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Chapter 1

Introduction

1.1  On the design of this book

This book is primarily a textbook on R, a programming language and environment 
for statistical analysis and visualization. Its primary aim is to introduce R as a research 
instrument in quantitative Interactional Linguistics. Focusing on visualization in R, 
the book takes a how-to approach to the case studies explaining in good detail how 
key graphs in the case studies were coded. It also includes task sections to enable read-
ers to conduct their own research in R.

But it’s more than just a textbook. The book also provides original analyses on 
conversational talk-in-interaction based on corpus data from the conversational com-
ponent of the British National Corpus (e.g., Hoffmann et al. 2008) and the Narrative 
Corpus (e.g., Rühlemann & O’Donnell 2012). Seen from this secondary aim, the book 
is also a research volume.

1.2  �On Interactional Linguistics, Conversation Analysis, and  
Corpus Linguistics

Interactional Linguistics is heavily indebted to Conversation Analysis from which it 
spun off. The two fields share the occupation with talk-in-interaction in conversa-
tion, which is widely seen as the “core ecology for language use” (Levinson & Holler 
2014:  1). Talk-in-interaction in conversation is conceptualized as “the contingently 
connected sequences of turns in which we each ‘act’, and which the other’s – our recip-
ient’s – response to our turn relies upon, and embodies, his/her understanding of what 
we were doing and what we meant to convey in our (prior) turn” (Drew 2013: 131). 
The perspectives from which the two fields approach talk-in-interaction vary: Con-
versation Analysis looks at talk-in-interaction from the point of view of interaction: 
its main interest is in uncovering the basic ‘machinery’ (Sacks 1984) of how social 
interaction works at large; Interactional Linguistics approaches talk-in-interaction 
from the point of view of talk: its main interest is in “conceptualizing linguistic struc-
ture as resources for social interaction” (Couper-Kuhlen & Selting 2018: 4). Moreover, 
Conversation Analysis and Interactional Linguistics share the methodical attention 
to detail in carefully crafted transcripts of talk-in-interaction as well as a preference 
for qualitative analysis of select instances of features of interest considered in the 
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sequential context of their occurrence. Corpus Linguistics, on the other hand, is a 
primarily quantitative method. Its basic assumption is that by ploughing through vast 
quantities of machine-readable text, “patterns emerge that could not be seen before” 
(Tognini Bonelli 2010: 18). In this respect, Corpus Linguistics works like areal arche-
ology: by surveying masses of data ‘from above’, that is, at a remove from their use in 
situated talk-in-interaction, it can discover structures that are hidden to the observer 
(and the participant) ‘below’. In recent years, quantification has come to be accepted 
as an addition to the methodological toolbox in Interactional Linguistics (cf. Couper-
Kuhlen & Selting 2018: 13). Even in Conversation Analysis, the more conservative of 
the two fields, the traditional insistence on the qualitative method alone has been los-
ing ground since Heritage’s (1999) principled critique (cf. also Stivers 2015) such that, 
a good twenty years on, for Stokoe (2018) “CA is both [qualitative and quantitative]” 
(Stokoe 2018: 127).

Given that the case studies assembled in this voume aim to integrate methods of 
Interactional Linguistics and Conversation Analysis with methods of Corpus Linguis-
tics, this book is also a methods straddler, building on, and adding to, the dynamic 
growth of the field of Corpus Pragmatics (cf. Aijmer & Rühlemann 2015).

1.3  On the book’s two languages

Consistent with its double focus as primarily a textbook for visualization with R and 
secondarily a research volume, this book is about two languages. The one is the natural 
language of face-to-face conversation. This language is examined in the case studies. 
Its origin “would seem to lie somewhere between 1.4 Ma and ca 600,000 years ago” 
(Levinson & Holler 2014: 2). The other language the book is concerned with is R, a 
powerful, non-natural programming language. It has come into existence just very 
recently; in fact, R is a spin-off of S, an earlier programming language created in the 
1970s (cf. Crawley 2007: vii). Despite its recency, R has made major inroads in the 
sciences across the board; where linguists embrace quantitative methods, “R seems to 
have become the de facto standard tool” (Levshina 2015: 21).

It is worth briefly contemplating what commonalities natural and non-natural lan-
guages such as R share and how they are distinguished, sometimes quite fundamentally.

Both languages have in common that they are built on lexis and syntax: you need 
a certain amount of vocabulary to address things of interest to you in either language 
and you need to order that vocabulary in ways to ensure well-formedness. For exam-
ple, if you talk about bread, it will be helpful if you have the respective word for it at 
your disposal: ‘bread’ in English, ‘pane’ in Italian, ‘psomí’ in Greek and so forth. In R, 
if you want to define a vector with the values 1, 3, and 5 you need to have the function 
c() (for ‘combine’ or ‘concatenate’) in your vocabulary. If you want to specify the type 
of bread, you will have to place the adjective ‘white’ in front of ‘bread’ in English, while 



	 Chapter 1.  Introduction� 3

in Greek the adjective ‘levkó’ can go behind the noun for emphasis. In R, you wrap c() 
around the values, thus: c(1, 3, 5); if you put the c behind the closing bracket – 
(1, 3, 5)c – R will return an error.

R and conversation also have in commmon that there are numerous ways to 
perform one and the same action. For example, to order a pint of beer in a bar, you 
can communicate this to the bartender in various ways, for example, by saying “a 
pint of lager, please”, or just “lager”, or by saying “this one” and pointing to the tap. 
Which of these (or other) actions you choose will depend on a myriad of situated 
variables. Similarly, in R, if you need to transform measurements in seconds stored 
in one column of a data frame into milliseconds stored in another column, there are 
many ways to achieve this: you can define that new column using a formula such as 
df$milliseconds ← df$seconds*1000, a command that will yield the desired 
output for each row in the data frame; alternatively, you can use an existing func-
tion such as lapply() and, inside lapply, define a function for that transformation 
(a more coding-intensive method); or you might go for a for loop iterating over all 
existing measurements in seconds and transforming them into milliseconds (a com-
putationally expensive method). While in face-to-face communication the choice of 
wording may depend on numerous variables, the choice of code in R is governed by 
two, often conflicting, principles: economy and transparency. The economy principle 
favors sparse solutions over solutions that require large amounts of code or processing 
time by the computer. The transparency principle favors code that is simple and easy to 
process by the user. Obviously, the two principles often clash: one-liners may be sparse 
in terms of code but their structure may be hard to grasp for novices.

The most obvious difference between R and conversation is the fact that the latter 
is inherently multimodal. This is because “language production always occurs with 
the involvement of not only the vocal tract and lungs, but also the trunk, the head, 
the face, the eyes and, normally, the hands” (Levinson & Holler 2014: 1) and because 
conversationalists use these physical resources as communicative resources. For exam-
ple, hand gestures can add semantic and pragmatic information to verbal information 
(e.g., Holler et al. 2009; Holler & Levinson 2019). The contrast with R, as any other 
programming language, could not be starker: it recognizes only (written) verbal input.

The differences continue with the ways that inadequate lexical choices or faulty syn-
tax are dealt with. Natural language in interaction is highly forgiving. An ill-formed utter-
ance such as “I bread” said in a bakery will move the interaction with the salesperson in 
the intended direction, and you will eventually leave the shop with something to satisfy 
your hunger. In cases where an ill-formed locution does pose a problem, natural lan-
guage users can repair the trouble. They can use “practices designed for dealing with the 
sorts of difficulties which emerge in talk” (Liddicoat 2007: 171). These have evolved over 
millenia and are widely used (on average, once every 1.4 minutes across typologically 
diverse languages; cf. Dingemanse et al. 2015) ensuring that mistakes and ambiguities of 
verbal communication are ironed out and interaction can progress beyond the trouble. 
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Non-natural languages, by contrast, are much more unforgiving. Either a line of code 
is well-formed, in which case you will get the desired result, or it is ill-formed and you 
won’t get the result and will have to start all over again. Typically, the maximum amount 
of ‘repair’ you can get is an error message or a warning; only in very few cases will R 
make a suggestion as to how to address the problem. So, the onus of working out what 
went wrong, why it went wrong, and how to ‘put’ it right will be on you alone.

Another difference relates to the degree to which uncertainty, vagueness, and 
indirectness are admitted. Uncertainty is a key semantic domain in natural language, 
covering the intermediate degrees between ‘yes’ and ‘no’ (Halliday & Matthiessen 
2004: 147). Thus, it makes a huge difference whether you can, could, might, should, 
or will do X. Also, speakers often use so-called category markers, such as ‘and stuff ’ 
and ‘or something’ thereby marking the actual choice as just one possible actualization 
of a broader category. For example, a waiter’s question “Some beer or something?” is 
fully legally answered by “A glass of wine please” as ‘wine’ is contained in the category 
‘drinks’ just as ‘beer’ is. Finally, as is well known from speech act theory, you can say 
one thing to mean another (Searle 1975). For example, “It’s cold in here” may be taken 
as a request to turn up the heating. None of this is possible in non-natural languages,: 
they leave no room for uncertainty – any piece of code is an unhedged instruction to 
do X – and they process language literally only – anything you say is what you mean 
and anything you don’t say cannot be meant.

Yet probably the starkest difference lies in the overall purpose for which the lan-
guages are used. We use natural language to achieve goals in interaction with others. 
That is, we say something to someone to achieve a particular purpose related to that 
someone: to entertain, to instruct, to describe, to assert, to affiliate, to insult, to charm, to 
persuade, and so forth. That purpose is only achieved in interaction with a communica-
tive partner, the hearer. It is not enough to say something in order for that act of speech 
to represent a speech act, i.e. to do something or achieve something. In order for words 
to do and achieve something the words need to be heard, processed and, in some way 
or other, acted upon by a hearer. Natural language use is fundamentally interactional.

Superficially, the way a non-natural language such as R functions seems not dissimi-
lar – we use a piece of code to achieve a purpose: to do a calculation, to evaluate a dis-
tribution, to draw a graph. But these achievements are achievements in themselves, they 
do not require an interlocutor to be ratified and, ultimately, consummated. Anything 
you ‘say’ in R is said to a machine that is blind, deaf, and – despite the massive amount of 
expertise programmed into it – ultimately dumb as it cannot create any new idea out of 
itself. Anything you achieve in R – a calculation, a significance test, a chart – is complete 
in itself; it requires no uptake or ratification, it is what it is and what you designed it to 
be in and of itself. However, there is a serious downside to this independence: we can-
not be sure a priori whether what we have instructed R to do is what we had in mind 
for it to do. In natural conversation, the hearer’s uptake will provide clear cues whether 
we have made ourselves understood in the way we intended to. In R, if the code is intact 
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(‘well-formed’) and there are hence no warnings and no error, there is still no guarantee 
that it will actually produce what you had in mind for it to produce. You might have 
made a minute mistake somewhere in the run-up to the eventual code – a faulty retrieval 
of data points, a misguided transformation, a wrong match-up of data points, etc.

Once you start programming graphics in R you will discover that the code for them 
is actually quite trivial: in most cases, simple graph types require not even a handful of 
lines of code. The devil is in the run-up, that is, in how you prepare your data in such a 
way that it can be visualized in the graph type of your choice. This run-up may be rela-
tively smooth or, perhaps more often than not, bumpy and longwinded, involving many 
steps and stops in between the initial data read-in and the graphical output.

1.4  Aims of this book

As part of their course work, graduate and undergraduate students of linguistics and 
related fields are generally encouraged to carry out small-scale original research. Today 
the opportunities to carry out such original research have grown exponentially. Stu-
dents have vast amounts of authentic data literally at their fingertips, be it, for example, 
as raw web data or data they can source from online corpora. While the data resources 
have grown immensely, it is a common observation that the students’ skills at pro-
cessing these amounts of data have not kept apace. Not only do students generally 
not know how to perform significance tests on data, but their abilities of describing 
data are severely limited too. All students often know is how to make a bar plot or a 
line plot using Excel or any other commercial spreadsheet software. That’s a serious 
shortcoming as visualizing data in research is “important, in fact indispensable” (Gries 
2009: 146). It is important for three reasons. First, it “allows the viewer to process 
complex information in an intuitive way” (Hilpert 2011: 435). Second, it “will reveal 
any peculiarities of the data that will shape further analysis” (Johnson 2013: 288). And 
third, some visualizations are not merely a preparatory step prior to analysis; rather, 
the interpretation of the graphic is the analysis.

The first aim, then, in this book is to guide university students of linguistics in 
using R to visualize data in a variety of formats. While the main focus is clearly on 
visualization formats for descriptive statistics, some common inferential tests will also 
be introduced (cf. Chapters 10 and 12). The book also serves as a general introduction 
to R. This is because, as noted earlier, meaningful graphics ride, as it were, on the tip 
of an iceberg of code piled up to stream-line the data available into a format that can 
be processed by the graphic. So to arrive at graphics in R in most cases a significant 
amount of data management is required. How to manage data is dealt with in detail, 
not only in Chapter 2, which tackles data management directly, but also throughout 
Chapters 4–12 in the sections dedicated to explaining the code underlying the central 
graphic in the case study (see below) for each chapter.
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The second aim is for the book to serve as an introduction to original quantitative 
research in Interactional Linguistics based on corpora. Chapters 4–12 each contain an 
original case study. They are centred around the two fundamental structures of conver-
sational organization: the turn and the sequence. The case studies are ordered in such a 
way as to mirror a speaker’s linear progression from turn inception (Chapter 4) to turn 
execution (Chapters 5 through 7) to turn completion (Chapter 11) and turn transition 
(Chapter 12). In Chapters 8 through 10 the focus of attention is the sequence, specifi-
cally the storytelling sequence.

There are, of course, limits to how one thing can effectively do two things at the 
same time, and these limits make sacrifices necessary. The sacrifices on the R side 
concern not only the huge realm of inferential statistics, which will be dealt with only 
passingly. The book will also focus on the most common visualization types and leave 
out discussion of less widely-used ones. Finally, at the expense of ggplot2 (check out 
?ggplot2 at the R console), a package that claims to provide ‘elegant’ visualizations 
and has gained some traction recently, the book will concentrate largely, but not exclu-
sively, on the visualizations facilitated by base R; as the book will show, base R graph-
ics need not be aesthetically less pleasing. Also, graphics in base R are an appropriate 
starting point in a book geared toward novices to R. However, ggplot2 is an important 
development that should not be omitted entirely, so it will be introduced in Chapter 
8 when we discuss the code underlying the violin plot – a plot type that can hardly be 
programmed in base R but is nicely implemented in ggplot2. As to the sacrifices made 
on the side of the case studies, the descriptions are governed by the principle of brevity. 
That is, introductory sections may, at times, provide the research background rather 
crudely and discussion sections may be restricted to discussing only the most immedi-
ate results in rather broad terms and refrain from digging deeper into less immediate 
aspects and implications. Still, it is hoped, the lack of fine detail will be made up for by 
the novelty of the research qestions asked.

Finally, the two aims of this book – teaching how to visualize data in R and pre-
senting quantitative research in Interactional Linguistics – are not pursued separately, 
side by side, but in close integration with one another: each chapter introduces a new 
research topic and a new graphical format.

1.5  Chapter structure

The book is divided into 13 chapters. The present introductory chapter, Chapter 1, 
is followed by an introduction to the basics of data management in R in Chapter 2. 
Chapter 3 introduces the most common graphical parameters, based on an illustrative 
case study. The remaining chapters, Chapters 4–12, each present a case study in a key 
area of interaction research as well as a new graph type. These chapters also share the 
same three-fold structure:
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–– Case study:
	 the first section presents a case study in which the graphic plays a central role.

–– The graphic in the case study:
	 this section explains how the plot was arrived at in the case study. The account 

is detailed and comprehensive to enable the reader not only to replicate the 
study but also to use the graph type in other research scenarios.

–– Task:
	 this section provides a practical task closely modeled on the case study.

The ultimate chapter, Chapter 13, aims to take stock of the lessons learned throughout 
the analytic chapters.

If you are a beginner in R, the following chapter, Chapter 2, is essential: it will 
help you make the first steps in R and get to know and understand basic functions and 
structures of R.

1.6  Installing R and R Studio

Installation of R cannot be easier: go to <https://cran.r-project.org> and download 
the latest version suitable for your operating system. You will be asked to also choose 
a CRAN (Comprehensive R Archive Network) mirror (CRAN is a network of servers 
around the world that store R code and documentation); choose the mirror nearest to 
you to minimize network load.

The initial download of R will also install a number of ‘packages’; a package con-
tains pre-defined functions, data, documentation, and tests, and is easy to share with 
others. At the time of writing there were thousands of additional packages for R avail-
able; to learn more, go to <http://r-pkgs.had.co.nz/intro.html>.

Once the install is complete, you could immediately start working with R. How-
ever, it is recommended that you also download an R editor. R editors allow you to 
store R code in files and they provide syntax highlighting and offer functionality for 
downloading packages of code. Many R editors are available; probably the most com-
monly used one is RStudio. For download go to <https://www.rstudio.com/products/
rstudio/download/> and choose one of the freely downloadable versions. RStudio 
automatically connects to R so to start working in R it is sufficient to start RStudio.

1.7  How to get help with R

Once you start analyzing your own data, you will probably require some help at some 
point. Where to get help from?

https://cran.r-project.org
http://r-pkgs.had.co.nz/intro.html
https://www.rstudio.com/products/rstudio/download/
https://www.rstudio.com/products/rstudio/download/
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There are a number of possibilities. In R itself, you can obtain help on specific 
functions or arguments for functions by using ? followed by the function name. For 
example, ?mean will open the R documentiation for this function to compute the 
arithmetic mean; alternatively, you can use help(mean). If you don’t know the func-
tion name, you can use two contiguous question marks followed by a keyword, for 
example ??arithmetic, which will prompt R to open up a list of all functions avail-
able so you can choose the right one from it.

You can also search the internet by googling keywords followed by something like 
“in R”. It is often amazing to see how many times your question, or questions similar 
to yours, have already been asked before, or that there exist useful video tutorials on 
more or less exactly your topic of interest!

Another source of assistance for specific queries are the dedicated online forums 
for R. Two such forums that specifically cater for linguists working with R are the 
Google groups CorpLingwithR at https://groups.google.com/forum/#!forum/cor-
pling-with-r and StatForLingwithR at <https://groups.google.com/forum/#!forum/
statforling-with-r> created and maintained by Stefan T. Gries, the author of immensely 
useful introductions for linguists to R (Gries 2009, 2017).

Finally, perhaps the most useful forum for R (and many other programming 
languages) is Stack Overflow at <https://stackoverflow.com/>. While the above-
mentioned forums are relatively quiet, this forum buzzes with activity. The number 
of contributers, many of whom are professional programmers, is awe-inspiring: as of 
August 2018 it had more than 9 million registered users. The number of regular users 
specifically interested in R is also impressive: at the time of writing, the tag for R had 
more than 314,832 ‘watchers’! It is not unusual for queries posted to this forum to be 
answered, authoritatively, within minutes. A prerequisite for such a quick and effective 
response is that you post a question that can actually be answered; key is the provision 
of a reproducible example and a clear specification of the problem. Before posting 
queries to Stack Overflow, do check out this help page: <https://stackoverflow.com/
questions/5963269/how-to-make-a-great-r-reproducible-example>.

https://groups.google.com/forum/
https://groups.google.com/forum/#!forum/statforling-with-r
https://groups.google.com/forum/#!forum/statforling-with-r
https://stackoverflow.com/
https://stackoverflow.com/questions/5963269/how-to-make-a-great-r-reproducible-example
https://stackoverflow.com/questions/5963269/how-to-make-a-great-r-reproducible-example


Chapter 2

Data management in R

2.1  Introduction

In this chapter the aim is to lay the foundations to working with R by looking at how 
to manage data. Data management is an essential prerequisite for making graphics in 
that, for example, certain diagram types demand that the data be available in certain 
data structures. Also, the data you wish to plot are often not yet available in the initial 
data on hand but need to be gained through extracting and/or transforming available 
data. R offers near-endless ways of managing data. The techniques shown in this chap-
ter represent a small cross-section only, selected with a view to enabling the reader to 
follow the code used for the case studies and to perform the tasks in this book.

2.2  Basics

The simplest use of R is as a calculator. Mathematical operators available in R include 
+, −, / for division, * for multiplication, and ^ for exponentiation.
In the following illustrative examples, use is made of the semi-colon and #: the semi-
colon allows you to perform separate commands in one line, while # separates code 
to be processed by R (on the left of #) from comments that are not to be processed by 
R (on the right of #): 

> 5 + 7; 5 − 7; 5/7; 5*7; 5^7
[1] 12	 # addition
[1] −2	 # subtraction
[1] 0.7142857	 # division
[1] 35	 # multiplication
[1] 78125	 # exponentiation 

A convenient way to ‘shortcut’ the definition of sequences is by using the colon 
between the start and end point of the sequence: 

> 1:7
[1]1 2 3 4 5 6 7 

It goes without saying that mathematical operations can be combined in R. Here, for 
example, we divide the sum of 5 + 7 by the sequence from 5 to 7 to the power of 7, thus 
producing three results (one for each number in the sequence):
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> (5 + 7)/(5:7)^7
[1] 1.536000e-04 4.286694e-05 1.457119e-05 

R has mathematical functions too. For example, log() takes the logarithm, exp() 
returns the exponential, and sqrt() gives the square root:

> log(5, 2); exp(2); sqrt(17)
[1] 2.321928   # logarithm of 5 to the base of 2
[1] 7.389056   # the exponential of 2
[1] 4.123106   # the square root of 17 

2.3  Vectors

The beauty of R (and its infinite superiority to calculators) begins to show with vectors, 
the most fundamental data structure in R. A vector typically contains (or is interpreted 
by R as containing) same-type elements, for example, numbers or characters. To string 
the elements of the vector together the c() function is used; the vector’s elements are 
separated by commas. Also, vectors are given names by using the assignment opera-
tor <-. If you have a contiguous range of numbers you can use the colon between the 
extreme values of the range. For example, the vectors x and y return the same elements:

> x <- c(1, 2, 3, 4, 9); y <- c(1:4, 9)
> x; y
[1] 1 2 3 4 9
[1] 1 2 3 4 9 

If you perform operations on vectors, the operation is performed for every element 
in the vector. Here, for example, we define a sequence from 1 to 10 and compute the 
values of an exponential function for the sequence:

> x <- c(1:10)	# define sequence
> 2^x	 # 2 to the power of every element in the sequence
[1]    2    4    8    16    32    64    128    256    512    1024 

As noted, vectors can contain character elements too. Let’s take an attested utterance 
as illustration: “Ah well if not we ’ll try the car”, a nine-word utterance from the BNC 
that is part of the dataset underlying the analysis in Section 11.3 . The utterance can be 
rendered as a vector in two ways; (i) by defining the whole utterance as one element 
(utt1):

> utt1 <- "Ah well if not we 'll trythe car"
> utt1
[1] "Ah well if not we 'll try the car"

or (ii) by defining each word in the utterance as a separate element (utt2), in which 
case we need to concatenate the elements using c():
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> utt2 <- c("Ah", "well", "if", "not", "we", "'ll", "try", "the", "car")
> utt2
[1]"Ah" "well" "if" "not" "we" "'ll" "try" "the" "car" 

The structural difference between utt1 and utt2 is by no means negligible, as can be 
seen from calling the function length(), which counts the number of elements in a 
vector:

> length(utt1); length(utt2)
[1] 1
[1] 9

The way elements in a vector are stringed together can be changed. If you want utt1 
to be divided into separate word elements, you can use the function strsplit() with 
the argument split = " " (i.e., you split the string on the white space between the 
words).

> strsplit(utt1, split = " ")
[[1]]
[1]"Ah" "well" "if" "not" "we" "'ll" "try" "the" "car" 

Alternatively, if you have separate elements, as in utt2, but need the words as separate 
elements you can use the function paste() with its argument collapse = " " (i.e., 
with a space between the quote marks):1 

> paste(utt1, collapse = " ")
[1] "Ah well if not we 'll try the car" 

Often, however, data are not of the same kind, but mixed. For example, say, you have a 
vector z that combines a decimal number, a character element, and an integer number:

> z <- c(1.2, "ah", 5)
> z
[1]"1.2" "ah" "5" 

How does R handle such a mixture? R will coerce the elements in the vector to the type 
that is easiest to coerce to. To find out what vector type R has coerced the elements to, 
use typeof():

.  The output of this call, however, is a list, yet another data structure type (as indicated in the 
use of double square brackets in [[1]]; if you want a vector rather than a list, use the unlist() 
function, thus:

unlist(strsplit(utt1, split = " "))

[1] "Ah" "well" "if" "not" "we" "'ll" "try" "the" "car" 
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> typeof(z)
[1]"character"

So, R has coerced the elements to character elements! If you have a vector that con-
tains mostly numerical elements, such a conversion does not make much sense; you 
will want a coercion toward numerical. This can be accomplished by as.numeric():

> zz <- as.numeric(z)
Warning message:
NAs introduced by coercion

But this operation triggers a warning: “NAs introduced by coercion”. NAs are ‘not 
available’ values. They are introduced in the conversion of zz to numeric because R 
cannot translate “ah” into a number – how should it? R ‘solves’ this problem by defin-
ing “ah” as a missing value:

> zz
[1]1.2  NA 5.0 

NAs can be “a real source of irritation” (Crawley 2007: 14) and therefore require extra 
attention. The calculation of the mean, using the function mean(), or the median, 
using median(), are cases in point. For example, calling the two functions on the vec-
tor zz does not yield the expected output:

> mean(zz); median(zz)
[1] NA
[1] NA 

NAs need to be removed from the calculation, which is achieved by the argument 
na.rm = TRUE:

> mean(zz, na.rm = TRUE); median(zz, na.rm = TRUE)
[1] 3.1
[1] 3.1 

A vector type suitable for categorical data is factor. For example, the utterance “you did 
n’t grumble about it did you this time” can be, and in linguistics often is, represented by 
the word tags assigned to each word: PNP VDD XX0 VVI PRP PNP VDD PNP DT0 
NN1. Note these are the PoS tags used in the British National Corpus [BNC], from 
which most of the data in this volume have been taken. A complete description of the 
tagset is available on the website for the BNCweb, an interface for the BNC at http://
bncweb.lancs.ac.uk/bncwebXML/Simple_query_language.pdf.

Suppose you have a vector with the tags as elements:

http://bncweb.lancs.ac.uk/bncwebXML/Simple_query_language.pdf
http://bncweb.lancs.ac.uk/bncwebXML/Simple_query_language.pdf
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> tags <- c("PNP","VDD","XX0","VVI","PRP","PNP","VDD","PNP","DT0", 
"NN1")
> tags
[1] "PNP" "VDD" "XX0" "VVI" "PRP" "PNP" "VDD" "PNP" "DT0" "NN1" 

At this point, R does not ‘know’ that the tags represent categories; it just treats them 
as characters:

> typeof(tags)
[1] "character" 

You can convert the elements of tags to factors with as.factor():

> tags <- as.factor(tags)
> tags
[1] PNP VDD XX0 VVI PRP PNP VDD PNP DT0 NN1
Levels: DT0 NN1 PNP PRP VDD VVI XX0 

Factors have ‘levels’ – that is, categories into which the elements fall; accordingly, the 
number of levels in tags is smaller than the number of tag tokens: 7 < 10. The same 
information is obtained if you query for the unique values of a vector, which is done 
by the function unique():

> unique(tags)
[1] "PNP" "VDD" "XX0" "VVI" "PRP" "DT0" "NN1" 

These are, then, the unique tags, or tag types. But surely you will also want to know in 
how many tokens the types each occur. This question can be answered by table(), an 
important function in linguistic research:

> table(tags)
tags
DT0 NN1 PNP PRP VDD VVI XX0
   1    1   3   1   2   1    1 

R automatically orders the levels alphabetically. You can override that order and 
impose a different one, for example, by frequency. This is achieved by sort():

> sort(table(tags))
tags
DT0 NN1 PRP VVI XX0 VDD PNP
  1   1   1   1   1   2   3 

The default for sort() is to order in increasing order; if you want the most frequent 
levels to be shown first, use the argument decreasing = TRUE inside the function 
call:
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> sort(table(tags), decreasing = TRUE)
tags
PNP VDD DT0 NN1 PRP VVI XX0
  3   2   1   1   1   1   1

2.4  Subsetting data

As will become clear in the case studies in this book, there are many circumstances 
where you will want to select only some elements of a vector; that is, you will want to 
work on a data subset. Subsetting is done by using what are called ‘subscripts’. Sub-
scripts are indices of the location of elements in a vector. They are defined in square 
brackets [ ]. For example, say, you want to identify the first element in zz and the third 
element in tags:

> zz[1]
[1] 1.2
> tags[3]
[1] XX0
Levels: DT0 NN1 PNP PRP VDD VVI XX0

Subscripts are also useful in defining logical subsets of data, that is, subsets that fullfil 
one (or more) logical criteria. Say, you are interested in only those values in zz that are 
greater than 3, you use the ‘greater than’ operator > (note that the vector name must be 
included in the square brackets too):

> zz[zz > 3]
[1] NA 5 

Other logical operators include == (equal to), < (less than), <= (less than or equal to), 
>= (greater than or equal to), & (and), | (or), ! (not), and != (not equal); for a com-
plete list see Crawley (2007: 27).

To illustrate logical NOT, let’s say you want to define a subset of zz that does not 
include any NAs. You can do this by using ! and the function is.na() (note the place-
ment of ! before is.na()):

> zz[!is.na(zz)]
[1] 1.2 5.0 

Or you want to define a subset of tags that does not include any personal pronouns 
(tagged PNP):

> tags[tags! = "PNP"]
[1] VDD XX0 VVI PRP VDD DT0 NN1
Levels: DT0 NN1 PNP PRP VDD VVI XX0 
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Logical operators can be combined to define several conditions at once. For example, 
this code specifies a subset consisting of those values that are greater than 3 and that 
are not NA.

 > zz[zz > 3 & !is.na(zz)]
[1] 5 

Or, in our vector tags, the following selects all tags except PRP or PNP:

> tags[!(tags == "PRP"|tags == "PNP")]
[1] VDD XX0 VVI VDD DT0 NN1
Levels: DT0 NN1 PNP PRP VDD VVI XX0 

This last subset could be written much more elegantly using grep(), a function that 
searches for matches to a pattern. The pattern in the elements PRP and PNP – i.e., 
what they have in common – is obvious: the starting letter is capital P. While P can be 
matched by itself, the condition that P be the first letter in the string can be matched 
by the caret ^, a metacharacter used in regular expressions:

> tags[!grep("^P", tags)]
[1] VDD XX0 VVI VDD DT0 NN1
Levels: DT0 NN1 PNP PRP VDD VVI XX0 

Regular expressions are extremely useful in finding patterns in language data or meta-
linguistic annotations and are therefore indispensable for linguistic research. A special 
section will introduce them in more detail below.

2.5  Dataframes and matrices

So far we have looked at single vectors. More often than not, however, linguists work 
with (much) larger data structures. Two such are introduced in this section: dataframes 
and matrices.

We’ll begin with familiar data, the vector utt2, called here Turn:

> Turn <- c("Ah", "well", "if", "not", "we", "'ll", "try", "the", "car")
> Turn [1]
"Ah" "well" "if" "not" "we" "'ll" "try" "the" "car"

As linguists, we know, or can find out, a lot about these simple words. For example, we 
can identify the grammatical word class they belong to and assign tags to the words 
accordingly. Further, we can count the number of phonemes in each word and mea-
sure how long it took the speaker to articulate the words. Also, we can analyze the 
utterance, or turn, in terms of turn structure; that is, we can determine the words that 
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relate back to the previous turn and thus belong to the pre-start component and those 
words in which the speaker performs their main action and which thus belong to the 
turn-constructional unit (TCU) (more on turn structure in Chapter 4). Rather than 
keeping these variables separate we will want to have them assembled in a single struc-
ture, a dataframe. So we define a dataframe df by calling the function data.frame() 
and defining the variables, this time using the simple equals sign =:

> df <- data.frame(
+ Turn = c("Ah", "well", "if", "not", "we", "'ll", "try", "the", "car"),
+ Tags = c("ITJ","AV0","CJS", "XX0", "PNP", "VM0", "VVI", "AT0", "NN1"),
+ Durations = c(0.175, 0.116, NA, NA, 0.110, NA, 0.184, 0.169, 0.225),
+ Structure = c(rep("pre", 2), rep("tcu", 7))
+ ) 

At first, it is useful to take a look at the dataframe. This can be done by simply typing 
the dataframe’s name, which will produce the dataframe in the console, or by calling 
View(). This function will present the dataframe in a new window; if the dataframe is 
large, View() is quite handy in that it allows scrolling up and the down the dataframe 
and it delineates the cells in the dataframe, whereas the console display may get clipped 
and does not draw cell boundaries.

> df
	 Turn	 Tags	 Durations	 Structure
1	   ah	  ITJ	     0.175	       pre
2	 well	  AV0	     0.116	       pre
3	   if	  CJS	        NA	       tcu
4	  not	  XX0	        NA	       tcu
5	   we	  PNP	     0.110	       tcu
6	  'll	  VM0	        NA	       tcu
7	  try	  VVI	     0.184	       tcu
8	  the	  AT0	     0.169	       tcu
9	  car	  NN1	     0.225	       tcu

First, inspect your dataframe; specifically, check its structure: how is each variable 
defined? This check is done by str():

> str(df)
'data.frame': 9 obs. of 4 variables:
$ Turn : Factor w/ 9 levels "'ll","Ah","car",..: 2 9 4 5 8 1 7 6 3
$ Tags : Factor w/ 9 levels "AT0","AV0","CJS",..: 4 2 3 9 6 7 8 1 5
$ Durations: num 0.175 0.116 NA NA 0.11 NA 0.184 0.169 0.225
$ Structure: Factor w/ 2 levels "pre","tcu": 1 1 2 2 2 2 2 2 2

The first line reveals that R has, correctly, identified df as a dataframe, with 9 obser-
vations in each column or variable. Note that the variable Turn is defined as a factor 
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with 9 levels. You may remember that the vector utt2, which contained exactly the 
same words, was defined above as a character vector. Now that this data is part of a 
dataframe, R treats it as a factor, which is R’s default structure for textual elements in 
dataframes. Note that the variables Tags and Structure are also factors. The vari-
able Durations, on the other hand, is treated as numeric.

R’s default transformation of textual elements to factors may not always be conve-
nient. In this case, the data type can be reversed by as.character();note also that 
now that the variable Turn is part of a dataframe, calling Turn alone is insufficient. To 
address this variable, its location within df needs to be acknowledged; this is can be 
done by calling df followed by the dollar sign $ followed by the variable name:

> df$Turn <- as.character(df$Turn) 

Was the conversion successful? To find out call typeof():

> typeof(df$Turn)
[1] "character" 

Variables in dataframes can also be accessed via subscripts. For two-dimensional 
objects such as dataframes, there are subscripts for rows and subscripts for columns – 
in that order. For example, to select Turn, the variable stored in column #1, you can 
use:

> df[,1]
"Ah" "well" "if" "not" "we" "'ll" "try" "the" "car" 

Note that the subscript for rows is missing, in which case R selects only the column 
specified after the comma. If you are interested in a specific cell, that is, an intersection 
of row and column, you need to specify both row and column. For example,

> df[2,3]
[1] 0.116 

returns the value at the intersection of row #2 and column #3. If you are interested in a 
specific row only, you leave the space behind the comma blank. For example,

> df[3,]
   Turn Tags Durations Structure
3   if  CJS        NA       tcu 

selects all elements in row #3 across all columns. To subset dataframes you can also 
apply logical conditions. For example, if you want a subset of the dataframe including 
all its columns but restricted to those words that fall into the turn’s TCU, you select 
those rows in the dataframe that have the value tcu in the column Structure, which 
is column #4:
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> df[df[,4] == "tcu",]
	 Turn	 Tags	 Durations	 Structure
3	   if	  CJS	        NA	       tcu
4	  not	  XX0	        NA	       tcu
5	   we	  PNP	     0.110	       tcu
6	  'll	  VM0	        NA	       tcu
7	  try	  VVI	     0.184	       tcu
8	  the	  AT0	     0.169	       tcu
9	  car	  NN1	     0.225	       tcu 

Often, especially with larger data sets, you do not know the position of a variable in a 
dataframe, so using indices to address them is not convenient. An alternative route to 
addressing variables is by using their variable names. For example, the same subset as 
df[df[,4]=="tcu",] is obtained from df[df$Structure=="tcu",].

To use another illustration of the utility of using variable names rather than vari-
able indices to define subsets, say, you need to check which tag is used for the word 
“well”, which is, after all, a highly multi-functional item that might easily be falsely 
tagged. To this end, you can call the variable Tags specifying that you are just inter-
ested in those Tags elements that, on the same row(s), have the value "well" in the 
Turn column:

> df$Tags[df$Turn=="well"]	 # NB: no comma inside [] as the column is …
[1] AV0	 # … already selected in df$Tags
Levels: AT0 AV0 CJS ITJ NN1 PNP VM0 VVI XX0

We can see that ‘well’ is tagged as if it were an adverb, as in “well done” – clearly an 
erroneous tag, as ‘well’ is used in the turn as a pragmatic marker indicating some 
(problematic) relationship between the incipient turn and the preceding one. The 
inaccuracy can be fixed by assigning the correct tag, wrapped in quote marks, to the 
cell in question using the assignment operator:

> df$Tags[df$Turn=="well"] <- "ITJ" 

If we now call df, this time for the sake of brevity just addressing the second row, we 
can see that R has indeed changed the element:

> df[2,]
  Turn Tags Durations Structure
2  well    ITJ     0.116         pre 

Or, to provide another illustration of subsetting, a situation often arises where you find 
it desirable or necessary to exclude those rows from a dataframe that contain NAs. To 
obtain such an NA-free subset, use ! to signal exclusion and is.na() to test for NA, 
and specify the column that contains the NAs, namely Durations in df:
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> df[!is.na(df$Durations),]
	 Turn	 Tags	 Durations	 Structure
1	   ah	  ITJ	     0.175	       pre
2	 well	  ITJ	     0.116	       pre
5	   we	  PNP	     0.110	       tcu
7	  try	  VVI	     0.184	       tcu
8	  the	  AT0	     0.169	       tcu
9	  car	  NN1	     0.225	       tcu 

If, for some reason, you decide that a variable/column is no longer needed, you can 
subset by using negative subscripts. For example, you can clip df by cutting off several 
columns at once:

> df[,−c(3:4)]
	 Turn	 Tags
1	   ah	  ITJ
2	 well	  ITJ
3	   if	  CJS
4	  not	  XX0
5	   we	  PNP
6	  'll	  VM0
7	  try	  VVI
8	  the	  AT0
9	  car	  NN1 

Note that to make this clipping permanent you would have to store the clipped 
dataframe in a new vector, for example, thus:

> df_clipped <- df[,−c(3:4)] 

Since we have not done this in the command df[,−c(3:4)] the dataframe df still 
contains all original variables.
As with atomic vectors, subsetting conditions can be compounded. Say, you want to 
select those rows where (i) Durations is greater than 0.15 and (ii) not NA and where 
(iii) the number of characters in Turn is 2; this latter information is provided by the 
function nchar():

> df[df$Durations > 0.15 & !is.na(df$Durations) & nchar(df$Turn) == 2,]
	 Turn	 Tags	 Durations	 Structure
1	   ah	  ITJ	     0.175	       pre

A more complex scenario arises if you wish to subset on information that is not directly 
available in your dataframe. In Chapter 5, for example, we will be faced with the task 
of subsetting a dataframe on content words. Content words are normally made up of 
nouns, (full) verbs, adverbs, and adjectives (Biber et al. 1999). In our present dataframe 



20	 Visual Linguistics with R

df, information on these word classes is missing. However, we have the grammatical 
word class tags, and based on this information, content words can be identified. Let’s 
check with the variable Turn in df: which of the nine words would be considered 
content words?

Regarding ‘well’, we already got rid of the misleading classification as AV0 for 
adverb and replaced it with ITJ; so ‘well’ is not a content word. The next candidate 
word is “‘ll” tagged VM0 for modal verb. Modal verbs are a problematic boundary case 
(cf. Stubbs 2002: 40) in that on the one hand they express obligation, volition, prob-
ability, etc. – ie. ‘content’ – but on the other hand lack the formal characteristic of being 
open classes that characterize prototypical content word classes; for this illustrative 
task, we will include “‘ll” as a content word. Finally, there are the ‘classic’ cases of lexi-
cal verbs, like “try” tagged VVI, and nouns, like “car” tagged NN1, that are more readily 
recognizable as content words. Based on this manual analysis, we can define a new 
variable Content for our dataframe df:

> df$Content <- c("no", "no", "no", "no", "no", "yes", "yes", "no", "yes") 

Once we call df, or view it in View(df), we see that R has added the variable Con-
tent to df:

> df
	 Turn	 Tags	 Durations	 Structure	 Content
1	  ah	  ITJ	     0.175	       pre	      no
2	well	  ITJ	     0.116	       pre	      no
3	  if	  CJS	        NA	       tcu	      no
4	 not	  XX0	        NA	       tcu	      no
5	  we	  PNP	     0.110	       tcu	      no
6	 'll	  VM0	        NA	       tcu	     yes
7	 try	  VVI	     0.184	       tcu	     yes
8	 the	  AT0	     0.169	       tcu	      no
9	 car	  NN1	     0.225	       tcu	     yes

Now we are in a position to subset df on content words:

> df[df$Content=="yes",]
	 Turn	 Tags	 Durations	 Structure	 Content
6	 'll	  VM0	        NA	       tcu	     yes
7	 try	  VVI	     0.184	       tcu	     yes
9	 car	  NN1	     0.225	       tcu	     yes

We have done this little analysis manually because manual coding is feasible with 
nine data points to analyze. But what about re-analyzing data sets that are larger, with 
observations counting in the thousands or more? There manual re-analysis is clearly 
no option. What else can be done? The answer is using regular expressions, a.k.a regex. 
For illustration, let’s use regex for df to achieve the same re-analysis automatically.
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In df, we know that the only content words are two verbs and a noun; there are no 
adjective and adverb tokens. For the sake of providing an illustration that is more widely 
applicable, let’s assume a situation where we don’t know which content word classes are 
attested in the data – if you have large amounts of data, this is a realistic assumption. So 
we need to set up a regex that caters for all four major classes: nouns, adjectives, adverbs, 
and lexical verbs (but not the primary verbs BE, HAVE, and DO, which are typically aux-
iliary verbs and hence function words); for consistency, we will also include modal verbs.

The first thing to determine are the patterns. These can only be discerned by look-
ing at the tagset used.

Let’s start with nouns: in the BNC, nouns can be tagged NN0 (noncountable com-
mon noun, as in “information”), NN1 (singular common noun, as in “car”), NN2 (plu-
ral common noun, as in “cars”), and NP0 (proper noun, as in “Sue”). What do these 
tags have in common? The first letter is invariably a capital N.

Lexical verb tags include VVI (infinitive, as in “go”), VVB (base, as in “go”), VVZ 
(3rd person singular present tense, as in “goes”), VVG (progressive, as in “going”), 
VVD (past tense, as in “went”), and finally VVN (past participle, as in “gone”). Here 
the pattern is clear-cut too: the tags all share the double “VV”. This pattern is not 
shared by the tag for modal verbs VM0, where the second letter is “M”.

For adjectives, the BNC tagset provides three tags: AJ0 (positive, as in “good”), 
AJC (comparative, as in “better”), and AJS (superlative, as in “best”). Thus, adjective 
tags all start with AJ. Similarly, adverbs can be AV0 (general, as in “often”), AVP (par-
ticle, as in “up”), and AVQ (wh-question words, as in “why”). Thus, they share AJ.

The combinations VV, AJ, and AV are unique for lexical verbs, adjectives, and 
adverbs, respectively; that is, they only occur in tags designating these classes; the let-
ter N, by contrast, which is shared by all noun tags is not unique as it also occurs, for 
example, in VVN, the tag used for the past participle as in “taken”. So to match nouns, 
the position of N at the beginning of the tag string needs to be incorporated into the 
regex; this is achieved by using the caret ^ in front of N.

Now we are almost ready to define the new variable, which we will call Content_
rex; we also know that the function grepl(), which we already encountered earlier, 
will be necessary for this task. You may also remember that the syntax of grepl() is 
grepl(pattern, variable). We can define the pattern as a vector:

> pattern <- "^N|VV|VM|AJ|AV"

Let’s investigate the syntax of this pattern.2 First, as noted, we used the caret ^ to sig-
nify that the pattern to match here is an N at the beginning of a string. Second, N is 

.  The pattern can be refined, as there is repetition in VV and VM as well as AJ and AV. To get rid 
of the repetition, two more metacharacters can be used, namely ( and ):

 > pattern <- “^N|V(V|M)|A(J|V)” 
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separated from VV by |, another metacharacter whose meaning is “or”. We find this 
metacharacter three more times: once between VV and VM, VM and AJ, and AJ and AV 
– that is, between all alternative patterns.3

We can check whether the pattern matches the right tags by calling grepl(), 
which evaluates to true or false:

> grepl(pattern, df$Tags)
FALSE FALSE FALSE FALSE FALSE TRUE TRUE FALSE TRUE 

Indeed, the pattern is true for the expected words, namely the modal verb, the full 
verb, and the noun. This can more easily be seen if we call, not grepl(), but grep() 
(with out the ‘l’ for ‘logical’) and setting the parameter value = T (T is shorthand for 
TRUE and will be understood by R in either form):

> grep(pattern, df$Tags, value = T)
[1] "VM0" "VVI" "NN1" 

So, now all that is missing to define the data in the new column is ifelse(), an 
immensely useful function that can be used if “you want to do one thing if a condition 
is true and another thing if the condition is false” (Crawley 2007: 62). In the context of 
the present task, the ‘thing we want to do’ is assign the label “yes” if a word is a content 
word; to all remaining words, which do not meet this condition, we want to assign 
the label “no”. The syntax of ifelse() is ifelse(condition, true, false): that is, the first 
argument specifies the condition, the second determines the action to be taken if the 
condition is true, the third states what is to be done if the condition is false. In setting 
up the code, we can re-use the vector pattern:4

> df$Content_rex <- ifelse(grepl(pattern, df$Tags),"yes","no")
> df
	 Turn	 Tags	Durations	 Structure	Content	 Content_rex
1	  ah	  ITJ	    0.175	       pre	     no	          no
2	 well	  ITJ	    0.116	       pre	     no	          no
3	  if	  CJS	       NA	       tcu	     no	          no
4	 not	  XX0	       NA	       tcu	     no	          no
5	  we	  PNP	    0.110	       tcu	     no	          no
6	 'll	  VM0	       NA	       tcu	    yes	         yes

.  The reader may wonder why adverbs and adjectives are not simply matched by ^A since the 
two tags start with the letter A. Granted, ^A would match adverbs and (positive) adjectives but it 
would also match the tag AT0, used for articles such as “a” and “the” – definitely not content words!

.  If a one-liner is preferred, the pattern can also be defined inside the whole expression:

df$Content_regex <- ifelse(grepl(“^N|V(V|M)|A(J|V)”,df$Tags),”yes”,”no”) 
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7	 try	  VVI	     0.184	       tcu	    yes	         yes
8	 the	  AT0	     0.169	       tcu	     no	          no
9	 car	  NN1	     0.225	       tcu	    yes	         yes 

We see from the output that Content_rex contains exactly the same elements as 
Content: That is, our automatic re-analysis of the information in Tags has been 
successful.

You may ask at this point what to do in a situation where there is not just one 
condition to satisfy but two or more conditions: can ifelse() be helpful too? The 
answer is yes because you can nest as many ifelse() statements as you want, thus 
defining processing instructions for as many conditions as you have. For example, to 
stick to our illustrative example, what we have done so far – namely distinguish con-
tent words from non-content words – is rather crude. A classification that takes into 
account more classes would make better linguistic sense. Such a more comprehensive 
classification is Biber et al.’s (1999) tripartite classification of major word classes; this 
classification includes not only content words, but also function words, and most 
notably, inserts. The three major word classes are described in more detail in the 
case study in Chapter 5. For present purposes, suffice it to say that inserts are, by and 
large, those words that in the BNC tagset are classified as interjections (ITJ); the only 
interjection that is both a prototypical insert and highly frequent in conversation but 
not recognized by the tagset is ‘well’ used as a pragmatic marker (see above). In other 
words, if we wish to categorize words according to Biber et al.’s (1999) three major 
word classes, we will need to identify content words, function words, and interjec-
tions. To discover content words in Turn, we can use the above regex; interjections 
are identifiable via their tag ITJ; and to determine function words, we will use the 
‘else’ part of the ifelse() statement: anything that does not satisfy the two criteria 
for content words and interjections will be coded as a function word. This brings us 
to the following code:

> df$Major <- ifelse(grepl(pattern, df$Tags),"content",
+ ifelse(df$Tags=="ITJ", "insert", "function"))
> df
	 Turn	 Tags	 Durations	Structure	 Content	 Content_rex	    Major
1	  ah	  ITJ	     0.175	      pre	      no	          no	   insert
2	well	  ITJ	     0.116	      pre	      no	          no	   insert
3	  if	  CJS	        NA	      tcu	      no	          no	 function
4	 not	  XX0	        NA	      tcu	      no	          no	 function
5	  we	  PNP	     0.110	      tcu	      no	          no	 function
6	 'll	  VM0	        NA	      tcu	     yes	         yes	  content
7	 try	  VVI	     0.184	      tcu	     yes	         yes	  content
8	 the	  AT0	     0.169	      tcu	      no	          no	 function
9	 car	  NN1	     0.225	      tcu	     yes	         yes	  content
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It is not uncommon that a research projects requires data from more than a single 
dataframe. In the following we will look at functions that are key in managing ‘traffic’ 
between two dataframes.

For illustration we will re-use df but, to enhance legibility, clip it to the first three 
columns:

> df1 <- df[,c(1:3)]
> df1
	 Turn	 Tags	 Durations
1	  ah	  ITJ	     0.175
2	well	  ITJ	     0.116
3	  if	  CJS	        NA
4	 not	  XX0	        NA
5	  we	  PNP	     0.110
6	 'll	  VM0	        NA
7	 try	  VVI	     0.184
8	 the	  AT0	     0.169
9	 car	  NN1	     0.225 

The second dataframe, df2, contains some information on another 9-word turn and 
has exactly the same internal structure as df1:

> df2 <- data.frame(
+ Turn = c(�"no", "oh", "well", "let's", "hope", "he", "'ll", "get", 

"better"),
+ Tags = c(�"ITJ", "ITJ", "ITJ", "VM0", "VVI", "PNP", "VM0", "VVI", 

"AV0"),
+ Durations = c(�0.210, 0.175, 0.123, 0.238, 0.194, 0.053, 0.069, 

0.170, 0.460)
+ )

> df2
	   Turn	 Tags	Durations
1	    no	  ITJ	    0.210
2	    oh	  ITJ	    0.175
3	  well	  ITJ	    0.123
4	 let's	  VM0	    0.238
5	  hope	  VVI	    0.194
6	    he	  PNP	    0.053
7	   'll	  VM0	    0.069
8	   get	  VVI	    0.170
9	better	  AV0	    0.460 
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The first function to be introduced is cbind(), which binds dataframes column-wise 
together, i.e., side by side. The function takes as arguments simply the names of the 
dataframes:

> df3 <- cbind(df1, df2)
> df3
	 Turn	 Tags	Durations		   Turn	Tags	Durations
1	  ah	  ITJ	    0.175		     no	 ITJ	    0.210
2	well	  ITJ	    0.116		     oh	 ITJ	    0.175
3	  if	  CJS	       NA		   well	 ITJ	    0.123
4	 not	  XX0	       NA		  let's	 VM0	    0.238
5	  we	  PNP	    0.110		   hope	 VVI	    0.194
6	 'll	  VM0	       NA		     he	 PNP	    0.053
7	 try	  VVI	    0.184		    'll	 VM0	    0.069
8	 the	  AT0	    0.169		    get	 VVI	    0.170
9	 car	  NN1	    0.225		 better	 AV0	    0.460 

While the join has worked out nicely, what is problematic in the new dataframe df3 
is that we now have identical column names, which will cause problems in addressing 
the columns. To work around this, we can change the column names using the func-
tions colnames(), rep(),5 and paste(); the latter function takes as many objects 
as you want to concatenate – in the present case, the column names and an index 
number to distinguish identical names – as well as the argument sep, which defines 
how the terms are to be joined; we will set it to sep = "", meaning that we attach the 
index number directly to the column names:

> colnames(df3) <- paste(colnames(df3), c(rep(1,3), rep(2,3)), sep 
= "") 

Now the column names are distinct:

> colnames(df3)
[1] "Turn1" "Tags1" "Durations1" "Turn2" "Tags2" "Durations2" 

A related (and in the present connection more suitable) way of joining two dataframes 
is rbind(). It row-binds (rather than column-binds) dataframes provided they have 
the same number of columns and the same column names (if they don’t, rbind() will 
not work):

.  The function rep() takes two arguments: one for the object to be repeated, and another for 
how often it is to be repeated.
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> df3 <- rbind(df1, df2)
> df3
	   Turn	 Tags	Durations
1	     ah	 ITJ	     0.175
2	    well	 ITJ	     0.116
3	        if	 CJS	        NA
4	     not	 XX0	        NA
5	     we	 PNP	     0.110
6	    'll	 VM0	        NA
7	    try	 VVI	     0.184
8	    the	 AT0	     0.169
9	    car	 NN1	     0.225
10	     no	 ITJ	     0.210
11	     oh	 ITJ	     0.175
12	   well	 ITJ	     0.123
13	  let's	 VM0	     0.238
14	   hope	 VVI	     0.194
15	     he	 PNP	     0.053
16	    'll	 VM0	     0.069
17	    get	 VVI	     0.170
18	 better	 AV0	     0.460 

The most important function to manage data traffic is arguably match(). This func-
tion “answers the question ‘Where do the values in the second vector appear in the 
first vector’” (Crawley 2007: 47). To make clear what this means, let’s start with a very 
simple example; we have two vectors, a and b:

> a <- c(LETTERS[1:5], "A", LETTERS[1:5])
> a
[1] "A" "B" "C" "D" "E" "A" "A" "B" "C" "D" "E"
> b <- c(LETTERS[1:2])
> b [1] "A" "B" 

If we now call match()taking a and b as arguments, we get:

> match(a, b)
[1] 1 2 NA NA NA 1 1 2 NA NA NA 

That is, match() creates a vector containing index numbers for the values in b (1 
corrresponds to "A" and 2 to "B") and marks non-matches by NA: for example, there 
is no match in b for "C", "D", and "E" in a. How is this useful for managing larger 
and multiple dataframes?
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The usefulness of match() lies in its capacity to facilitate the transfer of val-
ues from one dataframe to another dataframe based on matching conditions. For 
illustration, let’s return to dataframe df3. The data assembled there is just a minute 
snippet of the data underlying the case study on speech rate reported in Chapter 7. A 
critical factor in the analysis of speech rate is the phonetic size of words, that is, the 
number of phonemes making up the words. This is because if you compare the dura-
tions of words, the variation you encounter will be heavily influenced by the words’ 
physical lengths: a noun with seven or more phonemes will inevitably take longer to 
articulate than a function word with one or two phonemes.

Now, to illustrate the usefulness of match(), let’s assume that you have a list of 
all words occurring in a dataset as well as the words’ phonetic transcription. This list 
is stored in a (large) dataframe called Phon; its first six rows are shown by calling the 
function head():

> head(Phon)
	    Word	 Transcription
1	  admit	        ədˈmɪt
2	 aerial	       ˈeərɪəl
3	aerobic	     eəˈrəʊbɪk
4	  after	        ˈɑːftə
5	    age	           eɪʤ
6	    ago	         əˈgəʊ 

Now what you want to do is transfer the transcription from Phon to df3 in such a way 
that a word’s transcription is put not just anywhere in df3 but side-by-side that word, 
i.e., in the same row. To accomplish this, you define a new variable df3$Trans and 
assign values from Phon$Transcription to it if the values in df$Turn (the column 
with the words) and Phon$Words match:6

df3$Trans <- Phon$Transcription[match(df3$Turn, Phon$Word)] 

If you now call df3 you can see that the match has been successful:

.  Order matters in that match() assigns values from the second vector to the first vector (i.e., 
from right to left). For example, a different order may result in an error:

> df3$Trans <- Phonemes$Transcription[match(Phonemes$Word, df3$Turn)]

Error in `$<-.data.frame`(`*tmp*`, Trans, value = c(NA, NA, NA, NA, NA, : 

replacement has 742 rows, data has 18 



28	 Visual Linguistics with R

> df3
	    Turn	 Tags	 Durations	Trans
1	      ah	  ITJ	     0.175	   ɑː
2	    well	  ITJ	     0.116	  wɛl
3	      if	  CJS	        NA	   ɪf
4	     not	  XX0	        NA	  nɒt
5	      we	  PNP	     0.110   wiː
6	    'll	  VM0	       NA	    l
7	    try	  VVI	    0.184	 traɪ
8	    the	  AT0	    0.169	  ðiː
9	    car	  NN1	    0.225	  kɑː
10	     no	  ITJ	    0.210	  nəʊ
11	     oh	  ITJ	    0.175	   əʊ
12	   well	  ITJ	    0.123	  wɛl
13	  let's	  VM0	    0.238	 lɛts
14	   hope	  VVI	    0.194	 həʊp
15	     he	  PNP	    0.053	  hiː
16	    'll	  VM0	    0.069	    l
17	    get	  VVI	    0.170	  gɛt
18	 better	  AV0	    0.460	ˈbɛtə 

Now let’s turn to matrices, another core data structure. Unlike dataframes, which, as 
we have seen in the above examples, can accomodate variables of different types (e.g., 
numeric and character), matrices contain same-type data; that is, all data assembled in 
them should be either numeric, or integer, or character.

