guests. Sometimes called a
hypervisor.

volume: A dataset that represents a block device. For example, you can create a ZFS vol-
ume as a swap device.

Web browser: An Internet application that allows you to surf the Web by allowing users to
view Web pages (among other things).

Glossary    ◾    1327

well-known application: An application that is built around a communication protocol
described in a request for comments (RFC) such as Hyper Text Transfer Protocol
(also called HTTP and WWW), File Transfer Protocol (FTP), Simple Mail Transfer
Protocol (SMTP), and Secure Shell (SSH).

well-known port: A port on which a well-known service runs.
well-known service: A service that runs on a well-known port. See well-known application.
wide area network (WAN): Also known as a long-haul network; a network that connects

computing resources that are thousands of kilometers apart, typically spanning
several states, countries, or continents.

widowed pipe: A pipe that has one end closed. See pipe.
window manager: The graphical management interface, which controls the display of and

organizes all client windows on the X server.
window system: A graphical system that provides the generic features of a GUI.
write permission: On a UNIX file, allows a user to write to the file, thus allowing the inser-

tion or deletion of its contents and its removal from the system. The write permis-
sion on a directory allows us to create a new file (or directory) under it.

X Window System: A graphical intermediary between you and the UNIX operating sys-
tem. It was developed at MIT in 1983 as part of the Athena project. It is the de facto
GUI for UNIX systems that comes as part of the operating system package.

X Window System event/request model: In the X Window System, an X server is the
hardware and/or software that actually takes input from and displays output to
the user. The X client is an application program that connects to the server, and
receives input events from the server and makes output requests to the server.

yank: Marking/saving one or more lines of text in a file under the vi editor to be pasted
elsewhere in the file.

Zettabyte file system (ZFS): See ZFS file system.
ZFS clone: A file system whose initial contents are identical to the contents of a snapshot.
ZFS file system: A ZFS dataset of type filesystem that is mounted within the standard sys-

tem namespace and behaves like other file systems.
ZFS pool: A logical group of devices describing the layout and physical characteristics of

the available storage. Diskspace for datasets is allocated from a pool.
ZFS snapshot: A read-only copy of a file system or volume at a given point in time.
zombie: See zombie process.
zombie process: A UNIX process that has terminated but still has some system resources

allocated to it. Thus, a zombie process results in wastage of system resources. It
is usually created when its parent process terminates before it finishes execution.

http://taylorandfrancis.com

1329

Index

A

Absolute pathname, 158–159
accept(), 867, 892, 894, 906, 908–910, 912–913, 915,

927–928, 932–934, 936, 938, 940, 942–943
access(), 814, 817
Access control list (ACL), 1223–1238

command syntax for setting, 1229–1231
entry descriptions, 1224–1227
formats, 1223–1224
inheritance, 1227
interaction with permission bits, 1232–1234
modifying, 1231–1232
properties, 1228
setting inheritance, 1235–1238
Solaris ACL model, 1223–1228
and system security, 1147–1168

Access permissions, and file security
for directories, 187–189
types of file operations, 187–189
types of users, 186–187

ACL. see access control list (ACL)
Active socket, 908
Address space, 8
alarm(), 831, 851–852
Alias command, 49–52
API. see application programmer interface (API)
Application programmer interface (API), 3
Application software, networking, 409–445

display information about users, 415–418
displaying host name, 410
ftp (File Transfer Protocol), 427–430
interactive chat, 441–443
list of users using hosts, 411–412
packaged ssh applications, 441
remote command execution, 424–427
remote copy, 430–432
remote login, 418–424
rlogin command, 422–424
scp command, 437–438
secure shell and related commands, 432–441
sftp command, 438–441

ssh command, 434–437
sshd daemon, 433–434
status of hosts, 412–413
telnet protocol, 418–422
testing network connection, 413–415
traceroute command, 443–445

Application user interface (AUI), 3
Array processing, 570–576
Assembly language, 11
Assignment statement, 457
Attributes, and processes

dynamic display of, 357–365
static display of, 345–357

AUI. see application user interface (AUI)

B

Background processes and daemons, 966–967
Backup and restore

system administration, 1101–1121
cpio, 1112–1113
dd facility, 1115
dump and restore, 1114–1115
rsync, 1113–1114
script files for, 1116–1119
strategic synopsis and overview, 1102
tar and gtar, 1102–1112
ufsdump and ufsrestore, 1115–1116
Zillas and Ghost software for, 1119–1121

using ZFS snapshot, 1220–1222
and Bourne shell script, 1221–1222
cloning/promoting, 1220–1221
compression of filesystems, 1221
examples, 1220
renaming filesystem, 1221
zfs rollback, 1220

Batch operating systems, 6
bind(), 867, 892, 894, 903–904, 914, 923, 927,

932–936, 943
Block devices, 174
Boot disk, 1195, 1199
Bourne shell programming

1330 ◾ Index

command grouping, 491–492
comments and program headers, 470–472
debugging, 525–526
exec command, 511–513
file I/O, 513–520
functions in, 520–525

definition, 521–522
examples of, 523–525
invocation/call, 522–523
reasons for using, 520

here document, 503–506
interrupt (signal) processing, 506–511
numeric data processing, 497–503
overview, 451–452
passing command line arguments, 467–470
program control flow commands

break and continue commands, 486–487
case statement, 487–491
if-then-elif-else-fi statement, 472–480
for statement, 480–483
until statement, 485–486
while statement, 483–485

running script, 452–453
variables and related commands, 453–467

command substitution, 459–460
creating read-only defined variables, 464
exporting environment, 460–463
reading and writing, 457–459
reading from standard input, 465–467
resetting variables, 463

and Zettabyte File System (ZFS), 1221–1222
break, 486, 487
Byte orders, and IPC, 867–870
bzero(), 868

C

case, 472, 487–490
Character user interface (CUI), 5
chdir(), 815, 817, 820, 977, 982
Child processes, 342, 833

termination, 978–980
chmod(), 814, 817
chown(), 814, 817
clear, 510, 582–583
Client application programs

X Window System-based GUI, 1021–1045
structure and development model,

1021–1025
using Qt toolkit, 1040–1045
using XCB, 1032–1040
and Xlib, 1026–1032
Xlib versus XCB, 1025–1026

Client–server model, IPC, 870–880
allocation of pipe descriptors, 874–875
communication via pipes, 872–880
decription, 870–871
one-way communication, 875–876
simplest form of communication, 872
two-way communication, 876–878
widowed pipe, 878–880

Clonezilla, 1120–1121
close(), 793, 796, 876–879, 882, 885, 910, 913, 917,

923, 925, 971, 973, 975, 977, 981–982
closedir(), 816, 817
Command grouping, 374
Command line interface. see character user

interface (CUI)
Commands. see also specific types

adduser, 1073–1076
alias, 49–51
ar, 704
bg, 368
cal, 47
cancel, 240
cat, 31, 210, 228, 230
cc, 690–694, 761
cd, 37, 164
chmod, 191, 200–203
command substitution, 537
compress, 249
cp, 32, 219
cpio, 1112
cript, 277
cut, 269
diff, 231
dispadmin, 1133
dump, restore, 1114
echo, 53
egrep, 264
emacs, 98
exec, 511–518
export, 461
expr, 498
fg, 368
fgrep, 264
file, 172
find, 258
finger, 415
ftp, 427–430
function, 521–525
gcc, 690–694
gdb, 762–764
getconf, 155
getfacl, 1149, 1155–1168
git, 718–756

Index    ◾    1331

gpart, gparted, 1093–1096
grep, 264
groupadd, 1088
groupdel, 1089
groupmod, 1089
gunzip, 1283
gzexe, 252
gzip, 250
head, 214
ifconfig, 1136–1138
indent, 689–690
iocage, 1247–1267
ipadm, 1138
java, javac, 694
jobs, 368
kill, 377–381
lint, 757–761
ln, 289–300
lp, 47, 237
lpq, 240
lpr, 46, 238
lprm, 241
lpstat, 239
ls, 34, 164, 189, 289–300
make, 695–703
man, 41–43
mkdir, 37, 167
mkfifo, 328
more, 32, 212
mv, 33, 222
nm, 709
nohup, 381
onintr, 579
passwd, 1086–1087
paste, 271
pc-updatemanager, 1127–1128
pc-usermanager, 1080–1084
pc-zmanager, 1096–1097
pfconf, 1172
pfctl, 1171
ping, 414
Pipes, 318
pkg, 1122
pkgadd, 1283
ps, 346, 352
pw, 1077–1080
pwd, 37
python, 587
ranlib, 709
rcp, 430–432
read, 465
readonly, 464
reboot, 1128

redirecting standard error, 311
redirecting stdin, stdout, and stdErr, 315
redirection, 307–308, 310
rlogin, 422–424
rm, 33, 224
rmdir, 40
rmuser, 1077
rsh, 425–427
rsync, 1113–1114, 1117–1119
ruptime, 412
rusers, 411
scp, 437–438
set, 469, 535–536, 541, 578
set argv, 545
setenv, 538–540
setfacl, 1149, 1155–1168
sftp, 438–441
sort, 256
ssh, 27–29, 435–437
structure of a UNIX command, 20–22
su, sudo, 60, 1145–1147
sysctl, 1132
tail, 216
talk, 441–443
tar, gtar, 1103–1112
telnet, 419–422
time, 775
top, 359, 360
traceroute, 444
ufsdump, 1115
umask, 196
uniq, 234
UNIX

aliases, 49–52
creating, deleting, and managing directories,

36–40
creating, deleting, and managing files,

29–36
file and directory structure, 30
file maintenance, 29–44
obtaining help with man command, 41–43
other methods of obtaining help, 43–44
structure, 20–22
sudo and su, 60–61
usage help, 29–44
utility, 45–49
viewing file contents, 31–32

unset, 463
unset, unsetenv, 540–541
useful commands for the beginner, 52
useradd, 1084–1086
userdel, 1088
usermod, 1087–1088

1332 ◾ Index

uuencode, 274
@ variable, 568
VBoxManage, 1290
vi, 71
wc, 226
whatis, 44
whereis, 45, 260
whoami, 45
write, 48
xclock, 1001
xterm, 1000–1002
xz, 1293
zcat, 253
zfs, 1099, 1135, 1164, 1180
ZFS, 1208–1220

categories and definitions, 1208–1210
file system commands, 1215–1220
storage pools, 1210–1215

zoneadm, 1269–1280
zonecfg, 1270
zonename, 1282
zpool, 1099, 1133–1135, 1180

Common UNIX Printing System (CUPS), 1100
Compilation process, 686–687
Compressing files, 248–255

compress command, 248–250
gunzip command, 251–252
gzexe command, 252–253
gzip command, 250–251
uncompress command, 250
zcat and zmore commands, 253–255

