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Abstract

The homogeneous system consists of the similar type of multiple processors, whereas

the heterogeneous system is equipped with a different type of multiple processes,

i.e. Central Processing Units (CPUs) and Graphics Processing Units (GPUs).

Heterogeneous systems based on CPUs and GPUs are becoming mainstream due

to disparate processing and performance capabilities of these multi-core archi-

tectures. Mostly CPU is better suited to perform latency-sensitive tasks and

incorporate architectural advances such as branch-prediction, out-of-order execu-

tion, and super-scalar capabilities. Whereas, many-core GPUs are more suited

to perform data-parallel and throughput-sensitive tasks due to the inherent mas-

sive multi-threading capabilities. Despite much interest in heterogeneous systems,

key scheduling challenges associated with them have not received much atten-

tion. Particularly, with highly shared resources having heterogeneous CPUGPU

nodes, new application scheduling problems are arising. In such shared cluster

environments, high utilization of resources and overall system throughput are im-

portant considerations in addition to the need for scaling a single application. In

the heterogeneous computing environment (such as cloud), programmers map the

applications only on CPUs or GPUs. However, the default process for device map-

ping is not able to produce ameliorate results, particularly on the heterogeneous

cluster. If one resource of the cluster is powerful in terms of more computing

capability, the scheduling schemes favour the powerful resource. In this scenario,

the powerful resources are overloaded while all other resources are under-utilized.

This load imbalance problem results in more energy consumption and increased

execution time. In this research, a novel Resource-Aware scheduling for Heteroge-

neous Cluster (RALB-HC) is proposed that distributes workload based on resource

computing capability and type of application. RALB-HC determine which data

parallel application are like to best utilize a device. We show that device suitability

is a good scheduling priority function and developed a data parallel application de-

vice suitability predictor. RALB-HC uses this prediction to prioritize and schedule

tasks. The RALB-HC framework consists of two phases: (1) job mapping based

on the availability of the resources and (2) the resource aware load balancing to
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achieve higher resource utilization ratio. The experimental results on a large set

of real-world as well as synthetic workloads show that the RALB-HC reduces exe-

cution time by 31.61%, increased resource utilization ratio by 67.8% and improved

throughput 147.35% in comparison to baseline scheduling schemes.
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Chapter 1

Introduction

Today, most of the system is equipped with a multicore processor. Due to power

consumption and transistor density constraints, the ever-increasing clock frequency

trend is no longer possible [1, 27]. Therefore, multi-core architecture has been de-

veloped as a solution to the problem like power consumption, heat dissipation, and

transistor density [27]. In multi-core architecture, multiple similar CPUs are inte-

grated on the same integrated circuit. The system has the same type of processor

are called homogeneous system. The hardware manufacturer increases computing

power (in terms of parallelism) by increasing the number of the cores.

Nowadays, developers use parallel programming to speed up application [1, 2,

27]. An application is partitioned into parallel portions, each executing on a

separate processor core. The parallel framework has further been strengthened up

by the utilizing specialized processing unit having many-core such as a Graphical

Processing Unit (GPU). GPUs was originally developed for handling graphical

routines. However, in the current era, GPUs are being harnessed for general-

purpose programming as well. GPU devices provide high-degree of parallelism.

The huge computing potential of GPUs makes them suitable for data-parallel

and throughput-oriented applications. GPUs are comprised of a large number

of simple cores that can execute instructions in Single Instruction Multiple Data

(SIMD) fashion. GPU processing, apart from its well-known 3D graphics rendering

capabilities, can also perform mathematically intensive computations on very large

1
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data sets. Whereas, the CPU consists of a small number of high-clocked cores that

can provide fast response-time to a task and incorporates architectural advances

such as branch-prediction, out-of-order execution, and super-scalar capabilities.

CPUs can run the operating system and perform traditional serial tasks.

The Multi-core CPUs and many-core GPUs trend have initiated a new paradigm

for computation processing called heterogeneous computing. Heterogeneous Sys-

tem Architecture (HSA) systems utilize multiple processor types (CPUs and GPUs).

HSA are multi-core based systems that gain performance not just by adding cores,

but also by incorporating specialized processing capabilities to handle complex task

while being energy efficient. Due to immense data generation and huge processing

power, the new application generating workloads with diverse requirements. The

central processing unit (CPU) is unable to handle these diverse requirements. Het-

erogeneous computing, however, is designed to help and enable the efficient use of

diverse processors like the CPU and GPU to efficiently handle these new emerging

workloads. Intelligently utilizing the diverse processors help and enable new expe-

riences while maximizing throughput and reducing turnaround time. Employing

the diverse processors provides various opportunities to find at least the best of

them that will truly excel at completing a particular workload. Some processors

are rather inefficient at certain jobs while excelling in others. Once we realize

that each type of processor has its own strength, we can opportunistically and

intelligently choose the appropriate one for the specific workload. With help of

heterogeneous computing, different processors can be designed to work together

enabling new user experiences.

1.1 OpenCL: Heterogenous Programming Frame-

work

Open Compute Language (OpenCL) [1] emerged as an industry standard to de-

velop data-parallel applications for heterogeneous multi and many acore architec-

tures. Major vendors in the computer hardware industry such as Intel , AMD,
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Figure 1.1: OpenCL Task Execution

and NVIDIA etc. support OpenCL platform [1]. The OpenCL execution model

is depicted in Figure 1 where a CPU executes the serial portion of an OpenCL

program (known as the host) whereas the parallel portion (known as the kernel)

can be executed seamlessly on a CPU, a GPU, or any other supported accelerator

device. In spite of the fact that it gives convenient usefulness, its execution will

definitely fluctuate over distinctive parts of the heterogeneous framework. The

reason is that, while one application may have low execution time on the GPU

than on the CPU, another application’s performance might degrade significantly if

assigned to the GPU while attaining low execution time on the CPU. Programmers

normally assign tasks to either a CPU or GPU, due to which another processing-

unit remains idle. For example, if tasks are assigned to a GPU device, this leaves

the CPU idle waiting for the scheduled tasks to complete as shown in Figure 1.1.

In this research, we will be using OpenCL because of its portability and a large

number of supported compute-devices.
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1.2 Application Scheduling on Heterogeneous Ma-

chines

Scheduling in heterogeneous machines has been discussed in many research articles

and several solutions have been suggested [2–5]. The scheduler decides a partic-

ular data parallel application should be assigned to which device, i.e., a CPU

or to a GPU. The proposed schedules are suitable when the amount of work to

be performed or data to be processed is known a prior [4–6]. These scheduling

schemes carry low scheduling-overhead, but they are not always provided optimal

task partitioning. Some researchers perform task mapping to a compute-unit at

runtime. The main advantage of runtime task scheduling is that the decision to

map the task is more optimal (considering the runtime attributes of the applica-

tion and machine) [7–11]. Scheduling decisions can be adjusted during execution

of a program. Major cons of run time scheduling are the increased complexity and

higher scheduling overhead.

Supervised machine learning model has also been used and proven to be effective

in learning to optimize scheduling[3, 61]. Code features are used to characterize

an application[4, 12]. The code features include the number of instructions, and

parallel runtime parameters, such as the number of work items. At compile time,

application abstract syntax tree is generated by using a compiler named as CLang

and LLVM [65]. The abstract syntax tree gives information about application

behaviour, i.e. the number and type of operation used in the application, the

count of barrier occurs, the number of blocks within the application, the count for

the load operation performed by the application and the count of store operations

performed by the application [27]. The count of each code feature (number and

type of operation, barrier, blocks, load/store operation) in an application is used as

features values. The features in the feature vector are classified into two types, i.e.

Static features and Dynamic features. Static code-features such as the number of

int operations, local memory access percentage are extracted at compile time while

dynamic features extracted includes input workload. All feature values combined

to form a feature vector. These values are then used as input to a predictive model
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that is based on machine learning. The predictor is trained on the extracted feature

vectors. The features are selected on the basis of their contribution to predicting

the output. The motivation behind using a reduced feature set (for predictive

models) is the less redundant data, reduced overfitting issues, improved accuracy,

and decreased training time of the algorithm.

1.3 Heterogeneous Scheduling Issues

In the heterogeneous computing environment, programmers usually map applica-

tion only on CPUs or GPUs [3, 4]. The programmer uses a default scheduling

scheme where a parallel portion of a program is assigned to the GPU while CPU

executes serial portion (kernel management) of a program [12, 13]. The CPU

remains idle while all the computation is performed by the GPU, although by

using OpenCL, we can execute a program on both CPU and GPU [14]. This is

the wastage of CPU resources in terms of power and energy consumption and not

performing any useful task [14–16]. To address wastage of resource issue, some re-

searchers have proposed scheduling mechanisms, however, most of them handle a

specific type of application or perform on a single data parallel application schedul-

ing [3]. Moreover, the number of techniques depends upon code splitting overhead

and required profiling of applications [3, 4, 12–14]. Some authors have proposed

frameworks for the utilization of multiple heterogeneous machines, however, these

do not resolve the load imbalance problem [15–17]. The vast majority of the litera-

ture evaluated scheduling tasks in the heterogeneous environment, however, these

techniques have the following issues:

1. Most of them required a data parallel application code splitting overhead to

split tasks among CPU & GPU device. This data parallel application code

splitting will result in additional time overhead.

2. Existing solution proposed a profiling-based scheduling method. They used

code instrumentation and profiled time to scheduled application to a device

i.e. CPU or GPU. This profiling required time overhead.
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3. To the best of our knowledge, no prior work attempts to do a load balanced

task scheduling in a cluster of the heterogeneous system using a machine

learning approach.

1.4 Problem Statement

In a heterogeneous environment, the vast majority of the literature evaluated

scheduling tasks by using the data parallel application code approach or profiling

heuristics. To the best of our knowledge, none of the schemes has focused on load

balancing task scheduling in a cluster of the heterogeneous system by considering

data parallel application device suitability and its execution time.

1.5 Research Questions

The critical analysis of the literature survey has led us to the following research

gaps, which have been focused in this thesis:

1. RQ-1: How to design and develop a load balancing scheduling algorithm

to achieve the minimal execution time, maximal throughput and improved

resource utilization?

2. RQ-2: To analyse optimization technique for design device suitability clas-

sifier and execution time predictor?

2.1. RQ-2.1: Which set of features plays an important role to predict data

parallel application device suitability?

2.2. RQ-2.2: Which are the most important factors, forecasting the execu-

tion time of data parallel application?
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1.6 Purpose

Our goal is to accelerate a set of applications using the aggregate set of resources in

the cluster of heterogeneous machines. The acceleration is achieved by considering

the distribution of workload, to minimize the completion time of the job pool and

to increase the resource utilization.

1.7 Scope

In this work, a novel Resource-Aware scheduling for Heterogeneous Cluster (RALB-

HC) is proposed. The device prioritized list and resource performance estimation

are achieved using two machine learning based predictive models, i.e. device suit-

ability predictor and application time estimator [4, 12, 27, 65]. The device suit-

ability predictive model, predicts the prioritized list of resources that are highly

suitable for a given application in a job pool. Moreover, application performance

on the prioritized resource has also been forecast. The device prioritized list and

resource performance estimation are then used by a proposed resource aware load

balancer for the heterogeneous cluster (RALB-HC). The results of this study will

be immensely valuable to increase cluster of heterogeneous system utilization as

well as for overall system throughput. ‘

1.8 Application

The research will assist the user to improve the cluster performance in terms of

execution time, throughput and resource utilization.
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1.9 Dissertation Organization

The rest of the document is divided into the following sections. In Chapter 2, we

present a review of state-of-the-art approaches and a critical analysis of these re-

search techniques. Chapter 3, outlines the methodology of the study, the proposed

system architecture and performance evaluation metrics are discussed. Chapter

4 encompasses the details regarding implementation of the proposed RALB-HC

with the detail of experimentation performed on a large set of application. Each

experiment is explained in detail and evaluation is performed comprehensively.

The Chapter 5 concludes the research work and suggested the future directions.



Chapter 2

Literature Review

Task scheduling is a non-trivial problem that requires optimal mapping of tasks

to the processor so that the overall execution time of applications is reduced.

The scheduling decision becomes more difficult when we have a heterogeneous

cluster in which each compute unit has diversified set of characteristics. Heteroge-

neous systems based on Central Processing Units (CPUs) and Graphics Processing

Units (GPUs) are becoming mainstream due to disparate processing and perfor-

mance capabilities of these multi-core architectures. Mostly, CPUs are better

suited to perform latency sensitive tasks and incorporate architectural advances

such as branch-prediction, out-of-order execution, and super-scalar capabilities

[46]. Whereas, many-core GPUs are more suited to perform data-parallel and

throughput sensitive tasks [47] due to the inherent massive multi-threading capa-

bilities [47]. The CPU has a limited number of powerful and complex cores that

are generalized to execute different types of applications efficiently, whereas GPU

contains a large number of simplified cores that are mainly specialized to execute

data-parallel portions of the program. Therefore, while scheduling heterogeneity

of computing devices should also be considered to effectively map computation to

processors. Programmers normally assign tasks to either a CPU or GPU due to

which other processing-unit remains idle e.g. if tasks are assigned to a GPU device

this leaves the CPU idle just waiting for the scheduled tasks to complete. Vari-

ous researchers have proposed scheduling techniques for heterogeneous platforms

9
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[5, 18–21]. Some of them have split a data parallel application between the CPU

and GPU while others have improved the throughput and resource utilization by

scheduling pool of applications. The machine learning based predictive modelling

is considered to be a powerful method for optimizing parallel programs [4, 12–

14, 22]. The predictive model is trained to learn from its set of examples and have

an adaptive behaviour for varying platforms. By using the scheduling technique

[4, 12–14, 22], severe load imbalance is introduced between CPUi and GPUk due

to CPUi only managing execution of kernel on GPUk and taking no part in actual

computation. The idle time that CPUi spent while waiting for GPUk to complete

kernels execution is not desirable. Ideally, a schedule is required that can schedule

data parallel application to both CPU and GPU in such a way that all proces-

sors in the cluster can complete processing at the same time. In this way energy

consumption and heat dissipation due to idling processor are reduced but, more

importantly, the execution time of Job Pool will also be reduced significantly. The

optimal device selection is a key for any scheduler schemes in a heterogeneous

environment.

Perez et al[20] presented a Maat library that performs load balancing of single

kernel across heterogeneous devices [20]. According to Perez et al, the programmer

does not utilize heterogeneity in the optimal way as they consider CPU device for

sequential tasks whereas GPU is considered for the parallel task. This inflexible

approach results in wastage of computing power [20]. With Maat, the programmer

just needs to build up a parallel version of the kernel program, which selects a load

balancing method and runs it on the all the available resources. In Perez et al [20]

approach, there is no need for extra programming effort, as same raw kernel code

is utilized. Moreover, at runtime, the predictive model is able to determine device

suitability, as well as application time estimation, is made to achieve maximal

throughput.

Luke et al [5] have also addressed the problem of optimizing the utilization of avail-

able resources. They have focused on the need for automated mapping of process-

ing elements to the available resources [5]. According to Luk et al[5], programmer



Literature Review 11

utilization of heterogeneous platform is able to adapt according to hardware/-

software configuration. Therefore, a system name Qilin is proposed that utilize

machine learning to classify kernel code. The kernel code is partitioned into the

CPU and GPU device. The Qilin index the execution time of an application in a

database. The recorded information is then utilized by the Qilin to project execu-

tion time of new arrived application and to schedule it accordingly. Whenever the

hardware configuration changes, Qilin initiates a new training session. The Qilin

requires offline profiling and code partition overhead whereas RALB-HC method

does not require these overheads.

Huchant et al [19] have proposed an automatic runtime technique that schedules

OpenCL kernel code across Heterogeneous devices. Huchant et al[19] technique

is able to solve issues causing from the heterogeneity i.e. Communications, load-

balancing and issues caused by the iterative computation. The technique is divided

into two main approaches, i.e. Static and dynamic. In static phase, kernel code

is transformed into partition ready kernels, which are then mapped into different

devices. The execution time of mapped kernel is noted and then in a dynamic

phase, queuing of the partitioned kernel is adjusted to achieve optimized through-

put. This technique differs from our technique as it mapped a single OpenCL

kernel, whereas, our technique manages to schedule pool of OpenCL applications.

Albayrak et al [23] have addressed the need for optimal mapping among different

heterogeneous devices, CPU or GPU. According to them, in the multi-application

environment, different kernels exhibit different characteristics. Some of them run

faster on the GPU, others may refer to execute on CPU due to data transfer

cost. However, there is a need to map the kernel to the proper device to improve

the overall performance of an application. Albayrak et al [23] have proposed a

profiling-based scheduling method to map OpenCL application [23]. The data

dependencies and execution time are profiled. Then, by the use of a greedy algo-

rithm, the kernel is scheduled to device i.e. CPU or GPU. The proposed algorithm

is able to achieve the optimal result for scheduling multiple kernels of single ap-

plication only. However, RALB-HC scheme does not require offline profiling over-

head. RALB-HC is able to schedule single and multi-kernel application within a



Literature Review 12

batch of job pool.

In A Framework for OpenCL Task Scheduling on Heterogeneous Multicores Au-

gonent et al [11] explain the need of execution model that unified the computation

unit on heterogeneous architecture. Augonent et al [11] have proposed StarPU,

a runtime system that provides an execution environment for numerical kernels.

The system focuses on four policies i.e. priority, non-priority base, Ws policy, w-

rand policy and heft-tm policy. In the priority-based scheme, the task with higher

priority is given preference. Whereas in the no-priority scheme, priority is not con-

sidered while assigning the task to a processor. In Ws policy, the task assignment

is based on the principle of work stealing. The above-mentioned policies follow

Greedy approach i.e. as soon as the processor becomes available, a task is assigned

to it. In w-rand policy, an acceleration factor is assigned to each processing unit.

Afterwards, the task is assigned to that processing unit having the probability

proportional to the acceleration factor ratio. In heft-tm policy, assessment of past

performance of processing unit is considered. On the basis of that assessment,

the task is assigned to that processing unit which provides optimized execution

time. Augonent et al. [11] have proposed a model that considers mathematical

application i.e. Matrix Multiplication and LU decomposition whereas proposed

scheduling is capable to schedule diverse application in multi- GPU configuration.

Becchi et al [18] have proposed a solution for the optimization of the heterogeneous

environment with minimum knowledge of the underlying architecture details. The

proposed schedule by Becchi et al [18] considers the execution history as well as

data transfer overheads and then schedules the kernel function call on either a

CPU or a GPU. This technique requires the implementation of both the CPU

and GPU version of the kernel. The approach has an edge over other scheduling

heuristics because it attempts to bring computational data near to processing unit

by considering profiled execution time. Becchi et als [18] scheme requires an offline

profiling overhead whereas, proposed RALB-HC scheduler is capable of scheduling

number of data parallel applications without profiling.
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In a similar study titled A dynamic self-scheduling scheme for heterogeneous mul-

tiprocessor architectures, Belviranli et al examine the issues in resource utilization

of heterogeneous environment and proposed a scheduling mechanism named as

HDSS [7]. It partitions the workload among processing units, i.e. CPU and GPU.

This results in improvement of kernel execution time. HDSS has two phases, i.e.

profiling phase and adaptive phase. The computation power of each processing

unit is evaluated by assigning the some number of loop operations in the profiling

phase. While remaining loop operation is assigned based on the processing speed

in the adaptive phase. Both phases help in balancing the load on heterogeneous

computing devices. The proposed RAlB-HC is not dependent on job splitting and

any kind of raw code transformation.

According to Binotto et al[24], distribution of workload among processing units

plays a key role in the heterogeneous environment. Binotto et al. [24] have ad-

dressed that the cost of the task assigned to the processing is non-deterministic and

that cost can be affected by parameters not known a priori. Therefore, Binotto

et al.[24] have proposed a system which assigns data parallel tasks to CPU or

GPU. The kernel code is split among several tasks. After that, execution time

and performance are indexed by an online profile in a database. Whenever a new

task arrives for execution, sorted performance profile determines the scheduling of

task to either a CPU or GPU device. The approach of Binotto et al [24] requires

online profiling as well as kernel code transformation.

In An (ir)regularity-aware task scheduler for heterogeneous platforms Gregg et al.

[25] examine the processing unit performance and address that unit performance

are reduced due to work required for offline training as well as generating par-

titioning of code [25]. As a result, Boyer et al proposed a dynamic approach to

partition workload among processing unit without offline training [25]. The algo-

rithm divides the workload into the number of chunks and then schedules those

chunks to either CPU or GPU. On the basis of previous execution of chunks, the

sizes of chunks are increased or decreased exponentially. The load is balanced by

scheduling larger size chunks to the fast processing unit and smaller size chunk

to the slowest unit. Kaleem et al. have also used the splitting approach based
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on profiling [26]. However, RALB-HC ensures lower execution time by achieving

maximal resource utilization ratio and maximal throughput.

Heterogeneous computing system gets improved performance by utilizing the pow-

erful CPU as well as the GPU. According to Choi et al [8], the device selection is the

most critical factors in determining the performance of application [8]. Therefore,

Choi et al.[8] have estimated the execution time, which determines the schedule

of the application on a CPU or a GPU device. The model requires execution

history of application to train and map newly arrived applications to that device,

which has finished job earlier. The total execution time of the application (on

that device) and the execution time of the currently executing application are

used to estimate finish time of an application. In contrast, our proposed model

dynamically determines not only the device suitability but also device relative

speed.

Heterogeneous multi-core platform has superior performance over the homoge-

neous system. However, according to Grewe et al [4], the optimized result can

only be achieved if the task is accurately mapped to the appropriate process-

ing unit. Grewe et al [4] have developed a portable partitioning scheme for the

OpenCL program. At compile time, the model extracts static code features, i.e.

int operations, float operations, barriers, work items etc. [4]. Then pre-trained

model SVM is utilized to predict whether to map a kernel to a CPU, GPU or

to partition the kernel among available computing devices. Grewe et al [4] GPU

only model achieve 91% accuracy, whereas the CPU only model achieved 95% ac-

curacy. In contrast, the proposed RALB-HC scheduling model not only predicts

device suitability but also predicts relative speedup gains over the non-selected

device. Moreover, the Grewe et als model schedules a single OpenCL kernel across

heterogeneous devices, whereas our approach schedules a job pool of OpenCL

applications.

In A Framework for OpenCL Task Scheduling on Heterogeneous Multicores [3]

proposed a predictive model, which is the extension of the work proposed by the

Grewe et al [3, 4] conducted an in-depth analysis of the control flow divergence and
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its impact on the program partition. The predictive model (Ghose et al., 2016)

[3, 4] has included branch divergence in the code feature. Ghose et al used two

classification models i.e. decision tree and radial base network. The classifier is

trained on three types of model i.e. CPU-GPU inclusive, Partition CPU-GPU and

Combined model. The cross-validation method is deployed to assess the effective-

ness of newly proposed features. The CPU-GPU inclusive achieved 89% accuracy

and the Partition CPU-GPU model achieved 80.84% and 81.23 % respectively. In

contrast to their proposed schedule, our technique ensures multi-node scheduling

of tasks among the processing unit and can achieve high throughput.

According to [13] perspective, full utilization of heterogeneous environment is a

challenging task due to the difference in the processing capabilities, memory avail-

ability and communication latencies of different computational resources. There-

fore Kofler et al [13] proposed an ANN based predictive model. The basic task

of a predictive model is to dynamically partition the given task on a CPU and

a GPU. Kofler et al [13] used Insieme source to source compiler to translate a

kernel code into multi-device kernel code. The dynamic partition is based on the

Artificial Neural Network (ANN) predictive model. The feature set includes static

code features and dynamic input sensitive features (e.g. Data-transfer size of the

split-able buffer). The partitioning task is further to improve from 2% to 7% by

using Principal Component Analysis. The test set achieved 87.5 per cent results.

Kofler et al[13] have partitioned the program and achieved high accuracy. Our

proposed scheduler selects an optimal device as well as do a scheduled task on

a cluster of devices by using the application device performance of the selected

device. Moreover, the proposed schedule does not require kernel splitting.

Wen et al [27] addressed the need for optimal utilization of heterogeneous environ-

ment. According to Wen et al [27], in order to get increased system throughput

and decrease turnout time, there is a need to determine when and where to map

different applications [27]. The feature set of the predictive model includes a

static code feature (number of instructions, load/store operations etc.) and dy-

namic code features (input size, output size and global work size etc.). Wen et

al. have converted a regression problem into classifications by labelling the kernel
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as high-speedup if the measured GPU-speedup is larger than 4, otherwise, it will

be labelled as low-speedup [27]. The high-speedup is mapped to the GPU device,

whereas low-speedup is mapped to a CPU device. The support vector machine

(radial base kernel) is used as the classification model. In this research, the sched-

uler assigns OpenCL kernels by considering the requirement of the application and

the device’s computing capabilities.

In Adaptive optimization for OpenCL programs on embedded heterogeneous systems

Wen et al [14] address that certain application performance is maximized when

assigned to the single computing device and sometimes sharing among comput-

ing device results in improved performance [14]. Therefore, Wen et al proposed

a predictive model that determines whether an application kernel needed to be

scheduled to a single device or it should be combined with other kernels to improve

execution performance of a job pool [14]. The feature set of the predictive model

includes static and dynamic features, which further extend to separate kernel fea-

tures and concurrent kernel feature. The decision tree classification algorithm is

used to classify the kernel to a suitable device. The model is trained using sepa-

rate kernel features and concurrent kernel feature. The first model separates the

kernel into the CPU and GPU, which is based on estimated device affinity. The

second model determines whether or not to merge two GPU kernels. In contrast,

our proposed scheduler maps the devices on a cluster of CPUs or GPUs, by using

device suitability predictor as well as application performance estimation.

2.1 Task Scheduling Heuristics

In a cluster, if one resource of the cluster is very powerful then the scheduling

schemes favour to the powerful resource. The powerful resource will be overloaded

and all other resources will be under-utilized. This load imbalance problem results

in a more energy consumption [35, 66]. Several scheduling mechanisms have this
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problem which results in underutilization of Cloud resources[35]. These schedul-

ing mechanisms include Minimum Completion time (MCT), Min-Min, Resource-

Aware Scheduling Algorithm (RASA), Max-Min and Task-Aware Scheduling Al-

gorithm (TASA) [35, 49–52].

Minimum Completion Time (MCT) scheduling mechanism assigns the job to that

resource which has a minimum completion time. The current load on the resource

is used to identify an appropriate resource for the scheduling the job [35, 49–52].

At each step, MCT needs to find the resource which has the least execution for a

given job. The search to find minimum time machine result in scheduling overhead.

After experimentation, it is found that the MCT performs better as compared to

the random selection and round-robin scheduling schemes. However, MCT assigns

more jobs to the powerful resource due to which load imbalance problem occurs

[55].

Min-Min scheduling heuristic follows the MCT mechanism. Min-Min scheduling

consists of two steps. In the first step, resources finish time is determined for all

candidate jobs [35, 49, 52]. The second step is performed by assigning the selected

job to the machine which has the minimum finish time. After each job mapping

decision, the ready time of each resource gets updated. In this way, all the batch of

the job is mapped among machines [53, 54]. Min-Min mechanism favours smaller

jobs which result in low resource utilization for a job pool.

The max-min mechanism is similar to the Min-Min scheme. However, the selec-

tion policy of both scheduling mechanism is different but their functionality is

almost identical [35, 56]. Like Min-Min, Max-Min also consists of two steps. The

first step is identical to the Min-Min, resources finish time is determined for all

candidate jobs. In the second step, the resource is assigned to that job which has

maximum earliest finish time for it. The resource ready time is updated on each

job scheduling decision [57, 58]. Max-Min mechanism favours larger jobs which

result in low resource utilization for a job pool and cause load imbalance.

A grid computing load balancer named Resource Aware Scheduling Algorithm

(RASA) alternatively uses the Max-Min and Min-Min [35]. Firstly, resources finish
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time is determined for all candidate jobs. The mapping is done by considering the

number of jobs, if a number of jobs are odd then Min-Min heuristic is employed

first, an otherwise Max-Min heuristic is used [58, 59]. After that, Min-Min and

Max-Min are alternatively used to schedule the remaining jobs. RASA provide fair

scheduling mechanism for large and small size jobs. However, the load imbalance

problem still exists if the job pool contains a larger number of big jobs.

The Sufferage mechanism calculates the sufferage value for all jobs. The sufferage

value is the difference between its MCT and the second MCT for each job in the

pool [35, 54, 55]. The mapping is done by selecting the job which has the largest

sufferage value and then mapping it on the machine having minimum execution

time for it. The Sufferage mechanism results in minimum makespan, however, the

calculation overhead of sufferage value is very large in each job mapping [60, 62, 63].

In the majority of the cases, the sufferage mechanism performs better than the

Max-Min, MCT and Min-Min.

Task aware scheduling algorithm (TASA) follows the same RASA type alternative

mechanism [34, 35]. However, it uses the Min-Min and Sufferage heuristics. Firstly,

the TASA uses the Min-Min mechanism to map jobs. After that, the Sufferage

value is calculated to map job among the resource [34]. TASA generates better

makespan and resource utilization as compared to Sufferage, RASA, Min-Min and

Max-Min.

A Resource-Aware Load Balancing Algorithm (RALBA) distributes load based

on the computation capability of the resource. The RALBA comprises a two-

phased i.e. fill scheduler and spill scheduler. The fill scheduler loads the batch of

the job, according to the capacity of the resource. If the all the machine capac-

ity is full then spill scheduler map all the job by using the minimum completion

time. RALBA has achieved significant improvement in execution time resource

utilization and throughput against above-mentioned scheduling heuristics, how-

ever, However, RALBA does not support SLA-aware scheduling of jobs.
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Table 2.1: Summary of state-of-the-art Task scheduling Heuristics

Heuristic Makespan
Improve-
ment

Favours
Smaller
jobs

Favours
Larger
jobs

Load
Imbal-
ance

Weakness

MCT 3 7 7 3 Fasters resources
allocation with
number of jobs.

Min-
Min

3 3 7 3 Favors smaller
jobs and penal-
izes the larger
jobs.

Max-
Min

3 7 3 3 Load imbalance
when larger jobs
are in the job
pool.

Sufferage 3 7 7 3 Computing
Sufferage value
overhead in each
job mapping.

TASA 3 3 7 3 TASA doesnt
address load
balancing.

RASA 3 7 3 3 Penalizes
smaller jobs
in some cases.

RALBA 3 7 7 3 Penalizes
smaller jobs
in some cases.
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Table 2.2: Critical review of state-of-the-art heterogeneous scheduling approaches.

Ref Methodology Weakness Strengths

[14] Wen et al used a static and dynamic code fea-
ture. Predictive modelling (to predict whether
an application kernel needed to be scheduled to
a single device or it should be combined with
other kernels.

The limited number of application kernel is
used. The methodology does not incorporate
multi-node application. The methodology does
not incorporate multi-node application. Doesnt
incorporate load balancing.

The feature set has both static and
dynamic code features that will able
to improve the accuracy of the pre-
dictive model.

[22] Taylor et al used static and dynamic feature
to predict whether an application kernel needs
to be scheduled on mobile computing CPU or
GPU.

The methodology does not incorporate the load
imbalance problem.

The static and dynamic feature
will increase predicted model perfor-
mance

[3] Ghose et al proposed control divergence fea-
tures in addition to static and dynamic kernel
features. The predictive model predicts that
whether an application kernel should run on
CPU or a GPU or kernel should be split among
the CPU and GPU i.e. Partition CPU-GPU.

Methodology required kernel splitting overhead
to split tasks among the CPU and GPU device.
The methodology, not able incorporates load im-
balance problem.

The control flow divergence analysis
increases the accuracy of predictive
models.

[27] Wen et al used a static and dynamic code fea-
ture. Predictive model used to forecast whether
an application needs to run on a CPU or a GPU.

Wen et al have not addressed the load imbalance
problem and device suitability among Multi-
node devices.

Static and dynamic kernel code fea-
tures will able to improve, enhance
the performance of predictor.

[13] Kofler et al uses static, dynamic and inputs
sensitive kernel features. An OpenCL applica-
tion Kernel is portioned into two tasks that are
scheduled on a CPU and GPU.

The proposed strategy required kernel splitting
among the CPU and GPU device, which results
in additional time overhead. Moreover, it does
not incorporate a multi-node application split-
ting strategy.

Input-sensitive features will help to
enhance predictive models.

[4] Grewe et al develop a machine-learning based
compiler model that accurately predicts the best
partitioning of a task given only static code fea-
tures.

Although the kernel splitting technique is auto-
matic but still consumes additional time over-
head. Multi-node application scheduling is not
achievable.

The static features have achieved
3.03 overall on CPU strategy and
1.55 over an all on GPU strategy.
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2.2 Critical Analysis

After the comprehensive analysis of state-of-the-art approaches, we found tech-

niques for heterogeneous scheduling on a heterogeneous machine. The majority

of heterogeneous scheduling schemes do not address the problem of overloading,

which results in longer execution time and low resource utilization [4, 13, 14, 22,

27, 34, 35, 49–60, 62, 63]. There are several techniques that do not consider device

suitability and this often results in low resource utilization [5, 18–21]. A few tech-

niques use the machine learning approach to predict the suitable device and then

split the kernel code among the CPU and GPU [4, 12–14, 22]. The kernel splitting

overhead required additional time overhead. The number of research does not

consider multi-node application splitting or merger technique and load balancing

(if a large number of kernel always suits one device then, overall throughput trends

to decrease) issue in the cluster of a heterogeneous environment. The analysis of

scheduling heuristics (our experiments) revealed that having minimal makespan

and high throughput cannot guarantee the load balanced scheduling.
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Methodology

In the heterogeneous computing environment, researchers tend to map applica-

tions on CPUs or GPUs only. However, this decision making is not considered as

effective when there is a multi-node or cluster of the heterogeneous system [67].

Moreover, the scheduler receives the number of jobs and then the scheduler makes

the mapping decision to place an application of the available computing devices.

That decision about the work distribution among a set of resources should be bal-

anced to achieve the maximal throughput. Load balanced scheduling is a critical

issue in the heterogeneous system and it has become even more crucial for the

cluster of heterogeneous devices (because of multi-level of parallelism) [66, 67].

It is very difficult for a researchers to decide the mapping of jobs to a variety of

heterogeneous computing devices [66]. Therefore, an automated strategy should

be devised for the efficient scheduling of the jobs. Programmers normally use the

default scheduling strategy. In this type of scheduling, parallel portion of a pro-

gram (kernel) is assigned to the GPU while CPU executes serial portion (kernel

management) of a program. The CPU remains idle while all the computation is

performed by the GPU. The idle time results in wastage of precious CPU resources

which are consuming power. It is difficult for the programmer to know the nature

of each job and select device according to the requirement of the job as well as

hardware properties. Application mapping according to the suited devices is a

22
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difficult task. To address this problem, we propose a machine learning based pre-

dictive model that predicts application device suitability as well as its expected

performances. Device suitability prediction is utilized by the scheduler for the

optimal mapping of workload. The resource aware load balancer for the hetero-

geneous cluster (RALBHC) is proposed that utilizes the predicted model output

and then balances the load among the available resource. In order to evaluate the

performance of the proposed technique, the detailed methodology is presented in

Figure 3.1.

A user or multiple users submit a data parallel application and the proposed

RALB-HC scheduling system assess submitted job by extracting static code fea-

tures. The RALB-HC scheduling consist code feature extractor, device suitability

classifier, application estimator, and scheduling heuristic.

The feature extraction mechanism is explained in the section 4.3.2. Extracted code

features along with the input data size of a job are then provided to the Device

Suitability Classifier module, which classifies the submitted jobs, according to

device suitability (a potential best-performing device for that job i.e., a CPUi or

a GPUk). The application time estimator predicts the execution time of the job

on all the available resources. The output of both prediction models is then used

by the resource-aware. The next section presents the detailed discussion of the

Device Suitability Classifier and the Application estimator modules.

3.1 Resource-Aware Load Balancer for Hetero-

geneous Cluster (RALB-HC): System Archi-

tecture

The proposed algorithm system architecture is shown in Figure 3.2. The batch of

jobs is provided to the RALB-HC and load balancing of application is performed.

It consists of two sub schedulers i.e. resource selector and load balancer. Resource

selector first computes a load of each machine followed machine selection having
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Figure 3.1: Schematic diagram representing proposed RALB-HC Methodol-
ogy
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a maximum load on it. After that, it selects that job which has the minimum

completion time for the selected machine. Afterwards, it selects the migration

machine, which has load less than (total load/number of machines) and the mini-

mum completion time for the given job. If the machine is not available, then the

machine that has 2nd minimum completion time for the job will be selected and

the loop continues until the job assigned to any machine. After that, the job is

removed from the selected machine and mapped to the newly selected machine. In

this way, all the jobs on the selected machine are mapped to new machines until

the selected machines load is less than the total load/number of machines. This

task is performed by the load balancer. After that, the selected machine is removed

from the list and resource selector selects the machine which has the maximum

load. This process continues until all machine load is distributed among available

resources. After each iteration, resource utilization is calculated and compared.

If there is an improvement in the resource utilization then the new resource uti-

lization value becomes the old resource utilization value and machine mapping is

saved. After saving the machine mapping, the convergence value is set to zero.

If there is no improvement, then the convergence value is incremented. Based

on experimentation value, we have selected the algorithm converges value that

should be less than half of the total number of jobs. The convergence indicated

that maximum resource utilization is achieved.

The proposed algorithm RALB-HC (shown in Algorithm 1) has two primary mod-

ules, i.e. resource selector (Algorithm 2) and load balancer (Algorithm 3). Symbol

table explains the interpretations of variables used in Algorithm 1-3.
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Figure 3.2: RALB-HC System Architecture
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3.1.1 RALB-HC (Algorithm 1) and ARUROLD Calculation

For the Algorithm 1, the input is the execution time of all jobs on every ma-

chine and output is the load balanced mapping of jobs on all available machines.

Firstly, the jobs are mapped to the machine that has the minimum execution time

for each job in case of synthetic and Google-like workload. In case of realistic load,

the classification algorithm mapping will be utilized (line 1 of Algorithm 1). The

convergence value is set to zero (line 2 of Algorithm 1). This convergence value

is used for optimization explained in the previous section. The average resource

utilization is calculated (line 3 of Algorithm 1) then, while loop starts with the

condition if the convergence is less than the half of the total jobs the loop continue

else its stops (line 4 of algorithm 1). By taking the execution time of all jobs on

each machine and current mapping of each machine, the resource selector algo-

rithm 2 returns improved task mapping (line 5 of algorithm 1). Afterwards, once

again the average resource utilization is calculated (line 6 of algorithm 1). If the

new average resource utilization is greater than old average resource utilization

(line 7 of algorithm 1), the convergence value is set to zero (line 8 of algorithm

1), average resource utilization new becomes average resource utilization old (line

9 of algorithm 1) and the mapping of task is saved (line 10 of algorithm 1). If

the there is no improvement in the average resource utilization then convergence

is incremented (lines 11-13, Algorithm 1).

3.2 RALB-HC Resource Selector (Algorithm 2)

For the Algorithm 2, the input is the execution of all jobs on each machine, and

task mapping of all machines. The output is the load balanced task mapping.

The algorithm calculates the sum of execution time for all jobs in each machine

(lined 1-2 of Algorithm 2). The total execution time is calculated by summing the

execution time of each machine (line 3 of algorithm 2). A load of each machine is

calculated by dividing the machine execution time to total execution time (lines

4-6 of Algorithm 2). The while loop starts from zero to the number of the machines
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Algorithm 1 : RALB-HC: Proposed Scheduler for Heterogeneous Cluster

Input: Execution time of all jobs on every machine.
Output: Load Balanced mapping of jobs on machines

1: Select Mi ← Predictionmodel()
2: convergence← 0
3: ARURold ← mean(readytime−Mi)

makespan

4: while convergence < Concric do
5: taskmap[ ]← resourceselector(extime[M1, ...,Mn], taskmap[M1task, ...Mntask])

6: ARURnew ← mean(readytime−Mi)
makespan

7: if ARURnew > ARURold then
8: convergence← 0
9: ARURold ← ARURnew

10: Writetask−set [ ] in a file
11: else
12: convergence + +
13: end if
14: end while

(line 8 of algorithm 2). Then, its select the machine which has a maximum load

on it. By taking the selected machine job mapping, load on the selected machine

and execution time of each job on every machine, the load balancer returns the

balancing task mapping of the selected machine (lines 9-10 of algorithm 2). The

selected machine is removed from the total load (lines 11-12 of algorithm 2).

After load balancing of all machine the while loop stops. The algorithm returns a

balanced task mapping (lines 13 of Algorithm 2).

3.3 RALB-HC Load Balancer (Algorithm 3)

For the algorithm 3, the input is the execution time of all jobs on every machine,

selected machine jobs, selected machine load and total load of the cluster. The

output is the balance task mapping. The while loop starts with the condition if the

total load on the selected machine is greater than the (total execution time/num-

ber of machines) the loop continue else its stops (line 1 of algorithm 3). From

the selected machine jobs, select the minimum execution time job (line 2 of al-

gorithm 3). Then it selects a new machine which has minimum execution time

for the selected job other than the selected machine (lines 3-4 of algorithm 3).
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Algorithm 2 : Resource Selector

Input: Task mapping of sel −machine Jobs and Load[sel −machine]
Output: Task-map[sel-machine]

1: for i← 0 to number of machines do
2: ETjobs[Mi] ← ETJ1 + + ETJn

3: end for
4: TotalET ←

∑n
i=0ETjobs[Mi]

5: for i← 0 to number of machines do
6: LoadMi ←

ETjobs[Mi]

TotalET

7: TotalLoad[ ]← LoadMi

8: end for
9: t← 0

10: while convergence < Concric do
11: Select machine Mi with Maximum load from TotalLoad
12: Taskmap[ ]← Loadbalancer(extime[M1, ...,Mn],Mijobs, T otalload[Mi])
13: Remove Mi Totalload[ ]
14: t++
15: end while
16: Return Taskmap[ ]

The algorithm 3 checks that the new selected machine has load less than (total

execution time/number of machines) if true, then it mapped the select job on it

and remove it from selected machine map jobs (lines 5-7 of algorithm 3). If the

new selected machine has a load more than the total execution time/number of

machines, this machine is removed from the machine selection list (lines 8-9 of

algorithm 3). In this way, jobs are migrated to the new machine. The algorithm

3 returns a balanced mapping of the jobs for selected machine.

3.4 Evaluation Benchmarks

The RALB-HC is compared with the Resource aware load balancing algorithm

(RALBA), Minimum Completion time (MCT), Min-Min, Max-Min, Resource-

Aware Scheduling Algorithm (RASA), Sufferage and Task-Aware Scheduling Algo-

rithm (TASA) [35]. The performance of the above-mentioned scheduling heuristic

and proposed algorithm RALB-HC is evaluated using makespan, throughput and

resource utilization metrics. Makespan is the latest finish time of any machine

after executing the assigned task in a cluster environment. The better algorithm
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Algorithm 3 : Load Balancer

Input: i. Execution time of all jobs on every machine.
ii. Selected Machine Jobs and Total Load on it.
iii. Total load on the cluster

Output: Task-map[sel-machine]

1: while Totalload[Mi] >
ETjobs[Mi]

TotalET
∗ 100 do

2: Selectedjob ← Select minimum time job from Mijob
3: for i← 0 to number of machines do
4: newmachine ← mig −machine
5: if newmachine <

TotalET

numberofmachines
then

6: newmachine ← maptaskselectedjob
7: Remove selectedjobfromMijobs
8: else
9: Remove newmachine from selectedjob−all−machines−execution

10: end if
11: end for
12: end while
13: Return Taskmap[ ]

has the lowest value of makespan. Average Resource Utilization Ratio (ARUR)

is a measure of representing the resource utilization status of the cluster. The

better algorithm has the value nearest to 1. Throughput is the number of jobs

executed per unit time by the cluster. The better algorithm has the highest value

of throughput [35].

Table 3.1: Evaluation of Benchmarks with Performance Metrics

S.No Algorithm
1 RALBA
2 Minimum Completing Time (MCT)
3 Min-Min
4 Resource-Aware Scheduling Algorithm (RASA)
5 Sufferage
6 Task-Aware Scheduling Algorithm

makespan = max∀j∈1,2...m (MjET ) (3.1)

where m is the number of machines



Methodology 31

throughput =
n

makespan
(3.2)

where n is the number of the job.

ARUR =
(
∑m

j=1 MjET

m
)

makespan
(3.3)

To evaluate the classification (device suitability) and regression model (application

estimator), we use standard metrics i.e. precision, recall, f measure and mean

square error (MSE). The precision is the portion of correct positive classification

(true positives) from cases that are predicted as positive [39]. The recall is the

portion of correct positive classification (true positive) from cases that are actually

positive[39]. F measure is the harmonic mean of precision and recalls [39].

Precision =
TruePositive

TruePositive + FalsePositive
(3.4)

Recall =
TruePositive

TruePositive + FalseNegative
(3.5)

MSE is used to evaluate the application estimator. MSE measures the square

distance of forecast value and true value. MSE represents the model has high

accuracy and high mean square error mean it has low accuracy [40].

F −measure = 2 ∗ (Precision ∗Recall)

(Precision + Recall)
(3.6)
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MeanSqaureError =
1

n

n∑
i=1

(Yi − Y ∗i )2 (3.7)

Where n is the number of testing samples

Yiis the actual value

Y ∗i is the predicted value



Chapter 4

Experimental Results and

Discussion

4.1 Introduction

This chapter encompasses the details regarding implementation of RALB-HC with

the detail of experimentation performed on three data sets, i.e. Scientific Appli-

cation, synthetic and Google-like workload as shown in Figure 4.1. The three

variations of the dataset are used to completely assess the proposed load balancer

RALB-HC against state-of-the-art scheduling algorithms. These scheduling mech-

anisms include Task-Aware Scheduling Algorithm (TASA), Min-Min, Minimum

Completion time (MCT), Max-Min and Resource-Aware Scheduling Algorithm

(RASA). In the Scientific Application data set, the static analyzer is proposed

that extract static features. Then, these features are used to train the device

suitability predictor. The device suitability predictor predicts the best resource

for the given job in the cluster. In addition to the device suitability predictor,

application estimator is also trained by using static features and hardware fea-

tures. The application estimator output is used by the RALB-HC for optimized

load balancing. The synthetic workload is generated using a random-number com-

prising five categories of application (machine instruction (MI)) ranges, i.e. tiny

33
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(1-250 MI), small (800-1200 MI), medium (1800-2500 MI), large (7000-10000 MI)

and extra-large 30000-45000 MI). Moreover, we use the mechanism of Altaf et al

[35] to generate a Google-like workload. Altaf et al. [35] have formulated the

5 categories for Google-like workload, i.e. small (15k-55k MI), medium (59k-99k

MI), large (101k-135k MI), extra-Large 150k-337.5k MI) and huge (525k-900k MI).

The proposed algorithm RALB-HC is evaluated using makespan, throughput and

resource utilization metrics. Each experiment is explained in detail and evaluation

is performed comprehensively.

4.2 Experimental Setup

In this research, three types of the data set are used, i.e. scientific application,

synthetic and google-like workload. For scientific application data set, experiments

are performed on a CPU-GPU system comprising on an Intel Core i5-4460 CPU

and an NVIDIA GeForce GTX 760 GPU. All experiments are performed by using

Linux Ubuntu 16.04 operating system. The specifications of the employed machine

are presented in Table 4.1. Cloud simulator CloudSim is used for the synthetic and

google-like workload. It is an open-source framework for the performance analysis.

All the experiments are performed using 50 VM, hosted on 30 host machines within

a data center.

Table 4.1: Experiment setup for the Scientific Application dataset

Device CPU GPU

Architecture Haswell Kepler

Base Clock 3.2 GHz 0.980 GHz

Boost Clock 3.4 GHz 1.033 GHz

Total Cores 4 1152 (CUDA cores)

Memory 8 GB 2 GB

Memory bandwidth 25.6 GB/s 192.2 GB/s

Performance (Single Precision) 409.6 GFLOPS 2257.9 GFLOPS

OpenCL SDK Intel SDK for OpenCL 2016 CUDA 8.0

Compiler GCC 5.4.0 Nvcc
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Figure 4.1: Explain the Comprehensive data set to test the effectiveness of
the proposed algorithm RALB-HC. The scientific application data set is further
split between Data Driven (data set having a variation of data size ) Data sets
and Application Driven (data set having number of applications). Google-Like
workload and Synthetic workload is build according to recommendation of Altaf

et el [35].

4.2.1 RALB-HC Implementation

We have chosen python language to implement the algorithm. Python is widely

used in data science-related tasks. For a Scientific Application data set, the device

suitability predictor and application estimator are also implemented in the python

language. The sklearn library is used to implement the machine learning-based

algorithms. The tree-based pipeline optimization library is used for device suit-

ability and application estimator optimization task. These libraries are selected

based on comprehensive analysis of all openly available libraries.

The work is made available on the GitHub1 repository for further exploration. The

source is written in python, because of its simplicity and its popularity among data

1https://github.com/usman189/RALB-HC

https://github.com/usman189/RALB-HC
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scientist and researchers in recent times. Our experience with python was very

good and comfortable during this research study.

4.3 Scientific Application Data set

The Scientific Application dataset was collected by executing a total of 155 data

parallel applications from mainstream benchmark suits (i.e., AMD, Polybench and

self-employed) [3, 4, 13, 14, 22, 27, 66]. The benchmarks (shown in Table 6) are

executed using multiple problem sizes resulting in a job pool of total 930 jobs.

Each of 930 jobs is executed on two same and one different machine (1- GTX 780

and 2- GTX 740). Each machine has two processing units, i.e. CPU and GPU. The

execution time of these three CPUs and three GPUs are profiled. A total of 930

profiled application is used to build a diverse training data for device suitability

predictor and application estimator. The data parallel application code of these

benchmarks is then provided to the code feature extractor, which extracts the

features from data parallel application. The hardware specification is mentioned

in Table 4.2 and Table 4.3.

Table 4.2: GTX 760 Machine Details

Device CPU GPU

Architecture Haswell Kepler (GTX 760)

Base Clock 3.2 GHz 0.980 GHz

Boost Clock 3.4 GHz 1.033 GHz

Total Cores 4 x 4 threads 1152 (CUDA cores)

Memory 8 GB 2 GB

Memory bandwidth 25.6 GB/s 192.2 GB/s

Performance (Single Precision) 409.6 GFLOPS 2257.9 GFLOPS

ISP 32 2

Memory Speed 1600mhz 6.0 Gbps

4.3.1 Experimental Dataset

Cummins et al. [34] have addressed that those predictive model that is trained on

one benchmark suit fails to generalize across the other suite. By considering the
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Figure 4.2: Scientific Application workload cluster composition

Table 4.3: GTX 740 Machine Details

Device CPU GPU

Architecture Skylake i7-6700 GeForce (GT 740)

Base Clock 3.4 GHz 993 MHz

Boost Clock 4 GHz 1008 MHz

Total Cores 4 cores x 8 thread 384 (CUDA cores)

Memory 4 GB 2 GB

Memory bandwidth 34.1 GB/s 28.8 GB/s

Performance (Single Precision) 870.4 GFLOPS 762 GFLOPS

Instruction per clock 32 2

Memory Speed 2.133 GHz 1.8 Gbps

Table 4.4: Device suitability model tune parameters

Methods Hyper Tuning

StackingEstimator estimator=GaussianNB()

Features Selector PCA (iterated-power=7 ,svd-solver=”randomized” )

Classification Model XGBClassifier ( learning-rate=0.5, max-
depth=8 ,min-child-weight=1, n-estimators=100,
nthread=1,subsample=0.5)

recommendations of Cummins et al [34], we have used two benchmark suites i.e.

AMD and Polybench. The AMD and Polybench both benchmarks are extensively

used in literature for heterogenous scheduling [3, 4, 13, 14, 22, 27, 66]. The detail
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Table 4.5: Application time estimator tune parameters

Methods Hyper Tuning

Normalizaiton RobustScaler()

Regression Model XGBRegressor(learning-rate=0.5, max-depth=6, min-child-
weight=1, n-estimators=100, nthread=1, subsample=1.0)

of the benchmark used is mentioned in Table 4.6. These benchmarks are used

to generate training data for our predictive models. These benchmarks cover

the number of domains, including image processing, linear algebra and pattern

recognition. In order to assess the effectiveness of the predictive model, leave one

out cross-validation technique is used. The technique worked by selecting one

benchmark for testing and then using the remaining for the training the model.

Data details are mentioned in Table 4.11.

Table 4.6: Benchmarks

Suits Benchmark Input Data Size Versions

AMD Matrix Multiplication 1,769,472- 12,582,912 3
Binomial Options 32,768- 294,912 9
Bitonic Sortthe 32,768- 268,435,456 13
Fast Walsh Transform 8,192- 221,184 17
Matrix Transpose 131,072- 536,870,912 6
Discrete Cosine Transformation 2,097,152-

1,887,436,800
17

Floyd Warshall 524,288- 25,690,112 6

Polybench 3MM (3 Matrix Multiplications) 7,000,000 - 17,920,000 3
GEMM (Matrix-multiply) 3,000,000- 27,000,000 5
GESUMMV (Scalar, Vector and Matrix
Multiplication)

8,012,000-
1,800,180,000

17

MVT (Matrix Vector Product and Trans-
pose)

4,016,000- 900,240,000 17

ATAX (Matrix Transpose and Multiplica-
tion)

4,012,000- 900,180,000 17

2MM (2 Matrix Multiplications) 5,000,000- 45,000,000 5
2DCONV (2D Convolution kernel) 2000000- 1,568,000,000 17
3DCONV (3D Convolution kernel) 1,000,000-

1,728,000,000
17

Own De-
veloped

Matrix-Vector Multiplication 4,202,4961,514,299,392 16
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4.3.2 Feature Extraction

The code feature extractor component extracts 30 distinct code features. The

overview of the approach can be seen in Figure 3.1. The code feature sets represent

the program behaviour. The purpose of the code feature extractor is to gather

attributes of data parallel application code. Firstly, in order to ensure that the

data parallel application code is error free, the data parallel application is just-

in-time compiled using clang (front-end compiler) [65]. Then, the clang LLVM

parser is used to extract features based on LLVM intermediate representation

(IR) [65]. The python script (code feature extractor) uses Regular Expressions

to detect features which are not available or can be detected by the LLVM (IR).

In this research, we have only extracted code features and have not profiled the

program. The full list of extracted features are mentioned in Table 4.7. After the

feature extraction phase, both device suitability and application estimator model

(trained offline) take in the feature vector and predicts device suitability as well as

application estimator respectively. This prediction is provided with the proposed

schedule for load balancing task.
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Table 4.7: Data Parallel Application Code Features set

Index Features Name Index Features Name
1 Data Size 16 Total number of Subtraction (Integer Data type)
2 Total number of Return statement 17 Total number of Function Call instruction
3 Total number of Control Statement 18 Total number of Functions
4 Total number of an Allocation instruction 19 Total number of Blocks
5 Total number of Load Instructions 20 Total number of Instructions
6 Total number of Store Instructions 21 Total number of Float Operation
7 Total number of Multiplication (Float Datatype) Operation 22 Total number of Integer Operation
8 Total number of Addition (Integer Datatype) Instruction 23 Total number of Loop Operation
9 Total number of Multiplication (Integer Datatype) Instruction 24 Base Clock (CPU/GPU)
10 Total number of Division (Float Datatype) instruction 25 Boost Clock (CPU/GPU)
11 Total number of Division (Integer Datatype) instruction 26 Total Cores (CPU/GPU)
12 Total number of Condition Check instruction 27 Memory (CPU/GPU)
13 Total number of Addition (Float Datatype) instruction 28 Memory bandwidth (CPU/GPU)
14 Total number of Addition (Integer Datatype) instruction 29 Performance (Single Precision) (CPU/GPU)
15 Total number of Subtraction (Float Datatype) 30 Instruction per clock (CPU/GPU)
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Figure 4.3: Correlation Analysis

4.3.3 Feature Selection

The feature set consists of 30 distinct features. Whether the dataset is collected

by the non-domain-expert or it is provided by the domain experts, the selection

of key attributes is very important. The motivation behind using less number

of features (for predictive models) is the less redundant data, reduced overfitting

issues, improved accuracy, and decreased training time of the algorithm. In this

research, we have adopted two feature selection techniques, i.e., correlation analysis

and tree-based feature selection. The correlation analysis provides an indication

of the relative change between the two features. If a change in a features value

causes the change in other features value too, then these features are referred to as

co-related. The positively correlated feature is those features which change values

in the same direction (i.e., increased or decreased). The features are denoted as

negatively co-related if the change of one features value causes an inverse change

in another features value. Figure 4.3 shows the correlation matrix of the employed

code features (mentioned in Table 2).
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The correlation analysis is very crucial for the selection of training features. If

the data sample highly correlated features then, it will result in lower accuracy.

The Figure 4.3 shows that the features [0] Data size, [6]- Total number of Mul-

tiplication (Float Datatype) Operation, [15]-Total number of Subtraction(Integer

Datatype) instruction, [12]-Total number of Addition(Float Datatype) instruc-

tion, [16]-Total no of Function Call instruction, [8]- Total number of Multiplica-

tion (Integer Datatype) Instruction, [22]-Total number of Loop Operation and[20]-

Total number of Float Operation has the smaller positive or a negative correlation

with all other feature and they are ranked as top features by tree-based feature

selection mentioned in Figure 4.4. The [10]-Total number of Division (Integer

Datatype) instruction have very strong relationships with [1] - Total number of

Return statement, [3]- Total number of Allocation instruction, [12]-Total number of

Addition (Float Datatype) instruction and 14]-Total number of Subtraction (Float

Datatype) instruction, which means that with the increase of [10]-Total number

of Division (Integer Datatype) instruction, will tend to increase in the correlated

feature set. After analyzing the correlation matrix and features importance rank-

ing it was concluded that the features [5] - Total number of Store Instructions,

[1] - Total number of Return statement, [17]-Total number of Functions, [3] - To-

tal number of Allocation instruction and [10]-Total number of Division (Integer

Datatype) instructions have very low or no contribution to output class so they

are removed from feature set.

After correlation analysis and information gain analysis, selected features for the

device suitability model are mentioned in Table 4.8 and for application execution

time are mentioned in Table 4.9

4.3.4 Model Selection

In this research, two models have used, i.e. device suitability and application

execution time predictor. The device suitability model predicts the application

suitability on specific CPUi or GPUk. The application execution time predic-

tor forecasts the execution time on all CPUi and GPUk. Both model type and
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Figure 4.4: Tree Based Feature Selection

Table 4.8: Top Features set for predicting device suitability

Index Top Features Name
0 Data Size
6 Total number of Multiplication (Float Datatype) Operation
8 Total number of Multiplication (Integer Datatype) Instruction
9 Total number of Division (Float Datatype) instruction
11 Total number of Condition Check instruction
12 Total number of Addition (Float Datatype) instruction
14 Total number of Subtraction (Float Datatype)
15 Total number of Subtraction (Integer Datatype)
16 Total number of Function Call instruction
18 Total number of Blocks
19 Total number of Instructions
20 Total number of Float Operation
21 Total number of Integer Operation
22 Total number of Loop Operation

its output are mentioned in Table 4.10. The device suitability model training

methodology is shown in Figure 4.5. To train the device suitability classifier and

application time estimator, it is required to label the training set of data parallel

applications. Therefore, we label the output class for device suitability model by

executing each application on all CPUi and all GPUk a device. The execution time

of each data parallel application is noted for all available resources i.e. CPUiand
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Table 4.9: Top Features For Forecasting Application Execution Time

Index Top Features For Forecasting Application Execution
Time

23 Base Clock (CPU/GPU)
24 Boost Clock (CPU/GPU)
25 Total Cores (CPU/GPU)
26 Memory (CPU/GPU)
27 Memory bandwidth (CPU/GPU)
28 Performance (Single Precision) (CPU/GPU)
29 Instruction per clock (CPU/GPU)

GPUk. The resource that consumes the lower execution time is labelled as a suited

device for that data parallel application.

Table 4.10: Models Output Class

Model Type Output

Device Suitability Predictor Classification Model needs to pre-
dict application suit-
ablilty on specific CPUi

or GPUk

Application Execution time Estimator Regression Model needs to pre-
dict application execu-
tion time on all CPUi

and GPUk .

For application estimator predictive model, a different approach was adopted.

The execution time of each application on all CPUi and all GPUk a device is

noted. The execution time of the devices is considered as output. The static code

feature and device features are combined to make an input feature vector for the

application time estimator.

Table 4.11: Training and Testing Data set

Set Instances

Training Set 653 (70%)
Testing Set 277 (30%)
Total 930

In this research, we use the TPOT library [32] that chooses the right machine learn-

ing model and the best hyperparameter for that model. The TPOT is built on top

of Scikit learn[32] that uses genetic programming to optimize our machine learning

pipeline. After feature extraction and feature selection, TPOT does the feature
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construction, model selection and hyperparameter tuning. Tree-based pipeline

optimization is a new technique that shows significant promise for 1) making,

machine learning tools more accessible to non-experts and 2) saving practitioners

considerable amounts of time by automating the most tedious parts of machine

learning. The labelled data (i.e., CPU or GPU) are provided to the TPOT clas-

sification class to determine the device suitability. Furthermore, the application

estimator labelled data (execution time) is provided to the TPOT regression class

to predict the potential application execution time on a device. Both the TPOT

classes return hyper tuned model for both types of data, as shown in Table 4.4and

Table 4.5.

The distinguishing feature of the proposed technique is that: on one hand it re-

duces the exponential growth of the time against conventional approaches. How-

ever, there is a general obsevation that the training time dratically influences

the accuracy. For example, the increaseed amount of training time brings down

the accuracy rate vise versa. Extreme gradient boosting algorithm is known for

its reduced training time and high accuracy [44, 68]. Extreme gradient booting

uses parallelization to use multicores of the processor. The use of parallelization

results in reduced training time of the model. Extreme Gradient Boosting [44]

is used for the classification and regression tasks, such as spam detection, face

recognition, and financial predictions [42–45] etc. Gradient boosting technique

is used by renowned search engines (i.e., Google, Bing, Yandex, and Yahoo etc.)

Generally, grading boosting is used in search engines for web page ranking; how-

ever, this machine learning model is not limited to the application domain and

can be adopted for various problems such as object detection and few more etc.

[44, 45]. A tree base pipeline optimization technique performed hyper-parameter

tuning which result in the selection of Extreme Gradient Boosting (Device Suit-

ability) and Extreme Gradient Boosting Regression (application time estimator)

algorithms.
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Figure 4.5: Device Suitability and Application Estimator Training
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Figure 4.6: Application Execution Time Prediction Model

4.3.5 Model Training and Testing

After getting feature selection and model selection. The models are trained and

tested on the dataset. The performance of both prediction models is mentioned

in Figure 4.6 and Figure 4.7. The application estimator has a mean square error

of 1.19 and device suitability model have an accuracy of 0.89.

Over the past few years, Receiver Operating Characteristic (ROC) curves [42–44]

Figure 4.7: Device Suitability Prediction Model
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Figure 4.8: Precision-Recall Curve of Device suitability Model

are widely being used by many researchers to measure the performance of the

trained machine learning models (Bradley, 1997). Furthermore, ROC curves are

being used in various statistical methods that combine multiple clues, test results

etc., and have been plotted and evaluated to represent a qualitative aspect of the

trained machine learning models. ROC is basically a plot where True Positive

Rate (TPR) is plotted on the Y-axis and False Positive Rate (FPR) is plotted on

the X-axis. For every possible classification (i.e., output class), the TPR rate is

based on the scenario where the actual classification is positive and the number of

times the classifier has predicted positive results. The FPR determines that how

often the classifier has incorrectly predicted positive when the actual classification

is negative. Both the TPR and FPR range between 01 (0 means poor prediction

whereas the value 1 means an accurate prediction). The area under the ROC

(AUC), is widely utilized for weighing classier performance [42–44].

The results, based on the tree-based pipeline model is shown in Figure 4.8. The
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Figure 4.9: ROC Curve of Device Suitability Model

ROC curve for class 1 (GTX-740-1-CPU) is 0.92, class 2 (GTX-740-1-GPU) is

0.90, class 3 (GTX-740-2-CPU) is 0.99, class 4 (GTX-740-2-GPU) is 1 and class

5 (GTX-760-1-CPU) is 0.99. The high precision-recall curve value for all class

signifies the excellent prediction. However, the precision-recall curve of class 6

(GTX-760-1-GPU) is 0.88.

The mean ROC curve for Device Suitability Classifier is shown in Figure 4.9. The

mean ROC curve for the device suitability classifier is 0.98, however, the precision-

recall curve of class 2 (GTX-740-1-GPU) is 0.96 whereas the class 3,4,5 is 1. The

F-measure score of the device suitability model is 0.88. ROC depicts True Positive

ratio (TPR) against the False Positive ratio (FPR) for different thresholds of the

data using classification. The high ROC indicates the classifier produces good

results. In Figure 4.10, the curve line is closer to the y-axis and the top border,

this signifies that the detection rate of the device is significant as the TPR is

high and the FPR is low. The high value of f-measure represents that the model
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is capable of making fine distinctions. The high recall value represents that the

correctly predicted classes are very high. The high precision for all classes indicates

that the proportion of positive identifications is significantly high (min=0.81 and

max =1)

The classification report of device suitability model on the Scientific Application

dataset is shown in Figure 4.10. The F measure for class 1 (GTX-740-1-CPU) is

0.81, 0.84 for class 2 (GTX-740-1-GPU), 0.91 for class 3 (GTX-740-2-CPU) , 1 for

class 4 (GTX-740-2-GPU) and 0.93 for class 5 (GTX-760-1-CPU). However, the

F-measure score for class 6 (GTX-760-1-GPU) is 0.83. The average F-measure for

the device suitability model is 0.88. The application estimator model means the

square error is 1.19 and the R2 score is 0.81 as shown in Figure 4.11

4.3.6 Prediction Model Overhead

In propose model, the collection of benchmark suits took less than a day. Both

prediction models are trained offline. The overhead of using device suitability

predictor and application execution time estimator includes the feature extraction

and making the predictions. The overhead of feature extraction is negligible (ap-

proximated 1s in total) as a feature is extracted at compile time. The prediction

model training is performed once and it is a one-off-cost. The training time and

testing time of both models are mentioned in Table 4.12. In total, the overhead of

the prediction model is negligible i.e. 3 seconds. The computational complexity

of heuristic is mentioned in Table 4.13. In experimentation and comparison, we

didn’t include the overhead cost of the proposed algorithm as well as the others.

Table 4.12: Training and Testing time

Model Training Time (seconds) Testing Time (seconds)

Device Sutability Model 1.09 0.007

Application Estimator Model 0.52 0.0048
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Table 4.13: Computational Complexity : M= Number of machine/proces-
sors, N= Number of jobs, n =If n is the number of jobs scheduled by Fill sched-

uler, then remaining N-n jobs will be scheduled by Spill scheduler.

Heuristic Complexity

MCT [69] O(MN)

MinMin, MaxMin, RASA, TASA, and
Sufferage [58, 59]

O(MN2)

RALBA [35] O(M2n + M.N − n)

RALB-HC O(MN2)

Figure 4.10: Classification Report of Device Suitability

4.3.7 RALB-HC Performance and Comparison

The device suitability and application model output is then used by the RALB-

HC for load balanced scheduling. The same pool of application is given to all

other scheduling algorithms. The test set for a Scientific Application data set is

divided into two types. The data size driven and application driven. The data size

driven is categorized into three different ranges, i.e. small (0-3000), medium (3000-

13000) and large (13000-100000). The range in data size driven data represents

N x N matrix size given by the user. The second type is application driven. It

is also categorized into three types, i.e. small (0-200), medium (200-1200) and
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Figure 4.11: Application Estimator Model Mean Squared error

large (1200-6000). The range of application-driven data represent the number of

application given to the scheduling.

Figure 4.12 shows the average execution time-based results for the data-driven job

pool. When the Max-Min and MCT scheduling mechanism is compared with the

RALB-HC, the proposed heuristic RALB-HC result in 86.3 and 37.3 % reduced

average execution time (for a job), respectively. When Min-Min and RSA schedul-

ing mechanism is compared with the RALB-HC, the proposed scheme RALB-HC

consumes on average 23.5% and 86.8% reduced execution time, respectively. As

compared to the Sufferage and TASA, the proposed scheme RALB-HC consumes

on average 36.35% and 46.27%.

Findings: When data-driven Scientific Application data set is used, RALB-HC

consumes on average 52.79% reduced execution time.

Figure 4.13 shows the average resource utilization ratio based results for the data-

driven job pool. When the Max-Min and MCT scheduling mechanism is com-

pared with the RALB-HC, the proposed heuristic RALB-HC result in 99.83% and
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Figure 4.12: Data Driven Scientific Application Dataset: Average Execution
Time

31.69% improved average resource utilization ratio, respectively. When Min-Min

and RSA scheduling mechanism is compared with the RALB-HC, the proposed

scheme RALB-HC has on average 148.12% and 168.19% improved average resource

utilization ratio. As compared to the Sufferage and TASA, the proposed scheme

RALB-HC consumes on average 30.79% and 128.93% respectively improved uti-

lization of resources.

Findings: When data-driven Scientific Application data set is used, RALB-HC

results in 101.26% improved resource utilization ratio.

Figure 4.13 shows the throughput (jobs per seconds) based on results for the data-

driven job pool. When the Max-Min and MCT scheduling mechanism is com-

pared with the RALB-HC, the proposed heuristic RALB-HC result in 638.64%

and 58.77% improved throughput respectively. When Min-Min and RSA schedul-

ing mechanism is compared with the RALB-HC, the proposed scheme RALB-HC

have on average 78.09% and 677.79% improved throughput. As compared to the

Sufferage and TASA, the proposed scheme RALB-HC consumes on average 57.28%

and 90.59% respectively improved throughput.

Findings: When data-driven Scientific Application data set is used, RALB-HC

results in 266.86% improved throughput (jobs per seconds).
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Figure 4.13: Data Driven Relistic Data set: Average Resource Utilization
Ratio

Figure 4.14: Data Driven Scientific Application Dataset: Throughput

Figure 4.15 shows the average execution time-based results for the application job

pool. When the Max-Min and MCT scheduling mechanism is compared with the

RALB-HC , the proposed heuristic RALB-HC result in 24.08% and 32.84% reduced

average execution time (for a job), respectively. When Min-Min and RSA schedul-

ing mechanism is compared with the RALB-HC, the proposed scheme RALB-HC

consumes on average 39.44 and 49.96% reduced execution time, respectively. As

compared to the Sufferage and TASA, the proposed scheme RALB-HC consumes
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Figure 4.15: Applciation Driven Relistic Dataset: Average Execution Time

on average 32.07 and 21.30.

Findings: When application driven Scientific Application data set is used,

RALB-HC consumes on average 33.28 reduced execution time.

Figure 4.16 shows the average resource utilization ratio based results for the

application-driven job pool. When the Max-Min and MCT scheduling mecha-

nism is compared with the RALB-HC, the proposed heuristic RALB-HC result

in 26.45% and 26.35 % improved average resource utilization ratio, respectively.

When Min-Min and RSA scheduling mechanism is compared with the RALB-HC,

the proposed scheme RALB-HC has on average 92.30% and 63.19% improved av-

erage resource utilization ratio. As compared to the Sufferage and TASA, the

proposed scheme RALB-HC consumes on average 325.40% and 195.99% respec-

tively improved utilization of resources.

Findings: When data driven Scientific Application dataset is used, RALB-HC

results in 71.61% improved resource utilization ratio.

Figure 4.17 shows the throughput (jobs per seconds) based on results for the

application-driven job pool. When the Max-Min and MCT scheduling mecha-

nism is compared with the RALB-HC, the proposed heuristic RALB-HC result

in 60.26% and 47.6% improved throughput, respectively. When Min-Min and
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Figure 4.16: Application Driven Relistic Dataset: Average Resource Utiliza-
tion Ratio

Figure 4.17: Application Driven Scientific Application Dataset: Throughput

RSA scheduling mechanism is compared with the RALB-HC, the proposed scheme

RALB-HC has on average 961.46% and 134.28% improved throughputs. As com-

pared to the Sufferage and TASA, the proposed scheme RALB-HC consumes on

average 46.06 and 81.97 respectively improved throughput.

Findings: When data driven Scientific Application dataset is used, RALB-HC

results in 266.86% improved throughput (jobs per seconds).
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Figure 4.18: Virtual Machine Distribution

4.4 Google-like workload

We used the mechanism of Altaf et al for the generation of Google-like workload.

Altaf et al. used the Monte-Carlo simulation method [35]. This scheme analyses

the real-world traces and MapReduce logs from the M45 supercomputing cluster

[35]. It is revealed that the majority of the application were of small size (execution

time less than 15min) and a few were of large size (execution time over 300min)

[35]. Based on these statistics, Altaf et al. have formulated the 5 categories for

Google-like workload i.e. small (15k-55k MI), medium (59k-99k MI), large (101k-

135k MI), extra-Large 150k-337.5k MI) and huge (525k-900k MI). The percentage

distribution is shown in Figure 4.18. All the experiments are performed using 50

virtual machines (VM). The details of the VM machines are shown in Figure 4.18.

Figure 4.20 shows the average execution time-based results for the Google-like

Work Load job pool. When the Max-Min and MCT scheduling mechanism is com-

pared with the RALB-HC, the proposed heuristic RALB-HC result in 39.12% and

24.33% reduced average execution time (for a job), respectively. When Min-Min

and RSA scheduling mechanism is compared with the RALB-HC, the proposed

scheme RALB-HC consumes on average 29.90% and 27.90% reduced execution
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Figure 4.19: Google-like Work Load

Figure 4.20: Google Like Work Load : Average Execution Time

time, respectively. As compared to the Sufferage, TASA and RALBA the pro-

posed scheme RALB-HC consumes on average 32.07, 21.30 and 10.21.

Findings: When the google-like Work Load is used, RALB-HC consumes on

average, 22.41 reduced execution time.

Figure 4.21 shows the average resource utilization ratio based results for the

Google-like Work Load. When the Max-Min and MCT scheduling mechanism is

compared with the RALB-HC, the proposed heuristic RALB-HC result in 14.07%
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Figure 4.21: Google Like Work Load: Average Resource Utilization Ratio

and 26.74% improved average resource utilization ratio, respectively. When Min-

Min and RSA scheduling mechanism is compared with the RALB-HC, the pro-

posed scheme RALB-HC has on average 75.49% and 11.29% improved average

resource utilization ratio. As compared to the Sufferage and TASA, the proposed

scheme RALB-HC achieved on average 4.89% and 14.07 % respectively improved

utilization of resources. Whereas RALBA performed 1.88% better.

Findings: When the google-like Work Load is used is used, RALB-HC results in

20.67% improved resource utilization ratio.

Figure 4.22 shows the throughput (jobs per seconds) based on results for the

Google-like Work Load. When the Max-Min and MCT scheduling mechanism is

compared with the RALB-HC, the proposed heuristic RALB-HC result in 36.73%

and 36.73 % improved throughput, respectively. When Min-Min and RSA schedul-

ing mechanism is compared with the RALB-HC, the proposed scheme RALB-HC

have on average 51.93% and 21.54% improved throughput. As compared to the

Sufferage, TASA and RALBA the proposed scheme RALB-HC achieved on average

16.37% , 18.90% and 11.62% improved throughput.

Findings: When the google-like workload is used, RALB-HC results in 27.69 %

improved throughput (jobs per seconds).
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Figure 4.22: Google Like Work Load: Throughput

4.5 Synthetic workload

The synthetic data set is generated using random generation mechanism. All

the experiments are performed using 50 virtual machines (VM). The details of the

VM machines are shown in Figure 4.18. The synthetic workload is generated using

a random-number comprising five categories of application (machine instruction

(MI)) ranges, i.e. tiny (1-250 MI), small (800-1200 MI), medium (1800-2500 MI),

large (7000-10000 MI) and extra-large 30000-45000 MI). The percentage distribu-

tion is shown in Figure 4.23.

Figure 4.24 shows the average execution time-based results for the Synthetic Work

Load. When the Max-Min and MCT scheduling mechanism is compared with the

RALB-HC, the proposed heuristic RALB-HC result in 65.81% and 17.15% reduced

average execution time (for a job), respectively. When Min-Min and RSA schedul-

ing mechanism is compared with the RALB-HC, the proposed scheme RALB-HC

consumes on average 19.55% and 66.05% reduced execution time, respectively. As

compared to the Sufferage, TASA and RALBA the proposed scheme RALB-HC

consume on average 10.01%, 11.37% and 21.40% more.

Findings: When Synthetic Work Load is used, RALB-HC consumes on average

17.97 reduced execution time. Whereas Sufferage, TASA and RALBA performed
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Figure 4.23: Synthetic Work Load

Figure 4.24: Synthetic Work Load : Average Execution Time

better.

Figure 4.25 shows the average resource utilization ratio based results for the Syn-

thetic Work Load. When the Max-Min and MCT scheduling mechanism is com-

pared with the RALB-HC, the proposed heuristic RALB-HC result in 123.01% and

82.87% improved average resource utilization ratio, respectively. When Min-Min

and RSA scheduling mechanism is compared with the RALB-HC, the proposed

scheme RALB-HC has on average 147.12% and 140.61% improved average resource
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Figure 4.25: Synthetic Work Load: Average Resource Utilization Ratio

utilization ratio. As compared to the Sufferage, TASA and RALBA the proposed

scheme RALB-HC achieved on average 20.31

Findings: When Synthetic Work Load is used, RALB-HC results in 77.81%

improved resource utilization ratio.

Figure 4.26 shows the throughput (jobs per seconds) based on the results of the

Synthetic Work Load. When the Max-Min and MCT scheduling mechanism is

compared with the RALB-HC, the proposed heuristic RALB-HC result in 188.84%

and 63.16% improved throughput, respectively. When Min-Min and RSA schedul-

ing mechanism is compared with the RALB-HC, the proposed scheme RALB-HC

have on average 69.13% and 199.13% improved throughput. As compared to the

Sufferage, TASA and RALBA the proposed scheme RALB-HC achieved on average

23.49% , 21.94% and 14.80% improved throughput.

Findings: When Synthetic Work Load is used, RALB-HC results in 82.93%

improved throughput (jobs per seconds).
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Figure 4.26: Synthetic Work Load: Throughput

4.6 Performance Discussion

Experimental results (presented in Figures 4.12 to Figure 4.25) show that the

proposed scheduling mechanism RALB-HC outperforms all the other scheduling

schemes with respect to execution time (for complete job pool), throughput, and

average resource utilization ratio performance metrics. The improved performance

of the proposed RALB-HC scheduling heuristic is due to the indulgence of ma-

chine learning model. First of all, all the jobs (in the job pool) are categorized

according to device suitability. Next, in order to improve load balance, jobs are

mapped to the migrated machine. The load balanced and device suited applica-

tion mapping mechanism of the proposed RALB-HC scheduling heuristic results in

reduced execution time (for the job pool), higher system throughput, and higher

device utilization as compared to the other scheduling heuristics. The state-of-the-

art scheduling schemes Minimum Completion time (MCT), Min-Min, Max-Min,

Resource-Aware Scheduling Algorithm (RASA) and Task-Aware Scheduling Algo-

rithm (TASA) are unaware of the device suitability of the applications resulting

in a sub-optimal performance as compared to the RALB-HC.

Furthermore, the research questions were the following:
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1. RQ-1: How to design and develop a load balancing scheduling algorithm

to achieve the minimal execution time, maximal throughput and improved

resource utilization?

2. RQ-2: To analyse optimization technique for design device suitability clas-

sifier and execution time predictor?

2.1. RQ-2.1: Which set of features plays an important role to predict data

parallel application device suitability?

2.2. RQ-2.2: Which are the most important factors, forecasting the execu-

tion time of data parallel application?

The answer to the first question is that the proposed algorithm RALB-HC per-

formed better. Load balanced is induced between heterogeneous devices by incor-

porating application time execution estimation, on a potentially suitable device,

in the scheduling decisions. Experimental results on a large set of applications

show that the RALB-HC reduce execution time by 31.61% in comparison to the

baseline scheduling scheme. Moreover, RALB-HC achieved 67.8% and 147.35%

improved resource utilization ratio and throughput.

The answer to the 2nd question is that Extreme gradient boosting classifier and

regression model is better to predict device suitability and application estimation

model. We used the tree base pipeline model tune parameter of the classifica-

tion and regression model. The Extreme boosting algorithm results in the best

performing model. It is fast, memory efficient and of high accuracy.

We used tree-based feature selection and correlation analysis to answer 2nd ques-

tion (2.1). The data size of the job is the most impacted features while operation

(multiplication, division, number of blocks and number of instruction also plays a

significant role to classify job to the most suited device. It is revealed that Table

4.8 features play an important role. For part (c), it is concluded that the hardware

features play a significant role in bringing the mean square error to 1.91 and R2

score to 0.81. The hardware features are mentioned 4.9

The answer to the fourth question



Chapter 5

Conclusion and Future Work

In heterogeneous cluster environment, programmers map application to specific

devices. This decision is not optimal in a multi-node or cluster of a heterogeneous

system. The number of jobs is submitted to the scheduler. The scheduler maps the

application to the computing devices. The decision about the work distribution

should be balanced to achieve maximal throughput. It is very difficult for a pro-

grammer to decide the mapping of jobs to a variety of heterogeneous computing

devices.

In this research, a novel job scheduling mechanism, named as RALB-HC that

uses machine learning to classify applications according to their device suitability.

Moreover, RALB-HC also predicts the achievable execution time of each submitted

job when executed on the preferred device. After that RALB-HC schedule batch

of jobs in a load balanced manner while effectively utilizing heterogeneity that is

inherent to heterogeneous computing devices. In particular, the following are the

main contributions of the research:

1. In-depth analysis of the state-of-the-art scheduling mechanisms for hetero-

geneous machines to identify the merits and demerits of several existing

heuristics;

65
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2. A novel machine-learning based scheduling heuristic that considers device

suitability and application time estimation of computing devices for schedul-

ing and execution of a job pool in a load balanced manner on heterogeneous

machines;

3. A development of a machine learning based classifier to decide a jobs suit-

ability for a particular heterogeneous cluster.

4. Machine learning based application execution time prediction of a job due

to execution on a suitable device.

5. Empirical investigation and comparison of the proposed scheduling technique

with state-of-the-art scheduling heuristics from literature, demonstrating sig-

nificant improvement in execution time, throughput, and resource utiliza-

tion.

5.1 Future Work

In this research, a novel Resource-Aware scheduling for Heterogeneous Cluster

(RALB-HC) is proposed that distributes workload based on resource computing

capability and type of application. RALB-HC determine which data parallel ap-

plication are like to best utilize a device. The application execution time has also

been forecast. The device prioritized list and resource performance estimation

are then used by a proposed Resource aware load balancer for the heterogeneous

cluster (RALB-HC). The prediction model, as well as the convergence factor,

helps RALB-HC to achieve optimized results. The significant contribution of pro-

posed RALB-HC is that it consumes same amount of comptutational cost when

compared with traditional heuristic appraoches. However, a exception has been

recorded when results were compared with RALBA [35]. The experimental results

show that RALB-HC on average achieved 31.61% reduced execution time, 67.8%
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improved average resource utilization ratio and 147.35% improved throughput. In

future extension the RALB-HC framework can further be extended for incorpo-

rating Green Energy as an optimization parameter and can be utilized in sensor

networks.
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