We can create a matrix mtx from scratch by defining the number of rows and 
columns thus:

> mtx <- matrix(NA, nrow = 8, ncol = 4)
> mtx
	 [,1]	 [,2]	[,3]	[,4]
[1,]	    NA	     NA	    NA	    NA
[2,]	    NA	     NA	    NA	    NA
[3,]	    NA	     NA	    NA	    NA
[4,]	    NA	     NA	    NA	    NA
[5,]	    NA	     NA	    NA	    NA
[6,]	    NA	     NA	    NA	    NA
[7,]	    NA	     NA	    NA	    NA
[8,]	    NA	     NA	    NA	    NA 

You can check that the structure is indeed a matrix by using class():

> class(mtx)
[1] "matrix" 
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The matrix above does not yet contain values. To fill the matrix we will use random 
deviates from the normal distribution generated by rnorm()7 and we will use a for 
loop. In a for loop “you request that an index, i, takes on a sequence of values, and 
that one or more lines of command are executed as many times as there are different 
values in i” (Crawley 2007: 58). For example, if you define the sequence from 1 to the 
total number of rows in mtx as your index i, you can request that the command line 
inside the curly brackets { } is executed anew for each row in mtx:

for(i in 1:nrow(mtx)){
     mtx[i,] <- rnorm(4, 1, 0.5)

       }

The result of the loop is this matrix (note that each time you execute the for loop mtx will 
contain slightly different numbers as rnorm(), like for example sample(), generates 
random numbers ad hoc! To avoid that variation, you can use the function set.seed(), 
and input random numbers such as set.seed(123); this will ensure that the same 
numbers are generated upon each call to rnorm() and even across different computers):

> mtx
	      [,1]	      [,2]	     [,3]	       [,4]
[1,]	0.3185526	 1.1064500	1.1118180	 0.99079679
[2,]	0.1673188	 1.9577960	0.6519454	 0.87897832
[3,]	1.1265918	 0.3630504	0.4120163	 0.20233971
[4,]	0.6035189	 0.9400921	1.1670354	 1.33095974
[5,]	1.3572709	 0.8692920	0.5234354	 0.78606335
[6,]	0.4265050	 1.4344361	0.8462145	 1.13144930
[7,]	0.9547759	 1.1859968	1.0068117	 0.05911865
[8,]	1.8459110	 1.5804917	1.2126679	 0.69621761 

Helpful functions to analyze data in matrices (and dataframes) include the functions 
of the apply() family of functions (including not only apply() but also lapply(), 
tapply() and others; see, for example, ?lapply). For illustration, we will take a look 
at apply(), which applies a function to margins of a matrix.

Its syntax is simple: the first argument is the data, the second is either 1 (indicating 
that the function is to be applied row-wise) or 2 (indicating column-wise application of 
the function), and the third is the function itself. R provides a large number of built-in 
vector functions, including sum() for total, min() for minimum value, mean() for 
arithmetic average, sort() for sorting and many others (cf. Crawley 2007: 17–18). 
Here we use max(), which gives the maximum value, and median(), which computes 

.  rnorm() requires three arguments: the number of observations (4 in the above example), the 
mean (here 1), and the standard deviation (here 0.5).
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the median, the middle value of a sorted distribution and hence provides a more robust 
measure of central tendency than the mean (cf. Woods et al. 1986: 30–32).

> apply(mtx, 1, max)       # maximum by rows
[1]  1.111818  1.957796  1.126592  1.330960  1.357271  1.434436 
1.185997  1.845911

> apply(mtx, 2, median)    # median by columns
[1]  0.7791474  1.1462234  0.9265131  0.8325208 

Matrices can also contain characters. For illustration, let’s fill mtx with letters from 
A to Z, using the built-in constant LETTERS , which contains the 26 upper-case let-
ters of the Roman alphabet (letters is the equivalent for lower-case letters). To fill 
it with a random sample of letters we use sample(). Its arguments include the data 
to be sampled from and the number of draws; if the number of draws is greater than 
the number of values in the data, then the third argument replace = T allows for 
sampling with replacement.

We can do it in one line or with a for loop; note that the one-liner requires that 
the draw is executed for the whole length of the matrix, which is 32 (as there are 32 
cells in the matrix) whereas the for loop – which iterates over the rows, each of which 
has 4 values – requires just four draws:

> mtx[] <- sample(LETTERS[1:3], length(mtx), replace = T)
> mtx
	 [,1]	[,2]	[,3]	[,4]
[1,]	"B"	 "A"	 "B"	 "C"
[2,]	"A"	 "B"	 "C"	 "B"
[3,]	"B"	 "B"	 "A"	 "C"
[4,]	"C"	 "B"	 "B"	 "C"
[5,]	"A"	 "B"	 "A"	 "A"
[6,]	"B"	 "B"	 "B"	 "A"
[7,]	"A"	 "B"	 "A"	 "C"
[8,]	"A"	 "A"	 "B"	 "B"

> for(i in 1:nrow(mtx)){
mtx[i,] <- sample(LETTERS[1:3], 4, replace = T)
}
> mtx
	 [,1]	[,2]	[,3]	[,4]
[1,]	"A"	 "A"	 "C"	 "B"
[2,]	"A"	 "A"	 "B"	 "B"
[3,]	"B"	 "B"	 "C"	 "C"
[4,]	"A"	 "B"	 "A"	 "B"
[5,]	"C"	 "B"	 "B"	 "A"
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[6,]	"A"	 "C"	 "C"	 "B"
[7,]	"B"	 "B"	 "B"	 "B"
[8,]	"C"	 "A"	 "B"	 "C"

The example is so far not particularly meaningful in linguistic terms. To increase its 
meaningfulness, let’s assume that the data in the matrix are words occurring in turns 
and that we have a matrix not of letters but of codes denoting the major word class of 
the words in the turns. We would then first label the matrix rows and columns accord-
ingly, namely w1, w2, w3, and w4 for columns and Turn_1, Turn_2, etc. for rows; the 
labels are assigned using rownames() and colnames():

> rownames(mtx) <- c(paste("Turn", 1:8, sep = "_"))
> colnames(mtx) <- c("w1", "w2", "w3", "w4")
> mtx
	 w1	 w2	 w3	 w4
Turn_1	"A"	"A"	"C"	"B"
Turn_2	"A"	"A"	"B"	"B"
Turn_3	"B"	"B"	"C"	"C"
Turn_4	"A"	"B"	"A"	"B"
Turn_5	"C"	"B"	"B"	"A"
Turn_6	"A"	"C"	"C"	"B"
Turn_7	"B"	"B"	"B"	"B"
Turn_8	"C"	"A"	"B"	"C"

Now we define a vector wordclass that contains the labels for the three major word 
classes:

> wordclass <- c("Function", "Content", "Insert") 

and sample these labels into the matrix:

> mtx[] <- sample(wordclass, length(mtx), replace = T)
> mtx
	 [,1]	 [,2]	 [,3]	 [,4]
[1,]	"Function"	 "Function"	"Insert"	 "Function"
[2,]	"Insert"	 "Function"	"Insert"	 "Content"
[3,]	"Function"	 "Content"	 "Insert"	 "Function"
[4,]	"Content"	 "Insert"	 "Content"	 "Insert"
[5,]	"Content"	 "Content"	 "Function"	 "Function"
[6,]	"Function"	 "Content"	 "Function"	 "Function"
[7,]	"Function"	 "Function"	"Function"	 "Content"
[8,]	"Content"	 "Content"	 "Content"	 "Content"

This looks a little more linguistic-y. We can perform many useful analyses with this 
kind of data. For example, we may be interested in the frequencies of occurrence of 
the different word classes and in the percentages the classes account for. For the matrix 
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as a whole, frequencies can be obtained from table(), and percentages from prop.
table(table()):8

> frequencies <- table(mtx)
> frequencies
mtx
Content Function Insert
     12       14      6

> proportions <- prop.table(table(mtx))
> proportions
mtx
Content Function Insert
 0.3750   0.4375 0.1875 

As will be shown in the case study in Chapter 5, frequencies and proportions of word 
classes are not distributed uniformly across positions in turns. Therefore it will be 
desirable to compute frequencies and proportions for each turn position, that is, each 
column in mtx. We can easily compute frequencies and proportions for the matrix 
columns separately. For example, using prop.table() and subsetting on the col-
umns in mtx we get the proportions of the word classes in the first column, i.e., for the 
turn-initial words:

> prop.table(table(mtx[,1]))
Content Function Insert
  0.375    0.500  0.125 

But what if, as in the present case, we have multiple columns, perhaps even many more 
than the four we presently have? Then it would violate the above mentioned economy 
principle if we repeated the code multiple times (and repeating code is not only cum-
bersome but also error-prone!). How can we get the desired output for all columns in 
one piece of code? For illustration, let’s use a for loop (but note that there are shorter 
ways to do it)9 and let’s focus on proportions (the respective code for frequencies is 
essentially the same, just without prop.table()).

First we will set up a new matrix, prop, to feed the proportions in. What should 
that new matrix look like? We know that the source matrix, mtx, has four columns, 
each representing a word slot in the turn; so we will set the number of columns in 

.  prop.table() cannot process character data, which we have in mtx; therefore prop.
table() needs to be wrapped around table().

.  For example, using apply() and factor() (in case not all three factor levels are represented 
in each column) which gets exactly the same results as the for loop:

apply(mtx, 2, function(x) prop.table(table(factor(x, levels = wordclass)))) 
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prop to 4 too. We further know that each column in mtx has three unique values 
(Content, Function, and Insert); so we will set the number of rows in prop to 3. 
Finally, we label the rows and columns in the matrix:

> prop <- matrix(NA, ncol = 4, nrow = 3)
> colnames(prop) <- c("w1", "w2", "w3", "w4")
> rownames(prop) <- c("Content", "Function", "Insert")
> prop
	 w1	w2	w3	w4
Content	 NA	NA	NA	NA
Function	NA	NA	NA	NA
Insert	 NA	NA	NA	NA 

This was the easy part. The slightly harder part is defining a for loop to fill in the 
proportions in one go. The first task is to define the index i: what we want to achieve 
is fill the four columns in prop. So what we could do is one of two things: we could 
either, quite simply, define i as the sequence 1:4, or define it as 1 to as many col-
umns as there are to be filled, which we would express in 1:ncol(prop); obviously, 
the latter version is more flexible and will accomodate any number of columns. Once 
we have, then, set up the for clause in for(i in 1:ncol(prop)) we open curly 
brackets { }. Inside the brackets we formulate the command that we instruct R to 
execute as many times as there are values in i. We subset prop on its columns by the 
index i and instruct R to loop over the columns in mtx, also subsetting it on its col-
umns with i, and to compute the proportions of the three word classes using prop.
table(table()), extract them and assign them to prop[,i]:

> for(i in 1:ncol(prop)){
+     prop[,i] <- prop.table(table(mtx[,i])) 
+ } 

And this is the result – a neat little matrix in tabular form. If the matrix were much 
larger and contained real language data, it could serve as the starting point to a quanti-
tative investigation of how word classes distribute across positions in four-word turns:

> prop
	    w1	   w2	   w3	   w4	
Content	 0.375	0.500	0.250	0.375
Function	 0.500	0.375	0.375	0.500
Insert	 0.125	0.125	0.375	0.125 

2.6  Regular expressions

We already touched upon regular expression above. In this section, the aim is to pro-
vide a brief but more systematic introduction.
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Regular expression deserves good mention in a book that is dedicated to research 
in Interactional Linguistics (and Conversation Analysis). This is because this language 
could greatly benefit analyses of CA transcriptions. Typically, CA transcripts are for-
matted as Word documents, a format which is only minimally machine-readable. For 
instance, searches for literal words are enabled but searches for more abstract patterns 
are impossible; also search results cannot be extracted. Unlike orthographic transcripts, 
CA transcripts encode a wealth of information related not only to the verbal content 
of face-to-face interaction but also to delivery aspects, including, for instance, tempo, 
emphasis, prosody, temporal aspects such as the length of pauses, sequential aspects 
such as overlap, and aspects of non-verbal and non-vocal conduct such as meaning-
ful gestures, facial expressions, body posture etc. Certain widely accepted standards 
govern how a CA transcript encodes such aspects. For example, overlap is marked 
by square brackets [ ], intonational contours are denoted by punctuation marks, and 
changes in tempo are signalled by the ‘greater than’ and ‘smaller than’ symbols > and 
< . In other words: a wealth of multimodal information is encoded in a wealth of 
character symbols. Now, character symbols are the very stuff of regular expression: 
this language was invented to navigate through texts and extract patterns of character 
strings from them. In other words, regex makes CA transcripts machine-readable and 
can thus open up new ways of analyzing CA transcripts.

Regular expression is a language in its own right. Its purpose is to parse, extract, 
and manipulate text (Stubblebine 2007). It is implemented in many programming 
languages such as Perl, Java, Ruby, C+, Python, and of course R, where a number of 
extremely useful and important functions are used to implement the language.10

As any language, regular expression (often abbreviated to regex) requires a learn-
ing curve, and help will be appreciated especially at early stages. The first notable 
source of help is found in R itself, where the command ?regex opens R’s detailed doc-
umentation of how regular expression is implemented in R. Further, there are a large 
number of useful websites, including, for example, <https://www.regular-expressions.
info/quickstart.html> and <http://stat.ethz.ch/R-manual/R-devel/library/base/html/
regex.html> . Recommended are also Crawley (2007), who discusses regex in a very 
reader-friendly way, and Gries (2017), where regex is covered in very good detail and 
with practical tasks for readers. A very useful webpage is <https://jex.im/regulex/>, 
which visualizes regex in detail.

For illustration, we will work with the CA transcript of a storytelling interaction; 
let’s call the transcript CAt:11

.  Although basically the same language, regex is implemented in subtly different ways across 
programming languages.

.  This storytelling is part of the storytelling sample underlying the case study in Chapter 10.

https://www.regular-expressions.info/quickstart.html
https://www.regular-expressions.info/quickstart.html
http://stat.ethz.ch/R-manual/R-devel/library/base/html/regex.html
http://stat.ethz.ch/R-manual/R-devel/library/base/html/regex.html
https://jex.im/regulex/
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> CAt 
    who                                                     story
1   Sue:  That’s like your grand:ma. did that with::=erm          
2   <NA>  with Ju:ne (.) once or [ twice.]                        
3  Carl:                         [ Yeah. ]                        
4   Sue:  And June wanted to go out and yo- your granny said (0.8)
5   <NA>  “make sure you’re ba(hh)ck before midni(hh)ght.”        
6   <NA>  [Mm.]                                                   
7   <NA>  [There] she was (.) a ma(h)rried woman with a(h)-       
8  Carl:  She’s a right wally.                                    
9   Sue:  mm [kids  as well ]                                     
10 Carl:     [They    assume] an awful lot man¿                   
11  Sue:  °°ye:ah,°°                                             
12 Carl: °°the elderly do.°°

Regex matches patterns. The simplest ‘pattern’ is a literal pattern. For example, let’s 
assume you want to know how many utterances Sue uses to tell the story. So you can 
specify the pattern Sue: (including the colon might be important as Sue alone could 
also be used as a word). To extract all occurrences of the pattern Sue: we will use the 
function grep(): this function retrieves any vector element that contains the match. 
Its first argument is the pattern, and the second is the variable name in which the pat-
tern is being searched for:

> grep("Sue:", CAt$who)
[1] 1 4 9 11 

The output may look confusing at first glance: why a series of numbers? The numbers 
are simply the indices of the matches in the vector CAt$who: so the first element is a 
match, as are the fourth, the nineth, and the eleventh. You can get the matches not only 
as indices but also as text, by adding the argument value = T:

> grep("Sue:", CAt$who, value = T)
[1] "Sue:" "Sue:" "Sue:" "Sue:" 

So you can easily see that there are four distinct utterances by Sue in this storytelling. If 
you prefer to obtain a number, you can store the matches in a vector, call it for example 
sue, and use length() to determine the number of elements it contains:

> pattern <- "Sue:"
> sue <- grep(pattern, CAt$who)
> length(sue)
[1] 4 

Now let’s assume you wish to find out how many utterances the participants to this 
storytelling use altogether. This could be achieved in at least two ways. One way is by 
using two literal patterns conjoined by the metacharacter |, which marks alternatives: 
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> grep("Sue:|Carl:", CAt$who, value = T)
[1] "Sue:" "Carl:" "Sue:" "Carl:" "Sue:" "Carl:" "Sue:" "Carl:" 

Again you can determine the number of utterances by using length(), this time 
directly without storing the matches in a vector:

> length(grep("Sue:|Carl:", CAt$who, value = T))
[1] 8 

But in lengthy transcripts, or if you work with many transcripts at the same time, it will 
not be possible to specify each speaker in advance. Then you will prefer to use a more 
abstract pattern. What is it that the character strings Sue: and Carl: have in com-
mon? They share three properties: (i) they start with an uppercase letter, (ii) they are 
followed by a number of letters, and (iii) they share the colon at the end of the string. 
To capture these shared properties we will use metacharacters, that is, symbols with 
specialized meanings (for an overview see Table 2.1).

Table 2.1  Regex metacharacters

Description Meta-character Function

backslash \ double backslash \\ ‘escapes’ metacharacters, i.e., \\ marks 
them as to be processed literally ; e.g., \\. matches full stops

caret ^ marks beginning of string; inside character class [ ] it negates 
the character class; e.g. [^a-z] means ‘not lower case letters’

dollar sign $ matches end of string

period or dot . matches ‘anything’

vertical bar | marks alternatives

question mark ? marks optional item (but used differently in look-arounds)

asterisk * matches preceding item zero or more times

plus sign + matches peceding item once or more times

parentheses ( ) delimit regex parts to be processed as a group, e.g. 
alternatives

square 
brackets

[ ] delimit character class, e.g., [a-zA-Z] (all letters)

curly brackets { } delimit quantifying expression, e.g., {1,5} (at least once, at 
most five times)

We can define the following pattern, where ^ denotes the beginning of a string, [A-Z] 
captures the class of upper case letters, \\w matches any alphanumeric characters, and 
+ matches the preceding item (in this case \\w) at least once; the only literal element 
in the regex is the colon:
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> grep(("^[A-Z]\\w+:", CAt$who, value = T)
[1] "Sue:" "Carl:" "Sue:" "Carl:" "Sue:" "Carl:" "Sue:" "Carl:" 

Note that \\w is a shorthand character class, the equivalent of [A-Za-z0-9_], which 
matches any alphanumeric character plus the underscore. To match only numbers one 
can use the class [0-9] or the shorthand \\d (d for digit). Another useful shorthand 
character class is \\s for any whitespace character, including white space, tabs, new 
lines, etc. If only the tab character is to be matched, the shorthand \\t can be used; 
similarly \\n matches new lines.

The above pattern also includes the caret ^. This metacharacter is an ‘anchor’. That 
is, it does not match a character but a character’s position in the string. The anchor ^ 
matches a string’s beginning. The opposite position, at the end of a string, is matched 
by the anchor $; for example, the pattern "\\d$" applied to the PoS tags "VM0" (for 
modal verb) and "VVZ" (for the 3rd person singular form of lexical verbs) matches 
"VM0" but not "VVZ". Finally, another useful anchor is \\b. It allows you to match 
whole words, which is handy in linguistic research. For example, "\\bwell\\b" cap-
tures the adverb ‘well’ but not, for instance, ‘unwell’ or ‘well-known’.

Let’s return to our transcript CAt to address a different question: how to extract 
instances of constructed dialog, or direct speech, indicated in the transcript through 
quote marks? Again, think of what these instances have in common: in the extract 
there is a single instance, identifiable via the (bent) quote marks around it. So the pat-
tern would be anything between “ and ”. This would suggest this pattern:

> pattern <- "“.*”"
> grep(pattern, CAt$story, value = T)
[1] "“make sure you're ba(hh)ck before midni(hh)ght.”� " 

In the case of the short transcript with a single instance this pattern seems to work 
fine. But imagine working on larger transcripts with multiple instances of constructed 
dialog. Then the regex would match anything that is between the first opening quote 
mark “ and the last closing quote mark ” in the same vector element; that is, within 
vector elements, it would find, not bounded instances of constructed dialog, but the 
whole text from the first instance to the very last with all the intervening text as well! 
To make sure that all matches stop at each closing quote mark, you will have to exclude 
quote marks from those characters that are allowed to intervene between the quote 
opening and its closing. As noted above, exclusion is achieved by means of the caret ^ 
used inside the square brackets [ ], thus:

> pattern <- "“[^”]*”"
> grep(pattern, CAt$story, value = T)
[1] "“make sure you’re ba(hh)ck before midni(hh)ght.”� " 
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Looking more closely at the match you may notice the lengthy stretch of white space 
following the closing quote mark – why is this included although it is clearly not part 
of the quote? The inclusion is because, as said above, grep() finds vector elements 
that contain matches. In other words: it not only finds the pattern match but anything 
else that may be part of the element – in the case of the element in question, a lot of 
white space. Consider this example from another storytelling:

> ex <- c("So he goes “↑beep beep↑” on the horn", "this bloke went 
“HUh HUh,”")
> grep(pattern, ex, value = T)
[1] "So he goes “↑beep beep↑” on the horn" "this bloke went “HUh 
HUh,”" 

Here, we get, not only “↑beep beep↑” and “HUh HUh,”, the only true quotes, but the 
complete two lines. To extract the quotes from any surrounding context, a slightly 
more complex procedure is necessary, involving two more functions, gregexpr() 
and regmatches(): gregexpr() returns a list of the starting positions of each 
match and regmatches() produces a list of the texts of each match; to get the raw 
matches, use unlist():12

> matches <- gregexpr(pattern, ex, perl = T)
> quotes <- regmatches(ex, matches)
> unlist(quotes)
[1] "“↑beep beep↑”" "“HUh HUh,”" 

Let’s check with the CA transcript: do we get rid of all extra material surrounding the 
quote by using gregexpr() and regmatches()? For brevity sake, let’s collapse the 
three seperate steps into a one-liner:

> unlist(regmatches(CAt$story, gregexpr(pattern, CAt$story, perl = T)))
[1] "“make sure you’re ba(hh)ck before midni(hh)ght.”" 

Yes, the trailing space behind the quote has disappeared. And, since we are going to 
use the one-liner several times, let’s simplify the code even further by defining a func-
tion for it so we don’t always have to repeat the code; let’s call this function simply 
extract:

.  Alternatively, and more simply, you can use the function str_extract from the stringr 
package:

> install.packages("stringr")	 # install the package

> library(stringr)	 # call the package

> str_extract(CAt$story,pattern)	 # extract raw matches 
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extract <- function(x) unlist(regmatches(x, gregexpr(pattern, x, 
perl = T))) 

So, next time we perform the extraction of the raw matches we simply call the function 
to get them.

For another illlustration of the usefulness of regex for CA research, let’s assume we 
are interested in extracting pauses. As always, the first step is to determine the shared 
properties: in the story there are two short pauses, (.), and one longish pause, (0.8). 
The two strings share the round opening and closing brackets as well as the period; the 
numbers are optional elements. Both round brackets and the period are metacharac-
ters. This means we have to ‘escape’ them; escaping is achieved in R by using the double 
backslash \\. Let’s approach the task of formulating the pattern in two steps.

> pattern <- "\\(\\.\\)"
> extract(CAt$story)
[1] "(.)" "(.)" 

We can see that this regex did not find all pauses, only the short ones. To see why, 
let’s break the regex into meaningful chunks: the first chunk is \\(, which matches 
opening brackets; the next is \\., which matches the period; and, finally, \\) finds 
closing brackets. What is missing is the option that the pause is expressed as a decimal 
number. To account for this possibility, we will use (…)?, the syntactic structure to 
denote optional characters. To target optional numbers we will use \\d (d for ‘digits’); 
alternatively, we could use [0-9]:

> pattern <- "\\((\\d+)?\\.(\\d+)?\\)"
> extract(CAt$story)
[1] "(.)"     "(0.8)" "(.)" 

This now finds all pauses. Note the regex chunks: beside the already known chunks  
\\( for the opening brackets, \\. for the period, and \\) for the closing brackets, the 
new regex contains (\\d+)? twice, which expresses the optional occurrence of one 
or more digits.

Obviously, you would want to extract pauses in order to process them further (for 
example, in order to find out how long pauses are in certain sequential positions). But 
at this point such further processing would not yet be possible, for two reasons. The 
first is that R does not know that the results of the above operation represent numbers. 
Instead it treats it, not surprisingly, as characters. This can be seen if you store the 
results in a vector, called pauses, and query for its structure using str():

> pauses <- extract(CAt$story)
> str(pauses)
chr [1:3] "(.)" "(0.8)" "(.)" 
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And why should R treat the results as numbers as they contain a lot of material that 
patently is not numeric, such as brackets and brackets without any numbers? So, the 
first task would be to deal with short pauses, transcribed as “(.)”. It is customary in 
CA to transcribe pauses in this way when they are shorter than 0.3 seconds. On the 
other hand, we know that there is a perceptual gap of 120 ms (Heldner 2011); that is, 
anything shorther than that gap cannot be perceived as a gap in the first place. So, a 
reasonable suggestion would be to set all short gaps to the arithmetic mean of 120 ms 
and 300 ms, which is 210 ms, or 0.2 s. This transformation can be done with gsub(), a 
function that takes as its first argument a pattern and as its second argument the string 
into which the pattern is to be transformed; the third argument is the vector in which 
the matches are located:

> pauses <- gsub("\\(\\.\\)", "(0.2)", pauses)
> pauses
[1] "(0.2)" "(0.8)" "(0.2)" 

Now we have decimal numbers in all matches. But we also need to get rid of the brack-
ets; again gsub() is useful here:

> pauses <- gsub("(\\(|\\))", "", pauses)
> pauses
[1] "0.2" "0.8" "0.2" 

Now the brackets are gone. But for R, pauses is still a character vector. To change it 
into numeric, we transform it using, as above, as.numeric():

> pauses <- as.numeric(pauses)
> str(pauses)
num [1:3] 0.2 0.8 0.2 

Now we could start working with the pauses as numbers.
For another illustration let’s work with laughter. It is conventional in CA to tran-

scribe within-word laughter by laughter particles wrapped into round brackets. The 
pattern to match words containing laughter particles can be formulated thus, this time 
making use of a quantifying expression in curly brackets { }: the first number after 
the opening curly bracket specifies the minimum number of times an item is to occur; 
the second number, after the comma, specifies the maximum number of times an item 
occurs; if either the first or the second number are not provided, then the minimum or, 
respectively, maximum number of occurrences are left undefined:

> pattern <- “\\w*\\(h{1,}\\)\\w*" 

The components are as follows: \\w* looks for zero or more alphanumeric characters, 
\\( targets the opening round bracket, h{1,} matches at least one h (the maximum 
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number of expected tokens is undefined), \\) matches the closing bracket, and \\w* 
looks for letters again. If we use our function extract() as above we get an exhaus-
tive list of all the words with laughter particles in them:

> extract(CAt$story)
[1] "ba(hh)ck" "midni(hh)ght" "ma(h)rried" "a(h)" 

Overlap is yet another critical topic in CA. How can stretches of overlapped speech 
be extracted? The phenomenon is commonly transcribed via square brackets. So we 
could target overlap thus:

> pattern <- "\\[[^]]*]"
> extract(CAt$story)
[1] "[ twice.]""[ Yeah. ]" "[Mm.]""[There]""[kids as well ]""[They 
assume]" 

The pattern is composed of \\[, which escapes the opening square bracket (the clos-
ing square bracket, by contrast, does not need escaping); [^]]*, a character class 
which includes any character occurring zero or more times except the closing square 
bracket (see the similar problem described above in matching quotes); and ], which 
matches the closing square bracket.

Now, let’s take this pattern for overlap one step further to explore yet another 
syntactic resource of regex: lookarounds. Let’s assume that we want to get at the words 
immediately preceding the overlapped words. We could easily define a pattern to 
match both the prior word and the overlapped words, by adding \\w+ for the prior 
word and \\s for the white space betweeen the two words:

> pattern <- “\\w+\\s\\[[^]]*]”
 > extract(CAt$story)
[1] "or [ twice.]"       "mm [kids as well ]" 

But that’s not the desired output: what we want to obtain is just the word prior to 
the overlap, that is, in this case, “or” and “mm”. So we need to formulate the pat-
tern in such a way that the part that matches the overlap is denoted merely as a co-
occurrence phenomen but does not get consumed by the pattern. Matching patterns 
via co-occurring patterns is achieved by lookarounds (cf. Gries 2017). There are two 
major types of lookarounds: lookaheads and lookbehinds. Lookaheads encode the 
instruction: “match X if you see Y on the right”, lookbehinds take the reverse direc-
tion: “match X if you see Y on the left”. To target the word that immediately precedes 
overlap we will use lookahead – the word prior to overlap represents X while the 
overlap represents Y. Using the ‘grammar’ for lookahead, which is(? = …), we can 
formulate this pattern:

 > pattern <- "\\w+(?=\\s\\[[^]]*])" 
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We have not changed much compared to the above pattern: we have defined \\s\\
[[^]]*] as the co-occurrence pattern that we wish not to be extracted along with the 
target word by putting it into the lookahead syntax: (?=\\s\\[[^]]*]). If we now 
call extract, we get the exact matches:

> extract(CAt$story)
[1] "or" "mm" 

Sticking with overlap and the words occurring in their vicinity, we could attempt to 
extract those words that follow overlap,. In this case, we would use lookbehind. Unfor-
tunately, some engines do not support use of quantifier expressions such as * within 
lookbehinds, so we need to reformulate that part of the regex that addresses the over-
lap. Since only overlap is wrapped into square brackets and we are interested in what 
follows the closing square bracket of overlap, we could simply define that character as 
the anchor point:

> pattern <- "(?<=]\\s)\\w+" 

This pattern instructs the engine to look for a word (\\w+) if that word is preceded by 
a closing square bracket and a space ((?<=]\\s)). And, indeed, the lookbehind finds 
the two correct matches:

> extract(CAt$story)
[1] "she" "an" 

Lookarounds can also be negated. That is, instead of matching a pattern if there is a co-
occurrence pattern on the right, you can tackle a pattern if, and only if, there is no such 
co-occurrence to the right. And, instead of matching a pattern that is defined by a pre-
ceding pattern you can query for a pattern that is not preceded by such pattern. The syn-
tax is (?!…) for negative lookahead and (?<!…) for negative lookbehind. For example, 
to return to the above examples of words co-occurring with overlap, you could address 
and extract all words that are not followed by overlap, by adapting either the more com-
plex pattern used above or the shorter one; they find exactly the same matches:

> pattern <- "(?!\\[[^]]*]\\s)\\w+"
> pattern <- "(?!]\\s)\\w+"
> extract(CAt$story)[1:10]      # output clipped to the first 10 matches
[1] "That" "s" "like" "your" "grand" "ma" "did" "that" "with" "erm" 

Note that in defining the pattern we have switched the order of components: although 
we are looking for X preceding Y, we can put the pattern for Y in front of the pattern 
for X. R will still process the regex in the right way, as a lookahead.

Conversation Analysts have not yet taken advantage of regex to any large extent. 
To my knowledge, regex has only very recently been exploited in CA-related work 
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(e.g., Haugh & Musgrave 2019). But regex offers great potential for analyzing CA tran-
scripts. What has been demonstrated in this small section was based on a mini tran-
script. But that size restriction was owed to illustrative reasons, not to regex. Regex 
does not care as to how many transcripts it is used on: it could be used to match and 
extract patterns from thousands of transcripts in a single query. So what regex can do 
for CA is get a handle on data of scale – provided that codings, such as those underly-
ing CA transcripts, remain true to CA principles (cf. Stivers 2015). In other words: it 
can help add to CA’s methodological toolbox a serious quantitative component.

2.7  Importing and exporting data

Two essential operations are importing data from files into R and, conversely, export-
ing data from R into files.

Before importing data to R, it is important to store data in the right way. This ‘right 
way’ is governed by one principle: “all the values of the same variable must go in the 
same column” (Crawley 2007: 108). So, for example, if you had response times for dif-
ferent types of backchannels (cf. the case study in Chapter 12), it’s not a good idea to 
devise one column for the response times for continuers, one for assessments, and so 
forth; this would scatter the values of the dependent variable (response time) across 
different columns. Rather, all the response times should be collected in one column 
and their respective backchannel types in another column.
Once your data is in the right layout, you can load it into R for further processing. 
For illustration, let’s use a short excerpt from a larger dataset we will work with in 
Chapter 6 on nucleus placement (cf. column Nucleus) and surprisal (column s1); the 
file, called “Chapter2_ImportExample.txt”, can be downloaded from the companion 
website.

	 Speaker	                                    Turn	   s1	 Nucleus
1		    we bought the thomas second and then we	 2.17	       4
2	   PS1BT	         enough to put put , put gordon on	 3.14
3	   PS1BS	     the original pop goes the weasel song		        9
4	   PS1BT	 what you 're thinking there is china clay	 0.69	       9
5	   PS1BS	           sure it was n't chris as a baby	 3.04	      10

Note at this point two things: first, the first cell in the Speaker column is empty; and 
there are more empty cells in the last two columns. These are features that need to be 
considered when loading the data (see below).

The function to use for importing data depends on the format of the file you wish 
to read in. If your data is in .txt format, where the columns are separated by tabs, the 
read.table() function is key. If the data is stored in a csv-formatted file, then the 
function read.csv() is used.
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In the following we’ll assume that the file is stored as .txt. The first argument for 
both read.table() and read.csv() is the path to the file on your computer. Note 
that in Windows, that path normally starts with "C:/Users/… whereas it will start 
with "/Users/… on a Mac. Following the path, the first argument is header: it is set 
to TRUE (or simply T) if the columns have headers (which they usually, and ideally, do) 
and to FALSE (or F) if they don’t.

Now let’s try and read in the file:

> import <- read.table("[Your path]/ImportExample.txt",
+                     header = T)
Error in read.table("[Your path]/ImportExample.txt”, :
  more columns than column names
In addition: Warning message:
In read.table("[Your path]/ImportExample.txt", :
  incomplete final line found by readTableHeader on ‘[Your Path]/
Import_example.txt’' 

We get an error and a warning – apparently, more parameters need to be specified to 
upload the data. In addition to header = T, we will use quote = "", and sep = 
"\t": the argument quote = "" ensures that no special characters will be used for 
quoted strings, sep = "\t" specifies that we have tab-delimited data fields:

> import <- read.table("[Your path]/ImportExample.txt",
+ header = T, sep = "\t", quote = "")
> import
	 Speaker	                                      Turn	   s1	 Nucleus
1		    we bought the thomas second and then we	 2.17	       4
2	   PS1BT	         enough to put put , put gordon on	 3.14	      NA
3	   PS1BS	     the original pop goes the weasel song	   NA	       9
4	   PS1BT	 what you 're thinking there is china clay	 0.69	       9
5	   PS1BS	           sure it was n't chris as a baby	 3.04	      10 

This time the read-in worked. Looking more closely, though, we see that R has made 
some significant changes. The first change is the addition of NA to the empty fields 
under s1 and Nucleus; by contrast, R has not added NA to the empty field under 
Speaker – why these changes?13

R does not import data blindly; it analyzes them in terms of structure. This 
emerges clearly from calling str():

.  It might be useful to set blank cells from the start to NA. This can be achieved by including 
the argument na.string = "" in the call to read.table().
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> str(import)
'data.frame':      5 obs. of 4 variables:
$ Speaker: Factor w/ 3 levels "","PS1BS","PS1BT": 1 3 2 3 2
$ Turn   : �Factor w/ 5 levels "enough to put put , put gordon on",..: 

4 1 3 5 2
$ s1: num 2.17 3.14 NA 0.69 3.04
$ Nucleus: int 4 NA 9 9 10 

Not only has R analyzed the data as a dataframe (see first line) but it has ‘decided’ that 
the third column represents numerical data and the forth column integers while the 
first two columns represent factors. We will agreee that the informativity, or surprisal, 
values stored under s1 represent numerical values and the Nucleus column contains 
integers; but the data under Turns are strings of characters rather than factors (as 
each turn is unique). The reason for this latter conversion is that read.table()by 
default converts character variables to factors. To prevent this, the argument as.is 
can be used: to keep the column Turn as a character variable, you could alternatively 
specify as.is = "Turn" or as.is = 2:

> import <- read.table("[Your path]/ImportExample.txt",
+                          header = T, quote = "", sep = "\t", as.is = 2)

> str(import)
'data.frame':      5 obs. of 4 variables:
 $ Speaker: Factor w/ 3 levels "","PS1BS","PS1BT": 1 3 2 3 2
 $ Turn      : chr "we bought the thomas second and then we" "enough 
to put put , put gordon on" "the original pop goes the weasel song" 
"what you 're thinking there is china clay" ...
 $ s1     : num 2.17 3.14 NA 0.69 3.04
 $ Nucleus: int 4 NA 9 9 10 

Now Turn is read-in as a character variable and the data has been imported success-
fully. Importing data can at times require quite some thought, (and for beginners often 
creates head-aches), exporting data from R is much less demanding. Again, there are 
two major functions, write.table() and write.csv(). Their first argument is the 
name of the data to be exported, called X below. The second argument is the path to a 
dummy file to export the data into (obviously, this dummy file needs to be created and 
stored beforehand; in the code below, this file is called Export_R.txt). Note that the 
two functions will by default wrap quote marks around the data points and include the 
row names. To prevent this, set quote = F and row.names = F:

> write.table(X, "[Your path]/Export_R.txt", sep="\t", quote = F, 
row.names = F) 

The dataset generated in R will appear in Export_R.txt and can be further pro-
cessed from there.





Chapter 3

Graphical parameters

3.1  Introduction

Suppose that, perhaps after a long and arduous process of carefully transforming your 
data (cf. Chapter 2), you have your data all set up for plotting. You may feel a sense of 
relief at this point, and deservedly so. But often the real work has only just begun. The 
reason is that while there are ready-made functions for most plot types introduced in 
this volume (the one exception being the location plot in Chapter 4), there may be a 
vast number of decisions to be taken not only as to what exactly to plot but, perhaps 
even more so, how to plot it. One and the same data can be plotted in innumerable 
ways, depending on which graphical parameters you choose and how you imple-
ment them. In other words, making an informative and aesthetically pleasing graphic 
involves a wealth of design questions. For example, are you going to make a plot with a 
single visualization or will there be two or three ‘panels’ in the plot? If the latter is the 
case, then how do you wish to arrange the panels: horizontally or vertically? Further, 
color is an obvious design feature, arguably, of every plot: does black-and-white suffice 
or do you require color? If the data suggest the use of colors, there’s the question of 
which colors to use – just random ones or ones from the numerous palettes R offers? If 
you need to distinguish different types of data (e.g., two distinct factor levels) by using 
different point characters, you will have to decide which ones to use, and possibly also, 
which size and even which color? If you have a large dataset, the problem of overplot-
ting will inevitably arise – how to minimize that? How many axes do you need and 
how do you want to label them? How ‘bulky’ is your legend and how can it be placed 
into the plot so that it does not overlay important data points? This list of design ques-
tions could be continued endlessly.

The aim in this chapter is to introduce you to the main recurrent graphical param-
eters. The total number of graphical parameters in R is overwhelming. Some graphic 
types have special parameters unique to them, many however are shared by all graphic 
types. We will focus here on the ones that are foundational in the sense that any graph-
ical representation will make some use of them. Call ?par to see the wealth of param-
eters R offers. In Sections 3.2 to 3.6 the main parameters are introduced; Section 3.7, 
then, serves to illustrate their use based on a case study.
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3.2  Plot layout

The first consideration when plotting a graphic relates to layout. Layout involves two 
major aspects: how many graphics, called ‘panels’, are to be combined in the plot, and in 
which order, and how wide you wish to leave the margins around the plotting regions.

The number and order of panels in a plot is determined by the argument mfrow 
= c( …, …), a vector whose first element determines the number of rows, the second 
the number of columns.If set to mfrow = c( 1, 1), which is the default, R will 
produce a single panel; if set, say, to mfrow = c( 2, 4), altogether eight panels will 
be produced arranged in two rows and four columns.

The margins around the panel(s) are set by mar = c( …, …, …, …,), a vector 
whose four elements determine the margins – in that order – bottom, left, top, right 
of the panel.

3.3  Point characters and line types

There is a wide range of point characters to represent data points. Point characters 
are defined as arguments to graphics, that is, inside the call for a specific graphic; the 
argument takes the form pch = …. For example, pch = 1 selects the empty circle 
(the default point character in R). The first 25 point characters are shown in Figure 3.1.
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Figure 3.1  Main point characters

You can combine point characters in one and the same plot easily, for example, when 
you have two or more levels of a variable and want to distinguish them visually. This 
is accomplished by combining as many point characters in the function c() and by 
defining the argument pch through that vector: pch = c(). For example, pch = 
c(1:5,10), selects the first five point characters and the tenth (cf. Figure 3.1).

Another important graphical parameter are lines. Lines can indicate two types 
of information: they can either connect data points or they can provide additional 
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information, such as the mean of a distribution or density (cf. Chapter 12). Some 
graphic types, such as the scatter plot, standardly offer various options for connect-
ing data points; the argument to define line type is type. You can set type to type 
= "p" (for unconnected points, the default), type = "l" (for lines), type = "b" 
(for individual points connected by lines), or type = "h" (for histogram-like lines), 
to name only four options. Another important specification is type = "n", which is 
handy when you do not wish to actually plot data points (which may indeed be neces-
sary, as will be seen in a number of the case studies).

A number of additional line types are available. For example the function 
abline() can be used to draw, for example, linear regression lines or other straight 
lines. To accomplish this you would use the function lm() (for linear model), which 
takes two variables x and y, inside abline(), thus: abline(lm(x ~ y)). The 
function abline() can also be used to draw lines for the arithmetic mean or the 
median, either vertically, abline(v = mean(x)), or horizontally, abline(h = 
median(x)). Another useful resource for adding lines to plots is segments(); it 
takes four arguments: the coordinates x0 and y0 from which to draw the line, and the 
coordinates x1 and y1 to which to draw. For example, segments(x0 = 1, y0 = 1, 
x1 = 5, y1 = 5)14 draws a diagonal from the coordinates (1,1) to (5,5).

The look of lines can be changed in many ways. Line width can be varied by lwd; 
lwd defaults to 1, so larger positive numbers will increase line width. Among line 
types you have the choice between solid, lty = 1, dotted, lty = 2, dashed, lty = 
3, and a few others. Another important parameter for changing the look of lines is col 
(for color; see below).

3.4  Adding text

The function text() allows you to add text to diagrams; the text added can be 
descriptive (for example, to designate a line as representing the mean) or, if you work 
with textual data such as words or phonetic transcriptions and some numeric variable 
for them (e.g., word length), that data itself can be printed into the graphic (see the 
illustrative case study below in Section 3.7 on duration , word class, and phonetic size).

The function text() takes essentially three arguments: the location of the text on 
the x-axis, the location on the y-axis, and the text itself, in straight quote marks. The 
syntax, then, is text(x, y, "…"). Text size can be changed by the argument cex, 
which defaults to 1; so cex = 0.5 decreases the font whereas cex = 1.2 increases it.

.  The coordinate labels are optional. Thus, segments(1, 1, 5, 5) works just as well.
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3.5  Legends

Only few graphics are complete without a legend.
Legends are drawn with the function legend(). The function accommodates 

a large number of arguments, only some of which can be introduced here (more 
will be described in the case studies). The first argument to legend() concerns its 
location in the plot, which can be indicated via values on the x- and, respectively, 
the y-axis, or by keywords such as "top", "topright", "topleft", etc. The next 
is the argument legend itself, which mostly takes a character vector of the labels 
for the variables in the plot. In legends, typically, a box appears before the vari-
able label; the argument fill serves to set the colors for these boxes. The argument 
border determines the color of the border line around the boxes (if no such border 
is wanted, then this argument can be set to border = "white"). If point characters 
are to precede the legend labels instead of boxes, then col is used instead of fill to 
determine the colors of the point characters. Finally, the argument bty determines 
the type of box around the whole legend; if it is set to bty = "n", no box will be 
drawn.

Finally, we turn to perhaps the most fundamental graphical parameter, colors.

3.6  Colors

R offers both built-in colors as well as color sets.
There are 657 built-in colors. Their names can be inspected by calling colors(). 

For space considerations, we will just look at the first six and the last six ones, by call-
ing the head() function and, respectively, the complementary function tail():

> head(colors())
  �[1] "white""aliceblue""antiquewhite""antiquewhite1""antiquewhite

2""antiquewhite3"
> tail(colors())
  [1] "yellow""yellow1""yellow2""yellow3""yellow4""yellowgreen"

From this small selection alone you get an impression of how broad a palette of colors 
R offers; for example, note that among the first six colors there are four different types 
of antiquewhite. If this selection still appears limited check out random samples of 
colors, using the sample() function:

> sample(colors(),10)
  [1] "grey82" "lightsteelblue""gray83""honeydew1""gray96""grey91"
  [7] "seagreen1" "lemonchiffon4""grey99""grey53"

As colors() is a vector, any elements of it can be accessed using (sequences of) 
indices:
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> colors()[111:114]
[1] "darkslategray3""darkslategray4""darkslategrey""darkturquoise"

To compare the built-in colors not only by name but actually see them side-by-side, 
use this command:

> demo("colors")

To add to the already huge variability of the built-in colors, you can additonally scale 
them to make them more or less transparent. This is achieved by the function adjust-
color(), where the parameter alpha.f can be set to any value between 0 (complete 
transparency) and 1 (no transparency). For example, this code sets five colors accessed 
by indices to semi-transparent:

> adjustcolor(colors()[100:104], alpha.f = 0.5)

Beside the built-in colors, R makes color sets available, including the following:

rainbow()	 # colors from the rainbow palette
heat.colors()	 # colors ranging from white to orange and red
terrain.colors()	 # earthly colors from white to green and brown
cm.colors	 # colors in the blue and magenta spectrum
gray.colors()	 # shades of gray

As with built-in colors, colors from color sets can be scaled by using the alpha 
parameter. For example, this code increases the transparency of three rainbow colors 
massively:

> rainbow(3, alpha = 0.1)

Figure 3.2 illustrates how both built-in colors and color sets can be used in plots: the 
figure shows a series of nine piecharts arranged in three rows and three columns. This 
arrangement is achieved by par(mfrow=c(3,3)), where the first number defines 
the number of rows, and the second number determines the number of columns. Also 
note the use of the mar parameter, which is set here to 0.5 (the function rep() repeats 
an object as many times as specified after the comma); in all pie charts the radius is 
extremely large, simply to zoom in on the colors (and avoid the ‘pie look’, which is 
considered a poor visualization for data). 

Starting from the top and going from left to right, the first pie chart specifies the 
built-in colors to be used by name (c("red","royalblue3","yellow")), the 
second specifies them by indices (colors()[503:506]), the third draws a random 
sample of 24 colors (sample(colors(),24)), and the fourth accesses colors via 
indices and instructs R to increase their transparency (adjustcolor(colors()
[100:124], alpha.f = 0.5)). The fifth chart uses the rainbow() palette, 
with three colors set to semi-transparent by the argument alpha = 0.5. The 
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remaining charts illustrate the colors of heat.colors(), cm.colors(), and 
gray.colors().

> par(mfrow=c(3,3), mar=c(rep(0.5,4)))

> pie(rep(1, 24), col	=	c("red","royalblue3","yellow"), radius = 4)
> pie(rep(1, 24), col	=	colors()[503:506], radius = 4)
> pie(rep(1, 24), col	=	sample(colors(),24), radius = 4)
> pie(rep(1, 24), col	=	�adjustcolor(colors()[100:124], alpha.f = 0.5), 

radius = 4)
> pie(rep(1, 24), col	=	rainbow(3, alpha = 0.5), radius = 4)
> pie(rep(1, 24), col	=	heat.colors(8), radius = 4)
> pie(rep(1, 24), col	=	topo.colors(6), radius = 4)
> pie(rep(1, 24), col	=	cm.colors(3), radius = 4)
> pie(rep(1, 24), col	=	gray.colors(24), radius = 4)

Figure 3.2  Pie charts to illustrate built-in colors and color sets
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3.7  An illustration: Duration, word class, and phonetic size

Let’s illustrate what has been said so far by a quick case study. The data for this case 
study, called “Chapter3_Casestudy.txt”, as well as the code file, called “Chapter3_Cas-
estudy_Code.R” can be downloaded from the companion website.

The case study addresses two questions. The first question is the correlation 
between a word’s duration and its phonetic size (i.e., the number of phonemes making 
up the word): both research (e.g., Zipf 1949) and intuition suggest that a word will be 
longer in duration the longer it is in terms of the phonemes a speaker must produce 
to articulate the word. The second question is whether word class is involved in this 
correlation. Specifically, we will assume that function words, which are the most fre-
quently used tokens, will be short both in terms of phonetic make-up and discourse 
duration and, conversely, that content words will be longer on both counts.

The aim here is to visualize these potential correlations based on a sample of word 
tokens pulled from the conversational subcorpus of the BNC and measured in Praat 
(Boersma & Weenik 2012) for duration. If a word type occurred more than once, each 
time inevitably with a slightly different duration in the discourse, one of the word’s 
tokens was randomly selected. This filtering process led to a subsample of 1,329 unique 
word tokens and the duration they had upon one instance of use in conversational 
interaction. Also, following the procedure described in detail in Section 7.1.2, the words 
were phonetically transcribed and the number of phonemes making up the words were 
counted.

The data are organized in six variables: the word tokens (called AllWords), their 
phonetic transcriptions (AllTrans), their part-of-speech tags (Allc5), their dura-
tions in discourse (AllDurs), and their phonetic sizes (AllPhons).

The variables are stored in a dataframe called gp_s (for graphical parameters 
sample); the first ten rows of gp_s look like this

> gp_s[1:10,]
	 AllWords	 Allc5	AllDurs	AllPhons	AllTrans	   Class
1	       'd	   VHD	  0.075	       1	       d	function
2	      'em	   PNP	  0.168	       2	      ɛm	function
3	      'll	   VM0	  0.056	       1	       l	function
4	       'm	   VBB	  0.048	       1	       m	function
5	      're	   VBB	  0.084	       1	       r	function
6	       's	   VBZ	  0.063	       1	       z	function
7	      've	   VHB	  0.044	       1	       v	function
8	        a	   AT0	  0.051	       1	       ə	function
9	 abington	   NP0	  0.446	       7	 æbiŋtən	 content
10	     able	   AJ0	  0.149	       3	    eɪbl	 content
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Further, to illustrate how the text() function can be exploited to print text into plots, 
a subsample is drawn, called gp_s2, containing just 50 word tokens and their associ-
ated variables.

The relation of duration, word class, and phonetic size in the two data sets are 
shown in Figure 3.3, with the two upper and the left lower panel based on the larger 
sample gp_s and the lower right panel based on the small sample gp_s2. The panels 
are arranged in two rows and two columns (the argument mar sets the plot margins 
around the panels):

> par(mfrow = c(2, 2), mar = c(4, 4, 2, 1))

All four scatter plots are set up using the tilde format y ~ x, that is, in our case duration 
~ phonetic size. The range of values for phonetic size is tightly restricted; as a result, the 
more than 1,000 token values stored in gp_s would get heavily overplotted. To spread 
the values on the x-axis and thus reduce overplotting, the data is ‘jittered’; that is, a 
little noise is added to each data point. This is achieved by the function jitter(); 
to increase the visual spread on the x-axis even slightly more, the factor argument, 
which defaults to 1, is set to 1.7. In the panel for gp_s2, with its merely 50 values, 
jittering is not deployed.

A basic first thing to do is add a title, as well as descriptive labels for the axes; the 
title is added in the argument main, the axes are labeled in the xlab and, respectively, 
ylab arguments. Further, initial inspection of the graph shows that there are a handful 
of extreme values (potential ‘outliers’). While these need to be dealt with carefully in 
a serious analysis, they may stretch the axes in such a way that the bulk of data points 
is not shown in fine enough detail. You may therefore wish to exclude them from the 
plot. This is accomplished by delimiting the range of values to be shown on the axes; 
ylim = c(0, 1.1) restricts the upper limit of the y-axis, which shows the durations, 
to 1.1 seconds, and xlim = c(1, 11) cuts off the x-axis, which shows phonetic size, 
at 11 phonemes. For the small sample gp_s2, axis size is not restricted.

Next, the arguments cex.main, cex.axis, and cex.lab determine the font 
sizes of title and axes.

The parameters we have set so far only affect the data visualization marginally. 
The most important parameters are colors, expressed in the argument col, and point 
characters, expressed in pch.

In the three panels for gp_s, the col argument makes use of the rgb() function, 
which allows manipulation of both intensity and transparency of the red, green and 
blue primaries. Its syntax is rgb(…, …, …, alpha = …, maxColorValue = …), 
where the first three slots take the desired color intensities for the three primary colors, 
alpha determines the transparency level, and maxColorValue defines the maximum 
of the color values range (any integer between 0 and 255). This is a useful function for 
large data sets where many data points would visually get drowned due to overplotting 
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(even despite jittering). In the plot in the upper left panel all three primaries are set to 0, 
in which case R defaults to black; alpha is set to 80, a low-intermediate transparency 
value (with alpha = 0 meaning 100% transparency and alpha = 255 meaning no 
transparency at all). Further, in the upper left panel, no point character is selected, so R’s 
default character comes into play, namely pch = 1. To increase the size of the charac-
ter, the argument cex is set to cex = 1.3. This is the code for the upper left panel so 
far (the last argument frame = F suppresses the default box around the plot):

> plot(jitter(gp_s$AllDurs, factor = 1.7) ~ jitter(gp_s$AllPhons, 1.7),
+     main = "Duration, Word class, Phonetic size",
+     xlab = "Phonetic size",
+     ylab = "Duration",
+     ylim = c(0,1), xlim = c(0,10),
+     cex.main = 0.9, + cex.axis = 0.8,
+     cex.lab = 0.8, + col = rgb(0, 0, 0, 80, maxColorValue = 255),
+     cex = 1.3
+     frame = F)

The two other panels representing data in gp_s differ by their color and point char-
acter parameters. In the upper right panel, the three primaries red, green, and blue 
are used to differentiate the three word classes content words, function words, and 
inserts. This is achieved by defining the argument col through subsetting gp_s on 
the variable Class and using nested ifelse() statements: as inserts are expected 
to be few in numbers and overplotting will not present an issue, "green" is selected 
without changes to intensity and transparency. For content words and function words, 
overplotting is an issue. Therefore, content words are to be shown in red in full inten-
sity – with the maximum value 255 given in the first argument to rgb() – but a low-
intermediate transparency level of 85, whereas function words are shown in blue – the 
second argument to rgb() – and an intermediate transparency level of 120:

+ col = ifelse(gp_s$Class=="insert", "green",
+               �ifelse(gp_s$Class=="content", rgb(255,0,0,85, max-

ColorValue = 255),
+                        rgb(0,0,255,120, maxColorValue = 255)))

In the lower left panel, this color coding is left untouched but the word classes are fur-
ther distinguished by point characters. The characters are assigned using the same logic 
as the color codings, namely by subsetting on Class and using ifelse() clauses:

+     pch = ifelse(gp_s$Class=="insert", 18,
+                  ifelse(gp_s$Class=="content", 1, 5)),

This selects the point character 18 for all inserts, the character 1 for content words, 
and the character 15 for all function words.
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In the lower right panel, the phonetic transcriptions of each token in the sub-
sample in gp_s2 is printed to the left of the (unique) point character. In the call to 
plot(), the parameters col and pch are defined thus:

+    col = ifelse(gp_s2$Class=="insert", "green",
+                     ifelse(gp_s2$Class=="function", "blue", "red")),
+    pch = 20,

That is, as before, depending on the values in Class, the three primaries are set as col-
ors (in their simple form) and the default point character, which is 1, is replaced by 20.

To print the transcriptions next to the point character, the function text() is 
used, with gp_s2$AllPhons on the x-axis – the first argument to text(), gp_
s2$AllDurs on the y-axis – the second argument to text(), and gp_s2$AllTrans 
as the vector of values to be printed – the third argument to text(). Moreover, while 
cex determines the character size, the argument pos determines the side to which the 
text is to be placed: 1 for underneath, 2 for to the left, 3 for above, and 4 to the right:

> text(gp_s2$AllPhons,
+      gp_s2$AllDurs,
+      gp_s2$AllTrans,
+      col = ifelse(gp_s2$Class=="insert", "green",
+                    ifelse(gp_s2$Class=="function", "blue", "red")),
+      cex = 0.8,
+      pos = 2)

Figure 3.3 also contains a number of lines. In the upper left panel, a regression 
line is included depicting the slope of the correlation for gp_s$AllDurs ~ gp_
s$AllPhons. The slope clearly climbs upward, indicating that duration and phonetic 
size are directly correlated: the longer the duration the longer the word token in terms 
of its phonetic make-up.15 This graphical element is produced using the abline() 
function as well as, inside it, the lm() function, which fits a linear model:

.  To establish in unmistakable terms whether two variables are correlated, it is customary to 
perform a correlation test with the function cor.test(); it takes as minimum input the two 
variables (in any order and separated not by the tilde ~ but by a comma) and, if no specific test is 
selected, it defaults to the Pearson correlation:

< cor.test(gp_s$AllDurs, gp_s$AllPhons)
      Pearson’s product-moment correlation
data: gp_sample$AllDurs and gp_sample$AllPhons
t = 29.479, df = 1327, p-value < 2.2e-16
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
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> abline(lm(gp_s$AllDurs ~ gp_s$AllPhons))

In the upper right panel, the grey dashed line is a locally-weighted regression line, also 
referred to as a smoother (cf. Chapter 9). It is almost as straight as the regression line 
in the upper right panel, suggesting that the correlation is quite robust.16 The line is 
drawn using the lines() function and, inside it, lowess(), which takes the same 
input as the lm() function. The arguments lty and lwd determine the line type and 
the line width:

> lines(lowess(gp_s$AllDurs ~ gp_s$AllPhons), lty = 2, col = "grey", 
lwd = 2)

This panel also contains dashed lines depicting the mean values for gp_s$AllPhons 
and gp_s$AllDurs: as shown in Figure 3.3, the average duration of a word in dis-
course is 0.3221761 seconds while the average word length is between 4 and 5 pho-
nemes. The average lines are drawn using the abline() function and the arguments 
v for vertical and h for horizontal as well as the means() function:

> abline(v = mean(gp_s$AllPhons), lty = 3, lwd = 1)
> abline(h = mean(gp_s$AllDurs), lty = 3, lwd = 1)

Means lines are also included in the lower right panel. Here, however, they depict not 
the overall means but the means for the three word classes. To delimit the computation 
of the means to a word class, the sample is subset to that word class. Only the code for 
content words is given here:

> abline(v = mean(gp_s$AllPhons[gp_s$Class=="content"]), lty = 3, 
col = "red", lwd = 2)
> abline(h = mean(gp_s$AllDurs[gp_s$Class=="content"]), lty = 3, 
col = "red", lwd = 2)

 0.5954408 0.6605009
sample estimates:
       cor
0.6290712

Perhaps the most critical pieces of information are the p-value, which is < 2.2e-16, a value far 
smaller than 0.001, indicating that the correlation is very highly significant, and the value at the 
very bottom, which indicates the strength of the correlation: as the value of 0.6290712 is closer to 
1, which indicates a perfect correlation, than to 0, which indicates no correlation at all, duration 
and phonetic size can be considered solidly correlated.