Computer networking and internetworking
application software, 409–445

display information about users, 415–418
displaying host name, 410
ftp (File Transfer Protocol), 427–430
interactive chat, 441–443
list of users using hosts, 411–412
packaged ssh applications, 441
remote command execution, 424–427
remote copy, 430–432
remote login, 418–424
rlogin command, 422–424
scp command, 437–438
secure shell and related commands, 432–441
sftp command, 438–441
ssh command, 434–437
sshd daemon, 433–434
status of hosts, 412–413
telnet protocol, 418–422
testing network connection, 413–415
traceroute command, 443–445

client–server software model, 408–409
description, 392–393
Internet services and protocols, 408
models, 393–395
overview, 391–392
reasons for, 393
TCP/IP suite

domain name system, 401–406
Requests for Comments (RFCs), 406–407
routing of application data, 397–400
symbolic names, 401
and UDP, 395–396

Computer programming languages, 684–686
Concurrent clients, IPC, 952–953
Concurrent connectionless client-server model,

934–935
Concurrent connection-oriented client-server

model, 935–940
connect(), 867, 894, 906–909, 916, 919, 923, 927
Context switching, 338
continue, 486–487, 559–560
Coroutines, 622–624
CPU scheduling, 338–340
creat(), 789–791, 793, 795–796
C shell programming

array processing, 570–576
comments and program headers, 546–547
debugging, 583–584
here document, 576–578
interrupt (signal) processing, 578–583
numeric data processing, 567–570
overview, 529–530
passing command line arguments, 542–546
program control flow commands, 547–563

break, continue, and goto Commands,
559–560

foreach statement, 555–557
if-then-else-endif statement, 547–555
switch statement, 560–563
while statement, 557–559

reading and writing variables, 534–542
command substitution, 536–537
exporting environment, 537–540
reading from standard input, 541–542
resetting variables, 540–541

redirection in, 322–326
running script, 530–531
variables and related commands, 531–534

CUI. see character user interface (CUI)
CUPS. see Common UNIX Printing System

(CUPS)
Customizable variables. see user options

Index    ◾    1333

D

DAC. see discretionary access control (DAC)
Daemons, and system programming

background processes and, 966–967
detaching terminal from, 976
locating, 976

DAG. see directed acyclic graph (DAG)
Debugging

Bourne shell programming, 525–526
C shell programming, 583–584

Decoding and encoding, 273–276
Decryption and encryption, 276–279
Deduplication table, 1218
Directed acyclic graph (DAG), 717
Directory file system, 155–156
Discretionary access control (DAC), 1145–1147
Disk storage manager, 8
DNS. see domain name system (DNS)
Domain name system (DNS), 401–406
dup(), 831, 847–848
dup2(), 831, 847, 849
Dynamic abbrev expansion, 130
Dynamic analysis tools

run-time performance, 774–776
source code debugging, 762–774

Dynamic linking, 824

E

Emacs editor, 96–141
creating and editing C programs, 116–119
cursor movement and editing commands, 105–107
and customize command, 125–129
cut/copy and paste, 109–112
editing data files, 112–113
graphical editing with GNU, 112
graphical features, 100–103
graphical menus, 116
help commands, 100
init file syntax, 129–130
keystroke abbreviations or abbrevs, 130–133
keystroke macro commands, 133–136
keystroke macros, 108
overview, 96–100
redefining keyboard keys, 136–141
search and replace, 109–112
shell script file creation, editing, and

execution, 103
start, save a file, and exit in graphical, 114–116
using options menu, 123–125
visiting files, saving files, and exiting, 104
working in multiple buffers, 119–122

Encoding and decoding, 273–276
Encryption

-based file security, 185
and decryption, 276–279

End-of-file (eof) marker, 177
env, 456, 533
Eof. see end-of-file (eof) marker
exec, 511–512
execl(), 834–835, 839–840
execve(), 831, 834–835, 838–839
exit, 461–462, 831, 835–836, 854, 872
_exit(), 835
export, 460–461
expr, 498
External signal, 377

F

FCFS. see first-come, first-serve (FCFS) scheduling
algorithm

fcntl(), 964, 971–974, 981, 985
FD_CLR(), 842, 868
FD_ISSET(), 842, 844, 868
FD_SET(), 842, 844, 868
FD_ZERO(), 842, 844, 868
FIFOs (named pipes), 7, 326–331
file, 826
File access privileges, 189–198

changing, 191–193
default, 195–198
determining, 189–191
for directories, 194–195

File descriptors, 176–177
I/O redirection with, 311

File maintenance commands, 29–44
File processing

appending to files, 228–230
combining files, 229–231
comparing files, 231–234
compressing files, 248–255

compress command, 248–250
gunzip command, 251–252
gzexe command, 252–253
gzip command, 250–251
uncompress command, 250
zcat and zmore commands, 253–255

copying files, 219–221
cutting and pasting, 269–273
determining file size, 226–228
encoding and decoding, 273–276
encryption and decryption, 276–279
locating and removing repetition, 234–235

1334 ◾ Index

moving files, 222–223
overview, 209, 247
printing files, 236–242
regular expressions, 262–264
removing/deleting files, 224–225
searching files, 258–262, 264–269
searching for commands, 258–262
sorting files, 255–258
viewing text contents, 209–219

viewing complete files, 210–212
viewing files one page at a time, 212–213
viewing head or tail of a file, 213–219

Files, and system programming, 788–791
attributes of, 810–814
closing, 796–799
I/O paradigm, 791
opening and creating, 794–796
positioning, 802–806
reading from, 799
removing, 808–810
stat structure, 811–812
truncating, 806–808
writing to, 800–802

File security
and access permissions

for directories, 187–189
types of file operations, 187–189
types of users, 186–187

encryption-based, 185
file access privileges, 189–198

changing, 191–193
default, 195–198
determining, 189–191
for directories, 194–195

overview, 183–184
password-based, 184–185
special access bits

set-group-ID (SGID) bit, 201–204
set-user-ID (SUID) bit, 199–201

File sharing
access permissions, 286–287
common groups for team members, 287
common logins for team members, 286
duplicate shared files, 286
hard links, 287–294

drawbacks of, 294–295
overview, 285
soft/symbolic links, 296–300

pros and cons of, 300–301
File system organization, 157–158
FileZilla, 1119–1120
First-come, first-serve (FCFS) scheduling

algorithm, 339

flock(), 970–971, 973, 975, 981, 985
Focus policy, 1016
for, 480–481
foreach, 555–556
fork(), 831, 833–835, 837, 840–841, 843, 845,

967–968, 971, 974, 980
free(), 965
Free space manager, 8
fstat(), 810, 812
Full virtualization, 1245

G

Generator functions, 620–622
getgid(), 831
gethostbyaddr(), 868
gethostbyname(), 868, 892, 907–908, 918, 920
getpid(), 831–832, 837–838, 843, 967, 969, 975–976,

981
getppid(), 831–832, 837
getservent(), 868
getuid(), 831
GitHub

examples, 745–755
as remote repository, 742–745

Git version control
components and actions, 715
directed acyclic graph (DAG), 717
examples of using, 719–741
object store contents, 718
object types, 714–715
overview, 711–712
primary data structures, 714
Solaris installation addendum, 755–756
staging model, 716
top-level terminology, 713–714
working procedure, 712–713

goto, 559–560, 964
Graphical user interface (GUI), 5
Grave accents, 459, 536
grep, 506
GUI. see graphical user interface (GUI)

H

Hard links
count, 174
file sharing, 287–294

drawbacks of, 294–295
Hardware-assisted virtualization, 1245
Hardware interrupt, 377
head, 541–542
Here document, 576–578

Index    ◾    1335

htonl(), 868, 925
htons(), 868, 904, 907, 914, 918

I

if, 472, 474–480, 547–554
inet_addr(), 868, 900–901–902, 908
inet_aton(), 868, 900, 902
inet_ntoa(), 868, 901–902
inet_ntop(), 868, 902
inet_pton(), 868, 902, 908, 918
Infinite loops, 558
Inode number, 155
Inode table, 174
Input redirection, 306–307, 310–311
Instruction set architecture (ISA), 1245
Interactive operating systems, 6
Internet domain socket, 157
Interprocess communication (IPC)

byte orders, 867–870
channels and types, 865–866
client–server model, 870–880

allocation of pipe descriptors, 874–875
communication via pipes, 872–880
decription, 870–871
one-way communication, 875–876
simplest form of communication, 872
two-way communication, 876–878
widowed pipe, 878–880

concurrent clients, 952–953
overview, 864–865
socket based client–server software, 922–940

concurrent connectionless, 934–935
concurrent connection-oriented, 935–940
iterative connectionless, 922–927
iterative connection-oriented, 933–934
iterative connection-triggered, 927–931
iterative one-shot connection-oriented,

931–933
socket-based communication, 888

accepting client request for connection,
908–910

binding address to socket, 903–905
closing socket, 910–911
connection-oriented client–server software,

911–920
connection request to server process,

906–908
creating socket, 888–890
data structures and related function calls,

897–902
domains of, 890–891
server-side socket, 905–906

socket address, 895–897
types of, 891–895

socket-based servers, 920–922
synchronous versus asynchronous I/O, 940–946
UNIX superserver (inetd), 946–952

adding or deleting services on PC-BSD,
951–952

configuring on PC-BSD, 948–950
locating protocol on PC-BSD and

Solaris, 951
locating services on PC-BSD and Solaris,

950–951
between unrelated processes on different

computer, 888–920
between unrelated processes on same computer,

880–888
web resources, 953

Interrupt-driven interaction, 993
Interrupt (signal) processing, 578–583
Intrusion detection systems, 1168
I/O redirection, with file descriptors, 311
IPC. see interprocess communication (IPC)
ISA. see instruction set architecture (ISA)
Iterative connectionless client-server model,

922–927
Iterative connection-oriented client-server model,

933–934
Iterative connection-triggered client-server model,

927–931
Iterative one-shot connection-oriented client-server

model, 931–933

J

Java bytecode, 685, 694
Java Interpreter. see Java Virtual Machine (JVM)
Java Virtual Machine (JVM), 694
Job control, and processes

abnormal termination of commands, 376–382
foreground and background, 366–371
sequential and parallel execution of commands,

371–376
UNIX daemons, 371

JVM. see Java Virtual Machine (JVM)

K

K desktop environment 4 (KDE4) manager
adding desktop icon, 1014–1018
file management with Dolphin, 1018–1020
logging in and out, 1010–1012
Panel of, 1013–1014
system settings, 1018

1336 ◾ Index

Kernel layer, UNIX
disk management, 8
file management, 8
main memory management, 8
process management, 7–8

Keymaps, 137
kill, 507, 578–579, 581
kill(), 831, 844, 850, 855–856

L

Language library, 9
LANs. see local area networks (LANs)
Legacy code, 471, 546
Lightweight processes (LWPs), 349
Link file, 156
listen(), 867, 905–906, 909, 914, 927
Local area networks (LANs), 392
Long-haul networks. see wide area networks (WANs)
Loops, 480, 555

infinite, 558
Lossless compression, 248
lseek(), 793, 802–803, 806
lstat(), 810, 812
LWPs. see lightweight processes (LWPs)

M

MAC. see mandatory access control (MAC)
Machine language, 684
malloc(), 965
Mandatory access control (MAC), 1145–1147
MANs. see metropolitan area networks (MANs)
memcpy(), 868
memset(), 868, 900–901, 904, 907, 913–914,

918–919, 945
Merge commit, 717
Metropolitan area networks (MANs), 392
mkdir(), 815, 817, 820
mkfifo(), 867, 882–883, 885
mknod(), 882
Multiprogramming, 6
Multiservice server, 922
Multithreaded concurrency, and Python, 657–674

condition variable implementation, 669–671
example, 671–674
and functional programming paradigm, 658–661
and OOP model, 661–668
signaling between threads, 668–669

N

Named pipe (FIFO), 156–157
Network addresses, and virtualization, 1246–1247

Nonterminating loops. see infinite loops
ntohl(), 868, 926
Numeric data processing, 567–570

O

Object code, 686
One-way pipe communication, 875–876
onintr, 579–582
open(), 789–791, 793–802, 804, 806–807, 809, 841,

845, 847–849, 882–885, 904, 907, 956–957,
968, 971, 974, 978, 981–982

opendir(), 816–817
Operating system

commands, UNIX
aliases, 49–52
creating, deleting, and managing directories,

36–40
creating, deleting, and managing files, 29–36
file and directory structure, 30
file maintenance, 29–44
obtaining help with man command, 41–43
other methods of obtaining help, 43–44
structure, 20–22
sudo and su, 60–61
usage help, 29–44
utility, 45–49
viewing file contents, 31–32

description, 2–4
logging on and logging off, 22–29
overview, 1–2
services, 4
types of, 5–6
UNIX

development of, 10–14
family, 6–7
software architecture, 7–10
variations in, 14–15

OS-level virtualization, 1245
Output redirection, 308–311

P

Paravirtualization, 1245
Parent process, 342
Partial virtualization, 1245
Passive socket, 905
Password-based file security, 184–185
PC. see program counter (PC)
PC-BSD jails with iocage, 1247–1267

advanced usage, 1255–1258
create and use of templates, 1258–1259
guidelines for, 1254–1255

Index    ◾    1337

installation and worked examples, 1261–1262
jail package, 1259–1261
jail types, 1253–1254
networking, 1251–1253
overview, 1247–1249
usage, 1249–1251

perror(), 874–879, 885–886, 893, 967, 969, 971,
973–978, 980–982

pipe(), 867, 872–875, 877, 879
Pipe descriptor, and IPC, 874–875
Piping, and redirection, 321–322
Port numbers, 396
Positional parameters, 542
Present working directory, 158
Printer spooler/printer daemon, 236
Print queue, 236
Processes

attributes
dynamic display of, 357–365
static display of, 345–357

CPU scheduling, 338–340
execution of shell commands, 340–344
hierarchy, 382–386
and job control

abnormal termination of commands,
376–382

foreground and background, 366–371
sequential and parallel execution of

commands, 371–376
UNIX daemons, 371

overview, 337–338
states, 340
and threads

clone of, 833–835
collecting status of child process, 835–838
commonalities and differences between, 829
creating zombie process, 842–844
and data sharing, 829–831
description, 822–823, 826–828
duplicating file descriptor, 847–850
and file descriptor table, 844–850
file sharing between, 844–847
overview, 822
overwriting process image, 838–842
process control block, 823
process disk image, 825–826
process ID and the parent process ID, 832–833
process memory image (process address

space), 823–825
reporting status to parent process, 835
terminating, 844
and UNIX signals, 850–857

Processor scheduler, 339

Producer–consumer model, 665
Production server structure, 984
Program control flow commands

Bourne shell programming
break and continue commands, 486–487
case statement, 487–491
if-then-elif-else-fi statement, 472–480
for statement, 480–483
until statement, 485–486
while statement, 483–485

C shell programming, 547–563
break, continue, and goto Commands, 559–560
foreach statement, 555–557
if-then-else-endif statement, 547–555
switch statement, 560–563
while statement, 557–559

Program counter (PC), 827
Program generation tools, software

building object files into library, 704–708
compiling C++ and Java programs, 694
creating archive, 704–705
C source files, 688
dealing with multiple source files, 692–693
deleting object modules from archive, 705–706
displaying library information, 709–710
displaying table of contents, 705
extracting object modules from archive, 706–707
handling module-based C software, 694–704
indenting C source code, 688–690
linking libraries, 693–694
ordering archives, 708–709
working with MRI librarian, 707–708

Python
assumptions, 592–593
backing up files, 637–642
basic user file maintenance, 634–642
class, 589
conditional execution, 603–605
and coroutines, 622–624
<Ctrl> D, 595
and dictionaries, 619–620
dot (.) method operator, 588
exceptions, 627–628
file input and output, 608–612
functions, 601–603

modules, global and local scope in, 629–630
and generators, 620–622
graphical user interface with, 642–657
help, 597
hooking Tkinter widgets to applications, 652–657
import, 594
installing on PC-BSD, 596
installing on Solaris, 596–597

1338 ◾ Index

iterable, 589
language reference, 630
method, 589
modules, global and local scope in functions, 629
mounting and unmounting a usb thumb drive,

635–637
multithreaded concurrency with, 657–674

condition variable implementation, 669–671
example, 671–674
and functional programming paradigm,

658–661
and OOP model, 661–668
signaling between threads, 668–669

next, 620
object-oriented programming (OOP), 588, 624
objects, 588
objects and classes, 624–627
open, 608
order of evaluation, 598
overview, 587–588
print, 599
printing text, comments, numbers, grouping

operators, and expressions, 597–601
program data model, 588
Pythonic, 590
Python keywords, 601
Python language reference, 630
Python standard library, 630
repetition structures and recursion, 605–608
rsync and Python, 638
rule of 4, 597
running

import script mode, 594–595
interactive mode, 593–594
script mode, 594
uses of, 595

and sequence operations, 613–616
and sets, 618–619
standard library, 630
standard type hierarchy, 590–592
string formatting conversions, 608
and strings, 612–613
syntax and command summary, 675–678
thread class objects, 663
Tkinter and basic widget construction, 643–645
Tkinter core widget dictionary, 645–652
tuples, 617
type categories, 591
ultimate Python reference, 589
ultimate reference glossary, 589–590
variables, 601
writing shell script files, 631–634
yield, 620

Q

Qt toolkit, 1040–1045
Quantum/time slice, 338

R

Race condition, 829
RAM. see random access memory (RAM)
Random access memory (RAM), 2
RBAC. see role-based access control (RBAC)
read, 465
read(), 789, 792–793, 795, 799–800, 814, 867, 873,

876, 878–879, 882, 884, 886, 890, 891, 894,
895, 906, 912, 914, 917–919, 923, 926, 964

readdir(), 816–817
readonly, 464
recvfrom(), 867, 906, 917–918, 922–923, 925, 935,

940, 945
Redirection

in C shell, 322–326
input, 306–307, 310–311
I/O with file descriptors, 311, 326
output, 308–311
overview, 305–306
and piping, 321–322
standard error, 311–313, 326
standard files, 306
stdin, stdout, and stderr in one command,

314–316
stdout and stderr in one command, 313–314
without overwriting file contents (appending),

316–317
Regular expressions, 262–264
Relative pathname, 158–159
Remote repository, GitHub as, 742–745
rename(), 814–815, 817
rewinddir(), 816–817
Role-based access control (RBAC), 1145–1147
Root commit, 717
Root directory, 157

S

seekdir(), 816–817
select(), 865, 867–869, 940–946, 952–954
sendto(), 867, 906, 917–918, 922–923, 925, 935, 940,

945
set, 455, 469–470, 541–542, 544, 569–575
setenv, 534, 537–538
Set-group-ID (SGID) bit, 201–204
setsid(), 976, 981
Set-user-ID (SUID) bit, 199–201

Index    ◾    1339

sh, 452–453
Shared libraries, 824
Shell metacharacters, 59–60
shift, 468, 544
Short-term CPU scheduler, 338
shutdown(), 867, 910–911
signal(), 831, 850–851, 853, 879, 968–969, 974, 981
Simple/ordinary files, 154–155
size, 826
sizeof(), 900–902, 904, 907–908, 910, 913, 918,

924–926, 928, 945
sleep(), 967, 969, 975, 982
socket(), 867, 888, 890–893, 914, 918, 923, 927, 932,

934–936
Socket based client–server software, 922–940

concurrent connectionless, 934–935
concurrent connection-oriented, 935–940
iterative connectionless, 922–927
iterative connection-oriented, 933–934
iterative connection-triggered, 927–931
iterative one-shot connection-oriented, 931–933

Socket-based communication, 888
accepting client request for connection, 908–910
binding address to socket, 903–905
closing socket, 910–911
connection-oriented client–server software,

911–920
connection request to server process, 906–908
creating socket, 888–890
data structures and related function calls,

897–902
domains of, 890–891
server-side socket, 905–906
socket address, 895–897
types of, 891–895

Socket-based servers, 920–922
Socket descriptor, 889
Socket file system, 157
Soft/symbolic links

file sharing, 296–300
pros and cons of, 300–301

Software development tools
compilation process, 686–687
computer programming languages, 684–686
dynamic analysis tools

run-time performance, 774–776
source code debugging, 762–774

Git
components and actions, 715
directed acyclic graph (DAG), 717
examples of using, 719–741
object store contents, 718
object types, 714–715

overview, 711–712
primary data structures, 714
Solaris installation addendum, 755–756
staging model, 716
top-level terminology, 713–714
working procedure, 712–713