.  See the high correlation coefficient 0.6290712.
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As shown in Figure 3.3, the word class means are clearly distinct, with content words 
scoring highest both in terms of phonetic size and duration, function words scoring 
lowest on both counts, and inserts located inbetween.17

Duration and phonetic size
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Figure 3.3  Duration, word class, and phonetic size

.  These averages are independent of the sample: they are confirmed across multiple samples.
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The lower right panel includes the regression line and the smoother for the subsample. 
As before, the regression line rises steeply, suggesting that duration and phonetic size 
are in correlation even when only 50 data points are investigated. However, as can be 
seen from the smoother, this correlation is much less robust as the smoother forms a 
curve rather than a straight line.

To conclude, a quick glance at the legends. The code for the legend in the upper 
right panel is this:

> legend(0,1,
+        legend = c("Content", "Function", "Inserts"),
+        cex = 0.7,
+        fill = c("red", "blue", "green"),
+        border = "white", + bty = "n")

The legend is placed at 0 on the x-axis and 1 at the y-axis (that is, in the upper left area 
of the plot), the legend labels are given in the legend argument, the character exten-
sion is reduced with cex = 0.7; further, the argument fill determines the colors of 
the boxes to the left of the labels, border = "white" renders the border around the 
label boxes invisible, and bty = "n" suppresses the default box around the legend 
as a whole.

The code for the legend in the lower left panel differs by two parameters. First, pch 
= c(1, 5, 18) determines the point characters to be used instead of the squares to 
the left of the legend labels; second, col = c("red","blue","green") defines 
the colors of these point characters. In the lower right panel the only difference in the 
code for the legend is that the argument border is left unspecified, which is why, by 
default, black squares are drawn around the label boxes.

In this short illustration only a few parameters have been introduced. Many more 
will be introduced in the remaining chapters, Chapters 4–12, in which case studies 
are outlined and the central diagrams of the case studies are discussed in good detail.

As said earlier, the first case study examines what is done first in the turn and thus 
commences our journey from turn inception to turn transition that will keep us on 
our toes throughout the remainder of this book.





Chapter 4

Location plots

4.1  Case study: Turn structure and inserts

4.1.1  Introduction

Turn-taking is fundamental to human communication. As Levinson & Torreira put it:

One of the most distinctive ethological properties of humans is that they spend con-
siderable hours in the day in a close (often face-to-face) position with others, ex-
changing short bursts of sound in a human-specific communication pattern: (…) we 
may each produce about 1200 of these bursts a day, for a total of 2–3 h of speech. 
The bursts tend to involve a phrasal or clausal unit, but can be longer or shorter. At 
the end of such bursts, a speaker stops, and another takes a turn. This is the prime 
ecological niche for language, the context in which language is learned (…), in which 
the cultural forms of language have evolved, and where the bulk of language usage 
happens.� (Levinson & Torreira 2015: 1)

The ‘bursts’ described are turns-at-talk. We produce, on average, 1,200 of them per 
day, containing, in total, between 15,000 (Roberts & Levinson 2017: 403) and 16,000 
words (Mehl et al. 2007: 82). The average turn is between one and a half and two 
seconds (Levinson & Torreira 2015; Levinson 2016). Turns follow each other quickly, 
with a modal gap of just 200 ms (Stivers et al. 2009; Roberts et al. 2015).18

More importantly, though, turns-at talk are not only the prime ecological niche 
for language, they are also the prime units of social action: a turn “is constructed 
and is attended by its recipients for the action or actions it may be doing” (Schegloff 
2001: 231). In a single turn, speakers can perform more than one action as turns are 

“multi-action compatible” (Levinson 2013: 108).
As the name suggests, turns-at-talk do not normally occur alone; rather, most 

turns are a ‘turn-in-a-series’ (Sacks et al. 1974: 722) interfacing with a prior turn and 
a next turn, thus potentially forming a ‘sequence’ (cf. Schegloff 2007). This seriality of 
turns is reflected in the potential three-part structure of turns: turns may have “one 

.  Based on a sample of 50,000 utterances extracted from the conversational subcorpus of the 
BNC, Rühlemann (2018a) reported a mean number of 10.85 words per turn, which multiplied 
with 1,200 (see above), gives an estimate of around 13,000 words spoken per speaker per day.



62	 Visual Linguistics with R

[part] which addresses the relation of a turn to a prior, one involved with what is occu-
pying the turn, and one which addresses the relation of the turn to a succeeding one” 
(Sacks et al. 1974: 722). Sacks et al. (1974) refer to the three parts as (i) pre-start, (ii) 
turn-constructional unit (TCU), and (iii) post-completer.

The three turn parts attend to different turn jobs. A pre-start indicates how the 
upcoming turn relates to the prior turn; its typical realization is through a pragmatic 
marker (e.g., ‘well’, ‘so’). The turn-constructional unit (TCU) is “a coherent and self-
contained utterance, recognizable in context as ‘possibly complete’” (Clayman 2013: 
151). A post-completer, finally, serves as a “locus of ‘current selects next’” (Sacks et al. 
1974: 718); typical occupants of the post-completer slot(s) are address terms and ques-
tion tags. An example featuring all three turn components is (4.1):

	 (4.1)	 Alec: Well, you should be able to get one, Joyce
	�  (BNC: KB2 2397; corrected transcription)

In (4.1), the turn-initial marker “well” foreshadows a somewhat non-straightforward 
relationship of the upcoming turn with the course of action initiated by the previous 
turn (not shown) (cf. Heritage 2013, 2015); the core of the turn (or the TCU) is Alec’s 
statement “you should be able to get one”. Finally, the address term “Joyce” bridges 
over to the next turn by selecting Joyce as the next speaker.

An important strand of research in Interactional Linguistics is concerned with the 
question as to how resources of a language are bound up with and shaped by the orga-
nization of turn-taking (e.g., Ochs et al. 1996). The goal in this case study is to con-
tribute to an interactionally-informed understanding of how words and word classes 
relate to turn-taking and the structure of turns.

The lexical class in the focus are inserts, a newly recognized broad word class, 
alongside function words (e.g., ‘the’, ‘of ’, ‘under’) and lexical words (e.g., ‘car’, ‘pathetic’, 
‘trundle’) (more on these latter classes in Chapter 5). The defining features of inserts 
are the following: they “do not form an integral part of syntactic structure, but are 
inserted rather freely in the text. They are often marked off by intonation, pauses, or 
by punctuation marks in writing. They characteristically carry emotional and inter-
actional meaning and are especially frequent in spoken texts” (Biber et al. 1999: 56).

The class of inserts is an unruly class as it includes a large number of function-
ally diverse categories, specifically (i) interjections (both primary and secondary; 
see below)), (ii) greetings and farewells (‘hi’, ‘good morning’, ‘bye bye’), (iii) prag-
matic markers (‘right’, ‘well’, ‘so’), attention signals (‘hey’, ‘ey’), (iv) response elicitors 
(‘alright?’, ‘okay?’), (v) responses (‘mm’, ‘uh-huh’, ‘yeah’), (vi) hesitators (‘er’, ‘erm’, ‘uh’, 
‘um’), (vii) thanks (‘thanks’, ‘cheers’), (viii) the politeness marker ‘please’, (viiii) apolo-
gies (‘sorry’, ‘excuse me’, ‘pardon’), and (x) expletives (‘jeez’, ‘jesus’) (Biber et al. 1999: 
93–94).
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By far the largest sub-category of inserts are interjections, that is, “a class of 
words which are unproductive, which do not enter into syntactic relationships with 
other classes, and whose function is purely emotive, e.g., Yuk!, Strewth!, Blast!, Tut 
tut!” (Crystal 2003: 239). Ameka (1992) distinguishes two classes: primary interjec-
tions, that is those interjections that are “not used otherwise” (Ameka 1992: 105) 
such as ‘Yuk’ or ‘ah’, and secondary interjections, a category including forms that 
belong to other word classes and can enter into syntactic relations; for example, 
‘Holy Christ’, ‘shit’, and also ‘well’ (which can be used syntactically; cf. Rühlemann 
2018c).

With that said, what we are going to tackle in this case study is how inserts, thus 
defined, relate to pre-starts, that is, to those turn parts whose job it is to provide a 
hinge between the incipient turn and the prior turn.

4.1.2  Data and methods

We are going to use two sets of data. The first set comprises random samples of 1,000 5- 
to 12-word turns from BNC-C (the conversational subcorpus of the British National 
Corpus, which totals 4.2 m words). This first set includes 8,000 turns and 68,000 words. 
To analyze it, we’re going to use the BNC’s elaborate tagging scheme, which provides 
Part-of-Speech (PoS) tags for word elements in the corpus. of central interest in the 
present connection is the tag ITJ. This tag is assigned in the scheme to “[i]nterjection 
or other isolate” (BNCweb: <http://bncweb.lancs.ac.uk/bncwebXML/Simple_query_
language.pdf>; my emphasis). That is, the tag ITJ captures primary interjections and 
other isolates that would not be classified as interjections but fall under the purview 
of inserts.

For example, as shown in Table 4.1,19 the item ‘yeah’ (ranked first) would fall 
under Biber et al.’s (1999) subcategory of ‘responses’; the item ‘oh’ (ranked second) 
would be classified as a pragmatic marker; ‘hello’ (ranked 12th) represents a ‘greeting’ 
and ‘bye’ (ranked 15th) a ‘farewell’; ‘hey’ is used as an ‘attention-getter’; and, finally, 
‘urgh’ (ranked 19th) is a typical (emotive) interjection; note also that the least fre-
quent ITJ are mostly non-codified ad-hoc vocalizations and would hence be classed 
as primary interjections.

.  The table was generated using XQUery, a programming language designed specifically for 
XML documents such as the BNC; for an introduction see Rühlemann et al. (2015).
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Table 4.1  25 top most frequent items tagged ITJ in BNC-C

Rank ITJ Freq %

  1 yeah 58706 28.5374

  2 oh 41555 20.2002

  3 no 32988 16.0357

  4 mm 21888 10.6399

  5 yes 17866    8.6848

  6 ah   5843   2.8403

  7 ooh   3856   1.8744

  8 aye   2271   1.1039

  9 ha   2098   1.0199

10 eh   1936   0.9411

11 mhm   1652   0.8030

12 hello   1641   0.7977

13 dear   1356   0.6592

14 aha   1137   0.5527

15 bye   1110   0.5396

16 yep     740   0.3597

17 hey     637   0.3097

18 cor     487   0.2367

19 urgh     438   0.2129

20 hm     385   0.1872

21 ee     336   0.1633

22 tt     306   0.1487

23 hi     306   0.1487

24 hmm     303   0.1473

25 oi     279   0.1356

One glaring omission in Table 4.1 is ‘well’, one of the most important and most common 
‘interjections’ or, in functional terms, pragmatic markers (in BNC-C ‘well’ is invariably 
tagged as AV0, that is, as an adverb). Based on research indicating that more than 80% 
of all occurrences of ‘well’ in conversation are instances of the pragmatic marker rather 
than the adverb (or adjective or ‘as well’) (Aijmer 2013; Romero-Trillo 2018; Rühle-
mann 2018c) and the afore-mentioned intrinsic attraction of pragmatic marker ‘well’ 
to turn-initial positions, the tag for ‘well’ in the first two word slots in the turns was 
corrected to ITJ; the same correction was implemented for the pragmatic marker ‘so’.

The second data set analyzed is, again, the 10-word sample from BNC-C used in 
the first sample collection but this time the 1,000 turns were inspected line by line 
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and, if necessary, context by context and manually coded for pre-starts (and, for sake 
of completion, post-completers). The 10-word turn length was selected for this proce-
dure as 10 words is likely the average length of turns in conversation (cf. Rayson 1997; 
Rühlemann 2018a). In annotating this subsample, not only concordance lines were 
inspected in their larger sequential contexts but also, where available, audio files of the 
larger contexts were accessed.

What was coded as pre-start, i.e., as “relating to the prior turn”? This is a critical 
question that needs to be addressed in good detail.

To start with, what was not coded as pre-start? Sacks et al. (1974) note that a 
turn can display a relationship with the prior turn through ‘tying’ devices, more 
commonly known in linguistics as ‘cohesive’ devices (Halliday & Hasan 1976) such 
as, for example, co-reference as instantiated by anaphoric pronouns; other types of 
cohesive ties include substitution, ellipsis, and lexical cohesion (cf. Halliday & Hasan 
1976). These ties have in common that their “interpretation is dependent on that of 
another [element]. The one presupposes the other in the sense that it cannot effec-
tively be decoded except by recourse to it” (Halliday & Hasan 1976: 4). Co-reference, 
substitution,ellipsis, or lexical cohesion were not used as criteria for coding pre-starts. 
The reasons are two-fold: these ties are syntactically integrated into the turn and they 
are positionally rather versatile. Personal pronouns, for instance, can, in principle, be 
placed anywhere in the turn. Pre-starts, by contrast, normally occur in initial turn 
positions preceding the TCU.20 Second, as a turn part that is claimed to do a separate 
turn job it cannot be intertwined syntactically in the realization of the turn. To do a 
job in its own right, it needs to be syntactically free, i.e., detached from the syntax of 
the turn or at least detachable from it.

So, what was coded as pre-start in the present analysis? One type of cohesion 
that was not mentioned in the above list of types of cohesion is conjunction. Con-
junctions do meet the criteria for pre-starts: they tend to occur in an initial posi-
tion in the clause and, while not detached from it, they can be decoupled from the 
clause they introduce without altering the proposition expressed in the clause. Their 
detachability derives from the fact that they are in fact discourse-deictics: “[w]hat 
they seem to do is indicate, often in intricate ways, just how the utterance that con-
tains them is a response to, or a continuation of, some portion of the prior discourse” 
(Levinson 1983: 88). More recently, conjunctions have been recognized as turn 
beginnings in CA work (Heritage & Sorjonen 2018: 2). So the first class of items to 

.  Note that some pre-starts did occur in late positions in the turn. A case in point is the 
marker ‘though’, as in “i can never understand why you took that part though”, which reflects a 
somewhat contrastive stance toward the previous turn but is normally positioned in turn-final 
positions.
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be coded as pre-starts involves conjunctions such as ‘and’ signaling continuation, 
as in (4.2), ‘but’ introducing some contrast, as in (4.3), and ‘cos’ indicating, in most 
cases in conversation, not reason but continuation and elaboration, as in (4.4) (cf. 
Schleppgrell 1991).

	 (4.2)	 and that i ’m in love with him or something!

	 (4.3)	 but it does n’t tell you what kind it is

	 (4.4)	 cos if it rains that wo n’t come on outside.21

The second class of items identied as pre-starts includes those pragmatic markers that 
index, in some way, a relation to the prior turn(s). These markers include, in the present 
dataset, the marker ‘so’, often used to introduce not a consequence but a new sequence 
or to close down a sequence, as in (4.5) (cf. Fraser 1990; Buysse 2012). Also, per-
haps most prominently, the marker ‘well’ features among pre-starts; in initial position, 
it serves as a ‘warning particle’ (Levinson 2013: 108) foreshadowing a ‘dispreferred’, 
that is, a turn that, to some degree, falls short of aligning with the course of action 
implemented in the prior turn (Schiffrin 1985; Schegloff & Lerner 2009; Heritage 2013, 
2015). Another frequently occurring marker is ‘oh’, a (cognitive) change-of-state token 
marking the reception of unknown or inapposite information (Heritage 1998). Also 
included, but far less prominent in the data, is the phrase ‘I dunno’, a reduced form 
of ‘I don’t know’; research has shown that rather than admit the speaker’s insufficient 
knowledge, ‘I dunno’ frequently prefaces disagreements (cf. Diani 2004; Sacks 1987); 
by contrast, when ‘I don’t know’ was used syntactically, as in (4.9), it was not coded as 
a pre-start.22

.  To see how the transcripts were coded for turn structure, consider this example turn: “cos if 
it rains that wo n’t come on outside.” In the dataframe from which the case study was elaborated, 
each word in the ten-word turn was captured by its PoS tag, that is, in this case: CJS CJS PNP 
VVZ CJT-DT0 VM0 XX0 VVI AVP-PRP AV0. Each tag was stored in a separate column, labeled 
c5_w1, c5_w2, and so forth until c5_w10. Now, the conjunction “cos” in this turn does the job 
of a pre-start. To reflect the role of “cos” (as of any other items that were identified as pre-starts 
or post-completers), a new set of ten columns was added to the dataframe, labeled struct1, 
struct2, etc. up to struct10. In the case of our example turn, “cos” was coded as "conjunc-
tion" in column struct1, whereas all other PoS tags were copied unaltered into the remaining 
struct* columns.

.  Post-completers in the sub-sample include the following types: canonical question tags (e.g., 
‘doesn’t she’, ‘is there’, etc.), invariant tags (‘you know’, ‘you see’, ‘eh’, ‘yeah?’), address terms such as 
first names and kinship terms, tails (e.g., they ’re easy to steal though are n’t they paintings?), the 
request marker ‘please’, and dangling ‘so’.
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	 (4.5)	 so whether she ’d like some , i do n’t know.

	 (4.6)	 well that would n’t please them next door would it ?

	 (4.7)	 ooh that ’s geoff ’s mummy ’s birthday this week

	 (4.8)	 i du n no, you ca n’t see his head

	 (4.9)	 i do n’t know whether she was just finishing then

Another class of items counted as pre-starts are, in Biber et al.’s (1999) terminology, 
response items, including ‘yeah’, ’mm’, and ‘I know’:

	 (4.10)	 yeah, it ai n’t worth him passing his sodding test

	 (4.11)	 mm, some of, a lot of them are like that

	 (4.12)	 i know, he said i dare n’t go near that

Quite often, pre-starts exhibit a complex structure as they consist of two or even more 
items, thus forming sequences of markers (cf. Heritage 2015):

	 (4.13)	 so, yeah i ’ll go , i ’ll go and check.

	 (4.14)	 well i do n’t know, it ’s fairly important geoff

	 (4.15)	 oh aye yeah, well i am rough are n’t i?

Table 4.2 lists the top 15 most frequent pre-starts in the subsample.
Table 4.2 shows that the marker ‘well’ accounts for 16% of all pre-starts in the 

sample; further, the vast majority of the top most frequent pre-starts are interjections, 
both of the primary (e.g., ‘oh’) and the secondary type (e.g., ‘well’); the table also attests 
to how commonly pre-starts are realized through sequences of inserts (e.g., ‘yeah well’, 
‘yeah but’, etc.).

The graphic used to visualize the location of ITJ and, respectively, pre-starts in 
turns is based on the scatter plot, a plot type already encountered in Chapters 3 and 
described in more detail in Chapter 9. Unlike in typical scatter plots, the data to be 
plotted will not be numeric. Rather, to visualize ITJ locations in turns, we will plot 
character symbols. As the symbols designate the location of an item of interest (ITJ 
and, respectively, pre-start) within a unit of observation (the turn), thus allowing the 
observer to see how the item of interest is dispersed across the unit, I refer to this 
plot type as location plot. I am going to present two figures, one for each dataset. The 
first figure will have multiple panels, the second a single panel. The first figure locates 
ITJs in each of the 1,000 turns in each sub-sample of various turn lengths, the second 
highlights the location of pre-starts and post-completers in each of the 1,000 turns of 
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the manually annotated sub-sample. In the multiple-panel plot I am going to deploy 
the colors used in X-rays, black for ITJ and grey for any other words. The second plot, 
by contrast, contains more than two variables, which is why a larger and more colorful 
palette will be used.

4.1.3  Results

The following series of panels shows the location of ITJ in turns in eight samples 
with distinct turn lengths (from five words to 12 words). As noted, black stripes 
denote ITJ.

The picture is consistent for each of the eight graphs in Figure 4.1: there are far 
more black stripes in the first ‘bar’ – the first position in the turn – than in any other 
‘bar’, i.e., any other position in the turn. The meaning of the graphs is straightforward: 
items tagged ITJ overwhelmingly occur in the very first position in the turn. As noted, 
this is somewhat to be expected given the body of research on positioning of interjec-
tions and pragmatic markers (cf. above).

So, let’s move to address our research question: how are inserts correlated with turn 
structure? Again, being items preceding the core of the turn, pre-starts will be expected 
to occur turn-initially. The question, then, is not where will pre-starts occur in the turn 

Table 4.2  15 most frequent pre-start types in subsample (inserts marked in blue color)

Pre-start type %

  1 well 16.23

  2 and 14.14

  3 no 10.73

  4 but   9.69

  5 yeah   6.54

  6 oh   5.50

  7 cos   4.97

  8 so   4.97

  9 yes   2.36

10 yeah but   2.09

11 yeah well   1.83

12 i know   1.57

13 ah   1.31

14 oh well   1.31

15 oh yeah   1.31
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Figure 4.1  Positions of ITJ in randomly sampled 5- to 12-word turns
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but rather, how many inserts will remain unaccounted for once pre-starts are taken into 
account?

To start with, the following plot shows the same distribution of ITJ in a 10-word 
turn sample that was part of Figure 4.1; just the colors have been changed from black 
(for ITJ) and grey (for any other item) to red and, respectively, white.

ITJ in 10-word turn sample

ITJ Other

w1 w2 w3 w4 w5 w6 w7 w8 w9 w10

Figure 4.2  Positions of ITJ in turns in 10-word turn subsample

Now, observe what happens when pre-starts (and also post-completers) are plotted 
into the graph:
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Pre-starts, post-completers, and remaining ITJ

w1 w2 w3 w4 w5 w6 w7 w8 w9 w10

Pre-starts ITJ Other Post-completers

Figure 4.3  Positions of pre-starts, post-completers, and remaining inserts in turns in 10-word 
turn subsample

How many red stripes have survived? That is, how many inserts are not at the same 
time pre-starts? The plot shown in Figure 4.3 suggests the number of survivors is 
exceedingly small: almost all red color has disappeared from the turn-first and the 
turn-second positions; those few red lines that have remained in the plot are found in 
turn-medial and turn-final positions. This is clear visual evidence that inserts have an 
intrinsic association with pre-starts. This visual impression is conclusively confirmed 
by numerical descriptive statistics.
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As can be seen from Table 4.3, roughly 40% of all turns in the sample have a pre-
start; that is, almost every second turn is prefaced by a pre-start indicating how the 
incipient turn relates to the prior turn; post-completers are far less frequent (with 
15%) and the proportion of turns with both peripheral turn parts is 6.6%.

Table 4.3  Frequencies and proportions of turn parts in subsample

Turns with %

Pre-starts 403 40.3

Post-completers 153 15.3

Pre-starts AND Post-completers   66   6.6

The most important piece of information, given our research question – how are 
inserts correlated with turn structure? –, is shown in Table 4.4: 85.88% of all inserts 
in the sample are consumed by pre-starts; by contrast, the respective proportion for 
post-completers is just 0.87%. That is, while inserts are virtually absent from post-
completers, and only occasionally occur in turn-medial positions – that is, as part of 
the TCU – inserts thrive in pre-starts.

Table 4.4  Frequencies and proportions of ITJ in turn parts

Freq %

ITJ in Pre-starts 298   85.88

ITJ in TCU   46   13.25

ITJ in Post-completer     3     0.87

total 347 100

4.1.4  Discussion and conclusions

This analysis produced a clear finding: the overwhelming majority (85+%) of inserts are 
(part of) a pre-start. This finding is non-trivial: it suggests that a whole class of words – 
inserts – exists because it plays a specific role in turn-taking. How to make sense of this? 
To address this question, it is instructive to consider the notion of preference.

Turns-at-talk “have built into their design an approximate trajectory for the 
sequence of which they are a part” (Liddicoat 2007: 112; cf. Sacks 1987). That is, they 
do not merely perform an action, such as asking for information, but also set up a bias 
(an expectation) for how participants should respond (cf. Bögels et al. 2015: 2). This 
is where preference comes into play. A response (or next) turn that is aligned with the 
bias of the prior is preferred whereas a turn that disaligns, in some way and to some 
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degree, with the prior turn is dispreferred (for discussions of preference, cf. Pomer-
antz & Heritage 2013; Rühlemann 2018a: Chapter 6). So, in essence, a next turn can 
respond, or relate, to the prior in two basic ways:

[i]n ‘unmarked’ movement [from prior turn to next turn], next turns are congru-
ent with the understandings, expectations and projections that were established in 
the previous turn, or sequence of turns. In ‘marked’ movement, there are departures 
from some of these understandings, expectations and projections (…). Turn-initial 
particles are often implicated in these departures because (…) they represent a first 
possible opportunity to indicate that a departure is underway.� (Heritage 2015: 89)

In unmarked movement, then, the next turn is preferred as it aligns with the bias of 
the prior whereas in marked movement the next turn is dispreferred as it departs 
from the bias of the prior. The ‘turn-initial particles’ that are often implicated in 
these departures are Sacks et al.’s (1974) pre-starts. So, speakers begin turns with 
a pre-start to signal (degrees of) alignment/disalignment with the course of action 
taken by the prior turn. This is perhaps most obvious for the insert ‘well’, the most 
frequent pre-start in the data. It issues a warning that what is underway is a move-
ment that is not, or not fully, ‘congruent with the understandings, expectations and 
projections that were established in the previous turn’. Schegloff & Lerner refer to this 
departure from the understandings, expectations and projections of the prior turn 
as “nonstraightforwardness in responding” (Schegloff & Lerner 2009: 91). Schiffrin 
analyzes the departure as “a temporary suspension (…) for immediate coherence of a 
response” (Schiffrin 1985: 648; see also Schiffrin 1987: 323). The departure manifests 
in many different ways. In extracts (4.16)–(4.17), two of these manifestations will be 
illustrated.

In (4.16), the participants are talking about Betty’s 10-year-old daughter. In 
lines 1–3, Betty and Rose note that Betty’s daughter pinched some biscuits. This 
action is noted in remarkable unison, with Rose precisely echoing Betty’s words 
and the echo onset timed as in a musical canon. So the two women have a firmly 
established shared understanding of the girl’s ‘deed’. Following a pause Betty pro-
duces the ‘well’-prefaced turn “we’ she didn’t pinch them but she ate them”. She 
thereby explicitly contradicts their mutual agreement that the girl had pinched the 
biscuits and replaces ‘pinch’ with ‘ate’, indicating that the girl not only stole the 
biscuits, but ate them. That is, Betty’s ‘well’-prefaced turn departs from their previ-
ously established mutual understanding to proffer an updated understanding of the 
girl’s action.

	 (4.16)	
	 1	 Betty:	 Ten years old [pinching the biscuits:::]
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	 2	 Rose:	                          [ten     years    old    pin]ching the biscuits.
	 3		  he he he.
	 4		  (1.4)
	 5	 Betty:	 we’ she didn’t pinch them but she ate them
	 6	 Rose:	 hhhe he he
� (BNC-C: KBE, 6542-6545; corrected transcription)

In extract (4.17), a piano teacher praises his student Caroline for practicing despite 
difficult circumstances: “think (it’s) admirable that you’re still doing it”. This puts Caro-
line into a dilemma; agreement would effectively amount to self-praise, which would 
collide with a constraint against self-praise. Disagreement would be a stark depar-
ture from her teacher’s assessment. The solution she opts for is praise-downgrade (cf. 
Brown & Levinson 1987: 39); that is, by responding “we:ll (it’s) I HAVe to have (.) 
something (.) to do by myself.” she casts her practicing as something she just can’t help 
doing:

	 (4.17)	
	 1	 UNK:	 No I, no, I mean you REAlly respond very well
	 2		  that Tchaikovsky was lovely
	 3		  I understand at the present (.) you:u (.) can’t do as much
	 4		  I think (it’s) admirable that you’re still doing it
	 5	 Caro:	 we:ll (it’s) I HAVe to have (.) something (.) to do by myself.
� (BNC-C: KBH, 5036-5037; corrected transcription)

Extracts (4.16)–(4.17) illustrate just some ways in which ‘well’ may indicate ‘marked 
movement’ from one turn to the next, initiating interactional departures (or non-
straightforwardness or lack of coherence) in response turns. The marker’s work as 
a warning that such movement is underway manifests in many other ways too (for 
examples, cf. Heritage 2015; Rühlemann 2018a). The important point in the present 
connection is that the insert ‘well’ does this work as a pre-start.

So pre-starts provide an early indication of (degrees of) alignment/disalignment 
with the course of action taken by the prior turn. This has implications for action 
ascription, that is, for how the interlocutor interprets the pre-start-prefaced turn: the 
pre-start “invoke[s] a frame of interpretation for the rest of the linguistic content of 
the utterance” (Gumperz 1996: 379). That interpretative frame may be quite wide, not 
delineating a specific action but rather narrowing down the range of possible actions. 
Seen in this way, pre-starts implement the “front-loading bias” (Levinson 2013: 112), 
a fundamental bias toward inserting cues to action type early in the turn to facilitate 
action ascription.



	 Chapter 4.  Location plots� 75

In conclusion, pre-starts are highly common in turns-at-talk; almost every second 
turn is prefaced by a pre-start. Moreover, pre-starts provide the prime ecological niche 
for inserts, one of three major word classes of the lexicon: more than 85% of all inserts 
are consumed by pre-starts. This suggests that inserts exist as an adaptation to turn-
taking, lending support to Schegloff ’s observation that “some of the most fundamental 
features of natural language are shaped in accordance with their home environment in 
co-present interaction, as adaptations to it, or as part of its warp and weft” (Schegloff 
1996: 54).

4.2  The location plot in the case study

The location plot in Figure 4.3 visualized the location of pre-starts, post-completers 
and all remaining inserts not consumed by pre-starts and/or post-completers. How 
was the figure programmed? The data underyling the figure contained a lot of manual 
annotation. The dataset we are going to start out from will contain this annotation 
already (whereas in the actual case study, it needed to be implemented there). The data 
called “Chapter4_Casestudy.txt” can be downloaded from the companion website; see 

“Chapter4_Casestudy_Code.R” for the code.
As always, we’ll start by reading-in the data into R and store it as ts (for turn 

structure):

> ts <- read.table("[Your path]/Chapter4_Casestudy.txt", header=T, 
quote="", sep="\t", fill=F)

Let’s inspect this dataset; to do so we draw a random sample of five rows from the 
1,000 rows using the sample() function:

> ts[sample(1:nrow(ts), 5),]
	 File	 Speaker	                                                      Turn
146	 KBF	   PS04U	       but we got , we got what was on our list .
594	 KD2	KD2PSUNK	yeah , i think , well that could be a doggy there  .
859	 KP1	   PS50U	those are n’t ready , they ‘ve only just gone out
559	 KD0	   PS0HV	there ‘s no raw plugs in that packet , is there ?
906	 KPF	   PS54T	really , cos what time is the train that you got ?

	     w1	 w2	   w3	   w4	   w5	   w6	   w7	    w8	   w9	   w10
146	   but	 we	  got	   we	  got	 what	  was	    on	  our	  list
594	  yeah	  I	think	 well	 that	could	   be	     a	doggy	 there
859	 those	are	  n’t	ready	 they	  ‘ve	 only	  just	 gone	   out
559	 there	 ‘s	   no	  raw	plugs	   in	 that	packet	   is	 there
906	really	cos	 what	 time	   is	  the	train	  that	  you	   got
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	     struct1	    struct2	 struct3	 struct4	struct5	struct6
146	conjunction	        PNP	     VVD	     PNP	    VVD	    DTQ
594	marker	         PNP	     VVB	     AV0	    DT0	    VM0
859	DT0	         VBB	     XX0	     AJ0	    PNP	    VHB
559	EX0	         VBZ	     AT0	     AJ0	    NN2	    PRP
906	AV0	 conjunction	     DTQ	     NN1	    VBZ	    AT0

	 struct7	struct8	 struct9	struct10
146	     VBD	    PRP	     DPS	     NN1
594	    VBI	    AT0	     NN1	     AV0
859	    AV0	    AV0	     VVN	     AVP
559	    DT0	    NN1	     tag	     tag
906	     NN1	    CJT	     PNP	     VVD

We see that ts contains 23 columns, one for File, Speaker, and Turn each, and 10 
for the words per turn position (w1, w2, etc.); the last ten columns are the ones of cen-
tral interest, those labeled struct1, struct2, etc.: they contain the Part-of-Speech 
(PoS) tags for the respective words in w1, w2, etc. but also also other tags, namely, in 
row 594 in column struct1, the code marker used for the word “yeah” in first posi-
tion in the turn “yeah , i think , well that could be a doggy there .” Or, to cite another 
example, you find the code tag twice in line 559 in columns struct9 and struct10 
used for the question tag “is there?” in the turn “there ’s no raw plugs in that packet , 
is there ?”. These codes designate pre-starts and, respectively, post-completers, whose 
location in turns we aim to show in the location plot.

When uploading files with lots of variables it is always advisable to check how R has 
read them in. Let’s do this for the columns of central interest (struct1, struct2, etc.:

> str(ts[,14:23])

 'data.frame': 1000 obs. of 10 variables:

$ struct1     : Factor w/  51 levels "address","AJ0",..: 30 30 6 20 12 5 13 30 20 30 …

$ struct2      : Factor  w/    57 levels "address","AJ0", ..: 41 35 28 11 28 2 11 40 16 44 … 

$ struct3  : Factor  w/      66 levels     "address","AJ0",..: 65 30 42 30 37 23 30 65 42 62 …

$ struct4     : Factor w/  68 levels "AJ0","AJ0-AV0",..: 63 56 6 56 6 45 66 63 1 39 …

$ struct5      : Factor w/     70 levels "address","AJ0",..: 34 65 5 65 24 34 17 29 26 65 …

$ struct6      : Factor w/  69 levels "address","AJ0",..: 40 3 21 14 17 46 57 57 29 3 …

$ struct7            :   Factor   w/       69      levels      "address","AJ0",..: 62 25 25 34 48 65 68 65 58 25 …

$ struct8        : Factor   w/   66 levels   "AJ0","AJ0-AV0",..: 39 34 35 46 5 11 61 39 61 38 …

$ struct9      : Factor w/   70 levels "address","AJ0",..: 45 24 34 69 17 6 9 65 32 38 …

$ struct10    :   Factor w/  73       levels "address","AJ0",..: 8 8 32 68 8 17 8 8 10 44 …

As is frequently the case when R encounters characters variables, it treats them as fac-
tors. For the next steps, however, it is necessary to convert them to character variables, 
which is done with the help of lapply() and, inside it (as its second argument) the 
function as.character():
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> ts[,14:23] <- lapply(ts[,14:23], as.character)

Let’s check again with str()whether the conversion was successful:

> str(ts[,14:23])
 'data.frame':   1000 obs. of 10 variables:
$ struct1 : chr "PNP" "PNP" "AV0" "marker" …
$ struct2 : chr "VDD" "UNC" "PNP" "CJS" …
$ struct3 : chr "XX0" "PNP" "VBZ" "PNP" …
$ struct4 : chr "VVI" "VM0" "AV0" "VM0" …
$ struct5 : chr "PNP" "VVI" "AT0" "VVI" …
$ struct6 : chr "VBD" "AT0" "NN1" "DT0" … 
$ struct7 : chr "VVG" "NN1" "NN1" "PNP" …
$ struct8 : chr "TO0" "PRF" "PRP" "VDB" …
$ struct9 : chr "VBI" "NN1" "PRF" "XX0" …
$ struct10: chr "AV0" "AV0" "NP0" "VVI" …

It was. So we can proceed to the next step; we will need to re-organize the data such 
that all variables required for the plot are in one column. One variable required but 
not (directly) contained in ts is the position of the words in the turns – that variable 
we will have to create from scratch. We know we have ten unique positions in the 
10-word turns, one for each word, so we can identify the positions using a sequence of 
integers from 1 to 10 and simply repeat these integers 1,000 times to obtain the vari-
able position:

> position <- c(rep(1,1000),rep(2,1000), rep(3,1000), rep(4,1000),
+                rep(5,1000), rep(6,1000),rep(7,1000), rep(8,1000),
+                 rep(9,1000), rep(10,1000))

Alternatively, and more elegantly, we can define positions with a for loop: here it’s 
important to set up the vector positionbefore the for loop (although, at that point, 
it evaluates to NULL) so R knows where to store the data in:

position <- c()
for(i in 1:10){
  position <- c(position, rep(i, 1000))
}

Next, we need a variable for the turn structural elements in struct1, struct2, etc.:

> element <- c(ts$struct1, ts$struct2, ts$struct3, ts$struct4, ts$struct5,
+ ts$struct6, ts$struct7, ts$struct8, ts$struct9, ts$struct10)

To achieve the same result in a much simpler fashion, we can use unlist():

> element <- as.character(unlist(ts[14:23]))
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We combine these two variables in a dataframe:

> df <- data.frame(position, element)

And yet a third variable will be handy for the plot: a variable indicating whether a 
token in the vector df$element is (part of) a pre-start, the TCU, or a post-com-
pleter and whether the token is an insert (ITJ) not consumed by a pre-start or a 
post-completer. In other words, we want to group all values in df$element into 
four larger groups: (i) pre-start, (ii) TCU, (iii) post-completer, or (iv) ITJ. To do this 
grouping, we will use three nested ifelse() statements. We know that the coding 
for pre-starts has two levels: marker and conjunction, so we will put these two 
levels separated by the alternative marker | into the first ifelse() clause. Post-
completers have six levels: address, tag, trans_marker, requ_marker, loose-
ness_marker, and tail so we will put these levels into the second ifelse() 
clause. Inserts have a single level, namely ITJ, for which we will test in the third 
ifelse() clause; all values in element for which none of these conditions hold 
will be labeled TCU:

df$turnpart <- ifelse(df$element=="marker" |
                    df$element=="conjunction", "pre",
                    ifelse(df$element=="address" |
                           df$element=="tag" |
                           df$element=="trans_marker" |
                           df$element=="requ_marker" |
                           df$element=="looseness_marker" |
                           df$element=="tail", "post",
                           ifelse(df$element=="ITJ","ITJ","TCU")))

What does this dataframe look like?

> head(df)
	 position	elements	turnpart
1	       1	     PNP	     TCU
2	       1	     PNP	     TCU
3	       1	     AV0	     TCU
4	       1	  marker	     pre
5	       1	     CJT	     TCU
6	       1	     AT0	     TCU

We see that the value marker in df$element has been re-labeled as pre in 
df$turnpart and the other five df$element values as TCU. So far, so good: we can 
now turn to the plot.

Some preparation is required: we have to define a function that determines the 
plotting dimensions, that is, the number of rows and the number of columns in the 
plot. We will call this function plotdim; it takes two arguments, N_Slots (number 
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of slots) and N_Rows (number of rows). Inside the function we compute the number 
of repeats, N_Repeats, and the total number of rows, N_total_Rows, as well as a 
dummy dataframe in which the first variable, rows, is the sequence from 1 to N_
total_Rows, and the second variable is the sequence from 1 to N_Slots:

> plotdim <- function(N_Slots, N_Rows){
+
+    # Compute number of repeats:
+    N_Repeats <- round(N_Rows / N_Slots, 0)
+    N_total_Rows <- N_Repeats * N_Slots
+
+    # Create dummy data:
+    dummy <- data.frame(rows = 1:N_total_Rows, slots = 1:N_Slots)
+    head(dummy); tail(dummy)
+
+    return(dummy)
+    }

This is a useful function in that it accommodates any number of rows and columns and 
can thus be used for any other dataset, even with odd numbers. We have 10 columns 
and 1,000 rows, so we will input these numbers into our function and store them in 
the vector dimensions:

> dimensions <- plotdim(10, 1000)

Now, we seek to make the plot as large as possible so we set small margins using the 
function par() and its argument mar:

> par(mar = c(2,1.5,1,1.5))

Next we use the vector dimensions to set up the plot’s architecture (but not yet any 
data) by plotting dimensions$rows against dimensions$slots; the argument 
type = "n" embodies the instruction not to plot any data. In frame = F we sup-
press the default frame around the plot. Also, we do not wish to plot any axes, which is 
achieved by axes = F. Further, we define the title of the plot in main and reduce, for 
space reasons, the font size with cex.main = 0.9 (1 being the default):

> plot(dimensions$rows ~ dimensions$slots,
+      type = "n",
+      frame = F,
+      axes = F,
+      ylab = "", xlab = "",
+      main = "Pre-starts, post-completers, and remaining ITJ",
+      cex.main = 0.9)

Next we define the x-axis using axis(); we use 1 to select the x-axis (2 would be for 
the y-axis, 3 for a secondary x-axis above the plot, and 4 for a secondary y-axis on the 
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right of the plot); the argument at determines where to place the ticks and the labels 
(namely, here, at each index of the sequence 1:10); also, we define the labels for the axis 
using paste() to attach the letter w to each integer in the sequence 1:10 without any 
separation (sep = "") between letter and number:

> axis(1,
+      at = seq(1:10),
+      labels = paste("w",1:10, sep = ""),
+      cex.axis = 0.9)

Now we can fill in the data. We do this by defining a for() loop for each unique 
value in df$position (of which there are ten) and instruct R to execute the text() 
function in the following way. First we determine where we want to have text printed; 
the location of text() is defined by values on the x-axis and values on the y-axis. 
As we want R to loop over the ten positions on the x-axis, we use the index i as the 
set of values for the x-axis; further, we define the total number of rows as the values 
on the y-axis. What text we want is defined in quotation marks; here, we use a set of 
underscores to obtain a straight line for all items to be printed. Finally, we need to dis-
tinguish the items of interest – pre-starts, post-completers, and remaining ITJ, which 
are stored in df$turnpart – and we do so by assigning different colors to each of 
them in nested ifelse() clauses; importantly, we need to subset df$turnpart by 
the index i so that the target items get printed in the right position:

> for(i in unique(df$position)){
+      text(i, 1:length(dimensions$rows), "_____",
+         col = ifelse(df$turnpart[df$position==i]=="ITJ", "red",
+               ifelse(df$turnpart[df$position==i]=="pre", "blue",
+                  �ifelse(df$turnpart[df$position==i]=="post", 

"black","white"))))
+ }

Don’t expect this step to materialize on your screen in split seconds – the for loop and 
the text() function take time so the plot will build up slowly, position by position.

Finally, we have to add a descriptive legend. We use legend(), first defining its x- 
and y-coordinates, then ordering its elements horizontally with horiz = T, defining 
the labels to be used in the argument legend, and using the argument fill to insert 
the desired colors into the legend boxes; finally, we suppress the default box around 
the legend with bty = "n" – and we’re done!

> legend(1.5, 1050,
+        horiz = T,
+             legend = c("Pre-starts", "ITJ", "other", "Post-completers"),
+        cex = 0.7,
+        fill = c("blue", "red", "white", "black"),
+        bty = "n")
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4.3  Task: Internal structure of complex pre-starts

Pre-starts are often composed of more than one item: they are compositions of inserts. 
In this Section the task is to investigate whether this internal composition of complex 
pre-starts is random or whether complex pre-starts “participate in a canonical order-
ing – a linear syntax” (Heritage 2015) if the cluster occurs turn- initially and involves the 
marker ‘well’. An example is (4.18), where the turn starts with the cluster “No, oh well”:

	 (4.18)	 No, oh well let’s hope he ‘ll get better�  (BNC: KB0118)

In this Task, we will focus on turns in which by far the most frequent insert ‘well’ and 
the fourth most frequent insert ‘oh’ co-occur. The question to be addressed is in what 
particular order do the two inserts occur when they co-occur in a turn?

On the companion website, you find a very large dataset comprising all 77,850 
turns with 7–12 words from the BNC-C; the dataset is called “Chapter5_Task.txt”. The 
steps to take are the following:

1.	 Read-in the data and inspect the structure of the variables using View() and str().
2.	 Set all relevant variables to lower character using tolower().
3.	 Make a subsample containing only those turns in which both ‘well’ and ‘oh’ co-

occur. Subsample in two steps, each time using the function grepl() to define 
the pattern to match: first select only those turns that contain ‘well’ defining this 
pattern thus: "\\bwell\\b." (\\b marks word boundaries and is used to make 
sure you don’t match fragments of longer words, such as ‘well-behaved’). Then, 
filter this subsample even further by selecting only those turns that contain the 
pattern "\\boh\\b." for ‘oh’. At this point your dataset will have shrunk consid-
erably: there should be only 376 turns left!

4.	 Reorganize the data: (i) put all the words in one column word, (ii) create a column 
for the words’ turn position, calling it position, and (iii) bind the two vectors 
together in a dataframe df.

5.	 In that dataframe create a new variable col for the colors used in the location plot: 
assign suitable colors for ‘oh’, ‘well’, and any other insert you may be interested in 
by using nested ifelse() statements.

6.	 Care needs to be taken with the numerous NA values (these are a result of the fact 
that the dataset comprises turns of different sizes). It is advisable to set NA to a 
color of your choosing in a separate step, following this structure: df$col[is.
na(df$word)] <- "white".

7.	 Next determine the plotting dimensions using the above illustrated function 
plotdim and defining the dimensions using the correct numbers , namely 12 
(for the maximally 12 words on the x-axis) and 376 (for the 376 turns in your 
subsample on the y-axis) thus: dimensions <- plotdim(12, 376 ).

8.	 Now you’re ready to start plotting. First set up the plotting region along with the 
title suppressing the x-axis and the default frame with axes = Fand frame = F. 
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Then define the x-axis with labels for the word slots, e.g., “w1”, “w2”, etc. Third, 
visualize the location of the inserts into the 12 slots in the plot in a for() loop for 
the unique values in df$position in this way:

	 for(i in unique(df$position)){
	   text(i, 1:length(df$word), "____", cex = 1,
	        col = df$col[df$position==i]
	 )

9.	 Finally, include a legend to provide the key to your color codings.

This procedure should produce a graph that, depending on what graphical parameters 
and inserts you have chosen to highlight, should roughly look like this:

Internal structure of complex pre-starts in 7-12-word turns

w1 w2 w3 w4 w5 w6 w7 w8 w9 w10

Well Oh Yeah Yes Other NA

Figure 4.4  Location of some inserts in turns where ‘oh’ and ‘well’ co-occur
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There is obviously a lot of detail in the graph. But one striking regularity jumps out: 
in complex pre-starts, ‘oh’ virtually always precedes ‘well’. This order may reflect what 
may be called the indexical direction of ‘oh’ and ‘well’: ‘oh’ is a change-of-state token 
indicating that the speaker “has undergone a change in his or her locally current state 
of knowledge, information, orientation or awareness” (Heritage 1984: 299). Its indexi-
cal direction is hence “backward looking” (Heritage 2018: 156), that is, directed toward 
the previous turn and its effect on the speaker’s state of ‘knowledge, information, ori-
entation or awareness’. ‘Well’, by contrast, is “largely forward looking” (Heritage 2018: 
156) in direction, that is, toward the speaker’s incipient turn, by alerting the hearer 
that this turn will not nonstraightforwardly align with the previous turn(s). If, then, 
‘oh’ and ‘well’ co-occur to form a complex pre-start, their linear ordering – first ‘oh’, 
then ‘well’ – reflects the speaker’s cognitive progress from first taking in and reacting 
to what was just said to then producing a response to it. Under this interpretation, the 
two items retain the indexical potential they convey individually. Note that this inter-
pretation is not undisputed: others have argued that the meaning of insert clusters 
may conventionalize into idioms whose meaning is more than or different from the 
meaning of the sum of the composite parts (for a discussion of the issue of composi-
tionality of complex inserts, see Haselow 2019). Schourup (2001: 1031), for example, 
argues that the combination ‘oh well’ has a non-compositional meaning and indicates 
resignation. My hunch is that the two views are not not mutually exclusive: ‘oh well’ 
can be used either compositionally, as an idiom, or non-compositionally, in which 
case the two inserts keep their individual meanings, and the different uses are likely 
marked prosodically, with compositional ‘oh well’ falling under a single intonational 
contour and spoken with a falling tone, and non-compositional ‘oh well’ spoken with 
two separate intonation contours and two different tones – but that’s a hypothesis that 
needs to be tested in future work.





Chapter 5

Barplots

5.1  Case study: Turn structure – Turns and lexis

5.1.1  Introduction

The case study presented in this chapter is an exploratory one. The overall thrust is to 
use the corpus method to explore lexical patterns in turns, and merely tentatively or 
even speculatively point out directions for further analyses.

The case study connects immediately to the major theme of the previous case 
study: the ways that lexis is shaped by and bound up with turn structure. The previ-
ous case study demonstrated that one major class of words, inserts, are intrinsically 
involved, indeed have their functional habitat, in one turn part, the pre-start, whose 
overarching task is to relate the incipient turn back to the prior turn. In the present 
case study, we will extend this line of inquiry by asking to what extent not only inserts 
but all three major word classes – inserts, function words and content words – are cor-
related with turn structure. In the case of inserts, we saw that their distribution in the 
turn is heavily skewed to the left-hand periphery of the turn: almost all inserts occur 
in the turn-first (or, to a much lesser extent, turn-second) position in the turn. The 
question asked here is this: Are there similar distributional preferences/patterns for 
positions of function words and content words in the turn?

Why this question? Should we expect to find skewed positioning of function 
words and/or content words and, if so, why? The rationale for the question has two 
sources: what we know about the principal functions and frequencies of members of 
these word classes and what we can, at least initially, infer about their positional behav-
ior from previous research.

What we know about the functions and frequencies of inserts, function words, 
and content words is, briefly, this. To start with, inserts, as noted in Chapter 4, include 
a ‘ragbag’ of items that fall into many heterogeous functional categories including 
interjections, hesitators, backchannels, pragmatic markers, and so forth. Their pri-
mary function is interactional, providing a ‘hinge’ between two turns by relating the 
incipient turn to the prior turn and often adumbrating the action to be done in the 
turn-in-progress. Inserts can be either highly infrequent or count among the top most 
frequent words. They are infrequent as far as ad-hoc vocalizations are concerned, such 
as ‘whoopee’, ‘whoa’, ‘yippee-ai-ay’, and ‘vroom’. They are high-frequent when it comes 
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to established forms such ‘well’, ‘oh’, ‘yeah’, ‘mm’, etc.: these forms are found among the 
top most frequent words in any spoken corpus.

Function words include articles, prepositions, helping verbs, conjunctions, and 
pronouns, to name only a few sub-classes. Most members of these classes occupy the 
top ranks in frequency lists in any corpus; e.g., ‘the’ is by far the most frequent word in 
any general corpus of English, followed by the preposition ‘of ’. Function words repre-
sent closed classes with relatively few members. Their primary function is ‘language-
internal’ in the sense that they serve to make “explicit the relation of lexical words to 
each other” (Stubbs 2002: 40).

Content words, on the other hand, include four main sub-classes: nouns, adjectives, 
adverbs, and lexical verbs (but not auxiliary verbs) (cf. Biber et al. 1999). Their primary 
function is referential in that they “carry most of the lexical content, in the sense of 
being able to make reference outside language” (Stubbs 2002: 40), with the referential 
potential greatest in nouns (Biber et al. 1999: 232). They are open classes with thou-
sands of members and counting. Content word types often have very low token num-
bers or merely occur just once in a corpus; in this case, they are called ‘hapax-legomena’.

Consider the frequency distribution of the three word classes in the conversa-
tional sub-corpus of the BNC, shown in Figure 5.1.

As can be seen from Figure 5.1, most of the top most frequent lemmas in conversa-
tion, as in any corpus, are function words; the most frequent function word lemma in 
the BNC-C is the pronoun ‘i’. It is outdone only by the lemma ‘be’ with almost 250,000 
occurrences, coded here as a content word (although, obviously, forms of the lemma 
‘be’ predominantly act as auxiliary verbs, in which case they are better classed as func-
tion words). Next, there are a number of insert lemmas of medium token frequencies. 
Finally, there is a very long series of many thousands of content word types cascading 
from the upper left corner toward the bottom right end of the figure. As noted, some 
do have very high token frequencies: for example, the second most frequent content 
word after the pronoun ‘i’ is the lemma ‘thing’. Those content word lemmas located in 
the middle of the cascade still have considerable token frequencies numbering in the 
thousands. But note the large tail of content hapaxes (that is, word types occurring just 
once) in the whole subcorpus of over 4 million tokens! Their number is impressive: 
9828. Considering that, as shown in Table 5.1, only 22 function word lemmas and 36 
interjection lemmas are hapaxes the 9828 content word lemmas that occur just once 
are a proportion of 99%!

So function words and also inserts, on the one hand, and content words, on the 
other, exhibit contrary tendencies in terms of types and token frequency. The differ-
ence is greatest for function words and content words: function words comprise few 
types but the vast majority of these have exceedingly high frequencies; content words, 
conversely, comprise exceedingly many types, but their token frequencies cover the 
whole spectrum from very high to very low, including thousands of hapax legomena. 
We will come back to these frequency differences shortly.
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Type and token frequencies of lemmas in BNC-C
(N = 4.2 m tokens) 
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Figure 5.1  Frequency distribution of inserts, function words, and content words in the conver-
sational sub-corpus of the BNC; the figure is based on a frequency table obtained from BNCweb 
(cf. Hoffmann et al. 2008); content word lemmas comprise nouns (tagged SUBST), verbs (VERB), 
adjectives (ADJ), and adverbs (AV0); function words lemma classes include pronouns (PRON), 
articles (ART), prepositions (PREP), and conjunctions (CONJ); inserts comprise those lemmas 
tagged as interjections (INTERJ).

Table 5.1  Frequencies of hapax legomena across the three word classes

total

Function word hapaxes CONJ ART PREP PRON

 3  4  7  8     22

Content word hapaxes ADV VERB ADJ SUBST

327 1388 2171 5942 9828

Insert hapaxes INTERJ

 36     36

9886
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What do we know, or can infer from prior research, about the word classes’ positional 
preferences? Inserts, for sure, have a decidedly strong such preference: as we have seen 
in Chapter 4, their positional niche is the turn-first slot(s). But function words and/or 
content words? Here, the answer is less straightforward.

We can begin to address the question by considering the maxim of end-focus, 
also referred to as ‘information packaging’ (cf. Kaltenböck 2015). In a nutshell, this 
maxim ensures that speakers order “the information in a message so as to achieve a 
linear presentation from low to high information value” (Quirk et al. 1985: 1357); cf. 
also the notion of ‘communicative dynamism’ proposed by the Prague School (e.g., 
Jakobson 1960; Vachek 1964). Quirk et al. refer to it as ‘information climax’ (Quirk et 
al. 1985: 1357). In other words, we will expect that the information a speaker conveys 
in the turn to achieve an action will not be distributed in equal measures across a turn; 
rather, there will be “an Informational Asymmetry” (Prince 1981: 224) from low to 
high informational values.

What is low, what high information value? This is a complex question that we will 
not be able to address fully in this case study. All we can do is provide a rough sketch.

Low in informational value is information that can be considered given in various 
ways. For example, information can be considered given if it has been mentioned in 
the preceding context (in which case it is discourse-old), or because it can be assumed 
to be known to members of a group, or information is given if it can be inferred prag-
matically via implicature or if it is immediately matched by the speech situation (such 
as the referent of the pronoun ‘I’). The hallmark of given information in speech is that 
it is prosodically not made prominent.23 Given information has “a facilitation function 
in the sense that it provides an anchor for the integration of new information into the 
memory structure” (Kaltenböck 2015: 122).24

By contrast, information is high in value when it is new, in the sense of not being 
retrievable from the preceding context (discourse-new), not inferable from the prag-
matic context, and not evident in the speech situation. New information is made 

.  Low-value information is also correlated with the ‘theme’, that is, usually, “the first element 
of a clause” (Quirk et al. 1985: 1361), which in many cases in an S-V-O language such as English 
is the subject.

.  Note that givenness plays a major role in ellipsis. For example, ‘situational ellipsis’ of the 
grammatical subject is unproblematic in conversation because the subject is the speaker him/
herself. Also, ‘structural ellipsis’ too has its base in givenness. Wh-questions rarely get a structurally 
complete answer; rather answers tend to by ‘symbiotic’ providing merely the asked-for element and 
presupposing the question’s other elements (cf. also Halliday & Hasan 1976):

		  Sand:	 What did you have for dinner?
		  Alex:	 Sausages (BNC: KDW 4432-4433)
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prosodically prominent in that it carries the ‘nuclear stress’ (Leech 1983) and it is what 
Quirk et al. (1985: 1361) refer to as the ‘focus’, that is, “the most relevant part of a mes-
sage” (Quirk et al. 1985: 1362).

The informational asymmetry that holds between given and new information is, 
however, not a categorical distinction: there is a continuum from given to new with 
intermediate information values. That is, the notion of communicative dynamism 
entails that information is climactically distributed in turns: there is a continuous 
increase in information from low to high as the speaker progresses from turn begin-
ning to turn completion.25,26,27 Let’s call this the ‘information climax hypothesis’. Note 
that this hypothesis already incorporates a positional element: if information in the 
turn begins low and, through intermediate values, ends high, we get this positional 
ordering:

									         → high at turn completion
				         → intermediate in medial turn postions
 → low at turn beginning					   

Now let’s get back to word classes: can we make any educated guesses at how the mem-
bers of the three classes will tend to be positioned in this progression from low to 
high information? One such positional guess picks up on the frequency distributions 
of the three classes, which we have seen are strikingly different. Based on these dif-
ferences and based on simple probabilistic reasoning, it seems permissible to say: if a 
word is very high-frequent in a corpus it is less likely to convey new information in 
any given discourse situation because it stands a higher chance of having been used 
before in the discourse or of being more readily accessible to members of a discourse 
community. By contrast, if a word is very rare in a corpus, it stands a higher chance of 

.  The ‘information climax’ hypothesis is “cognitively and pragmatically highly plausible as 
‘given’ information anchors the sentence to already existing knowledge and thus facilitates the in-
tegration of new information. At the same time, the convention of placing new information late in 
the clause can make communication more effective, as it enables the addressee to recognize what 
is seen as the highpoint of the message while attaching it to sufficient old information to ensure 
correct processing” (Kaltenböck 2015: 120).