GitHub
examples, 745–755
as remote repository, 742–745

life cycle, 687–688
overview, 683–684
program generation tools

building object files into library, 704–708
compiling C++ and Java programs, 694
creating archive, 704–705
C source files, 688
dealing with multiple source files, 692–693
deleting object modules from archive, 705–706
displaying library information, 709–710
displaying table of contents, 705
extracting object modules from archive,

706–707
handling module-based C software, 694–704
indenting C source code, 688–690
linking libraries, 693–694
ordering archives, 708–709
working with MRI librarian, 707–708

static analysis tools, 756–761
source code metrics, 761
verifying code for portability, 756–761

Software life cycle, 687–688
Software performance monitoring, 1129–1144

disk usage and management, 1133–1136
network configuration, 1136–1139
process and memory management, 1130–1133
syslog() function, 1139–1144

Solaris zones, 1267–1280
commands and subcommands, 1269
creating, 1269–1276
installing web server application, 1276–1280
nonglobal zone state model, 1267–1269

sort, 504, 506
Special access bits

set-group-ID (SGID) bit, 201–204
set-user-ID (SUID) bit, 199–201

Special (device) file, 156
sprintf(), 967, 969, 975–976, 981
Stack trace, 769
Standard dependency, 702
Standard error, redirecting, 311–313
Standard files, 306

and directories, 160–163
and file descriptors, 176–177

1340 ◾ Index

stat(), 810, 812
Static analysis tools, 756–761

source code metrics, 761
verifying code for portability, 756–761

strlen(), 967, 969, 975–976, 981
strtol(), 908, 912–913, 916, 918
stty, 509–510, 581–583
Sudo and su commands, 60–61
switch, 560–563
Synchronous versus asynchronous I/O, 940–946
System administration

and adding hard disk, 1090–1100
adding new disk, 1092–1100
logical device names, 1091–1092
preliminary considerations, 1091

and adding printer, 1100–1101
backup strategies and techniques, 1101–1121

cpio, 1112–1113
dd facility, 1115
dump and restore, 1114–1115
rsync, 1113–1114
script files for, 1116–1119
strategic synopsis and overview, 1102
tar and gtar, 1102–1112
ufsdump and ufsrestore, 1115–1116
Zillas and Ghost software for, 1119–1121

install from ISO-created DVD media, 1054–1072
boot process, 1060
graceful shutdown, 1060–1061
GUI install of PC-BSD, 1056
GUI install of Solaris, 1057–1059
postinstall configuration, 1057
preinstallation considerations, 1055–1056
system service management, 1061–1072

overview, 1052–1054
system and software performance monitoring,

1129–1144
disk usage and management, 1133–1136
network configuration, 1136–1139
process and memory management,

1130–1133
syslog() function, 1139–1144

system security, 1144–1173
access control lists (ACLs), 1147–1168
discretionary access control (DAC),

1145–1147
intrusion detection systems, 1168
mandatory access control (MAC), 1145–1147
password-based authentication, 1144
role-based access control (RBAC), 1145–1147
system firewall, 1168–1173

system upgrades and software updates,
1121–1129

application packages in PC-BSD, 1129
application packages in Solaris, 1123–1124
operating system in PC-BSD, 1125–1129
operating system in Solaris, 1121–1123

and user administration, 1072–1090
GUI-based interface on PC-BSD, 1080–1084
text-based interface on PC-BSD, 1073–1080
text-based interface on Solaris, 1084–1090

and virtualization, 1173–1174
System call interface (SCI), 9

description, 786–787
execution of, 787–788
for manipulating directories, 815–816
restarting, 814–815, 964–965
stat structure with, 812
types of, 787

System disk. see boot disk
System firewall, 1168–1173
System programming

changing current working directory, 977
changing umask, 968–970
child processes termination, 978–980
closing inherited standard descriptors, 977–978
complete sample server, 980–984
daemons

background processes and, 966–967
detaching terminal from, 976
locating, 976

description, 784–785
files, 788–791

attributes of, 810–814
closing, 796–799
I/O paradigm, 791
opening and creating, 794–796
positioning, 802–806
reading from, 799
removing, 808–810
stat structure, 811–812
truncating, 806–808
writing to, 800–802

interprocess communication (IPC)
byte orders, 867–870
channels and types, 865–866
client–server model, 870–880
concurrent clients, 952–953
overview, 864–865
socket based client–server software, 922–940
socket-based servers, 920–922
synchronous versus asynchronous I/O,

940–946
UNIX superserver (inetd), 946–952
between unrelated processes on different

computer, 888–920

Index    ◾    1341

between unrelated processes on same
computer, 880–888

web resources, 953
opening standard descriptors, 977–978
and OS kernel, 785–786
overview, 784
processes and threads

clone of, 833–835
collecting status of child process, 835–838
commonalities and differences between, 829
creating zombie process, 842–844
and data sharing, 829–831
description, 822–823, 826–828
duplicating file descriptor, 847–850
and file descriptor table, 844–850
file sharing between, 844–847
overview, 822
overwriting process image, 838–842
process control block, 823
process disk image, 825–826
process ID and the parent process ID, 832–833
process memory image (process address

space), 823–825
reporting status to parent process, 835
terminating, 844
and UNIX signals, 850–857

production server structure, 984
restarting system calls, 964–965
running single copy of program, 970–975
signals issue, 968
standard versus low-level I/O, 791–794
and system call interface (SCI)

description, 786–787
execution of, 787–788
for manipulating directories, 815–816
restarting, 814–815, 964–965
stat structure with, 812
types of, 787

thread-safe system calls, 965–966
web resources, 816

System security, and administration, 1144–1173
access control lists (ACLs), 1147–1168
discretionary access control (DAC), 1145–1147
intrusion detection systems, 1168
mandatory access control (MAC), 1145–1147
password-based authentication, 1144
role-based access control (RBAC), 1145–1147
system firewall, 1168–1173

System upgrades and software updates, 1121–1129
application packages in PC-BSD, 1129
application packages in Solaris, 1123–1124
operating system in PC-BSD, 1125–1129
operating system in Solaris, 1121–1123

T

TCP/IP networking
domain name system, 401–406
Requests for Comments (RFCs), 406–407
routing of application data, 397–400
symbolic names, 401
and UDP, 395–396

telldir(), 816–817
test, 473
Threads, and processes. see also specific types

clone of, 833–835
collecting status of child process, 835–838
commonalities and differences between, 829
creating zombie process, 842–844
and data sharing, 829–831
description, 822–823, 826–828
duplicating file descriptor, 847–850
and file descriptor table, 844–850
file sharing between, 844–847
overview, 822
overwriting process image, 838–842
process control block, 823
process disk image, 825–826
process ID and the parent process ID, 832–833
process memory image (process address space),

823–825
reporting status to parent process, 835
terminating, 844
and UNIX signals, 850–857

Thread-safe system calls, 965–966
Time/quantum slice, 338
Time-sharing systems, 6
Tkinter, 643–645
TLD. see top-level domain (TLD)
TLI. see Transport Layer Interface (TLI)
Top-level domain (TLD), 401
Transport Layer Interface (TLI), 8
trap, 507–508
truncate(), 806, 820
Two-way pipe communication, 876–878

U

umask(), 814, 817, 968–969, 974, 981
UNIX command line interpreter, 52
UNIX file system

concept of, 154
directory, 155–156
end-of-file (eof) marker, 177
home and present working directories, 158
link file, 156
named pipe (FIFO), 156–157

1342 ◾ Index

organization, 157–158
overview, 153–154
pathnames, 158–159
simple/ordinary files, 154–155
socket, 157
special (device) file, 156
standard files

and directories, 160–163
and file descriptors, 176–177

types of, 154–157
ZFS file system, 178

UNIX operating system
commands

aliases, 49–52
creating, deleting, and managing directories,

36–40
creating, deleting, and managing files, 29–36
file and directory structure, 30
file maintenance, 29–44
obtaining help with man command, 41–43
other methods of obtaining help, 43–44
structure, 20–22
sudo and su, 60–61
usage help, 29–44
utility, 45–49
viewing file contents, 31–32

development of, 10–14
family, 6–7
logging on and logging off, 22–29
software architecture, 7–10
variations in, 14–15

UNIX pipes, 318–321
and FIFOs (named pipes), 326–331
and redirection, 321–322

UNIX shell
metacharacters, 59–60
overview, 52–54
shell programs, 54–55
ways to change, 56–59

UNIX software architecture, 7–10
applications layer, 9–10
device driver layer, 7
kernel layer

disk management, 8
file management, 8
main memory management, 8
process management, 7–8

language libraries, 9
system call interface, 9
UNIX shell, 9

UNIX superserver (inetd), 946–952
adding or deleting services on PC-BSD, 951–952
configuring on PC-BSD, 948–950

PC-BSD and Solaris
locating protocol on, 951
locating services on, 950–951

UNIX text editors
emacs editor, 96–141

creating and editing C programs, 116–119
cursor movement and editing commands,

105–107
and customize command, 125–129
cut/copy and paste, 109–112
editing data files, 112–113
graphical editing with GNU, 112
graphical features, 100–103
graphical menus, 116
help commands, 100
init file syntax, 129–130
keystroke abbreviations or abbrevs, 130–133
keystroke macro commands, 133–136
keystroke macros, 108
overview, 96–100
redefining keyboard keys, 136–141
search and replace, 109–112
shell script file creation, editing, and

execution, 103
start, save a file, and exit in graphical,

114–116
using options menu, 123–125
visiting files, saving files, and exiting, 104
working in multiple buffers, 119–122

first comments on, 66–67
overview, 65–68
quick start, 65–66
usage of vi, vim, and gvim, 68–96

changing behavior, 88–91
cursor movement and editing commands,

75–77
cut and paste between multiple open buffers,

87–88
executing shell commands, 91
keyboard macros, 91–96
modes of operation, 72–75
shell script file creation, editing, execution,

69–70
start, save a file, and exit, 70–72
substitute (search and replace), 77–80
vim enhancements, 80–86
vim visual mode, 86–87
yank and put (copy and paste), 77–80

unlink(), 793, 808–810
unset, 463, 540–541
unsetenv, 540
until, 485–486
Upstream commits, 719

Index    ◾    1343

User administration, 1072–1090
GUI-based interface on PC-BSD, 1080–1084
text-based interface on PC-BSD, 1073–1080
text-based interface on Solaris, 1084–1090

User-application software interaction model,
980–991

User options, 125, 128
Utility commands, 45–49

communications, 48–49
examining system setups, 45–46
printing and general, 46–48

utime(), 814, 817

V

VCS. see version control system (VCS)
Version control system (VCS), 710
Vi, vim, and gvim text editors, 68–96

changing behavior, 88–91
cursor movement and editing commands, 75–77
cut and paste between multiple open buffers,

87–88
executing shell commands, 91
keyboard macros, 91–96
modes of operation, 72–75
shell script file creation, editing, execution,

69–70
start, save a file, and exit, 70–72
substitute (search and replace), 77–80
vim enhancements, 80–86
vim visual mode, 86–87
yank and put (copy and paste), 77–80

VirtualBox, 1280–1296
installation of Solaris guest on LINUX and

Windows hosts, 1295–1296
installing and running on PC-BSD host OS,

1281–1285
installing PC-BSD guest on LINUX host,

1293–1294
installing PC-BSD guest on Windows host,

1294–1295
installing VM guest, 1285–1289
and securing FTP server, 1289–1292

Virtualization
and network addresses, 1246–1247
overview, 1244–1247
PC-BSD jails with iocage, 1247–1267

advanced usage, 1255–1258
create and use of templates, 1258–1259
guidelines for, 1254–1255
installation and worked examples, 1261–1262
jail package, 1259–1261
jail types, 1253–1254

networking, 1251–1253
overview, 1247–1249
usage, 1249–1251

and Solaris zones, 1267–1280
commands and subcommands, 1269
creating, 1269–1276
installing web server application, 1276–1280
nonglobal zone state model, 1267–1269

and UNIX system administration, 1173–1174
VirtualBox, 1280–1296

installation of Solaris guest on LINUX and
Windows hosts, 1295–1296

installing and running on PC-BSD host OS,
1281–1285

installing PC-BSD guest on LINUX host,
1293–1294

installing PC-BSD guest on Windows host,
1294–1295

installing VM guest, 1285–1289
and securing FTP server, 1289–1292

Virtual machine monitor (VMM), 1244
Virtual machine (VM), 1244
VM. see virtual machine (VM)
VMM. see virtual machine monitor (VMM)

W

wait(), 831–832, 835–837, 844, 854, 872, 878, 939
wait3(), 836–837, 855, 940, 964, 979–980, 982
wait4(), 836–837
wait6(), 836
waitpid(), 831, 835–837
WANs. see wide area networks (WANs)
while, 483–484, 557–559
Wide area networks (WANs), 392
Widowed pipe, 878–880
write(), 789, 792–793, 795, 800, 814, 867, 873,

876–879, 882, 884–885, 890–891, 894–895,
906, 915, 917–919, 923, 926–927, 929,
932–934, 936, 940, 943, 964, 967, 969,
975–976, 981

X

XCB client program, 1032–1040
compiling, 1032–1033
sample, 1033–1034
Xlib versus, 1025–1026

Xlib client program, 1026–1032
compiling, 1027
sample, 1027–1032
theoretical consideration, 1026
versus XCB, 1025–1026

1344 ◾ Index

X Window System-based GUI
advantages of, 991–993
creating client application programs, 1021–1045

structure and development model, 1021–1025
using Qt toolkit, 1040–1045
using XCB, 1032–1040
and Xlib, 1026–1032
Xlib versus XCB, 1025–1026

and FVWM, 995–999
customizing, 999–1010

K desktop environment 4 (KDE4) manager
adding desktop icon, 1014–1018
file management with Dolphin, 1018–1020
logging in and out, 1010–1012
Panel of, 1013–1014
system settings, 1018

key components of interactivity, 993–995
overview, 989–991
user–application software interaction model,

980–991

Z

Zettabyte File System (ZFS), 178
and access control list (ACL), 1223–1238

command syntax for setting, 1229–1231
entry descriptions, 1224–1227
formats, 1223–1224
inheritance, 1227
interaction with permission bits, 1232–1234
modifying, 1231–1232

properties, 1228
setting inheritance, 1235–1238
Solaris ACL model, 1223–1228

backups using snapshot, 1220–1222
and Bourne shell script, 1221–1222
cloning/promoting, 1220–1221
compression of filesystems, 1221
examples, 1220
renaming filesystem, 1221
zfs rollback, 1220

commands and operations, 1208–1220
categories and definitions, 1208–1210
file system commands, 1215–1220
storage pools, 1210–1215

important concepts, 1182–1183
terminology, 1180–1181
working process, 1181–1182
zpool and zfs commands, 1180, 1183–1220

ZFS. see Zettabyte File System (ZFS)
Zombie process, 842–844
Zpool and zfs commands, 1180, 1183–1220

and logical device names of disk drives,
1183–1184

mirroring of hard disks
on PC-BSD, 1199–1203
on Solaris, 1195–1199

send and receive, snapshot, 1191–1195
and USB thumb drive

for PC-BSD, 1205–1208
for Solaris, 1203–1205

using files instead of disks as vdevs, 1184–1191

	Cover������������
	Half Title�����������������
	Title Page�����������������
	Copyright Page���������������������
	Dedication�����������������
	Table of Contents������������������������
	Preface to the Third Edition�����������������������������������
	Acknowledgments for the Third Edition��
	Acknowledgments for the Second and First Editions��
	Personal Acknowledgments�������������������������������
	CHAPTER 1: Overview of Operating Systems���
	1.1 INTRODUCTION�����������������������
	1.2 WHAT IS AN OPERATING SYSTEM?���������������������������������������
	1.3 OPERATING SYSTEM SERVICES������������������������������������
	1.4 CHARACTER (COMMAND LINE) VERSUS GRAPHICAL USER INTERFACES��
	1.5 TYPES OF OPERATING SYSTEMS�������������������������������������
	1.6 THE UNIX FAMILY��������������������������
	1.7 UNIX SOFTWARE ARCHITECTURE�������������������������������������
	1.7.1 Device Driver Layer��������������������������������
	1.7.2 UNIX Kernel������������������������
	1.7.3 System Call Interface����������������������������������
	1.7.4 Language Libraries�������������������������������
	1.7.5 UNIX Shell�����������������������
	1.7.6 Applications�������������������������

	1.8 DEVELOPMENT OF THE UNIX OPERATING SYSTEM���
	1.8.1 Beginnings�����������������������
	1.8.2 Research Operating System��������������������������������������
	1.8.3 AT&T System V��������������������������
	1.8.4 Berkeley Software Distributions��
	1.8.5 History of Shells������������������������������
	1.8.6 Current and Future Developments��

	1.9 VARIATIONS IN UNIX SYSTEMS�������������������������������������
	SUMMARY��������������
	QUESTIONS AND PROBLEMS�����������������������������

	CHAPTER 2: A “Quick Start” into the UNIX Operating System��
	2.1 INTRODUCTION�����������������������
	2.2 THE STRUCTURE OF A UNIX COMMAND��
	2.3 LOGGING ON AND LOGGING OFF�������������������������������������
	2.3.1 Stand-Alone Login Connection to PC-BSD and Solaris���
	2.3.2 Connecting via PuTTY from a Microsoft Windows Computer���
	2.3.3 Connecting via an SSH Client between UNIX Machines���

	2.4 FILE MAINTENANCE COMMANDS AND HELP ON UNIX COMMAND USAGE���
	2.4.1 File and Directory Structure���
	2.4.2 Viewing the Contents of Files��
	2.4.3 Creating, Deleting, and Managing Files���
	2.4.4 Creating, Deleting, and Managing Directories���
	2.4.5 Obtaining Help with the Man Command��
	2.4.6 Other Methods of Obtaining Help��

	2.5 UTILITY COMMANDS���������������������������
	2.5.1 Examining System Setups������������������������������������
	2.5.2 Printing and General Utility Commands��
	2.5.3 Communications Commands������������������������������������

	2.6 COMMAND ALIASES��������������������������
	2.7 INTRODUCTION TO UNIX SHELLS��������������������������������������
	2.8 VARIOUS UNIX SHELLS������������������������������
	2.8.1 Shell Programs���������������������������
	2.8.2 Which Shell Suits Your Needs?��
	2.8.3 Ways to Change Your Shell��������������������������������������
	2.8.4 Shell Start-Up Files and Environment Variables���

	2.9 SHELL METACHARACTERS�������������������������������
	2.10 THE SUDO AND SU COMMANDS
	SUMMARY��������������
	QUESTIONS AND PROBLEMS�����������������������������

	CHAPTER 3: Editing Text Files������������������������������������
	3.1 INTRODUCTION AND QUICK START���������������������������������������
	3.1.1 Quick Start: The Simplest Path through These Editors���
	3.1.2 First Comments on UNIX Editors���
	3.1.3 Using Text Editors�������������������������������

	3.2 USING THE vi, vim, AND gvim EDITORS��
	3.2.1 Basic Shell Script File Creation, Editing, Execution���
	3.2.2 How to Start, Save a File, and Exit��
	3.2.3 The Format of a vi Command and the Modes of Operation��
	3.2.4 Cursor Movement and Editing Commands���
	3.2.5 Yank and Put (Copy and Paste) and Substitute (Search and Replace)��
	3.2.6 vim and gvim�������������������������
	3.2.7 Changing vi, vim, and gvim Behavior��
	3.2.8 Executing Shell Commands from within vi, vim, and gvim���
	3.2.9 vi, vim, and gvim Keyboard Macros��

	3.3 THE EMACS EDITOR���������������������������
	3.3.1 Launching Emacs, Emacs Screen Display, General Emacs Concepts and Features���
	3.3.2 How to Use Emacs to Do Shell Script File Creation, Editing, and Execution��
	3.3.3 Visiting Files, Saving Files, and Exiting��
	3.3.4 Cursor Movement and Editing Commands���
	3.3.5 Keystroke Macros�����������������������������
	3.3.6 Cut or Copy and Paste and Search and Replace���
	3.3.7 How to Do Purely Graphical Editing with GNU Emacs��
	3.3.8 Editing Data Files�������������������������������
	3.3.9 How to Start, Save a File, and Exit in Graphical Emacs���
	3.3.10 Emacs Graphical Menus�����������������������������������
	3.3.11 Creating and Editing C Programs���
	3.3.12 Working in Multiple Buffers���
	3.3.13 Changing Emacs Behavior�������������������������������������

	3.4 vi AND EMACS COMMAND TABLES��������������������������������������
	3.5 SUMMARY������������������
	QUESTIONS AND PROBLEMS�����������������������������

	CHAPTER 4: Files and File System Structure���
	4.1 INTRODUCTION�����������������������
	4.2 THE UNIX FILE CONCEPT��������������������������������
	4.3 TYPES OF FILES�������������������������
	4.3.1 Simple/Ordinary File���������������������������������
	4.3.2 Directory����������������������
	4.3.3 Link File����������������������
	4.3.4 Special (Device) File����������������������������������
	4.3.5 Named Pipe (FIFO)������������������������������
	4.3.6 Socket�������������������

	4.4 FILE SYSTEM STRUCTURE��������������������������������
	4.4.1 File System Organization�������������������������������������
	4.4.2 Home and Present Working Directories���
	4.4.3 Pathnames: Absolute and Relative���
	4.4.4 Some Standard Directories and Files��

	4.5 NAVIGATING THE FILE STRUCTURE��
	4.5.1 Determining the Absolute Pathname for Your Home Directory��
	4.5.2 Browsing the File System�������������������������������������
	4.5.3 Creating Files���������������������������
	4.5.4 Creating and Removing Directories��
	4.5.5 Determining File Attributes��
	4.5.6 Determining the Type of a File’s Contents��

	4.6 STANDARD FILES AND FILE DESCRIPTORS��
	4.7 END-OF-FILE (eof) MARKER�����������������������������������
	4.8 FILE SYSTEM����������������������
	SUMMARY��������������
	QUESTIONS AND PROBLEMS�����������������������������

	CHAPTER 5: File Security�������������������������������
	5.1 INTRODUCTION�����������������������
	5.2 PASSWORD-BASED PROTECTION������������������������������������
	5.3 ENCRYPTION-BASED PROTECTION��������������������������������������
	5.4 PROTECTION BASED ON ACCESS PERMISSION��
	5.4.1 Types of Users���������������������������
	5.4.2 Types of File Operations/Access Permissions��
	5.4.3 Access Permissions for Directories���

	5.5 DETERMINING AND CHANGING FILE ACCESS PRIVILEGES��
	5.5.1 Determining File Access Privileges���
	5.5.2 Changing File Access Privileges��
	5.5.3 Access Privileges for Directories��
	5.5.4 Default File Access Privileges���

	5.6 SPECIAL ACCESS BITS������������������������������
	5.6.1 Set-User-ID (SUID) Bit�����������������������������������
	5.6.2 Set-Group-ID (SGID) Bit������������������������������������
	5.6.3 Sticky Bit�����������������������

	SUMMARY��������������
	QUESTIONS AND PROBLEMS�����������������������������

	CHAPTER 6: Basic File Processing���������������������������������������
	6.1 INTRODUCTION�����������������������
	6.2 VIEWING CONTENTS OF TEXT FILES���
	6.2.1 Viewing Complete Files�����������������������������������
	6.2.2 Viewing Files One Page at a Time���
	6.2.3 Viewing the Head or Tail of a File���

	6.3 COPYING, MOVING, AND REMOVING FILES��
	6.3.1 Copying Files��������������������������
	6.3.2 Moving Files�������������������������
	6.3.3 Removing/Deleting Files������������������������������������
	6.3.4 Determining File Size����������������������������������

	6.4 APPENDING TO FILES�����������������������������
	6.5 COMBINING FILES��������������������������
	6.6 COMPARING FILES��������������������������
	6.7 LOCATING AND REMOVING REPETITION WITHIN TEXT FILES���
	6.8 PRINTING FILES AND CONTROLLING PRINT JOBS��
	6.8.1 UNIX Mechanism for Printing Files��
	6.8.2 Printing Files���������������������������
	6.8.3 Finding the Status of Your Print Requests��
	6.8.4 Canceling Your Print Jobs��������������������������������������

	SUMMARY��������������
	QUESTIONS AND PROBLEMS�����������������������������

	CHAPTER 7: Advanced File Processing��
	7.1 INTRODUCTION�����������������������
	7.2 COMPRESSING FILES����������������������������
	7.2.1 The compress Command
	7.2.2 The uncompress Command
	7.2.3 The gzip Command
	7.2.4 The gunzip Command
	7.2.5 The gzexe Command
	7.2.6 The zcat and zmore Commands

	7.3 SORTING FILES������������������������
	7.4 SEARCHING FOR COMMANDS AND FILES���
	7.5 REGULAR EXPRESSIONS������������������������������
	7.6 SEARCHING FILES��������������������������
	7.7 CUTTING AND PASTING������������������������������
	7.8 ENCODING AND DECODING��������������������������������
	7.9 FILE ENCRYPTION AND DECRYPTION���
	SUMMARY��������������
	QUESTIONS AND PROBLEMS�����������������������������

	CHAPTER 8: File Sharing������������������������������
	8.1 INTRODUCTION�����������������������
	8.2 DUPLICATE SHARED FILES���������������������������������
	8.3 COMMON LOGINS FOR TEAM MEMBERS���
	8.4 SETTING APPROPRIATE ACCESS PERMISSIONS ON SHARED FILES���
	8.5 COMMON GROUPS FOR TEAM MEMBERS���
	8.6 FILE SHARING VIA LINKS���������������������������������
	8.6.1 Hard Links�����������������������
	8.6.2 Drawbacks of Hard Links������������������������������������
	8.6.3 Soft/Symbolic Links��������������������������������
	8.6.4 Pros and Cons of Symbolic Links��

	SUMMARY��������������
	QUESTIONS AND PROBLEMS�����������������������������

	CHAPTER 9: Redirection and Piping��
	9.1 INTRODUCTION�����������������������
	9.2 STANDARD FILES�������������������������
	9.3 INPUT REDIRECTION����������������������������
	9.4 OUTPUT REDIRECTION�����������������������������
	9.5 COMBINING INPUT AND OUTPUT REDIRECTION���
	9.6 I/O REDIRECTION WITH FILE DESCRIPTORS��
	9.7 REDIRECTING STANDARD ERROR�������������������������������������
	9.8 REDIRECTING stdout AND stderr IN ONE COMMAND���
	9.9 REDIRECTING stdin, stdout, AND STDERR IN ONE COMMAND���
	9.10 REDIRECTING WITHOUT OVERWRITING FILE CONTENTS (APPENDING)���
	9.11 UNIX PIPES����������������������
	9.12 REDIRECTION AND PIPING COMBINED���
	9.13 OUTPUT AND ERROR REDIRECTION IN THE C SHELL���
	9.14 RECAP OF I/O AND ERROR REDIRECTION��
	9.15 FIFOS�����������������
	SUMMARY��������������
	QUESTIONS AND PROBLEMS�����������������������������

	CHAPTER 10: Processes����������������������������
	10.1 INTRODUCTION������������������������
	10.2 CPU SCHEDULING: RUNNING MULTIPLE PROCESSES SIMULTANEOUSLY���
	10.3 UNIX PROCESS STATES�������������������������������
	10.4 EXECUTION OF SHELL COMMANDS���������������������������������������
	10.5 PROCESS ATTRIBUTES������������������������������
	10.5.1 Static Display of Process Attributes��
	10.5.2 Dynamic Display of Process Attributes���

	10.6 PROCESS AND JOB CONTROL�����������������������������������
	10.6.1 Foreground and Background Processes and Related Commands��
	10.6.2 UNIX Daemons��������������������������
	10.6.3 Sequential and Parallel Execution of Commands���
	10.6.4 Abnormal Termination of Commands and Processes��

	10.7 PROCESS HIERARCHY IN UNIX�������������������������������������
	SUMMARY��������������
	QUESTIONS AND PROBLEMS�����������������������������

	CHAPTER 11: Networking and Internetworking���
	11.1 INTRODUCTION������������������������
	11.2 COMPUTER NETWORKS AND INTERNETWORKS���
	11.3 REASONS FOR COMPUTER NETWORKS AND INTERNETWORKS���
	11.4 NETWORK MODELS��������������������������
	11.5 THE TCP/IP SUITE����������������������������
	11.5.1 TCP and UDP�������������������������
	11.5.2 Routing of Application Data: The Internet Protocol (IP)���
	11.5.3 Symbolic Names����������������������������
	11.5.4 Translating Names to IP Addresses: The Domain Name System���
	11.5.5 Requests for Comments (RFCs)��

	11.6 INTERNET SERVICES AND PROTOCOLS���
	11.7 THE CLIENT–SERVER SOFTWARE MODEL��
	11.8 APPLICATION SOFTWARE��������������������������������
	11.8.1 Displaying the Host Name��������������������������������������
	11.8.2 Displaying a List of Users Using Hosts on a Network���
	11.8.3 Displaying the Status of Hosts on a Network���
	11.8.4 Testing a Network Connection��
	11.8.5 Displaying Information about Users��
	11.8.6 Remote Login��������������������������
	11.8.7 Remote Command Execution��������������������������������������
	11.8.8 File Transfer���������������������������
	11.8.9 Remote Copy�������������������������
	11.8.10 Secure Shell and Related Commands��
	11.8.11 Interactive Chat�������������������������������
	11.8.12 Tracing the Route from One Site to Another���

	11.9 IMPORTANT INTERNET ORGANIZATIONS��
	11.10 WEB RESOURCES��������������������������
	SUMMARY��������������
	QUESTIONS AND PROBLEMS�����������������������������

	CHAPTER 12: Introductory Bourne Shell Programming��
	12.1 INTRODUCTION������������������������
	12.2 RUNNING A BOURNE SHELL SCRIPT���
	12.3 SHELL VARIABLES AND RELATED COMMANDS��
	12.3.1 Reading and Writing Shell Variables���
	12.3.2 Command Substitution����������������������������������
	12.3.3 Exporting Environment�����������������������������������
	12.3.4 Resetting Variables���������������������������������
	12.3.5 Creating Read-Only Defined Variables��
	12.3.6 Reading from Standard Input���

	12.4 PASSING ARGUMENTS TO SHELL SCRIPTS��
	12.5 COMMENTS AND PROGRAM HEADERS��
	12.6 PROGRAM CONTROL FLOW COMMANDS���
	12.6.1 The if-then-elif-else-fi Statement��
	12.6.2 The for Statement�������������������������������
	12.6.3 The while Statement���������������������������������
	12.6.4 The until Statement���������������������������������
	12.6.5 The break and continue Commands���
	12.6.6 The case Statement��������������������������������

	12.7 COMMAND GROUPING����������������������������
	SUMMARY��������������
	QUESTIONS AND PROBLEMS�����������������������������

	CHAPTER 13: Advanced Bourne Shell Programming��
	13.1 INTRODUCTION������������������������
	13.2 NUMERIC DATA PROCESSING�����������������������������������
	13.3 THE HERE DOCUMENT�����������������������������
	13.4 INTERRUPT (SIGNAL) PROCESSING���
	13.5 THE exec COMMAND AND FILE I/O���
	13.5.1 Execution of a Command (or Script) in Place of Its Parent Process���
	13.5.2 File I/O via the exec Command���

	13.6 FUNCTIONS IN THE BOURNE SHELL���
	13.6.1 Reasons for Using Functions���
	13.6.2 Function Definition���������������������������������
	13.6.3 Function Invocation/Call��������������������������������������
	13.6.4 A Few More Examples of Functions��

	13.7 DEBUGGING SHELL PROGRAMS������������������������������������
	SUMMARY��������������
	QUESTIONS AND PROBLEMS�����������������������������

	CHAPTER 14: Introductory C Shell Programming���
	14.1 INTRODUCTION������������������������
	14.2 RUNNING A C SHELL SCRIPT������������������������������������
	14.3 SHELL VARIABLES AND RELATED COMMANDS��
	14.4 READING AND WRITING SHELL VARIABLES���
	14.4.1 Command Substitution����������������������������������
	14.4.2 Exporting Environment�����������������������������������
	14.4.3 Resetting Variables���������������������������������
	14.4.4 Reading from Standard Input���

	14.5 PASSING ARGUMENTS TO SHELL SCRIPTS��
	14.6 COMMENTS AND PROGRAM HEADERS��
	14.7 PROGRAM CONTROL FLOW COMMANDS���
	14.7.1 The if-then-else-endif Statement��
	14.7.2 The foreach Statement�����������������������������������
	14.7.3 The while Statement���������������������������������
	14.7.4 The break, continue, and goto Commands��
	14.7.5 The switch Statement����������������������������������

	SUMMARY��������������
	QUESTIONS AND PROBLEMS�����������������������������

	CHAPTER 15: Advanced C Shell Programming���
	15.1 INTRODUCTION������������������������
	15.2 NUMERIC DATA PROCESSING�����������������������������������
	15.3 ARRAY PROCESSING����������������������������
	15.4 THE HERE DOCUMENT�����������������������������
	15.5 INTERRUPT (SIGNAL) PROCESSING���
	15.6 DEBUGGING SHELL PROGRAMS������������������������������������
	SUMMARY��������������
	QUESTIONS AND PROBLEMS�����������������������������

	CHAPTER 16: Python�������������������������
	16.1 INTRODUCTION������������������������
	16.1.1 Python Program Data Model���������������������������������������
	16.1.2 The Ultimate Python Reference���
	16.1.3 Ultimate Reference Glossary���
	16.1.4 Python Standard Type Hierarchy��
	16.1.5 Basic Assumptions We Make���������������������������������������
	16.1.6 Running Python����������������������������
	16.1.7 Uses of Python����������������������������

	16.2 HOW TO INSTALL PYTHON ON A PC-BSD AND SOLARIS SYSTEM��
	16.2.1 Installing Python on PC-BSD���
	16.2.2 Installing Python on Solaris��

	16.3 BASIC SETUP AND SYNTAX, AND GETTING HELP��
	16.3.1 Printing Text, Comments, Numbers, Grouping Operators, and Expressions���
	16.3.2 Variables�����������������������
	16.3.3 Functions�����������������������
	16.3.4 Conditional Execution�����������������������������������
	16.3.5 Determinate and Indeterminate Repetition Structures and Recursion���
	16.3.6 File Input and Output�����������������������������������
	16.3.7 Lists and the List Function���
	16.3.8 Strings, String Formatting Conversions, and Sequence Operations���
	16.3.9 Tuples��������������������
	16.3.10 Sets�������������������
	16.3.11 Dictionaries���������������������������
	16.3.12 Generators�������������������������
	16.3.13 Coroutines�������������������������
	16.3.14 Objects and Classes����������������������������������
	16.3.15 Exceptions�������������������������
	16.3.16 Modules, Global and Local Scope in Functions���

	16.4 PRACTICAL EXAMPLES������������������������������
	16.4.1 Another Way of Writing Shell Script Files���
	16.4.2 Basic User File Maintenance���
	16.4.3 Graphical User Interface with Python and Tkinter Widgets��
	16.4.4 Multithreaded Concurrency with Python���
	16.4.5 Talking Threads: The Producer–Consumer Problem Using a Condition Variable���

	SUMMARY��������������
	QUESTIONS AND PROBLEMS�����������������������������

	CHAPTER 17: UNIX Tools for Software Development��
	17.1 INTRODUCTION������������������������
	17.2 COMPUTER PROGRAMMING LANGUAGES��
	17.3 THE COMPILATION PROCESS�����������������������������������
	17.4 THE SOFTWARE ENGINEERING LIFE CYCLE���
	17.5 PROGRAM GENERATION TOOLS������������������������������������
	17.5.1 Generating C Source Files���������������������������������������
	17.5.2 Indenting C Source Code�������������������������������������
	17.5.3 Compiling C, C++, and JAVA Programs���
	17.5.4 Handling Module-Based C Software��
	17.5.5 Building Object Files into a Library��
	17.5.6 Working with Libraries������������������������������������
	17.5.7 Version Control�����������������������������

	17.6 STATIC ANALYSIS TOOLS���������������������������������
	17.6.1 Verifying Code for Portability��
	17.6.2 Source Code Metrics���������������������������������

	17.7 DYNAMIC ANALYSIS TOOLS����������������������������������
	17.7.1 Source Code Debugging�����������������������������������
	17.7.2 Run-Time Performance����������������������������������

	17.8 WEB RESOURCES�������������������������
	SUMMARY��������������
	QUESTIONS AND PROBLEMS�����������������������������

	CHAPTER 18: System Programming I: File System Management���
	18.1 INTRODUCTION������������������������
	18.2 WHAT IS SYSTEM PROGRAMMING?���������������������������������������
	18.3 ENTRY POINTS INTO THE OS KERNEL���
	18.4 FUNDAMENTALS OF SYSTEM CALLS��
	18.4.1 What Is a System Call?������������������������������������
	18.4.2 Types of System Calls�����������������������������������
	18.4.3 Execution of a System Call��

	18.5 FILES: THE BIG PICTURE����������������������������������
	18.5.1 File Descriptors, File Descriptor Tables, File Tables, and Inode Tables���
	18.5.2 Why Two Tables?�����������������������������

	18.6 FUNDAMENTAL FILE I/O PARADIGM���
	18.7 STANDARD I/O VERSUS LOW-LEVEL I/O���
	18.7.1 The C Standard Library������������������������������������
	18.7.2 File Data I/O Using the C Standard Library��
	18.7.3 Low-Level I/O in UNIX via System Calls��
	18.7.4 System Call Failure and Error Handling��

	18.8 FILE MANIPULATION�����������������������������
	18.8.1 Opening and Creating a File���
	18.8.2 Closing a File����������������������������
	18.8.3 Reading from a File���������������������������������
	18.8.4 Writing to a File�������������������������������
	18.8.5 Positioning the File Pointer: Random Access���
	18.8.6 Truncating a File�������������������������������
	18.8.7 Removing a File�����������������������������

	18.9 GETTING FILE ATTRIBUTES FROM A FILE INODE���
	18.9.1 The stat Structure��������������������������������
	18.9.2 Populating the stat Structure with System Calls���
	18.9.3 Displaying File Attributes��
	18.9.4 Accessing and Manipulating File Attributes��

	18.10 RESTARTING SYSTEM CALLS������������������������������������
	18.11 SYSTEM CALLS FOR MANIPULATING DIRECTORIES��
	18.12 IMPORTANT WEB RESOURCES������������������������������������
	SUMMARY��������������
	QUESTIONS AND PROBLEMS�����������������������������

	CHAPTER 19: System Programming II: Process Management and Signal Processing��
	19.1 INTRODUCTION������������������������
	19.2 PROCESSES AND THREADS���������������������������������
	19.2.1 What Is a Process?��������������������������������
	19.2.2 Process Control Block�����������������������������������
	19.2.3 Process Memory Image (Process Address Space)��
	19.2.4 Process Disk Image��������������������������������
	19.2.5 What Is a Thread?�������������������������������
	19.2.6 Commonalities and Differences between Processes and Threads���
	19.2.7 Data Sharing among Threads and the Critical Section Problem���

	19.3 PROCESS MANAGEMENT CONCEPTS���������������������������������������
	19.3.1 Getting the Process ID and the Parent Process ID��
	19.3.2 Creating a Clone of a Process���
	19.3.3 Reporting Status to the Parent Process��
	19.3.4 Collecting the Status of a Child Process��
	19.3.5 Overwriting a Process Image���
	19.3.6 Creating a Zombie Process���������������������������������������
	19.3.7 Terminating a Process�����������������������������������

	19.4 PROCESSES AND THE FILE DESCRIPTOR TABLE���
	19.4.1 File Sharing between Processes��
	19.4.2 Duplicating File Descriptor���

	19.5 GETTING THE ATTENTION OF A PROCESS: UNIX SIGNALS��
	19.5.1 What Is a Signal?�������������������������������
	19.5.2 Intercepting Signals����������������������������������
	19.5.3 Setting Up an Alarm���������������������������������
	19.5.4 Sending Signals�����������������������������

	19.6 IMPORTANT WEB RESOURCES�����������������������������������
	SUMMARY��������������
	QUESTIONS AND PROBLEMS�����������������������������

	CHAPTER 20: System Programming III: Interprocess Communication���
	20.1 INTRODUCTION������������������������
	20.2 IPC: COMMUNICATION CHANNELS AND COMMUNICATION TYPES���
	20.3 IPC: IMPORTANT SYSTEM AND LIBRARY CALLS, DATA STRUCTURES, MACROS, AND HEADER FILES��
	20.3.1 Byte Orders�������������������������

	20.4 THE CLIENT–SERVER MODEL�����������������������������������
	20.4.1 Simplest Form of Communication��
	20.4.2 Communication via Pipes�������������������������������������

	20.5 COMMUNICATION BETWEEN UNRELATED PROCESSES ON THE SAME COMPUTER��
	20.6 COMMUNICATION BETWEEN UNRELATED PROCESSES ON DIFFERENT COMPUTERS��
	20.6.1 Socket-Based Communication��
	20.6.2 Creating a Socket�������������������������������
	20.6.3 Domains of Socket-Based Communication���
	20.6.4 Types of Communication Using a Socket���
	20.6.5 Socket Address����������������������������
	20.6.6 Important Data Structures and Related Function Calls��
	20.6.7 Binding an Address to a Socket��
	20.6.8 Enabling a Server-Side Socket to Listen for Connection Requests from Clients��
	20.6.9 Sending a Connection Request to Server Process��
	20.6.10 Accepting a Client Request for Connection��
	20.6.11 Closing a Socket�������������������������������
	20.6.12 Putting it All Together: A Simple Connection-Oriented Client–Server Software