.  The ‘information climax’ hypothesis also provides an elegant explanation for the existence of 
so-called information packaging constructions such as fronting, existential ‘there’, cleft-structures, 
the passive, to name only a few, “all of which allow the speaker to present information in line with 
the given- before-new principle” (Kaltenböck 2015: 120).

.  For the crosslinguistic implications and complications of the ‘information climax hypothesis’, 
see Roberts & Levinson (2017), who compare information structure in turns in languages with 
verb-initial position and those with verb-final position and discuss these position preferences vis-
à-vis the ‘crunch zone’ at turn turn ends in which production (by the speaker) and comprehension 
(by the recipient) overlap.
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occurring in the speech situation for the first time and/or of being less easily accessible 
to members of a speech community. For example, if a word is a hapax legomenon, it 
inevitably must be new to the discourse; if it is attested just once it cannot have been 
used anywhere else in the corpus. Obviously, a corpus – even a very large one – is just 
a (minute) sample of a language or a language variety. Therefore, it is quite possible 
that what is a hapax in the corpus isn’t a hapax in the language (variety) but is attested 
there more than just once. But if, as it should be, the corpus approximates the ideal 
of being a representative sample of the language (variety), the proportions of words in 
the corpus and in the language (variety) will be the same. That is, if a word is very rare 
in the corpus it should be very rare in the language (variety) too, and the inverse, if it 
is (very) common in the corpus, it will be (very) common in the language (variety).

If these – rather speculative – premises are accepted, we can make a clear posi-
tional prediction: function words, which are (very) high in frequency, (and also, to 
a lesser degree, inserts) will be found more commonly at turn beginnings, where, 
according to the information climax hypothesis, information values are low, and even 
more commonly in turn-medial positions, where information values are intermediate; 
content words, by contrast, which are (very) low in frequency, will be used more com-
monly in turn-medial positions and much more commonly in turn-final positions, 
where according to the information-climax hypothesis, information is high.

So, in other words, what we have called the information-climax hypothesis could 
be operationalized as the ‘content-word climax’ hypothesis: if information is ordered 
asymmetrically from high to low in turns, then we should find a continuous increase 
of content words across positions in turns. The aim in this case study is to test the 
content-word hypothesis.

5.1.2  Data and methods

Unlike other case studies in this book where the analysis is based on small manually 
annotated data samples, we are going to use in this case study large data sets pulled 
from BNC-C and use the Part-of-Speech (PoS) annotations readily available in the 
corpora to identify the three broad word classes in whose distribution across turns we 
are interested.

Specifically, we will examine the content-word climax hypothesis based on 7 to 
10-word turns. The total number of turns will be 69,449, the total number of words 
will be almost half a million (495,395 words).

How to test the hypothesis methodologically? The first major step is to re-classify 
all words as ‘content word’, ‘function word’, or ‘insert’ depending on their PoS tag. 
Thus, the broad descriptor ‘content word’ is associated with all tags for adjectives, 
adverbs, lexical verbs, and nouns. The label ‘insert’ is assigned to tokens tagged ITJ 
(for inserts cf. the case study in Chapter 4). All remaining words were classified as 
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‘function words’. Second, we compute the frequencies of occurrence of the word class 
tokens and determine their proportions per position in the turn.

The most handy graph type to visualize changes in proportions is the barplot.

5.1.3  Results
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Figure 5.2  Proportions of Content words, function words, and inserts in 5-, 7-, 9-, and 11- word 
turns in BNC-C

The barplots in Figure 5.2 provide substantial support for the content-word climax 
hypothesis: the proportions of content words exhibit a clear overall rise across turn 
positions in all four samples investigated. The greatest single increases in proportion 
are invariably found for nouns; for example, in the 5-word turn sample, they start 
out with a modest share of 4.47% but gain a proportion of almost 29.10% upon turn 
completion (a more than six-fold gain) (Table 5.2).
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The increase for content words as a group is continuous in the 5-word turn sample, 
starting at 24.19% in the turn-first slot and leading up to 62% in the turn-last position 
(Table 5.2). The increase in the other three samples is bi-modal, meaning that after a 
first rise across turn-early positions, there is a drop in content word proportions before 
a second maximum is reached in the turn-final position. In all four samples, however, 
the proportions reached in the peripheral turn positions (turn start and turn end) are 
comparable: content words have a share of slightly under 20% in the turn-first posi-
tion, whereas their share is around 60% in the turn-last slot: almost two out of three 
turns end on a content word.

Table 5.2  Proportions of (sub-classes of ) content words, inserts, and function words in 5- word 
turns in BNC-C

Broad class Sub-class w1 w2 w3 w4 w5

Content words Noun   4.47   6.69   8.03   9.82 29.10

Verb   6.68 11.04 17.25 16.21 10.24

Adjective   1.35   2.02   3.20   6.68   6.74

Adverb 11.69   5.80   6.28   6.62 15.92

subtotal 24.19 25.55 34.76 39.33 62.00

Inserts - 15.70   2.31   0.89   0.90   2.88

Function words - 60.11 72.14 64.36 59.76 35.11

5.1.4  Discussion and concluding remarks

The analysis provides support for the content word climax hypothesis: overall, the pro-
portions of content words increase over positions in the turn; specifically, they peak in 
the very last position, that is, at turn completion. This finding may be taken as initial 
evidence that the broader information climax hypothesis may be true.

Note the qualification as ‘initial’ evidence. The evidence provided by the above 
analysis and visualized in the barplot in Figure 5.2 is initial for at least two reasons. 
First, we did not factor in turn structure, as discussed in Chapter 4. That is, we did not 
distinguish turns that end on the transition-relevance point (TRP) from those that 
end on a post-completer (which by definition occurs post-TRP). Post-completers are 
quite unlikely candidates for focal information; rather, given their interactional func-
tion of bridging over from the current turn to the next, they are likely not integrated 
into the information structure of the TCU. Second, the evidence presented is initial 
because whether or not a word carries new focal information cannot be determined 
on lexical grounds only. This is for at least two reasons. The first is that the information 
highpoint need not necessarily be placed late in the turn. This is most obvious in the 
case of wh-questions, which typically front-load new focal information following the 
‘front-loading bias’ (Levinson 2013: 112), as illustrated in (5.1):
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	 (5.1)	 Clare:	 why have you got to be home so early then?
		  Mel:	 because I’ve got work to do � (BNC: KBN 730-731)

Second, while in the unmarked case it is through content words that new focal infor-
mation is expressed, function words and even inserts, too, can carry this information, 
and, in fact, they do “when special emphasis is required” (Quirk et al. 1985: 1365). 
There are numerous contexts where speakers seek such special emphasis. For illus-
tration consider extracts (5.2) through (5.4). In (5.2) Ann places heavy emphasis on 
“you”, a function word occurring as the first word in her turn, to express her horror at 
the idea that James should be driving a bus; in (5.3) Joanne stresses how much she felt 
annoyed by emphasizing the auxiliary verb “has”; and in (5.4), Terence highlights the 
insert “yes” to confirm that he did put the chicken in the freezer thus ending a lengthy 
stretch of hesitation.

	 (5.2)	
	 1  James:   if they ( > can actually < ) let me kno:w (0.3)
	 2           whether that bus is available or not.
	 3           (1.3)
	 4  Ann:      YO:: ’re not gonna drive that bus are you?
	 5           (0.7)
	 6  James:  I didn’t say I wa:s.
� (BNC: KB8 6858-6860; corrected transcription)

	 (5.3)	
	 1  Joanne:  he ha:s got me annoyed now, he really ha:s done.
� (BNC: KCE 3375; corrected transcription)

	 (5.4)	
	 1  Margaret:    presu:mably you took those chicken:: (1.0)
	 2                         things downstairs for me
	 3                         (0.3) yesterday,
	 4                         (2.1)
	 5  Terence:        presumably I did.
	 6                         (1.8)
	 7  Margaret:      you know the  [(               )]
	 8  Terence:                [yes i think i] di:d yeah.
	 9                         (0.4)
	 10                       the what?
	 11                       (0.6)
	 12   Margaret:    that [( )]
	 13   Terence:        [oh YES i put them in the] freezer yes yes.
� (BNC: KB2 9574-9579; corrected transcription)

Many more such examples of marked focus could be collected. Therefore, caution is due 
with regard to the information climax hypothesis, according to which the informational 
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high point tends to occur at or toward the end of turns. However, what is marked is, 
by definition, not the default or ‘normal’ case. This leaves the possibility that unmarked 
focus where the informational highpoint comes late in the turn is the ‘norm’.

In sum, we have substantial evidence for the content word climax hypothesis but at 
best preliminary evidence to suppport the information climax hypothesis. To examine 
this latter hypothesis more rigorously, a qualitative analysis is required of how speak-
ers package information in turns within the larger sequential contexts. Under most 
circumstances, qualitative analyses are limited in terms of number of analyzed units. 
In this case study, we have taken another route, by investigating large numbers of turns 
drawn from corpora. This corpus method is admittedly less exact, looking at turns in 
isolation from their sequential context and building on the premise that different word 
classes correlate with different probabilities of carrying ‘low’ or ‘high’ information. But 
the reduced exactness of the method deployed here is at least partially compensated 
for by the bird’s eye perspective it provides. This perspective can discover the outlines 
of an underlying structure (like the forgotten remains of archeological sites that are 
discernable only from above), a structure, in this case, for how speakers distribute low 
and high information in turns. While this structure may get undercut, overlaid, or 
overridden by moment-to-moment concerns arising in situated talk-in-interaction, 
it may yet be present and active as a fundamental orientation for how to design and 
distribute information in turns.

5.2  The barplot in the case study

What were the major steps in programing the barplots in the case study? In this sec-
tion we will examine only the code underlying the barplot for 5-word turns; the other 
panels in Figure 5.2 were programmed accordingly.

As always, the first step is to read-in the data (cf. the file “Chapter5_Casestudy.
txt”), store it as t5, and inspect it using View():

t5 <- read.table(“[Your path]/Chapter5_Casestudy.txt", header=T, 
quote="", sep="\t", fill=F)

A quick look at the dataset reveals it has 13 columns:

> head(t5)
	 file	  who	                           turn	  w1	 w1_c5	     w2
1	KB0	PS002	You enjoyed yourself in America	 You	   PNP	enjoyed
2	KB0	PS006	        saw Mary and Andrew and	 saw	   VVD	   Mary
3	KB0	PS006	        It is horrible is n't ?	  It	   PNP	     is
4	KB0	PS002	            And you 're busy at	 And	   CJC	    you
5	KB0	PS006	       I think it was yesterday	   I	   PNP	  think
6	KB0	PS006	    They have there , yes , and	 They	  PNP	   have



	 Chapter 5.  Barplots� 95

	 w2_c5	      w3	w3_c5	    w4	w4_c5	       w5	w5_c5
1	  VVD	yourself	  PNX	    in	  PRP	  America	  NP0
2	  NP0	     and	  CJC	Andrew	  NP0	      and	  CJC
3	  VBZ	horrible	  AJ0	    is	  VBZ	      n't	  XX0
4	  PNP	     're	  VBB	  busy	  AJ0	       at	  PRP
5	  VVB	      it	  PNP	   was	  VBD	yesterday	  AV0
6	  VHB	   there	  AV0	   yes	  ITJ	      and	  CJC

We will mostly be concerned with the columns for Part-of-Speech (PoS) tags; their 
names all end in c5 (the name of the automatic tagger used in the BNC).

Before we start grouping the PoS tags in larger groups we need to implement 
one important correction: as noted before, the BNC’s tagger consistently mistagged 
as adverbs (AV0) pragmatic uses of ‘well’ (most of them functioning as pre-starts; cf. 
Chapter 4); the same error occurred with regard to pragmatic ‘so’. We can easily correct 
the tag in these two turn positions, by overriding the tag with the correct label, ITJ 
(for interjection):28

t5$w1_c5[t5$w1=="Well"|t5$w1=="well"|t5$w1=="So"|t5$w1=="so"] <- "ITJ"
t5$w2_c5[t5$w1=="Well"|t5$w2=="well"|t5$w2=="So"|t5$w2=="so"] <- "ITJ"

As we are interested only in the PoS tag columns and later will have to plot the data 
from a matrix (a data format that requires same-type data), we separate these columns 
into a new dataset, called c5:

c5 <- t5[, c(5,7,9,11,13)]

Let’s check what’s in this dataframe:

> head(c5)
	 w1_c5	 w2_c5	w3_c5	 w4_c5	w5_c5
1	   PNP	   VVD	  PNX	   PRP	  NP0
2	   VVD	   NP0	  CJC	   NP0	  CJC
3	   PNP	   VBZ	  AJ0	   VBZ	  XX0
4	   CJC	   PNP	  VBB	   AJ0	  PRP
5	   PNP	   VVB	  PNP	   VBD	  AV0
6	   PNP	   VHB	  AV0	   ITJ	  CJC

Now we can group the PoS tags into broad classes. We do it using lapply(), a 
function that allows you to execute an action across all columns of a dataframe via 

.  An alternative, and more economical, solution is this:

> well_so <- c("well", "so","Well", "So")
> ts$c5_w1[ts$w1 %in% well_so] <- "ITJ"
> ts$c5_w2[ts$w2 %in% well_so] <- "ITJ"
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a self-defined function; in defining that function we make use of nested ifelse() 
statements. Specifically, we group all ITJ tags into a group called Insert, all tags start-
ing with capital N (in regex ^N) as Noun, all lexical verbs, whose tags start with VV, as 
Verb, all adjectives as Adjective, all adverbs as Adverb, and, finally, all words that 
do not satisfy these criteria will be labeled Function:

> c5_broad <- as.data.frame(lapply(c5,
+                          function(x)
+                          ifelse(grepl("ITJ", x), "Insert",
+                                 ifelse(grepl("^N", x), "Noun",
+                                 ifelse(grepl("^VV", x), "Verb",
+                                 �ifelse(grepl("^AJ", x), "Adjective",
+                                 �ifelse(grepl("^AV", x), "Adverb", 

"Function")))))))

Let’s inspect the first six lines:

> head(c5_broad)
	    w1_c5	    w2_c5	     w3_c5	    w4_c5	    w5_c5
1	 Function	     Verb	  Function	 Function	     Noun
2	     Verb	     Noun	  Function	     Noun	 Function
3	 Function	 Function	 Adjective	 Function	 Function
4	 Function	 Function	  Function	Adjective	 Function
5	 Function	     Verb	  Function	 Function	   Adverb
6	 Function	 Function	    Adverb	   Insert	 Function

The first word in column w1_c5 has been labeled Function. If we look back to the 
first six lines of c5 shown above, we see that the word’s original tag was PNP (for per-
sonal pronoun). Pronouns count as function words, so the broad classification as a 
function word is correct. The second word in column w1_c5 records Verb. Let’s check 
again with c5: the tag there was VVD, so the broad class it belongs to is indeed Verb.

The next major step is to compute the proportions of the six broad word classes we 
have defined per turn position. To achieve this we will use sapply(), this time using 
the table() function nested inside the prop.table() function:

> prop5 <- as.data.frame(sapply(c5_broad,
+                              function(x)
+                              prop.table(table(x))*100))

Let’s check what this has produced:

> prop5
	     w1_c5	    w2_c5	     w3_c5	     w4_c5	    w5_c5
Adjective	 1.354124	 2.018130	 3.1969262	 6.6848211	 6.744507
Adverb	 11.690976	 5.800724	 6.2819413	 6.6176745	15.921215
Function	 60.107435	72.137874	64.3563248	59.7642407	35.110232
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Insert	 15.697392	 2.309098	 0.8878278	 0.9027493	 2.879845
Noun	  4.472712	 6.692282	 8.0277539	 9.8220614	29.104338
Verb	  6.677360	11.041892	17.2492259	16.2084530	10.239863

We see that R has produced the proportions but it has also ordered the rows alphabeti-
cally, thus we find Function and Insert surrounded by content word classes. To 
arrange the rows in a more sensible order we can switch them:

> prop5 <- prop5[c(5,6,1:2,4,3),]
> prop5
	     w1_c5	    w2_c5	     w3_c5	     w4_c5	    w5_c5
Noun	  4.472712	 6.692282	 8.0277539	 9.8220614	29.104338
Verb	  6.677360	11.041892	17.2492259	16.2084530	10.239863
Adjective	 1.354124	 2.018130	 3.1969262	 6.6848211	 6.744507
Adverb	 11.690976	 5.800724	 6.2819413	 6.6176745	15.921215
Insert	 15.697392	 2.309098	 0.8878278	 0.9027493	 2.879845
Function	 60.107435	72.137874	64.3563248	59.7642407	35.110232

This order makes more sense in that all content word classes are together, followed by 
inserts and function words. Just one more step is required before we plot the propor-
tions: we need to re-format prop5 as a matrix. This is because the type of barplot we 
want to produce, the stacked barplot, requires this data format. The re-format is done 
using as.matrix():

> prop5 <- as.matrix(prop5)

One more preparatory step: if we wish to produce a plot with several panels we will 
have to determine the number of rows and columns in the mfrow argument to par(). 
For example, if we want to get a 2 × 2 figure as in the case study, we set mfrow = 
c(2,2). In the same call to par() we can also determine the size of the margins 
around the plot using the mar argument:

> par(mfrow=c(2,2), mar=c(4,4,4,1))

Now we can start plotting. The function for barplots is barplot(); its first argument 
is the data, in our case the matrix prop5; next we have the usual parameters including 
main for the title (which we will suppress here for space reasons), the labels xlab and 
ylab for the x- and the y-axis. A major question to be addressed is how to visualize 
the word classes in such a way that those classes that belong together – namely Noun, 
Verb, Adjective, and Adverb, as these are the content word classes – can be dis-
tinguished from the other two major classes but also seen as related to one another. 
The solution to this issue proposed here (one out of many possible ones) is to use the 
same color for the four content word classes but to distingish them by using different 
degrees of density. This argument draws lines at an angle defined in the argument 
angle, which we will set here to 45. Finally, the five bars should be labeled. Labeling 
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bars in barplots works with the argument names, as in most other graphics, but also 
with the argument names.arg. In our case, we could specify the labels individually as 
“w1”, “w2” etc. but will prefer a more synthetic way, by using the paste() function. 
Finally, we set las = 2 to rotate the labels by 90 degrees.

> barplot(prop5,
+         main = "",
+         ylab = "Proportions", xlab = "Positions",
+         col=c("red", "red", "red", "red", "blue", "green"),
+         density = c(80, 60, 40, 20, 50, 50),
+         angle = 45,
+         names.arg = paste("w",1:5, sep = ""), las = 2)

As we have not defined main so far, we will have to define the title for the barplot using 
the title() function, thus:

> title("Proportions of Content words,\nFunction words & Inserts",
+       line = 2.4,
+       cex.main = 0.9)

The argument line determines at which line the title is to be set in the plot margin, 
cex.main manipulates the title’s font size, and \n instructs R to set what follows it on 
a new line. Next, we want to include a subtitle, using title() again:

> title("in 5-word turns from BNC (N = 26,807)",
+       line = 1.7,
+       cex.main = 0.7)

Finally, a legend is needed to provide a key for the barplot. As there is not enough 
space for the legend in the plotting region, we have to allow R to plot the legend out-
side the plotting region. This permission is granted by setting the par() argument 
xpd to T (or TRUE), thus:

> par(xpd = TRUE )

The function legend() takes a large number of arguments. Obviously, what must be 
included is an indication where to place the legend. This can either be done by ready-
made expressions such as "top", "topleft", "bottomright" or by specifying 
the x- and y-coordinates of the legend’s starting point; in our case −1, 115. Next, we 
set the argument horiz to T to display the labels horizontally. Then using the argu-
ment labels we define the labels for the six word classes we distinguish. Legends 
typically provide small boxes with different colors to distinguish the labels and relate 
them to the bar segments bearing the same colors; this is achieved by the arguments 
col and fill. We also repeat the density and angle details we already used in the 
barplot. We determine the font size by cex and the distance between the labels and 
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the label boxes by x.intersp. Finally, we avoid drawing a frame around the whole 
legend (as this may interfere with the bars) by bty = "n".

> legend(−1, 115,
+        horiz = T,
+        labels = c("N*", "AJ*", "AV*", "VV*", "Ins", "Func"),
+        col = c("red", "red", "red", "red", "blue", "green"),
+        fill = c("red", "red", "red", "red", "blue", "green"),
+        density = c(80,60,40,20, 50, 50),
+        angle = 45,
+        cex = 0.65,
+        x.intersp = 0.4
+        bty = "n")

In the case study, we continue plotting the other turn sizes. For this section however, 
we will consider the plot done.

5.3  Task: Proportions of frequency groups in 7-word turns

The above tested content word hypothesis was partly based on the observation that 
content words generally have much lower frequencies than function words and also 
inserts. As the content word hypothesis was confirmed by the analysis – content words 
increase across the word positions in turns –, it should follow that the proportions of 
low frequency words also increase from the beginning of the turn to its end. In this 
Task section we are going to test this assumption. The analysis will be based on a siz-
able dataset, namely all 20,000 or so 7-word turns in BNC-C.

The major steps in the coding process are the following:

1.	 Download the file “Chapter5_Task.txt” and read it into R, storing it as t7. You 
will see the dataset contains all the words’ PoS tags, the words themselves, and, 
importantly, their absolute frequencies in the whole BNC-C (which comprises 4.2 
m words).

2.	 Then subset t7 to separate the data of interest – the frequencies – in a new 
dataframe called t7f.

3.	 The next step is crucial: to be able to compute proportions, you need to group the 
frequencies into larger frequency groups. Use the lapply() function as well as 
nested ifelse() statements:

	 > t7f_groups <- as.data.frame(lapply(t7f,
	 +              function(x)   ifelse(x <= 1, "1",
	 +                            ifelse(x >= 2 & x <= 3, "2–3",
	 +                            ifelse(x >= 4 & x <= 6, "4–6",
	 +                            ifelse(x >= 7 & x <= 11, "7–11",
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	 +                            ifelse(x >= 12 & x <= 20, "12–20",
	 +                            ifelse(x >= 21 & x <= 37, "21–37",
	 +                            ifelse(x >= 38 & x <= 70, "38–70",
	 +                                ifelse(x >= 71 & x <= 135, "71–135",
	 +                                  ifelse(x >= 136 & x <= 264, "136–264",
	 +                                  ">264")))))))))))

4.	 From this point on you can pretty much proceed as was demonstrated for the 
barplot in the case study: (i) compute the proportions of the frequency groups 
in all seven word slots (with sapply(), storing them in a dataframe called, for 
example, t7f_groups_props, (ii) switching the rows so that they reflect the 
order in which you want the proportions to be plotted, and (iii) re-defining t7f_
groups_props as a matrix.

The proportions you should then find should be the same as the ones depicted in this 
barplot (the graphical details will depend on your chosen parameters):
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Figure 5.3  Proportions of frequency categories in 7-word turns in the BNC
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Clearly, the words in the group with the greatest frequencies, namely frequencies 
greater than 264 occurrences in the whole BNC, get the lion’s share in all seven word 
slots. But still, the proportions of words in low-frequency groups keep continuously 
climbing up from low levels at turn beginning to higher levels at turn end. The barplot 
in Figure 5.3 thus nicely confirms the assumption we set out to test: infrequent words 
do take up larger and larger proportions as we move from turn beginning to turn 
completion.





Chapter 6

Dotcharts

6.1  Case study: Turns and information structure

6.1.1  Introduction

Turns perform actions. Precisely how a turn embodies action varies from turn to turn. 
But what must be involved invariably is information of some sort – in most cases, a 
gestalt composed of information from different modalities, be they verbal, vocal, or 
gestural (Holler & Levinson 2019).

In this case study we will approach information in turns by investigating a key pro-
sodic resource often thought to be indicative of information structure, what is called 
the nuclear tone, also known as nuclear stress or nucleus. Nuclear stress is defined as 
the syllable or word in a tone unit “which carries maximal prominence, usually due 
to a major pitch change” (Crystal 2003: 321). An example is presented in Figure 6.1, 
showing how Praat, a phonetic analysis software, traces the pitch contour of the turn 
“But why didn’t she go an a Saturday then?”:
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Figure 6.1  Pitch contour of turn “But why didn’t she go an a Saturday then?”
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There is a stepup in pitch of about 2.4 semitones on the word “Saturday”. The stepup 
makes the word “Saturday” literally ‘stand out’ from the turn and marks it as infor-
mationally key, or, as Quirk et al. (1985: 1357) put it, as the turn’s ‘information 
climax’. What can be observed in this example is a general pattern in English, where 
the nuclear stress at large identifies “the point of information in the sentence that 
is deemed most valuable or relevant from the speaker’s point of view” (Rochemont 
& Cullicover 1990: 18). Inasmuch as most ‘valuable or relevant’ information is at 
the same time ‘new’ information – in the sense of being new to the hearer or not 
retrievable from the preceding context, or not inferable from the pragmatic con-
text, or not evident in the speech situation – researchers have posited a “fundamen-
tal association between high pitch and new information in English” (Wennerstrom 
2001: 34).

Speakers decide online, in situ, as to which word to place the nuclear stress on. 
And decisions must be taken as there is, in principle, ample room for variation. For 
example, in the turn “But why didn’t she go an a Saturday then?” there is little – by way 
of grammar – to prevent a speaker from making prominent, not “Saturday”, but, for 
instance, the question word “why”, as in “But WHY didn’t she go on a Saturday then?” 
or the pronoun “she”, as in “But why didn’t SHE go an a Saturday then?” and so on. 
In deciding which word to stress speakers look to what is going on right now in the 
interaction on hand. So nuclear stress is an online resource.

The nucleus is, then, related to information structure and where it is placed is con-
text-dependent. In this case study, the primary aim is to investigate whether nucleus 
placement, as an indication of information structure, is correlated to another measure 
of information structure, surprisal.

Surprisal is a notion developed in the field of information theory and based on 
predictability.

Predictability arises from the fact that language production is inevitably linear: 
we cannot but produce a sequence of words in which one word is followed by another 
word, which is followed by yet another, and so forth. Predictability further arises from 
the ‘idiom principle’. This principle holds that when we choose one word, this choice 
commonly co-selects one or more other words, called ‘collocates’, that is, the company 
that initially chosen word keeps (Sinclair 2000: 197). If a speaker utters one word and 
the next word happens to be such a common collocate then this next word will be 
little surprising: based on our knowledge of the language and of how words collocate 
we could guess the word. Obviously, not every word combination is easily predictable. 
Often an initial choice will be followed by a word (or words) that are less easily pre-
dicted – that are hence more suprising.

To measure the surprisal value of a word, one looks at the word that preceeds it. 
Let’s label the first word A and the second word B. Words A+B form what is called a 
bigram. Now, surprisal of B given A is calculated in three steps.
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First, the frequency of bigram A+B in a large, hopefully representative, corpus is 
determined. Second, the frequency of bigram A+B is divided by the frequency of B 
alone in the corpus. This operation gets you what is called the Conditional Probability 
of B given A. The formula is this:

		�  Conditional Probability B = Corpus frequency of A+B / corpus frequency of A

The more commonly and the more exclusively B follows A, then the more probable, 
and more predictable, B will be. For example, it turns out that in the BNC the clitic ‘’m’ 
almost always follows the pronoun ‘I’; the frequency of the bigram and the frequency 
of ‘’m’ alone are hence quite similar and the conditional probability of ‘’m’ given ‘I’ is 
close to 1 (namely 0.999786).

Conditional Probability is a measure of the predictability of a word given a preced-
ing word: the closer the value to 1, the more easily predictable B is given A. Surprisal is 
the flip side of predictability: only something that is hard to predict will be considered 
surprising. So the third step in determining surprisal is to take the negative logarithm 
of the Conditional Probability value of B given A to the base of 2:

		  Surprisal B = −log2(Conditional Probability B)

To return to the combination ‘I’m’, as ‘’m’ is very highly predictable given ‘I’, it is at the 
same time very little surprising. This is reflected in the fact that the surprisal value of 
‘’m’ given ‘I’ is very close to 0, in fact 0.0003088291.

We are interested here in the surprisal of words within the sequence of words 
in turns-at-talk: that is, we are interested in how surprisal develops from the turn’s 
beginning to its end point. To get there, we need to establish the surprisal of B given 
A (or w2 given w1), C given B (w3 given w2), D given C (w4 given w3), and so forth. 
Consider this illustrative example in (6.1):

	 (6.1)	 God it all happens in your bathroom does n’t it?

The turn contains the following bigrams:

w1w2 w2w3 w3w4 w4w5 w5w6 w6w7 w7w8 w8w9 w9w10

God it it all all happens happens in in your your 
bathroom

bathroom 
does

does n’t n’t it

Which combinations will intuitively contain more surprisal? The most easily ‘guess-
able’ combinations seem to be, perhaps, ‘your bathroom’, where ‘bathroom’ may be 
surprising given that ‘your’ can collocate with so many other words. On the other 
hand, ‘n’t’ in ‘does n’t’ will be easy to predict as it frequently forms, along with ‘it’, a 
question tag; hence, ‘n’t’ will be little informative or surprising. As shown in Figure 6.2, 
these intuitions are largely borne out by corpus data:
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Figure 6.2  Conditional probability and surprisal in the turn “God, it all happens in your bath-
room doesn’t it?”

While ‘happens’ and ‘bathroom’ have the lowest predictability in this turn but the 
highest surprisal value, ‘n’t’ has the highest predictability but the lowest surprisal value.

Surprisal, conceptualized in this way, ultimately relies on frequency and proba-
bility distributions of words and their combinations, that is, on how rare or common 
a word is in the language variety on hand and how rare or common a combina-
tion of certain words is. Do speakers know how words are distributed in terms of 
their relative frequencies and probabilities in a language variety? Our little intu-
ition experiment above seemed to suggest that we can indeed gauge, to an extent, 
what collocations are more or less probable. In information-theoretic research it is 
a widely accepted observation that speakers do have access to frequency and prob-
ability distributions (e.g., Jaeger 2010). These distributions are believed to be stored 
in the mental lexicon and made use of in language production, thus providing an 
offline resource available to speakers anytime, independently of the particulars of 
the interaction on hand.

So our prediction will be that nuclear placement tends to fall on surprising words 
in the turn. In other words, we hypothesize that the position of the nucleus will be the 
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position of high-surprisal words. To test this hypthesis the data and methods outlined 
in the following section were used.

6.1.2  Data and methods

The data for the case study come, again, from the conversational subcorpus of the 
BNC. To calculate surprisal, all 4.2 m bigrams were extracted from BNC-C using 
XQuery, a querying language designed for XML documents (such as the BNC) (cf. 
Rühlemann et al. 2015); then, based on the procedure outlined above, surprisal was 
calculated for each word except for words in turn-first position. The surprisal of turn-
initial words was based on their frequency in turn-first position in the whole BNC-C 
divided by their total frequency (in any turn position) in the BNC-C. Thus, each word 
in the turns was assigned a surprisal value.

Facilitated by the Audio BNC (Coleman et al. 2012) a randomly sampled set 
of 1,000 ten-word turns were analyzed in Praat, a phonetic analysis tool (Boersma 
& Weenick 2012), both for nuclear stress and word duration. The identification of 
nuclear stress was conservative: turns were discarded when there was no clear single 
nucleus but a flat intonation contour or when there were multiple nuclei. The number 
of turns included in the final sample was 542.

The graphic used to visualize the relation of nucleus and surprisal is the dotchart. 
While this plot type is usually used for plots of a single variable, we are going to tweak 
it to plot the two variables by using it together with the text() function.

6.1.3  Results

We have two variables: position of nucleus and surprisal. While there is only a single 
word that carries the nuclear stress there are ten surprisal values in each turn, one 
for each word. What we want to find out is how the position of the nucleus relates 
to how surprisal is distributed across the turn. How to visualize the relation of these 
variables?

As to nucleus positions, the visualization is straightforward: all we have to do is 
plot the nucleus in the turn slot in which it appears. The nuclei will fall, in principle, 
into any slot. So we would see them scattered across the whole dotchart, which would 
make it hard to see any patterns in their positioning both vis-à-vis the turn and the 
surprisal distribution. To impose some order on how the nuclei will be plotted into 
the graph we will simply sort the whole dataset by nucleus position. That is, we put 
all those turns together where the nucleus falls on the first word, followed by all turns 
where the nucleus is on the second word, and so forth.

As regards surprisal, we are specifically interested in differences in surprisal within 
the turn, that is, how surprisal values relate to one another in one and the same turn. 
One way to get a handle on this turn-internal relationship is to rank the surprisal 
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values, assigning the ordinal value 1 for the greatest surprisal value per turn, 2 for 
the second-greatest, 3 for the next-greatest and so forth. To visualize the rankings 
and their gradual development from low to high, we will use a heatmap-like palette 
of colors, ranging from light yellow (for the lowest-ranked value) to hot red (for the 
highest-ranked value).

The dotchart in Figure 6.3 allows for at least two observations. First, we can see a 
tendency for nucleus frequencies to increase across word positions in the turn: in very 
first position, there is a small number of nuclei (18, to be precise; cf. Table 6.1) but 
that number gets larger as we move toward the end of the turn, where the number of 
nuclei is greatest (namely 81). So there seems to be a tendency for speakers to place the 
nuclear stress on words later rather than early in the turn.

Nucleus and surprisal

Nucleus Ranks: 1 2 3 4 5 6 7 8 9 10

w1 w2 w3 w4 w5 w6 w7 w8 w9 w10

Figure 6.3  Nucleus position and surprisal
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Table 6.1  Nuclei per position in turn

w1 w2 w3 w4 w5 w6 w7 w8 w9 w10

Freq 18 38 39 39 63 54 76 66 68 81

%   3.32   7.01   7.20   7.20 11.62   9.96 14.02 12.18 12.55 14.94

Second, the colors from the red spectrum cluster a great deal around the nuclei in all 
but the first position. This is remarkable as the red spectrum is for high surprisal val-
ues: a great many words whose surprisal value is ranked first, second, or third are at the 
same time the words carrying the nucleus. In other words, the dotchart suggests that 
the nucleus tends to fall on high surprisal words. For example, as shown in Table 6.2, 
in more than a third of all turns (34.50%), the word carrying the nucleus is at the same 
time the word, called MaxInf, that is maximally surprising in the turn.

Table 6.2  Nucleus position and position of the maximally surprising word in the turn  
(MaxInf )

Freq %

No. of turns where position of MaxInf equals 
position of nucleus

187 (out of 542) 34.50

6.1.4  Discussion and conclusion

We have observed that speakers tend to make those words maximally prominent that 
are surprising in the turn. Two canonical examples are found in extract (6.2):

	 (6.2)	
	 1  Bev:        when it gets the TOggles on it should be okay
	 2  Wendy:  the wha’?
	 3  Bev:        when it gets the TOggles on it sh[ould be] okay
	 4  Wendy:                                                            [ yeah    ] 
� (BNC: KE6 1677-1680; corrected transcription)

In (6.2), the plural noun “TOggles” (a kind of button) is used in two turns by Bev, 
the second being a repeat of the first. The repeat is initiated by Wendy’s response “the 
wha’?”, indicating a comprehension problem and requesting a repair. Wendy’s use of 
the article “the” locates the ‘repairable’ (the item causing the comprehension problem) 
as the word following the article. This is surprising as even upon its first utterance the 
word “TOggles” is made clearly prominent by the nuclear tone on it. The fact that 
“TOggles” creates a comprehension problem for Wendy is hence probably due to the 
word’s rarity: the noun ‘toggles’ occurs merely three times in the whole BNC-C. Since 
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the definite article preceding it occurs 115,359 times, its surprisal value is very high, 
namely 15.816, which is the highest surprisal in the turn.

The correlation we observed between nucleus placement and surprisal aligns 
well with research in information theory (e.g., Aylett & Turk 2006; Jaeger 2010). 
There, a common observation is that speakers invest those words they deem predict-
able and thus informationally redundant with significantly less vocal effort, produc-
ing them “with shorter duration and with less phonological and phonetic detail” 
(Jaeger 2010: 24). It is the flip side of this observation that is key here: if predictable 
words are produced with less vocal effort, it follows that surprising words will be 
produced with more such effort, that is, more ‘phonological and phonetic detail’. 
Now, marking a word by raised pitch clearly requires and manifests this effort. So the 
dotchart we have inspected is further evidence to support the asymmetry observed 
in information-theoretic research of the reduced vocal effort with which predictable 
words are produced and the increased vocal effort with which surprising words are 
produced.

The surprising correlation of nucleus and surprisal shown in the dotchart also 
reveals a surprising connection of two resources that could hardly seem less connected. 
As noted above, where to place the nucleus depends on what action the speaker wishes 
to accomplish in the turn. Nucleus placement is an online decision. But the evidence 
we have discovered suggests that this decision is also informed by offline resources – 
namely the frequency and probability distributions, which are the ‘data base’ on which 
predictability and surprisal are computed and which are resources stored in the mental 
lexicon. In other words, the online decision related to action formation may have deep 
mental corrrelates, correlates speakers are little aware of but that nonetheless leave an 
imprint on talk in social interaction.

We have also seen that the correlation between nucleus and surprisal is not perfect. 
If it were perfect the rate of nuclei that fall on the maximally surprising word would 
not have been 34.50% but 100%. There are, then, lots of deviant cases. Consider, for 
example, extract (6.3), in which Bob and Alan are talking about African news sheets:

	 (6.3)	
	 1      Bob:         Yes south africa:: has erm (0.63) 
	 2                         i i- we have a (1.29) regular (0.95) erm (1.80) 
	 3                         a four sheet two s- two sides an’ a four sheet (1.16)   
	 4                         erm (0.35) it was weekly but 
	 6                         no:w it’s erm (1.22) a fortnightly
	 7     Alan:         mm.
	 8      Bob:         news (.) letter
	 9                         (0.47)
	 10     Bob:  →  well (0.36) that’s just a news sheet (1.06) from (1.00) OF zambia
	 11   Alan:         mm,
� (BNC: KB0 613-614; corrected transcription)
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In Bob’s turn in line 10, “Zambia” is the most surprising item in the turn (its surprisal 
value is 15.368097) but the nuclear stress is clearly on the preposition “of ”. The reason 
is that Bob treats the preposition “from” as problematic and self-repairs it into “of ”; 
that self-repair is invested with the nuclear stress, arguably to ensure it is noticed by 
the recipient.

Another, perhaps more frequent, factor causing a split of nucleus and surprisal is 
illustrated in fragment (6.4). Ann has been relating how she had been considering buy-
ing a house and has talked about the financial advice some real-estate agents gave her. 
In line 2 she reports that she ended up with a deal proposed by “bradford and BI:ng:ley”, 
noticeably stressing and drawling “BI:ng:ley”. In Stuart’s response “yeah well they’re 
Agents for bradley, bradford and bingley” the word “Agents” gets the nuclear tone. Its 
surprisal value is high (14.265) but not as high as the surprisal for “bradley” (14.488) or 
“bingley” (14.886), which get the highest values in the turn. The reason why “Agents” is 
invested with the nuclear tone rather than the more surprising “bradley” or “bingley” is 
obvious: the names have been mentioned in Ann’s prior turn already and hence no lon-
ger present any new information. The new and indeed focal information in Stuart’s turn 
is the fact that the people Ann was given the advice to buy a certain house were employ-
ees of the real-estate company that represents the owner of that house. The implicature 
is clear: their advice may not have been impartial (note also the use of ‘well’ in second 
position in the turn: it provides advance-notice that the upcoming turn will not convey 
a simple confirmation of Ann’s decision to go for the Bradford and Bingley deal):

	 (6.4)	
	 1     Ann:            and (0.3) and one thing and another but er (.) it (.)
	 2                             i mean (my mind) ended up with the bradford and BI:ng:ley (i mean)
	 3  Stuart:  →   yeah well they’re Agents for bradley, bradford and bingley
� (BNC: KB7 3495-3496; corrected transcription)

Extracts (6.3) and (6.4) are useful reminders that surprisal is operationalized here in 
a rather crude way (namely based on bigrams and corpus frequencies) and that it will 
therefore not always reflect what surprises, or fails to surprise, us in interaction. What 
it is unable to take into account are factors such as self-repair or prior mention. But 
even these two are not the only confounding factors impacting a speaker’s decision 
where to place the nucleus; as shown in a multi-variate regression analysis (Rühle-
mann & Schweinberger, in preparation) nuclear placement is indeed correlated with 
a large number of factors. But the factor discussed here, surprisal, did prove to be a 
significant main effect in that model. So our discussion in this chapter rightly suggests 
that surprisal does co-determine nucleus placement in turns-at-talk.

6.2  The dotchart in the case study

We upload the data for this case study, stored as “Chapter6_Casestudy_Task.txt” on 
the companion website, and store it in R as NUC:
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NUC <- read.table("[Your path]/Chapter6_Casestudy_Task.txt", 
header=T, quote="", sep="\t", fill=F)

This is a large dataset, as we can see from calling head(NUC):

> head(NUC)
	                                                     Turn	File
1	claims suspended for twenty six weeks by our good selves	 KE3
2	  elliel ‘s our discount because you know they ‘re doing	 KBD
3	              next time it wo n’t be monday when we go .	 KBW
4	           no , but like bill , he ‘ll go down to tescos	 KB2
5	     no , they ‘ve put them down in third division now .	 KBD
6	          no it ‘s alright i ‘ll probably manage with it	 KC1

	  Speaker	       s1	     s2	       s3	        s4	        s5
1	 KE3PSUNK	3.9068906	4.906891	 2.90689	  7.858860	4.70711433
2	    PS03W	2.0000000	3.000000	10.290782	11.454813	5.64385619
3	    PS089	3.9869043	3.776981	 5.246336	 8.220917	0.08361612
4	    PS01U	0.7856258	5.331017	 7.289107	13.419697	5.96413455
5	    PS03W	0.7856258	5.499289	 3.845281	 6.386932	3.88398770
6	    PS09E	0.7856258	3.894631	 1.897266	 6.259666	3.37149826

	       s6	       s7	       s8	       s9	      s10	Nucleus	   d1
1	5.095397	 8.845490	 7.556719	11.454813	12.998767	      1	0.265
2	3.572999	 3.117821	 5.632733	 2.452716	 5.188287	      1	0.453
3	5.436599	12.649032	 5.952405	 3.432537	 5.489014	      1	0.459
4	5.578019	 4.245372	 5.015054	 3.623643	14.580043	      1	0.259
5	6.409574	 5.385654	13.467446	 6.639039	 5.727920	      1	0.223
6	4.279486	 5.905011	10.491352	 4.721099	 3.917913	      1	0.246

	    d2	   d3	   d4	   d5	   d6	   d7	   d8	   d9	  d10
1	 0.402	0.108	0.241	0.343	0.255	0.186	0.169	0.175	0.687
2	 0.044	0.318	0.447	0.203	0.186	0.239	0.062	0.051	0.244
3	 0.517	0.152	0.132	0.134	0.131	0.575	0.157	0.109	0.339
4	 0.203	0.243	0.212	0.062	0.055	0.113	0.205	0.052	0.728
5	 0.081	0.089	0.159	   NA	0.228	0.091	0.204	0.306	0.199
6	 0.048	0.044	0.125	0.037	0.031	0.201	0.211	0.161	0.066

Beside some reference variables such as Turn, File, and Speaker, it contains not 
only the surprisal values in s1, s2, etc., as well as the central variable Nucleus given 
as a word’s position in the turn (for example, Nucleus==1 means that the nuclear 
tone fell on the first word in the turn), but also the word durations in d1, d2, etc. 
We see that Nucleus evaluates to 1 in all the first six rows. This is not by chance but 
because the dataframe has been ordered by Nucleus. The duration columns will be 
needed, not in the case study, but later in the Task section.
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The goal in the case study is to plot the placement of nuclear stress against the 
ranked surprisal values in each slot. The values for nuclear stress are all readily avail-
able in Nucleus, the surprisal values however are still raw and unranked.

To rank them, we first extract them and store them separately, in S. Let’s inspect 
the first row:

> S[1,]
	       s1	      s2	      s3	     s4	      s5	      s6	      s7	      s8
1	3.906891	4.906891	2.906891	7.85886	4.707114	5.095397	8.845490	7.556719

	        s9	      s10
1	11.454813	12.998767

Which value is the greatest, which the smallest? In S[1,], the maximal surprisal 
value is 12.998767 in column s10, the minimal value is 2.906891 in column s2. 
So the former should get ranked first (i.e., 1), the latter last (i.e., 10). How is the 
ranking computed? It could not be easier: we use apply(), which takes as input 
the data, S, and 1 if the function should be applied to rows (2, if the function is to 
be applied to columns), and finally the function itself, rank. Two tweaks, however, 
are necessary. First, the function rank() by default works in ascending order. We 
prefer the (more intuitive) descending order. The function rank() itself cannot 
be set to decreasing. What we can do though is give a minus to the whole dataset 
S, thus effectively reversing the value relation across the rows. Second, we need to 
transpose the results using the function t(), which turns rows into columns and 
vice versa:

> SR <- t(apply(- S, 1, rank))

Has the ranking been successful? Upon inspecting the first row of SR we see that, as 
expected, the value in s10 is ranked 1, that is, greatest – whereas the value in s3 is 
ranked 10, that is, smallest:

> SR[1,]
  s1 s2 s3 s4 s5 s6 s7 s8 s9 s10
   9  7 10  4  8  6  3  5  2   1

Now we have the data we wish to plot in the dotchart: the nucleus positions and the 
surprisal ranks. We could start the dotchart right away. However, for our dotchart it 
will be necessary to manipulate the code underlying the dotchart() function. The 
necessary manipulations concern the x-axis and the frame: we do not want the x-axis 
dotchart() produces by default and we do not want the default frame around the 
chart. Unfortunately, unlike in other graphics, dotchart() does not allow these fea-
tures to be disabled by setting appropriate values to arguments. But we can disable 
them in the code for dotchart() itself. If we call just dotchart, without preceding 
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question mark and without succeeding (), the full code underlying the function is 
made available (only a small portion is printed here for space considerations):

> dotchart
function (x, labels = NULL, groups = NULL, gdata = NULL, cex = par("cex"),
     pt.cex = cex, pch = 21, gpch = 21, bg = par("bg"), color = par("fg"),
    gcolor = par("fg"), lcolor = "gray", xlim = range(x[is.finite(x)]),
   main = NULL, xlab = NULL, ylab = NULL, ...)
{
(omitted code)
      axis(1)							       # x-axis
      box()							       # box
title(main = main, xlab = xlab, ylab = ylab, ...)
invisible()
}
<bytecode: 0x1154e64c0>
<environment: namespace:graphics>

Toward the end of a very long piece of code, we find the instruction to plot the x-axis, 
in axis(1), and to draw a box, in box(). We can disable these features by copying 
the whole code, defining it as a new function, say, dotchart.new, and commenting 
out the two pieces of code axis(1) and box() by putting # in front of them:

> dotchart.new <- function (x, labels = NULL, groups = NULL, gdata 
= NULL, cex = par("cex"),
(code omitted)
+ # axis(1)						        # disables x-axis
+ # box() 						        # disables box
+ title(main = main, xlab = xlab, ylab = ylab, ...)
+ invisible()
+ }

We have finally completed the preparations for the dotchart. We start by setting the 
parameters for the plot layout calling par() with its arguments mfrow, mar, and also 
xpd, which we set to T or TRUE (it defaults to F or FALSE). This is to avoid that the text 
symbols we want to print, get cut off on the left and the right of the plot; this is also 
one of the reasons why we have disabled the box above (the other being that the graph 
looks nicer without a box).

> par(mfrow = c(1,1), mar = c(2,1,2,1), xpd = T)

Now we use dotchart.new(), feeding into it NUC$Nucleus as data input, defining 
the title with main and setting its font size with cex.main; the next argument, pch 
= "", is critical as it makes sure that the nucleus positions do not get plotted – why? 
The reason is simple: if we printed the nuclei positions now and the surprisal ranks 
later, the ranks would overplot the nuclei dots and greatly reduce the clarity of the plot. 
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Dotcharts characteristically draw horizontal lines; these are useful when the dataset 
is small but distracting when the dataset is large, as in our case. We therefore set the 
line color to white with lcolor = "white". Finally, xlim = c(1,10) defines the 
range of the x-axis.

> dotchart.new(NUC$Nucleus,
+                 main = "Nucleus and Surprisal",
+                 cex.main = 0.90,
+                 pch = "", # plots nothing
+                 lcolor = "white",
+                 xlim = c(1,10))

We add the x-axis labels, using axis(), selecting 1 for the x-axis, placing the ticks 
at a sequence from 1 to 10 in steps of 1 with at = seq(from = 1, to = 10, 
by = 1),29 and reducing the font size of the axis with cex.axis = 0.85:

> axis(1,
+       at = seq(from = 1, to = 10, by = 1),
+       labels = c(paste("w", 1:10, sep ="")),
+       cex.axis = 0.85)

In the plot and the legend we will need suitable colors for the ten surprisal ranks. We 
cherry-pick colors which nicely form a continuum from very light yellow to very hot 
red from the heat.colors() palette:

> hc <- c("#FF4000FF", "#FF6000FF", "#FF8000FF", "#FF9F00FF", "#FFBF00FF",
+             "#FFDF00FF","#FFFF00FF", "#FFFF2AFF", "#FFFF80FF", "#FFFFD5FF")

To finish off the preliminaries, we place the legend. The first pair of arguments to 
legend() are the start points on the x- and the y-axis: here, we select 0.35 on the 
x-axis and, to make sure that the legend gets printed above the color cells, we select the 
whole length(NUC$Nucleus) and add a little more, + 20. Since we have numerous 
legend labels, which it will be hard to cram into a single line, we reduce the distances 
between them, by setting x.intersp = 0.4. We define the 12 legend labels with 
c(), determine their font size with cex and their colors with text.col. Further, we 
align the labels horizontally (the default being vertical) with horiz = T and get rid of 
the default box around the legend as a whole with bty = "n".

The next few arguments all concern the legend boxes: we set fill = c("blue", 
NA, hc) to fill them with colors, choosing "blue"for the first, NA for the second (as 
"Ranks:" is just a descriptive term, not a variable), and the ten colors from the hc 
vector defined above. Finally, the colors of the borders around the legend boxes are 

.  Note that seq() works equally well without the words in front of the arguments.
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defined; this becomes necessary as we do not want to have a (visible) box in front of 
"Ranks:":

> legend(0.35, length(NUC$Nucleus) + 20,
+        x.intersp = 0.4,
+        �c("Nucleus", "Ranks:", "1", "2", "3", "4", "5", "6", "7", 

"8", "9", "10"),
+        cex = 0.55,
+        text.col = c("blue", rep("black",11)),
+        horiz = T,
+        bty = "n",
+        fill = c("blue", NA, hc),
+        border = c("black", "white", rep("black", 10)))

We move on the the meat of the dotchart: the surprisal ranks and the nucleus posi-
tions. For the surprisal ranks we define a for loop with nested ifelse() statements. 
As the data are 10-word turns, with one word and one rank per position in the turn, we 
start the loop with for(i in 1:10). The ranks are inserted using the text() func-
tion. The first two arguments to text() are the location on the x-axis and the location 
on the y-axis. The x-axis location is one of ten word positions, so we set i; the y-axis 
location is the sequence of indices from the first NUC$Nucleus value to the last, so we 
use seq(NUC$Nucleus) (we could equally well put 1:542 as there are 542 Nucleus 
values). The third argument to text() is the text to be printed: we choose a simple 
straight line. The most important element in the graph are the colors for the suprisal 
ranks, which we have defined in hc. We assign these colors in ifelse() statements. 
The first ifelse() statement could be glossed thus: if the surprisal rank in any of the 
ten columns in SR equals 1, then use the first color in hc; the instruction what to do 
when the test fails is passed on to the next ifelse() statement: if the rank in any of 
the ten columns in SR equals 2, then use the second color in hc, and so forth until rank 
9; all remaining values – that is, rank 10 – are assigned the tenth color in hc.

> for(i in 1:10){
+   text(x = i, y = seq(NUC$Nucleus), "________",
+        col = ifelse(SR[,i] == 1, hc[1],
+                ifelse(SR[,i] == 2, hc[2],
+                  ifelse(SR[,i] == 3, hc[3],
+                    ifelse(SR[,i] == 4, hc[4],
+                      ifelse(SR[,i] == 5, hc[5],
+                        ifelse(SR[,i] == 6, hc[6],
+                          ifelse(SR[,i] == 7, hc[7],
+                            ifelse(SR[,i] == 8, hc[8],
+                              ifelse(SR[,i] == 9, hc[9],
+                                                            hc[10]))))))))),
                                                   cex=0.8)
+ }
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We have now visualized the surprisal ranks. The nuclei are still missing. We insert 
them into the chart again using text(), with the values stored in NUC$Nucleus on 
the x-axis and seq(NUC$Nucleus)on the y-axis; we choose a small underscore as 
text symbol in blue color and reduced font size:

> text(x = NUC$Nucleus, y = seq(NUC$Nucleus), "_", col = "blue", 
cex = 0.8)

We’re almost done. To increase the legibility of the graph, we want to insert segments 
separating the distinct nucleus positions 1, 2, 3, etc. First, we make a frequency list of 
the nucleus positions:

> f <- table(NUC$Nucleus); f
1   2  3  4  5  6  7  8  9 10
18 38 39 39 63 54 76 66 68 81

From that list we need to compute the cumulative sums, that is, the sequence from the 
first value in f, f[1], to the sum of f[1] + f[2] to the sum of f[1] + f[2] + 
f[3] and so forth. The function cumsum() does just this:

> cum <- cumsum(f); cum
 1  2  3   4   5   6   7   8   9  10
18 56 95 134 197 251 327 393 461 542

Based on the cumulative sums we can draw the segments. First, with par(xpd = F) 
we set xpd back to its default to avoid that the segments extend beyond the colored 
cells. Then, we define a for loop for(i in cum[1:9]), that is, for the all the values 
in cum but the last (the last segment is omitted simply for aesthetic reasons) and insert 
the command that starting from x0 = 0.55 to x1 = 10.45 on the x-axis and for 
every i-th value on the y-axis a dotted black segment be drawn:

> par(xpd = F)
> for(i in cum[1:9]) {
+ segments(x0 = 0.55, x1 = 10.45, y0 = i, lty = 'dotted', col= "black")
+ }

6.3  Task: Nucleus placement and duration

Above we cited research showing that predictability goes hand-in-hand “with shorter 
duration and with less phonological and phonetic detail” (Jaeger 2010: 24). In this 
task we will focus on the first part of the quote, duration, and its relation to nucleus 
placement. The previous analysis suggested that the nucleus does not tend to fall on 
predictable words but on surprising words. So, putting one and one together, we can 
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Nucleus and duration
Nucleus Ranks: 1 2 3 4 5 6 7 8 9 10

w1 w2 w3 w4 w5 w6 w7 w8 w9 w10

Figure 6.4  Nucleus and duration

hypothesize that the nucleus will fall on words that are not only surprising but also 
long in duration.

The dataset you can test this hypothesis on is the same as the one underlying the 
case study in Section 6.1 (called “Chapter6_Casestudy_Task.txt”). The durations are 
stored in columns d1, d2, and so forth until d10. The nucleus positions are stored in 
column Nucleus.

To code the dotchart you can adapt the code underlying the case study in 6.1. There 
are only two differences to take note of. First, beware of data structure: after uploading 
the data, do check which format the variables are in. Since you are going to work with 
the Nucleus column and the ten duration columns, focus your attention on them: 
if, for example, the duration columns are not all numeric then you will have to convert 
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them accordingly. Remember that conversion from factor to numeric requires nest-
ing – first to character then to numeric: as.numeric(as.character(x)).
Second, not not every word in the dataset could be measured reliably, in which case its 
duration was set to NA. It is advisable to get rid, not only of the individual cell where 
duration is NA, but, as we are computing ranks, a relative measure comparing a set of 
values, the whole row in which one or more than one cell are NA. This is accomplished 
using the na.omit() function.

The rest of the code is analogous to the code in the case study.
Depending on the graphical parameters you choose, your plot would look roughly 

like the one shown in Figure 6.4.
The plot reveals two things. First, most turns end on either relatively long or even 

the longest word in the turn; this is shown by the massive amount of color from the 
orange/red spectrum in position w10. This tendency for speakers to elongate turn-
final words or to use words in turn-final position that are long in terms of phonemic 
size will concern us in more detail in Chapter 11.

Second, as with nucleus and surprise, we see a correlation between nucleus and 
duration: many nuclei are at the same time the single longest word in the turn and, 
where this is not the case, the nucleus will often rest on the second- or third-longest 
word. So duration is quite likely to also influence a speaker’s choice as to which word 
to invest with the nuclear stress and it will have to be included among the predictors 
in a multifactorial model of nuclear placement (cf. Rühlemann & Schweinberger, in 
preparation).





Chapter 7

Heatmaps and dendrograms

7.1  Case study: Turns and speech rate

7.1.1  Introduction

One of the paralinguistic design features of turns is the speed of speaking. How fast 
a speaker speaks depends on a number of factors. One factor is demographic: elderly 
speakers tend to speak more slowly than younger speakers (Amerman & Parnell 
1992). Another is the action a speaker is performing: an informing turn may be deliv-
ered more slowly than the acceptance of an invitation. Also, speed depends on the size 
of the turn: short turns are spoken with greater speed than long turns (Yuan 2006). 
Speed may vary with the speaker-language relation: non-native speakers have a slower 
speaking rate than native speakers (Riggenbach 1991).

These factors all concern speed variation across turns. But what about speed varia-
tion within turns? One obvious source of tempo variation within turns are hesitations: 
when we search for a word we will slow down or halt altogether. But hesitations are 
not related to turn structure: they can occur pretty much anywhere in the turn. There 
is substantial research to suggest that speakers tend to slow down toward the end of 
turns; we will review this research in more detail in Chapter 11. But is the turn end 
the only structural place where speakers decelerate? One of the few studies addressing 
this question is Yuan et al. (2006). He observes that turn-first words are spoken more 
slowly than all other words in the turn except the last word; on articulating that turn-
last word speakers decelerate again.

In this case study we will address speech rate variation as a function of turn posi-
tion. That is, the research question asked is, Does speech rate vary across positions in 
turns?

7.1.2  Data and methods

The data we will use is the same 10-word turn sample from the BNC we analyzed in 
the previous chapter.

The variable turn position can easily be derived from the data available. We are 
interested in how speed of speaking develops from the beginning of the turn to its 
end. We can thus define each and every word in the turn as a separate position. Under 
this definition, a turn has as many positions as it has words and a word’s position will 
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be 1 if the word is the first word in the turn, 2 if the word is the turn-second word, 
and so forth. As the words in the sample are all ten words long, we will thus have ten 
positions.

The variable speech rate is harder to come by. Speech rate refers to “the speed of 
speaking” (Crystal 2003: 386). It is here operationalized as duration per phoneme. 
You might think: why not take the durations of the words used in a turn and compare 
them? Duration per word won’t work as words have different intrinsic lengths given 
their different phonemic make-up; e.g., ‘it’ /ɪt/ has two phonemes, whereas ‘tomorrow’ 
/təˈmɒrəʊ/ has six phonemes (diphthongs such as əʊ count as a single phoneme); that 
is, ‘tomorrow’ will, to an extent, inevitably have longer duration in discourse than ‘it’. 
Taking duration per phoneme neutralizes differences in phonetic size. (But obviously, 
even duration per phoneme is an approximate measure as phonemes too have intrinsic 
durational differences, with diphthongs being longer than monophthongs, affricates 
longer than plosives, etc.)

While our data does include word durations, it fails to include information on the 
words’ phonetic sizes (i.e., the number of phonemes). How to get at that information? 
The steps taken to determine the phonetic size of the word forms in the 10-word turn 
sample were the following:

i.	 first a frequency list of all the word types in the sample was created in R and stored 
as a data frame,

ii.	 the word types in the frequency list were read into <https://tophonetics.com/>, a 
website offering free conversion of English text to IPA phonetic transcription, and 
converted to phonetic transcription,

iii.	 the transcriptions were added as a new column to the data frame containing the 
word types and their frequencies,

iv.	 the transcriptions were checked and corrected manually where the automatic 
conversion had failed (e.g., in case of infrequent words, such as names, or non-
canonical spellings)

v.	 phonetic stress symbols were removed and following common phonetic practice 
to treat diphthongs as a single phoneme, diphthongs were collapsed into a single 
character,

vi.	 to establish phonetic sizes, the number of phonemes in each word type was 
counted by counting the number of characters, and finally,

vii.	 each phonetic transcription as well its phonetic size was matched to its respective 
word token in the sample.

To calculate speech rate, the duration of any word token in any turn was divided by 
its phonetic size. For example, to return to ‘tomorrow’, the first occurrence of ‘tomor-
row’ is in turn #47: “With a bit of luck we’ll know tomorrow”; that token’s duration as 

https://tophonetics.com/
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a whole is 398 ms. To determine its duration per phoneme, 398 ms was divided by 6; 
the resulting speech rate per phoneme is 66.33 ms.

We will use two closely related visualizations to ‘see’ how speech rates develop 
across turn positions, one building on the back of the other.

The first is the heatmap, a highly intuitive graphic that substitutes numeric values 
with colored cells. Unlike heatmaps in general use, heatmaps in R include dendro-
grams as used in cluster analysis. Cluster analysis is an exploratory method in statis-
tics; unlike most others, it does not serve to test but to generate a hypothesis (cf., for 
example, Rühlemann & Hilpert 2017).

The aim in doing cluster analysis is to find groups in data by showing “which 
of a (potentially large) set of samples are most similar to one another, and to group 
these similar samples in the same limb of a tree” (Crawley 2007: 742; cf. also Levshina 
2015: 309 ff.). The grouping is based on a dissimiliarity matrix and executed itera-
tively, beginning with the most similar samples leading up to the most dissimilar 
ones: initially, the algorithm treats each sample as its own cluster, then merges the 
two most similar samples, compares the similarities of all remaining samples, merges 
the next two most similar samples in a cluster, and continues in this way until there is 
just a single complex cluster. As a result, dendrograms – as well the heatmap associ-
ated with them – re-group samples to reflect the (dis)similarity between them; this 
may be significant if a sequential order is inherent to the data getting clustered – as is 
the case with speech rates across turn positions. In dendrograms, an important visual 
diagnostic is the height at which two or more samples are merged into a cluster: the 
lower the height of the merge on the y-axis the more similar the merged samples, 
and conversely, the higher the merge, the more dissimilar the merged elements (cf. 
Levshina 2015: 309).

In the heatmaps in R, the dendrogram is an additional visual element placed 
above the heatmap proper. This placement may restrict the visibility of the branches 
of the dendrogram, specifically of their height relations. This is a non-trivial restric-
tion because, as noted, the height of the merge points is an important indication of 
(dis)similarity. We are therefore also going to draw a dendrogram in an independent 
graph – our second visualization. The free-standing dendrogram not only allows a bet-
ter view of how the clusters relate to one another but also allows the analyst to locate 
in the dendrogram what he or she hypothesizes are the main clusters.

That is, based on the clusters in a dendrogram and on prior inspection of the 
data in the heatmap an analyst can form a hypothesis and, in a second step, test that 
hypothesis in an analytic-statistical test. In the present connection, the cluster analysis 
will suggest the hypothesis that the speech rates fall into n main clusters. To assist the 
analyst in the task of hypthesizing the number of main clusters, the so-called ‘average 
silhouette width’ is a useful statistic (cf. Levshina 2015: 311). The statistical test admin-
istered to test that hypothesis will serve to determine whether the samples subsumed 
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in the n main clusters are significantly different. Which test to use for this scenario 
depends on whether the data are normally distributed. As the data turn out to violate 
normality,30 the appropriate test is the Wilcoxon rank sum test, which is a ‘distribu-
tion-free’ test assuming no particular distribution (Dalgaard 2008: 99).31

So the methodological road map in this case study starts with inspection of the 
heatmap, leads to inspection of the dendrogram, which leads to formation of a hypoth-
esis, and, finally, culminates in an statistical examination of that hypothesis.

7.1.3  Results

The heatmap in Figure 7.1 presents a lot of information at once.
To start with, the color key is shown in the left upper corner, featuring five colors 

representing the five ranges the speech rates were grouped into: from white for the 
shortest range of speech rates (7 ms–137.2 ms) to darkgrey for the longest range of 
speech rates (527.8 ms–658 ms). The colors are overlaid with a density line; its peak is 
at the boundary of the second (137.2 ms–267.4 ms) and third range (267.4 ms–397.6 
ms), suggesting that the bulk of the speech rates are found around this point.

Above the heatmap we find the dendrogram. Looking at the x-axis labels we 
instantly see that the speech rate samples have indeed been regrouped: most nota-
bly, srate10 is now a neighbor to srate1. As noted, the build-up of dendrograms 
starts from the bottom; that is, the first cluster is formed between the two most similar 
objects, in our case srate8 and srate7. Moving upward from this initial most-sim-
ilar cluster we find a number of other, also relatively similar clusters, until we arrive 
at the very last cluster, which links srate1 to srate10. This grouping indicates that 
srate1 and srate10 are the most dissimilar from the rest and yet relatively similar 
to each other.

.  To determine non-normality, a visual means was used: the Q-Q (quantile-quantile) plot. This 
plot shows the ordered sample values on the y-axis against the quantiles of the standard normal 
distribution (cf. Levshina 2015: 53). The analysis of the plot is straightforward: if the data line up 
straight, the data can be assumed to come from a normal distribution (Dalgaard 2008: 74); if there 
are bumps or breaks, the data should be considered non-normally distributed.

Obviously, normality can also be tested analytically. Normally, the Shapiro-Wilk test is used 
(check out ?shapiro.test at the R console). In the present case, this test cannot be used as one of 
the samples is larger than 5,000 data points. An alternative test would be the Kolmogorov-Smirnov 
test. Underlying both tests is the null hypothesis that the data conform to normality. To reject that 
null hypothesis (and, hence, assume non-normality) the test must produce a p-value smaller than 
the commonly accepted threshold of 0.05.

.  The appropriate test for normally-distributed samples is the t test (e.g., Dalgaard 2008: 95 ff.); 
check out ?t.test in R.
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The relative similarity between srate1 and srate10 can also be read off the 
color codings in the heatmap, where the black and green colors, which indicate slow 
speech rates, are clearly much more numerous in these two positions than for any 
other turn position. However, while these slow rates are fairly evenly distributed across 
srate10, they are much less evenly dispersed in srate1: here, the slow rates are 
much fewer (but still more numerous than in srate2 to srate9) and thus present a 
stark contrast to many very short rates (shown in the blue and white color cells).

The heatmap also features trace lines (in orange); the distance of the line from the 
center of each cell (marked by the stitched red line) is proportional to the size of the 
measurement. It is obvious that in srate1 and srate10, the trace lines more often 
than not veer toward the right end of the cell, meaning that the speech rate is slower 
than the grand median, which is shown in the red line; the trace lines for the other turn 
positions are much more aligned with the median.

In sum, what the heatmap suggests is a separation of the data into three 
groups  – or clusters: srate1, srate10, and the remaining speech rate samples 
taken together.

Is this confirmed in the separate dendrogram?
As can be seen in the separate dendrogram in Figure 7.2, where the heights are 

uncompressed, the distance on the y-axis between srate10 and srate1 is the largest 
in the whole dendrogram, which indicates that the dissimilarity is greatest between 
these two samples. This is in contrast to the visual impression we formed upon inspect-
ing srate1 and srate10 in the heatmap, where the similarity beween srate1 and 
srate10 seemed noticeable. The dendrogram suggests that that similarity, though 
true, should not be overstated: it will probably not suffice to claim that the two sam-
ples together form a main cluster or that we are dealing with three main clusters (one 
for srate1, one for srate10, and one for all non-extreme positions in the turn the 
‘rest’). Rather, the dendrogram suggests that the data fall into two groups: a main clus-
ter for srate1 and another main cluster for srate2 to srate10.

As the visual impressions from the heatmap and the dendrogram seem to be in 
conflict with one another it is advisable to consult the afore-mentioned average sil-
houette width. That statistic shows the ‘well-formedness’, or closeness, of the clusters 
in a given dendrogram. Its values range from 0 to 1, with values close to 0 indicat-
ing that the clusters in a dendrogram are not sufficiently distinct and those close to 
1 indicating clear separation; widths smaller than 0.2 indicate insufficient cluster 
structure (cf. Levshina 2015: 311). Computing the average silhouette width for the 
present speech rate data produces a clear result, which unequivocally supports the 
visual impression gained from inspecting the dendrogram: the only width greater 
than 0.2 is for a two main-cluster solution, namely srate1 and all other speech rate 
samples taken together. The two main clusters are highlighted by the rectangles in 
Figure 7.2.
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Figure 7.1  Heatmap with dendrogram of speech rates in 10-word turns; dark colors indicate 
slow speech rates, light colors indicate fast speech rates; vertical red lines represent grand-me-
dian speech rate; orange zig-zag lines trace the proportional distance of the speech rates from 
the grand median speech rate

We take this two-way division as the basis for the statistical test and hypothesize that 
the speech rates in the two main clusters are (significantly) different. The results of 
the Wilcoxon rank sum test conclusively support the hypothesis: the p-value is far 
smaller than the 0.05 threshold; we can accept our hypothesis: speech rates in the two 
main clusters vary very highly significantly (W = 2212172, p < 0.001).

In sum, we can now answer our research question, Does speech rate vary across 
positions in turns? The answer is yes. Speech rates fall into two main clusters: the speech 
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Figure 7.2  Cluster dendrogram of speech rates in 10-word turns; color rectangles indicate cor-
responding main clusters

rates (i) on the turn-first word and (ii) on the words in all remaining turn positions, 
including the turn-final word. The speech rates in these clusters are significantly dif-
ferent from one another: speech rate is, on average, slower on the turn-first word and 
faster thereafter. In a nutshell, speakers start slowly and speed up through the turn; the 
slow-down again upon turn-completion is relatively minor.

7.1.4  Discussion and concluding remarks

The observations made on the heatmap and the dendrograms can be summarized as 
follows: speech rates on the turn-initial word are slower than on any other word in the 
turn including the turn-last word. How can it be understood in a wider sense?



128	 Visual Linguistics with R

The finding that turn-initial speech rate is slow is consistent with Yuan et al.’s 
(2006) finding reported above. Two possible interpretations come to mind. First, 
speech planning may be involved. While there is wide consensus that next-speakers 
in face-to-face communication start planning their speech during the current-speak-
er’s turn-in-progress (e.g., Magyari et al. 2014; Levinson & Holler 2014; Levinson 
& Torreira 2015; Roberts et al. 2015; Levinson 2016; Holler et al. 2018; Roberts & 
Levinson 2017), there is slightly less consensus as to whether next-speakers have 
already a complete turn plan when they actually take it. For example, Levinson & 
Torreira (2015) claim that, following “early gist comprehension with speech act 
apprehension […] the production system may automatically begin to formulate 
right down to the phonology […] with the actual articulation held in buffer until 
the comprehension system signals an imminent completion of the incoming turn” 
(Levinson & Torreira 2015: 12). This seems to imply that speakers start their turn 
with a complete turn plan on hand. Others, contrarily, leave room for continued, 
in-turn planning: Sacks et al. (1974: 719), for example, concede that a speaker may 
start to speak without requiring “that the speaker have a plan in hand as a condition 
for starting” and Roberts et al. (2015) acknowledge that turn-inital disfluencies may 
indicate that speakers begin a turn at talk without having fully planned it “in order 
to ‘buffer’ their comprehension or planning” (Roberts et al. 2015: 2). The relative 
deceleration of speech rate we observe in the present analysis on the turn-first word 
may serve to buy the speaker more in-turn planning time. Indirect evidence to back 
up this claim is the fact that turn-initial words are among the most frequent words 
in a language at all (Rühlemann, forthcoming b). Frequency, in turn, reduces plan-
ning costs and production time: for example, in Jescheniak & Levelt’s (1994) picture 
naming experiment, high-frequent words were articulated 62 ms faster than low-
frequency words (cf. also Levelt et al. 1999; Indefrey & Levelt 2004). So, a paradox 
arises: speakers spend more time on words that actually cost them less. It seems that 
a plausibel explanation for the paradox is that speakers use the turn-initial slot as an 
in-turn planning hub.

Second, it seems that the slow speech rate in turn-initial position is a reflection of 
the special role of the turn-initial item, which, as we have seen in Chapter 4, is in many 
cases a pre-start, that is, an item, that functionally relates the incipient turn to the 
prior turn. As has been argued recently, the precise action adumbrated by the pre-start 
may be subtly correlated with the pre-start’s phonetic design, including its duration. 
A prime example is ‘well’, which can be drawled considerably: in Rühlemann (2018c), 
the maximum duration was almost 700 ms. In that study, the author hypothesized that 
elongated ‘well’ (fully articulated and typically separated from the turn-second word 
by a pause) prefaces more substantial disagreements.

To illustrate this point, consider (7.1), where Albert and J are exchanging assess-
ments of Phil (who is not co-present):
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	 (7.1)	
	 1  Alb:  Is that June’s boyfriend then.
	 2         J:   we:ll (0.601) that Phil, (.) he’s a (0.454) screw I think.
� (BNC: KB1 5128-5129; corrected transcription)

Albert’s question in line 1 “Is that June's boyfriend then.” is a simple yes/no question; 
it is delivered with statement intonation, suggesting that he is expecting a positive 
answer. However, instead of the preferred positive response J in line 2 provides a scath-
ing critique of Phil: “he’s a (0.454) screw I think” – this not only does not answer the 
question but it also makes Albert look utterly naive for unsuspiciously assuming Phil 
might be June’s boyfriend when he is in actual fact a screw (which is why, by impli-
cation, he cannot or at least should not be June’s boyfriend). Also, it undercuts his 
implicit assessment of Phil of a ‘normal’ person, that is, someone who might qualify as 
June’s boyfriend. Clearly, J’s response runs against the bias of Alb’s innocent question: 
not only does it disagree with the course of action initialized by Albert’s yes/no ques-
tion but it also disagrees with his implicit assessment of Phil. In this extract, then, we 
find a ‘well’ that is greatly decelerated, fully articulated, and followed by a substantial 
pause and that is used to preface a highly dispreferred speech act.

However, as always, there are counter examples: ‘well’ can also be speeded up (and 
articulatorily reduced and phonetically integrated with the TCU); if it is, Rühlemann 
hypothesizes that ‘well’ indicates minor disagreements, as in extract (7.2):

	 (7.2)	
	 1   Vicki:  Northampton, Geoff was born in [Wiltshire].
	 2  Heidi:                                                             [ Where    ] would you say I was bred.
	 3                 Here¿
	 4                 (0.8)
	 5   Vicki:  mhm.
	 6                 (12.1)
	 7    Joan:  we’ you spent your (.) first four years in Malton.
� (BNC: KC3: 1311-1315; corrected transcription)

In the extract in (7.2) ‘well’ is fleetingly short with 59 ms, heavily reduced, and, 
thus, prosodically fully integrated into the subsequent TCU. The speakers are dis-
cussing where family members were born and raised. Heidi in line 2 inquires about 
where she was bred, and in line 3, offers the deictic reference “here” as a candidate 
location. Vicki’s “mhm” in line 5 confirms the location. This Q-A sequence is fol-
lowed by a very long pause of more than 12 seconds. The silence is broken when 
Joan expands the sequence with “we’ you spent your (.) first four years in Malton.” 
The nuclear stress is audibly on the adjective “first”, suggesting that Joan treats the 
noun phrase “your first four years” as the focal information, not the place reference 
“Malton”. On this interpretation, Joan’s turn provides, not a disagreement with what 
was established so far – that Heidi was raised in Malton – but a restriction to that 
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information, namely that she was raised “here” only the first four years of her life. 
This does not fully upset what the participants had agreed on – that Heidi was bred 
in Malton – but merely refines the informational status quo. The ‘well’-prefaced turn 
in line 7, then, represents a weak dispreferred introduced by ‘well’ spoken with very 
fast speed.

So, to judge from these examples (and others discussed in Rühlemann 2018c), one 
reason for the noticeable variance in speech rate on the turn-initial word may be due 
to function-related differences in the phonetic design of pre-starts. There may also be 
others reasons. A full exploration of all reasons is far beyond this case study and must 
await future research.

7.2  The heatmap and the dendrogram in the case study

How were the heatmap and the dendrogram made in R?
Space considerations prevent going into details on the process of transcribing 

the words in the data phonetically (which was done mostly automatically but also 
involved manual post-editing; see above) as well as the alignment of words and 
their phonetic transcriptions. The data we are going to start from already contain 
the results of these processes; that is, the file “Chapter7_Casestudy.txt” to be down-
loaded from the companion website includes not only the turns and the individual 
words but also the phonetic sizes and phonetic transcriptions; the code is found in file 
“Chapter7_Casestudy_Code.R”.

We will read-in the file and store it as speed:

> speed <- read.table("[Your path]/Chapter7_Casestudy.txt", header=T, 
quote="", sep="\t", fill=T)
> head(speed)
	 File	Speaker	                                               Turn
1	KCH	   PS1BT	Ah , but what you ‘re thinking there is china clay .
2	KBE	   PS04H	 And Clayton ‘s not allowed to open his big mouth .
3	KBK	   PS05X	        And I ‘m not a great lover of weeding , cos
4	KBW	   PS088	       And I bring my work home cos it ‘s finished .
5	KBP	   PS066	       And I ca n’t remember what she said it was .
6	KBW	   PS087	         And I thought , oh no Sarah do n’t do it !

	  d1	 d2	 d3	 d4	 d5	 d6	 d7	 d8	 d9	d10	phon1	phon2	phon3	phon4
1	136	115	 81	 84	109	373	254	157	426	231	    2	    3	    3	     3
2	177	282	 77	183	164	111	148	153	137	265	    3	    5	    1	     3
3	262	156	 91	153	 62	219	303	171	316	302	    3	    1	    1	     3
4	132	239	214	234	258	381	171	 64	105	644	    3	    1	    4	     2
5	186	 89	 79	101	387	106	139	169	122	241	    3	    1	    2	     2
6	103	168	198	188	359	343	 64	 75	 95	367	    3	    1	    4	     1
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	 phon5	phon6	phon7	phon8	phon9	phon10	trans1	trans2	trans3	trans4
1	     1	    6	    2	    2	    4	    3	     ɑː	   bʌt	   wɒt	    juː
2	     4	    3	    4	    3	    3	    3	    ænd	kleɪtn	     z	    nɒt
3	     1	    4	    4	    2	    6	    3	    ænd	    aɪ	     m	    nɒt
4	     4	    3	    3	    2	    1	    6	    ænd	    aɪ	  brɪŋ	    maɪ
5	     7	    3	    3	    3	    2	    3	    ænd	    aɪ	    ca	     nt
6	     2	    4	    3	    2	    3	    2	    ænd	    aɪ	  θɔːt	      əʊ

	   trans5	  trans6	trans7	trans8	 trans9	trans10
1	        r	 ˈθɪŋkɪŋ	   ðeə	    ɪz	 ˈʧaɪnə	   kleɪ
2	   əˈlaʊd	     tuː	ˈəʊpən	   hɪz	   bɪg	    maʊθ
3	        ə	   greɪt	 ˈlʌvə	    ɒv	̍ wiːdɪŋ	    kɒs
4	     wɜːk	    həʊm	   kɒs	    ɪt	      z	ˈfɪnɪʃt
5	 rɪˈmɛmbə	     wɒt	    ʃiː	   sɛd	     ɪt	    wɒz
6	      nəʊ	  ˈseərə	    duː	    nt	    duː	    ɪt

As can be seen from calling head(speed), the file contains more information than 
is needed for the heatmap and the dendrogram. This essential information is stored in 
the ten columns in which word durations are recorded, that is, in d1, d2, etc., as well 
as the ten columns in which the phonetic sizes are recorded, phon1, phon2, etc. Let’s 
reduce the data so that it will contain only those twenty columns and store it in a new 
dataframe speed2:

> speed2 <- speed[, 4:23]
> head(speed2)
	  d1	 d2	 d3	 d4	 d5	 d6	 d7	 d8	 d9	d10	phon1	phon2	phon3	phon4
1	 136	115	 81	84	 109	373	254	157	426	231	    2	    3	    3	    3
2	 177	282	 77	183	164	111	148	153	137	265	    3	    5	    1	    3
3	 262	156	 91	153	 62	219	303	171	316	302	    3	    1	    1	    3
4	 132	239	214	234	258	381	171	 64	105	644	    3	    1	    4	    2
5	 186	 89	 79	101	387	106	139	169	122	241	    3	    1	    2	    2
6	 103	168	198	188	359	343	 64	 75	 95	367	    3	    1	    4	    1

	 phon5	phon6	phon7	phon8	phon9	phon10
1	     1	    6	    2	    2	    4	     3
2	     4	    3	    4	    3	    3	     3
3	     1	    4	    4	    2	    6	     3
4	     4	    3	    3	    2	    1	     6
5	     7	    3	    3	    3	    2	     3
6	     2	    4	    3	    2	    3	     2

While this data gets us closer to the heatmap and the dendrogram, an important inter-
mediary step is still missing: the calculation of speech rate. As said earlier, speech rate 
is computed as duration divided by phonetic size. We perform this division in one go 
by subsetting the whole dataframe and using the function paste0(), which allows us 
to target the twenty columns without referring to each of them separately:
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> speed2[, paste0("srate",1:10)] <- speed2[, paste0("d",1:10)] / 
speed2[, paste0("phon",1:10)]
> head(speed2)
	  d1	 d2	 d3	 d4	 d5	 d6	 d7	 d8	 d9	d10	phon1	phon2	phon3	phon4
1	 136	115	 81	84	 109	373	254	157	426	231	    2	    3	    3	    3
2	 177	282	 77	183	164	111	148	153	137	265	    3	    5	    1	    3
3	 262	156	 91	153	 62	219	303	171	316	302	    3	    1	    1	    3
4	 132	239	214	234	258	381	171	 64	105	644	    3	    1	    4	    2
5	 186	 89	 79	101	387	106	139	169	122	241	    3	    1	    2	    2
6	 103	168	198	188	359	343	 64	 75	 95	367	    3	    1	    4	    1

	 phon5	phon6	phon7	phon8	phon9	phon10
1	     1	    6	    2	    2	    4	     3
2	     4	    3	    4	    3	    3	     3
3	     1	    4	    4	    2	    6	     3
4	     4	    3	    3	    2	    1	     6
5	     7	    3	    3	    3	    2	     3
6	     2	    4	    3	    2	    3	     2

	   srate1	   srate2	srate3	srate4	   srate5	   srate6	   srate7
1	68.00000	 38.33333	  27.0	  28.0	109.00000	 62.16667	127.00000
2	59.00000	 56.40000	  77.0	  61.0	 41.00000	 37.00000	 37.00000
3	87.33333	156.00000	  91.0	  51.0	 62.00000	 54.75000	 75.75000
4	44.00000	239.00000	  53.5	 117.0	 64.50000	127.00000	 57.00000
5	62.00000	 89.00000	  39.5	  50.5	 55.28571	 35.33333	 46.33333
6	34.33333	168.00000	  49.5	 188.0	179.50000	 85.75000	 21.33333

	   srate8	   srate9	  srate10
1	 78.50000	106.50000	 77.00000
2	 51.00000	 45.66667	 88.33333
3	 85.50000	 52.66667	100.66667
4	 32.00000	105.00000	107.33333
5	 56.33333	 61.00000	 80.33333
6	 37.50000	 31.66667	183.50000

Now we have the data to be plotted: this data is contained in the 10 columns srate1, 
srate2, etc. But we don’t have the format yet: heatmaps require data in matrix format. 
So we need to re-format the ten speech rate columns. We do it by using as.matrix() 
and storing the matrix as srate:

> srate <- as.matrix(speed2[,21:30])

To check whether the conversion to matrix was successful, we use class():

> class(srate)
[1] "matrix"
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The heatmap discussed above is not the heatmap available from base R. It is contained 
in the package gplots, so we need to install the package first using install.pack-
ages() and making it available for the session using library() (NB: install.
packages() requires quote marks around the package name, library() does not!):

> install.packages("gplots")
> library(gplots)

The heatmap function is called heatmap.2(). Its first argument is the matrix, srate. 
Next, we set the parameters for the key (if no key is sought, set key = F), by defining 
keysize and setting key.title, key.xlab, and key.ylab to NA; further, we set 
density.info to "density" to obtain a density line (other options are "histo-
gram" or "none").

The default setting for margins in heatmap.2 is (5,5), which leaves (too) much 
space around the heatmap empty. We therefore decrease the margins with margins = 
c(4.5,1). Also, we do not seek row labels, so we suppress them with labRow = "".

The next few lines concern the dendrogram above the heatmap. Rowv = F 
instructs R not to draw a dendrogram for rows. As we want the dendrogram to be 
computed for columns we write dendrogram = "column". The argument scale 
= "row" indicates that the values should be centered and scaled in the row direction.

Now we set the colors for the heatmap. A basic principle in choosing colors for plots 
is to achieve sufficient contrast. One way is by manipulating color transparency; as will 
be remembered from Chapter 2, this can be accomplished by adjustcolor() and its 
argument alpha.f. Now we could use, for example, a single color and define different 
hues (levels of transparency) for it. In the code below, a different color scheme is chosen: 
using sample() and drawing one color randomly for each transparency level, we can 
change the look of the graph drastically in a single click on the ‘run’ button of the R editor 
(provided that the whole code for the heatmap is marked) and can do so endless times 
until we get a fully pleasing plot. Note also that the five colors thus obtained obviate the 
need to define the number of breaks, that is, those points at which the values should be 
split into colors (if defined, the number of breaks must equal the number of colors +1).

Finally, we arrive at the settings for the trace line showing the degree to which a 
value deviates from the median. First, trace = "col" determines that the trace line 
should be applied to columns; next, the argument tracecol defines the trace line 
color and linecol defines the color for the dashed center line.

par(mfrow = c(1,1), mar = c(4,4,4,4))
> heatmap.2(srate,
+           keysize = 0.9,
+           key.title = NA, key.xlab = NA, key.ylab = NA,
+           density.info = "density",
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+           margins = c(4.5,1),
+           labRow = "",
+           Rowv = F,
+           scale= "row",
+           dendrogram = "column",
+           col = c(�adjustcolor(colors()[sample(1:650,1)], alpha.f 

= 0.01),
+                   �adjustcolor(colors()[sample(1:650,1)], alpha.f 

= 0.25),
+                   �adjustcolor(colors()[sample(1:650,1)], alpha.f 

= 0.5),
+                   �adjustcolor(colors()[sample(1:650,1)], alpha.f 

= 0.75),
+                   �adjustcolor(colors()[sample(1:650,1)], alpha.f 

= 1)),
+#          breaks = 6,
+           trace = "col",
+ tracecol = "orange",
+ linecol = "red" )

We’re almost done. What is still missing are the title and some descriptive text. The 
title is set using title(), placing it on a suitable line and adjusting the character 
size with cex.main:

> title(main = "Speech rate variation", adj = 1,
+       line = 3,
+       cex.main = 0.9)

Finally, we add a description to the left of the heatmap. Plotting anything outside the 
plotting area requires special permission; we grant this permission by setting in par() 
the argument xpd to T. To break the text into smaller segments that will fit the margin 
size, we use \n (for new line) at appropriate points in the text:

> par(xpd = T)
> text(0.2, 450,
+      �"10-word turns\n(N = 668)\n\nspeech rate\nmeasured as\n
	 duration per phoneme",
+      cex = 0.5)

The dendrogram, drawn as a separate graph as in Figure 7.2 above, is comparably 
easy to obtain. As noted before, dendrograms depict dissimilarities between samples. 
These are computed using the function dist(). Dissimilarity is operationalized in 
R as distance. There are different ways to measure distance. The default one, and the 
most commonly used, is the euclidian distance (for a useful discussion of this measure 
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and other distance measures, cf. Levshina 2015: 309 ff.). By default, dist() computes 
the distances between the rows of a matrix. What we need, however, are the distances 
between the columns in srate. So we transpose the matrix, using the function t():

> srate_t <- t(srate)

To compute the column distances, we call dist() for the transposed matrix and store 
the distances in a new vector distances:

> distances <- dist(t(srate), method = "euclidian")

If we inspect distances we can make a clear prediction: the distance between 
srate7 and srate8 is the smallest. Bearing in mind that clustering starts from the 
most similar samples leading up to the most dissimilar ones, these two samples will 
then be the first to get merged in a cluster. We also see that the distance is the largest 
between srate1 and srate10, so these two will get merged last:

> distances
	    srate1	   srate2	   srate3	   srate4	   srate5
srate2	 1894.2509
srate3	 2054.2973	1247.3219
srate4	 2003.5988	1205.2017	1009.2812
srate5	 2130.9504	1400.0916	1269.5916	1166.2709
srate6	 2026.4913	1244.6610	1134.9720	1036.0755	1179.6798
srate7	 1998.5535	1256.3724	1097.7831	1050.8472	1213.2253
srate8	 1970.8385	1213.9076	1114.6530	1090.8353	1238.1394
srate9	 2022.6206	1267.1548	1137.3140	1086.6513	1243.3356
srate10	2049.6332	1525.7504	1510.5942	1437.5199	1536.7883

	    srate6	   srate7	   srate8	   srate9
srate2	
srate3	
srate4	
srate5	
srate6	
srate7	 1072.0629	
srate8	 1067.6023	 964.4838
srate9	 1046.0096	 999.0200	1044.9260
srate10	1455.1625	1441.6043	1430.9277	1370.5236

To finally plot the dendrogram we use the function hclust(), which takes the dis-
tance matrix distances as its first argument. There are several cluster methods, again 
the default one and the most commonly used is the method "complete" (see, again, 
Levshina 2015: 309 ff. for a good discussion of alternative methods). First, to make the 
code more compact for later on, we store the dendrogram as an object, srate_dg:
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> srate_dg <- hclust(distances, method = "complete")

Then we set the stage for the plot by determining the layout, for example, thus:

> par(mfrow = c(1,1), mar = c(5.5, 4, 2, 2))

To actually obtain the dendrogram we wrap the plot() function around the object 
srate_dg. Inserting the argument hang = −1 ensures that all clusters labels ‘hang’ 
from the same height at the y-axis.Additionally, we specify the heading, the label on 
the x-axis and the font sizes:

> plot(srate_dg,
+      cex = 0.9,
+      hang = −1,
+      main = "Speech rate clusters",
+      xlab = "Distances",
+      cex.main = 0.95, cex.lab = 0.9, cex.axis = 0.9)

The next step is critical: we want to know which clusters can be grouped into main 
clusters. The package cluster allows you to compute what is called average silhouette 
widths, a measure to identify the optimal cluster solution. So we first install the pack-
age and load it:

> install.packages("cluster")
> library(cluster)

To understand what’s behind the computation of average silhouette widths let’s take 
it in steps. Let’s assume we hypothesize that the optimal cluster solution will be three 
clusters. To compute the silhouette widths for three clusters we will use two functions, 
silhouette() and cutree(). The latter takes as input our speech rate dendrogram 
srate_dg as well as the hypothesized number of clusters, 3; silhouette() in turn 
takes as input cutree() as well as the distance matrix distances. We will store the 
result of this operation as sil.k3:

> sil.k3 <- silhouette(cutree(srate_dg, k = 3), distances)

What is the average silhouette width for a three-cluster solution? To address this ques-
tion we can do a summary() of sil.k3 and specifically target the value of interest, 
namely avg.width:

> summary(sil.k3)$avg.width
[1] 0.1735641

The summary output shows that the silhouette width for a three-cluster solution is 
suboptimal: 0.1735641 is smaller than the threshold value of 0.2 (see above). So we will 
want to look for a better cluster solution. We can compute the average silhoutte widths 
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for all possible cluster solutions in one go using sapply(). A one-cluster solution 
does not make sense at all, neither does a 10-cluster solution. Therefore we exclude 
these solutions and define the sequence 2:9 as the first argument to sapply(). As the 
second argument we define a function(x) for which we adapt the code used for the 
three-cluster solution using summary() and cutree() and simply replace 3 with x:

> sil.k2to9 <- sapply(2:9, 
                      function(x) 
                        summary(silhouette(cutree(srate_dg, k = x), 
                                           distances))$avg.width)

The mean silhouette widths for the eight possible cluster solutions are these:

> sil.k2to9
[1] 0.35669702 0.17356414 0.07300514 0.07268100 0.03766443 
0.02880942 0.02250442 0.01115538

Which value is, which values are, greater than 0.2? Only the first – the average silhou-
ette width for the two-cluster solution, so we’ll go with that.

Next, we wish to draw rectangles into the dendrogram to visualize which 
branches form the main clusters. This is achieved by rect.hclust() wrapped 
around srate_dg. Also, we set the argument k = 2 to obtain two rectangles desig-
nating the two main clusters; finally we set border = 2:3 to color the rectangles red 
(2), green (3) (use 1 for black and 4 for blue):

> rect.hclust(srate_dg, k = 2, border = 2:3)

The test, finally, requires some preparation. First, we define vectors for each of the two 
main clusters that we believe speech rates fall into:

> mc1 <- srate[,1]
> mc2 <- srate[,2:10]

We perform the test to establish whether the data in the two vectors are significantly 
different. However, which test to use depends on which distribution the data come 
from. If they come from a normal distribution, then the appropriate test is the t test; 
if not, then a distribution-free test is warranted  – such as the Wilcoxon rank sum 
test. How to find out whether the data are normally distributed? As noted earlier, one, 
visual, means is the Q-Q-plot. The code to produce the plots is simple. First, we allow 
for a two-panel plot in which the Q-Q plots are arranged side-by-side:

> par(mfrow = c(1,2))

Next, we produce for each of the three vectors both the Q-Q plot, using qqnorm(), as 
well as the appropriate straight line to compare the distribution against, using qqline():
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> qqnorm(mc1, main = "Q-Q plot\nsrate1",
+        cex.main = 0.9, cex.axis = 0.9, cex.lab = 0.9)
> qqline(mc1, col = "blue")
> qqnorm(mc2, main = "Q-Q plot\nsrate2:srate10”,
+        cex.main = 0.9, cex.axis = 0.9, cex.lab = 0.9)
> qqline(mc2, col = "blue")

The resulting graphs unequivocally indicate that the data in the two vectors do not 
come from a normal distribution as they deviate clearly from the straight line:
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Having established that mc1 and mc2 are non-normally distributed, the data is all set 
up for testing using the wilcox.test() function. It takes as minimum input the two 
variables mc1 and mc2:
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> wilcox.test(mc1, mc2)

      Wilcoxon rank sum test with continuity correction

data: mc1 and mc2
W = 2212172, p-value = 1.577e-05
alternative hypothesis: true location shift is not equal to 0

The test result is reassuring: the speech rates in the two main clusters are very highly 
significantly different (W = 2212172, p < 0.001).

7.3  Task: Frequency structure in turns

In Section 5.3 we saw that word frequency is not uniformly distributed in turns but 
that there is a tendency for infrequent words to take up larger and larger proportions 
as speakers progress from a turn’s beginning to the turn’s end. Is this a continuous 
decrease or is there ‘structure’ in the decrease in the sense that, at some position in the 
turn, word frequency drops to become substantially lesser?

In this Task section, we are going to deploy the heatmap and the dendrogram to 
address this question.

The data is, again, 10-word turns form the conversational subcorpus of the BNC. 
This time, however, it is not a smallish subset but it is the full set – all 10,696 turns that 
have 10 words in the subcorpus.

How to proceed with the data to produce the heatmap and the dendrogram?
The data can be downloaded from the companion website, the file is called “Chap-

ter7_Task.txt”. On reading-in the data as, say, t10, you will see the file contains two 
reference columns, File and Speaker, the turns as strings in column Turn as well as 
the words per turn position, labeled w1, w2, etc.:

> head(t10)
	 File	Speaker	                                               Turn
1	KD9	   PS1G2	   That 's what he was doing , hoping I was asleep .
2	KD9	   PS1G3	     I 'll not get anything else done out the back .
3	KD9	   PS1G3	 Mark whenever you start drag him off into the cupboard
4	KD9	   PS1G3	No the one downstairs has been there quite a while .
5	KD9	   PS1G3	Sure wreck it , round here , do n't leave nothing alone .
6	KD9	   PS1G2	Him there , his second time , first time he failed it .

	   w1	      w2	 w3	         w4	      w5	   w6	    w7	   w8
1	That	      's	what	        he	     was	doing	hoping	    I
2	   I	     'll	 not	       get	anything	 else	  done  	out
3	Mark	whenever	 you	     start	    drag	  him	    off	 into
4	  No	     the	 one	downstairs	     has	 been	 there	quite
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5	Sure	   wreck	 it	      round	    here	   do	   n't	leave
6	 Him	   there	 his	    second	    time	 first	  time	   he

	      w9	     w10
1	    was	  asleep
2	    the	    back
3	    the	cupboard
4	      a	   while
5	nothing	   alone
6	 failed	      it

We see that the first letter of the word tokens in Turn and w1, w2, etc. is sometimes 
upper case. This is unfortunate as the distinction between upper and lower case creates 
an artificial distinction between two orthographic forms of one and the same word. So 
we better set all text strings to lower case:

> t10[,3:13] <- lapply(t10[,3:13], tolower)

There’s no frequency information in t10 – where do we get that from? It is stored in 
another file, called “Chapter7_Task.BNCfreq.txt”. Let’s suppose you store the file as 
bnc. The number of rows it contains is impressive, with frequencies for 34,322 distinct 
word types:

> nrow(bnc)
[1] 34322

The first six lines look like this:

> head(bnc)
	 Word	 Frequency
1	 i	 169024
2	 you	 134932
3	 it	 128004
4	 the	 115361
5	 's	 107729
6	 and	 90843

The first task now is to match the corpus frequencies to the words in w1, w2, etc. of 
dataframe t10. This can be done in one go by using sapply() and match():

> t10[, paste0("f", 1:10)] <- sapply(t10[, 4:13],
+                                   function(x)
+                                   �bncfreq$Frequency[match(x, 

bncfreq$Word)])

The next step is to transform the frequencies logarithmically, for example thus:

> t10[, paste0("f", 1:10,"log")] <- log2(t10[, paste0("f", 1:10)])
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Now you have a very large dataframe:

> ncol(t10)
[1] 33

For the heatmap and the dendrogram you only need the ten columns you have last cre-
ated, the logged frequencies. Isolate them and transform them to a matrix:

> f <- t10[, paste0("f", 1:10,"log")]
> f <- as.matrix(f)
> class(f)
[1] "matrix"

Plotting the heatmap with all 10,696 rows will be demanding too much – therefore 
take a random sample of just 500 turns:

> f_s <- f[sample(1:nrow(f), 500),]

There’s no need to sample for the dendrogram: in plotting it, do use matrix f with all 
its 10,696 rows, not matrix f_s!

Now you’re all set for the visualizations. The steps to take to produce the heat map 
and the dendrogram are all analogous to the ones explained in detail in Section 7.2.

Once you’ve managed to draw the graphs they should in principle look like the 
two on pages 141 and, respectively, 142.

The heatmap shows relatively little contrast. This is indication that the samples are 
not utterly dissimilar. Upon careful inspection we see that, as expected, frequencies 
start high at turn beginning and rather gradually decrease until turn completion. The 
heatmap then confirms the results of the case study in Chapter 5, where we observed 
a similar decline in frequency over the turn. But our research question in this present 
case study is whether there are leaps in rarity over the turn – that question we cannot 
answer based on the heatmap; we will need the dendrogram to penetrate more deeply 
into the frequency structure in turns.

The first thing to note in the dendrogram is that there are no large height differences 
indicating that all clusters are relatively similar to each other. This was to be expected 
given that the heatmap showed only slight color contrasts between the samples. The 
relative lack of dissimilarity also emerges from computing the average silhouette widths, 
where the largest value is slightly below the 0.2 limit. That value is for the two main-
cluster solution, separating frequencies on turn completion from all other frequencies 
in the turn. The Wilkoxon rank sum test confirms that the difference between these two 
main clusters is very highly significant (W = 377557928, p-value < 2.2e-16).

So, while frequencies generally decrease slightly from turn inception to turn comple-
tion, they significantly drop upon turn completion. There is, then, structure in the way 
that speakers vary frequency in turns. A full appreciation of this fnding is well beyond 
the scope of this Task section; but some preliminary observations may be worth noting.
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To start with, the finding is not restricted to 10-word turns; the same drop in 
frequency can be observed in turns of other sizes as well, as shown in the scatter plot 
in Figure 7.5, which represents average corpus frequencies per position in more than 
77,000 turns ranging in size from 7 to 12 words.
Second, preliminary inspection of those turns that exhibit a sharp frequency drop 
in turn-last position suggests that one of the factors to explain the phenomenon are 
names – names of co-present interlocutors used as address forms, as in (7.3) and (7.4), 
or names by which speakers refer to non-present referents including people, as in (7.5) 
to (7.6), or places, as in (7.7) and (7.8):
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Figure 7.3  Heatmap of logarithmically transformed frequencies in random sample of 500 turns 
from all 10,969 10-word turns from BNC-C; dark colors indicate high frequencies, light colors 
low frequencies; vertical grey lines represent grand-median frequency; orange zig-zag lines 
trace the proportional distance of the frequencies from the grand median frequency
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	 (7.3)	 so you ’ve got a big garden have you arth ?

	 (7.4)	 yeah but you ’d mark the ones you know , ruthy !

	 (7.5)	 er , i sent some money down for bethan and kaylie

	 (7.6)	 he was a big name at the time , laepol stokowski

	 (7.7)	 whether they ’ll be in harden newlow or , or consaquay ?

	 (7.8)	 well you can spend some days on the cote d'azure

Place names and people’s names generally have low frequencies (Scott & Tribble 
2006: 70) as the two word classes are virtually unlimited in terms of number of 
members. Further, names used between close friends and family are prime targets for 
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‘morphological creativity’ to express “affective connection and convergence” (Carter 
2004: 101). For example, “Arth” and “Ruthie” are likely deviant forms of ‘Arthur’ and 
‘Ruth’ and therefore even less frequent than the (already infrequent) standard forms. 
In interactional terms, the use of names in address forms – i.e., as post-completers 
(cf. Chapter 4) – serves the purpose of selecting the next speaker (Sacks et al. 1974). 
Seen from this perspective, the frequency drop in turn-last position may be related 
to turn-taking.

Perhaps more generally though the overall downward trend and its culmination 
in the steep slide in frequency in last position may relate to information packaging. In 
Chapter 5 we tested the content word climax hypothesis, and found that content words 
not only generally increase over the turn but spike in turn-last position. Given that 
content words mostly have much lower frequencies than inserts and function words 
we also speculated that the content word climax might be evidence of an information 

Average corpus frequencies of words per positions in turns
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climax, a tendency for speakers to distribute information asymmetrically in the turn, 
with a bias for inserting new and focal information toward the end of the turn. It 
appears that the finding made in this Task section is consistent with the information 
climax hypothesis and provides additional evidence to support it. Consider the role of 
the low-frequency content word “optician” in extract (7.9):

	  (7.9)	
	 1	 John:  It feel = feels (0.36) it- I feel as if I’ve got something
	 2	             in ↓me eye all the time (1.14)
	 3	 Arth:  like sand?
	 4	 John:  [yeah.]
	 5	 Arth:  [like a like a rough] °yeah°
	 6	 John:  [yeah yes yeah]
	 7	             (1.87)
	   8 →	 Arth:  when was the last time you went to the optICian?
	 9	             (1.10)
	 10	 John:  (jus’) before you came here (°I think°) (0.77)
	 11	 Arth:  over two years ago °then°¿
	 12	 John:  yeah.
	 13	             (1.45)
	 14	             I’m due to go =
	 15	 Arth:  = I think you need to go� (BNC: KP1 5245-5255; corrected transcription)

The talk between John and Arthur preceding the extract revolves around ailments 
and aches. When John complains about his eye trouble in line 1, thereby creating for 
Arthur an opportunity to volunteer assistance (cf. Kendrick & Drew 2016: 6), Arthur 
first expands the sequence by eliciting a more detailed description of the pain (lines 
3–7). Then, in line 8, his question “when was the last time you went to the optICian?” 
offers assistance by implicitly suggesting that John consult an optician to cure his 
problem. There has been no mention of opticians in the preceding talk, so the refer-
ence to “optician” provides new information; that “optician” is indeed not just any new 
information but focal – that is, the informational climax of the turn – transpires from 
the nuclear stress on it (cf. Chapter 6).

The frequencies in the turn are strikingly unevenly distributed, as shown in 
Figure 7.6.

While the first nine words in the turn have very high frequencies – indeed “you” 
and “the” are among the top five most frequent words in conversation – , “optician” 
is very rare: it occurs merely four times in the conversational subcorpus of the BNC.

So frequency may be down at turn ends because it is at this point in the turn 
that speakers ‘make a point’, that is, get to the meat of their message, for example, by 
referring the recipient to some referent outside the discourse-so-far, and that ‘point’ is 
typically expressed by a low-frequency content word.

But we can here merely touch upon this potential connection between the fre-
quency drop in turn-last position and the information climax. Much more in-depth 
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analysis of many more cases is required to get anywhere close to confirming the con-
nection as a fact. What we can say with more certainty at this point is that word fre-
quency is not uniformly distributed in turns but there is structure in how speakers use 
frequency to distribute words across positions in turns.32

We will now take a leap from the turn to the sequence, considering large stretches 
of thematically and interactionally related talk. Specifically we will explore the storytell-
ing sequence, from the point of view of how speakers orient recipients to the situational 
parameters of the story world (Chapter 8), how they guide them prosodically toward the 
story highpoint (Chapter 9), and how they use paralinguistic resources to infuse con-
structed dialog (or ‘direct speech’) with stance, the lifeblood of storytelling (Chapter 10).

.  Clearly, syntax plays a role too: in an SVX language such as English, word order is heavily 
constrained. However, considering that the subject mostly represents discourse-old or contextually 
accessible information (such as ‘I’ or ‘you’), syntax itself may be seen as an adaptation to constraints 
arising from turntaking (cf. Ochs et al. 1996).
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Chapter 8

Strip charts and violin plots

8.1  �Case study: Storytelling structure – The role of adnominal this in 
Orientation

8.1.1  Introduction

In this chapter we take a leap from the turn to the sequence. The sequence type we 
will be concerned with is storytelling. Storytelling is a complex task: it takes place in a 
telling situation, with the teller and their interlocutors talking some time some place, 
and revolves around a told situation made up of the events that happened to some 
agents some other time some other place. So storytelling intertwines two situations, 
the telling situation in which the telling takes place and the told situation in which the 
events took place.

To achieve this intertwining of two situations, storytellers need to ‘orient’ the 
recipient to the basic coordinates of the told situation; these basic coordinates include 
not only the spatio-temporal coordinates place and time but also the personal, or 
agent, dimension,33 that is, the characters populating the story. These coordinates con-
figure the ‘ground’ against which the ‘figure’ – the temporal sequence of events, which 
is “the defining characteristic of narrative” (Labov & Waletzky 1967/1997: 15) – can 
play out and be distinguished.34

It is generally assumed that the situational coordinates are laid out in what CA 
researchers refer to as Background (e.g., Goodwin 1986) or what Labov (1972) calls 
the Orientation section. This section, in Labov’s model (Labov 1972: 363 ff.), succeeds 
the optional Abstract (a pre-view on what the story is going to be about) and pre-
cedes the Complicating action (the ‘plot’), Evaluation (the ‘point’), Resolution (how 
the events sort themselves out), and finally the Coda (which bridges over from the 
narrative to the present speech situation).

Obviously, for the Orientation section to provide a ground against which the events 
figure can be assessed, the Orientation should be sequentially early, that is, it should 

.  Agents need not necessarily be persons. As discussed in Ervin-Tripp & Küntay (1997), non-
human agents can be made the protagonists of stories; the example they discuss is an earthquake.

.  Note that in addition to sketching out agents, space, and time of the told situation, Orienta-
tion/Background sections can also foreshadow important elements/events that will be tracked and 
developed in later sections (cf. Baynham 2003; Dingemanse et al. 2017)
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precede other narrative sections. In this short case study, as well as in the Task section, we 
will examine linguistic means by which speakers actualize that early Orientation. In the 
case study we look into ‘adnominal this’, that is, use of ‘this’ as a determiner of a noun, in 
the Task section we will investigate the distribution of references to time in storytelling.

Consider extracts (8.1) and (8.2) as illustrations of ‘adnominal this’.

	 (8.1)	
	 1    Ang:  >someone gave me a microwave oven this morning (0.4) for nothing. <
	 2     Sue:  (what)?
	 3    Ang:  >she rung me up and asked (got a microwave < oven)?
	 4     Sue:  yeah¿
	 5    Ang:  i said- (0.3)
	 6                   (she says) “have you got one”
	 7                   i said° no.
	 8                    but i was gonna say Ange (has) cos i thought she wanted to defrost someth-’
	 9     Sue:     yeah
	 10  Ang:    she s’d well our (mother’s) (0.3) got one you can have.
	 11                 she- she s’d “you can have.” =
	 12                 → i s’d no i’ll buy it° off ” =
	 13                 = she said “no our mother want no money.
	 14                 so i spoke to her mum. <
	 15                 (0.3) h ’n’ she s’d > no you have it my love. =
	 16                 = i’ve just bought a new one you can have it.
	 17                 (0.9)

Agent

Time

Place

events

Figure 8.1  Dimensions of the told situation
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	 18                 so i [(gonna get) ] =
	 19   Sue:    [who’s this then. ]
	 20  Ang:    zoe.
	 21                 y’ know zoe?
	 22   Sue:    oh yeah,
	 23  Ang:    her mu’.
	 24                 (1.7)
	 25                 giving (away) a microwave oven for nowt.
	 26                 ( ): °i thought that's alright,°
� (BNC: KB6 1610-1629; corrected transcription)

In (8.1), ‘adnominal this’ is found in the referring expression “this morning”. It points 
to the early part of the day the story is being told; that is, it relates the told time exo-
phorically to the telling time. The reference to “this morning” is the only mention 
of that time point in the story; it is not taken up again in this or any other form. By 
contrast, the type of ‘adnominal this’ used in (8.2) is of an altogether different nature:

	 (8.2)	
	 1     Jud:  °No they don't do any takeaways°.
	 2                  (3.5)
	 3                  Eh = Our (Arthur) (w’s) sat there
	 4                  and(.) this (.) girl comes clear the pots away (.)
	 5                  and she, (.) been round lots o’ tables, you know,
	 6                  > collecting the cups up together and
	 7                  she comes an’ she goes < (.) ↑o:h she says you smell
	 8                  Heh [ heh heh     ]
	 9    Dor:            [That’s very ]   [ (mea::n) ]
	 10   Jud:                                    [AND I LO]oked at her
	 11                and I thought you can't say tha::t
	 12                and Alan looked at her and then she looked
	 13                > she goes < ↑oh I meant she says you smell nice¿
	 14                H(hh)e said (1.4) he said don't get close, =
	 15  Dor:    = Ye:ah =
	 16   Jud:    = ↑Ooh↑ you smell
	 17                (1.5)
	 18  Dor:    We’re off though::: = uh (0.4) well York (0.9)

Judith is relating an incident in a restaurant where a waitress made an inappropriate 
remark about Arthur’s smell. The waitress is referred to as “this (.) girl” as if she 
had just been mentioned in the preceding discourse or as if the reference could be 
resolved exophorically. Neither is the case: she is mentioned here for the first time 
and the reference cannot be decoded with recourse to entities outside of the text. This 
usage has been termed ‘new-this’ (Wald 1983) and ‘introductory this’ (Biber et al. 
1999: 274). The usage is widespread across varieties of English (Wald 1983: 94) and 
particularly common in storytelling (Halliday and Hasan 1976: 61).
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Not every ‘adnominal this’, then, is also an instance of ‘introductory this.’ The 
defining feature of ‘introductory this’ is functional: the referent it marks out is the 
story protagonist. Reconsider extract (8.1): that the waitress is the key player of the 
story is evidenced by the multiple anaphoric references to her using personal pro-
nouns (highlighted in bold in the extract) following the initial mention. Given that 
‘introductory this’ ‘points’ to who or what is going to be a central agent in the unfold-
ing story, Rühlemann & O’Donnell (2015) interpret it as a type of theme marker and 
thus as a form of discourse deixis (see Levinson 1983: 89).

In this case study, we will explore ‘adnominal this’ in storytelling. The aim is to 
assess whether forms of ‘adnominal this’, including but not restricted to its incarna-
tions as ‘introductory this’, serve as means for storytellers to provide the orientation 
story recipients need to assess the story events.

8.1.2  Data and methods

The case study is based on the c. 500 stories assembled in the Narrative Corpus, or NC 
(cf. Rühlemann & O’Donnell 2012).

Using XQuery (cf. Rühlemann et al. 2015), n-grams and c5-grams were extracted; 
n-grams are contiguous strings of words of variable length in running text and 
c5-grams are the corresponding strings of Part-of-Speech tags. For this analysis both 
two-grams (strings of two words), and three-grams (strings of three words) were 
retrievied. N-grams are computed iteratively, taking the endpoint of one n-gram as 
the startpoint of the next n-gram. For example, the utterance “I’ve tried to learn it” is 
analyzed thus in terms of n-grams and c5-grams:

	     twogram	 c5_twogram	       threegram	c5_threegram
1	      i 've	    PNP VHB	      i 've been	 PNP VHB VBN
2	   've been	    VHB VBN	 've been trying	 VHB VBN VVG
3	been trying	    VBN VVG	  been trying to	 VBN VVG TO0
4	  trying to	    VVG TO0	 trying to learn	 VVG TO0 VVI
5	   to learn	    TO0 VVI	     to learn it	 TO0 VVI PNP
6	   learn it	    VVI PNP	    learn it but	 VVI PNP CJC

N-grams and c5-grams were extracted for the narrative component of the NC (the 
NC also contains non-narrative components, namely the conversational contexts in 
which the storytellings were embedded; cf. Section 8.3). The total number of n-grams 
extracted and underlying this analysis is 79,075.

Further, building on recent work on positioning in Discourse Analysis (e.g., Scott 
& Tribble 2006; O’Donnell et al. 2012), an n-gram’s position is calculated as the pro-
portion of the number of words preceding the n-gram out of the total number of words 
in the text. Based on this formula, positional values come to range between 0 and < 1. 
For example, the utterance “I’ve tried to learn it” is the first bit of a story counting 41 
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words. So the position of the first two-gram “i ‘ve” is 0 / 41 = 0, the position of the 
second two-gram “‘ve been” is 1 / 41 = 0.024390244, the position of “been trying” is 2 
/41 = 0.048780488, and so forth.

Using regex, a subsample of the data is computed on the condition that the three-
grams match the pattern ‘this’ plus optional adjective plus Noun. Next, a frequency list 
is compiled for the nouns in the n-grams in the subsample. The nouns are assigned 
to five semantic groups: ‘person’ (e.g., “this mad chap”), ‘time’ (e.g., “this afternoon”), 
‘place’ (e.g., “this chalet”), ‘object’ (e.g., “this passport”), and ‘other’ used for this+N 
combinations that did not fit any of the four semantic groups.

To visualize the positions across semantic groups of ‘adnominal this’ we are going 
to use two related graph types, the stripchart and the violin plot. The two graph types 
overlap functionally to a large extent; the one function the violin plot alone brings to 
the table is that is also shows the kernel probability density of the data. Unlike most 
visualization techniques in this book, which are descriptive-statistic methods, the 
kernel density estimation is an analytic-statistic method, intended to make a state-
ment not about the necessarily limited sample on hand – in our case, a few hundred 
instances of ‘adnominal this’ in storytelling in English  – but about the ‘population’ 
from which the sample is taken, i.e., the entirety of uses of ‘adnominal this’ in storytell-
ing in English.35,36

8.1.3  Results

Table 8.1 shows that the largest semantic group of ‘adnominal this’ is for ‘this+N_per-
son’, which accounts for roughly a third of all instances. The close second is the ‘this+N_
time’ group. These two largest groups account for more than 60% of all observations.

As depicted in the stripchart in Figure 8.2, ‘adnominal this’ consistently occurs in 
early positions in storytelling: the positional values show clear tendencies to cluster 
toward the beginning of the positional spectrum and the medians lines for any of the 
five semantic groups lie clearly left of the black dotted line showing the median posi-
tion for all words in the sample (which is, obviously, 0.5). The earliest positions are for 
the groups ‘this+N_time’ and ‘this+N_person’; cf. the median positions in Table 8.1.

.  Note that the skewness of the position data could equally well be shown, for example, in 
boxplots (cf. Chapter 10).

.  A very useful website introducing ggplot2’s functionality for violin plots is <http://
www.sthda.com/english/wiki/ggplot2-violin-plot-quick-start-guide-r-software-and-data-
visualization>

http://www.sthda.com/english/wiki/ggplot2-violin-plot-quick-start-guide-r-software-and-data-visualization
http://www.sthda.com/english/wiki/ggplot2-violin-plot-quick-start-guide-r-software-and-data-visualization
http://www.sthda.com/english/wiki/ggplot2-violin-plot-quick-start-guide-r-software-and-data-visualization
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Table 8.1  Frequencies and median positions of semantic classes of ‘adnominal this’

this+N_object this+N_other this+N_person this+N_place this+N_time

frequency 30 18 49 12 43

% 19.74 11.84 32.24   7.89 28.29

median 0.3855727 0.3575189 0.2156863 0.2785436 0.1866197

this+N_
time

this+N_
place

this+N_
person

this+N_
other

this+N_
object

Adnominal ‘this’ in storytelling

Position
0 0.2 0.4 0.6 0.8 1

Figure 8.2  Stripchart of positions of semantic groups of ‘adnominal this’; as shown by the 
clustering of the data points and the position of the median lines on the left side of the plot, the 
distribution of ‘adnominal this’ in any semantic class is skewed toward the story beginning

As noted, the additional information provided by the violin plot in Figure 8.3 is con-
tained in the colored area circumscribed by the kernel density lines showing the 
probability estimates of positions of ‘adnominal this’. The densities for most semantic 
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categories literally balloon even further to the left of the positional spectrum than 
the medians; the only category defying this trend is this+N_object, where the biggest 
hump forms after the median.

8.1.4  Discussion and concluding remarks

The evidence presented in the stripchart corroborates the (trivial) fact that “[p]
eople often begin stories in conversation by referring to person, time, and place” 
(Dingemanse et al. 2017: 1; added emphasis). The stripchart also provides initial indi-
cation that people often begin stories by referring to objects. Based on the findings of 

Adnominal this in storytelling

Position

this+N_
object

semcat

this+N_
other

this+N_
person

this+N_
place

this+N_
time

0 0.25 0.5 0.75 1

Figure 8.3  Violin plot of positions of semantic groups of ‘adnominal this’; the skewness of the 
positions of ‘adnominal this’ is shown here not only by the clustering of the data points and the 
leaft-leaning median lines but also by the fact that the biggest ‘humps’ of the density lines are 
all far to the left of the 0.5 demarcation line



154	 Visual Linguistics with R

the case study we can say that people begin stories by using ‘adnominal this’ to refer 
mostly to person and time but also to place and even objects. ‘Adnominal this’ can thus 
be seen as a semantically versatile means for speakers to set the scene for the benefit 
of the story recipients.

It is also tempting to view the correlation of ‘adnominal this’ and the early section 
of storytellings in light of Hoey’s (2005) theory of ‘lexical priming’, which is based 
on the assumption is that “[e]very word is primed for use in discourse as a result of 
the cumulative effects of an individual's encounters with the word” (Hoey 2005: 13). 
The theory argues, inter alia, for a close association of lexis with positions in texts 
claiming that “every word is primed to occur in, or avoid, certain positions within 
the discourse” (Hoey 2005: 13); the claim is referred to as ‘textual colligation.’ Given 
its consistent occurrence in story-early positions, speakers may well be primed to use 
‘adnominal this’ in the initial portions of storytellings.

This priming is quite likely for those instances that are introductory in the sense 
outlined above: when speakers use ‘adnominal this’ to introduce the protagonist of 
a story they will do so at the beginning of the story, often in the very first line, (as 
part of) the preface. While protagonists are mostly human agents, that is, from the 
‘this+N_person’ group, the use of ‘introductory this’ also “extends to inanimates” 
(Wald 1983: 102), that is, to referents that would fall into the ‘this+N_object’ domain. 
In fragment (8.3), for example, Alan’s story pivots around the octopus soup he once 
had in Germany:

	 (8.3)	
	 1      Alan:  I had this octopus in Germany (.)
	 2                      and it, we’d gone out for a meal and
	 3                      (0.9)
	 4                      I was gonna have steak and mushrooms n’
	 5                      (0.4)
	 6    Barry:  mm
	 7      Alan:  lads said what we’re havin’ for starter like? =
	 8                      = I said, oh (.) I’ll have what you’re ordering.
	 9                      Well they ordered soup of the day you see (.)
	 10  Barry:  mm
	 11    Alan:  so they brought ( ) tasted it (.)
	 12                    had a real funny- a weird taste
	 13  Barry:  mm
	 14    Alan:  anyway, and I sai- said to waitress, (why) what was it?
	 15                    Sh’ said octopus.
	 16                    (1.1)
	 17                    °urgh° =
	 18  Barry:  = you wouldn’t have had it if you’d ‘ve known?
	 19    Alan:  NO!
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The notion of protagonist does not entail that the referent’s centrality is necessarily 
manifest through its being mentioned anaphorically multiple times in the storytell-
ing, as the reference to “octopus” in (8.3), which comes up at least four more times 
after its initial mention. Referents can acquire protagonistic qualities if they occur 
just once in the story. An excerpt to illustrate this claim is (8.4), where “this almighty 
swing”, assigned to the ‘this+N_object’ group, occupies an initial position. The story 
is about a golfer who lost control over his golf club due to an over-agressive swing. 
While the swing itself is only mentioned at the beginning of the story, it can still be 
seen as the crucial semantic element because the subsequent events – the loss of the 
club, its teetering up the top of a tree and its crashing return to the ground – are all 
consequences of it:

	 (8.4)	
	 1     Fra:  (had t’) laugh yesterday towards the end of the e:r round.
	 2                  it was really tipping do:wn misty fog.
	 3                  couldn’t see a hundred yards_
	 4                  (1.3) h i had this almighty sw-
	 5                  i said well i’ll let the six iron,
	 6                  i did this almighty swing, (0.6)
	 7                  h the ball went one way,
	 8                  and the club went right up the top of a tree.
	 9                  (1.1)
	 10                it must’ve been fifteen foot at least up in the air.
	 11                (0.5) t- (0.3)
	 12                teetering on a top bra:nch.
	 13   Ste:     °he°
	 14   Fra:     i thought “oh my go:d lost me six iron”
	 15                a:ll of a sudden CRAsh it came down.
	 16   Ste:     ( )
	 17   Fra:     old louis he didn’t know which way anything had gone.
	 18                he said well i couldn’t see any of that, (0.7)
	 19                didn’t even see the club (go up th°) tree.
� (BNC: KCI 1817 – 1821; corrected transcription)

So, ‘adnominal this’, including its critical incarnation as ‘introductory this’, is a primary 
linguistic resource by which storytellers accomplish the task of orienting the listener to 
the coordinates of the told situation. In the Task section we will examine another likely 
orientation-providing resource, time references.

8.2  The stripchart and the violin plot in the case study

Let’s start with the stripchart in the case study: how was it configured in R?
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The data, available for download on the companion website as “Chapter8_Cas-
estudy.txt”, is uploaded the usual way; the code is available as “Chapter8_Casestudy_
Code.R”. We will call the dataset ngrams:

> ngrams <- read.table("[Your path]/Chapter8_Casestudy.txt",header 
= TRUE, sep = "\t", quote = "", comment.char = "")

Calling head() reveals that we have a title column with the story titles, the col-
umn position with the positional values and the columns twogram and three-
gram with the two-grams and respectively three-grams, as well as c5_twogram and 
c5_threegram with the respective PoS tag strings:

> head(ngrams)
	                    title	    position	     twogram	c5_twogram
1 Learning Welsh at age 76 0.00000000       i ‘ve	    PNP VHB
2 Learning Welsh at age 76 0.02439024    ‘ve been	    VHB VBN
3 Learning Welsh at age 76 0.04878049 been trying	    VBN VVG
4 Learning Welsh at age 76 0.07317073   trying to	    VVG TO0
5 Learning Welsh at age 76 0.09756098    to learn	    TO0 VVI
6 Learning Welsh at age 76 0.12195122    learn it	    VVI PNP

	       threegram	c5_threegram
1	     i ‘ve been	 PNP VHB VBN
2	‘ve been trying	 VHB VBN VVG
3	 been trying to	 VBN VVG TO0
4	trying to learn	 VVG TO0 VVI
5	    to learn it	 TO0 VVI PNP
6	   learn it but	 VVI PNP CJC

We also see that the data contains a lot of rows without any occurrence of ‘this’, 
adnominal or other: e.g., none of the first six lines contain it. So we face the first 
challenge: how to subset the data so that only rows are left over that contain ‘adnomi-
nal this’? This question amounts to the question, How to define a regex to match 
‘adnominal this’?

‘Adnominal this’ is, by definition, a determiner; that is, it precedes a noun. Deter-
miners in the BNC are tagged DT0, noun tags all start with capital N. That’s already a 
useful starting point to define the patterns, but no more than that. DT0 is used for all 
other determiners as well, including ‘some’, ‘any’, ‘own’, and many more in which we are 
not interested. To exclude them, we also have to match ‘this’ literally. One last critical 
consideration concerns the iterative nature of n-grams, where the same word occurs 
twice in two-grams, thrice in three-grams, and so forth (for example, one and the same 
item is both the endpoint of one two-gram and the startpoint of the next two-gram). 
If we do not control for this reduplication we end up matching twice the number of 
actual matches. We can exercise control by adding the restriction that ‘this’ occur as 
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the first item in the three-gram (remember from Section 2.6 that in regex, first posi-
tion in a string is expressed by the anchor ^):

> this <- ngrams[grepl("^this\\s", ngrams$threegram)
+               & grepl("DT0\\s(AJ0\\s)?N", ngrams$c5_threegram),]

The subset is, then, defined via two grepl() clauses defining two patterns that both 
need to be matched; see the ampersand (&) conjoning the two clauses. The first says, 
“Match all three-grams that start with the literal match ‘this’ followed by white space 
(^this\\s)”, the second says, “Match all those determiner tags followed by white 
space (DT0\\s) followed by an optional adjective plus white space ((AJ0\\s)?) 
followed by a noun (N). Was the subset successful? Let’s sample 10 rows from the 
subset:

> this[sample(1:nrow(this), 10),]
	                  title	  position	     twogram	c5_twogram
17014	                  Snow	0.10909091	this morning	DT0 NN1
44426	 Nearly in an accident	0.39004149	this young	 DT0 AJ0
28786	     Doing the fencing	0.17073171	this week	 DT0 NN1
25879	Waching machine advert	0.99115044	this week	 DT0 NN1
42107	             Moving in	0.01145038	this morning	DT0 NN1
45058	            Poor bloke	0.21138211	this guy	 DT0 NN1
15322	       Fire at Banbury	0.50608273	this seat	 DT0 NN1
49750	       Raymond is sick	0.58823529	this morning	DT0 NN1
8200	                  Conga	0.44811321	this pool	 DT0 NN1
3062	              Microwave	0.03488372	this morning	DT0 NN1

	         threegram	c5_threegram
17014	 this morning and	 DT0 NN1 CJC 
44426	   this young lad	 DT0 AJ0 NN1 
28786	      this week i	 DT0 NN1 PNP 
25879	  this week silly	 DT0 NN1 AJ0 
42107	  this morning no	 DT0 NN1 ITJ 
45058	     this guy was	 DT0 NN1 VBD
15322	    this seat and	 DT0 NN1 CJC 
49750	this morning some	 DT0 NN1 DT0
8200	      this pool it	 DT0 NN1 PNP
3062	  this morning for	 DT0 NN1 PRP

There seem to be no duplicate hits and all instances of ‘this’ are followed either directly 
by a noun or by an intervening adjective plus a noun. The next step in the analysis is 
the semantic categorization of the nouns that ‘this’ determines. For this task, we need 
to have a complete list of the nouns. At present, all we have are the n-grams containing 
them. So how to extract them from there? Again by using regex and again by using our 
function extract (cf. Chapter 2):
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> extract <- function(x) unlist(regmatches(x, gregexpr(pattern, x, 
perl = T)))

Now let’s define the patterns to match. The first pattern is for the nouns following ‘this’ 
immediately. They are found in the twogram column, so we will target the pattern to 
that column. The pattern to match in that column is this:

> pattern <- "(?<=this\\s)\\w+"

You may notice that this pattern uses positive lookbehind; it says, “Match the word-
like string (\\w+) if you see the literal pattern ‘this’ followed by white space on the left 
((? <= this\\s)). We apply the pattern to extract and store the result in a vector 
called R1 (as we are looking for the item occurring to the right in position 1). However, 
we need to place the constraint that extract work only on those rows in the subset 
where the value in c5_twogram matches the pattern "DT0 N", otherwise we’d end up 
also including, for example, the adjectives prior to the nouns.

> R1 <- extract(this$twogram[grepl("DT0 N", this$c5_twogram)])

If we inspect the first few items in R1, the list looks good:

> R1
[1] "stuff" "woman" "stew" "morning" "sort" "quarter" "dorothy"
[8] “wool" "cotton" "morning" "kid" "bloke" "octopus" "sea"

Now for the nouns in R2 position in threegram. They have in common that they 
are the string at the end of each element. The notation in regex for end position is the 
dollar sign $. So we can formulate the pattern thus, again using positive lookbehind to 
match any word (\\w+) occurring after white space ((?<=\\s)) and at the very end 
of the element ($):

> pattern <- "(?<=\\s)\\w+$"

Before we pass the pattern to extract, we need to be aware that the pattern matches 
any element-final word. What we want to extract is much more restricted, namely just 
those element-final words that follow an adjective. To satisfy this condition we apply 
the pattern to a subset of this – namely those rows that have the value "DT0 AJ0" 
in the c5_twogram column :

> R2 <- extract(this$threegram[this$c5_twogram=="DT0 AJ0"])
> R2
[1] �"factory" "bath" "farmer" "guy" "rope" "girl" "swing" "shape" 

"bloke"
[10] �"lad" "machine" "girl" "pancakes" "thing" "lad" "lad" "way" 

"dream"
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The output of R2 indeed contains only nouns. We now have the nouns collocating with 
‘this’ in two separate vectors, R1 and R2. We simply combine them in a single vector 
using the concatenation function c():

> R1R2 <- c(R1, R2)

The new vector R1R2 contains all the nouns ‘adnominal this’ premodifies in the NC. At 
this point in the analysis, a manual analysis follows: we need to assign the collocating 
nouns to the five semantic groups we have devised. The assigment decisions cannot be 
made by R, but must be taken by the researcher. To make this task a little easier (by 
avoiding to classify the same items multiple times), we strip the vector of all duplicates 
by using the unique() function, which returns the unique forms:

> unique(R1R2)
[1]	 "stuff"	 "woman"	 "stew"	 "morning"	"sort"	 "quarter"	"dorothy"
[8]	 "wool"	"cotton"	"kid"	 "bloke"	 "octopus"	"sea"	 "area"
[15]	"guy"	 "pool"	 "thing"	"company"	"car"	 "chap"	 "time"
(clipped output)

Upon careful consideration we formulate four patterns that will allow us to divide the 
nouns into four different semantic domains (the fifth domain will be for items that do 
not match any of the four patterns):

pattern_person <- "chappie|dorothy|farmer|fellow|intruder|jack|la
ura|mrs|paul|richard|shrewsbury|man|woman|chap|kid|lad|bloke|guy| 
girl"

pattern_time <- "party|period|summer|afternoon|time|week|morning"

pattern_place <- "area|bath|chalet|company|factory|farm|house|pool| 
sea|place"

pattern_object <- "bird|bus|cat|chair|cotton|dictionary|game|machine| 
octopus|pancakes|paper|passport|rope|seat|stew|swing|wool|letter| 
train|car|thing"

Using these patterns and nested ifelse() statements we can assign each instance of 
this+(AJ0)?+N to one of these categories in a new column, which we will call semcat 
(for semantic categories):

> this$semcat <- ifelse(grepl(pattern_person, this$twogram)
+                      | grepl(pattern_person, this$threegram),
+                        "this+N_person",
+                 ifelse(grepl(pattern_time, this$twogram)
+                        | grepl(pattern_time, this$threegram),
+                                "this+N_time",
+                   ifelse(grepl(pattern_place, this$twogram)
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+                          | grepl(pattern_place, this$threegram),
+                                    "this+N_place",
+                       ifelse(grepl(pattern_object, this$twogram)
+                                                    | grepl(pattern_object, 
                                       this$threegram),
+                                          "this+N_object",
+                                          "this+N_other"))))

As we are looking for matches in twogram or threegram (see the alternative marker 
|), we find matches even where one of the two variables doesn’t provide a match; see, 
for example the last line of the output of head(), where the value in twogram fails to 
match but the value in threegram does match:

> head(this[,c(3,5,7)])
	      twogram	           threegram	       semcat
1599	   this stuff	       this stuff and	 this+N_other
1953	  this woman	      this woman had	this+N_person
2169	   this stew	       this stew you	this+N_object
3062	this morning	    this morning for	  this+N_time
3322	   this sort	        this sort of	 this+N_other
4125	this fucking	this fucking factory	 this+N_place

Before we continue let’s check what variable structure R has assigned the new variable 
semcat:

> str(this[,7])
chr [1:152] �"this+N_other" "this+N_person" "this+N_object" "this+N_

time" "this+N_other" …

semcat is a character variable. That’s not the format we want: for the stripchart we 
need the semantic classes as factors. So we convert semcat using as.factor():

> this$semcat <- as.factor(this$semcat)

Now we can plot the stripchart. As always, we begin by setting the plotting layout with 
par():

> par(mfrow = c(1,1), mar = c(4,3,2.5,1))

We need to be clear what we want to visualize: if it were just the positions of 
‘adnominal this’ whatever the semantic class, the data to input into the function 
stripchart() would be just this$position. But our goal is to visualize the 
positional distribution by semantic class. Therefore we choose as data input the 
formula notation this$position ~ this$semcat, that is, the numeric vari-
able this$position grouped by the factor variable this$semcat. Moreover, we 
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opt for method = "jitter", which adds a little ‘noise’ to each positional value 
and thus helps to avoid overplotting of coincident values (an alternative is method 
= "stacked", which aligns coincident values vertically; the default is method = 
"overplot"). There is also the argumentjitter, which gives the amount of ‘noise’ 
to be applied; it defaults to 0.1. For this plot we increase it tojitter = 0.2. We also 
want to distinguish the classes visually, both by point character and color. We select 
pch = c(1, 5, 8, 18, 13) as the five point chacracters for the five classes. In 
terms of color, we’re not committed to any specific combination so we sample five 
colors from the built-in set of colors(), thus: col = sample(colors(), 5). 
The rest is as usual: the plot title, the label for the x-axis, the font sizes for title and 
axis, and the suppression of the default frame:

> stripchart(this$position ~ this$semcat,
+            method = "jitter",
+            jitter = 0.2,
+            pch = c(1, 5, 8, 18, 13),
+            col = sample(colors(), 5),
+            main = "Adnominal 'this' in storytelling",
+            xlab = "Position",
+            cex.main = 0.9,
+            cex.axis = 0.8,
+            frame = F)

To see more clearly how far the positional values stray away from the central unmarked 
position we plot the median position of the original dataset ngrams into the plot by using 
abline() and setting the argument v (for vertical) to median(ngrams$position):

> abline(v = median(ngrams$position), lty = 3, lwd = 2)

Inserting the medians for each semantic category in this is one of the more challeng-
ing parts of the plot. First we need to access the five levels of the semcat variable using 
the function levels(), and store them in a vector, say, cats:

> cats <- levels(this$semcat)
> cats
[1] �"this+N_object" "this+N_other" "this+N_person" "this+N_place" 

"this+N_time"

Now we define a for loop for each of the levels in cats. But cats is non-numeric, so 
simply saying for(i in cats) will produce an error; what we can do is grab cats 
by its subscripts, which are numerical, using seq():

> seq(cats)
[1] 1 2 3 4 5
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That we can input into the for loop:for(i in seq(cats)). What command is R to 
execute for each level in cats? We open curly brackets { } to phrase the command. 
We begin by instructing R to draw vertical lines to represent the medians using the 
segments() function. We define the lines’ starting points on the x-axis, x0, as the 
median position values of the five semantic categories; to iterate over the distinct cate-
gories, the argument x0 = median(this$position[this$semcat==cats[i]])
tells R to treat as x0 the median position where the semcat value equals the cats 
value (this pairing works as both semcat and cats are non-numerical vectors). Also, 
we define the starting points for the y-axis, y0, as well as the end points, y1, as the 
index i subtracting and, respectively, adding a little distance between them, say 0.3, 
and set the graphical parameters col (color), lty (line type), and lwd (line width):

> for(i in seq(cats)){
+   segments(x0 = median(this$position[this$semcat==cats[i]]),
+            y0 = i − 0.3,
+            y1 = i + 0.3,
+            col = "red", lty = 3, lwd = 2)
+ }

We attach a grid to the stripchart, using all its defaults:

> grid()

Finally, to check whether the iteration has proceeded in the right order and produced 
the right results, we can compute the median values by using tapply():

> medians <- tapply(this$position, this$semcat, FUN = median)
> medians
this+N_object this+N_other this+N_person this+N_place this+N_time
    0.3855727    0.3575189     0.2156863    0.2785436   0.1866197

Indeed, the median lines the for loop has inserted in the stripchart are assigned to the 
right semantic class and sit at the right places on the x-axis.

The violin plot in Figure 8.2 is coded as follows. Luckily, we need not streamline 
our raw data ngrams in any other way than we did for the stripchart but can re-use 
our dataframe this as data input and start assembling the plot code almost immedi-
ately. Just one preparatory step is needed: we will have to store the median positions 
in a dataframe; so we re-define medians, which is a list, as a dataframe and call it 
mediansdf:

> mediansdf <- data.frame(semcat = names(medians), position = medians)

ggplot2 is a non-base R package that needs to be installed:
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> install.packages("ggplot2")
> library(ggplot2)

In ggplot2, it is customary to build up a plot in increments, to connect the incre-
ments with +, and to store them in a plot object, say, p. Then, before specifying the plot 
type you have in mind, you first lay the foundations for the plot by naming the dataset, 
here this, and, using the function aes() to define the x and y variables, here semcat 
and position, as well as determining by which variable the colors are to be filled in, 
here (obviously) the factor variable semcat. Since we are by no means finished coding 
the graph but want to add more, we must not forget to put a plus sign at the end of this 
preliminary chunk of code:

> p <-
+ ggplot(data = this,
+ aes(x = semcat, y = position, fill = semcat)) +

Next we give the plot a title, using the function labs():

+ labs(title = 'Adnominal this in storytelling') +

At this point R does not yet know which graph type we want to produce; we could veer 
off into all sorts of directions. The function that specifies the violin plot is geom_vio-
lin(). As other ggplot2 graphs, geom_violin() offers a vast array of functions and 
parameters; check out ?geom_violin at the console. We use scale, trim, and adjust, 
as well as scale_fill_manual, which is used outside the call to geom_violin. The 
argument scale is set to scale = "count" as we wish to scale the violin areas propor-
tionally to the number of observations. The logical argument trim determines whether 
or not the tails of the violins are cut to the range of the data; as the cut is made by default, 
we do not have to set the argument to trim = TRUE but do it anyway to make the reader 
aware of this visually important argument (note that in the violin plot in Figure 8.5 the 
default is overridden). The related arguments adjust and kernel are critical too: they 
determine the degree of smoothing of the density line and the kernel function underly-
ing the smoothing. The argument adjust defaults to 1; so values smaller than 1 will 
reduce smoothing (leading to more humps), values greater than 1 will increase it (lead-
ing to fewer humps). The argument kernel defaults to "gaussian" but we choose the 
"cosine" function, purely for aesthetic reasons. The function scale_fill_brewer() 
can be added if you wish to override the default color settings. This function offers a large 
number of palettes (cf. ?scale_fill_brewer); here, we select "Pastel2" (plot colors 
can also manually be selected with scale_fill_manual):

+ geom_violin(scale = "count",
+             trim = T,
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+             adjust = 0.6, kernel = "cosine") +
+ scale_fill_brewer(palette = "Pastel2") +

The beauty of ggplot2 is how seamlessly it allows you to combine different plotting 
(or, in ggplot2 speak, geometric) objects in a single graph. Here, for example, we wish 
to also plot the equivalent of a stripchart, namely the distribution of the observed posi-
tions of ‘adnominal this’. To do so we add the function geom_point() to the object 
p. Using the argument position allows us to make adjustments to where and how 
the the points will be plotted; here we use the function position_jitter() and 
its argument width to jitter the points, so that ties (i.e., coincidental values) become 
distinct points. Moreover, we determine the size of the points in the argument size 
and their transparency factor in alpha:

+ geom_point(aes(y = position),
+             �position = position_jitter(width = .15), size = 1.1, alpha 

= 0.6)

Next we add another geometric object, namely a straight line to divide the early posi-
tions from the late positions. To locate the line on the y-axis we set yintercept = 
0.5 and we determine its color, size, and linetype:

+ geom_hline(yintercept = 0.5, color = "blue", size = 0.8, linetype 
= 4) +

There is yet another important geometric element we want to insert: the line segments 
for the medians. To this end we use the function facet_grid(), which allows us 
to create ‘facets’, that is, panels for each subgroup. The obvious variable on which to 
split the position data into groups is semcat, our five semantic classes. The syntax for 
facet_grid() is fixed: the first element is the variable on which to split, the second 
is the tilde, and the third is a period. The additional argument scales = "free" 
ensures that the scales vary across both rows and columns:

+ facet_grid(semcat ~ ., scales = "free") +

Now we can use the function geom_segment() to inscribe the medians into the 
panels. Note that the data to plot in this case are no longer the data in dataframe 
this; the data are the medians stored in dataframe mediansdf. So we assign this 
data, mediansdf, to geom_segment(). Then we define the ‘aesthetics’, that is, how 
we want the segments to be drawn: we determine a start point in x = 0.5, an end 
point in xend = 1.5, and, most important, the location of the segment on the 
y-axis (that is, the actual median value stored in column position in mediansdf) 
in yend = position. Further, we set color, linetype, and size (that is, width) 
of the line segments:
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+ geom_segment(data = mediansdf,
+              aes(x = 0.5, xend = 1.5, yend = position),
+              color = "red", linetype = 1, size = 0.8) +

By default, ggplot2 plots contain legends, called ‘guides’. While these are obviously 
useful in other cases, they would be redundant in our case as the information they 
convey – the names of the semcat levels – is already conveyed in the facet labels. We 
therefore disable guides:

+ guides(fill = F, color = F) +

However, the axis labels and the axis ticks for the semcat levels on the y-axis 
still remain visible in the plot. We don’t need them either, as the semcat names 
are already provided by the facet labels. Parameters related to axis specifications 
are controled by the theme() function; to disable theme() parameters, we use 
element_blank():

+ theme(axis.text.y = element_blank(), axis.ticks.y = element_blank())

The violin plot could be considered complete at this point: we would have the vio-
lins representing the semantic categories lined up on the x-axis and the positions 
of ‘adnominal this’ shown on the y-axis. But there is yet another tweak to be imple-
mented: the variable positions (in the dataframe this) reflects a temporal order – 
the occurrence of ‘adnominal this’ early or late in stories – and timelines are normally 
represented extending from left to right. To reflect that temporal order, we will want 
to position the violins horizontally rather than vertically. To achieve this, we have to 
rotate the coordinates of the whole plot, thus turning the x-axis into the y-axis and vice 
versa. The code for the rotation could not be simpler:

+ coord_flip()

Now the violins are on the y-axis and the positions on the x-axis, and the object p, 
which contains the code for the violin plot, is finally complete – which is why we do 
not put a plus sign behind coord_flip(). We call p to actually produce the plot:

> p

8.3  �Task: Storytelling structure – The role of time expressions  
in Orientation

Time is an essential coordinate of the told situation – in order to form a representation 
of the told situation story recipients are eager to get to know when the events of a story 
happened: did it happen just now or this morning or was it yesterday or a week or a 



166	 Visual Linguistics with R

year or even longer ago? Knowing this matters, as the relevance of a story may vary 
with the recency of the events. We would assume that storytellers will make it their 
business to let the recipients know early on in the Orientation section. An illustrative 
example is (8.5), where the incipient storyteller tries hard to locate the precise day she 
detected her broken bra strap during P E:

	 (8.5)	
	 1  Emm:  but° (.) i tell you what (.) it w’s so embarrassin’
	 2                    the, it was the Mo- , the Monday after the Saturday got,
	 3                    the Saturday it was done, I had p e (0.6) o:h great
	 4     Hel:     uh hh
	 5  Emm:    so there’s me like (0.8)
	 6                   i’m SAt in first lesson
	 7                   we have (0.3) p e last lesson (0.6)
	 8                   sat in the first lesson (0.8)
	 9                   ’nd i’m th- I’ve thought (1.1)
	 10                 °↑go:d my bra strap feels really ↑lo:se!°
	 11                 (0.8) so I’m right (0.4)
	 12                 I thought oh my go::d!
	 13                 There’s a ga:p in betwee:n,
	 14                 [they’re not atta:ched any mo:re!
	 15   Hel:     [hh hu hh hh hh hh]
� ((story continues))

In this storytelling, then, the time coordinate is established early on, as one of the earli-
est elements to set the scene (the only element preceding the time is the storyteller’s 
stance toward the events “it w’s so embarrassin’”). But is this generally so? Do story-
tellers generally insert time references story-initially? The case study in Section 8.1 
did point in this direction, showing that time references realized through ‘adnominal 
this’ were skewed toward the beginning of stories. But ‘adnominal this’ covers a just a 
small part of the rich pool of resources speakers can choose from to refer to time. This 
pool also includes time adverbs (e.g., ‘today’, ‘yesterday’, ‘tomorrow’), time nouns (e.g., 
‘year’, ’autumn’), calender nouns (e.g., ‘Monday’, ‘April’) and the ways these nouns can 
be premodified, not only by ‘adnominal this’, but also adjectives such as ‘next’, ‘last’, 
etc. thus achoring the time reference deictically to the time the utterance is made (cf. 
Rühlemann 2018a: Chapter 3). This Task section offers the opportunity to probe into 
that much wider range of resources to configure time and, possibly, temporal orienta-
tion for the story recipient.

The analysis is based on a large dataset pulled from the Narrative Corpus (NC; cf. 
Rühlemann & O’Donnell 2012). The NC has three components: turn-by-turn conver-
sation preceding the stories, the storytellings themselves, and turn-by-turn conversa-
tion succeeding the stories. The three components are termed CPR (for pre-narrative 
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component), CNN (for narrative component), and CPO (for post-narrative compo-
nent). The narrative component CNN and the two non-narrative components taken 
together are of equal size, roughly 75,000 words. In this Task, we will make use of this 
three-fold structure by comparing the positions of time references across the three 
components. What we would expect to find is that time references are roughly equally 
distributed positionally in the non-narrative components but skewed to the left – that 
is, to early positions – in the storytelling component.

How can time references be retrieved from the NC? A major chunk can be 
extracted from the corpus by the PoS tag NP0: this tag captures proper names, includ-
ing not only person names and place names but also the names of the days of the week 
and the names of the months. As for other references to time, most of them deictic in 
nature, such as ‘last year’ or ‘today’, tokens can be retrieved through literal searches. 
The time-deictic expressions included in the dataset are the following:

day, night, morning, afternoon, evening, week, month, year, today, tonight, yesterday, 
tomorrow

All word tokens either tagged as NP0 or matching the above literal strings were 
retrieved from the three components of the NC, totaling roughly 3,500 tokens. Cru-
cially, the position in each story was calculated for each token using the formula 
discussed in Section 8.1.2. The data is available on the companion website as “Chap-
ter8_Task.txt”. Here’s a random selection of ten rows from the dataset, called here np0:

> np0[sample(1:nrow(np0), 10),]
	 component	           title	   position	 time_ref
3255	       cnn	            Ali Caver	0.008917197	  morning
2729	       cpo	           Fire alarm	0.777777778	  Kilburn
3360	       cnn	          Rugby scrum	0.806818182	      day
2724	       cpo	       Russian winter	0.674311927	 Thursday
1849	       cpr	    Thelma and Louise	0.000000000	  Malcolm
2055	       cpo	Men don't have babies	0.793478261	     Luke
3296	       cnn	       Darryl's phone	0.911764706	yesterday
550	       cnn	        Gassy custard	0.073170732	   Friday
1188	       cnn	        Cheap buckets	0.194690265	    Marks
3213	       cnn	        Black T-shirt	0.184000000	yesterday

We have the component variable with its three levels cnn, cpr, and cpo, an addi-
tional variable title, the central variable position, and finally the time_ref vari-
able containing the word tokens. However, tokens such as Kilburn, Luke, or Marks 
need to be discarded as they are names for people and places (as noted, the tag NP0 is 
used for all kinds of proper names). So the first step (after uploading the data, check-
ing its structure, and – if necessary – converting the structure of variables) is to subset 
the data on those tokens in the time_ref column that are indeed time expressions.
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The subset can be obtained in various ways. One easy way is to define patterns, for 
example thus:

> days <- c("Monday|Tuesday|Wednesday|Thursday|Friday|Saturday|Sunday")
> months <- c("January|February|March|April|May|June|July|August|S
eptember|October|November|December")
> deictics <- c("^day|night|morning|afternoon|evening|week|month|y
ear|today|tonight|tomorrow|yesterday")

To define the sought subset, say time, containing only the rows with the time expres-
sions, you can use the three patterns, marked as alternatives by |, with grepl():

> time <- np[grepl(days, np$time_ref)|grepl(months, np$time_
ref)|grepl(deictics, np$time_ref), ]

The subset you obtain should feature only tokens in the time_ref column that can be 
used as (part of) time references; let’s check:

> time[sample(1:nrow(time),10),]

	 component	                  title	   position	 time_ref
3074	      cnn	                   Dark	0.006644518	  morning
3547	      cpo	                    Row	0.094339623	    today
2496	      cpo	        Darrel's coming	0.994897959	   Sunday
3180	      cnn	    A corn on every toe	0.406474820	      day
3067	      cnn	Roaring out the factory	0.144578313	    night
521	       cnn	              Two calls	0.093167702	   Friday
3402	      cnn	             Sundays off	0.254143646	    night
3157	      cnn	   Richard's helicopter	0.890243902	afternoon
2886	      cpo	                   Gala	0.902985075	    night
2947	      cpr	           Lazy teacher	0.497005988	     year

Now you are ready to produce the stripchart and the violin plot with the median posi-
tions inscribed into them. The code for the plots is analogous to the code explained 
in Section 8.2. Depending on the parameters you have selected, your stripchart and 
violin plot should be like the graphs in Figure 8.4.

Both figures show that time references in storytelling (i.e., in the CNN compo-
nent) heavily cluster toward the very beginning of the positional spectrum exhib-
iting a clear skew to the left, as indicated by the median line at 0.3. By contrast, 
no skew is discernible for time references in turn-by-turn talk (that is, in the CPR 
and CPO components): their medians hover closely around the 0.5 demarcation, 
which indicates no skew at all. The skewed distribution in storytelling is addition-
ally shown by the density estimations, which show a big hump in early position for 
CNN which gradually flattens out toward later positions; no such development is 
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discernible for the non-narrative components: the accidental bumps and valleys do 
not show a skewed distribution.

The stripchart and the violin plot then confirm our assumption that storytellers 
make it their business to provide the temporal coordinate, a crucial component of the 
told situation, at the beginning of stories, to enable story recipients to form a semantic 
ground against which to evaluate the events figure.

Position of time references in NC components

cpr

cpo

cnn

0 0.2 0.4 0.6
Positions

0.8 1

Figure 8.4  Stripchart of positions of time references in storytelling (CNN) and turn-by-turn talk 
(CPR and CPO)
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Position of time references in NC components

Components
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Figure 8.5  Violin plot of positions of time references in storytelling (CNN) and turn-by-turn talk 
(CPR and CPO); the argument trim = F ensured that violin tails were not cut off



Chapter 9

Scatter plots

9.1  �Case study: Storytelling – The role of intensity and pitch in  
advance-projecting the Climax

9.1.1  Introduction

Storytelling is a key activity in conversation. There are at least three defining fea-
tures to it. Storytelling constitutes an extended sequence as “stories take more than 
an utterance to produce” (Sacks 1992: 223) and they are “built from many turn-con-
structional units” (Goodwin & Heritage 1990: 299). Further, storytelling progresses 
in a structured way: “a story is not, in principle, a block of talk” (Jefferson 1978: 
245); rather, stories are composed of “larger structures of talk” (Goodwin 1984: 241) 
referred to as story ‘segments’ (Jefferson 1978) or ‘components’ (Goodwin 1984). The 
components acknowledged in CA include Preface, Background, and Climax as well 
as Post-completion sequences; in Discourse Analysis, the most widely used structural 
model is Labov’s model (1972); it provides for (the optional) Abstract, Orientation, 
Complication, Resolution, Evaluation, and (the optional) Coda. Finally, storytelling 
is ‘powered’ by stance (or affect): it can be conceptualized as “an activity that both 
takes a stance toward what is being reported and makes the taking of a stance by 
the recipient relevant” (Stivers 2008: 32). While storyteller can make their stance 
available throughout the whole storytelling process, often already in the Preface, the 
stance display by the recipient is relevant late in the storytelling, at or around the 
Climax. The stance taken by the recipient(s) preferably “mirrors the stance that the 
teller conveys having (often in the story preface) whether that is funny, sad, fabulous, 
or strange” (Stivers 2008: 33; added emphasis). So, in a nutshell, storytelling is not 
(only) about sharing events but (more) about affiliating and “sharing the emotional 
load” (Peräkylä et al. 2015: 301).

On this understanding the Climax is critical not only because it is the most ‘tel-
lable’ event (Sacks 1992), but, more importantly, because it is that point at which 
the recipients’ affiliation is expected and, thus, the point of “emotional contagion” 
(Hatfield et al. 1994).

If the inherent aim in storytelling is, then, to bring about this contagion and 
“share the emotional burden” (Peräkylä et al. 2015: 301) at or around the Climax, 
storytellers should deploy great care in making sure story recipients won’t miss that 
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point. In other words: storytellers will likely project its occurrence in advance or 
use signposts to mark the Climax upon its occurrence (for example, through con-
structed dialog). Some research suggests that storytellers subtly guide their hearers to 
the Climax using an orchestrated crescendo of vocal and bodily resources. While the 
bodily resources deployed for advance-projecting the Climax include co-speech ges-
turing (e.g., Holt 2007) and, in multi-party storytelling, accelerated gaze alternation 
(Rühlemann et al. 2019), we will be concerned here with vocal resources for Climax 
advance-projection.

In this case study, the aim is to investigate what I will call the crescendo hypoth-
esis. This hypothesis predicts that vocal resources increase in synchrony with the sto-
ryteller’s progression from early story segments to the Climax as the key segment in 
storytelling interaction. Specifically, the case study will investigate two vocal resources, 
intensity (‘loudness’) and pitch, and their relation with the Climax.37

9.1.2  Data and methods

Unlike in most other case studies in this book, the data used here will be a single case: 
intensity and pitch will be examined in a single storytelling. Needless to say that the 
results of this single-case study cannot, at this point, be generalized.

The storytelling under examination is a story from the Narrative Corpus, a corpus 
of storytellings occurring in natural conversation, extracted from the BNC, stored and 
re-annotated in the Narrative Corpus (NC; Rühlemann & O’Donnell 2012). The story, 
titled “Drained canal”, is 47 seconds long.

Based on the story’s availability in the audio files released by the Audio BNC, the 
story as presented here was re-transcribed using CA conventions. The story is told by 
Barry to Alan. The two men are long-time friends and passionate about fishing. At the 
point in the conversation where the story occurs, they are in the middle of sharing 
stories about bad luck at fishing. The story “Drained canal” continues this theme:

	 (9.1)	
	 1      Alan:          Well it’s, it’s (.) luck innit [(I don’ know),]
	 2     Barry:          			   [I remember    ] once go:n’ on,
	 3                            I got- (0.4) we got up ’bou’ three three thirty in the morning
	 4                            ( ) went out to er (0.9) canal somewhere up
	 5                            (1.3)
	 6                            Dulga’ area past Dulgate
	 7                            (1.3)
	 8                            we set up
	 9                            and we’d we’d been fishing for about two and half hours

.  For a detailed description of the acoustic concepts of intensity and pitch, see Boersma (2013).
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	 10                          it’s aba- about six thirty in the morning
	 11                          this old farmer comes up
	 12                          says er (1.1) ↑Aye aye lads,
	 13                          he said er (0.7) I wou’ n’ bother it
	 14                   →   they > drained this area of the canal a few months aG(h)↑O < Hhh::::,
	 15                          [ hh::: GGAeehh::: he ] he he
	 16   Allan:          [ huh huh huh huh huh .]
	 17  Barry:          S(h)at there watching our floats for hours uhheh heh:
	 18                          I mean luckily you- you know, you’d gone on- with a car
	 19                          so it’s a ma’er o’ throw’n ev’ryth’n in th’ back
	 20                          [’n’ j’s go:n’] s’m’ere else sort of (ay) (1.5)
	 21    Alan:          [ ° ye:: ° ]
	 22  Barry:          could’ve sat there all bleed’n’ day!
	 23                          (1.00)
	 24                          °°an’ not known anythin’ about it°°.
	 25                          (4.4)
	 26    Alan:          aye
� [‘Drained canal’, BNC: KBD 1790-1801]

The storytelling, arguably, reaches its Climax in line 14: “they > drained this area of 
the canal a few months aG(h)↑O < ”. One important indicator that this is the Climax is 
the use of constructed dialog. Other indicators include accelerated tempo (expressed 
through > and < ), increased volume (shown through capitalization), and rising pitch 
(indicated by ↑). Finally, the shared laughter between Alan and Barry in lines 15–16 
indexes the stance convergence that storytelling is designed to achieve at the Climax.

The availability in audio format allowed both auditory and acoustic analysis in 
Praat (Boersma & Weenik 2012). Using a script specifically written for this case study 
(Weenik, p.c.) intensity, in decibel, and pitch, in Hertz, were measured and synchro-
nized at 0.01 second intervals. Thus, three variables were extracted: time, intensity, and 
pitch. Further, based on auditory analysis, the Climax was identified in the Praat spec-
trogram as shown in Figure 9.1 (see the blue-shaded area). A new variable was created, 
Segment. Under that variable, the value “Climax” was entered at the time interval 
consumed by the Climax (shown in red numbers in the spectrogram); all other cells 
were set to NA.

9.1.3  Results

The scatter plot in Figure 9.2 visualizes the results of the acoustic and auditory analy-
ses. The figure has two y-axes, one for intensity (on the left), another for pitch (on the 
right), each with a scale of its own. The green rectangle marks the extent of the Climax 
on the x-axis, which records time. The figure also shows locally-weighted regression 
lines, so-called smoothers (cf. Cleveland 1979). The advantage of the smoother is that 
it does not attempt to impose a single model on all of the data in the sample but that it 
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models small local segments of the data. Smoothers are especially useful for detecting 
and comparing trends in noisy variables.

We can see from Figure 9.2 that pitch and intensity pretty much work in lockstep 
with one another throughout the whole storytelling: both measures see a slight drop 
right before the Climax, both reach their highpoint when the telling reaches its high-
point, and both fall back to low levels in post-Climax positions. The three variables, 
then, are fully synchronized.

9.1.4  Discussion and concluding remarks

Is the synchrony in “Drained canal” sufficient evidence to support the crescendo 
hypothesis, according to which vocal resources increase in sync with the storyteller’s 
progression from early story segments to the Climax? Of course not. Before we can 
confidently claim that the multimodal correlation found in this single clase reflects a 
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Figure 9.1  Praat spectrogram of storytelling “Drained canal”; the blue-shaded area in the upper 
panel delineates the Climax
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multimodal design pattern underlying stories in general we have to find the same cor-
relation in a large collection of stories. This large-scale analysis represents an exciting 
avenue for future research.

What little we can do in this book is perform the same acoustic and auditory 
analysis for another randomly selected storytelling from the BNC. This will be under-
taken in the Task section below.

Also, the single-case study by no means allows us to know whether the paralin-
guistic crescendo observed is used by the storyteller to advance-project the Climax. 
Advance-projection is a design feature actively deployed by speakers for an interac-
tional purpose, namely to guide the hearer toward a point at which some action by 
them becomes relevant, be it clapping in political speeches (cf. Atkinson 1984), taking 
the floor (cf. the case study in Section 11.1), or, as in the present case, affiliating with 
the teller’s stance in storytelling (cf. Stivers 2008).
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There is at least one alternative interpretation38 (other than the interpretation 
as mere coincidence): the crescendo in pitch and intensity toward the Climax could 
index the teller’s increasing arousal, that is, the intensifying activation of the auto-
nomic nervous system associated with emotion (Peräkylä et al. 2015: 302). Emotions 
do not only involve changes in physiological responses such as heart rate, blood flow, 
and changes in skin conductance (e.g. Peräkylä et al. 2015) but these psychophysi-
ological changes, in turn, also impact the speaker’s voice, modulating it “as a function 
of a person’s emotional state” (Liebenthal et al. 2016: 6). This line of thought provides 
an plausible explanation not only for the rise in pre-Climax pitch and intensity but also 
for the subsequent drop in paralingustic activity in post-Climax position. Research at 
the interface of CA and psychobiology discovered that displays of affiliation by recipi-
ents have the effect of reducing the storyteller’s arousal: “affiliation calms down the 
storyteller” (Peräkylä et al. 2015: 302). In “Drained canal”, the recipient’s laughter at 
the Climax is a clear affiliation with the storyteller’s stance toward the events. In other 
words: the changes we observe in pitch and intensity over the course of the storytelling 
could well be indicative of the storyteller’s psychophysiological processes: increased 
arousal in reliving the story events and the emotions associated with them (in pre-
Climax position) and decreased arousal in accomplishing the recipient’s display of affi-
ilation (in post-Climax position).

Intriguingly, the story analyzed in the Task section below will provide (prelimi-
nary) evidence to support this line of reasoning precisely because pitch and intensity 
do not peak at Climax.

9.2  The scatter plot in the case study

The scatter plot discussed in the case study in Section 9.1 is relatively straightforward 
to produce as most variables already come in a form that requires only a little tweaking 
before they can be fed into the plot. The data is available on the companion website 
as “Chapter9_Casestudy.txt”; the code is stored as file “Chapter9_Casestudy_Code.R”. 
We will call the data ip (for intensity and pitch):

> ip <- read.table("[Your path]/Chapter9_Case study.txt", header = 
T, quote = "",sep = "\t", fill = T)

The tweaks concerns the way the Praat script used to extract both intensity and pitch 
at equi-distant time intervals handles missing values:

.  Note that the two interpretations are by no means mutually exclusive.
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> ip[1:10,]
	 Time_s	    Pitch_Hz	 Intensity_dB	 Segment
1	   0.00	--undefined--	 --undefined--	      NA
2	   0.01	--undefined--	 --undefined--	      NA
3	    0.0	--undefined--	 --undefined--	      NA
4	   0.03	--undefined--	 --undefined--	      NA
5	   0.04	--undefined--	 --undefined--	      NA
6	   0.05	--undefined--	         39.7	      NA
7	   0.06	--undefined--	        47.69	      NA
8	   0.07	--undefined--	        50.82	      NA
9	   0.08	--undefined--	        51.08	      NA
10	  0.09	--undefined--	        50.41	      NA

The Praat script assigns to missing values the label "--undefined--". This is signifi-
cant as R reads these variables as factors, as shown by calling str():

> str(ip)
'data.frame'  : 4727 obs. of 4 variables:
$ Time_s         : num 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 …
$ Pitch_Hz    : �Factor w/ 666 levels "--undefined--",..: 1 1 1 1 1 

1 1 1 1 1 …
$ Intensity_dB: �Factor w/ 1905 levels "--undefined--",..: 1 1 1 1 1 

2 540 867 804 …
$ Segment     : logi NA NA NA NA NA NA …

That is, the "--undefined--" values need to be replaced by NA and the variables 
Pitch_Hz and Intensity_dB need to be converted to numeric. Also, Segment is 
treated as logical; we’d rather have it as factor. We set any cell in the dataframe that 
contains the unwanted value to NA:

> ip[ip == "--undefined--"] <- NA

Now we convert Segment to character and Pitch_Hz and Intensity_dB to 
numeric; note that conversion from factor to numeric requires a detour via conversion 
to character; so we convert columns #2 and #3 twice:

> ip[,2:4] <- lapply(ip[,2:4], as.character)
> ip[,2:3] <- lapply(ip[,2:3], as.numeric)

Now the variables have the right formats:

> str(ip)
'data.frame'  : 4718 obs. of 4 variables:
$ Time_s        : num 0.05 0.06 0.07 0.08 0.09 0.1 0.11 0.12 0.13 0.14 …
$ Pitch_Hz    : num NA NA NA NA NA NA NA NA NA NA …
$ Intensity_dB: num 39.7 47.7 50.8 51.1 50.4 …
$ Segment      : chr NA NA NA NA …
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Finally, inspection reveals there are a small number of rows where both Pitch_Hz 
and Intensity_dB are NA:

> ip[(is.na(ip$Pitch_Hz) & is.na(ip$Intensity_dB)) ,]
	 Time_s	 Pitch_Hz	Intensity_dB	 Segment
1	   0.00	       NA	          NA	    <NA>
2	   0.01	       NA	          NA	    <NA>
3	   0.02	       NA	          NA	    <NA>
4	   0.03	       NA	          NA	    <NA>
5	   0.04	       NA	          NA	    <NA>
4724	  47.23	       NA	          NA	    <NA>
4725	  47.24	       NA	          NA	    <NA>
4726	  47.25	       NA	          NA	    <NA>
4727	  47.26	       NA	          NA	    <NA>

These are not useful for the analysis. We remove them by subsetting ip for those 
rows in which both Pitch_Hz and (&) Intensity_dB are not (!) NA (the function 
is.na() tests for NA and returns FALSE and TRUE for each cell):

> ip <- ip[!(is.na(ip$Pitch_Hz) & is.na(ip$Intensity_dB)) ,]

Now, the clean-up is complete. Before we can configure the plot, though, we need to 
complete the variable Segment: the values of interest are of course the time interval 
covered by the Climax. We know from the auditory analysis based on the Praat spec-
trogram (cf. Figure 9.1) when the Climax starts and when it ends, namely 22.73 and, 
respectively, 26.83 seconds into the storytelling. So we set those cells of Segment that 
lie in this interval on the Time_s variable to "Climax" :

> ip$Segment[ip$Time_s >= 22.73 & ip$Time_s <= 26.83] <- "Climax"

Now we can start building the scatter plot, or, as I should say, the scatter plots. This 
is because the graph shown in Figure 9.2 is really two plots in one: one for intensity 
against time and one for pitch against time. Merging the two plots in one and provid-
ing separate y-axes for each of them will require some attention.

We start by setting the basic plotting parameters like plot layout and margins:

> par(mfrow=c(1,1), mar = c(4.1, 4, 2, 4))

At this point we can code the two y-axes. We do it by defining a sequence that starts 
from 0 and leads up to the maximum value in each variable and is divided by certain 
intervals; axis ticks will be placed at these points. To identify the maximum value we 
use the function max(). Note that max() cannot handle NA; to make it immune to 
them, we include the argument na.rm = T:
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> ticks_y1 <- seq(from = 0, to = max(ip$Intensity_dB, na.rm = T), 
by = 5) >
ticks_y2 <- seq(from = 0, to = max(ip$Pitch_Hz, na.rm = T), by = 50)

The plot for intensity against time is set up with the usual parameters such as y and x 
variables, the title, a label for the x-axis (which is obviously the same in either plot). 
We also determine that the y-axis be suppressed with yaxt = "n" and that no data 
be plotted with type = "n".

> plot(ip$Intensity_dB ~ ip$Time_s,
+      �main = "Intensity, pitch, and climax in 'Drained canal'", 

cex.main = 0.9,
+      xlab = "Time (sec.)",
+      ylab = "",
+      yaxt = "n",
+      frame = F,
+      type = "n")

Next we draw the primary y-axis: the argument 2 identifies the axis to be drawn as the 
second axis moving clockwise (from the x-axis); as input to the at argument we select 
our previously defined vector ticks_y1; we take blue color for the axis ticks (col.
ticks) and axis labels (col.axis) and reduce the label size slightly (cex.axis):

> axis(�2, at = ticks_y1, col.ticks = "blue", col.axis = "blue", cex.
axis = 0.9)

To label the y-axis we use mtext():

> mtext("Intensity (dB)", side = 2, line = 2.5, col = "blue")

Why did we choose type = "n" in calling plot()? The reason is the Climax rectan-
gle. If we printed the intensity values first, the rectangle would come to overplot them. 
We want the rectangle to remain in the background, so we will print it first. The func-
tion for rectangles is rect(). The input it requires are the two points on the x-axis 
and the two points on the y-axis, in that order: xleft, ybottom, xright, ytop. The 
point xleft is the minimum value on that subset of ip$Time_s that has the value 
"Climax" in the Segment column whereas xright is the opposite: the maximum 
value on the same ip$Time_s subset. The ybottom point is simply 0 and ytop is the 
maximum value of the variable depicted on the y-axis, that is, ip$Intensity_dB:

> rect(xleft = min(ip$Time_s[ip$Segment=="Climax"], na.rm = T),
+      ybottom = 0,
+      xright = max(ip$Time_s[ip$Segment=="Climax"], na.rm = T),
+      ytop = max(ip$Intensity_dB, na.rm = T),
+       density = 50, col = "lawngreen", angle = 45, border = "white")
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In addition, rect() allows for a number of graphical parameters, from which we 
choose (i) density, the argument which controls the density of shading lines, mea-
sured in lines per inch, (ii) angle, the argument for the angle of the shading lines, (iii) 
border, for the color of the outline around the rectangle, and (iv) col for the color 
of the shading lines.

Now, and only now, will we print the values for intensity against time, by using 
lines(); this function requires the same data input as plot(), so we repeat 
ip$Intensity_dB ~ ip$Time_s. Further, we choose the type of plot we want, 
namely type = "p" for points (alternative values are, for example, "l" for lines, 
"b" for points and lines, "h" for histogram-like lines, etc.). We also select the point 
character for the points, with pch = 1 (the default). As we have thousands of val-
ues, there will inevitably be a massive amount of overplotting, resulting in reduced 
legibility of the distribution of data points. To reduce the negative effect, we use the 
function rgb() (for ‘red’, ‘green’, ‘blue’); it allows color variation both in terms of 
intensity and transparency; the argument maxColorValue gives the maximum of 
the values range.

For example, in the code below, rgb(0, 0, 255, 100, maxColorValue = 
255) sets red and green to 0 but blue to 255 (the maximal value), as well as transpar-
ency to 100 (a value in the lower half of the possible range):

> lines(ip$Intensity_dB ~ ip$Time_s,
+       type = "p",
+       pch = 1,
+       col = rgb(0, 0, 250, 100, maxColorValue = 255))

The only thing missing from the first plot is the smoother line; to insert it into the plot 
we use the function lowess() inside the function lines() and set parameters such 
as color, col, linetype, lty, and line width, lwd:

> lines(lowess(ip$Intensity_dB ~ ip$Time_s, f = .2), col = "black", 
lty = 3, lwd = 2)

Now for the second plot, for pitch against time. The ‘trick’ to print a second plot into 
an existing plot is par(new = T): this will allow a new plot to be added to an exist-
ing one:

> par(new = T)

To plot the values we use mostly the same code as for the first plot; the difference is, 
obviously, the input data ip$Pitch_Hz ~ ip$Time_s and also type = "p", that 
is, the instruction to actually make the values visible (rather than keep them invisible, 
as in the first plot). Another obvious difference is that here we use red but not green 
or blue:
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> plot(ip$Pitch_Hz ~ ip$Time_s,
+      xlab = "",
+      ylab = "",
+      yaxt = "n",
+      type = "p",
+      frame = F,
+      col = rgb(255, 0, 0, 100, maxColorValue=255))

Also the procedure for the secondary y-axis is pretty much the same as for the primary 
y-axis, the main difference being that we select 4 (instead of 2) and set the axis colors 
to red. The side argument is also key in configuring the input for the mtext() func-
tion to print the axis header:

> axis(�4, at = ticks_y2, col.ticks = "red", col.axis = "red", cex.
axis = 0.9)

> mtext("Pitch (Hz)", side = 4, line = 2.5, col = "red")

Finally, we have arrived at the last element, the smoother for pitch against time. Again 
the code is essentially the same as before; for sake of consistency, we will have to use 
the same amount of smoothing by setting f to the same value as we did in drawing the 
smoother for intensity against time:

> lines(lowess(�ip$Pitch_Hz ~ ip$Time_s, f = 0.2), col = "black", 
lty = 3, lwd = 2)

And, voilà, the graphic is complete.

9.3  Task: Intensity, pitch and climax in “Non-smoking area”

In this Task section, the aim is to perform the same type of analysis that was conducted 
in the case study on another storytelling from the BNC, a 39.5 second story titled 
“Non-smoking area”.

The telling’s transcript is shown in (9.2). Sue, who is a shop assistant in a depart-
ment store, is relating an incident with a customer who came in with a cigarette despite 
the no-smoking signs. Sue reveals her stance toward the events in the Preface: she 
was annoyed by the customer’s ‘cockyness’ (line 2), which “really go’ [her] back up¿” 
(line 4). The preface is followed by Background information relating to the customer’s 
age (lines 6–7) and the first few verbal exchanges between him and Sue. The story 
arguably reaches its Climax in line 15 with Sue reporting her internal dialog “And I 
felt like saying fuck off and get out!”. This is a likely candidate utterance for the story 
highpoint as the annoyance that can be inferred from the constructed dialog matches 
the annoyance with which the story was billed in the Preface. The preferred response 
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at this point for the recipient would be the display of a stance that mirrors the stance by 
the storyteller. That display, however, is not proffered audibly. Instead there is a pause 
of 0.8 seconds. In pursuit of that display Sue starts a post-musing sequence (Schegloff 
2007). Part of that pursuit is the hyperbolic simile of “going to a firework factory and 
(.) sparking up a cigarette” in line 17, followed by her assessment “you just wouldn’t 
do i’,” and her pleading question tag “would ya.” in line 18. As there is still no audible 
response, let alone an agreement with her assessment, she provides the agreement her-
self in “°You wouldn’t¿°” in line 20.

	 (9.2)	
	 1  Sue:  Did I tell you about that bloke the other week who got,
	 2                 the one who go’ cocky with me?
	 3                 ↑Ooh↓ go’ =
	 4                 = he really got my back up¿
	 5                 (0.6)
	 6                 This young lad about (0.8) probably about twenty three, twenty four,
	 7                 and he came in with a cigarette
	 8                 and I said excu- (0.4) excuse me but I’m afraid it’s a no-smoking area.
	 9                 And he looked at me
	 10               and he said well have you got any”,
	 11               he go-, started like tutting and said “well have you got any sig:ns up?
	 12               And I must have been in a really funny mood,
	 13               and I said °yes we have, it’s on the till°
	 14               and he went (.) °well I suggest you get them in the windows then¿°
	 15               And I felt like saying fuck off and get out!
	 16               (0.8)
	 16               but I ↑thought (.) they’re obvious, you know what I mean?
	 17               It’s like (.) going to a firework factory and (.) sparking up a cigarette
	 18               you just wouldn’t do i’, would ya.
	 19               (1.8)
	 20               °You wouldn’t¿°
� (BNC: KC6 2010-2019; corrected transcription)

How do intensity and pitch intertwine with that story’s structure?
The intensity, pitch, and segment data are available on the companion website 

under “Chapter9_Task.txt”. To code the scatter plot, you can essentailly follow the cod-
ing underlying the plot in the case study:

–– Read-in the file.
–– Prepare the data by (i) converting "--undefined--" and empty cells to NA, (ii) cut-

ting off rows where intensity and pitch are not available, and (iii) converting factor 
to numeric.
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–– Set up the basic plotting parameters with par().
–– Define the ticks for the primary y-axis and the secondary x-axis.
–– Start plotting the first set of data, namely intensity as a function of time (making 

sure nothing is actually plotted with type = "n").
–– Plot the x-axis ticks and the x-axis label.
–– Compute the coordinates for the Climax rectangle.
–– Insert the rectangle into the plot.
–– Now use lines() to actually plot intensity.
–– Add the smoother with lowess(); experiment with the argument f: remember 

the larger f, the larger the amount of smoothing; also, choose a line type and line 
width that allow the smoother to become clearly visible.

–– Now plot the second set of data, pitch as a function of time.
–– Print the secondary y-axis and add its label with mtext().
–– Finally, add the second smoother.

Depending on the colors you have chosen and the degree of smoothing, your scatter 
plot will roughly look like the one in Figure 9.3.

One can easily see that intensity, pitch, and Climax do not match the way they did 
in the case study in Section 9.1: while the two acoustic measures develop largely in 
lockstep across the whole storytelling (except for the early part), they peak, at the same 
time, after the Climax, with pitch peaking even more strongly than intensity.

The reason for this postponement of the peak is, arguably, the interactional issue 
arising from the story recipient’s reluctance to respond as expected by the storyteller. 
That is, noticing that the recipient fails to proffer the sought affiliation with the teller’s 
stance of the events as annoying, the teller steps up her effort at pulling off that affili-
ation in the Post-sequence musing (cf. Couper-Kuhlen 2012). That increased effort is 
not only manifest verbally, in her hyperbolic comparison of the department store with 
a fireworks factory, but also, and perhaps more importantly, vocally, in her elevated 
pitch and the increase in loudness. The increase in post-Climax paralinguistic activ-
ity may also be a physiological reflection of the absent affiliation by the recipient. As 
Peräkylä et al. (2015: 302) have shown, “increased recipient affiliation is associated 
with a decrease in the physiological arousal in the storyteller: affiliation calms down 
the storyteller.” As the affiliation is still pending at and after Climax, the calm-down 
has not yet taken effect; on the contrary: the teller is further aroused, this time not 
due to reliving the story events and the emotions associated with them but due to the 
imminent failure to bring about the recipient’s stance convergence. (Note that this 
interpretation is at this point fully speculative; to substantiate it, pitch and intensity 
measures would have to be triangulated with psychophysiological data, such as skin 
conductance or heart rate.)
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So the two vocal resources intensity and pitch are used differently with regard to sto-
rytelling structure in this storytelling than in the story analyzed in the case study. It is, 
then, clearly far too early to make sweeping claims. However, what the two analyses do 
suggest is the possibility that pitch and intensity are sensitive to story structure. Exactly 
how they respond to internal divisions of storytellings needs yet to be examined in 
larger and more diverse data sets. Another intriguing avenue for future research is the 
question how, and to what extent, paralinguistic resources such as pitch and intensity 
are correlated not only with storytelling structure but with arousal.

Intensity, pitch, and climax in ‘Non-smoking area’
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Figure 9.3  Intensity, pitch, and Climax in “Non-smoking area”; lines represent smoothers



Chapter 10

Association plots and mosaic plots

10.1  �Case study: Paralinguistic prosody in constructed dialog in storytelling

10.1.1  Introduction

Among the complexities of conversation is what could be called ‘stacked conversation’ 
– conversation about conversation, a practice referred to as speech reporting (e.g., 
Koester & Handiford 2018) or discourse presentation (e.g., McIntyre et al. 2004). To 
converse about conversation, conversationalits have a large repertoire of forms avail-
able to them – McIntyre et al. (2004) discuss eight different types. In conversation, 
they predominantly choose one major form, constructed dialog.

Constructed dialog manifests in two forms, (i) as direct speech, where the dis-
course presented is introduced by a reporting clause, that is, a noun or pronoun and 
a verb of saying (e.g., ‘she said’, ‘he goes’, etc.), and as (ii) free direct speech, where the 
discourse is presented without any reporting clause; this latter type is also referred to 
as ‘zero quotative’ (Mathis & Yule 1994) and ‘reenactment’ (e.g., Sidnell 2006). The two 
subtypes of constructed dialog are illustrated in extract (10.1); there is one instance 
of free direct speech in line 7, indicated by “ > > ”, all other instances of constructed 
dialog are introduced by a reporting clause, and are hence direct speech, indicated by 
“ > ”:

	 (10.1)	
	 1         Gail:  Arf was saying for, erm to Nat °the other night°
	 2>                      he said “↑oh look I got a baby inside me Nat.”
	 3>                      She said “no you can’t (have) babies, ladies can.”
	 4                        (0.9)
	 5       UNK:  °mm°
	 6>       Gail:  “d’you know how they get there?”
	 7>>                    “Yeah but I ain’t telling you!”
	 8       UNK:     I kno:w↑

It has traditionally been assumed that constructed dialog is a verbatim rendition of 
anterior discourse: the reporting speaker “commits himself to faithfully rendering 
form and content of what the original speaker said” (Coulmas 1985, quoted in Wade 
& Clark 1993: 806). This assumption has more recently been abandoned as a fallacy 
and replaced by Clark & Gerrig’s (1990) demonstration theory; according to this the-
ory quoters demonstrate an utterance (if there has been an ‘original’ one in the first 
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place) by making selections from it and manipulating it on a large range of parameters 
such as pitch, range, quality, gestures, emotional state, etc. Why is this demonstration 
theory more plausible? The reasons are numerous (for a more detailed account see 
Rühlemann, forthcoming a). First, memory experiments found that “people generally 
cannot recall an utterance verbatim unless it was the last utterance heard” (Wade & 
Clark 1993: 805). Second, faithfulness presupposes that there was an original utterance 
to be faithful to; often, however, speakers “‘quote’ utterances that have never happened, 
but are projected as hypothetical in an imaginary world or as possible in a future situa-
tion” (Koester & Handiford 2018: 67). Third, and perhaps most importantly, conversa-
tionalists deploy constructed dialog for purposes altogether different than faithfulness.

In storytelling, constructed dialog is a primary means by which storytellers express 
their stance toward events (Stivers 2008, 2013) typically at or around the story climax 
(e.g., Drew 1998; Mayes 1990; Holt 2000; Stivers 2008). In ‘animating’ the voices of pro-
tagonists (Goffman 1981), storytellers inject into the constructed dialog subtle cues for 
the story recipients as to how to evaluate that utterance. These cues draw on the whole 
multimodal spectrum of expressive resources, including words (which may never have 
occurred), co-speech gestures, and vocal resources. Research by Holt (2007), Blackwell 
et al. (2015), Stec et al. (2016), and Soulaimani (2018) have shown high rates of non-
verbal co-speech activity both in the gestural and the vocal modalities in the use of 
constructed dialog. Speaking of vocal resources, Wennerstrom observes that they are 
deployed to “achieve an infinite variety of emotional, attitudinal, and stylistic effects” 
(Wennerstrom 2001: 200).

In this case study, the aim is to examine whether these vocal resources are deployed 
in constructed dialog to a larger extent than they are deployed in speech outside con-
structed dialog. Let’s call this the ‘animation hypothesis’: it predicts that constructed 
dialog is richer in paralinguistic prosody than non-constructed dialog.

10.1.2  Data and methods

The case study is based on a subsample of 50 randomly selected storytellings extracted 
from the Narrative Corpus (Rühlemann & O’Donnell 2012), a corpus of conversa-
tional storytellings.39 Based on the audio recordings made available through the Audio 
BNC (Coleman 2012), these storytellings were re-transcribed using CA transcription 
conventions (e.g., Jefferson 2004, Hepburn & Bolden 2013), thereby correcting erro-
neous renditions in the orthographic transcripts and enriching the transcripts by add-
ing paralinguistic detail of delivery (changes in intensity, pitch, stress, etc.) (for details 

.  The NC contains roughly 150,000 words and 531 storytellings embedded in their conversa-
tional surroundings. For details on the construction and annotation of the corpus see Rühlemann 
& O’Donnell (2012).
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on this re-transcription process, cf. Rühlemann & Gee 2017). The re-transcriptions 
were made by researchers unaware of the research question underlying this case study. 
Instances of constructed dialog were marked in the transcripts by use of quote marks, 
as shown in excerpt (10.2):

	 (10.2)	
	 01	 (UNK1):  ( )   the other (.) the other day 
	 02                         we was on about nicola said about
	 03                         oh she goes like that to luke. =
	 04                         = i said “oh you can’t do that
	 05                         otherwise he won’t be able to have babies.”
	 06                         (0.5) so nicola said (0.2)
	 07                         “[but he  ] doesn’t have babies =
	 08	 (UNK2):     [ hello:. ]
	 09	 (UNK1):  =women have babies.”
	 10                         i said “w’ll (0.3) it comes from a ↑man.”
	 11                         (0.6) 
	 12	 (UNK1):   so (0.5) luke said = “w‘ what are they like.” =
	 13                         = so i said “well they’re like little tadpoles.”
	 14                         and he went_ (0.7) 
	 15                         “well↓ i ↓can’t feel↑[ any? ]”
	 16	 (UNK2):                             [uhu hu hu] hu hu hu hu h
	 17	 (UNK1):  £a::nd I cou(h)ldn’t help laugh’n£. =
	 18                         =.h an’  y’ know what he said? (0.4)
	 19                         luke turned round=he said (0.5) 
	 20                         “GHO::°d° (.) mummy’s ↑laughin’.”

In CA transcription there are standardized conventions for interactionally relevant 
details of paralinguistic phonology. These conventions are given in Table 10.1.

As noted, the aim in this case study is to find out whether constructed dialog is 
more animated than non-constructed dialog. To test it, we proceed as follows. First, 
two subsamples were formed from the 50-story sample: one for all speech outside 
constructed dialog, and one for all speech occurring inside constructed dialog. We will 
call the former subsample ‘nonquoted speech’ and the latter subsample ‘quoted speech’. 
For illustration, reconsider the last four lines from extract (10.1), given here as (10.3):

	 (10.3)	
	 17	 (UNK1):  £a::nd I cou(h)ldn’t help laugh’n£. =
	 18                         = .han’ y’ know what he said? (0.4)
	 19                         luke turned round = he said (0.5)
	 20                         “GHO::°d° (.) mummy’s ↑laughin’.”

The speech in lines 17–19 goes into the subsample for nonquoted speech whereas the 
speech in line 20 “GHO::°d° (.) mummy’s ↑laughin’.” is assigned to the subsample for 
quoted speech.
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Then, in a second step, in each subsample the number of words transcribed with CA 
symbols encoding paralinguistic prosody was determined in the subsamples. To illus-
trate, in the nonquoted subsample for (10.3) there are two tokens of £, indicating the 
start and end of smiley voice. In the subsample for quoted speech there are two word 
tokens with CA symbols for paralinguistic prosody: GHO::°d° (capitalization for loud-
ness, : for lengthening, and ° for low intensity) and ↑laughin’ (↑ for sudden pitch rise 
and underlining for emphasis). As this example illustrates, one and the same token can 
become the object of prosodic variation on multiple levels. However, to ensure inde-
pendence of the observations, each word was counted just once no matter the number 
of paralinguistic resources used on it.40

.  It may well be argued that the ‘amount’ of paralinguistic prosody on a word will interac-
tionally make a difference: as a reviewer notes, “↑THI:S” (3 points) is different in degree from 
“this” (1 point). Taking this cumulative dimension on board has not been possible here (but see 
Dingemanse & Akita 2017, where it has been) as the aim in the chapter is to demonstrate the use 

Table 10.1  CA conventions for transcribing paralinguistic phonology

Sub-category CA symbol Description

intonation: ? question(-like) rise

¿ or ?, weakly rising intonation

. falling intonation

, continued intonation

_ level intonation

! animated tone, not necessarily an 
exclamation

pitch change: ↑ sharp rise in pitch

↑ ↓ sharp risefall in pitch

↓ or | sharp fall in pitch

volume: A or bold formatting loud voice

°a soft voice

stretching: a:: lengthened sound

stress: a or a or A or bold formatting stressed or heavily stressed or very 
heavily stressed sound

truncation: - cut-off in mid-word

aspiration: .h or h. inhalation or exhalation

hh extent of aspiration

smile voice: £ talk produced while smiling

creaky voice: * words pronounced with a creak

tremulous voice: ~ tremulous speech
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To extract paralinguistic CA symbols from the transcripts, regex was deployed (cf. 
Section 2.6). To make the transcripts fully amenable to regex extraction the following 
changes were made to them. First, response tokens occurring in interjacent overlap with 
constructed dialog were manually wrapped into curly brackets so they could be matched 
and removed. Further, regex can match CA symbols used to encode paralinguistic deliv-
ery; what it cannot match are formattings, such as underlines and italics (both used in 
CA transcripts for degrees of emphasis). To also match instances of underlines and/or 
italics, these instances were marked by € (for emphasis) in the transcripts.

To examine the animation hypothesis, a chi-squared test was performed. This test 
examines the association of categorical variables, commonly arranged in a 2 × 2 con-
tingency table (larger than 2 × 2 tables are possible too). The test is based on the null 
hypothesis that the variables are independent. That is, according to the null hypthesis 
it does not matter in which rows and columns the observations are grouped as they 
are not associated with their categories (cf. Levshina 2015: 210). The test computes 
expected frequencies based on the observed frequencies and the assumption of the 
variables’ mutual independence and compares them to the observed frequencies (cf. 
Crawley 2007: 301 ff.). The graphics used for visualizing the test results are the asso-
ciation plot and the mosaic plot. These plots show residuals, that is, “the differences 
between the observed and expected frequencies divided by the squared root of the 
expected value” (Levshina 2015: 218).

10.1.3  Results

The animation hypothesis holds that constructed dialog is richer in paralinguistic 
prosody than non-constructed dialog. That is, it claims that the use of paralinguistic 
resources in speech depends on whether it is quoted speech or nonquoted speech. To 
test this claim using a chi-squared test, what we need are exactly four counts: the num-
ber of words in quoted speech (i) with and (ii) without paralinguistic codings, and the 
number of words in nonquoted speech (iii) with and (iv) without paralinguistic cod-
ings. The numbers discovered in the analysis are given in Table 10.2.

Table 10.2  2 × 2 contingency table for number of words with and without paralinguistic 
variation in quoted and nonquoted speech in storytelling

Quoted speech Nonquoted speech

With paralanguage 194 2115

Without paralanguage 317 6353

of association plots and mosaic plots, two visualizations for the chi-squared test. This test requires 
categorical variables that need to be mutually exclusive.
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Based on the data in this table, the test returns a very highly significant result: 
X-squared = 41.882, df = 1, p-value = 9.696e-11. The residuals, the test’s most impor-
tant diagnostic, are depicted in the association plot in Figure 10.1 and the mosaic plot 
in Figure 10.2.
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Figure 10.1  Association plot of paralinguistic prosody in the use of quoted and nonquoted 
speech in storytelling; height of rectangles represents size of residuals (difference between 
observed and expected frequencies); width of rectangles is proportional to size of counts

The rectangles are shaded depending on the size of the residuals: large positive 
residuals (> 4) are blue, large negative residuals are red; where the residuals are 
small, the rectangles are grey. Further, the dotted line (shown only in the associa-
tion plot) represents a baseline indicating independence (that is, the null hypothe-
sis). Positive residuals are given in rectangles rising, negative residuals falling, from 
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this baseline. Finally, the width of the rectangles is proportional to the size of the 
counts.

It can be seen very clearly that the differences between observed and expected 
frequencies are minimal for nonquoted speech (cf. the grey boxes), whereas the differ-
ences for quoted speech are marked: quoted speech contains far more paralinguistic 
codings than expected and also far fewer words without paralinguistic codings than 
expected.

The analysis, then, confirms the animation hypothesis: quoted speech is richer in 
paralinguistic variation than nonquoted speech.41

10.1.4  Discussion and concluding remarks

Why do speakers make more use of their vocal resources when they construct dialog 
than when they produce their own words? Two answers seem in order.

.  The effect size, however, is disappointing: Cramer’s V is just 0.069.
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Figure 10.2  Mosaic plot of paralinguistic prosody in the use of quoted and nonquoted speech 
in storytelling
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One reason for greater paralinguistic variation is the fact that speakers anticipate 
the listeners’ difficulty at distinguishing the speaker’s own words (where, in Goffman’s 
[1981] view, the speaker is both animator and author at the same time) and the con-
structed words (where the speaker is only animator): speakers modulate their voice to 
flag the beginning of constructed dialog thus aiding the listeners in recognizing what 
is constructed and what is not constructed. In other words, paralinguistic variation 
serves as auditory quote marks (cf. Holt 1996; Golato 2000; Bolden 2004; Rühlemann 
2013). An example is extract (10.4):

	 (10.4)	
	 1  Gail:  Just sat there with Kate and then suddenly it was erm (1.1)
	 2                 “↑mum what's ↑hooker?” (0.8)
	 3                 “°oh god.°” ( )

The sudden rise in pitch on which the quote-initial word “mum” is intoned in line 2 
sets the word apart from Gail’s own words, flagging the word as authored by another, 
non-present speaker. Similarly, the reduced intensity of “°oh god.°” in line 3 forms a 
paralinguistic contrast with the preceding words, thus again signalling again signaling 
another speaker’s words.

So, paralinguistic contrasts in the use of constructed dialog provide a service to 
the listener in aiding them with the ‘boundary issue’ (Rühlemann 2013) of telling apart 
non-quoted speech from quoted speech.

A second reason why constructed dialog is a prime site of paralinguistic activity 
relates to the function of constructed dialog in storytelling. As noted, storytelling 
essentially serves to bring about the story recipient’s contagion with the storytell-
er’s stance toward the events. Storytellers use constructed dialog strategically in the 
service of this goal, that is, with a view to accomplishing the stance contagion by 
infusing constructed dialog with stance. This becomes clearest in the use of ‘mimicry’, 
“a caricatured re-presentation” (Culpeper 2011: 161) or ‘echo’ of anterior discourse, 
“reflect[ing] the negative attitude of the echoer towards the echoed person” (Cul-
peper 2011: 165). In fragment (10.5), for instance, Jackie caricatures her mother’s 
complaining about her absence from home by using mimicking voice quality, elonga-
tion, and elevated pitch:

	 (10.5)	
	 1  Jackie:  uhh I better go actually (.)
	 2                    mother will be er complaining¿
	 3    Tony:  yeah okay
	 4  Jackie:  ((mimicks)) “↑where have you bee:::n, you said half past ↑three::”

So, paralinguistic activity looms large in constructed dialog because constructed dia-
log is a carrier of stance: it can “convey both the attitude of the reported speaker and, 
more implicitly, the attitude of the current speaker” (Holt 2000: 438).
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10.2  The association plot and the mosaic plot in the case study

How were the association plot and the mosaic plot programmed?
The two plots were made on a 2 × 2 table containing exactly four counts: the 

number of (i) quoted words, with paralinguistic variation, (ii) quoted words without 
paralinguistic variation, (iii) nonquoted words with paralinguistic variation, and (iv) 
nonquoted words without paralinguistic variation. Just four numbers – that seems 
doable. But bear in mind that the data we start out from is pure text data, completely 
non-numeric, and CA transcripts feature not only speech but all sorts of nonspeech 
too (comments, pauses, etc.). So, to get to the four numbers, we need to prepare our-
selves for a rocky road lying ahead.

As always, the first step, and already the first difficulty, is reading-in the data, 
stored as “Chapter10_Casestudy.txt” on the companion website; the code is stored 
there as “Chapter10_Code.R”:

> stories <- read.table(“[Your path]/Chapter10_Case study.txt”,
+                     header = T, fill = T, quote = "", sep = "\n") 

Note that the sep argument is set to sep = "\n" (for new line), rather than "\t" as 
before, as the lines in the story transcripts are not separated by tabs but merely by new 
lines. Calling head(stories), we get the first six lines of the data:

> head(stories)
� Story
1 "Kar:\tMind you our Colin's getting more like your dad every day
2 � June:\tI €know he is.
3 � Kar:\tblack welding glasses on,
4 � \tand he turned round and he made me jump
5 � \t“O:h, Colin”,
6� \tand then ( ) 

This is not yet the format we can readily work with. Rather, we will want to split the 
lines into two columns: one for the speaker, such as Kar: in line 1, and one for the 
speech they produce. A highly useful package that allows you to perform such splits is 
stringr. We install it and activate it for the current session:

> install.packages("stringr")
> library(stringr) 

The package includes the function str_extract(); it takes two arguments, the 
input vector (in our case stories$Story) and the pattern to match. How to define 
that pattern, that is, where and how to locate the splitting point? As we can see from 
head(stories) shown above, the speaker name is followed by the colon : and a tab 
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stop, whereas the speaker’s speech is preceded by these two elements. So we can use 
positive lookahead and positive lookbehind to formulate these two patterns:

"\\w+:(?=\\t)" 

This pattern can be glossed as the instruction to match any word-like character one or 
more times followed by a colon if there is a tab stop on the right.

"(?<=\\t).+\\w.*" 

This pattern says, “Match any word-like character preceded by anything zero or more 
times and followed by anything zero or more times (.+\\w.*)if you see a tab stop 
on the left ((? <= \\t))”. Based on these patterns we can define a new dataframe, 
newStories, that contains the desired two columns, speaker and text:

> newStories <- data.frame(
+ speaker = str_extract(stories$Story, "\\w+:(?=\\t)"),
+ text = str_extract(stories$Story, "(?<=\\t).+\\w.*")
+ ) 

A look at the dataframe reveals that we got what we wanted:

> head(newStories)
	 speaker	�  text
1	    Kar:	 Mind you our Colin's getting more like your dad every day
2	   June:	�  I €know he is.
3	    Kar:	�  black welding glasses on,
4	    <NA>	�  and he turned round and he made me jump
5	    <NA>	�  “O:h, Colin”,
6	    <NA>	�  and then ( ) 

At this point some housekeeping is in order. First, calling str(newStories) we see 
that , as is customary, R treats all character data as factors:

> str(newStories)
'data.frame': 1546 obs. of 2 variables:
$ speaker: Factor w/ 82 levels "Al:","Alan:",..: 43 42 43 NA NA NA 
NA 3 43 NA ...
$ text : Factor w/ 1442 levels "\t\t\t\t\t\t[  yeah  ]",..: 1054 887 
690 529 126 629 1439 1422 888 638 ... 

To convert to character, we use lapply() on the whole dataframe:

> newStories[] <- lapply(newStories[], as.character) 

Next, we need to get rid of rows with the above mentioned comment lines contained in 
double round brackets, identifiable through their value "NA:" in the speaker column as 



	 Chapter 10.  Association plots and mosaic plots� 195

well as those rows with response tokens occurring within an uninterrupted string of con-
structed dialog, identifiable through {…}. We use subsetting, grepl() and the alterna-
tive marker | to check which and how many rows of the dataframe contain this material:

> newStories[grepl("NA:", newStories$speaker)
+            | grepl("\\{.*\\}", newStories$text),]
	 speaker	� text
29	     NA:	� ((speakers have been discussing driving tests))
172	     NA:	� ((response-story follows))"
173	     NA:	�((speaker is relating the content of an educational 

� video about refugees))
184	    Aud:	� {((laughs))}
194	    Aud:	� {Mm.}
268	   Alan:	� \t\t {[°ye::]}
286	     NA:	�((speakers have been talking about food they did not 

� want to eat))
726	     NA:	�((speakers have been talking about salt as a means to 

� get rid of humidity in a caravan))
851	   UNK2:	� {[hello:.]} 

There are altogether nine such rows. We exclude them from newStoriesusing the 
negator !:

> newStories <- newStories[!(grepl("NA:", newStories$speaker)
+                         | grepl("\\{.*\\}", newStories$text)),] 

Then, we collect all text in a single vector uninterrupted by line breaks; this will be the 
vector to extract quoted speech and nonquoted speech from:

> allSpeech <- paste(newStories$text, sep = "", collapse = "") 

The data in this vector look like this:

> allSpeech
[1] "Mind you our Colin's getting more like your dad every day I 
€know he is. black welding glasses on, and he turned round and he 
made me jump “O:h, Colin”, and then (   ) You know, he'll come run-
ning (   ) glasses. Yeah. I can't do it. And then me heart jumped, 
cos he looked just like your dad, and then a few days later, he's in 
garage again, and Johnny come in and he said, “God” he said, “(it 
did give) me a flaming heart attack out there” I said, “why” and he 
said, “he turned round with these glasses on” then he said “it was 
just like John's stood there” I says, “don't tell me” I said, “he 
did the same thing to me the other day” and it were only within a 
couple of days of each other. When he puts those glasses on, honestly 
he's his double. (2.6) ((baby babbling)) i- it's jus’ … <truncated> 



196	 Visual Linguistics with R

We now have a single string containing all speech by all storytellers in the sample. 
However, the string also hosts a lot of nonspeech, such as empty round brackets (for 
unintelligible words), transcriber comments in double round brackets, pauses in sin-
gle round brackets, overlap delimitors, to name only the most important items. These 
items may get in the way when we start counting the words in quoted speech and 
nonquoted speech. So we need to remove them. We do so by using gsub() on all-
Speech and we decide to do it bit by bit (rather than, as would be possible, in a single 
large pattern):

> # remove short pauses:
> allSpeech <- gsub("\\(\\.\\)", "", allSpeech)

> # remove long pauses:
> allSpeech <- gsub("\\(\\d\\.(\\d{1,})\\)", "", allSpeech)

# remove unintelligible speech:
> allSpeech <- gsub("\\(\\s{1,}\\)", "", allSpeech)

> # remove transcriber comments:
> allSpeech <- gsub("\\({2}[^(\\){2})]*\\){2}", "", allSpeech)

# replace multiple spaces by a single space:
> allSpeech <- gsub("\\s{2,}", " ", allSpeech)

> # remove overlap delimitors [ and ]:
> allSpeech <- gsub("(\\[( )?|( )?\\])", "", allSpeech)

> # remove comments (including the double brackets and their content):
> allSpeech <- gsub("\\({2}[^(\\){2})]*\\){2}", "", allSpeech) >

# remove select punctuation marks:
> allSpeech <- gsub("\\.|\\,|\\?", "", allSpeech)

> # add missing space after period:
> allSpeech <- gsub("\\.\\w", "\\. \\w", allSpeech) 

Let’s check what allSpeech now looks like:

> allSpeech
[1] "Mind you our Colin's getting more like your dad every day I 
€know he is. black welding glasses on, and he turned round and he 
made me jump “O:h, Colin”, and then You know, he'll come running 
glasses. Yeah. I can't do it. And then me heart jumped, cos he 
looked just like your dad, and then a few days later, he's in garage 
again, and Johnny come in and he said, “God” he said, “it did give 
me a flaming heart attack out there” I said, “why” and he said, “he 
turned round with these glasses on” then he said “it was just like 
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John's stood there” I says, “don't tell me” I said, “he did the same 
thing to me the other day” and it were only within a couple of days 
of each other. When he puts those glasses on, honestly he's his 
double. i- it's jus’… <truncated> 

We seem to have cleaned the text sufficiently so that now we can finally form our first 
subsample, consisting of quoted speech only, identifiable in allSpeech by the (bent) 
quote marks. To pull out the raw matches, we can re-activate the extract function 
defined in Chapter 2:

> extract <- function(x) unlist(regmatches(x, gregexpr(pattern, x, 
perl = T))) 

Then we define the pattern along the lines we did in Chapter 2: to ensure that the match 
stops exactly at the end of each quote, we determine that the quote mark be disallowed 
from appearing between two quote marks by putting the quote mark into a character 
class (denoted by [ ])and using the caret ^ inside the class to negate this class:

> pattern <- "“[^”]*”" 

We apply the function to allSpeech and store the results in qu:

> qu <- extract(allSpeech) 

Did we get the desired quotes?

> qu[1:10]
  [1] "“O:h, Colin”"
  [2] "“God”"
  [3] "“it did give me a flaming heart attack out there”"
  [4] "“why”"
  [5] "“he turned round with these glasses on”"
  [6] "“it was just like John's stood there”"
  [7] "“don't tell me”"
  [8] "“he did the same thing to me the other day”"
  [9] "“ya doin’ really well, I didn't tell you noth’n’.”"
 [10] "“you're doing ↑€really really well.”" 

It looks like we did. How many quotes have we found? Calling length(qu) we find 
there are 319:

> length(qu)
[1] 319 

But that’s not yet the number we are after. As regards quoted speech, there are two 
numbers we are after: how many words are there altogether and how many words 
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carry CA symbols for paralinguistic activity? We get the first number by using the 
strsplit() function nested inside the unlist() function:

> qu_w <- unlist(strsplit(qu, " "))
> length(qu_w)
[1] 2309 

There are 2309 words altogether in qu. How many of them are transcribed using CA 
codes for paralinguistic activity? Here we need to define a pattern again. This pattern 
is complex as it must match both the various CA codes and the positional variability in 
how they are distributed across the words: the relevant symbols can appear at the start 
of the word, inside the word itself, and at the end of the word.

We will focus on the following paralinguistic codes, of which we know from the 
transcripts they are by far the most common: loud voice (upper-case), soft voice (°), 
pitch rise (↑), pitch fall (↓), stretching (:), and emphasis (€). The pattern that matches 
these codes in any position vis-à-vis the word is this (note that for upper-case to be 
included as signifying loud intensity we set the condition that there be at least two 
consecutive capitals to rule out that, for example, proper names, which are typically 
capitalized, are matched):

> pattern <- “([€°↑↓:\\w]*[€°↑↓:]+[€°↑↓:\\w]*)|[A-Z]{2,}” 

The pattern consists of two major chunks: ([€°↑↓:\\w]*[€°↑↓:]+[€°↑↓:\\w]*) 
and [A-Z]{2,} separated by the alternative marker |. The first chunk defines a 
sequence of three character classes, in which order is not an issue: any character in 
a character class can appear in any combination with the other members of the class. 
All three classes contain the CA symbols we are specifically interested in. Additionally, 
the first and the third class contain \\w, which matches alphanumeric strings, that is, 
in our case, letters. The first chunk, then, matches words that contain, anywhere in the 
string and in any combination, the symbols €, °, ↑, ↓, or :. The second chunk matches 
any word that contains at least two uppercase letters.

We run the function extract again and store the result in qu_para:

> qu_para <- extract(qu)
> qu_para[1:10]
 [1] "O:h" "↑€really" "€that" "o::h" "°fuck°" "pyja:mas" "↑Aye" 
"aGh↑O" "°ah°" 

How many quoted words carry any of the above CA codes?

> length(qu_para)
[1] 194 

This now is the first number we will use directly in the 2 × 2 contingency table for the 
chi-squared test and the graphics. If we substract the number from the total number 
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of words in quoted speech, we get the second crucial number – the number of words 
in quotes without any paralinguistic coding: 2309 − 194 = 2015.

Now for the remaining two numbers: the number of words with, and the number 
of words without such codings in nonquoted speech. First, we return to allSpeech, 
the vector containing quoted and nonquoted speech and remove all quotes from it and 
store the result in nonqu:

> nonqu <- gsub("“[^”]*”", "", allSpeech) 

Then we split nonqu into words:

> nonqu_w <- unlist(strsplit(nonqu, "\\s{1,}")) 

and count how many nonquoted words we have altogether:

> length(nonqu_w)
[1] 6670 

How many of these carry paralinguistic coding? We re-use the same pattern as for 
quoted words, apply the function extract, store the result in nonqu_para, and 
count the elements:

> pattern <- "([€°↑↓:\\w]*[€°↑↓:]+[€°↑↓:\\w]*)|[A-Z]{2,}"
> # extract <- �function(x) unlist(regmatches(x, gregexpr(pattern, 

x, perl = T)))
> nonqu_para <- extract(nonqu)
> length(nonqu_para)
[1] 317 

This is the third number required for the contingency table: there are 317 words with 
paralinguistic coding in nonquoted speech. Subtracting this number from the total 
number of words in nonquoted speech yields the number of nonquoted words without 
paralinguistic coding: 6670 − 317 = 6353.

We can finally assemble the contingency table. We start with the two counts for 
quoted speech and, respectively, nonquoted speech:

> qu_counts <- c(194, 2115)
> nonqu_counts <- c(317, 6353) 

We bind the two vectors together by row, using the rbind() function and add appro-
priate column names and rownames:

> counts <- rbind(qu_counts, nonqu_counts)
> colnames(counts) <- c("Quoted speech", "Nonquoted speech")
> rownames(counts) <- c("With paralanguage", "Without paralanguage") 

Thus we obtain this 2 × 2 contingency table:
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> counts
	 Quoted speech	 Nonquoted speech
With paralanguage	           194	             2115
Without paralanguage	           317	             6353

We can now perform the test using chisq.test():

> test <- chisq.test(counts)
> test
       Pearson's Chi-squared test with Yates' continuity correction
data:   counts
X-squared = 41.882, df = 1, p-value = 9.696e-11 

The vector test contains useful test statistics, such as the expected frequencies and 
the residuals:

> test$expected
	 Quoted speech	Nonquoted speech
With paralanguage	      131.4065	        2177.593
Without paralanguage	     379.5935	        6290.407

> test$residuals
	 Quoted speech	 Nonquoted speech
With paralanguage	      5.460354	        −1.341346
Without paralanguage	    −3.212697	         0.789205 

The association plot and the mosaic plot used in the case study are contained, not in 
base R (the association plot and mosaic plot available there are less advanced), but in 
the package vcd. We install this package and load it into the current session:

> install.packages("vcd")
> library(vcd) 

The codes for the two plots could hardly be simpler. The two critical arguments in both 
plots are the first, the contingency table, and shade: if set to T, the rectangles in the 
plots will be colored depending on the size and polarity of the residuals:

> assoc(counts, shade = T, varnames = F)� # association plot
> mosaic(counts, shade = T, varnames = F)       # mosaic plot 

Finally, to obtain the effect size, we call assocstats(), a function included in the 
vcd package:

> assocstats(counts)
	      X^2	df	  P(> X^2)
Likelihood Ratio	39.341	 1	3.5580e-10
Pearson	 42.559	 1	6.8584e-11
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Phi-Coefficient    : 0.069
Contingency Coeff.: 0.069
Cramer's V       : 0.069 

10.3  Task: Paralinguistic prosody in the use of backchannels in storytelling

In this Task section we will stick closely to paralinguistic prosody and also regex as 
a method to extract relevant data. The topic though is shifted: we will be looking at 
backchannels. These are introduced in more detail in the case study in Chapter 12. For 
the present connection a short sketch must suffice.

Backchannels are small, unobtrusive signals (of any modality – verbal, vocal, 
or bodily) by which current non-speakers register listenership and understanding 
(Gardner 1998).

Beside this most basic function, backchannels can take on a range of more spe-
cialized functions in context. The most common function is as continuers. Continuers 
are frequent in multi-unit turns such as storytellings. They index the recipient’s align-
ment with the “structural asymmetry of the storytelling activity” (Stivers 2008: 34) and 
essentially signal the listener’s willingness to pass up the turn until the multi-turn-in-
progress is complete (Schegloff 1982). Another group of backchannels are assessment 
backchannels. This class of backchannels comprises tokens that express emotional 
responses rather than just structural alignment (Goodwin 1986). A third functional 
class is formed by convergence tokens (O’Keeffe & Adolphs 2008). They typically con-
vey the listener’s convergence on the speaker’s opinions (O’Keeffe & Adolphs 2008). 
(For more detail and examples, see Chapter 12.)

The question asked in this Task section is whether the three classes vary in terms 
of paralinguistic prosody. In other words: do speakers modulate their voice more when 
producing continuers, assessments, or convergence tokens?

To address this question, we use the same dataset that will be used for the case 
study in Chapter 12. The data is described in more detail there. It includes 300 back-
channels collected in storytellings from the Narrative Corpus (NC) and re-transcribed 
in CA style.

The steps to take are the following.

–– Read-in the data, available on the companion website as “Chapter10_Task.txt”.
–– Make a frequency list of all functional codings, stored in column fun.
–– Store this frequency list as a vector, say, f_all.
–– Proceed to make a subsample from the dataset containing only those rows where 

the backchannel tokens contain CA symbols for paralinguistic activity; as you will 
see from browsing the full dataset, the symbols used in the backchannel transcrip-
tion are those for loud and soft voice, pitch rise and fall, stretching, and creaky 
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voice (transcribed by *). So you can use this pattern (note that * need not be 
escaped here as it is included in the character class, which treats elements per se 
as literal elements):

"[°↑↓:*]|[A-Z]{2,}" 

–– You can then subset like this (assuming you have called the dataset bcfun):

bcfun[grepl("[°↑↓:*]|[A-Z]{2,}", bcfun$bc),] 

–– Next you need to make a frequency list for the backchannel functions in the sub-
sample; store this frequency list in yet another vector, say f_para.

–– Set up the matrix for the counts. Limit the data to be included to the first three lev-
els of the frequency vectors; these levels are "assess" (for assessment backchan-
nels), "continue" (for continuers) and "converge" (for convergence tokens) 
– exactly the ones of interest to us (all others have far too small frequencies). To 
calculate the frequencies of the function codings of backchannel tokens without 
paralinguistic variation, subtract f_para[1:3]from f_all[1:3]:

with_para <- f_para[1:3]
without_para <- f_all[1:3] – f_para[1:3]

–– Rowbind them:

counts <- rbind(with_para, without_para)

–– Install the package vcd; now you are ready to run the chi-squared test and pro-
duce the graphs.

As shown by the two graphs, the p-value is vanishingly small (p < 0.001), so we can 
discard the null hypothesis of no association: the use of paralinguistic resources does 
depend on whether speakers produce assessments, continuers, or convergence tokens. 
(Note also that Cramer’s V, a measure of effect size, is very solid: 0.493.) While the 
residual sizes for convergence tokens are minimal, indicating that the differences in 
use or nonuse of paralinguistic prosody are very small, the residual sizes for assess-
ments and continuers are substantial: assessments are realized with far greater voice 
modulation than would be expected under the null hypothesis of independence and 
continuers are realized with much less prosodic variability.

That assessments significantly vary prosodically is a reflection of their being 
expressive of affect. That continuers show minimal prosodic variation reflects their 
phonetic minimalness, as they are typically shorter than assessments; more impor-
tantly, it reflects their role as indices of the listener’s structural alignment with the telling 
activity, a mere ‘carry-on’ signal that can be given without any affective involvement.
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Figure 10.3  Association plot of paralinguistic prosody in the use of three functional classes 
of backchannels (assessments, continuers, and convergence tokens); height of rectangles 
represents size of residuals (difference between observed and expected frequencies); width of 
rectangles is proportional to number of observations
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We have now completed our loop through matters related to the sequence and will 
return to the turn, specifically to the ways speakers end them (Chapter 11) and how 
co-participants time the transition from one turn to another (Chapter 12).
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Figure 10.4  Mosaic plot of paralinguistic prosody in the use of three functional classes of back-
channels (assessments, continuers, and convergence tokens)



Chapter 11

Box plots

11.1  Case study: Turn completion – Turn-final lengthening

11.1.1  Introduction

A foundational observation is that turn transitions are precision-timed: “[t]ransitions 
(from one turn to a next) with no gap and no overlap between them are common” 
(Sacks et al. 1974, p. 700).

The current consensus model to explain that precision timing is a combination 
of two factors: current non-speakers predict when the turn will come to its end and 
current speakers project when they will be ending (Levinson & Torreira 2015). A wide 
range of resources are used for prediction and projection. The resources could not be 
more varied and more multimodal altogether forming a gestalt that is the basis for 
pragmatic speech act prediction (Wells & Macfarlane 1998; Levinson & Torreira 2015; 
Holler & Levinson 2019). Among the linguistic resources, syntax is key (e.g., Duncan 
1972; Sacks et al. 1974; Wells & Macfarlane 1998; de Ruiter et al. 2006; Magyari et al. 
2014; Levinson & Torreira 2015), but also the use of post-completers such as ques-
tion tags (Sacks et al. 1974), address terms (Jefferson 1973; Sacks et al. 1974), and 
‘sociocentric sequences’ (Duncan (1972: 287), that is, “stereotyped expressions, typi-
cally following a substantive statement” such as ‘you know’, ‘or something’, etc. Fur-
ther, bodily resources serve prediction and projection too. Probably the most eminent 
such resource is gaze, where current speakers, during the bulk of their turn, typically 
withdraw their gaze from the interlocutor but return it to them to enter into mutual 
gaze once they start nearing the turn end (Kendon 1967; Bavelas 2002). Finally, also 
involved in predicting and projecting turn completion is the huge inventory of vocal 
resources. Common cues that the speaker is coming to an end include audible out-
breath (Ogden 2001), aspiration of word-final plosives (Local & Walker 2012), or a 
drop in pitch (Beattie et al. 1982) or intensity (‘diminuendo’) (e.g., Duncan 1972, 1974; 
Bögels & Torreira 2015). Finally, there is what has been called the drawl or turn-final 
lengthening, that is the elongation of the last syllable or word in the turn (e.g., Duncan 
1972, 1974; Local & Walker 2012; Bögels & Torreira 2015). In this case study we will 
‘listen’ in to that drawl in some more detail.
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11.1.2  Data and methods

As in previous chapters, the case study is based on the ‘demographically-sampled’ 
subcorpus of the British National Corpus (BNC) featuring natural conversation 
between intimates and familiars, and the audio files released in the Audio BNC 
(Coleman et al. 2002).

Using XQuery (cf. Rühlemann et al. 2015) a random sample of 1,000 10-word 
turns – as noted, likely the average turn length (Rayson et al. 1997; Rühlemann 
2018a) – for which audio recordings were available was extracted from the BNC’s con-
versational subcorpus.

To measure the word durations, the recordings for each turn in the sample were 
accessed through BNCweb (Hoffmann et al. 2008), exported and read into Praat 
(Boersma & Weenink 2012). In each sound file, the spectral waveforms (‘sonograms’) 
were zoomed-in on to determine word boundaries based on ‘valleys’ in the waveform. 
Obviously, not all words could reliably be measured: the analysis in Praat produced 
7,849 durations.

An established method to measure turn-final drawls has been to compare the 
durations of one and the same word in two conditions: (i) when the word occurs inside 
a turn, that is, not as the turn-final word, and (ii) when it is used as the turn-final word; 
cf., for example, Bögels and Torreira’s (2015) experiment with a small set of utterance 
pairs, e.g., “So you’re a student?” and “So you’re student at Radbout University?”, where 
the word ‘student’ is used turn-finally and, respectively, turn-medially.

A downside to this method is that in any corpus of natural conversation the num-
ber of word types and word tokens occurring sufficiently frequently in both condi-
tions is likely limited to high-frequency word types, that is, essentially to function 
words (but less so to inserts, of which we know from Chapter 4 that they do not tend 
to occur at turn ends); lexical words, by contrast, which tend to have very few tokens 
in any corpus, are unlikely to occur in both conditions en masse. Therefore, a sweep-
ing case for turn-final lengthening as a massively used turn-final cue whatever the 
turn-final word will be hard to make. Despite this shortcoming and other shortcom-
ings not mentioned here but elaborated on in Rühlemann and Gries (2020), in this 
case study we will use just that method.

The graphic used for visualization is the boxplot. While still used rather rarely in 
linguistics, the boxplot is in fact an unusually useful graphic in that is depicts a lot of 
information at once.

11.1.3  Results

The subset of 1,000 10-word turns from the BNC contains 5,743 word tokens falling 
into 226 word types that occur both in pre-final positions (i.e., in word slots 1 to 9) and 
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in the final position (slot 10). Note that these numbers are far in excess of the 25 types 
that occured in both positions in Local and Walker (2012: 260).

The word types in that set are highly varied, ranging from function words (e.g., 
‘that’, ‘would’), to inserts (e.g., ‘oh’, ‘er’) and lexical words (e.g., ‘jumper’, ‘granny’).

A first approximation to the question whether words are longer in the turn-final 
slot than in pre-final positions is by taking all 5,743 tokens into account regardless of 
their type frequency and by calculating mean durations for pre-final and final position. 
The mean duration for all 5,743 tokens in prefinal position is 0.1536376 s, the mean 
duration in final position is 0.2554404 s. This difference amounts to an impressive 
overall percentage change from pre-final to final condition of 66.26%. This percent-
age is a near-perfect replication of the overall change rate found in Local and Walker 
(2012: 260), which was 65%.

Obviously, this percentage is just the ‘big picture.’ A lot of variation is still to be dis-
covered inside it. To get closer to that variation we can calculate averages, not for all tokens 
together, but for each of the 226 types by position and compare the averages by asking, ‘By 
what percentage does type duration change from pre-final to final position?’. To address 
this question, the percentage changes in median duration are calculated for each of the 
226 types. The percentage changes are displayed in the scatter plot in Figure 11.1.
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Figure 11.1  Percentage change in median duration of words occuring both in pre-final and 
final positions in 800 10-word turns in BNC (N = 226)

The red circles below the 0 mark on the y-axis represent word types with negative 
percentage change. These are word types whose median duration is greater in pre-final 
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position than in final position. As can be seen from the graph, their number is quite 
limited: in fact, there are just 45 out of 226; (i.e., 20%). They form a stark contrast to 
the 181 words (80%) with positive percentage change represented in the black circles. 
Also note that the maximum negative percentage change is just −50%, whereas there is 
a large number of words with far more than +50% positive percentage change; in fact, 
the greatest positive percentage change is more than 250%.

This is already some clear initial indication that indeed words may be lengthened 
when used at the end of a turn as opposed to when used in the middle of the turn. But 
the number of words occurring just once in both positions is large and such low fre-
quencies do not provide a sufficient basis for reliable estimates. Therefore, in a second 
step, we exclude all those words that occur infrequently in both positions, and focus 
on words for which there are more observations available by setting the minimum 
threshold for occurrence in both conditions to 5. As it turns out, the sample contains 
31 word types that satisfy this criterion:

’s, but, do, er, he, her, here, i, in, it, know, me, n’t, now, off, on, one, out, see, she, that, 
them, then, there, they, think, this, to, up, was, you

Most lexical words have disappeared; nouns and adjectives are gone completely. Most 
types are function words or items that form part of larger ‘idioms’, namely ‘see’ and 
‘know’, which are mainly used in ‘you see’ and ‘you know’, as well as ‘think’ occurring 
in ‘I (don’t) think’. With this smaller set with at least five occurrences in both positions, 
rather than investigating percentage change we can look at the durations in both con-
ditions – pre-final v. final position – directly and compare them. The visualization is 
provided by boxplots.

Boxplots are an extremely instructive type of graphic: they “not only show the 
location and spread of data but also indicate skewness” (Crawley 2007: 155). The inter-
pretation of the boxplot depends on its ‘syntax’, i.e., its main graphical elements. There 
are five such elements:

–– the bold horizontal line
–– the box
–– the whiskers
–– the empty circles
–– the notches

The bold horizontal line depicts the median, the middle value of a sorted distribu-
tion (cf. Woods et al. 1986: 30–32), a measure of central tendency that is more robust 
than, for example, the arithmetic mean, which is more easily affected by extreme 
values.
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The box (or ‘hinge’) represents the interquartile range (IQR): it ranges by default 
from the first to the third quartile of the data (also referred to as the 25th and 75th 
percentiles); that is, the box circumscribes the middle 50% of the data around the 
median. This is useful in indicating skewness. If the data are evenly spread, the median 
will cut the box into two same-size halves. If the data are skew, one of the two halfes 
will be larger than the other.

The whiskers can be thought of as ‘fences’ separating observations lying outside of 
the IQR (but still somewhat typical of the data) from outliers.

The empty circles designate outliers, that is, “data points with values that are surpris-
ingly large or small given all data points considered jointly” (Baayen 2008: 27). Knowing 
which values are outliers in this sense may be useful as they may represent erroneous 
values that have to be removed from the data (cf. Crawley 2007: 157; Levshina 2015: 59).

The notches are an optional feature: the ‘waist’ around the medians is “intended 
to give a rough impression of the significance of the difference between two medians. 
Boxes in which the medians do not overlap are likely to prove to have significantly 
different medians under an appropriate test. Boxes with overlapping notches probably 
do not have significantly different medians” (Crawley 2007: 157). That is, the notch 
depicts the range of values in which you may assume with 95% confidence the ‘true’ 
median will lie. If the notch is narrow the median depicted in the box is a reliabale 
estimate of that true median, whereas a very wide notch indicates the given median is 
an unreliable indication of the true median.

A curious visual impression is formed when the sample size is too small: the 
notches will extend beyond the horizontal outlines of the box (the interquartile range, 
IQR), indicating that the ‘true’ median covers a range of values that is even larger 
than the IQR calculated on the basis of the values available. As Crawley (2007: 157) 
remarks, this “looks odd, but it is an intentional feature, supposed to act as a warning 
of the likely invalidity of the test.”

With this introduction to the syntax of boxplots, we are now ready to inspect the 
plot in Figure 11.2.

In Figure 11.2, blue boxes show the durations in prefinal position, red boxes depict 
the durations in final positions; the boxes are sorted in ascending order of the median 
durations in prefinal position.

For a start, let’s inspect the medians (depicted in the horizontal line cutting across 
the notches): the median duration is higher for all word types in final position but 
one – only ‘her’ has a longer median duration in the prefinal condition. At first glance, 
then, 30 cases – out of 31 – where the word in turn-final position is longer than the 
same word in prefinal position looks like conclusive evidence that the same words 
occurring in final positions in turns are lengthened compared to earlier positions. But 
the picture is more nuanced. The notches extend beyond the IQR for a number of 
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items, indicating a lack of reliability of the estimate. The most extreme case is the notch 
for ‘do’ in final position: the overly wide range covered by the notch is due both to the 
limited number of observations, namely just 5, and the wide spread of the observed 
durations, which range from just above 0.2 seconds to over 0.7 seconds. In this case, 
as well as in similar cases, the median duration in final position turns out to be higher 
than in pre-final position in the sample but that comparison may or may not general-
ize to the wider population of these words in the two conditions – we simply have little 
robust evidence to make that generalization.

However, the notches for the two conditions do differ starkly for the overwhelm-
ing majority of the word types. This is the case for as many as 18 types including ‘’s’, 
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Figure 11.2  Boxplots of durations of 31 word types occurring at least 5 times both in pre-final 
and final positions in 800 10-word turns in BNC; frequencies of occurrence in both positions are 
indicated above the x-axis
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‘but’, ‘in’, ‘it’, ‘know’, ‘one’, ‘out’, ‘she’, ‘that’, ‘them’, ‘there’, ‘they’, ‘think’, ‘to’, ‘up’, ‘was’, 
‘you’. For this large group of words we can be rather confident that under an appro-
priate test the median durations for final positions will be larger than for pre-final 
positions.

11.1.4  Discussion and concluding remarks

The analysis produced two main findings: (i) most words that occur with sufficient 
frequency in pre-final and final positions in turns are function words and inserts and 
(ii) words used in turn-final position are mostly longer than the same words used in 
pre-final positions in the turn.

Based on the two observations we have evidence that inserts and function words 
used in turn-final position are lengthened when compared to the durations the same 
words have in pre-final positions. We do not have sufficient evidence that lexical words 
get lengthened in the same way. This is in mild contrast to previous work on turn-final 
drawls which focused on durations of nouns in prefinal and final positions (e.g., Bögels 
& Torreira 2015; Local & Walker 2012). Thus, turn-final lengthening does seem to be 
confirmed but based on the (limited) evidence we have discovered in this case study 
we cannot claim that lengthening concerns any type of word – it might be restricted to 
inserts and function words.

But before we dismiss the idea that speakers use turn-final lengthening as a turn-
yielding cue whatever the word let’s bear in mind that the method we used was simplis-
tic: we only looked at how durations vary in two positional conditions, pre-final and 
final. The duration of a word in discourse depends on a far larger set of factors (e.g., 
Local & Walker 2012). It is obviously beyond the scope of this case study to describe, 
let alone explore this set as a whole; the reader is referred to the multifactorial analysis 
in Rühlemann and Gries (2020).

11.2  The boxplot in the case study

The data underlying the boxplot in the case study, stored on the companion website as 
“Chapter11_Casestudy.txt”, is uploaded here as dur; the code is stored on the compan-
ion website as “Chapter11_Code.R”.

> dur <- read.table("[Your path]/Chapter11_Casestudy.txt",
+                    header=T, quote="", sep="\t", fill=T)

Calling str(dur) reveals a number of things: there are 1,000 observations and 23 
columns, the duration columns d1, d2, etc. contain many NAs, and, as usual, R treats 
the word columns w1, w2, etc. as factors; the latter two aspects will require our atten-
tion at a later stage:
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> str(dur)
'data.frame': 1000 obs. of 23 variables:
 $ file	 : �Factor w/ 56 levels "KB0","KB1","KB2",..: 40 47 48 47 

14 19 28 23 28 7 …
$ speaker	: �Factor w/ 263 levels "KB1PSUNK","KB9PSUNK",..: 137 221 

235 221 59 78 96 83 95 263 …
$ turn	 : �Factor w/ 998 levels ", and I ended up virtually people 

in a fish tank .",..: 4 5 12 14 24 27 30 31 35 21 …
$ d1	 : num NA NA 0.136 0.421 0.177 0.262 0.132 0.186 0.103 0.316 …
$ d2	 : num NA NA 0.115 0.054 0.282 0.156 0.239 0.089 0.168 0.112 … 
$ d3	 : num NA NA 0.081 0.084 0.077 0.091 0.214 0.079 0.198 0.204 …
$ d4	 : num NA NA 0.084 0.217 0.183 0.153 0.234 0.101 0.188 0.113 … 
$ d5	 : num NA NA 0.109 0.346 0.164 0.062 0.258 0.387 0.359 0.188 … 
$ d6	 : num NA NA 0.373 0.248 0.111 0.219 0.381 0.106 0.343 0.067 …
$ d7	 : num NA NA 0.254 0.146 0.148 0.303 0.171 0.139 0.064 0.228 … 
$ d8	 : num NA NA 0.157 0.099 0.153 0.171 0.064 0.169 0.075 0.317 … 
$ d9	 : num NA NA 0.426 0.081 0.137 0.316 0.105 0.122 0.095 0.142 …
$ d10	 : num NA NA 0.231 NA 0.265 0.302 0.644 0.241 0.367 0.299 …
$ w1	 : �Factor w/ 180 levels "a","actually",..: 166 1 5 5 10 10 

10 10 10 10 …
$ w2	 : �Factor w/ 228 levels "'d","'ll","'m",..: 87 70 27 91 34 

87 87 87 87 7 …
$ w3	 : �Factor w/ 284 levels "'d","'ll","'m",..: 135 113 268 5 

5 3 38 45 244 246 …
$ w4	 : �Factor w/ 336 levels "'d","'ll","'m",..: 118 293 335 336 

191 191 182 183 197 155 …
$ w5	 : �Factor w/ 375 levels "'","'ll","'m",..: 158 157 4 121 

15 7 367 262 218 178 …
$ w6	 : �Factor w/ 386 levels "'d","'em","'ll",..: 161 8 327 378 

339 119 138 365 264 8 …
$ w7	 : �Factor w/ 388 levels "'d","'ll","'m",..: 321 343 325 320 

222 190 76 284 90 184 …
$ w8	 : �Factor w/ 372 levels "'d","'ll","'m",..: 215 262 151 87 

138 210 152 265 196 241 …
$ w9	 : �Factor w/ 369 levels "'m","'re","'s",..: 16 176 62 208 

40 350 3 159 80 368 …
$ w10	 : �Factor w/ 470 levels "'ll","'s","'ve",..: 285 390 78 57 

252 88 137 435 208 218 …

The data format is unfortunate: the durations, which are stored across ten columns, 
are in fact one variable, and the same can be said of the ten word columns. So we 
will convert the format into a long format, containing only variables of interest and 
concatenating them in one column each. We start with the durations. Concatenating 
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them in a single vector, called d, can be achieved in multiple ways. An economical way 
is subsetting dur on the relevant columns, columns #4 through #13, and unlisting the 
result with the function unlist():

> d <- unlist(dur[4:13])

To collect the word tokens in a single vector, called w, we apply the same logic:

> w <- unlist(dur[14:23])

We can combine the two vectors in a dataframe called df, and call str(df) to inspect 
its structure:

> df <- data.frame(d, w)
> str(df)
'data.frame': 10000 obs. of 2 variables:
 $ d: num NA NA 0.136 0.421 0.177 0.262 0.132 0.186 0.103 0.316 …
 $ w: �Factor w/ 1535 levels "a","actually",..: 166 1 5 5 10 10 10 

10 10 10 …

We have now assembled all 10,000 duration and word values in separate columns, d 
and w. Yet, we need a third, positional variable to assign the word tokens to prefinal or 
final position. This variable is easy to obtain: as we have exactly 10,000 rows, the first 
9,000 are for prefinal words and the last 1,000 for final words. Based on this knowl-
edge, we define the column df$p using c() and rep():

> df$p <- c(rep("prefinal", 9000), rep("final", 1000))

We still have many durations that are NA – we can now remove them. We do it by using 
na.omit(), which deletes any row in a dataframe that contains NA in any cell:

> df <- na.omit(df)

If we now call nrow() to count the number of rows remaining, we get 7,849: the num-
ber of words with a durational value:

> nrow(df)
[1] 7849

The next step is crucial: we need to identify the word types that occur with sufficient 
frequency in both positions, prefinal and final. To obtain frequencies, the table() 
function is handy. We start with words in prefinal position, using sort() and its argu-
ment decreasing = T to sort the frequency table in descending order, table() to 
calculate the table, and subsetting df$w on the value "prefinal" in df$p:

> prefinal <- sort(table(df$w[df$p=="prefinal"]), decreasing = T)
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At this point prefinal is a "table" with a complex structure:

> str(prefinal)
 'table' int [1:1535(1d)] 327 234 213 203 203 174 161 147 142 122 …
 - attr(*, "dimnames")=List of 1
  ..$ : chr [1:1535] "i" "you" "the" "it" …

To obtain a more easy-to-handle structure, we store prefinal as a dataframe using 
as.data.frame(), and inspect the first five lines:

> prefinal	 <- as.data.frame(prefinal)
> prefinal[1:5,]
	 Var1	 Freq
1 	   i	  327
2	  you	  234
3	  the	  213
4	   's	  203
5	   it	  203

Before we move on let’s convert Var1 from factor to character, as we will need this 
later on:

> prefinal$Var1 <- as.character(prefinal$Var1)

Then we execute the same procedure for the word tokens in final position:

> final <- sort(table(df$w[df$p=="final"]), decreasing = T)
> final <- as.data.frame(final)
> final$Var1 <- as.character(final$Var1)
> final[1:5,]
	  Var1	Freq
1	   it	  44
2	  you	  25
3	  now	  15
4	there	  15
5	 that	  12

On comparing the two frequency lists we notice that the frequencies are much greater 
in prefinal (which is not surprising as this list was computed on nine times as many 
word tokens as final) and that the most frequent word types are quite different: for 
example, the 1st and 2nd personal pronouns are among the top most frequent items in 
prefinal but not in final.

The next step is to filter the two frequency lists on two conditions: we want to single 
out those items that (i) have a minimum frequency of five occurrences (ii) in both lists. 
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To get at the intersecting items we use intersect() and to filter out frequencies below 
five occurrences we subset using the >= operator, storing the result in the vector BOTH:

> BOTH <- intersect(prefinal$Var1[prefinal$Freq >= 5], final$Var1[final$Freq 
>= 5])

How many items fullfil the two criteria?

> length(BOTH)
[1] 31

Which words are these 31 types?

> BOTH
 [1] "i" "you" "'s" "it" "n't" "to" "that" "do" "they" "in" "he" 
"there"
[13] "she" "was" "but" "one" "know" "on" "think" "them" "this" 
"then" "up" "out"
[25] "er" "see" "now" "me" "off" "her" "here"

We now need to collect the durations of all the tokens of these types and we need to 
make a distinction between the token-duration pairings depending on their position 
in the turn.

Let’s start by extracting all those tokens of the words in BOTH that occur in prefinal 
position. We subset df on those word tokens in w that are assigned the "prefinal" 
value in d$p and (&) that are contained in (%in%) the vector BOTH:

> PrefinalTokens <- df$w[df$p=="prefinal" & df$w %in% BOTH]

To get the durations of these prefinal tokens, we proceed similiarly, by subsetting df 
on those durations in d that are "prefinal" in p and where the word types are con-
tained in BOTH:

> PrefinalTokensDur <- df$d[df$p=="prefinal" & df$w %in% BOTH]

We also need the same type of data for the final tokens of the words contained in BOTH. 
We get it by adapting the methods used for prefinal tokens:

> FinalTokens <- df$w[df$p=="final" & df$w %in% BOTH]
> FinalTokensDur <- df$d[df$p=="final" & df$w %in% BOTH]

This gets us a total of four vectors, two for each condition (prefinal and final posi-
tion). Let’s define two like-structured dataframes, one for each condition, and, in each 
dataframe, include a third variable, namely group, defining it as "prefinal" in the 
prefinal-position data, and as "final" in the final-position data:
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> DataPre <- data.frame(
+   group = "prefinal",
+   word = PrefinalTokens,
+   duration = PrefinalTokensDur)

> DataFin <- data.frame(
+   group = "final",
+   word = FinalTokens,
+   duration = FinalTokensDur)

The two dataframes have the same structure and the same column headings, so we can 
rowbind them into one dataframe using the rbind() function:

> DATA <- rbind(DataPre, DataFin)
> head(DATA)
	   group	word	duration
1	prefinal	 but	   0.153
2	prefinal	 but	   0.159
3	prefinal	 but	   0.164
4	prefinal	 but	   0.073
5	prefinal	 but	   0.158
6	prefinal	 but	   0.172

We could plot the boxplots now. If we want to order the boxes, however, one more 
intermediary step is required. In Figure 11.2 in the case study we chose to sort the 
boxes in ascending order of the median in the "final" group. To order the boxes this 
way we use levels(), a function which accesses the levels attribute of a variable, and 
reorder() (for more detail see ?levels and ?reorder):

> ordered <- levels(reorder(DATA$word[DATA$group == "final"],
+                          DATA$duration[DATA$group == "final"],
+                          FUN = median))
> DATA$word <- factor(DATA$word, levels = ordered)

Now we can start! As always, we first set up the basic parameters of layout and plotting 
margins:

> par(mfrow=c(1,1), mar=c(4,4,4,0))

As we have three variables – durations, words, and groups – we need to use this format 
for the data input into the boxplot() function: var_1 ~ var_3 + var_2. In our case: 
DATA$duration ~ DATA$group + DATA$word.

From this point onward, the plot itself is straightforward: we set the title and its 
character size, the x- and y-axis labels, enable the notches in notch = T (nevermind 
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the warning issued at this point that “some notches went outside hinges”!), choose the 
colors for the two conditions, suppress the frame with frame = F and the x-axis in 
xaxt = "n" .

> boxplot(DATA$duration ~ DATA$group + DATA$word,
+ main = "Durations of words in pre-final v. final positions\nin 
10-word turns in BNC (N = 1,000 turns)",
+         cex.main = 0.9,
+         ylab = "Durations (sec.)",
+         xlab = "",
+         notch = T,
+         col = c("blue", "red"),
+         frame = F,
+         xaxt = "n")

We select the x-axis by inputting 1 into axis(). Where to place the axis ticks and 
the labels? We know we have 62 boxes (as we have 31 word types in BOTH) and we 
want to place the tick exactly between each pair of boxes. Using the argument at we 
define a sequence ranging from 1.5 to 61.5 and divide it by 2 to obtain 31 ticks. For 
the axis labels we make the word types available that are stored in DATA$word using 
levels(). Finally, we set character size and character orientation: las = 2 will 
rotate the labels by 90°.

> axis(1,
+      at = seq(from = 1.5, to = 61.5, by = 2),
+      labels = levels(DATA$word),
+      cex.axis = 0.9, las = 2)

The legend is set to some location in the plot where it does not interfere with the 
whiskers and/or outliers (using trial and error!); the legend text is set in legend as 
well its character size in cex; the legend boxes are filled with the colors chosen for the 
boxes with fill = c("blue", "red"), the border around these legend boxes is set 
to white with border = "white", the default frame around the legend as a whole is 
suppressed through bty = "n":

> legend(1, 0.65,
+       legend = �c("Pre-final positions (w1–w9)", "Final position 

(w10)"),
+       cex = 0.8,
+       fill = c("blue", "red"),
+       border = "white",
+       bty = "n")



218	 Visual Linguistics with R

All that is missing at this point are the frequencies for the word types in the two con-
ditions, which we will print underneath the boxes, just above the x-axis. We table 
DATA$word against DATA$group to obtain the frequencies of all word types by group.

> f <- table(DATA$word, DATA$group)
> head(f)
	 prefinal	final
n't	     174	   7
he	      69	   8
's	     203	   7
to	     161	   6
it	     203	  44
you	     234	  25

The data structure we now have is a table. As above, to be able to address the frequen-
cies more easily, we convert the table to a dataframe using as.data.frame():

> f <- as.data.frame(f)

To print the frequencies onto the plot, we need to determine where to plot them on 
the x- and y-axis: for the x-axis we define a sequence from 1 to 62 (the total number 
of boxes) divided by 2 and, on the y-axis, place it sharply above the axis itself. The 
data to print is found in f$Freq[f$Var2 == "prefinal"], that is, the frequency 
values for the word types in the "prefinal" group. The prefinal boxes in the box-
plot were blue, so we make the frequencies blue too. Finally, srt = 270 rotates the 
labels.

> text(seq(from = 1, to = 62, by = 2), 0.018,
+      f$Freq[f$Var2=="prefinal"],
+      cex = 0.6,
+      col = "blue",
+      srt = 270)

We take similar steps for the frequencies in the "final" group; the differences are: (i) 
we start seq at 2, (ii) we subset the frequencies in f$Freq on the condition that the 
level in f$Var2 be "prefinal", and (iii) we select "red" for the numbers:

> text(seq(from = 2, to = 62, by = 2), 0.018,
+      f$Freq[f$Var2=="final"],
+      cex = 0.6,
+      col = "red",
+      srt = 270)

Now the plot is complete.
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11.3  Task: Turn-final lengthening in 9-word turns in the BNC

The task in this section is straightforward: it asks you to compare pre-final and final 
durations in boxplots on a different dataset. This dataset is comparable in many ways 
to the dataset of the case study: it contains turns from the conversational subcorpus 
of the BNC, as well as durations measured in Praat for all words in the sample (unless 
unavailable due to poor audio quality). The only major difference is that the turns are 
nine words long. The data is stored on the companion website as file “Chapter11_Task.
txt”.

Also, it should be noted that the data were underlying a study on the durations 
of syntactic and pragmatic ‘well’ (Rühlemann 2018c); therefore all turns contain the 
word ‘well’. ‘Well’ is not only highly multi-functional performing multiple syntactic 
and pragmatic sub-functions but also versatile with regard to position in the turn. It 
will, then, not be surprising that ‘well’ features among those word types that occur 
both in pre-final and final positions in the dataset.

The major steps in programming the boxplots are the following:

–– convert the data to the long format, with each variable stored in a single column
–– determine which word types occur both in prefinal and final positions
–– select those word types that have a minimum token frequency of 5 occurrences in 

both conditions
–– match the prefinal and final durations to the tokens of these word types
–– make sure the boxes get sorted in ascending order of the medians in final position
–– plot the durations in boxplots
–– print the number of tokens of each word type in either position at the bottom of 

the graph
–– once you’re done, you should have a graphic that looks roughly like the one in 

Figure 11.3.

The boxplot shows that six items satisfy the criterion that they occur at least five times 
in both conditions (pre-final and final position); also, it shows that five out of these, or 
80%, have greater durations in final position: ‘well’, ‘it’, ‘they’, ‘she’, and ‘there’. The only 
item defying the trend is ‘you’.

As far as the notches are concerned, it seems that the differences in duration may 
be significant for all five items with longer durations in final position. The difference 
between pre-final and final ‘you’ by contrast is unlikely to be statistically significant. 
So, on the whole, in this dataset too words do get lengthened in turn-final position.

A final and cautionary word relates to ‘well’: when ‘well’ occurs in final position 
in a turn it is most of the time fairly distinct from when it occurs in the first or second 
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position in the turn – not only in durational terms. We know that turn-initial ‘well’ 
is virtually always pragmatic ‘well’, a pre-start in Sacks et al.’s (1974) sense relating 
the developing turn to the prior turn. In turn-final position, by contrast, it virtually 
always co-occurs with ‘as’ in ‘as well’, a phrase which serves as an additive subjunct. 
For example:

	 (11.1)	 I meant to put this one out as well� (BNC: KB0 442)

We get a sense that this ‘well’ is lexically and functionally quite at a remove from prag-
matic ‘well’. So the question arises: Are pragmatic ‘well’ and additive subjunct ‘well’ 
one and the same word? They would have to be if we take the present analysis to 
indicate that even ‘well’ gets lengthened in turn-final position. Alternatively, additive 

Durations of words in pre�nal v. �nal positions
in 10-word turns in BNC (N = 1,000 turns)

Pre�nal positions (w1–w8) Final positions (w9)

0.8

0.6

0.4

0.2

0
you it they well there she

Figure 11.3  Boxplots of durations of words in pre-final and final positions in 9-word turns
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subjunct ‘well’ could be considered a lexeme in its own right, with its own distinct 
durational behavior. And as it overwhelmingly only occurs at turn ends, we could not 
even be sure whether the greater length of ‘as well’ is owed to turn-final lengthening or 
whether the length is just part of the lexeme itself. To examine ‘well’ in the context of 
the turn-final drawl, a larger database would be required, one in which ‘as well’ occurs 
in larger numbers and in more positions than just the final one. Only then could we 
be certain that we are comparing the same word in two different turn positions. For 
the time being we are probably better off taking ‘well’ out of the equation of turn-final 
lengthening.





Chapter 12

Histograms and density plots

12.1  Case study: Turn transition – Backchannel response time

12.1.1  Introduction

The case studies so far have all dealt with phenomena inside turns and sequences. In 
this last chapter, the spotlight moves to the space between turns, the transition space 
separating the just-completed turn from the just-commencing one.

The way people, across languages and cultures, manage this transition seems to be 
“strongly universal, with only slight variations in timing” (Levinson 2016: 7): transi-
tion commonly happens within just a ‘slight gap’ (Heldner & Edlund 2010: 557; cf. also 
Sacks et al. [1974: 700–701]). This slight gap is roughly the length of a single syllable 
(Levinson 2016: 7), namely 200 ms – that is, “faster than the average time it takes to 
blink the eye” (Enfield 2017: 41; see also Stivers et al. 2009; Heldner & Edlund 2010; 
Dingemanse & Enfield 2014; Riest et al. 2015; Roberts et al. 2015). The contexts in 
which this 200 ms response time was observed were responses to yes/no questions 
(Stivers et al. 2009) and also functionally unrestricted contexts (Heldner & Edlund 
2010; Riest et al. 2015; Roberts et al. 2015).

The 200 ms benchmark is obviously just a central tendency hiding considerable 
variation. For example, transition may accelerate when speakers compete to get the 
next turn (Enfield 2017); it is also faster when the medium of conversation is the tele-
phone rather than face-to-face conversation (Levinson 1983; ten Bosch et al. 2005; 
Levinson & Torreira 2015). Conversely, transitions may be slower following lon-
ger and/or more complex previous turns (Roberts et al. 2015: 2) or following turns 
that end in less predictable ways (Magyari et al. 2014). Finally, deceleration may be 
built into the design of ‘dispreferreds’, that is, responses not, or not straightforwardly, 
aligned to the course of action initiated in the prior turn (Levinson & Torreira 2015: 
12). So, clearly the time that elapses between one and the next turn may vary due to 
“the functional role of each turn in communication” (Roberts et al. 2015). Another, 
complex, functional context in which transition time is likely to vary considerably is 
that of backchannels.

Backchannels are universally occurring multimodal displays by non-current 
speakers of listening to and understanding the current speaker’s turn, and of their 
willingness to continue listening (cf. Schegloff 1982). In English, the most frequent 
vocal backchannels mm, yeah, oh, mhm, and uh huh are widely shared across varieties 
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such as American English (White 1989), Australian English (Wong & Peters 2007), 
New Zealand English (Wong & Peters 2007) and British English (Rühlemann 2017). 
Backchannels have very high rates of occurrence in natural conversation: Gardner 
(1998: 205) estimates that backchannels “occur more than a thousand times in a single 
hour of talk”, an estimate corroborated in recent quantitative research (Wesseling & 
van Son’s 2005; Bavelas et al. 2000).

Backchannels forms do not only include vocal forms; they also include bodily 
forms such as gestures, head nods, extended blinks, and even eyebrow flashes (e.g., 
Goodwin 1986; Stivers 2008; Stivers et al. 2009; McCarthy 2003; Hömke et al. 2017). 
There is some agreement that backchannels do not constitute full turns but rather 
serve as signs that the listener passes up the turn to the current speaker; in Yngve’s 
words, they are talk “in the back channel, over which the person who has the turn 
receives short messages such as yes and uh-huh without relinquishing the turn” (Yngve 
1970: 568).

Listeners do not produce backchannels anywhere in the current speaker’s turn 
but most commonly at “TCU completions” (Stivers 2013: 201), that is, “at the bound-
aries of turn-constructional units, precisely the sequential position that is able to 
demonstrate both that one unit has been received and that another is now awaited” 
(Goodwin 1986: 208).42 Visual backchannels, by contrast, such as head nods, blinks, 
gestures, etc. are not turn-organized and their position may not be aligned with the 
TCU (Stivers 2008).43

The most common environment for backchannels is in ‘tellings’ (cf. Schegloff 
1993: 105), that is, expanded sequences characterized by an epistemic asymmetry with 
one participant imparting a chunk of knowledge to the other and a structural asym-
metry with the ‘teller’ taking multi-unit turns built out of multiple successions of TCUs 
that offer “places in it for others’ talk” (Sacks 1992: 526). In storytelling, a key type of 
telling sequence, backchannels represent by far the most common response type pro-
duced by story recipients (Rühlemann 2013).

While the function underlying all backchannels is signaling understanding (cf. 
Gardner 1998), a number of additional functions can be distinguished, some of them 
so distinct that “the brief recipient vocalizations that occur during ongoing talk might 
in fact be divided into different classes” (Goodwin 1986: 207). A critical distinction is 

.  A much less frequent backchannel placement is ‘interjacent’ (Jefferson 1986: 158), i.e., 
mid-way into the TCU (cf. Rühlemann 2018b).

.  Stivers (2008: 43) observes that nods are used in different sequential environments than vocal 
continuers: “nods are typically positioned following telling elements that provide the recipient 
with access to the events being reported in the telling or directly to the teller’s stance toward those 
events.”
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between continuers (or generic backchannels) and assessments (or specific backchan-
nels) (Goodwin 1986). Continuers are responses that exhibit “an understanding that 
an extended unit of talk is underway by another [speaker] and that it is not yet, or may 
not yet be (…) complete” (Schegloff 1982: 81). Continuers serve a ‘bridging’ func-
tion by treating the speaker’s current “[turn constructional] unit as a preliminary to 
another” (Goodwin 1986: 210) or “as a prelude to further talk” (Goodwin 1986: 214). 
Assessments, by contrast, serve to comment “on the specifics of what is being said in 
the current unit” (Goodwin 1986: 210) by evaluating the speaker’s ongoing talk “in 
a particular way as remarkable” (Goodwin 1986: 211) and potentially “embody[ing] 
elaborated participation display” (Goodwin 1986: 211). These displays are character-
istically of an evaluative nature. Speaking of what they call ‘engaged response tokens’, 
a class matching Goodwin’s class of assessment backchannels, O’Keeffe and Adolphs 
(2008: 84) note that they “express genuine emotional responses such as surprise, shock, 
horror, sympathy, empathy and so on”.

Continuers and assessments seem to occupy the extreme ends of the functional 
range of backchannels. The functional middle ground is covered by backchannels that 
do more than just signal continued listenership but less than express strong affect. A 
large class performing this function is the class of what O’Keeffe and Adolphs (2008) 
refer to as ‘convergence tokens’; their main ‘job’ is to signal agreement on factual infor-
mation conveyed or opinions expressed by the main speaker rather than their affective 
stance. In turn-by-turn talk, O’Keeffe & Adolphs note, convergence tokens often occur 
at topic boundaries. Prime examples of convergence tokens include ‘yeah’, ‘that’s right’, 
and also ‘no’ said to affirm negated information. Given their capacity to signal agree-
ment on, and recognition of, specific information and also to convey convergence on 
opinions, convergence tokens can be seen as forms of interactional bonding between 
speaker and addressee helping to “maintain good relations between speakers by rein-
forcing commonality between them” (O’Keeffe & Adolphs 2008: 87). Continuers, con-
vergence tokens, and assessments are thus best understood as presenting a cline from 
least affective (continuers) to more affective (convergence tokens) to strongly affective 
(assessments). Finally, a fourth functional class accommodates backchannel forms 
that have their locus in sequence-recompletion, a practice “whereby participants reoc-
casion the relevance of sequence completion after the sequence was already treated as 
complete (i.e., after a lapse)” (Hoey 2017: 49).

Fragment (12.1) illustrates both continuers, convergence tokens, and assessments 
in storytelling. The storyteller Martine is relating a near-accident she had. She intro-
duces the story by a preface in line 1: “Go::’, I was nearly in an accident last night, 
°that reminds me.°”. The preface is indicative of the teller’s stance in two ways: the 
reference to “accident”, highlighted by emphasis on the first syllable, relates the story 
to a life-threatening incident, comparable to Labovian danger-of-death stories (cf. 
Labov 1972). Similarly, the underlying semantics of the protracted interjection “Go::”, 
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a clipped form of ‘oh my god’, also relates the upcoming story to an extreme existential 
experience causing distress. Her stance toward the event is, then, that of being terri-
fied. In line 2, Martine starts to develop the story background, providing a first place 
reference in “off the (0.4) Wrexham road” and, after a 1.3 s silence, a more specific 
reference in “along the Paisword one” in line 3. Merielle’s backchannel “[mm]” indexes 
recognition of the location and thus allows the teller to continue with the story by pro-
viding more background information. First, in lines 5–7, she names the three protago-
nists of the story, namely the three cars and drivers involved in the near-accident (the 
pick-up, the Escort van, and herself). Then, in lines 8–9, Martine notes that “there's 
not many places to overtake down there”; this provides a first-mention of overtaking, 
the manouvre that is going to lead to the near-accident. The scarcity of space for over-
taking is confirmed by Merielle’s convergence token “[no]” in line 10, by which Meri-
elle actively confirms Martine’s observation that at the location indicated “there’s not 
many places to overtake”. Once this confirmation is given, Martine swiftly, as indicated 
by the overlapped marker “[so]” in line 11, moves the story closer to the Climax by 
describing in lines 12–17 how things got dramatic when one of the two other drivers 
started to overtake the slow pick-up just as Martine “could see a car °coming the other 
way°”. To make matters worse, the driver got stuck “running alongside this pick-up” 
unable to drop back and unable to overtake. This description, and the clear danger that 
transpires from it, is acknowledged by Merielle’s “M[m]” in line 18, spoken partly in 
overlap and a slight increase in intensity (indicated by the capital). At this point the 
Climax is reached: to escape the collision the overtaking driver very nearly manages 
to squeeze in behind the slow pick up “jamm[ing] its anchors” (line 20) just as the car 
coming the other way speeds past him. That climactic moment is depicted by Martine’s 
non-verbal “↑we:o:w:↑”, imitating the sound of the car coming the other way rushing 
past at high speed. Just a split second before Martine produces that depiction, Meri-
elle utters “Oh m[y god]” in line 23, partly overlapping Martine’s “[erm]”. Merielle’s 
backchannel does more than just bridge over from one unit to the next, providing 
instead an empathic assessment of the near-accident and the predicament Martine 
was in (her car being in close vicinity to the two cars that nearly escaped each other). 
Note also that Merielle’s “Oh my god” is a full rendition of Martine’s “Go::” by which 
she launched the whole telling – the stance convergence could hardly be more perfect:

	 (12.1)	
	 1        Martine:   Go::’, I was nearly in an accident last night, °that reminds me.°
	 2                             Coming- I’d just turned off the (0.4) Wrexham road, (1.3)
	 3                             er going along the Paisword one (.)
	 4       Merielle:   [mm]
	 5       Martine:      [and] there’s like an old pick-up-ey type thing (0.6)
	 6                               and then there w’s this (0.3) young lad in a (1.4) in a work’s Escort van
	 7                             and then there was me (1.0)
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	 8                             erm (1.0) I thought (.) oh bit of a blow being behind this vehicle,
	 9                             but there’;s not many places to overtake down there =
	 10  Merielle:        [no]
	 11  Martine:       = [so] I was jus’ gonna have to, (.) y’ know, be stopped there (0.3)
	 12                           anyway this young lad (0.9) after the first ( part ) bend
	 13                           he went to overta’
	 14                           an’ I could see a car °coming the other way° (0.7)
	 15                           erm he was like er running alongside this pick-up (0.5)
	 16                           bu’ i’ was like as if he couldn’t drop back 
	 17                           and he couldn’t make it either?
	 18     Merielle:      M[m]
	 19     Martine:          [so] he j’s kept going, so the (.) pick-up
	 20                           jammed its anchors on,
	 21                           the’ w’s a, the road that was coming the other way,
	 22                           the road that went up the verge (0.4)
	 23     Merielle:      Oh m[y god]
	 24     Martine:                 [ erm ] the- ↑we:o:w:↑ (0.4) just squeezed in
	 25                           and this lad sort of shit himself completely
	 26                           and VOO::m right up the road then, (0.5)
	 27                           well I (0.4) I knew what was gonna ‘appen
	 28                           so I dropped right back a:n:d er (1.1)
	 29                           how he missed him I don’t know,
	 30                           must ‘u been inches
	 31                           (2.4)
	 32                           or I(h)TCH(h)es
	 33         Mike:        ((laughs))
	 34                           (10.1)
� (BNC KD8: 7592-7600; corrected transcription)

The question we are going to address in this short case study relates to the three func-
tions as well as transition time: do continuers, convergence tokens, and assessments 
differ in terms of response time?

12.1.2  Data and methods

The case study is based on the Narrative Corpus (NC; Rühlemann & O’Donnell 2012) 
introduced earlier in Chapter 10. As noted, the NC contains more than 500 storytell-
ings and contains exhaustive annotation. Key in the present connection is the annota-
tion of backchannel utterances.

Based on the recent release of the Audio BNC (Coleman et al. 2012), backchannels 
in the NC were analyzed phonetically. The phonetic analysis involved the following 
procedure. First, all vocal backchannels were retrieved (as well as the storytelling TCUs 
to which they were a response). Second, using phonetic analysis software, response 
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times for the retrieved backchannels were measured. In a first pass, all backchannel 
response times were measured in Audacity <http://www.audacityteam.org/> ; in a sec-
ond pass, response times between 0 and 200 ms were re-measured in Praat (Boersma 
& Weenink 2012). After filtering out false positives and unintelligible backchannels,44 
the total number of tokens available was 609.

Given the aim in this case study to compare the response times for different func-
tional classes of backchannels, a random subset of 300 backchannels was manually 
coded for function type by taking the whole storytelling sequence into account as well 
as repeatedly listening to the relevant context.45

The graph type used to visualize response times is the histogram. This plot type is 
“excellent for showing the mode, the spread and the symmetry (skew) of a set of data” 
(Crawley 2007: 162) and it is a “popular way of visualizing a univariate continuous 
distribution” (Levshina 2015: 50) such as the distribution of response times, measured 
in milliseconds.

Histograms divide data into equi-spaced intervals, called ‘bins’, and draw rect-
angles the heights of which are proportional to the number of values in the bin. They 
are often overlaid by a ‘densitiy curve’, which “smoothes discrete jumps of the histo-
gram” (Baayen 2008: 25–26). Thus, for continuous data, “the density curve is both 
more appropriate and more accurate” (Baayen 2008: 26)

12.1.3  Results

The distribution of all 609 backchannel response times available in audio in the NC is 
shown in Figure 12.1; the horizontally aligned ‘rugs’ indicate the backchannels’ precise 
location on the duration cline:

.  These included backchannels not responding immediately to the storyteller’s TCU but to 
another recipient’s response (i.e., a backchannel by one recipient following or in overlap with 
another recipient’s backchannel or another recipient’s more substantial contribution). Further dis-
carded were response tokens that functioned as responses to yes/no questions, such as ‘yeah’ in 
response, for example, to “Zoe you know Zoe”. Also excluded were responses consisting entirely of 
laughter tokens as well as backchannels whose temporal properties could not be measured with 
sufficient accuracy (due, for example, to interfering noises, distance from the microphone, etc.).

.  Functional classification may be influenced by subjectivity and/or inconsistency. In 
Rühlemann & Dingemanse (in preparation), to ensure coding reliability, the data were coded in-
dependently by two researchers and the amount of inter-rater agreement was determined using 
Cohen’s kappa.

http://www.audacityteam.org/
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Figure 12.1  Backchannel (BC) response time in the Narrative Corpus

The histogram in Figure 12.1 provides a number of useful pieces of information. First, 
we see large ‘tails’ both to the left, where negative response times for backchannels in 
overlap are plotted, and, even more so, to the right, where positive response times for 
backchannels occurring after gaps are plotted; note, for example, the two backchan-
nels with response times longer than 4 seconds, indicated by the two rug stripes at 
the extreme end of the duration axis. Even if we disregard these extreme values, the 
distribution is slightly asymmetrically divided between overlap and gap: 199 values, 
or 32.68%, are greater than 0, meaning there are more free-standing backchannels 
than overlapped ones; cf. the proportions of overlap in turn-by-turn talk, which range 
between 44% (ten Bosch et al. 2005) 40% (Heldner & Edlund 2010), and 30% (Levin-
son & Torreira 2015).
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Second, the tallest bin is for response times between 0 ms and 100 ms. This indi-
cates that the largest group of response times fall into this range. The modal response 
times for backchannels, then, are between 0–100 ms – exactly half of the mode 
reported in Stivers et al. (2009) for answers to polar questions. Second, the mean value 
is 106 ms, while the median response time is 139 ms – again clearly shorter values of 
central tendency than the respective values reported in previous research. Third, the 
distribution violates normality.46 This transpires clearly from the sharp drop of the 
density curve between −400 ms to 0 ms. This, together with the large Standard Devia-
tion, suggests that treating backchannels as a unified group is only a first step, as there 
is likely a lot of internal functional variation.

To approach this functional variation, let’s first check the frequencies and propor-
tions of the functional categories coded in the subsample:

Table 12.1  Frequencies and proportions of functional categories in subsample

Continuers Convergence tokens Assessments Recompleters Other Unclear

Freq 140 62 43 3 36 16

% 46.67 20.67 14.33 1.00 12.00 5.33

In the 300-token sample, the most common functional category are continuers, with 
140 examples and 46.67%. The next two largest groups are convergence tokens with 
20.67% and assessments accounting for 14.33%. Recompleters, with only 3 instances, 
are fairly infrequent. Another group, of considerable size, are backchannels classed 
as “Other”, a label used for response tokens that clearly served to register listenership 
but whose function did not match any of the four categories continuers, convergence 
tokens, assessments, or recompleters. This suggests that the functional spectrum of 
backchannels may be even more comprehensive than is commonly acknowledged.

The following plot focuses on the response times for the three major classes con-
tinuers, convergence tokens, and assessments, showing their histogram, densities, 
means and standard deviations:

.  Data is considered normally distributed if it spreads symmetrically around a central value, 
thus forming a bell curve (cf. Levshina 2015: 10). Other distributions include the uniform distri-
bution, the bimodal distribution, the Poisson distribution, to name only a few (cf. Crawley 2007: 
210 ff.).
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Figure 12.2  Response times for continuers, convergence tokens, and assessments

As can be seen in Figure 12.2, the three functional types are clearly distinguished in 
terms of response time: assessments typically occur in overlap (mean response time 
= −240 ms), continuers normally follow after a slight gap (mean response time = 104 
ms), whereas convergence tokens tend to occupy the middle ground (mean response 
time = −3 ms). While the density curves for continuers and convergence tokens some-
what approximate the bell shape typical of normal distribution, the curve for assess-
ments clearly suggests nonnormality, with its primary maximum on the overlap side 
but two secondary maxima, one in overlap and the other on the right of the 0 ms 
demarcation. The irregularity of response times for assessments can also be read off 
the Standard Deviation: it is almost twice as large as the SD values for continuers and 
convergence tokens.
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12.1.4  Discussion and concluding remarks

The histograms and density plots shown above suggest that the response time for back-
channels generally is shorter than the 200 ms observed in research so far (see above): 
the average response time was 106 ms, a value closely mirroring previous response 
times obtained from experimental research (Wesseling & van Son 2005a, 2005b), 
where the measured interval was 102 ms.

The main reason for this speediness is probably reduced production latency. 
This reduction is facilitated by multiple factors. First, backchannels do not express 
concepts and do not have lexical content (Müller 1996: 132); that is, production time 
for backchannels is reduced by the 150–200 ms (Indefrey & Levelt 2004: 104) it takes 
to retrieve, for example, the concept SHEEP as well as up to 150 ms spent on lemma 
retrieval (for a content word such as ‘sheep’) (Indefrey & Levelt 2004: 106). Second, 
backchannels are phonologically minimal, mostly just a single syllable long or, in the 
case of ‘mm’, just a single phoneme. The minimalness means that retrieval time for 
instructions how to articulate them will be equally minimal, thus further reducing 
production latency. Third, as mentioned, backchannels are among the most frequent 
words in conversation. Frequency too impacts on production time; high-frequency 
words are produced up to 60 ms faster than low-frequency words (Indefrey & Levelt 
2004: 106). Forth, many backchannels, especially the most frequent, are non-verbal 
– ‘noises’, as Carter & McCarthy (1997: 12) call them. As we know from Stivers et 
al. (2009), nonverbal responses such as head shakes, nods, or shrugs are produced 
“faster than speech” (Stivers et al. 2009: 10588). So non-verbal backchannels are 
likely faster too. Fifth, backchannels may not require inbreath for articulation. As 
shown by Torreira et al. (2015), speakers preparing to answer a question breath dif-
ferently depending on the length of the response: long responses are preceded by 
long inbreaths of up to 800 ms, whereas minimal responses are produced on resid-
ual breath (i.e., without inbreath). Due to their minimalness, backchannels may not 
require inbreath either.

The case study also showed important differences in response time between 
functional categories, with continuers typically occurring after a slight gap, con-
vergence tokens requiring no gap and no overlap, and assessment tokens tending to 
be produced early, that is, during the current turn. That continuers typically occur 
without, and assessments within, overlap is to be expected given previous research. 
For example, Goodwin noted that continuers occur between the speaker’s turn-con-
structional units, whereas assessments occur within the units, that is, in overlap with 
them (Goodwin 1986). Also, speaking of assessment sequences, Pomerantz observes 
that “strong or upgraded assessments are performed with a minimization of gap (in 
fact, frequently in slight overlap)” (Pomerantz 1984: 69; cf. also Vatanen 2018).
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As noted previously, in storytelling, which can be conceptualized as “an activ-
ity that both takes a stance toward what is being reported and makes the taking of a 
stance by the recipient relevant” (Stivers 2008: 32), the critical point for the recipient to 
produce an assessment backchannel is the story Climax. Stivers noted that assessment 
backchannels (‘affiliative tokens’ in her terminology) such as ‘ah’, ‘wow’, ‘oh my god’, are 
relevant responses “as tellers near the high point of the telling” (Stivers 2013: 201) to 
display the recipient’s agreement with the teller’s stance toward the recounted events 
(Stivers 2008, 2013; see also Schegloff 1993: 106).

For illustration, consider extract (12.2), the closing part of an extended storytell-
ing by Betty about a friend of hers who forgets time and again to put her lights on 
while driving. The constructed dialog in lines 1–2 “STUPID COW you ain’;t got your 
fucking lights on again have you? IT’S THAT SWITCH THERE”, which is ascribed to 
the friend’s husband, indicates that the telling is approaching the Climax (cf. Mayes 
1990). The Climax is finally reached in Betty’s description that the friend did “the self 
same thing” (line 4), namely forget to put her lights on while pulling “into the shop 
out of the shop no lights” (line 6). Julie’s backchannel “[↑oh][:↓:: my: ↑go:::d]” is in 
double overlap: it is in TCU-terminal overlap with Betty’s “the next day she did the self 
same thing” and in TCU-initial overlap with Betty’s next TCU “pull into the shop out 
of the shop” (cf. Rühlemann 2018b). Thus, the backchannel stretches over the whole 
Climax. Note also the backchannel’s phonetic realization: its extreme lengthening and 
pitch movement indicate heavy affect – the affect of being shocked by the dangerous 
forgetfulness of Betty’s friend.

	 (12.2)	
	 1  Betty:  ( ) STUPID COW you ain’;t got your fucking lights on again have you?
	 2                    IT’S THAT SWITCH THERE,
	 3                    °so she puts her lights on° ( ) same day.
	 4                    the next day she did the self same [thing]
	 5    Julie:                                                              [↑oh ][:↓::                 my: � ↑go:::d]
	 6   Betty:                                                                             [pull into the shop out of the shop]
	 7                    no lights.
	 8                    (0.41)
� (BNC: KBE 1827-1896; corrected transcription)

In many other contexts, extended overlaps such as the one in extract (12.2), might 
be considered interruptions and require mechanisms for repair (cf. Schegloff 2000). 
Here, by contrast, the fact that two speakers talk in unison is not only tolerated 
but sought and valued, as an external manifestation of the ‘emotional contagion’ 
(Doherty 1997; Peräkylä et al. 2015) that is, ultimately, the raison d’être for stories in 
talk-in-interaction.
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12.2  The histogram and density plot in the case study

How were the histogram and density plot in Figure 12.2 arrived at?
First, read-in the data, available on the companion website as “Chapter12_Cas-

estudy.txt”:

> BC <- read.table(“[Your path]/Chapter12_Casestudy.txt”, header=T, 
quote="", sep="\t", fill=F)

As can be seen from calling head(BC), there are just three variables: (i) bc containing 
the backchannel forms in CA transcription, (ii) responsetime, the response times 
measured in ms, and fun, the functional classifications:

> head(BC)
	     bc	 responsetime	     fun
1	 ah yes	          730	continue
2	     hm	          276	continue
3	     mm	          370	continue
4	  ↑mm:↓	          882	   other
5	   yeah	          460	continue
6	     mm	          650	continue

As always, we check the data structure with str():

> str(BC)
'data.frame': 300 obs. of 3 variables:
$ bc : Factor w/ 114 levels "(did she)","(did they)",..: 37 48 59 …
$ responsetime: int 730 276 370 882 460 650 250 1165 450 910 …
$ fun : Factor w/ 6 levels "assess","continue",..: 2 2 2 4 2 2 2 5 …

str(BC) reveals that responsetime contains integers and the variables bc and fun 
are factors. If we worked with the elements in bc we would probably have to convert 
the variable to character. But in the case study the relevant variables are just respon-
setime and fun, so we are fine with the dataframe’s data structure.

We are, then, in a luxurious position: no further adjustments are necessary, we can 
start plotting the response times right away.

As always, we begin by setting the plotting layout:

> par(mfrow = c(1,1), mar = c(4.1,4,2.7,0.5))

Next, we set up the histogram. As we want to plot only the response times for the 
three major classes assessment, continuer, and convergence tokens, we need to exclude 
the response times of the backchannels classified otherwise, namely "recomplete", 
"other", or "unclear". We do so by subsetting BC and using the negative operator 
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! as well as the ampersand &. The title, defined in main, is quite long, so we include 
\n to insert a line break. Further, the font size of the title, axes, and axis labels is 
reduced in cex.main, cex.axis, and cex.lab. An important argument is freq. 
It defaults to TRUE, but needs to be set to FALSE; this is required as we intend to plot 
densities, which have a completely different scale on the y-axis. The argument border 
controls the color of the border delineating the histogram’s bins. As we suspect that 
some of the densities will cover a large range, we extend the range of the x-axis with 
xlim = c(−3000, 3000). Finally, the label for the x-axis is included with xlab = 
"Response time (ms)":

> hist(BC$responsetime[!BC$fun=="recomplete" &
+                      !BC$fun=="other" &
+                      !BC$fun=="unclear"],
+      main = �"Response time\nfor assessments, convergence tokens, 

and continuers",
+      cex.main = 0.8,
+      cex.axis = 0.7,
+      cex.lab = 0.8,
+      breaks = 50,
+      freq = F,
+      border = "grey40",
+      xlim = c(−3000, 3000),
+      xlab = "Response time (ms)")

To see the exact location of the individual response times, we include a ‘rug’, using the 
function rug(), where the argument side = 1 determines the placement of the rug 
at the x-axis (use side = 2 for the y-axis and so on clockwise):

> rug(BC$responsetime[!BC$fun=="recomplete"
+                     & !BC$fun=="other"
+                     & !BC$fun=="unclear"], side = 1)

Now for the main part, the density plots for the three functional classes continuers, 
convergence tokens, and assessments. The key function is density(), the function 
to compute kernel density estimates, a data smoothing procedure used in inferen-
tial statistics (that is, that sub-field of statistics that aims to make inferences from 
a sample of a population to that population itself). The function’s main arguments 
are kernel and bw (for bandwith) (cf. ?density). The argument kernel speci-
fies the type of smoothing, for example, "gaussian" (the default), "epanech-
nikov", or "cosine". The argument bw is the smoothing parameter. Smoothing 
is an inferential procedure intended to abstract from the known (sample) data to the 
unknown (population) data. As there is inevitably variation and deviation from the 
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‘true’ distribution in the sample data, an important question is how much we should 
abstract away from that variation. If too much is filtered out, the result is over-
smoothing, which hides underlying structure; if too little is filtered out, the result 
is undersmoothing, with too many spurious artifacts distracting from the underly-
ing structure. Obviously, the ideal smoothing parameter neither undersmoothes nor 
oversmoothes. Choosing the right parameter is a difficult task. In this case study, it 
is chosen on a trial and error basis, by testing different parameters and comparing 
the resulting estimates.

After mutiple such trials, the kernel selected for Figure 12.2 was "cosine" and 
the bandwidth parameter 250. With these decisions made, we could now plot both the 
density lines and shade the area under the lines for each functional level separately. For 
example, we could use this code for response times of backchannels coded as continuers:

> lines(density(BC$responsetime[BC$fun=="continue"],
+               kernel = "cosine", bw = 250),
+       col = "green",
+       lwd = 1)

Here, we make use of the function lines() wrapped around density() and target 
that subset of BC$responsetime that satisfies the criterion that the value on BC$fun 
is"continue".

To shade the area underneath the density line we can wrap the polygon() func-
tion around the density() function and apply the same subsetting logic as above:

> polygon(density(BC$responsetime[BC$fun=="continue"],
+                 kernel = "cosine", bw = 250),
+         col = "green",
+         density = 50,
+         angle = 90)

And we could repeat these commands for assessments and convergence tokens. But 
a more elegant way is to execute it all in one piece of code, namely in a for loop (not 
dissimilar to the for loop used in Section 8.2). First we access the three function levels 
of interest in BC$fun; as the levels are ordered alphabetically, these happen to be the 
first three so that we can subset levels(BC$fun) on those three:

> cats <- levels(BC$fun)[1:3]
> cats
[1] "assess" "continue" "converge"

Next, we define a vector cols containing a color for each of the three levels:

> cols <- c("red", "green", "blue")

Now we set up the for loop: for(i in seq(cats)). Here, as cats is a character 
vector we use seq() to access the vector’s indices, which are numeric.Inside the for 
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loop we embed two commands, one for the density line using lines(), one for the 
shaded area using polygon(). All we really have to change compared to the code for 
each functional level plotted separately (discussed above), is that we specify BC$fun 
with i for cats and that we specify the colors via the (same) i for cols. The rest, 
including the density() arguments kernel, bw, and lty as well as the polygon() 
arguments density and angle, remains the same:

> for(i in seq(cats)){
+   lines(density(BC$responsetime[BC$fun==cats[i]],
+                 kernel="cosine", bw = 250),
+         col = cols[i],
+         lwd = 2)
+   polygon(density(BC$responsetime[BC$fun==cats[i]],
+                   kernel="cosine", bw = 250),
+           col = cols[i],
+           density = 75,
+           angle = 45)
+ }

Figure 12.2 also displays lines for the mean response times of the three function levels. 
To draw them we can recycle the vectors cats and cols in a new for loop. This loop 
is also for(i in seq(cats)) but embodies the instruction to use the abline() 
function to draw a straight vertical line to represent the mean response time of each 
function type:

> for(i in seq(cats)){
+ abline(v = mean(BC$responsetime[BC$fun==cats[i]]),
+ col = cols[i], lty = 3, lwd = 2)
+ }

Finally, we include a legend. As we want to display the number of instances per func-
tion, the means and the Standard Deviations, we first compute these measures, using 
tapply():

> tapply(BC$responsetime, BC$fun, FUN = length)
      assess  continue  converge  other  recomplete  unclear
          43      140        62     36          3       16

> tapply(BC$responsetime, BC$fun, FUN = mean)
     assess    continue  converge      other  recomplete    unclear
−253.093023 196.514286 −3.645161 224.138889 2671.666667 22.500000

> tapply(BC$responsetime, BC$fun, FUN = sd)
      assess  continue  converge    other  recomplete  unclear
    837.5415 457.5367  552.4383 430.1897  1599.4244 582.3701
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From this output we can copy the values of interest into the legend text. We insert 
the legend "topleft", that is, at a predefined location in the left upper corner of 
the plotting region. Next, the legend text is defined in c(), by using the information 
gained beforehand (the number of instances per function, the mean, the SD); note 
we place each bit of information separately on a new line by inserting \n and we 
include empty elements "" to separate the texts blocks. The argument cex specifies 
the sought character extension (i.e. font size), text.col specifies the colors for the 
legend texts (note the use of "white" for the empty text elements). Further, in fill 
we define the colors for the little squares to the left of the legend texts (note again 
the color "white" for the empty text elements); border = "white" sets the line 
around the squares to white and bty = "n" suppresses the default box around the 
legend as a whole:

> legend("topleft",
+        c("Assessments\n(N = 43)\nMean = −240 ms\nSD = 457",
+          "",
+          "Convergence tokens\n(N = 62)\nMean = −3 ms\nSD = 552",
+          "",
+          "Continuers\n(N = 140)\nMean = +197 ms\nSD = 838",
+          "",
+          "Other types\n(densities not shown)\n(N = 55)"),
+        cex = 0.75,
+        text.col = c(�"red", "white", "blue", "white", "green",   

"white", "black"),
+        fill = c(�"red", "white", "blue", "white", "green", "white", 

"white"),
+        border = "white",
+        bty = "n")

12.3  Task: Response time for laughter

Let’s end this volume with laughter.
Laughter is an inherently responsive form of conduct in interaction. Among the 

environments in which laughter is a relevant form of response, storytelling figures 
high (Schegloff 1993: 104) – as does another speaker’s laughter: as Jefferson (1979) has 
shown, speakers rarely laugh alone but share laughter with others in overlap. Laughter 
is treated as an activity that is “not to be done serially, not one after the other, but to be 
done simultaneously” (Schegloff 2000: 6; emphasis in original).

So laughter triggers simultaneous laughter. But does laughter also occur simulta-
neously with talk? That is, does (the onset of) laughter precede the completion of the 
turn or TCU to which it is a response?

In this task, you will be able to address this question.
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On the companion website you find data from the Narrative Corpus: response 
times of laughter produced by story recipients; the file is called “Chapter12_Task.txt”.; 
the response times are stored in column laughter_rt.

Use a histogram and a density plot to visualize the distribution of laughter 
response times across the overlap/gap spectrum; also calculate and visualize central 
tendencies, such as the mean response time and the Standard Deviation.

The steps to code the plot include the following:

–– plot a histogram for response times with a suitable number of bins
–– plot a density line with a suitable kernel and bandwidth
–– shade the area under the density line using the polygon() function
–– calculate the mean
–– plot the mean into the graphic
–– include a legend

Laughter response time
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Figure 12.3  Response time for laughter in storytelling
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Depending on the graphical parameters as well as the kernel and the bandwith chosen 
by you, your plot will be similar to the one shown in Figure 12.3.

As shown in Figure 12.3, the central tendency for laughter in storytelling is to 
occur in overlap: the mean response time is −119 ms. However, as indicated by the 
wide spread of the density curve and the high SD value (given in the legend), there is 
considerable variation in how laughter is timed vis-à-vis the speaker’s TCU. In a seri-
ous analysis, that variation would warrant close case-by-case analysis, with a special 
emphasis on the most deviant response times, indicated in the rugs on the x-axis: this 
deviant-case analysis would certainly have to include the one story where laughter is 
delayed by 3 seconds and also thoses cases where laughter occurs after a (more than) 
1-second gap.

Given that laughter is a nonverbal vocalization, the central tendency of laugh-
ter to occur in overlap aligns well with research indicating that nonverbal responses 
are quicker than verbal responses (Stivers et al. 2009: 10588). As far as laughter is 
concerned the explanation is readily at hand: unlike lexical words encoding concepts, 
laughter does not have lexical meaning. As a result, all the retrieval and articulation 
processes for lexical words briefly described in Section 12.1.4 do not apply. If we accept 
the premise that laughter, one of the “most inescapably responsive forms of conduct” 
(Schegloff 1993: 104; added emphasis), indexes, among other things, understanding, 
laughter may be among the responses that are temporally most closely associated with 
comprehension: we laugh as soon as we have understood the laughable TCU/turn. Its 
occurrence prior to TCU/turn completion suggests that that understanding has been 
reached before the turn’s/TCU’s end point has been reached. Thus, the fact that laugh-
ter is typically in overlap conclusively supports the notion that the precision timing of 
turn transition in conversation is indeed due to successful anticipation and prediction.



Chapter 13

Concluding remarks

We have reached the end of our journey through turn and sequence. All along the way 
R has been our travel guide. What has R shown us? Let’s take stock of the most salient 
lessons taught.

13.1  Single-case analysis and visualization

Both Interactional Linguistics and Conversation Analysis stress the importance of 
careful single-case analysis (e.g., Schegloff 1993). This would seem to prevent any util-
ity for visualization – for what to show visually if there is just a single case to report? 
This is the point where the different approaches of Interactional Linguistics and Con-
versation Analysis to the ‘talk’ component in talk-in-interaction come into play. As 
noted earlier, Conversation Analysis has no large interest in language whereas Inter-
actional Linguistics, as a subfield of linguistics, has (Couper-Kuhlen & Selting 2018). 
It can thus take advantage of the large array of linguistic techniques to penetrate into 
microscopic details of talk in interaction. A visual representation of these micro-details 
can be insightful too if it is coupled to rigorous sequential analysis. For example, as we 
have seen in Section 9.1, a single storytelling of roughly half a minute duration yielded 
many thousands of phonetic data points on the scales of pitch and intensity. We com-
bined the phonetic analysis with a sequential analysis of the storytelling focusing on 
its progression toward the Climax, depicted the relation of the phonetic data and the 
sequential data in a scatter plot, and saw that pitch and intensity peaked where the 
telling peaked. In Section 9.3, by contrast, in a related analysis, we saw that the high-
point was reached prior to the phonetic maxima. Subsequent scrutiny showed that the 
disalignment was due to a lack of recipient affiliation and the teller’s pursuit of affilia-
tion in post-Climax position. So, visualization may benefit even single-case analyses 
provided quantifiable linguistic detail is taken into account.

13.2  Regular expression and transcription

Analyses in Interactional Linguistics and Conversation Analysis are typically based 
on rigorous transcription conventions, typically in accordance with the Jeffersonian 
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system (e.g., Jefferson 2004). A drawback of the Jeffersonian transcript is that it is not 
machine-readable per se. As long as the method of choice is the single-case analysis or 
analysis of a few select transcripts, this drawback does not make itself felt. The analyst 
only starts to sense a feeling of missingness as soon as the aim is to get a handle on 
more, potentially many more, instances of a feature of interest. As has been shown in 
Chapters 2 and 10, R’s implementation of regular expression offers a solution: regular 
expressions allow the analyst to define any – simple or complex – feature of interest as 
a pattern and to match the pattern in dozens, hundreds, or thousands of transcripts 
– the number of transcripts to be processed by regex is unbounded. Thus, regular 
expressions open up transcripts – elaborated based on rigorous attention to inter-
actionally relevant detail and thus true to methodological principles – to large-scale 
quantitative analysis.

13.3  Integrating quantitative and qualitative analysis

Quantification is by no means a fool-proof method: just because we can count some-
thing doesn’t mean the count is meaningful per se. As Schegloff demonstrates compel-
lingly, investigating laughter per minute is meaningless unless the ‘environments of 
possible relevant occurrence’ of laughter are taken into account (Schegloff 1993: 103).47 
Quantitative analysis is therefore not an alternative to qualitative analysis but a com-
plement to it. There are two ways to make quantification fruitful for qualification, and 
the other way round. One is to start with rigorous qualitative analysis of, potentially 
many, single cases and build quantification on its back (Schegloff 1993: 102). That’s the 
methodological route we took, for example, in Chapter 10: first the uses of paralinguis-
tic prosody and the occurrences of constructed dialog were identified in Jeffersonian 
transcripts based on case-by-case analysis; then the quantitative analysis was carried 
out testing whether expressive prosody was significantly associated with its occurrence 
inside and outside constructed dialog in storytelling. Alternatively, one can start with 
the ‘areal view’ facilitated by corpus analysis, looking for quantifiable patterns in large 
amounts of data, and in a second step return to ‘the ground’, that is, to single-case 
analysis, to examine canonical and also deviant cases that buck the trend discerned 
from ‘above’. That’s the route taken, for example, in Chapter 6: first we investigated sur-
prisal in the context of the nuclear tone in turns, discovering a (surprising) correlation 
of the two, then we examined deviant cases, where the nuclear tone had been placed 

.  As noted in Section 12.3, laughter’s ‘environments of possible relevant occurrence’ include 
stories and another speaker’s laughter; alternatively, as noted by Schegloff (1993), laughter may be 
relevant in potential offenses (Jefferson et al. 1987) or in telling one’s own troubles (Jefferson 1984).
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on a less surprising word. Or, to cite another example, the analysis in Section 12.3 sug-
gested that the central tendency for laughter in storytelling was to occur far into the 
storyteller’s as-yet-incomplete TCU. But it was also shown that the spread of response 
times was remarkable including no small number of positive response times, that is, 
cases where laughter occurred with substantial delay. Investigating these deviant cases 
in due sequential detail would be a ‘must’ in any serious examination of laughter in 
storytelling.

13.4  Multimodal enhancement

Recent research into multimodality suggests that “gesture and speech form an inte-
grated system in language comprehension” (Kelly et al. 2010: 260) and that multimod-
ally enhanced communication facilitates information processing. This is evidenced 
by faster reaction times to combinations of speech and iconic gestures compared to 
speech-only (e.g., Holler et al. 2018). Unlike other types of gestures, such as deictic 
pointing, iconic gestures are “closely linked to the semantic contents of the speech that 
they accompany” (Holler et al. 2009: 74) by depicting aspects of what a speaker is ver-
bally referring to (Kendon 1986). However, (gestural) depiction and (verbal) descrip-
tion do not convey exactly the same information; rather a complimentary relationship 
obtains (Kendon 1986: 12; Dingemanse & Akita 2017: 519): iconic gestures provide “a 
visual representation of aspects of content that are not referred to in the verbal com-
ponent of the utterance” (Kendon 1986: 13). A large number of studies have addressed 
the question as to which of these gesture-specific meanings contribute most to effec-
tive communication (for references, see Holler et al. 2009). It appears that iconic ges-
tures are particularly effective at communicating information “about the size of objects 
and the relative position of objects with respect to one another” (Holler et al. 2009: 74, 
emphasis in original).

Visualizations of data in academic texts are the equivalent of iconic gestures in 
speech: the information they convey is, obviously, closely linked to the description in 
the text and yet they convey more than the words and they do it in a dfferent way. Infor-
mation is expressed differently because words organize it in a temporal linear order, 
whereas visualizations, just as iconic gestures, represent it “‘all at once’ or ‘globally’” 
(Kendon 1986: 9). What ‘more’ information visualizations convey is related to size and 
position. Barcharts, for example, depict size differences of count data in exact detail 
whereas descriptions resort to relative quantification such as ‘more than’ or ‘less than’ 
and vague qualifications such as ‘slightly’ or ‘massively’. Size as a graphical parameter 
is used not only for frequency differences but also to depict differences of continuous 
variables. For example, as seen in Chapter 7, dendrograms translate a distance matrix 
into branches of different sizes, with the size differences indicating different degrees 
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of dissimilarity. Position too is a key element in data visualization – just not physically 
locational position that we refer to in speech but metaphorical position. For example, 
positions in turns or sequences metaphorically refer to time points: the word in initial 
position in a turn is the temporally first word to occur, ‘adnominal this’ occurs ‘early’ 
in storytellings, while assessment tokens appear ‘late’ in the story. Just how early and, 
respectively, late is shown precisely, with the whole range of gradience laid out before 
the observer, for example, in stripcharts and violinplots, whereas words, restricted to 
discrete categories (such as ‘early’ or ‘late’), fail to convey the same precision.

So, visualizations in research excel at the same semantic categories as iconic ges-
tures in speech. And, as iconic gestures, visualizations boost comprehension thus con-
tributing to the research report’s communicative effectiveness.

13.5  To conclude

This book set out to demonstrate and teach the use of R, quantification, and visualiza-
tion for research on talk-in-interaction in conversation. Given this, perhaps unortho-
dox, combination, it may be the first of its kind. Given the combination’s considerable 
potential, it may not, and hopefully will not, be the last.
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