	20.7 TYPES OF SOCKET-BASED SERVERS���
	20.8 ALGORITHMS AND EXAMPLES FOR SOCKET-BASED CLIENT–SERVER SOFTWARE
	20.8.1 Iterative Connectionless Client–Server Model��
	20.8.2 Iterative Connection-Triggered Client–Server Model��
	20.8.3 Iterative One-Shot Connection-Oriented Client–Server Model��
	20.8.4 Iterative Connection-Oriented Client–Server Model���
	20.8.5 Concurrent Connectionless Client–Server Model���
	20.8.6 Concurrent Connection-Oriented Client–Server Model��

	20.9 SYNCHRONOUS VERSUS ASYNCHRONOUS I/O: THE SELECT() SYSTEM CALL���
	20.10 THE UNIX SUPERSERVER: INETD��
	20.10.1 Managing inetd on Solaris via Service Management Facility��

	20.11 CONCURRENT CLIENTS�������������������������������
	20.12 WEB RESOURCES��������������������������
	SUMMARY��������������
	QUESTIONS AND PROBLEMS�����������������������������

	CHAPTER 21: System Programming IV: Practical Considerations��
	21.1 INTRODUCTION������������������������
	21.2 RESTARTING SYSTEM CALLS�����������������������������������
	21.3 THREAD-SAFE SYSTEM CALLS������������������������������������
	21.4 RUNNING PROCESSES IN BACKGROUND: DAEMONS��
	21.5 IGNORING SIGNALS����������������������������
	21.6 CHANGING UMASK��������������������������
	21.7 RUNNING A SINGLE COPY OF A PROGRAM��
	21.8 LOCATING A DAEMON�����������������������������
	21.9 DETACHING THE TERMINAL FROM A DAEMON��
	21.10 CHANGING THE CURRENT WORKING DIRECTORY���
	21.11 CLOSING INHERITED STANDARD DESCRIPTORS AND OPENING STANDARD DESCRIPTORS��
	21.12 WAITING FOR ALL CHILD PROCESSES TO TERMINATE���
	21.13 COMPLETE SAMPLE SERVER�����������������������������������
	21.14 STRUCTURE OF A PRODUCTION SERVER���
	21.15 WEB RESOURCES��������������������������
	SUMMARY��������������
	QUESTIONS AND PROBLEMS�����������������������������

	CHAPTER 22: UNIX X Window System GUI Basics��
	22.1 INTRODUCTION������������������������
	22.1.1 User–Application Software Interaction Model���

	22.2 BASICS OF THE X WINDOW SYSTEM���
	22.2.1 What is the X Window System Similar to and What Advantage(s) Does it Have?��
	22.2.2 The Key Components of Interactivity: Events and Requests��
	22.2.3 The Role of a Window Manager in the User Interface, and FVWM for PC-BSD���
	22.2.4 Customizing the X Window System and FVWM��

	22.3 THE KDE4 DESKTOP MANAGER������������������������������������
	22.3.1 Logging In and Out��������������������������������
	22.3.2 The KDE4 Panel����������������������������
	22.3.3 Adding a Desktop Icon that Launches an Application��
	22.3.4 KDE4 Window Manager���������������������������������
	22.3.5 KDE4 System Settings����������������������������������
	22.3.6 KDE4 File Management with Dolphin���

	22.4 CREATING X WINDOW SYSTEM CLIENT APPLICATION PROGRAMS��
	22.4.1 Client Application Program Structure and Development Model��
	22.4.2 Xlib versus XCB�����������������������������
	22.4.3 Xlib������������������
	22.4.4 Using XCB�����������������������
	22.4.5 Using the Qt Toolkit����������������������������������

	SUMMARY��������������
	QUESTIONS AND PROBLEMS�����������������������������

	CHAPTER 23: UNIX System Administration Fundamentals��
	23.1 INTRODUCTION������������������������
	23.2 DOING A FRESH INSTALL FROM ISO-CREATED DVD MEDIA AND PRELIMINARY SYSTEM CONFIGURATION���
	23.2.1 Preinstallation Considerations��
	23.2.2 GUI Install of PC-BSD�����������������������������������
	23.2.3 Postinstall Configuration���������������������������������������
	23.2.4 GUI Install of Solaris������������������������������������
	23.2.5 System Services Administration, Booting and Shutdown Procedures���

	23.3 USER ADMINISTRATION�������������������������������
	23.3.1 Adding and Deleting a User in a Text-Based Interface on PC-BSD��
	23.3.2 Adding/Deleting and Maintaining Users and Groups in a GUI-Based Interface on PC-BSD���
	23.3.3 Adding/Deleting and Managing Users and Groups in a Text-Based Interface on Solaris��

	23.4 ADDING A HARD DISK TO THE SYSTEM��
	23.4.1 Preliminary Considerations when Adding New Disk Drives��
	23.4.2 A Quick and Easy Way to Find Out the Logical Device Names of Disks Actually Installed on Your System��
	23.4.3 Adding a New Disk to the System���

	23.5 ADDING A PRINTER TO THE SYSTEM��
	23.5.1 Researching Your Printer��������������������������������������
	23.5.2 Adding a Printer������������������������������
	23.5.3 Adding a Printer to Solaris���

	23.6 FILE SYSTEM BACKUP STRATEGIES AND TECHNIQUES��
	23.6.1 A Strategic Synopsis and Overview of File Backup Facilities���
	23.6.2 tar and gtar��������������������������
	23.6.3 Other UNIX Archiving and Backup Facilities��

	23.7 SYSTEM UPGRADES AND SOFTWARE UPDATES USING A PACKAGE MANAGER��
	23.7.1 Upgrading the Operating System in Solaris���
	23.7.2 Updating the Installed Application Packages and Installing New Application Packages in Solaris��
	23.7.3 Upgrading the Operating System in PC-BSD��
	23.7.4 Updating the Installed Application Packages and Installing New Application Packages in PC-BSD���

	23.8 SYSTEM AND SOFTWARE PERFORMANCE MONITORING��
	23.8.1 Process and Memory Management���
	23.8.2 Disk Usage and Management���������������������������������������
	23.8.3 Network Configuration�����������������������������������
	23.8.4 Practical System Administration Logging and the syslog() Function���

	23.9 SYSTEM SECURITY���������������������������
	23.9.1 Password-Based Authentication���
	23.9.2 Access Control: Discretionary (DAC), Mandatory (MAC), and Role-Based (RBAC)���
	23.9.3 Using Access Control Lists (ACLs) in PC-BSD���
	23.9.4 Intrusion Detection and Intrusion Detection Systems���
	23.9.5 System Firewall�����������������������������

	23.10 VIRTUALIZATION METHODOLOGIES���
	SUMMARY��������������
	QUESTIONS AND PROBLEMS�����������������������������

	CHAPTER 24: ZFS Administration and Use���
	24.1 INTRODUCTION������������������������
	24.1.1 zpool and zfs Command Syntax��
	24.1.2 ZFS Terminology�����������������������������
	24.1.3 How ZFS Works���������������������������
	24.1.4 Important ZFS Concepts������������������������������������

	24.2 EXAMPLE ZFS POOLS AND FILE SYSTEMS: USING THE ZPOOL AND ZFS COMMANDS
	24.2.1 A Quick and Easy Way to Find Out the Logical Device Names of Disks Actually Installed on Your System��
	24.2.2 Basic ZFS Examples��������������������������������

	24.3 ZFS COMMANDS AND OPERATIONS���������������������������������������
	24.3.1 Command Categories and Basic Definitions��
	24.3.2 ZFS Storage Pools and the zpool command���
	24.3.3 ZFS File System Commands and the zfs Command��

	24.4 FILE SYSTEM BACKUPS USING ZFS SNAPSHOT��
	24.4.1 Examples of snapshot����������������������������������
	24.4.2 zfs rollback��������������������������
	24.4.3 Cloning/Promoting�������������������������������
	24.4.4 Renaming a Filesystem�����������������������������������
	24.4.5 Compression of Filesystems��
	24.4.6 Bourne Shell Script Example for Incremental ZFS Backups���

	24.5 USING ACCESS CONTROL LISTS (ACLS) AND ATTRIBUTES FOR SECURING SOLARIS ZFS FILES���
	24.5.1 Solaris ACL Model�������������������������������
	24.5.2 Setting ACLs on ZFS Files���������������������������������������
	24.5.3 Setting ACL Inheritance on ZFS Files��

	SUMMARY��������������
	QUESTIONS AND PROBLEMS�����������������������������

	CHAPTER 25: Virtualization Methodologies���
	25.1 INTRODUCTION TO VIRTUALIZATION METHODOLOGIES AND BACKGROUND���
	25.1.1 Virtualized Network Addresses in PC-BSD and Solaris���

	25.2 PC-BSD JAILS WITH IOCAGE������������������������������������
	25.2.1 iocage Introduction, Overview, and Use��
	25.2.2 Basic Usage�������������������������
	25.2.3 iocage Networking�������������������������������
	25.2.4 Jail Types������������������������
	25.2.5 Best Practices����������������������������
	25.2.6 Advanced Usage����������������������������
	25.2.7 How to Create and Use Templates���
	25.2.8 Create a Jail Package�����������������������������������
	25.2.9 iocage Installation and Worked Examples���

	25.3 SOLARIS ZONES VIRTUALIZATION METHOD���
	25.3.1 Nonglobal Zone State Model��
	25.3.2 Commands That Affect Zone State���
	25.3.3 Creating a Solaris Zone�������������������������������������
	25.3.4 Installing a Web Server Application in a Zone���

	25.4 VIRTUALBOX����������������������
	25.4.1 Installing and Running VirtualBox on a PC-BSD Host OS���
	25.4.2 Installing and Running Solaris VirtualBox���
	25.4.3 Installing a VM Guest�����������������������������������
	25.4.4 Securing an FTP Server in a VirtualBox Guest��
	25.4.5 Installing PC-BSD or Solaris as a Guest VM on a LINUX or Windows Host���

	SUMMARY��������������
	QUESTIONS AND PROBLEMS�����������������������������

	GLOSSARY���������������
	INDEX������������

