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Preface

For now we see through a glass darkly; but then face to face.
1st letter of Paul to the Corinthians, ch. 13, v. 12.

We count it a great privilege to be working in a field as exciting as
Vision. On the one hand there is all the satisfaction of making things that
work - of specifying, in mathematical terms, processes that handle visual
information and then using computers to bring that mathematics to life.
On the other hand there is a sense of awe (when time permits) at the sheer
intricacy of creation. Of course it is the Biological scientists who are right
in there; but computational studies, in seeking to define Visual processes in
mathematical language, have made it clear just how intrinsically complex
must be the chain of events that constitutes “seeing something”.

Our appreciation of Vision owes much to encouragement received from
other research workers. Very special mention must be made of John May-
hew and John Frisby who have been a continual source of enthusiasm and
insight. Bernard Buxton and Michael Brady have made many valuable
comments on our work. We are grateful for helpful discussions with Alan
Yuille, John Porril, Christopher Longuet-Higgins, John Canny and Chris
Taylor. We derived much benefit from the software expertise of Gavin Brel-
staff. Stephen Pollard and Chris Brown supplied many digitised images and
Olivier Faugeras supplied laser rangefinder data. For diligent proof-reading
we thank Fiona Blake, Michael Brady, Gavin Brelstaff, Robert Fisher, John
Hallam, Constantinos Marinos and David Willshaw. Finally, we gratefully
acknowledge the support of the Science and Engineering Research Council,
the Royal Society of London (for their IBM Research Fellowship for AB)
and the University of Edinburgh.





Chapter 1

Modelling Piecewise
Continuity

This is a book about the problem of vision. How is it that a torrent of
data from a television camera, or from biological visual receptors, can be
reduced to perceptions - the recognition of familiar objects and the concise
description of unfamiliar ones? There is of course an immense literature
in psychophysics1, neurophysiology and neuroanatomy that provides some
answers in the case of biological systems (see Uttal (1981) for a taxonomy).
For instance, the functioning of light-sensitive cells in mammalian vision is
understood in some detail (Marks et al. 1964); and the elegant, orderly, spa-
tial correspondence of feature detectors in the brain with the array of cells
in the retina, is well known (Hubel and Wiesel 1968). There has also been
much dialogue between psychophysics and neurophysiology/neuroanatomy.
Examples are the discovery of spatial bandpass channels (Campbell and
Robson 1968, Braddick et al. 1978), and understanding the perception of
coloured light (Livingstone and Hubel 1984, Jameson and Hurvich 1961)
and surface colour (Land 1983, Zeki 1983). These instances are but parts
of a very large body of knowledge of biological vision.

Over the last two decades, computers have introduced a new strand
into the study of vision. The earliest work (Roberts, 1965) produced sys-
tems able to recognise simple objects and manipulate them in a controlled
way (Ambler et al. 1975). These systems were, of course, vastly inferior
to the biological systems studied by the psychophysicists, neuroanatomists

1Psychophysics is the application of physical methods to the study of psychological
properties. Visual psychophysics typically probes the mechanisms of human vision by
noting a subject’s perception of specially designed patterns, under controlled experimen-
tal conditions.
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and neurophysiologists. They were rather slow, and very brittle. Nonethe-
less, the availability of computers affects the study of vision in three, very
important ways:

1. It provides a rich and precise language in which to express vi-
sual problems and processes. Marr distinguishes three levels at which
this is done (Marr 1982). At the top “computational theory” level, subtasks
are described in terms of their function in processing information. At the
next level a subtask, once specified, can be carried out by an appropriately
designed “algorithm” - a mathematical recipe. Finally, at the implementa-
tion level, any given algorithm might be “realised physically” on any of a
great variety of machines, which may be quite dissimilar in their internal
architecture, and of vastly differing computing power.

2. Discussion of vision problems can be isolated from design of
computing hardware. The beauty of the enriched language for specify-
ing subtasks is that a subtask can be discussed in isolation from the struc-
ture of the machine that is to perform it, whether biological or electronic. It
can be specified with mathematical precision, and the consequences of the
specification can be made inescapably plain by logical predictions. Ullman
(1979b), expanding Marr’s philosophy (Marr 1976a), puts it like this:

Underlying the computational theory of visual perception is the
notion that the human visual system can be viewed as a symbol-
manipulating system. The computation it supports is, at least
in part, the construction of useful descriptions of the visible
environment. An immediate consequence of this view is the dis-
tinction that can be drawn between the physical embodiment
of the symbols manipulated by the system on the one hand,
and the meaning of these symbols on the other. One can study,
in other words, the computation performed by the system al-
most independently of the physical mechanisms supporting the
computation.

Furthermore, task specifications can be tested in practice by executing an
algorithm that implements them, on a computer. All this has led to consid-
erable enrichment of studies of human vision (e.g. Marr and Poggio 1979,
Mayhew 1982, Hildreth 1984, Ullman 1979b, Koenderinck and van Doorn
1976).

3. Complete, though simple, vision systems can be built and
tested. The restriction to study the visual systems that nature has kindly
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provided is removed. It is possible to construct a system to test a particular
issue and to reach a theoretical understanding of the system’s behaviour.
One of the issues studied in this book is how different ways of modelling
the continuity of surfaces might affect the stability of their perception as
the viewer moves. This is as important to vision by machines as to human
vision - it is a generic problem in vision. Furthermore, computer vision
systems are now gaining maturity. They appear at last to be approaching
widespread practicability in industrial automation and robotics.

This book deals with vision as a computational problem. Little further
mention will be made of psychophysics or neurophysiology. But we hope
and believe that the new ways of modelling continuity presented here could
eventually have a bearing, not only on computer vision, but on biological
vision too.

1.1 What is Visual Reconstruction?

Visual Reconstruction will be defined as the process of

reducing visual data to stable descriptions.

“Visual data” comes in various forms, including:

• Raw intensity data direct from photoreceptors, in the form of an array
of numbers

• “Optic flow” - measures of velocities of points in an image, obtained
perhaps from a suitable spatio-temporal filter (e.g. Buxton and Bux-
ton 1983).

• A depth map, consisting of points embedded, usually sparsely, in
the viewer’s coordinate-frame. At each point, depth (distance from
the viewer) is known. Depth maps may be produced by stereopsis, in
which images obtained from two slightly different viewpoints (e.g. two
eyes) are compared and matched (Marr and Poggio 1979, Mayhew and
Frisby 1981, Baker 1981, Grimson 1981); triangulation is then used
to compute the depths. Alternatively depths may be obtained by
appropriate processing of optic flow (Bruss 1983) or, artificially, from
an optical rangefinder.

• Sets of discrete points making up curves in a 2D image, or in 3D
(“space-curves”).
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In each case, data must be reduced in quantity, with minimal loss of mean-
ingful content, if a concise, symbolic representation is to be attained. It
is not enough merely to achieve compression - for example by “run-length
encoding”, in which an array

{0, 0, 0, 0, 0, 4, 4, 4, 4, 4, 7, 7, 7, 7, 0, 0, 0}

is represented more briefly as

{0× 5, 4× 5, 7× 4, 0× 3}.

Rather, in any vision system that is to perform in a consistent manner, it
is necessary that the compressed form should be stable. This means that
it should be invariant to (undisturbed by) certain distortions or variations
that are likely to be encountered in the image-formation process. These
include:

• sampling grain, varying in density due to perspective effects or to
inhomogeneity of receptor spacing, as in the eye.

• optical blurring

• optical distortion and sensor noise

• rotation and translation in the image plane

• rotation in 3D (not including, at this point, occlusion effects in which
one surface obscures another)

• perspective distortions

• variation in photometric conditions (principally in illumination of the
visible scene)

Raw intensity data is affected by all these factors. Ultimately, invariance
to all of them must be achieved to produce descriptions of visible surfaces
that are, as far as possible, independent of imaging effects. For example,
the description of a particular surface patch should not change dramatically
if the image is gradually blurred by defocussing; rather it should “degrade
gracefully” (Marr 1982). Those blurred snapshots of the baby still look
more like a baby than, say, a table. As for 3D rotation invariance, it is
required for any system that works in real-time, so that viewed surfaces
appear stable as the viewer moves. Less obviously, for analysis of static
images, it is still necessary to achieve descriptions that are relatively inde-
pendent of viewpoint. All the factors mentioned above are relevant to the
particular reconstruction processes dealt with in this book.
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A prominent theme in following chapters will be continuity. In or-
der to reconstruct descriptions that are not only invariant, but also rela-
tively unambiguous, it is necessary to make simplifying assumptions about
the world. Assumptions of continuity underlie visual processes of different
kinds. Stereopsis is facilitated by constraints on the continuity of surfaces
(Marr 1982) and, in particular, by figural continuity - continuity along
curves and surface features (Mayhew and Frisby 1981). Analysis of opti-
cal flow also appears to require assumptions of continuity, either in regions
(Horn and Schunk 1981, Longuet-Higgins 1984) or along curves (Hildreth
1984). Computation of lightness, the perceptual correlate of surface re-
flectivity (i.e. surface colour), needs constraints on continuity both of the
reflectivity itself, and of the incident illumination (Land 1983).

It is clearly unreasonable, in each of these cases, to assume unremitting,
global continuity. Depth, optical flow and surface colour all undergo some
sudden changes across a scene. It is natural to think of them as continuous
in patches. Marr (1982) used the term “continuous almost everywhere”.
This is not the same as “piecewise continuous” in the mathematical sense,
for there is the additional expectation that “the fewer pieces the better”.
To put it another way, simple descriptions are best, and fewer pieces make
simpler descriptions. The challenge, then, is to reach a satisfactory formal-
isation of “continuity almost everywhere”. We do that here by borrowing
the idea of a “weak constraint” - a constraint that can be broken occasion-
ally - from Hinton (Hinton 1978). With an appropriate class of continuous
surface patches, this leads to “weak continuity constraints” (Blake 1983b)
- preferring continuity, but grudgingly allowing occasional discontinuities if
that makes for a simpler overall description.

Another important theme emerges later in the book - cooperativity.
Whereas the “weak continuity constraint” belongs at Marr’s “computa-
tional theory” level, cooperativity is an algorithmic property. A cooperative
process is a computation performed in parallel by a network of independent
processing cells. Each cell is connected to just a few of its neighbours, and
continually computes some function of its own state, its own input signal,
and signals received from its neighbours. The attraction is that rapid com-
putation is achievable, not only by using fast cells, but by using many cells
in a large network, all sharing the computational load. The remarkable
property of cooperative processes, well known in mathematics and in phys-
ical modelling, is this: despite the purely local connectivity of the cells,
the network can perform global computations. It is clear that messages
could pass between successive neighbours and so propagate across the net-
work. What is more surprising is that propagation can be coordinated,
unhindered by collisions between messages, to achieve a useful effect.
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Networks of this kind have received much attention in theories of Psy-
chophysics (e.g. Julesz 1971, Marr 1976b) Cognitive Science (e.g. Hinton
and Sejnowski 1983, Hopfield 1984), Pattern Recognition (e.g. Rosenfeld
et al. 1976) and Computer Science (e.g. Brookes et al. 1984, Milner 1980).
In vision, there have been cooperative algorithms for optical flow computa-
tion (Horn and Schunk 1981), analysis of shading (Woodham 1977, Ikeuchi
and Horn 1981), analysis of motion (Ullman 1979a), computation of light-
ness (Horn 1974, Blake 1985c) and reconstruction of stereoscopically viewed
surfaces (Grimson 1981, Terzopoulos 1983). The implementation of weak
continuity constraints can be achieved very naturally too, we shall see, by
cooperative networks.

1.2 Continuity and cooperativity

1.2.1 Cooperativity in physical models

Two physical examples will help to provide a more concrete insight into
basic properties of cooperative computations.

The first (figure 1.1) is an elastic sheet - a soap film for instance -

Figure 1.1: A physical example of cooperative computation. A wire

frame (a) is covered by an elastic sheet (b). The shape that the sheet assumes

can be calculated by an array of locally connected cells.

stretched over a wire frame. The sheet takes up a minimum energy con-
figuration, which happens to be a solution of Laplace’s equation2. This
configuration can be computed in a local-parallel fashion, in what is called

2Strictly, the solution of Laplace’s equation approximates to the minimum energy
configuration.
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a “relaxation algorithm”. The shape taken up by the sheet is represented by
its height at each point on a rectangular grid. Initially some rough estimate
of those heights is made. The following local computation is then done, re-
peatedly, at each grid point: its height value is replaced by the average of
the values at the four neighbouring positions. While this is going on, the
heights of points on the wire frame itself remain fixed (a “boundary con-
dition” for the cooperative process). Imagine simple computational cells,
whose sole function is to accept signals from four neighbours and output
their average. They repeat this perpetually. The result is that the influence
of the wire frame propagates inwards on the sheet, until finally the sheet
comes to rest at its true equilibrium position.

Several general properties of cooperativity are illustrated here:

Propagation - in this case from the boundary to the interior. Propa-
gation can also occur, in certain systems, over shorter ranges, more like
pressing on a mattress to produce a dent in the region of the hand. The
extent of the dent depends on how elastic the mattress is. Truly global
propagation (as on the soap film) occurs in visual processes - the computa-
tion of lightness is an example. Propagation over a restricted range (as on
the mattress) is what occurs when weak continuity constraints are in force.

Local interaction: cells communicate only with their immediate neigh-
bours.

Parallelism: the cells compute continuously, and independently except
for the exchange of signals with neighbours.

Energy minimisation: the relaxation algorithm progressively reduces
the elastic energy of the sheet, until equilibrium is reached.

The second physical example is one proposed by Julesz (Julesz 1971) as
a model for stereoscopic vision, and is known in physics as an Ising model.
Magnetic dipoles arranged on pivots (figure 1.2) interact with one another
in such a way that they prefer to align with their neighbours. Springs on
the magnets tend to return them to their natural orientations. The angles
of the magnets take the place, here, of the heights in the example of figure
1.1. In just the same way, the stable states of the system of magnets can be
computed cooperatively. But there is an important difference. There are
not one, but many stable states. Whereas the elastic sheet always returns,
after a deflection, to the same equilibrium position, the system of magnets
can flip from one stable state to another. A stable state will usually consist
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Figure 1.2: A more complex example of cooperativity. Bar magnets, ar-

ranged on a grid, tend to align with one another, but are also subject to restoring

forces from the springs around their pivots.

of a patchwork of regions (“domains”) each containing magnets of similar
orientation. Orientation changes abruptly across domain boundaries. The
size of the domains is determined by the strength of the magnetic interac-
tion, compared with the strength of the springs: the stronger the magnetic
force, the larger the domains tend to be. And all this is very much how a
system behaves under weak continuity constraints - regions of continuous
variation, with abrupt changes at boundaries.

1.2.2 Regression

Visual reconstruction processes of the sort discussed in this book are founded
on least-squares regression. In its simplest form, regression can be used to
choose the “best” straight line through a set of points on a graph. More
complex curves may be fitted - quadratic, cubic or higher order polynomials.
More versatile still are splines (de Boor 1978) - sequences of polynomials
joined smoothly together. There is an interesting connection between cubic
splines and elastic systems like the sheet in figure 1.1 (Poggio et al. 1984,
Terzopoulos 1986). A flexible rod, such as draughtsmen commonly use to
draw smooth curves is an elastic system. If it is loaded or clamped at sev-
eral points, it takes up a shape - its minimum energy configuration - which
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is in fact a cubic spline3 (figure 1.3a). Each load-point forms a “knot” in

Figure 1.3: A flexible rod, under load, forms a spline. (a) A continuous

spline. (b) A spline with crease and step discontinuities, controlled by multiple

knots.

the spline, where one cubic polynomial is smoothly joined to the next. So
spline fitting can be thought of in terms of minimising an elastic energy -
the energy of a flexible rod.

Yet a further generalisation of regression, and the most important one
for visual reconstruction, is to include discontinuities in the fitted curve.
In spline jargon, these are “multiple knots”, generating kinks (“crease”
discontinuities) or cutting the curve altogether (“step” discontinuities) as
in figure 1.3b. Incorporation of multiple knots, if it is known exactly where
along the curve the discontinuities are, is standard spline technology. A
more interesting problem is one in which the positions of discontinuities
are not known in advance. In that case, positioning of multiple knots
must be done automatically. An algorithm to do that might consist of
constructing an initial spline fit, and then adding knots until the regression
error measure reached an acceptably small value (Plass and Stone 1983).
This would ensure a spline that closely fitted the data points.

For visual reconstruction that is not enough. The requirement for sta-
bility has already been discussed, which means that the multiple knots must
occur in “canonical” (natural) positions, robust to small perturbations of
the data and to the distortions and transformation listed earlier. Only then
are they truly and reliably descriptive of the data.

The stability requirement is met by imposing weak continuity con-
straints on an elastic system like the rod. Leaving the details to later
chapters, it is sufficient for now to draw on the magnetic dipole system
as an analogy. Typically, it has many locally stable states with groups of
dipoles of various sizes, aligned in various directions. Among these states,

3Again, this is an approximation.
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there is a ground state, the state of lowest energy. As energy is reduced,
the system is liable to stick in a locally stable state, before the ground state
is reached. Similarly, an elastic material under weak continuity constraints
has a ground state - its favourite configuration - which is usually very sta-
ble. A spline, for example, may have its knots arranged so as to reach its
ground state, forming (by definition!) the best, stable description of the
data.

Finding the ground state is a problem. Procedures for direct improve-
ment of knot positions (Pavlidis 1977) are prone to be caught in a state
other than the ground-state. But provided the system can be jostled or
drawn into the ground state, the positions of discontinuities will be stable
in the required manner. And this is precisely what is achieved by certain
statistical algorithms (Kirkpatrick et al. 1982, Geman and Geman 1984),
and the deterministic “Graduated Non-convexity” (GNC) algorithm, pro-
posed in this book. Some examples of the operation of the GNC algorithm,
reconstructing various kinds of visual data, are shown in the next chapter.
A definition of the algorithm itself, however, must be delayed until chapter
3.

1.2.3 Cooperative networks that make decisions

Visual reconstruction must be more than linear filtering if it is to generate
usable features for subsequent visual processes. At some point there must
be an element of commitment; decisions must be made - either a feature is
present or it is not. In particular, in visual reconstruction, it is necessary
repeatedly to decide whether or not a discontinuity is present in a particular
location. An example should clarify the distinction between mere linear
filtering and feature detection. Consider the task of locating a thin, bright
bar in an image. A suitable linear filter could be found which transforms
an image into a new image, in which such bars, or their edges, stand out
even more brightly. This is not enough. A vision system must make a
decision at some point - either there is a bar (in a certain location) or there
isn’t. Rather than being simply “enhanced”, bars must be “labelled”. An
elegant example due to Poggio and Reichardt (1976) illustrated a similar
point. They showed that even so simple a function as detecting the direction
of local motion cannot be achieved by any linear system4.

So purely linear systems are inadequate for visual reconstruction. There
must be some non-linearity, even if it is just a thresholding operation. This
is what occurs in the Perceptron (Rosenblatt 1962, Minsky and Papert
1969), a simple, neuron-like switching element that computes a weighted

4A linear system is one that simply outputs a weighted sum of its inputs.
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sum of its inputs, and produces the output 1 or 0, according to whether
the sum exceeds some threshold. Similarly, in the computation of lightness
(Land 1983), thresholding (used to detect edges in the conventional manner)
is an adequate form of non-linearity.

Generally, any network that makes decisions cannot be entirely linear.
Suppose the network acts to minimise an energy F (x,y), where x is a vector
of inputs to the network, and y is the vector of outputs. Then the output is
defined (not necessarily uniquely) as that vector y which minimises F (x,y)
- for a given, fixed x. If F were a quadratic polynomial in the variables x,
y then y would be a linear function of x - the solution of the linear system

∂F/∂y = 0.

It has already been said that a linear system cannot make decisions5. In fact
it cannot make decisions as long as F is both “strictly convex” and smooth
(differentiable in the variables x, y). In that case, the minimum always
exists, and every input/output pair x, y is a “Morse point” of the function
F (Poston and Stewart 1978) which means that y varies continuously with
x. There is no discontinuous or sudden or catastrophic switching behaviour.

We know now that the energy function F for any system under weak con-
tinuity constraints must be either undifferentiable or non-convex or both.
This is illustrated in figure 1.4.

1.2.4 Local interaction in models of continuity

Geman and Geman (1984) have forged an elegant link, via statistical me-
chanics, between mechanical systems like the soap film or splines, and prob-
ability theory. They have shown, in effect, that signal estimation by least
squares fitting of splines is exactly the right way to behave if you have
certain a priori probabilistic beliefs about the world in which the signal
originated. Specifically, the beliefs are: that the signal - the one that is
being estimated - is sampled from a “Markov Random Field” (MRF) and
that Gaussian noise was added, in the process of generating the data.

What exactly is an MRF? It is a probabilistic process in which all in-
teraction is local; the probability that a cell is in a given state is entirely
determined by probabilities for states of neighbouring cells. An example
based on one given by Besag (1974) illustrates this. Imagine a field full of
cabbages, planted by a very methodical farmer on a precise, square grid.
(A hexagonal grid would, of course, have given better packing density, but
his ageing tractor runs best in straight lines.) Unfortunately, an outbreak

5This assumes that the system is unconstrained.
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Figure 1.4: A smooth, convex energy function cannot cause discon-

tinuous behaviour. The cart’s position is a continuous function of the hand’s

position in (a), but jerky motion occurs in (b) and (c).
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of CMV (Cabbage Mosaic Virus), which is particularly virulent when cab-
bages are arranged in a regular tesselation, has afflicted his crop. At a
certain stage in the progress of the disease, its spread can be characterised
as follows. The probability that any given cabbage has the disease depends
entirely on the probability of disease of its four immediate neighbours. This
is because the disease passes, with a certain probability, from neighbour to
neighbour.

Qualitatively, the spread of the disease has much in common with the
soap film example given earlier. In both cases, direct interaction occurs
only between immediate neighbours. But global effects can still occur as a
result of propagation. Just as the position of the wire frame influences the
position of the interior of the soap film, so the introduction of disease at
the edge of the field can spread, from neighbour to neighbour, towards the
middle.

Formally, what Geman and Geman show is that elastic systems can also
be considered from a probabilistic point of view. The link between spline
energy E and probability Π is that

Π ∝ e−E/T (1.1)

(T is a constant). The lower the energy of a particular signal (that was
generated by a particular MRF), the more likely it is to occur. Highly
deformed elastic sheets have high energy and are intrinsically “unlikely” to
occur. What is more, weak continuity constraints can also be understood in
probabilistic terms: they are consistent with the belief that there is a “line-
process”, also an MRF but not directly observable in the data, determining
the positions of discontinuities.

It comes as something of a shock, when happily using splines as a very
natural, mechanical model for smooth, physical surfaces, to find that this
is inescapably equivalent to making certain probabilistic assumptions! The
most disturbing thing is that one is forced to accept that the surface model
is a probabilistic one, and therefore includes an element of randomness.
This may be appropriate for modelling texture (Derin and Cole 1986), but
in a model of smooth surfaces it has rather counter-intuitive consequences,
illustrated in figure 1.5. A “1st order” MRF6, for instance, ranks a noisy
but horizontal plane more probable than a smooth inclined one. This is
because the 1st order MRF is sensitive only to gradients. Later in the
book, this “gradient limit” problem is discussed in some detail. It can be
cured by moving to 2nd order, but then it just recurs in a different form, as

61st order, here, means that direct interaction occurs only between immediate neigh-
bours; 2nd order means that there is direct interaction between neighbours separated by
2 steps.
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Figure 1.5: MRF models of surfaces can be somewhat

counter-intuitive. A smooth but inclined or curved surface may have a lower

MRF probability than a rough, noisy one.
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in the figure. It is not clear what order of MRF would be sufficiently high to
avoid the problem, if any. In any case, the higher the order, the greater the
range of interaction between cells, and the more intractable the problem of
signal estimation becomes. In practice, anything above 1st order is more
or less computationally infeasible, as later chapters will show. What the
probabilistic viewpoint makes quite clear, therefore, is that a spline under
weak continuity constraints (or the equivalent MRF) is not quite the right
model. But it is the best that is available at the moment.

As for choosing between mechanical and probabilistic points of analo-
gies, we are of the opinion that the mechanical one is the more natural
for representation of a priori knowledge about visible surfaces, or about
distributions of visual quantities such as intensity, reflectance, optic flow
and curve orientation. The justification of this claim must be left, however,
until the concluding chapter. In the meantime, this book pursues Visual
Reconstruction from the mechanical viewpoint.

1.3 Organisation of the book

Throughout the book, even in later chapters which are more technical, our
aim has been to avoid obstructing the text with undue mathematical detail.
Longer mathematical arguments are delayed until the appendix.

Chapter 2. Examples are given, with copious illustrations, of the appli-
cations of weak continuity constraints in Visual Reconstruction. Problems
discussed include edge detection (analysis of variations in image intensity),
stereoscopic vision, passive rangefinding and describing curves. This chap-
ter is free of mathematical discussion; it should be easily accessible to most
readers.

Chapter 3. The simplest possible discontinuity detection scheme is de-
scribed - detecting step discontinuities in 1D data, using a “weak string”.
The idea of a weak continuity constraint is expanded. A simple algorithm,
using Graduated Non-convexity (GNC), is described. There is some math-
ematics in this chapter, but nothing too difficult.

Chapter 4. The theoretical properties of the weak string and its 2D ana-
logue, the “weak membrane”, are discussed in some detail. Application
of variational calculus enables exact solutions to be obtained for certain
data - for example step edges and ramps. These solutions, in turn, enable
the two parameters in the weak string/membrane energy to be interpreted.
Far from being arbitrary, in need of unprincipled tweaking, they have clear
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roles in determining scale, sensitivity and resistance to noise. Moreover, it
is shown that, under weak continuity constraints, the positions of discon-
tinuities are localised with impressive accuracy. In 2D, the geometry and
topology (connectivity) of discontinuities is faithfully preserved - something
that, it seems, cannot be achieved by more conventional means.

Chapter 5. The “weak rod” and the “weak plate” are even more powerful
means of detecting discontinuities. (“Creases” can be detected, as well as
“steps”.) Analytical results can again be obtained for certain cases and, as
before, lead to an interpretation of parameters in the energy.

Chapter 6. So far, energy minimisation has been treated as a variational
problem. For computational purposes it must be made discrete. This
is done using “finite elements”, together with “line-variables” to handle
discontinuities. Existing minimisation algorithms are reviewed.

Chapter 7. The effectiveness of the GNC algorithm is explained. For a
substantial class of signals (step discontinuities in noise), it is shown that
GNC produces precisely the correct optimal solution.

Some details of designing GNC algorithms for weak membrane and plate
are given. In particular, it is necessary to approximate a non-convex energy
by a convex function. We explain how this is done. Both serial and parallel
algorithms are dealt with, together with a full discussion of convergence
properties.

Chapter 8. Some conclusions and open questions.

Appendix. The appendix contains a substantial body of work support-
ing, in particular, variational analysis (appendix A,B,C) and analysis of the
GNC algorithm (appendix D,E).



Chapter 2

Applications of Piecewise
Continuous
Reconstruction

In practical terms, the application of weak continuity constraints, by means
of the GNC algorithm, constitutes a powerful class of filters. Their power
lies in their ability to detect discontinuities and localise them accurately
and stably. This is an important property for visual reconstruction tasks,
as this chapter seeks to illustrate.

A conventional means of finding discontinuities would be to blur the
signal, and then look for features such as points of steepest gradient (fig-
ure 2.1). Unfortunately, the blurring, whilst having the beneficial effect of
removing noise, also distorts the data. This can result in substantial error
in the positions of marked discontinuities. The weak string, however, pre-
serves discontinuities without any prior information about their existence
or location. They are localised accurately, even in the presence of substan-
tial noise, and when the effective spatial scale of the filter is large. This is
illustrated in figure 2.2.

The weak rod has the capabilities of the weak string, and some more
besides. A string resists stretching, whereas a rod also resists bending. This
means that it tends to be continuous, and also to have a continuous gra-
dient. Weak constraints can therefore be applied to continuity both of the
signal, and of its derivative. Broken constraints mark “steps” and “creases”
respectively (figure 2.3). Fitting a weak rod in a single computational pro-
cess is possible in principle, and has been achieved in practice. But it is
far more efficient to split the computation into two stages. The first stage
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Figure 2.1: Conventional edge detection for locating discontinuities.

Signal (a) is blurred (b) to remove noise, and then points of greatest slope are

labelled as positions of discontinuities. But blurring distortion causes errors in

those positions.

is just to apply the weak string as before, detecting steps, and producing a
smooth reconstruction. The second stage detects creases, as in figure 2.3.

The string and rod also have analogues, the membrane and plate, which
filter 2D data. The family of 1D and 2D filters has important application
in vision. Four “canonical” visual reconstruction processes have been im-
plemented using one or more of the filters. They are

• detection of discontinuities in intensity

• segmentation of ‘sparse’ range data (stereoscopic reconstruction)

• segmentation of ‘dense’ range data (reconstruction from optical
rangefinder data)

• description of curves in images

2.1 Detecting discontinuities in intensity

Many methods have been proposed for detecting discontinuities (edges) in
(2D) intensity data. Step discontinuities in intensity are important because
they mark sudden changes in the visible surfaces. For instance, where one
surface ends and another begins (e.g. the roof of the van and the wall
behind, in figure 2.4) there is a sudden change in intensity. This is an “oc-
cluding” boundary, where one surface obscures another. Similarly a crease
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Figure 2.2: The weak string is a discontinuity preserving filter for

one-dimensional data. Original data (a). Data immersed in noise (b). The

signal-to-noise ratio is approximately 1. The weak string works by producing a

reconstruction (c) in which discontinuities are preserved, without blurring, and

accurately localized.
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Figure 2.3: The weak rod detects “steps” and “creases”. Signal (a) in

noise (b). Signal-to-noise ratio is 10:1. First the weak string reconstruction labels

step discontinuities (c), as before. This is differentiated (d) (within continuous

pieces) and a second reconstruction stage recovers discontinuities (e), correctly

marking creases in the original data (f).
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in a smooth surface (e.g. an edge of a cube) generates a discontinuity in
intensity. Such a crease is called a “connect” edge. Finally, where a surface
suddenly changes colour, there is again a discontinuity in intensity. Hav-
ing located discontinuities, it may also be useful to organise them further
- for example by noting “bar” features (e.g. a thin white stripe on a dark
background), consisting of two parallel discontinuities, back-to-back.

There are basically three kinds of filter for labelling discontinuities.
Those of the first kind use blurring (linear filtering), naturally extending
to 2D the use of blurring that we have already seen in 1D (Haralick 1980,
Canny 1983, Marr and Hildreth 1980). The second kind use regression to fit
step-shaped templates, locally, to intensity data (Hueckel 1971, O’Gorman
1978, Leclerc 1985, Gennert 1986). Where the template fits well, there must
be a step discontinuity in the data. The third kind, also uses regression,
but acts globally across the data, without the need for arbitrarily choice of
neighbourhoods in which template fitting can take place. Elastic surfaces
under weak continuity constraints are of the third kind. They act glob-
ally, by propagation, as we saw earlier. Global schemes of this sort have
recently attracted much interest both in Vision and in Image Processing
(Blake 1983a,b, Geman and Geman 1984, Mumford and Shah 1985, Blake
and Zisserman 1985a, Smith et al. 1983, Burch et al. 1983).

The results of edge detection by fitting a weak membrane (that is, an
elastic membrane under weak continuity constraints) are shown in figures
2.4 and 2.5.

As in 1D (the weak string), discontinuities are localised accurately. This
is especially significant in large amplitude noise which, if noise is to be ef-
fectively suppressed, calls for the use of large filters, which necessarily blur
on a large scale. Linear filters, under these conditions, make significant
systematic errors in localisation of discontinuities: corners are rounded,
T-junctions are disconnected, and displacements occur near intensity gra-
dients. The magnitude of these errors is of the order of the spatial scale
of the filter. Such problems are avoided when weak continuity constraints
are used, as shown in figure 2.6. The weak membrane also has an intrinsic
tendency to produce the shortest possible discontinuity contours consistent
with the data. This has the effect of producing edges that are smooth
curves.

2.2 Surface reconstruction

Stereo image pairs can be matched to generate sparsely distributed points
of known depth, rather like the spot heights on a topographical map. It
may be useful to produce a dense depth map from that data, filling in
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Figure 2.4: The weak membrane as an edge detector. The image in (a)

and its discontinuities (b). Reconstructed intensity (c) is the filtered version of

(a), preserving the discontinuities marked in (b). Both (b) and (c) are produced

simultaneously by the weak membrane.
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Figure 2.5: Edge detection again: (a), (b) and (c) as in figure 2.4.
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Figure 2.6: Localisation accuracy. A “Mondrian” test image (a) includ-

ing noise and intensity gradients. Discontinuities found by marking points of

maximum gradient, after linear (directional gaussian) filtering show considerable

distortion (b). This is not present in the fitted weak membrane (c). (Comparable

operator scales were used in (b) and (c).)
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between the sparse points. Algorithms to do this were first proposed by
Grimson (1981), and developed further by Terzopoulos (1983). But the
main purpose of producing a depth map, this book argues, is to mark
discontinuities in the visible surface. They may either be steps or creases,
corresponding either to occlusions in the visible surface, or to connect edges
(discontinuities of surface orientation). Both types can be recovered by
applying weak continuity constraints to a suitable elastic sheet, which is
then attached by springs to the sparse depth points.

2.2.1 Grimson’s method

Grimson’s algorithm produces an explicit representation of the visible sur-
face, as a depth map. This is an encoding of depth z (distance from the
viewer) as a function of image coordinates x, y, at each point on a fine grid
(as in figure 1.1). Imagine that the wire frame in figure 1.1a is the bound-
ary of some surface patch. The boundary appears in left and right views,
and can be stereoscopically matched to obtain depth. So the position and
shape of the boundary curve, in 3D space, is known. Assume, furthermore,
that within the boundary curve, over the surface patch itself, no features
are visible. There are no discontinuities in intensity. Grimson’s “no news is
good news” constraint can be invoked: the surface patch must be smooth.
The question is, therefore, what smooth surface would fit inside the bound-
ary curve? Of course there are many possibilities. A plausible one is that
formed by a membrane, tacked onto the wire frame. Still better than a
membrane, which is prone to creasing, would be a thin plate which bends
but cannot crease. This is what Grimson proposes. It remains to describe
the algorithm which actually computes the shape of a plate, welded onto a
given piece of wire (see chapter 6). Suffice it to say, for the present, that
it is an elaboration of the simple “relaxation” algorithm, described earlier,
that computes the shape of a soap film by repeated averaging.

2.2.2 Terzopoulos’ method

Terzopulos extended Grimson’s method in various ways. The most signif-
icant was the impressive improvement in efficiency gained by “multi-grid”
techniques (see chapter 6). He also began to consider the effects of sur-
face discontinuities on reconstruction. Suppose it were known (somehow),
before reconstruction began, that the surface to be reconstructed was not
entirely continuous as Grimson supposed, but discontinuous along a cer-
tain, known line. The thin plate could be arranged to break along that
line. Similarly if the surface were known to be creased along a certain line,
a thin strip of membrane could be sewn into the plate (figure 2.7). (We
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have found that the more direct strategy of building a “hinge” into the
plate also works well.)

Figure 2.7: Creases in reconstruction. Data (a) contains two planes joined

at a crease. A thin plate cannot crease (b) without a special modification. For

instance a thin strip of membrane can be “sewn in” (c).

The real problem, the major concern of this book, is to find surface
discontinuities when they are not already known to exist. Terzopoulos pro-
posed looking for points of high stress in a plate, indicating that stereoscopic
data is “trying” to break it. This can be shown, formally, to be equivalent
to applying a linear filter and picking out points of steepest gradient - just
as with discontinuities of intensity. In fact computation can be saved by
using a membrane (cheaper than a plate) to fill in the sparse depth data,
followed by conventional linear filtering (McLauchlan et al. 1987). But
as with any method based on linear filtering, accuracy is spoilt by blur-
ring distortion. This drawback can be avoided by using weak continuity
constraints.

2.2.3 Why reconstruct a surface anyway?

We argue that the usefulness of explicit reconstruction (generating a depth-
map) is somewhat restricted:

Explicit reconstruction is applicable to textured surface patches
only, with the primary purpose of detecting step and crease
discontinuities.

Effective application of reconstruction therefore presupposes prior detection
of texture, and control of focus of attention, to restrict computation to
appropriate image areas. There are several reasons for advancing this view.
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Ambiguity Reconstruction of untextured, smooth surfaces presents a se-
vere ambiguity problem. A given circle in space, for instance, could be
the boundary of any one of infinitely many smooth patches (figure 2.8).
Grimson/Terzopoulos thin plate reconstruction would plump for a disc.

Figure 2.8: Ambiguity in surface reconstruction.

This dangerously eliminates all the other possibilities - a violation of Marr’s
principle of “least commitment” (Marr 1982).

In fact the shape of the boundary curve, plus the smoothness constraint,
constitute the best available description of the surface patch. There is lit-
tle further to be deduced about the shape of the patch. This is nothing
to be ashamed of - descriptions of this sort are already a powerful handle
for matching visible surfaces to one another (Pollard et al. 1987) and to
stored models (Brooks 1981). New sources of information, such as analysis
of surface shading, might add usefully to such descriptions - but that possi-
bility must be left for discussion elsewhere (Ikeuchi and Horn 1981, Ikeuchi
1983, Blake et al. 1985d). And, of course, if the surface is visibly textured
the shape ambiguity is resolved by stereoscopic vision, because the texture
elements constitute features that can be stereoscopically matched.

Texture masking of monocular features Texture aids stereoscopic
vision - but impedes monocular vision. It masks the intensity discontinu-
ities generated by surface features (occluding edges etc.). Imagine walking
down carpeted stairs. The front of each step is an occluding edge, giving
rise to a discontinuity in intensity, but mixed up with intensity changes due
to the texture of the carpet. Monocularly, the occluding edge is difficult to
pick out. (A picture illustrates this shortly). Stereoscopically, however, the
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sudden change in depth at the occluding edge, falling off one step onto the
next, is quite unambiguous. (Motion parallax similarly facilitates percep-
tion of occluding edges (Longuet-Higgins and Prazdny 1980)).

2.2.4 Surface descriptions

There are two distinct types of usage of information about visible surfaces:
reasoning about visible objects, and path planning or collision avoidance.
In the first, the goal is to match visible surfaces to one another, or to stored
object-descriptions. The second concerns the “mapping out” of a world in
which many objects are unknown; it imposes weaker requirements on visual
processing than the first: it is not necessary to identify the vase on the table
as a precious Chinese porcelain merely to avoid knocking it off. It is enough
to know that it occupies a certain portion of space.

Different descriptions are appropriate in each case. For reasoning about
objects, an adequate description might consist of the shapes and positions
of occluding and connect edges and compact descriptions of the shapes of
smooth patches, together with other features such as colour and texture
quality. The cumbersome depth-map has no place here. In this context
it is merely a means to an end, the end of recovering monocularly masked
features.

It is less clear what is the best form of description for path-planning
and collision avoidance. A depth-map may be useful for computing the
point of collision of a given path in space, with the visible surface. Greater
efficiency is achieved, though, if the visible surface can be “protected” by a
bounding polygon, computed directly from sparse depths (Boissonat 1984),
without the use of an intermediate depth map.

The point is that direct applications for depth maps, as descriptions of
visible surfaces, are at best limited and at worst, perhaps, non-existent.

2.2.5 Localising discontinuities

Incorporation of discontinuities into the reconstructed surface by means of
weak continuity constraints was originally suggested in (Blake 1983a). Such
ideas have recently been developed from (Geman and Geman 1984) by Mar-
roquin (1984). Alternative approaches have been suggested by Grimson and
Pavlidis (1985) and Terzopoulos (1985). The special problems presented by
the fact that stereoscopic data is sparse are discussed fully in chapters 4
and 7.

Fitting a weak membrane to sparse depth data is illustrated in figure
2.9, and for a real image in figures 2.10 and 2.11.
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Figure 2.9: Fitting a membrane to sparse depth data. Artificially gener-

ated, sparse depth data (a) in which displayed grey-level encodes depth, contains

a sequence of layers, like a wedding cake viewed from above. After fitting with a

weak membrane, the piecewise continuous surface is recovered (b), together with

discontinuities between layers.

A weak membrane is sufficient for labelling occluding edges only; they
appear as tears in the membrane. To detect connect edges as well, a thin
plate must be used, capable both of tearing and of buckling. An example
of the application of a weak plate to stereoscopic images is given in figure
2.12.

2.3 Surface reconstruction from dense range
data

Optical range-finders produce raw arrays of depth values. These require
organisation before they are usable for path-planning and collision avoid-
ance, or for matching to object models. It is desirable to make explicit the
discontinuities in depth and its derivative; they correspond to occlusions
and creases between surfaces in the scene. This is quite like the problem of
detecting discontinuities of intensity. But, in addition, invariance to change
of viewpoint (Blake 1984) must be ensured, in order to maintain stability
under viewer motion. This would be of crucial importance in a real time
system, but is important even for analysis of single frames, if surface de-
scriptions are to be robust.

Figure 2.13 shows the results of fitting a plate to laser rangefinder data,
under weak continuity constraints. A weak plate is used (rather than a weak
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Figure 2.10: Weak membrane reconstruction of real stereo data. A

stereo pair (a) of a foam block, with a step discontinuity across the middle, that

is all but invisible monocularly. Stereo correspondence using a state-of-the-art

matching algorithm (Pollard et al. 1985) produces depths along sparse contours

(b). The reconstructed surface is shown with its contour of discontinuity (c).
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Figure 2.11: Isometric plots of the stereoscopic data from figure 2.10b and the

reconstructed surface in figure 2.10c.
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Figure 2.12: Applying a weak plate to sparse, stereoscopic depths.

(a) Stereo image-pair. (b) Stereoscopically matched features. Both steps and

creases are recovered by the plate (c), shown superimposed on the reconstructed,

dense depth-map. Creases are marked as thin white lines, whilst steps are marked

as thick, black lines. A few spurious creases have been generated as a result of

“ghost” matches in the stereoscopically viewed texture.
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Figure 2.13: Fitting a weak plate to a laser rangefinder depth-map.

The depth map (a) is of a telephone handset. Both steps and creases are recovered

by the plate (b), giving a piecewise smooth approximation to the data. (Creases

are marked as white lines, whilst steps are marked as black lines.)

membrane) so that both step and crease discontinuities can be recovered.

2.4 Curve description

At an early stage of visual processing, descriptions of the shape and connec-
tivity of curves are needed. For example, connect and occluding edges, ob-
tained by surface reconstruction, are unorganised. They are simply chains
of points arranged on a grid. The chains must be aggregated to form com-
pact, stable descriptions, consisting of the positions of corners, junctions
and curve endings, together with the approximate shape of smooth curve
segments.

Discontinuities again have a primary role. Commonly, a curve is con-
verted to tangent angle/arc-length (θ, s) form, and filtered to detect cor-
ners (step discontinuities in θ) and possibly also curvature discontinuities
(Perkins 1978, Asada and Brady 1986, Ramer 1975, Zucker et al. 1977,
Zucker 1982, Blake et al. 1986a). This may be done at a variety of spatial
scales in order to obtain both coarse and fine views of the curve’s shape.
Corners, for instance, appear as step discontinuities in tangent angle θ.
Sharp corners look discontinuous at all scales, but rounded ones only at
coarse scale. Just as with discontinuities in intensity and in visible surfaces,
discontinuities in tangent angle can be detected by linear filtering, followed
by labelling of gradient maxima. But again, blurring distortion causes lo-
calisation errors which are avoided when weak continuity constraints are
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used instead.
In figure 2.14 a simple hand drawn curve is shown. Corners have been

detected by fitting a weak elastic string to the (θ, s) data. Results at a vari-
ety of scales are plotted in “scale-space” (figure 2.14d). Note the remarkably
uniform structure of the scale-space - this agrees with theoretical predic-
tions. Uniformity has the advantage that tracking features in scale-space
becomes trivial. Tracking is essential to maintain correct correspondence
between features at coarse and fine scales. But under linear filters such as
the gaussian and its derivatives, complex structure arises, which is difficult
to track and harder still to interpret (Asada and Brady 1986, Witkin 1983).
A weak string scale-space for a silhouette taken from a real image, is shown

Figure 2.14: Scale-space filtering. The hand drawn curve (a) segmented

at coarse scale (b) and reconstructed by fitting arcs between discontinuities (c).

When weak elastic strings are fitted at a variety of spatial scales, the disconti-

nuities trace out a uniform “fingerprint” (straight vertical lines) in “scale-space”

(d). Notice that, as expected, the fingerprint of the small notch on the curve

appears only at small scales; the rounded corner’s fingerprint appears only at

large scales.
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in figure 2.15.
The weak string curve filter, in addition to running on clean, isolated

curves as in figures 2.14, 2.15, can also operate on edges embedded in an
image. This is shown in figures 2.16 and 2.17. A simple linear filter runs
along the edges, estimating local tangent angles. The weak string is then
applied to the “graph” of edges, just as they are, embedded in the image.
Corners show up as discontinuities of tangent angle as before. In addition,
T-junctions generate 3-way discontinuities (continuous tangent angle along
the crossbar, but discontinuous at the top of the downstroke). At a Y-
junction, tangent angles on all 3 arms are discontinuous.
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Figure 2.15: Weak string scale-space applied to a real image. Sillhou-

ette (a) segmented at coarse scale (b) and reconstructed by fitting arcs between

discontinuities (c). It is apparent that discontinuities and arcs together constitute

a compact but accurate representation of the silhouette. (d) Scale-space. Most

features, in this case, are visible at both coarse and fine scale, except for the

curved base of the handle, visible at coarse scale only. (Data after Asada and

Brady (1986).)
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Figure 2.16: Corner and junction detection: synthesised image. Dark

blobs mark discontinuities in tangent angle, obtained from fitting weak strings to

the entire “graph” of edges.

Figure 2.17: Corner and junction detection: real image.
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Chapter 3

Introduction to Weak
Continuity Constraints

For illustrative purposes, consider the simplest weak continuity problem:
detection of step discontinuities (edges) in 1D data. The aim is to construct
a piecewise smooth 1D function u(x) which is a good fit to some data d(x).
This is achieved by modelling u(x) as a “weak elastic string” - an elastic
string under weak continuity constraints. Discontinuities are places where
the continuity constraint on u(x) is violated. They can be visualised as
breaks in the string. The weak elastic string is specified by its associated
energy; the problem of finding u(x) is then the problem of minimising that
energy.

3.1 Detecting step discontinuities in 1D

The behaviour of the elastic string over an interval x ∈ [0, N ] is defined by
an energy, which is a sum of three components:

P : the sum of penalties α levied for each break (discontinuity) in the
string.

D: a measure of faithfulness to data.

D =
∫ N

0

(u− d)2dx
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S: a measure of how severely the function u(x) is deformed.

S = λ2

∫ N

0

u′2dx.

This is the elastic energy of the string itself, that is stored when the string
is stretched. The constant λ2 is a measure of elasticity or “stretchability”
or willingness to deform1.

The problem is to minimise the total energy:

E = D + S + P (3.1)

- that is, for a given d(x), to find that function u(x) for which the total
energy E is smallest. Without the term P (if the energy were simply E =
D+S) this problem could be simply solved using the calculus of variations.
For example fig 3.1c shows the function u that minimises D+ S, given the
data d(x) in fig 3.1a. It is clearly a compromise between minimising D and
minimising S - a trade-off between sticking close to the data and avoiding
very steep gradients. The precise balance of these 2 elements is controlled
by λ. If λ is small, D (faithfulness to data) dominates. The resulting u(x)
is a close fit to the data d(x). In fact, λ has the dimensions of length, and
it will be shown that it is a characteristic length or scale for the fitting
process.

When the P term is included in E, the minimisation problem becomes
more interesting. No longer is the minimisation of E straightforward math-
ematically. E may have many local minima. For example, for the problem
of fig 3.1, b) and c) are both local minima. Only one is a global minimum;
which one that is depends on the values of α, λ and the height h of the step
in a). If the global minimum is b) then the reconstruction u(x) contains a
discontinuity; otherwise, if it is c), u(x) is continuous.

3.2 The computational problem

The “finite element method” (Strang and Fix 1973) is a good means of con-
verting continuous problems, like the one just described, into discrete prob-
lems. In the case of the string it is relatively easy. The continuous interval
[0, N ] is divided into N unit sub-intervals (“elements”) [0, 1], ..., [N − 1, N ],
and nodal values are defined: ui = u(i), i = 0...N . Then u(x) is represented
by a linear piece in each sub-interval (fig 3.2). The energies defined earlier

1Really, interpreting S as a stretching energy is only valid when the string is approx-
imately aligned with the x axis. Another way to think of S is that it tries to keep the
function u(x) as flat as possible.
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Figure 3.1: Calculating energy for data consisting of a single step. (a)

Data. (b) A reconstruction with one discontinuity. (c) A continuous reconstruc-

tion.
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Figure 3.2: Dividing a line into sub-intervals or “elements”.

now become:

D =
N∑
0

(ui − di)2 (3.2)

S = λ2
N∑
1

(ui − ui−1)2(1− li) (3.3)

P = α

N∑
1

li (3.4)

where li is a so-called “line-process”. It is defined such that each li is a
boolean-valued variable.

Either: li = 1 indicating that there is a discontinuity in the sub-interval
x ∈ [i− 1, i].

or: li = 0 indicating continuity in that subinterval - ui, ui−1 are joined by
a spring.

Note that when li = 1 the elastic string is “broken” between nodes
i− 1 and i and the relevant energy term in (3.3) is disabled. (Geman and
Geman (1984) coined the term “line-process” as a set of discrete variables
describing edges in 2D; here we have a simple case, appropriate in 1D.)
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3.3 Eliminating the line process

The problem, now in discrete form, is simply:

min
{ui,li}

E.

It transpires that the minimisation over the {li} can be done “in advance”.
The problem reduces simply to a minimisation over the {ui}. Exactly how
this is achieved will be explained in chapter 6. The reduced problem is
more convenient for two reasons:

• The computation is simpler as it involves just one set of real variables
{ui}, without the boolean variables {li}.

• The absence of boolean variables enables the “graduated non-convexity
algorithm”, described later, to be applied.

It will be shown that once the line-process {li} has been eliminated, the
problem becomes

min
{ui}

F , where F = D +
N∑
1

g(ui − ui−1). (3.5)

The neighbour interaction function g will be defined precisely in chapter 6
but to give some idea of how it acts, it is plotted in figure 3.3. The term
S + P in (3.1) has been replaced by the

∑
g(..) term in (3.5). Note that

nothing of value has been thrown away by eliminating line variables. They
can very simply be explicitly recovered from the optimal {ui} (this is also
explained in chapter 6).

3.4 Convexity

The discrete problem has been set up. The task now is to minimise the
function F ; but that proves difficult, for quite fundamental reasons. Func-
tion F lacks the mathematical property of “convexity”. What this means is
that the system ui may have numerous stable states, each corresponding to
a local minimum of energy F . Such a state is stable to small perturbations
- give it a small push and it springs back - but a large perturbation may
cause it to flip suddenly into a state with lower energy.

There may be very many local minima in a given F . In fact there is
(in general) one local minimum of F corresponding to each state of the line
process li - 2N local minima in all! The goal of the weak string computation
is to find the global minimum of F ; this is the local minimum with the lowest
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Figure 3.3: Energy of interaction between neighbours in the weak

string. The central dip encourages continuity by pulling the difference ui−ui−1

between neighbouring values towards zero. The plateaus allow discontinuity: the

pull towards zero difference is released, and the weak continuity constraint has

been broken.

energy. Clearly it is infeasible to look at all the local minima and compare
their energies.

How do these local minima arise? The function F can be regarded as the
energy of a system of springs, as illustrated in figure 3.4a. We will see that,
like the magnetic dipole system in chapter 1, it has many stable states.
Vertical springs are attached at one end to anchor points, representing
data di which are fixed, and to nodes ui at the other end. These springs
represent the D term in the energy F (3.5). There are also lateral springs
between nodes. Now if these springs were just ordinary springs there would
be no convexity problem. There would be just one stable state: no matter
how much the system were perturbed, it would always spring back to the
configuration in figure 3.4a. But in fact the springs are special; they are the
ones that enforce weak continuity constraints. Each is initially elastic but,
when stretched too far, gives way and breaks, as specified by the energy
g in figure 3.3. As a consequence, a second stable state is possible (figure
3.4b) in which the central spring is broken. In an intermediate state (figure
3.4c) the energy will be higher than in either of the stable states, so that
traversing from one stable state to the other, the energy must change as in
figure 3.4d. For simplicity, only 2 stable states have been illustrated, but
in general each lateral spring may either be broken or not, generating the
plethora of stable states mentioned above.

No local descent algorithm will suffice to find the minimum of F . Local
descent tends to stick, like the fly shown in figure 3.4, in a local minimum,
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Figure 3.4: Non-convexity: the weak string is like a system of conventional

vertical springs with “breakable” lateral springs as shown. The states (a) and

(b) are both stable, but the intermediate state (c) has higher energy than either

(a) or (b). Suppose the lowest energy state is (b). A myopic fly with vertigo,

crawling along the energy transition diagram (d) thinks state (a) is best - he has

no way of seeing that, over the hump, he could get to a lower state (b).
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and there could be as many as 2N local minima to get stuck in. Somehow
some global “lookahead” must be incorporated. The next section explains
how the Graduated Non-Convexity (GNC) algorithm does this.

3.5 Graduated non-convexity

A method of minimising F is needed which avoids the pitfall of sticking in
local minima. Stochastic methods such as “Simulated Annealing” (Kirk-
patrick et al. 1982) avoid local minima by random fluctuations, spasmodic
injections of energy, to shake free of them (figure 3.5a). Although this
guarantees to find the global minimum eventually, the amount of compu-
tation required may be very large (Geman and Geman 1984). It would

Figure 3.5: a) Stochastic methods avoid local minima by using random motions

to jump out of them. b) The GNC method constructs an approximating convex

function, free of spurious local minima.
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appear, however, to be in the interests of computational efficiency to use a
non-random method. GNC, rather than injecting energy randomly, uses a
modified cost function (fig 3.5b).

In the GNC method, the cost function F is first approximated by a new
function F ∗ which is convex and hence can only have one local minimum,
which must also be a global minimum2. Descent on F ∗ (descending, that
is, in the (N +1)-dimensional space of variables {ui}) must land up at that
minimum. Now, for certain data di this minimum may also be a global
minimum of F - which is what we were after. There is a simple test to
detect whether or not this has succeeded (fig 3.6a,b). In fact (see chapter
7) success is most likely when the scale parameter λ is small.

A more general strategy, that works for small or large λ, is to use a
whole sequence of cost functions F (p), for 1 ≥ p ≥ 0. These are chosen
so that F (0) = F , the true cost function, and F (1) = F ∗, the convex
approximation to F . In between, F (p) changes, in a continuous fashion,
between F (1) and F (0). The GNC algorithm is then to optimise a whole
sequence of F (p), for example {F (1), F (1/2), F (1/4), F (1/8), F (1/16), F (1/32)},
one after the other, using the result of one optimisation as the starting
point for the next. As an example, optimisation of a non-convex F , using a
sequence of just 3 functions, is illustrated in fig 3.6c. Initially, optimisation
of F (1) ≡ F ∗ produces u∗ but (let us suppose) this happened not to be the
global optimum of F . (Note that any starting point will do for optimising
F (1). That is because F (1), being convex, has only one minimum, which will
be attained by descent, regardless of where descent starts.) But successive
optimisation of F (p) as p decreases “pulls” towards the true global optimum
of F . Exactly how the functions F (p) are constructed must be left until
later. It all depends on making F ∗ a good convex approximation to F .
Suffice it to say that, like F in (3.5), F ∗ and all the F (p) are sums of local
functions:

F (p) = D +
N∑
1

g(p)(ui − ui−1), (3.6)

and this is important when it comes to considering optimisation algorithms.
Of course, the trick is to choose the right neighbour interaction function
g(p). This is all explained at some length in chapter 7.

There are numerous ways to minimise each F (p), including direct descent
and gradient methods. Direct descent is particularly straightforward to
implement and runs like this: propose a change in one of the nodal values
ui, see if that leads to a reduction in F (p) (this only involves a local
computation); if it does then make the change. A simple program which

2Actually there are some details to take care of here, distinguishing between convexity
and strict convexity.
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Figure 3.6: The minimum of a non-convex function F may be found by min-

imising a convex approximation F ∗ (a). If that does not work (b), the minimum

may still be found by the GNC algorithm, which runs downhill on each of a

sequence of functions (c), to reach the true global optimum.
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implements GNC by direct descent is outlined in fig 3.7. It can be made to

for p ∈ {1, 1/2, 1/4, 1/8, 1/16, 1/32} do
for δ := 1; δ ≥ δmin; δ := δ/2 do
changed := true
while changed do
changed := false
for i = 0...N do
if F (p)(u1, .., ui + δ, .., uN ) < F (p)(u1, .., ui, .., uN ) then
ui := ui + δ
changed := true

else if F (p)(u1, .., ui − δ, .., uN ) < F (p)(u1, .., ui, .., uN ) then
ui := ui − δ
changed := true

Figure 3.7: A direct descent algorithm for GNC - see text for details

run quite satisfactorily with fixed point arithmetic. As F (p) is expressed
as a sum over i = 0, ..., N of local terms (3.6), the effect of altering a
particular ui (tested in the if and else if statements) can be computed from
just a few of those terms. For example ui appears only in g(p)(ui − ui−1),
g(p)(ui+1 − ui) and, in D, in the term (ui − di)2. Not only does this
simplify the computation of the effect on F (p) of changing ui, but it is
also possible to perform such computations on many ui in parallel. More
efficient algorithms, based on gradient descent methods, are described in
chapter 7.

Figure 3.8 shows the GNC method in operation, solving the 1D weak
elastic string problem. The successive gradient descent scheme (SOR) of
chapter 7 is used. For small values of the scale parameter λ the total time
for execution3 is about 0.001N seconds, where N is the length of the data
vector. This works out at about 50 arithmetic operations per data element.

3On a SUN2 computer, with SKY floating point board
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Figure 3.8: Snapshots of GNC: Initial data as in figure 2.2 on page 19. As

GNC progresses, parameter p is decreased. (The significance of parameters h0

and c is explained in subsequent chapters.)



Chapter 4

Properties of the Weak
String and Membrane

The previous chapter introduced the weak string as a 1D discontinuity
detecting filter. This chapter examines both it and its 2D equivalent, the
weak membrane, as variational problems. Recall that the energy of the
weak string is described by the function

E = D + S + P (4.1)

=
∫

(u(x)− d(x))2 dx+ λ2

∫
u′2(x) dx+ αZ (4.2)

where α and λ are constants - parameters of the system - and integration
is between suitable limits. The first two terms D,S specify the behaviour
of each continuous section of the piecewise elastic string u(x), attached
by “springs” to the data d(x). The last term is a measure of the set of
discontinuities in u(x); Z is taken to be simply the total number of points
x at which u(x) is discontinuous. In 1D, this definition of Z is more or less
the only sensible one. It will be seen that, in 2D, with the membrane, there
is more than one reasonable way of defining Z.

So far it has appeared that constants α, λ are arbitrary parameters; it
is not clear how they should be fixed. But variational analysis of the weak
string’s behaviour with certain specially chosen data d(x) allows extremal
energy E to be predicted, as a function of α, λ. This can be done both for
continuous u and when u includes one or more discontinuities. The weak
string/membrane will adopt the lowest energy configuration. So comparison
of energies, with and without discontinuities, determines exactly what effect
λ and α have on the detection of discontinuities. Most of our results (but
not their derivations) were reported in (Blake and Zisserman 1985a, 1986b).
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The principal conclusions of this chapter are that

• The parameter λ is a characteristic length or scale (figure 4.1).

• The ratio h0 =
√

2α/λ is a “contrast” sensitivity threshold, determin-
ing the minimum contrast for detection of an isolated step edge. A
step edge in the data counts as isolated if there are no features within
λ of it - and this property itself reinforces the interpretation of λ as a
characteristic length. In addition to being a characteristic length for
smoothing continuous portions of the data, λ is also a characteristic
distance for interaction between discontinuities.

• When two similar steps in the data are only a apart (a � λ) they
interact as follows: the threshold for detection (labelling the steps as
discontinuities) is increased by a factor

√
λ/a, compared with the con-

trast threshold for an isolated step. This constitutes a proof that the
weak string is not equivalent to any linear operator followed by thresh-
olding, for which the corresponding factor would be proportional to
1/a, not 1/

√
a. It is complementary to the finding of Mumford and

Shah (1985) that the weak string does behave like a linear operator
with thresholding, but only for isolated, non-interacting discontinu-
ities. Such distinctive, non-linear behaviour is a property also of the
membrane, with interacting discontinuities in 2D.

• The ratio gl = h0/2λ is a limit on gradient, above which spurious
discontinuities may be generated. This property is inferred from be-
haviour when fitting data in the form of a ramp: if the gradient
exceeds gl one or more discontinuities may appear in the fitted func-
tion.

• It can be shown that, in a precise sense, localisation accuracy (for
given signal-to-noise) is high. In fact it is qualitatively as good as the
“difference of boxes” operator - but without any false zero-crossings
problem (see (Canny 1983)). Non-random localisation error is also
minimised. Given asymmetrical data, gaussians and other smooth
linear operators make consistent errors in localisation. The weak
string, based as it is on least squares fitting, does not.

• The parameter α is a measure of immunity to noise. If the mean noise
has standard deviation σ, then no spurious discontinuities are gener-
ated provided α > 2σ2, approximately. This theoretical prediction
is borne out in the computer implementation (e.g. figure 4.2).

• The membrane has a hysteresis property - a tendency to form unbro-
ken edges. This is an intrinsic property of membrane elasticity, and
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Figure 4.1: Weak membrane edge detector: the effect of varying scale (λ)

and contrast sensitivity is shown. (Data d(x, y) was approximately the logarithm

of image intensity. The image is 128 pixels square.)
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Figure 4.2: A light square on a dark background, with added noise (a). Sig-

nal-to-noise ratio is 1. A weak membrane is well able to reconstruct the signal

(b). (c) Labelled discontinuities. (α/σ2 ≈ 4.)
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happens without any need to impose additional cost on edge termina-
tions.

• The weak string or membrane can be used with sparse data. The
density of stereo depth data (depths obtained from matching a stereo-
scopic image pair) is limited by the density of strongly localised fea-
tures in images. Also hyperacuity - sub-pixel localisation of discon-
tinuities - can be implemented by forming a fine grid on which the
data (intensity or depth) is distributed sparsely.

• Finally the weak string/membrane is quite unable to label crease dis-
continuities. This is because a membrane conforms quite happily to a
crease without any associated energy increase. The weak plate, how-
ever, can be used to detect creases. This is because it has a 2nd order
energy (a function of 2nd derivatives) unlike the membrane energy
which is 1st order; but that must be left until the next chapter.

4.1 The weak string

4.1.1 Energy of a continuous piece

Suppose the positions of all discontinuities were given in advance. Then
the energy of each continuous piece of u could be computed separately.
One way of doing this1 is to construct the solution u(x), in each piece, by
convolving d with a Green’s function G:

u(x) =
∫
G(x, x′)d(x′) dx′ (4.3)

where, in the case of a bi-infinite interval,

G(x, x′) =
1
2λ
e−|x−x′|/λ (4.4)

which is plotted in figure 4.3. The characteristic length or scale of the filter
is simply the parameter λ. In the case of a finite interval, the filter shape
is similar, but modified near interval boundaries (see appendix A). Having
obtained u(x) the energy is (appendix A)

E =
∫ ∞

−∞
d(x)(d(x)− u(x)) dx. (4.5)

This can be used to compute energies for various forms of data d(x).
1An alternative Fourier method is given in appendix A.
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Figure 4.3: Green’s function for the string. The elastic string has the

effect of smoothing data d with the filter shown.

4.1.2 Applying continuity constraints

The behaviour of the weak string depends on the size of the energy increase
when a discontinuity is removed so that u(x) is forced to be continuous
across an interval boundary. A closely related question is: how much does
the energy of the string, in some interval, increase when the position of one
end is fixed? The answers to both questions, remarkably, turn out to be
virtually independent of the precise form of the data d. They will therefore
be satisfyingly general.

Suppose the string u(x), x ∈ [0, L] is fixed at one end, so that u(0) = z
(figure 4.4a). Its energy is (appendix A):

E = E(z − z)2 + E0 (4.6)

where E0, z are values of E, z when the string is unconstrained and E is a
constant depending only on L, λ - quite independent of the data:

E = λ tanh
(
L

λ

)
(4.7)

≈ λ when L� λ. (4.8)

As expected, energy E is smallest in the “resting” position z = z, u = u,
and increases quadratically as z is displaced.

When u is forced to be continuous at the join of two intervals, u is
effectively fixed, at the ends of both intervals, to the common value z that
minimizes the total increase in energy (figure 4.4b). It is easily shown
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Figure 4.4: Fixing one end of a string increases its energy (a). Enforcing

continuity fixes ends of two strings to some common value (b).
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(appendix A) that this total increase in energy is

∆E = h2

(
1
E1

+
1
E2

)−1

, (4.9)

where h = |z2 − z1| - the “effective” step height.
If both intervals have lengths L1, L2 � λ, then, from (4.8), E1 = E2 = λ

and the energy increase is just

∆E =
1
2
h2λ. (4.10)

4.1.3 Sensitivity to an isolated step

The simplest possible data comprises a single isolated step discontinuity as
in figure 4.4b. The lowest energy solution contains a discontinuity at the
step if and only if the energy increase ∆E−α on removing the discontinuity
satisfies ∆E − α > 0. (Remember, from chapter 3, that the α term repre-
sents the energy penalty for one discontinuity.) From (4.10) the condition
is met when

h > h0 =

√
2α
λ
. (4.11)

So the existence of an isolated discontinuity in weak string reconstruction
u of data d, at a particular point, depends entirely on whether the effective
step height h exceeds the threshold h0. It can also be shown that

∆E = 2λ3 (u′(0))2 , (4.12)

(where u(x) is now the continuous reconstruction of d(x)) so an equivalent
condition is that

u′(0) >
h0

2λ
. (4.13)

Of course it has been assumed so far that only one possible site for
the discontinuity is under consideration. The question of exactly where
discontinuities choose to form has not been answered - it will be dealt with
later in the chapter. Detection of a discontinuity appears, so far, to depend
on a remarkably simple threshold rule. In fact that is true only for isolated
sites. When two sites for discontinuities come within interaction range (λ)
behaviour is somewhat modified.

4.1.4 Interaction of adjacent steps

A top hat (figure 4.5a) consists of two steps back to back. The energy of a
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Figure 4.5: 1D top hat data. (a) shows a 1D top hat and (b) and (c) are

continuous elastic strings fitted to the data, with small and large λ respectively.

(d) shows the fitted string with two discontinuities.
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continuous string fitted to such data is given by

E = h2λ(1− e−a/λ) (4.14)

where h is the height of the steps and a their separation. Typical continuous
solutions for u(x) are shown in figure 4.5b,c. The energy (4.14) is due both
to the deviation from the data and to the cost of not being flat.

The weak membrane can break at both steps (figure 4.5d) and then the
only contribution to the energy (for this special data) is from the penalty
2α. In this case, therefore,

E = 2α. (4.15)

Comparison of the two energies (4.14) and (4.15) determines whether or
not a solution with discontinuities has the lowest energy.

If λ� a then (4.14) reduces to

E = h2λ (4.16)

which is independent of a and is simply the energy of two steps. Comparison
of equations (4.15) and (4.16) shows that the lowest energy solution will
have discontinuities at the steps - and so the steps will be detected - if

h > h0 =

√
2α
λ

This is the same as the threshold for a single step (4.11). Consequently, if
the step separation is large compared to λ then the steps do not interfere
with each other - they are treated independently by the weak string.

If the steps are close to each other (a� λ) the energy (4.14) is reduced
and the steps interfere. The energy in that case is

E = h2a, (4.17)

independent of λ. Comparing this with the penalty 2α, the discontinuous
solution (with 2 steps) has lower energy if h > h0

√
λ/a. The contrast

threshold is increased by a factor
√
λ/a, compared with that for isolated

steps.
The interference effect extends the interpretation of λ, already estab-

lished by the form of the Green’s function, as a scale parameter. If dis-
continuities are separated by distances which are large compared to λ then
they do not interfere with each other and are considered independently by
the system.

Although this result has been obtained for an ideal top hat it can be
generalised just as threshold behaviour for an isolated discontinuity applied,
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not only for an ideal step, but also for general data (figure 4.4b). The gen-
eralisation of the top hat would include any pair of discontinuities with the
same effective step height. It is possible to generalise still further (appendix
A, equation (A.23)) to cover any pair of interacting discontinuities. In that
case it is possible that both, one or neither discontinuities may be detected.
For example, in the case that the spacing between discontinuities satisfies
a � λ, so that the interaction is strongest, the number of discontinuities
detected depends on which of the following energies is least: none : if 1

2λ(h1 − h2)2 + ah1h2 is least
one : if ah2

1 + α is least
two : if 2α is least

(4.18)

where h2, h1 are effective step heights with h2 > h1 (figure 4.6).

Figure 4.6: Interaction of a pair of step discontinuities (see text).

Double steps generated by digitisation: A particular case of inter-
est are spurious steps (figure 4.7) which occur frequently in digitised data.
(Discrete analysis should really be used here, but in fact it makes little
difference to the outcome.) Comparing energies with one (central) discon-
tinuity, which can be shown to be

E = α+
1
4
h2a

and with two discontinuities
E = 2α,

the undesirable effect is eliminated provided

h

h0
<

√
2λ
a
. (4.19)
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Figure 4.7: Double edges can occur on gradients caused by digitisation effects.

They are suppressed by using a sufficiently large scale parameter λ.

The larger λ is, the larger the step height h can be, before a double edge
occurs.

4.1.5 The gradient limit

Data in the form of a ramp of finite extent is shown in figure 4.8a. As before
the energy of the continuous solution (figure 4.8b) is compared with that
of a solution with a single discontinuity (figure 4.8c). The minimum energy
solution with one step discontinuity has its step placed symmetrically at
the centre of the ramp. The energies for the two cases are

E = g2λ2(a− λ(1− e−a/λ)) (4.20)

for the continuous membrane and, with a single step discontinuity,

E = α+ g2λ2(a− 2λe−
a
2λ (2 cosh

a

2λ
− 2 + sinh

a

2λ
)) (4.21)

where a is the extent of the ramp, h its height and g its gradient (g = h/a).
Again, consider the limits of large and small λ relative to a. If λ � a

then the ramp looks (at a scale of λ) like a step. As expected, the contrast
threshold h > h0 applies.

If λ� a then a step is detected if

g > gl =
√

α

2λ3
=
h0

2λ
. (4.22)
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Figure 4.8: 1D finite ramp data (a) with continuous string fitted to it (b). (c)

shows the lowest energy solution with a single discontinuity.

This is the “gradient limit” effect: if the gradient of a ramp exceeds the
limit, a discontinuity appears in its reconstruction. And if g is much greater
than gl then a solution with multiple breaks might have smallest energy.
This is a fundamental limitation of the weak string/membrane - a steep
ramp with large extent (relative to λ) will be detected as a multiple step.
The rod/plate (chapter 5) does not have this disadvantage.

Performance of the weak string and membrane, as characterised by vari-
ational analysis so far, is summarised in figure 4.9.

4.2 Localisation and spurious response in
noise

4.2.1 Localisation in scale space: uniformity property

The introductory discussion of the applications of weak continuity included
a brief reference to the task of curve description. A variation on Asada and
Brady’s use of gaussian scale-space filtering (Asada and Brady 1986)
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Figure 4.9: Summary of the performance of a weak string/membrane.
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employs a weak string as the filter (Blake et al. 1986a). Typical results were
displayed in figure 2.14 on page 34. Its most interesting property is that of
uniformity; lines in the scale space diagram (figure 2.14d) are vertical. That
is a graphical representation of the fact that the positions of discontinuities
do not vary as the filter scale λ varies. Localisation across scale is very
accurate. This is in distinct contrast to the behaviour of scale-space under
a gaussian (or other smooth) linear filter. If an asymmetric signal d(x)
is filtered (figure 4.10a) there is a systematic error in localisation of the
discontinuity (Asada and Brady 1986) which is proportional to the filter
scale w.

Figure 4.10: An asymmetric step (a) filtered by a gaussian filter of scale w

generates a gradient maximum which can be used to mark the discontinuity (b).

But the mark has an error of localisation which increases with w, as shown in the

scale space diagram (c).

Such error can, in principle, be removed by tracking from coarse scale,
where noise is well suppressed, to fine scale, where localisation is good. In
practice it is possible only to sample scale-space at a few discrete scales,
so that correct tracking becomes a difficult problem (figure 4.11). No such
problem occurs under weak continuity constraints because of uniformity -
tracking is trivial. Indeed, the weak string does not demand an entire scale
space at all, in the sense that Gaussian filtering does. One or two scales
λ may suffice for the purposes of interpretation - a fine and a coarse view
perhaps. The examples given in chapter 2 (figures 2.14 and 2.15) needed
only a single scale to achieve an accurate reconstruction.
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Figure 4.11: Tracking a sampled Gaussian scale-space. In principle,

fingerprints can be tracked from coarse to fine scale (a). In practice, sampling

makes this a much more difficult task (b).

When a similar asymmetric step is filtered by a weak string, the discon-
tinuity in the string remains precisely on the step, regardless of the scale
parameter λ in the string energy. That is the underlying reason for the
uniformity property. Intuitively this is made clear in figure 4.12.

The intuitive argument can be made more precise. This is done in two
different ways. First the now familiar variational approach is used to derive
the energy E(ε) of the weak string, as a function of discontinuity location ε,
for the data in figure 4.10. The global minimum is shown to exist stably at
ε = 0, having a V-shaped profile as in figure 4.12c, regardless of λ. Second,
variational results show that the discontinuity in the string clings to ε = 0
even in the presence of small variations in d(x) near the step.

The effect of the weak string on the asymmetric step is analysed by
means of (A.15) and (A.16) of appendix A, which gives the energy of a
continuous string stretched over a step/ramp as in figure 4.10. The energy
E(ε) for the asymmetric step of figure 4.12 can be shown to have the form

E(ε) =

 const. − 1
2 (h− gλ)2λ exp

(
−2|ε|

λ

)
for ε < 0

const. − 1
2 (h+ gλ)2λ exp

(
−2|ε|

λ

)
for ε > 0

. (4.23)

(This assumes that λ is much less than the total extent of data d(x) on
either side of the step.) Energy E(ε) is clearly monotonic increasing with
|ε| so that the global minimum is at ε = 0. Curious degenerate cases occur
when h = ±gλ, and the stability of the global minimum is lost. To first
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Figure 4.12: Localisation of the weak string: consider a weak string fitted

to data d(x) containing a step, but with its discontinuity displaced ε from the

step (a) or (b). The hatched “error area” is roughly a rectangle h × ε, and so

generates a square error contribution to the energy of approximately h2|ε|. The

minimum energy is clearly at ε = 0 (c).

order in |ε| the energy is

E(ε) = E(0) +
{

(h− gλ)2|ε| for ε < 0
(h+ gλ)2|ε| for ε > 0. (4.24)

This means that locally, around ε = 0, the V-shape of the minimum (figure
4.12c) is preserved, albeit somewhat skewed. This holds for any λ (which
is not too large and avoids the degeneracies just mentioned) so that precise
localisation is maintained right across scale space (figure 4.12c).

Mumford and Shah (1985) derive an extremality condition which is nec-
essary for the existence of a global minimum of energy E(ε). It assumes
that the discontinuity at x = ε is isolated (on the scale of λ). The condition,
in our notation, is that

u′′c (ε) = 0 (4.25)

where uc(x) is the configuration of a continuous string fitted to the data
d(x). This is directly related to the earlier result (4.12) which, applied here,
shows that the energy gain on allowing a discontinuity at x = ε is

2λ3 (u′c(ε))
2
.

Equation (4.25) is therefore simply a necessary condition for maximising
that energy gain. But since, from the Euler-Lagrange equation (A.2), u′′c =
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λ−2(uc − d) the condition (4.25) can be re-expressed as

uc(ε) = d(ε) (4.26)

- that the continuous string crosses the data at x = ε. For data d(x) with
a step discontinuity (figure 4.13a) the condition is met only at the step.
Hence there cannot be a global minimum anywhere other than at ε = 0,

Figure 4.13: Necessary condition for an energy minimum: a minimum

of E(ε) can occur only where the continuous string uc(x) crosses data d(x), as

at the step in (a). But in the presence of noise the condition will also be met in

numerous spurious locations (b).

confirming what has already been concluded from (4.23). Moreover this
property is clearly robust to small changes in the data d(x), in the vicinity
of the discontinuity.

Next we consider localisation accuracy in the presence of noise. In
this case Mumford and Shah’s condition cannot be used, and for a rather
interesting reason. We know that u′′c = λ−2(uc − d) - the second derivative
depends linearly on the data d, raw and unfiltered, including any noise it
may contain. Now the peak values of a noise signal n(x) are theoretically
unbounded, even for quite small amounts of noise, and in practice they are
bounded only as a result of what little filtering has already been applied
to the data, probably by sampling. This means that the noise will very
frequently cross uc (figure 4.13b) producing a high density of spurious zero-
crossings of u′′c . Nonetheless, localisation accuracy is maintained in the
presence of noise (figure 4.14). To explain this, it will be necessary to fall
back on the first method - computing energy E as a function of localisation
error ε - but now with added noise.
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Figure 4.14: Uniformity in scale-space. An asymmetric step (a), (sig-

nal-to-noise ratio is 6:1), filtered by the weak string, is accurately localised (b)

over a range of scales, as expected. Gaussian filtering produces error of the order

of the filter size (c).
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4.2.2 Localisation in noise

Consider an input signal d(x), x ∈ [−L,L] consisting of a step of height h,
which is then immersed in noise n(x), as in figure 4.15a. The energy E(uε)

Figure 4.15: Localisation error in noise is estimated by applying variational

analysis to a noisy ideal step.

varies with respect to the position x = ε of the discontinuity. In the noise
free case the variation is denoted E(uε,d) and is

E(uε,d) = E(u0,d) + h2|ε| (4.27)

(equation (4.23) with g = 0). There is a sharp (V-shaped) minimum at
x = 0. Any small variations in the data d(x) around x = 0 simply add a
small O(ε) term to energy E(uε,d) above. This does not affect the position
of the V-shaped minimum which remains at ε = 0. It is the sharpness
of the minimum at ε = 0 that makes for such tenacious stability of the
discontinuity at x = 0. In scale-space, this is what produced uniformity.

Having obtained E(uε,d), for the noise-free case, it remains to calculate
the equivalent energy E(uε) in the presence of additive noise. It is shown
in appendix B that provided

h

n0
> 2

- that is that the signal-to-noise ratio exceeds 2 - then

∀|ε| > 0, E(uε) > E(u0).

(The quantity n0 is the standard deviation of the noise2.) There is negligible
localisation error, when the signal-to-noise ratio is not too small. Results
are shown in figure 4.16.

2This is not to be confused with the standard deviation of the mean noise, σ; n0 =√
ρσ, where ρ is a coherence length. But typically ρ = 1 pixel, so σ, n0 are numerically

equal.
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Figure 4.16: Localisation in noise. (a) Data: a noisy step, signal-to-noise

ratio 2:1, with the position of the step marked for clarity. Uniform scale space

(b) for the weak string - there is no localisation error. Gaussian scale space (c) -

as theory predicts, localisation error increases with scale.
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Now for smooth linear operators followed by labelling of gradient max-
ima, localisation error δx ∝ (h/n0)−1. For an equivalent directional gaus-
sian operator (w = λ - see appendix B), at signal-to-noise ratio h/n0 = 2,
localisation error is already

√
w/2. (This assumes the coherence length of

the noise is ρ = 1 pixel.)
Only for an operator like the difference of boxes, which is not smooth, is

localisation as good as for the weak string. The difference of boxes operator
was shown by Canny (1983) to be unusable because of the overwhelming
incidence of spurious gradient maxima, when noise is present. But the
spurious zero crossings problem simply doesn’t arise with weak continuity
constraints - zero crossings are not used.

4.2.3 Spurious responses in noise

Consider the data d(x) = 0, clearly free of discontinuities, in the presence
of additive noise n(x). If the penalty α is close to zero, then there is little to
discourage the formation of discontinuities in u(x). Discontinuities in u(x)
will be generated by the noise. But as α increases (for a given λ) it is to be
expected that fewer and fewer discontinuities should form. For sufficiently
large α the probability of spurious discontinuities becomes negligible. It is
shown that the value of such an α depends on σ (the standard deviation of
mean noise) only, independent of λ.

Two energies are computed: E(uε), the minimal energy of a u with a
discontinuity at x = ε, and E(uc) the minimal energy of a continuous u.
Using the finite Green’s function for the stretched string, it is shown in
appendix B that

α− E(uε) + E(uc) = R2,

where R is a gaussian random variable whose standard deviation is σ/
√

2.
Now the condition for a spurious discontinuity at x = 0, is E(uε) < E(uc).
The conclusion is that, for

√
2α > 2σ (2σ is approximately the two tail 95%

confidence limit) that is, for
α > 2σ2,

there is less than 5 percent probability that the condition is satisfied.

4.3 The weak membrane

The energy E = D + S + P of a string (4.2) can be generalised for a
membrane in 2D. The appropriate generalisation of the elastic component
D + S of the energy is obvious:

D =
∫

(u− d)2 dA (4.28)
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S = λ2

∫
(5u)2 dA. (4.29)

But there are a number of ways in which the penalty term P = αZ can be
generalised.

4.3.1 Penalties for discontinuity

The quantity Z becomes a measure of the set of contours in the plane along
which u(x, y) is discontinuous. It might be defined in any of the following
ways:

• As a measure of total contour length: this is the simplest rea-
sonable measure, and is the one we use. Minimising the energy E
then tends to minimize contour length. There is therefore an elastic
energy associated with the contours of discontinuity in u.

• Including a measure of contour curvature: for example Z might
have a (dθ/ds)2 component, where s is arc length and θ is tangent
orientation along a contour. This ensures that contours are smooth
as well as just short. But a reliable estimator for θ requires reason-
ably large neighbourhood convolutions, in order to avoid excessive
quantisation error. (In statistical terms this would mean a higher
order Markov random field). Experience with the weak plate (see
later chapters on discrete computation) suggests that computation
time increases very sharply indeed as neighbourhood sizes increase.
Even the plate which is only 2nd order (interaction between a pixel,
its neighbours and its neighbours’ neighbours) is already more or less
intractable in its “pure” form.

• A weak constraint on contour smoothness: essentially this
would be an extension of the contour curvature energy above, but
including a cost associated with tangent discontinuities (corners). Of
course it is likely to be computationally infeasible for the same rea-
sons.

• Including costs for certain topological features: costs can be
levied for contour terminations for example, effectively imposing a
weak connectedness constraint on the contour. Geman and Geman
(1984) do this by means of their line process and its associated costs.
Such a line process is too complex for use in the GNC algorithm.
This is because the line-process elimination step, introduced for the
weak string in chapter 3 and extended for the membrane in chapter
6, can no longer be performed. Fortunately there is no real need for
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such a complex line process. We will see that the membrane already
imposes a weak connectedness constraint, as a natural consequence
of its elastic behaviour. This “hysteresis” effect is the analogue of the
propagation of a tear in an elastic material. It occurs without the
need to associate any costs with terminations in the line process.

• Global length measures: a cost that increases non-linearly with
contour length has possible uses - for example in introducing a gradu-
ated bias away from short edges (although the hysteresis effect already
does this to some degree). But the global nature of the measure would
increase computational cost enormously, by removing the restriction
to local interaction.

The proposed weak membrane scheme achieves almost the best of all
worlds, in the following manner. Computational simplicity is retained by
having Z ∝(contour length) - the first of the options above. This produces
contours of minimal length, and with a tendency, due to hysteresis, to
be unbroken. Then, contours produced with that Z are subjected to a
subsequent process, in which the contours are regarded as fixed, and tangent
orientation along contours is to be estimated. At this stage the (dθ/ds)2

energy can be applied, with weak continuity constraints on θ. This is in
fact simply the application of weak strings along contours, to θ data. This
generates descriptions of the contours as smoothly curved arcs, vertices
and junctions. It can be made to operate in parallel over all contours in an
image, labelling both corners and T junctions (figure 2.16 on page 37).

Some elegance has been sacrificed. The contour description process can
no longer “feed back” to the discontinuity detecting membrane. But in
return, the resulting two part scheme is computationally feasible.

4.3.2 Energy of a continuous piece

The energy of the weak membrane, with the simplest line process as above,
is given by

E =
∫
{(u− d)2 + λ2(5u)2} dA+ α

∫
dl (4.30)

where the first integral is evaluated over the area in which data d is defined,
and the second along the length of all discontinuities. The penalty is now
α per unit length of discontinuity.

There are still only two parameters and, just as with the weak string, the
way they influence the weak membrane can be determined by comparing
energies, with and without discontinuities. Broadly, the conclusion will be
that behaviour in 2D is qualitatively like it was in 1D: λ still acts as a scale
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parameter and h0, gl are contrast threshold and gradient limit respectively,
as before.

The energy of a continuous piece of membrane can be calculated, using
the 2D Green’s function. Given data d, the membrane configuration u is
given by

u(x) =
∫
G(x,x′)d(x′) dA (4.31)

where the Green’s function is

G(x,x′) =
1

2πλ2
K0

(
|x− x′|

λ

)
(4.32)

and K0 is a modified Bessel function of the second kind (Watson 1952).
The energy is

E =
∫
d(x)(d(x)− u(x)) dA (4.33)

This is a straightforward analogue of the 1D method. Further details are
given in appendix A. The Green’s function has the important asymptotic
property that

K0(x) →
√

π

2x
e−x x� 1.

This means that for distances which are large compared to λ the Green’s
function falls off exponentially (in fact faster). So, as in 1D, λ acts as a
scale parameter. Features separated by a distance that is large compared
with λ, do not interact.

Note that for data with a constant cross section (i.e d(x, y) ≡ d(x))
the membrane fitting problem is essentially 1D. Contrast threshold and
gradient limit behaviour must clearly apply in this case, as for the string.
It will now be shown that genuinely 2D data can exhibit similar properties.

4.3.3 Sensitivity of the membrane in detecting steps

As a simple example we consider a cylindrical top hat. This consists of a flat
circular patch of radius a at a height h above its surroundings (figure 4.5a
rotated about a vertical axis). The energy of the continuous solution in
this case is shown in appendix A to be

Ec = 2πa2h2K1

(a
λ

)
I1

(a
λ

)
where I1 is a modified Bessel function of the first kind (Watson 1952).
Again it is most useful to consider limits. If a is large compared to λ

Ec = πaλh2.
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Note that, unlike the 1D top hat (4.16), a appears in the energy expression
for E. The cylindrical top hat is the swept volume of a 1D one of appropriate
size, rotated through π radians. Hence E above is the energy in (4.16)
multiplied by πa, a half-circumference.

The minimum energy solution, allowing discontinuities, has a step around
the circumference of the patch. There is no deviation from the original data,
no gradient, only the penalty term is left in (4.30). This energy is

Es = 2πaα,

which is α multiplied by the circumference. Comparing these two energies
Ec, Es, the contrast threshold

h0 =

√
2α
λ

determines step detection, as in 1D. Now, at the opposite limit, when a is
very much less than λ, the continuous energy is

Ec = πa2h2

which is independent of λ - as in 1D. The energy of the discontinuous
solution is smallest (less than Ec above) only if

h >

√
2α
a

So a top-hat whose radius a is small compared to λ will only be detected if

h > h0

√
λ/a,

and this is again just the same as the behaviour of interacting steps in 1D.
The general inference is that small scale features are detected only if they
have high contrast. Such behaviour is consistent with the requirement to
reject noise.

4.3.4 Localisation and preservation of topology

The good localisation properties of the weak string are, of course, inher-
ited by the weak membrane. But there are also localisation defects, which
are particular to linear edge detectors in 2D, and which do not occur with
the weak membrane. They are: a tendency to distort curved edges, par-
ticularly at corners, and a tendency to disconnect one arm of a trihedral
junction. The latter is particularly injurious, for instance when T junctions
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are used as evidence of occlusion. Since most edge detecting filters are de-
signed to match isolated, straight edge-segments, it is not surprising that
they filter curves and junctions badly. It has been argued that a family of
appropriately structured filters could overcome this (Leclerc 1985, Gennert
1986) but a large number of them would be needed to cover all possible
configurations of curves and junctions.

It is clear, for instance in figure 2.6 on page 24, that the weak mem-
brane accurately preserves localisation and topology. This is so even in the
presence of a considerable amount of noise, requiring large scale filters for
adequate suppression, for which errors in linear filtering are substantial.
The reason for the lack of distortion of corners, in the weak membrane, is
illustrated in figure 4.17.

Figure 4.17: Localisation at corners: a corner in data d (a) is blurred

by linear filtering (b), producing distortion. The weak membrane (c) tends to

preserve discontinuities, although corners are slightly rounded (d).

One way to look at this is that the weak membrane does not blur across
discontinuities. Alternatively think of it in terms of energy, the 2D analogue
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of the earlier 1D localisation argument (figure 4.12): any dislocation of the
discontinuity in u relative to steps in the data d, generates a large error term
D =

∫
(u− d)2 in the energy E. However, it is somewhat compensated by

a reduction in P , which favours the shortest possible discontinuity contour.
This is related to Weierstrass’s famous isoperimetric problem - what is the
shortest arc bounding a given area? The answer is: a circular one. So
corners are rounded as in figure 4.17d. What is the radius r of the corner,
assuming ideal data, consisting of a raised block, with step height h? The
change in energy due to rounding is approximately

∆E = h2(1− π

4
)r2 − α(2− π

2
)r

which is minimised when

r =
λ

2

(
h

h0

)−2

so that the displacement of the corner is

r(
√

2− 1) ≈ 0.2λ
(
h

h0

)−2

. (4.34)

Localisation error is therefore approximately 0.2λ at worst, falling off
very rapidly as step height h increases above the contrast threshold h0.
This is very much better than localisation error for an equivalent directional
gaussian of half-width w = λ: the error can be shown to be about 0.5λ -
fixed, however large h is.

Distortion at T junctions due to linear filtering is similarly a matter of
blurring across discontinuities, as in figure 4.18. Preservation of connect-
edness in the weak membrane is related to the hysteresis effect, described
later. In both cases there is a tendency to inhibit gaps in edges.

4.4 Choice of parameters for edge detection

There are two degrees of freedom in the membrane energy, represented by
the two parameters α, λ. Five different aspects of performance in disconti-
nuity detection have been seen to depend on those two parameters. This is
summarised in the following table:
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Figure 4.18: Preservation of topology: Data (a) at a T junction is blurred

by linear filtering (b); but the weak membrane (c) does not blur across disconti-

nuities.
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Aspect of performance Performance measure

Sensitivity h0 =
√

2α/λ

Scale λ

Gradient limit gl = h0/2λ

Resistance to noise α

Contrast above which h0

√
2λ

double edges occur

In practice, sensor noise magnitude is unlikely to be a limiting factor in
detection of discontinuities. Modern solid-state sensor arrays generate rel-
atively little electrical noise. The major source of “noise” is the inaccuracy
of the MRF model implied by the membrane energy. It is unreasonable
to believe that intensity distributions really originate from an MRF model
with fixed parameters. It is to accommodate such latitude in the model that
tolerance to “noise” is required. Therefore, rather than considering noise
resistance specifically, it is more natural to specify contrast sensitivity. For
example, proportional sensitivity to reflectance change η of 5-20% may be
adequately low to detect reflectance changes at most boundaries between
materials.

Of the five performance parameters in the table above, those constrained
most strongly by the requirements of edge detection are sensitivity h0, the
need to avoid double edges (which demands large λ), and the requirement
to keep scale λ as small as possible in order to raise the gradient limit,
procure maximum resolution, and avoid excessive computational expense
(chapter 7).

4.4.1 Adaptive thresholding

Maintenance of a fixed sensitivity to proportional changes of reflectance, as
is done in the computation of lightness (Land 1983), suggests applying the
weak membrane to data

d(x, y) = log(I(x, y)).

A small differential in the data

∆d = ∆ log(I) =
∆I
I
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then corresponds to a proportional change in intensity. Threshold h0 there-
fore applies to proportional changes in I - what is termed “Weber’s law” in
psychophysics.

However, the logarithm transformation greatly amplifies noise at low
intensities. The following strategy achieves a similar effect without noise
problems.

• Data is d(x, y) = I(x, y) - simply the intensity.

• A continuous membrane, at relatively large scale, is used to compute
a local average of intensity Iav(x, y). The contrast threshold h0 is
then set adaptively across the image to

h0(x, y) = ηIav(x, y)

where η is an approximate proportional measure of sensitivity to
changes in intensity. The smoothing effect of the membrane removes
problems with noise at low intensity.

• The weak membrane is applied. This is done by means of the GNC
algorithm (see later chapters), suitably modified to cope with spatially
varying h0.

• Intensity difference h of detected edges must now lie approximately in
the range h ∈ [h0, 2h0/η] so that, from the table above, double edges
should not occur if

2h0

η
≤ h0

√
2λ,

that is, if

η ≥
√

2
λ
. (4.35)

In practice, to avoid unacceptable computational expense and loss of resolu-
tion, we have have used lower values of η, for a given λ, than would satisfy
(4.35). Adequate immunity to double edges is retained. Typical values
used in earlier examples (figures 2.4 and 2.5, page 22) are λ = 8 pixels and
η = 15%, for a 256 pixel square image. Discontinuities in those two images,
for a range of η and λ are shown in figures 4.19 and 4.20.

4.5 Sparse data

Stereoscopic depth data is sparse. At each point in cyclopean space, where
a pair of features have been successfully matched, a spot-depth is obtained.
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Figure 4.19: Adaptive edge detection. Discontinuities in the intensities

of the image in figure 2.4 are shown, for various sensitivities (η) and scales (λ).

(The image is 256× 256 pixels square.)
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Figure 4.20: Adaptive edge detection. Discontinuities in the intensities

of the image in figure 2.5 are shown, for various sensitivities (η) and scales (λ).

(The image is 256× 256 pixels square.)
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The resulting pointilliste depth map can then be used to generate a dense
surface map, complete with discontinuities. It was argued in chapter 2 that
this is a useful thing to do over textured surfaces, whose discontinuities
may not be visible monocularly.

The optimisation problem, which was given by (4.30) for dense data,
becomes3

E =
A

K

K∑
i=1

(u(xi, yi)− di)2 +
∫
{λ2(5u)2} dA+ α

∫
dl (4.36)

where A =
∫
dA is the total domain area. Note that α, λ here are “average”

values. If (xi, yi) are laid out on a regular grid then scale and penalty are
effectively homogeneous and equal to λ, α. But if the density s of the
points (xi, yi), is not homogeneous then the “effective” scale is expected
from (4.36) to vary as 1/

√
s, and effective penalty as 1/s. That would

make the effective contrast threshold vary as 1/s1/4.
When data is sparse, discontinuity contours are not necessarily well de-

fined, so that any contour lying in a certain band (figure 4.21) may be
“acceptable”. Indeed contours in sparse random-dot stereograms, as exhib-
ited for example by Grimson (1981), do not appear to be sharply defined.
Minimisation of (4.36) tends to find the shortest contour (figure 4.21b), as
this produces the smallest penalty α

∫
dl. In chapter 6 it is explained that

the sparse problem as defined in (4.36) is harder to handle with the GNC
algorithm. There is also an unfortunate tendency, if the “dots” in the data
are small enough, for them to pull off the membrane altogether. This is
because it becomes cheaper to pay the penalty αl for allowing a disconti-
nuity around the circumference (length l) of the dot, than to allow the dot
to deform the membrane. The problem could be obviated by penalising
contour curvature as well as just length. But that is infeasible, for reasons
given earlier.

So although reconstruction of sparse data can be done with GNC, it is
probably preferable first to convert sparse data to dense, using a continuous
membrane (i.e. minimising (4.36) with very large α) at small scale λ.

4.5.1 Hyperacuity

The problem of handling sparse data is closely related to the problem of
hyperacuity (Fahle and Poggio 1984, Krotkov 1986) - that is, obtaining

3Actually this problem is ill-posed as it stands - it has no continuous solution. To
be technically correct, u(x) should be constrained to be constant along some short line
segment passing through (xi, yi).
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Figure 4.21: It would be reasonable to recover a discontinuity anywhere in the

shaded band. Weak continuity constraints tend to produce the shortest contour.

subpixel accuracy in localisation of discontinuities in dense data. If re-
construction is done on a fine grid, finer than the grid over which data is
quantised, then the data is effectively sparse with respect to the finer grid.
As with sparse data in figure 4.21, the positions of discontinuities may be
ambiguous if the energy in (4.36) is minimised. Figure 4.22 explains exactly
why that is. The figure illustrates the 1D case, in which ambiguity always
occurs. In an interval between data points, the string u(x) can be shown
to be piecewise linear (satisfying the Euler-Lagrange equation u′′ = 0). Its
boundary condition is that u′ = 0 at free ends. In the gap in figure 4.22a,b
that contains the discontinuity, u′ = 0. Hence the energy λ2

∫
u′2dx = 0

over the gap, and the only remaining energy component is α, the penalty
for 1 discontinuity. Thus the energy due to the gap is α, constant as the
position of the discontinuity moves inside the gap. There is no unique min-
imum, and so no effective hyperacuity. This applies also, of course, in 2D
to any data d that has translational symmetry. In other cases, for exam-
ple a simple connected shape, the tendency to choose the shortest contour
around the shape resolves the ambiguity, as in figure 4.21.

To achieve hyperacuity reliably, therefore, data must be subsampled
onto the fine grid. Appropriate optical blurring before sampling and band-
pass filtering before subsampling are required, in accordance with the sam-
pling theorem, as described by Fahle and Poggio (1984). Then a weak
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Figure 4.22: A weak string, used with sparse data, is of no help in achieving

hyperacuity. The energies for 2 possible positions of a discontinuity as in (a), (b)

are just the same. There is no unique, minimum energy position.



Properties of the Weak String and Membrane 87

membrane can be fitted to that subsampled data, using a scale λ somewhat
larger than one “coarse” pixel.

4.6 Hysteresis maintains unbroken edges

The purpose of this section is to demonstrate that the weak membrane
incorporates edge-hysteresis. It is unnecessary to apply explicit hysteresis
either by assigning energies to the line process (Geman and Geman 1984)
that discourage edge termination, or by a two-threshold growing scheme
(Canny 1983). Edge-hysteresis arises “naturally”, because once a tear has
started, it tends to propagate. Try tearing card, for instance: it is hard
initially, but once the tear has started, it propagates more easily. In fact,
we show that an energy penalty is already imposed for line terminations,
as part of the natural operation of the membrane.

Consider 2D data

d(x, y) =
{

h
2 if y ≥ 0
−h

2 otherwise,
x, y ∈ [−L,L].

A weak membrane represented by u(x, y) is to be fitted to d(x, y), using
parameters λ, h0, such that λ � L. Consider the case in which h ≥ h0 so
that the globally minimal energy state of the weak membrane is u ≡ d, with
energy 2αL. (There is zero energy from the membrane itself, so the only
contribution is the penalty generated by the step edge in u, along y = 0,
of length 2L.) Now consider chopping out a small portion x ∈ [−ε/2, ε/2]
from the edge, as in figure 4.23. Of course this must raise the energy. The
question is, how stable is the global minimum at ε = 0?

The increase in the energy of the membrane itself (not including penal-
ties) is ∆E. The total change, including penalties, is therefore ∆E−αε. For
given ε, ∆E is the minimum of E subject to u(x, 0) = 0 for x ∈ [−ε/2, ε/2],
where

E = 2
∫ L

y=0

∫ L

x=−L

{
(u− d)2 + λ2(∇u)2

}
dx dy

and since L� λ this can be taken to be approximately

E = 2
∫ ∞

y=0

∫ ∞

x=−∞

{
(u− d)2 + λ2(∇u)2

}
dx dy. (4.37)

By substituting X = x/λ, Y = y/λ,w = u/h, it is easily shown that ∆E,
the minimum value of E in (4.37), is

∆E(ε) = h2λ2M(ε/λ),
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Figure 4.23: Hysteresis - step discontinuities in the weak membrane

prefer to be unbroken. In the global minimum energy state, the membrane u

fits data d exactly (a). But when a little piece is removed from the step edge, u

is forced to be continuous - pinched together - across that piece (b).

where M is a dimensionless function. It has been obtained numerically,
using a discrete implementation of the membrane and is plotted in figure
4.24a. It is straightforward to predict its asymptotic behaviour:

M(z) → 0 as z → 0

and (it can be shown from (4.38) below)

M(z) → 1
2
z as z →∞

and the computed results agree with these limits.
The total increase in energy due to the gap is

M(ε/λ)h2λ2 − αε,

which, since α = λh2
0/2,

= λ2h2
0

{(
h

h0

)2

M(ε/λ)− 1
2
(ε/λ)

}
. (4.38)

This is plotted for the cases h = h0 and h > h0 in figure 4.24b,c respectively.
Even at threshold, as in (b), there is a steep sided minimum at ε = 0 which
acts to discourage gaps of length ε much smaller than λ and this effect
becomes even stronger above threshold. What is surprising is that, even
near or at threshold, when the reconstructed membrane is least stable, gaps
are still strongly inhibited. The inhibition is equivalent to the effect of an
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Figure 4.24: The function M(ε/λ) (a) determines the net increase in energy

due to a break of length ε in an edge. Examples are for a step at contrast

threshold (b) and above threshold (c). The intercept in (b) and in (c) represents

the additional energy attributable to the pair of edge terminations introduced at

the gap.
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energy penalty directly attributable to edge terminations at each end of the
gap. The increment appears as an intercept on the vertical axis in figure
4.24b,c. For a step at threshold, the increment is approximately 0.6h2

0λ
2 -

this is effectively the additional cost charged for 2 edge terminations. For
a step above threshold, the increment increases in proportion to h2. This
behaviour is intuitively appealing: the higher the contrast of the edge, the
more strongly termination is inhibited.

4.7 Viewpoint invariance in surface
reconstruction

The plate (see next chapter) and the membrane can be used for reconstruc-
tion of a visible surface, either from stereo, rangefinder, or other surface
data. But simple first and second order energies are not entirely suitable
for this purpose. This is because they are not fully invariant in 3D. They
are, of course, invariant to rotation in the x, y plane (Brady and Horn 1983)
but not to changes of viewpoint. This means that the optimal surface (the
one that minimises such a non-invariant energy, subject to appropriate
constraints) may wobble as the viewpoint varies (figure 4.25). It has been
shown (Blake 1984) that, with sparse data, the wobble effect becomes ap-
preciable when any normals of the reconstructed surface, in a particular
viewer frame, are nearly orthogonal to the line of sight (within 20o or so).
Thus contours that are extremal or nearly so cause the most trouble.

The effect of non-invariance on reconstruction varies considerably ac-
cording to whether the data is dense or sparse. When data is dense, the
reconstructed surface follows the data closely, so there is not much latitude
for wobbling. But the detection of discontinuities is noticeably dependent
on viewer frame. For example, when laser rangefinder data is reconstructed
using a non-invariant weak membrane, multiple step discontinuities tend to
appear near extremal boundaries, where surface energy is (in theory) un-
bounded (figure 4.26).

The cure is to use an invariant energy (Blake and Zisserman 1986c)
based on surface area (membrane) or surface area and curvatures (plate).
The simple, non-invariant membrane and plate are in fact approximations
to these invariant energies. The approximations are close when all surface
normals are nearly parallel to the line of sight. Hence wobble is most severe
when some surface normals are nearly orthogonal to the line of sight. The
invariant weak membrane has energy

E =
∫ {

(u− d)2 cos2 φ+ 2λ2
}
dS + P (4.39)



Properties of the Weak String and Membrane 91

Figure 4.25: Viewpoint invariant surface reconstruction. For viewer

positions within the cone as shown, the lower ring is not obscured by the upper

one. It is argued that, for viewer directions in that cone, the interpolated surface

should remain static (invariant) in 3-D.
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Figure 4.26: Surface reconstruction from range data, of the object pictured

in (a), using a non-invariant weak membrane (b) and an invariant one (c). (Light

lines mark creases, found by the weak plate - see next chapter).
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where
P = α× (total length of discontinuities).

The surface element dS is given by

dS = secφdx dy (4.40)

where surface slant φ is a function of u(x, y):

secφ =
√

1 + |∇u|2. (4.41)

So now
E =

∫ {
(u− d)2 cosφ+ 2λ2 secφ

}
dx dy + P. (4.42)

The invariant energy (4.39) is well approximated by the non-invariant
one (up to an additive constant) provided |u′| is small enough. Thus, for
small signals, the invariant membrane acts like the non-invariant one, and
smoothing occurs on a scale of λ. But for large signals, it behaves differently.
If the contrast threshold h0 for the equivalent non-invariant membrane
is much greater than λ then the effective contrast threshold hI for the
invariant membrane is much larger than h0. In fact

hI =
α

2λ2
=
h2

0

4λ
(4.43)

(figure 4.27) when h0 � λ.
The cos2 φ term in (4.39) is included to render the error measure D

invariant, as illustrated in figure 4.28. Such a correction is appropriate
under the assumption that “noise” in the system derives from the surface,
from surface texture for example. However it is inappropriate if the noise
derives from the sensor itself, because the noise then “lives” in the viewer
(sensor) frame. The energy in that case is

E =
∫ {

(u− d)2 + 2λ2 secφ
}
dx dy + P. (4.44)

Of course there is a difficulty in applying the cosφ correction, which is that
φ is unknown. This can be dealt with by using φ = 0 as an initial estimate,
fitting the membrane once to obtain a new u(x, y) and an improved estimate
of φ from (4.41), and then fitting again.

Strictly, P above should also be made invariant (although in practice
this is less important than using an invariant membrane energy). This could
be done by incorporating slant and tilt dependent compensation, as Brady
and Yuille (1984) did, for perimeter measurement under back-projection.
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Figure 4.27: Contrast threshold for the invariant weak membrane:

compare energies (a) and (b), without and with a discontinuity respectively. (En-

ergy of (a) is obtained by approximating
√

1 + u′2 ≈ |u′|.)

Figure 4.28: Invariant distance measurement. Under the assumption that

the surface u, d are roughly parallel, a fair estimate of perpendicular distance

between them at (x, y) is (u− d) cos φ.
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Note that there is some remission of the gradient limit in the invariant
weak membrane simply because, when the surface gradient g = |∇u| � 1,
the surface area integrand above is proportional to |g|, rather than g2 as for
the non-invariant membrane. The improvement in behaviour is most notice-
able near extremal boundaries. Quantitative estimates of the improvement
can be made. For a given λ, h0, gl in the non-invariant membrane, the
equivalent invariant membrane (the one with the same small scale smooth-
ing parameter λ) has effective contrast threshold hI and gradient limit gI .
It can be shown that the ratio

RI =
gI/hI

gl/h0

which can be regarded as a figure of merit for gradient limit effects, is a
function only of h0/λ. It can be computed by numerical methods, and
is plotted in figure 4.29. The optimum occurs when h0 ≈ 6λ giving an

Figure 4.29: Gradient limit remission for the invariant membrane. The

figure of merit RI depends on h0/λ for the equivalent non-invariant membrane.

For h0 � λ RI = 1, the non-invariant case, as expected.

improvement of a factor of RI ≈ 4. This suggests

h0 = 6λ (4.45)

as a natural depth/image-plane-distance scaling factor. At this optimum,
the effective contrast threshold is

hI ≈ 1.8h0 ≈ 11λ.
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That concludes the discussion of variational properties of the weak string
and membrane. The next chapter applies similar analysis in order to dis-
cover the properties of the weak rod and plate.



Chapter 5

Properties of the Weak
Rod and Plate

The previous chapter dealt with the weak membrane and its 1D equivalent,
the weak string. Variational analysis, applied to certain special cases, led
to the notions of “scale”, “contrast threshold” and “gradient limit”. But
the membrane and the string, with their 1st order energies, cannot detect
crease discontinuities, because they have no intrinsic resistance to creasing.
They can be creased without any associated energy increase.

In order to detect creases, a 2nd order surface must be used - one which
has a high energy density where it is tightly curved. The thin plate (Landau
and Lifschitz 1959, Grimson 1981, Terzopoulos 1983) has this property:
intuitively it is easy to crease a sheet of elastic (a membrane) but hard to
crease a sheet of steel. In this chapter, it is shown that the plate (and, in 1D,
the rod) exhibits similar properties to the membrane - contrast threshold
and characteristic scale - as well as its additional ability to detect steps and
creases simultaneously.

Here is a summary of the main properties of the rod and plate:

• As with the string and membrane, there is a scale constant (µ for
the rod and plate) and a contrast threshold. In addition, there is a
“gradient difference threshold” which determines detectability of iso-
lated creases. There is no gradient limit - one of the major benefits of
using a higher order scheme. But just as the gradient limit expressed
a limitation on performance of the membrane, so there is a higher
order limit for the rod and plate - a “second derivative” limit.

• The performance of a mixed membrane and plate is considered. It is
shown to have the worst of both schemes - the gradient limit of the
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membrane, as well as the additional computational load (see later
chapters) of the plate. It is concluded that the pure plate is superior.

• The plate can be shown to exhibit hysteresis in edge formation, pro-
ducing a tendency to maintain unbroken step edges, as the membrane
did. Even in the presence of some noise, step discontinuities are more
or less successfully detected and are unbroken.

• The weak plate is very expensive to compute, because of its 2nd or-
der energy (see chapter 7). The practical alternative is the “1st order
plate” in which plate fitting is decomposed into two 1st order pro-
cesses. First, the usual weak membrane is fitted to obtain a piecewise
continuous reconstruction u(x, y), with step discontinuities explicitly
labelled. Then ∇u(x, y) is used as gradient data for a weak plate, on
which crease discontinuities are localised.

• In the previous chapter it was argued that the energy of a recon-
structed 3D surface must be viewpoint invariant. It is shown that the
plate can be modified to meet this requirement.

Supporting mathematical analysis for this chapter is given in appendix C.
In a first reading of the book, it would be reasonable to skip the remainder
of this chapter, if the reader prefers to go directly to the discrete imple-
mentation of the weak string and membrane.

5.1 Energy of the weak rod/plate

The energy of a weak rod is

E =
∫ {

(u− d)2 + µ4u′′
2
}
dx + P. (5.1)

This differs from the energy of a weak elastic string (3.1) in that it includes
the second derivative of u, rather than the first. Such an energy is termed
“second order”. Alternatively, a mixture of first and second order energies
may be used, to give:

E =
∫ {

(u− d)2 + λ2u′
2 + µ4u′′

2
}
dx+ P. (5.2)

When u is continuous, this is somewhat akin to “splines under tension”
(Barsky and Beatty 1983), and is used for reconstruction by Terzopoulos
(1983, 1985).
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Now that the energy is second order it is possible to include penalties
both for steps and creases:

P = αZstep + βZcrease (5.3)

where, in 1D, Zstep, Zcrease are simply the number of the respective dis-
continuities. To have included a crease penalty β in the string would have
been pointless, for the following reason: a conventional (non-weak) string
u(x) merely conforms to any crease in the data. - it is restricted, in the
variational problem, only to be continuous, not to be smooth. Formally
incorporating a crease in u(x) at x = a would merely increase the energy
E by β; The increased energy is obviously not the global minimum, so the
weak string would never “choose” to invoke the crease penalty.

The energy E in (5.1) above has 3 parameters: µ, α, β, whereas E for
a string had only two: λ, α. Two parameters λ (scale) and h0 (contrast
threshold) described the performance of the string. The performance of
the rod is characterised by 3 measures: µ (scale), h0 (contrast threshold)
and g0 (gradient difference threshold). The last of these three concerns
sensitivity to the detection of creases. Just as for the string, and now for
the rod too, an isolated step is detected if contrast exceeds h0, so an isolated
crease is detected if the gradient difference across the crease exceeds g0. It
transpires that α and β must obey the relation

β < α < 2β

and it is shown in the next section that h0 and g0 are consequently related
too.

The 2D equivalent of (5.1) for the plate comes in two varieties (Grimson
1981):

Quadratic variation:

E =
∫ {

(u− d)2 + µ4(u2
xx + 2u2

xy + u2
yy)
}
dx dy + P (5.4)

Square Laplacian:

E =
∫ {

(u− d)2 + µ4(uxx + uyy)2
}
dx dy + P. (5.5)

In fact any linear combination of these two is a feasible plate energy. The
penalty P now includes costs α per unit length of step discontinuity, as with
the membrane and, in addition, β per unit length of crease discontinuity.
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5.2 Scale and sensitivity in discontinuity
detection

To arrive at an interpretation of the parameters µ, h0, g0, similar variational
analysis is followed as for the 1st order surfaces in chapter 4. As before,
results obtained for ideal step data apply also to “effective step height”
and “effective gradient difference” in non-ideal data. Results derived below
in 1D apply, as in the previous chapter, to translationally symmetric and
rotationally symmetric data in 2D. So analysis done for the rod will apply
also to the plate. Details of energy calculations are given in appendix C.

5.2.1 Sensitivity to an isolated step

Consider data d(x) in the form of an isolated, bi-infinite step of height h,
as in chapter 4. Again, the minimal energy, with a step discontinuity in
u(x) at x = 0, is α. For a continuous u, the minimal energy is

E =
1

2
√

2
h2µ, (5.6)

which is very similar to the equivalent for the string, except with µ in place
of λ, and an additional factor of 1/

√
2. As in (4.11) on page 58, for the

membrane, comparing the two energies above gives a contrast threshold

h0 = 2
3
4
√
α/µ. (5.7)

The contrast threshold also applies to the plate, for translationally sym-
metric and for rotationally symmetric data (see end of appendix C).

5.2.2 Interaction of adjacent steps

Now consider data d(x) in the form of a “top hat” of height h and width
a, as in figure 4.5 on page 59. Again, sensitivity to step discontinuities is
qualitatively the same as for the string. The minimal energy with two step
discontinuities in u(x) is 2α. With continuous u, minimal energy is

E = h2µ

(
1√
2
− exp

(
− a√

2µ

)
cos
(

a√
2µ

+
π

4

))
. (5.8)

Taking limits, as with the string, for a � µ the top hat is treated as two
isolated steps. For a � µ there is an interaction: the detection threshold
is
√
α/a; so it varies as 1/

√
a, just as for the string.



Properties of the Weak Rod and Plate 101

5.2.3 Sensitivity to an isolated crease

Bi-infinite data d(x) with an isolated crease is the first case of behaviour
beyond that of the string. The data consists of two semi-infinite, linear
portions

d(x) =
{
g1x if x < 0
g2x otherwise, (5.9)

as in figure 5.1, with gradient difference g = |g2 − g1|. If u has a crease at

Figure 5.1: Bi-infinite data d(x), with an isolated crease (a) may either be

approximated by a continuous rod (b), or be fitted exactly by a rod with a crease

coinciding with the crease in d(x).

x = 0 then it fits d(x) perfectly with energy β, the penalty for allowing the
crease. But if there is no crease in u, the minimal energy is

E =
1

2
√

2
g2µ3. (5.10)

Comparison of these two energies gives a threshold g0 for detection of an
isolated crease. It is detected if the gradient change g satisfies

g > g0 =
(
β

α

) 1
2 h0

µ
. (5.11)

5.2.4 Interaction of adjacent creases

A finite ramp (figure 4.8a on page 63) of gradient g and width a was used
with the string to demonstrate and quantify the gradient limit - the effect
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whereby, when the gradient g exceeds gl, a spurious step discontinuity may
occur in u. There is no such effect with the rod because, unlike the string,
a rod can conform to any constant gradient, incurring zero energy. But the
finite ramp can be used, in a similar way to the top hat, to demonstrate the
interaction between two creases. The energy of u(x), when it has two creases
coinciding with those of d(x), is just 2β. The energy of the continuous rod
is

E = g2µ3

(
1√
2
− exp

(
− a√

2µ

)
sin
(

a√
2µ

+
π

4

))
. (5.12)

When a � µ then, as for a pair of step discontinuities, the two crease
discontinuities are treated independently - that is, detected if g > g0. But
when a� µ there is interaction, and of a qualitatively different form from
that of two steps. The energy E above becomes

E ≈ 1
2
√

2
(ga)2µ =

1
2
√

2
h2µ

and the (ga) term has the effect that the gradient difference threshold varies
as 1/a, compared with 1/

√
a for the contrast threshold.

Finally, it is important to observe that in addition to the two possibilities
considered so far (continuous u and u with two creases), it is also possible
to have one or more step discontinuities in u. Consider this third choice in
the case when a� µ. Now as a becomes smaller, it is plain that data d(x)
becomes more and more like a step of height h = ga. The three choices
with corresponding energies can be shown to be:

Choice: continuous two creases one step

Energy: 1
2
√

2
h2µ 2β α+ ε(a)

where ε(a) → 0 as a → 0. Notice first that, since a crease discontinuity
represents a stronger constraint on u(x) than a step discontinuity, we must
have

α > β.

Otherwise a step would incur a cheaper penalty, while imposing a weaker
constraint on u. Energy would always be reduced by replacing all creases
in u by steps, so that crease discontinuities would never occur. Now, in-
specting the table above, it is also plain that if α ≥ 2β then no matter how
small a there would never be a step in u - two creases would always have
lower total energy.

It seems therefore that α and β are tightly mutually constrained:

β < α < 2β. (5.13)
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Referring back to (5.11), it is plain that h0 and g0, the contrast and gradient
difference thresholds, are also tightly constrained:

µ <
h0

g0
<
√

2µ. (5.14)

So the parameters of the plate really have only two degrees of freedom, not
three. In fact, in the discrete scheme, it is convenient to have α = 2β, and
formally cater only for creases. Then two adjacent creases (rod) or crease
contours (plate) are interpreted as a step.

5.3 Mixed 1st and 2nd order energy
performs poorly

For the mixed string and rod, whose energy was defined in (5.2), exact
variational solutions are harder to obtain. The step is one case that can be
analysed relatively easily, using the Fourier method described in appendix
C. For a continuous u the minimal energy is

E = K2µh2

where K is a function of λ/µ only. And, as before with the pure rod, when
u has a step discontinuity at x = 0 (the position of the step in d), the
minimal energy is E = α. For example, in the “critically damped” case
(λ =

√
2µ) K2 = 3/4. (For this special combination of λ, µ, there is just

sufficient damping influence from the 1st order energy to remove oscillatory
terms in the Green’s function.) So, comparing those two energies as usual,
the contrast threshold for an isolated step is

h0 = K−1

√
α

µ
.

Qualitatively (i.e. except for the constant K) this is the same as for the
pure plate.

Ideally, one would like to analyse fully the response of the mixed rod and
string to a finite ramp, and this is possible, but algebraically messy. Even
without a full analysis, it is clear that the gradient limit behaviour of the
string will persist, as long as λ 6= 0. Figure 5.2 shows what u looks like, with
and without a discontinuity at x = 0. Qualitatively, the behaviour here is
similar to the pure string in chapter 4, but the sagging effect, characteristic
of the string, is reduced: as λ/µ → ∞, the gradients u′(0+), u′(0−) in



104 Chapter 5

Figure 5.2: Gradient limit for the mixed rod and string. The continuous

u(x) (a) may have a higher energy than the discontinuous u(x) (b), in which the

surface is allowed to sag at x = 0, thus reducing energy.

figure 5.2b approach 0 - the behaviour of the pure string. So instead of a
gradient limit

gl =
√

α

2λ3

as for the string, one would expect that

gl →
√

α

2λ3
as µ→ 0, fixed λ

gl → 0 as λ→ 0, fixed µ.

The conclusion is that by varying the proportion λ/µ of 1st order energy
in the mix, the gradient limit can be controlled. But unfortunately, includ-
ing even a small proportion of 2nd order energy can increase enormously
the amount of computation required. The reason for this is explained in
chapter 7. To achieve a significant improvement in the gradient limit over
the pure weak string, one would expect to have µ ∼ λ. In that case, it will
be shown that the computational cost is effectively the same as for a pure
2nd order energy, and much greater than a pure 1st order energy.
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5.4 Hysteresis

The purpose of this section is to demonstrate that the weak plate incor-
porates hysteresis for step discontinuities, just as the weak membrane did.
Recall that this property imparts a tendency for edges to be unbroken, be-
cause any small break causes an increase in energy. In fact, for the plate,
the proof is somewhat easier than for the membrane because numerical in-
tegration is unnecessary. Hysteresis for crease discontinuities has yet to be
investigated.

Consider 2D data

d(x, y) =
{

h
2 if y ≥ 0
−h

2 otherwise
x, y ∈ [−L,L].

A weak plate represented by u(x, y) is to be fitted to d(x, y), using param-
eters µ, h0, such that µ � L. Consider the case in which h > h0 so that
the globally minimal energy state of the weak plate is u = d, with energy
2αL. (There is zero energy from the plate itself, so the only contribution
is the penalty generated by the step edge in u, along y = 0, of length 2L.)
Now consider chopping out a small portion x ∈ [−ε/2, ε/2] from the edge,
just as was done with the membrane. We seek to show that, however small
ε is, there is an increase in total energy ∆E(ε), which is bounded below
by some bound greater than zero. It is sensible here to consider the limit
ε → 0. This would have been useless for the membrane, because pinching
the two sections of membrane together at a point generates an ill-defined
problem.

For the plate, as ε→ 0 the decrease in penalty αε→ 0. But the plate u
is forced to be continuous at (x, y) = (0, 0), no matter how small ε is. The
resulting u is “pinched together” at (x, y) = (0, 0), as in figure 5.3. This
causes an increase in the energy of the plate itself (not including penalties)
of ∆E(0). The total change in energy for an edge gap of length ε, including
penalties, is ∆E(ε)−αε. It is clear that ∆E(ε) is an increasing function of
ε, because the continuity constraint on the plate becomes more and more
extensive as the interval [−ε/2, ε/2] lengthens. Consequently

∆E(ε)− αε > ∆E(0)− αε.

In the absence of any constraint on the plate, its energy E = 0, so the
increment ∆E(0) is the minimum, subject to the constraint u(0, 0) = 0, of

E = 2
∫ L

y=0

∫ L

x=−L

{
(u− d)2 + µ4(u2

xx + 2u2
xy + u2

yy)
}
dx dy.
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Figure 5.3: Hysteresis - step discontinuities in the weak plate prefer

to be unbroken. In the global minimum energy state, the plate u fits data d

exactly (a). This is compared with the energy when u is forced to be continuous

- pinched together - at a point (b).

Since L� µ this can be taken to be approximately

E = 2
∫ ∞

y=0

∫ ∞

x=−∞

{
(u− d)2 + µ4(u2

xx + 2u2
xy + u2

yy)
}
dx dy. (5.15)

By substituting X = x/µ, Y = y/µ,w = u/h, it is easily shown that

∆E(0) = Kh2µ2,

where K is a dimensionless constant.
Hence the total increase in energy due to the gap

∆E(ε)− αε > Kh2µ2 − αε,

a net increase if Kh2µ2 > αε. So (using (5.7)), there is in-built resistance
to forming small gaps of length

ε < εmax = 2
√

2K
(
h

h0

)2

µ.

The minimum gap length is of order µ. The interpretation of this result is
that, even in the presence of moderate noise, there will be a tendency to
avoid gaps shorter than this minimum.

5.5 1st order plate

Because the plate has a 2nd order energy, it is expensive to compute (see
chapter 7). Computation even of the continuous plate is made feasible only
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by the use of multilevel techniques (Terzopoulos 1983), and the indications
are that multilevel computation could confer only a limited advantage when
weak continuity constraints are in force (chapter 7). However, the weak
plate problem can be reformulated as a sequence of two 1st order processes.
The first is a weak membrane, applied to data d to produce a piecewise
continuous reconstruction u in the usual way. Then a weak plate can be
fitted to gradient data ∇u. (Gradient ∇u is well defined, because of the
regularising effect of the membrane). The fitting is constrained not to cross
step discontinuities already labelled. It is a 1st order process, minimising
(in the case of quadratic variation)

E =
∫ {

(p− p0)2 + (q − q0)2 + µ2(p2
x + p2

y + q2x + q2y) dx dy
}

+ P (5.16)

where (p0, q0) = ∇u. Results are shown in figure 5.4. Computational cost
is that of two 1st order processes, which is very much less than that of one
2nd order process. There are of course two scale parameters in this scheme
- λ1 for the membrane fitting and λ2 for the fitting of the plate to gradient
data. Practical experience suggests that it is best to choose λ2 somewhat
greater than λ1 so that the plate fitting is relatively immune to distortion
created by the smoothing effect of the membrane.

The 1st order plate delivers step and crease discontinuities, as the true
plate does. But it does not produce a fully filtered, smooth reconstruction.
Instead, it generates a piecewise continuous reconstruction u, and piecewise
continuous surface orientation (p, q).

In practice, for reasons that the authors do not understand very clearly,
use of the square Laplacian produces unstable results (figure 5.5). This
occurs regardless of whether the true plate or the 1st order plate is used.
It may be similar to the puckering effect that Grimson (1981) observed at
plate boundaries. It is uncertain whether its origin is a property of the
energy itself, or simply of the discrete approximation.

5.6 Viewpoint invariance

In the previous chapter, it was argued that a scheme for reconstruct-
ing 3D surfaces should use a viewpoint invariant surface energy. For the
membrane, this meant replacing the approximation 1

2 (∇u)2 dx dy by dS =
(1 + (∇u)2)1/2 dx dy, the area of a surface element. Then

∫
dS is invariant

because it is defined with respect to the visible surface, rather than the x, y
coordinate frame.

Quadratic variation and square Laplacian are not viewpoint invariant.
They are merely approximations to certain measures of intrinsic surface
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Figure 5.4: A synthetic image (a) with added noise (b) is fitted by a weak

(quadratic variation) plate (c). Steps (black) and creases (white) are marked.
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Figure 5.5: Instability results when square Laplacian is used in the plate (cf.

figure 5.4).

properties.
The invariant equivalent of the square Laplacian (5.5) is

E =
∫ {

(u− d)2 cos2 φ+ µ4(κ1 + κ2)2
}
dS + P (5.17)

where κ1, κ2 are principal curvatures, dS is a surface element as before and
φ is surface slant. The squared sum of curvatures is expressed in the viewers
frame as

(κ1 + κ2)2 =
(Auxx − 2Buxy + Cuyy)2

D3
, (5.18)

where
A = 1 + u2

y, B = uxuy, C = 1 + u2
x and D = sec2 φ,

(do Carmo 1976). Note that A,B,C,D are all functions of 1st derivatives
of u only. If the sum of squared curvatures is to be used (the invariant form
of quadratic variation) then

κ2
1 + κ2

2 = (κ1 + κ2)2 − 2κ1κ2, (5.19)

where (do Carmo 1976) the Gaussian curvature

κ1κ2 =
uxxuyy − u2

xy

D2
.

As in the previous chapter, the cos2 φ term in (5.17), renders the (u−d)2
term of (5.5) invariant. This correction is omitted if noise is thought to
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originate in the sensor frame rather than on the surface, to give

E =
∫

(u− d)2 dx dy +
∫
µ4(κ1 + κ2)2 dS + P. (5.20)

Expressing the energy E as

E =
∫
E(ux, uy, uxx, uxy, uyy) dx dy + P,

it can be shown (Blake 1984) that the integrand E is a non-convex function
of ux, ... . So even with a fixed set of discontinuities, it is not known whether
there is a uniquely optimal u to be found (Troutman 1983).

This problem is dealt with, in an approximate way1, by using a 1st order
plate, as already proposed for the non-invariant case. First, estimates for
ux(x, y), uy(x, y) are obtained by fitting an invariant weak membrane. This
labels step discontinuities and yields estimates of ux, uy which can be in-
serted as constants into E which is then convex with respect to uxx, uxy, uyy.
Then E is minimised with respect to px, py, qx, qy, The integrability con-
straint py = qx is not imposed, as to do so costs a great deal of computation
(chapter 7).

That concludes the topic of the last two chapters - the variational anal-
ysis of function fitting under weak continuity constraints. The next two
chapters consider how the variational problems can be turned into discrete
computations, and how appropriate algorithms can be constructed. The
measure of success of the algorithms will be how far the results that they
produce agree with the theoretical predictions of the last two chapters.

1The solution is still not truly invariant, but at least the severe variations at near-
extremal boundaries are greatly reduced.
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The Discrete Problem

The previous two chapters concentrated on exact, variational solutions to
problems with weak continuity constraints. That enabled performance to
be predicted in terms of contrast threshold, scale parameter and so on.
But in order to perform function fitting with arbitrary, discrete data, the
energy E must of course be converted to a discrete form. Finite elements,
first used for visual reconstruction problems by Terzopoulos (1983), are the
appropriate formalism for this. They have the advantage that the accuracy
of a discrete solution, as an approximation to a continuous one, is known
(Zinkiewicz and Morgan 1983). Details are given, in this chapter, of discrete
energies for string, membrane and plate.

The discrete form of E is a function both of real-valued variables ui and
of the boolean line-variables li that signal positions at which the continuity
constraint is broken, as explained in chapter 3. The energy E(ui, li) is
to be minimised with respect to ui, li. But it was also mentioned that
minimisation with respect to li can be done “in advance”. Explicit reference
to the line process is eliminated to yield a simplified cost function F (ui),
depending only on real-valued variables ui. The function F , we saw in
chapter 3, is difficult to minimise, owing to its lack of convexity. A general
discussion of algorithms for minimising non-convex functions is given in this
chapter. Then in the following chapter, our GNC minimisation algorithm
is described in some detail.
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6.1 Discretisation and elimination of line
variables

To solve a functional minimisation problem computationally, it must first be
discretised. For the 1D elastic string of section 2, the simplest conceivable
finite element was used to do this - a linear element (figure 3.2 on page
42). That produced a discrete expression for the energy E, as a function
of nodal values ui, and of the line variables li. Later, other finite elements
will be given for the membrane and plate in 2D. But first we describe the
procedure for elimination of line-variables from the energy for the weak
string.

To eliminate the line-process {li}, E must first be expressed as:

E = D +
N∑

i=1

hα,λ(ui − ui−1, li) (6.1)

where
hα,λ(t, l) = λ2(t)2(1− l) + αl. (6.2)

and

D =
N∑
0

(ui − di)2 (6.3)

as before. All dependence of E on the line-process {li} is now contained
in the N copies of hα,λ that appear in the formula (6.1). The function
hα,λ (plotted in fig 6.1a) governs local interactions between the {ui}. The
problem is now (from (6.1)):

min
{ui,li}

D +
N∑
1

hα,λ(ui − ui−1, li),

or

min
{ui}

(
D + min

{li}

N∑
1

hα,λ(ui − ui−1, li)

)
- since D does not involve the {li}. Now, immediately performing the
minimisation over {li}, the remaining problem is to minimise F with respect
to ui, where

F = D +
N∑
1

gα,λ(ui − ui−1), (6.4)

and gα,λ(t) = min
l∈{0,1}

hα,λ(t, l).
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Figure 6.1: a) The energy function for local interaction between adjacent nodes.

b) The line process l can be eliminated from a) by minimisation over l ∈ {0, 1}
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(Often the function gα,λ will be written simply g, when this is unambiguous,
and similarly for g∗, g(p) as defined in the next chapter.) The function gα,λ

is shown in fig 6.1b and is simply the minimum of the 2 graphs in fig 6.1a.
Explicitly, gα,λ is

gα,λ(t) =
{
λ2t2 if |t| <

√
α/λ

α otherwise. (6.5)

The line process l can be explicitly recovered, at any time, from g(t) by a
simple formula:

l =
{

1, if |t| >
√
α/λ

0 otherwise. (6.6)

6.1.1 Extending 1D methods to 2D

The natural extension to 2D of the linear element used above, is a linear
triangular element. Within each element, u(x, y) is linear and determined
by 3 nodal values as in fig 6.2. Line-variables on each triangle, as shown,

Figure 6.2: Linear triangular elements for the membrane. Line-variables

li,j , mi,j are attached to each triangle. However, this arrangement of line-variables

may prove inconvenient in practice (see text).

indicate (li,j = 1 or mi,j = 1) when a discontinuity exists, disabling the
energy of that triangle, and incurring a penalty α. Along a contour of
discontinuity, a whole chain of triangles is disabled, each accruing a penalty
α. The total penalty P , incorporated in energy E, is therefore equal to α
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times the total length of all discontinuity contours, and that is just as
required (chapter 4). The resulting energy, analogous to (6.1) above, is

E = D +
∑
i,j

hα,λ

(√
(ui,j − ui−1,j)2 + (ui,j − ui,j+1)2, li,j

)
(6.7)

+
∑
i,j

hα,λ

(√
(ui,j − ui+1,j)2 + (ui,j − ui,j−1)2,mi,j

)
where now

D =
∑
i,j

(ui,j − di,j)2. (6.8)

Line variables can be eliminated, replacing h with g as before, to obtain an
energy F (u). As in chapter 3, it is necessary to construct a convex approx-
imation F ∗. This proves to be particularly difficult for the arrangement of
elements and line-variables in figure 6.2. It turns out that it is no longer
feasible to guarantee, as we can for the string (see next chapter), that F ∗

is as close as possible to F whilst still being convex. Additional inefficiency
arises because of the need to compute the square roots in (6.7).

Instead, a different arrangement of line-variables is adopted, whose
physical role is perhaps a little less sympathetic to the spirit of finite ele-
ments, but which facilitates construction of a convex approximation. The
new discrete energy is

E = D +
∑
i,j

hα,λ (ui,j − ui−1,j , li,j) +
∑
i,j

hα,λ (ui,j − ui,j+1,mi,j) . (6.9)

Now li,j = 1 flags the collapse of two adjacent triangles in a Northerly
direction, as in fig 6.3. And mi,j = 1 flags the collapse of a pair of triangles,
but in an Easterly direction. Line-variables in (6.9) can be eliminated to
give the 2D equivalent of (6.4):

F = D +
∑
i,j

g(ui,j − ui−1,j) +
∑
i,j

g(ui,j − ui,j+1). (6.10)

Line-variables are recovered as before, from (6.6).
The viewpoint invariant membrane, described earlier in chapter 4, must

use the original triangulation scheme (figure 6.2). This is because the gra-
dient term in the energy integrand is

√
1 + u2

x + u2
y so that the two compo-

nents u2
x, u2

y are not separable. But, as before, the convex approximation
is less satisfactory.

From the point of view of 2D rotational invariance, equilateral triangular
elements would actually be preferable. Of course they may be inconvenient
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Figure 6.3: When line-variable li,j = 1, this signifies that the “Northerly”

component of the energy of the membrane, over the 2 triangles shown, is disabled.

Similarly for mi,j = 1, but acting in an Easterly direction.
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for use with the usual rectangularly formatted images, but are in keeping
with the hexagonal tesselation of retinal mosaics. They are better because
they enable more precise measurement of contour lengths (in the term P ),
as shown in figure 6.4. Imagine Manhattan built with hexagonal blocks -
distances by road would be reduced, and would be much closer to distance
as the crow flies. Hexagonal tesselation would make sensitivity to contrast,
in the weak membrane, vary far less with varying orientation of contours.
In fact variations are reduced by a factor of almost 3, from about ± 18%
to about ± 7%. In practice, however, an approximately square grid is used.

Figure 6.4: Rotational invariance of length measurement is greatly improved

on a hexagonal grid.

As expected, sensitivity is greatest for horizontal and vertical lines, and
least for diagonal ones. (See, for example, some of the images in figure 4.1
on page 53.

6.1.2 Higher order energies: weak rod and plate

Since energies for the rod (1D) and the plate (2D) include 2nd derivatives
of the fitted function u, linear elements are inadequate (having zero 2nd
derivative). The 1D case is an obvious specialisation of the 2D one, so
the following discussion is restricted to the plate. The simplest element,
though somewhat unorthodox, is the non-conforming quadratic element of
Terzopoulos (1983), developed for the smooth, thin plate. It is unorthodox
in having nodes which lie outside the element itself - see fig 6.5. Values
of 2nd derivatives within the (i, j)th element are simple functions of nodal
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Figure 6.5: The non-conforming, square, quadratic element of Terzopoulos has

6 nodes, 2 of which lie outside the square. For the weak plate, a line-variable li,j
is associated with each element.
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values:

uxx = ui,j−1 + ui,j+1 − 2ui,j , (6.11)
uyy = ui−1,j + ui+1,j − 2ui,j ,

uxy = −ui,j − ui+1,j+1 + ui,j+1 + ui−1,j .

As mentioned in chapter 5, there is in fact a one parameter family
of suitable (rotationally invariant) 2nd order energy functions (Grimson
1981, Brady and Horn 1983). They are the linear combinations of the
square Laplacian (5.5) and the quadratic variation (5.4). Quadratic vari-
ation proves more awkward to handle, because line-variable elimination
generates the following energy:

F = D +
∑
i,j

gβ,µ2

(√
Vi,j

)
(6.12)

where Vi,j is the discrete form of quadratic variation

u2
xx + 2u2

xy + u2
yy,

in which uxx, uxy, uyy are each represented discretely as in (6.11). This is
inefficient for much the same reasons that the ideal membrane scheme with
triangular elements (see above) is inefficient: the convex approximation F ∗

is not as good, and square roots must be computed. The square Laplacian
energy gives a simpler computational scheme, with just one line-variable
per element. After elimination of line-variables, the energy of the weak
plate is

F = D +
∑
i,j

gβ,µ2(ui,j−1 + ui,j+1 + ui−1,j + ui+1,j − 4ui,j) (6.13)

similar to (6.4) for the membrane, but with parameters µ2, β in place of
λ, α, and the argument of gβ,µ2 being a discrete Laplacian of u rather than
a first derivative. In practice, the Laplacian scheme exhibits instability on
boundaries (figure 5.5, page 109).

As before (6.6), after F has been minimised, line-variables li,j can be
recovered. But now the interpretation of line-variables is a little different
than for the membrane. In 1D (the rod), for example, a single line-variable
with the value li = 1 indicates a gradient discontinuity (a crease). Two
adjacent line-variables with values li = 1, li+1 = 1 indicate a step. In 2D,
a crease appears as a contour along which the line-variables are set. A step
appears as a thick contour of set line-variables, two elements wide. And a
wide step (as occurs in intensity data, at shadow boundaries) is labelled as
a tramline - a pair of parallel contours.
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6.1.3 First order plate

Since the computational cost of schemes employing 2nd order energies will
prove to be high a more economical way of achieving a similar effect is
needed. In the previous chapter, it was shown that the weak plate com-
putation can be split into two 1st order computations. The first is the
ordinary membrane, already discussed, which produces step discontinuities
and a surface u(x, y). The surface can be differentiated to give

p0(x, y) = (p0(x, y), q0(x, y)) = ∇u(x, y)

whose discrete form

p0
i,j = (ui,j − ui,j+1, ui,j − ui−1,j)

can be used as data for a second 1st order process to reconstruct gradi-
ent pi,j , complete with discontinuities. These represent 1st order (crease)
discontinuities in the original data di,j .

The gradient reconstruction operates by minimising

F =
∑
i,j

{
‖pi,j − p0

i,j‖2 + g
(√

Vi,j

)}
(6.14)

where Vi,j is quadratic variation, as before, but now expressed in terms of
pi,j :

Vi,j = (pi,j − pi−1,j)2 + (pi,j − pi,j−1)2 + (qi,j − qi−1,j)2 + (qi,j − qi,j−1)2

Note that there is no attempt to impose the integrability constraint that
py = qx, although we have a perfect right to do so. The reason is that
computation time to minimise F would be severely increased, as shown in
the next chapter.

6.1.4 Sparse data

So far, energies have been given for the case in which data is dense. Stereo-
scopic depths, remember, are not dense but are sparsely and irregularly
distributed in the image planes. A simple modification to the energy takes
care of this. Suppose that data dk is available at points (ik, jk), k = 1, ..,K.
The “faithfulness to data” component D of energy (6.8) must be replaced
by

D =
A

K

K∑
k=1

(uik,jk
− dk)2 (6.15)

Other energy terms are unchanged.
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6.2 Minimising convex energies

What makes the discrete problems difficult to solve is the fact that discon-
tinuities are incorporated into the reconstructed functions. In this section
a little time is taken out to discuss the simpler problem of reconstructing
surfaces which are entirely continuous, before proceeding to consider how
to solve the main problem.

This class of problem was extensively examined by Grimson (1981) and
Terzopoulos (1983). In chapter 2 it was concluded that continuous recon-
struction has limited application. That was because the most compelling
reason for going to the computational expense of explicit surface recon-
struction is to pick out discontinuities masked by texture. A surface fitting
scheme to do this must be able to recover discontinuities which are a priori
unknown, and localise them accurately.

However, there are one or possibly two ways in which continuous recon-
struction of depth data can be useful. The first is in converting sparse data
to dense, using a continuous membrane to do the “filling-in” (McLauchlan
et al. 1987). The data is then in a more convenient form for reconstruction
with discontinuities, for reasons that were given in chapter 4. The second
use is that, as was pointed out in chapter 2, it might be convenient to have
a depth map available for path planning and collision avoidance. Again,
a membrane is quite adequate; there is no reason to go to the expense of
reconstructing a smooth surface by means of a plate.

6.2.1 Algorithms based on gradient descent

Energies for continuous surfaces can be obtained by “disabling” the line
processes in the energies defined earlier. Since the membrane with sparse
data is the process that is of most interest, that is the one considered here.
Line variables in (6.9) are switched off -

li,j = mi,j = 0

- to give the energy for the continuous membrane:

E = D +
∑
i,j

hα,λ (ui,j − ui−1,j , 0) +
∑
i,j

hα,λ (ui,j − ui,j+1, 0)

= D + λ2

∑
i,j

(ui,j − uu−1,j)2 +
∑
i,j

(ui,j − ui,j+1)2

 . (6.16)

The error term D for sparse data was defined in (6.15). If, for some reason,
it is known that the surface u is discontinuous along some contour, then
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the energy is modified simply by clamping the line variables “on” (li,j =
1,mi,j = 1) at all points along the contour. Similarly, if the fitting process
is restricted to some irregularly shaped region, such as a region already
found to contain image texture, line variables are clamped on along the
region boundary.

With all line variables fixed, minimisation of E is an entirely classical
problem. The condition for u to be the desired minimum is that

∂E/∂ui,j = 0, ∀i (6.17)

- the gradient of E (with respect to u) vanishes. Energy E is a quadratic
function of u, so this is a system of linear simultaneous equations. What is
more, the fact that E is “strictly convex” (see next chapter for discussion
of convexity) guarantees that there is one and only one solution.

There are numerous ways to solve such an equation, most of which in-
volve successive adjustments of the ui,j to reduce E, until it can be reduced
no further. The crudest way to do that is simply to try small changes to
each of the ui,j in turn, and to accept changes which reduce E. (That was
the method described, at the end of chapter 3, to find a minimum of the
function F (p).) It does work, but can be inefficient. A better strategy is
to use the gradient ∂E/∂ui,j as a guide to how ui,j should be changed,
in order to reduce E fastest. Grimson (1981) used the “conjugate gradi-
ent” algorithm to minimise the energy of a plate. Terzopoulos (1983) used
the “Gauss-Seidel” algorithm, which is a special case of the “Successive
Over-relaxation” (SOR) algorithm.

SOR works as follows. For each site (i, j), gradient ∂E/∂ui,j is com-
puted, and the the quantity

w

T
(∂E/∂ui,j)

is subtracted from ui,j . The constant T is carefully chosen to ensure conver-
gence whenever w ∈ (0, 2). The whole process is repeated many times (the
next chapter tells just how many) until the solution is reached. This algo-
rithm (SOR) is laid out explicitly, in the case of a membrane with sparse
data, in figure 6.6. Note that the “Gauss-Seidel” algorithm is the special
case of SOR in which w = 1. As it stands, the algorithm is serial, because
the ui,j are updated in strict sequence. Parallel versions do, however, exist:
“simultaneous over-relaxation” and “chequerboard SOR”.

6.2.2 Multi-grid algorithms

Terzopoulos greatly enhanced the basic SOR algorithm by making use of
multi-grid techniques (Brandt 1977), in which relaxation takes place simul-
taneously, on coarse and fine arrays. Use of four arrays, with density in
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Nodes: i ∈ {0, ..., N}, j ∈ {0, ..., N}.
Iterate n = 1, 2, ...

For i = 1, ..., N − 1, j = 1, ..., N − 1:
If there is data at node {i, j}:

u
(n+1)
i,j = u

(n)
i,j − ω

{(
1 + 4λ2

)
u

(n)
i,j − di,j − λ2

(
u

(n+1)
i−1,j + u

(n+1)
i,j−1

+u
(n)
i+1,j + u

(n)
i,j+1

)}
/
(
1 + 4λ2

)
otherwise:

u
(n+1)
i,j = u

(n)
i,j − ω

{
4u(n)

i,j −
(
u

(n+1)
i−1,j + u

(n+1)
i,j−1

+u
(n)
i+1,j + u

(n)
i,j+1

)}
/4

Modification is necessary at corners, for example:
If there is data at node {0, 0}:

u
(n+1)
0,0 = u

(n)
0,0 − ω

{(
1 + 2λ2

)
u

(n)
0,0 − d0,0 − λ2

(
u

(n)
1,0 + u

(n)
0,1

)}
/
(
1 + 2λ2

)
otherwise:

u
(n+1)
0,0 = u

(n)
0,0 − ω

{
2u(n)

0,0 −
(
u

(n)
1,0 + u

(n)
0,1

)}
/2.

Modification is also necessary on array edges, for example:
If there is data at node {0, j}, 1 ≤ j ≤ N − 1:

u
(n+1)
0,j = u

(n)
0,j − ω

{(
1 + 3λ2

)
u

(n)
0,j − d0,j − λ2

(
+u(n+1)

0,j−1

+u
(n)
1,j + u

(n)
0,j+1

)}
/
(
1 + 3λ2

)
otherwise:

u
(n+1)
0,j = u

(n)
0,j − ω

{
3u(n)

0,j −
(
u

(n+1)
0,j−1 + u

(n)
0+1,j + u

(n)
0,j+1

)}
/3.

Figure 6.6: An SOR algorithm for the membrane, with sparse data.
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the ratios 8:4:2:1, achieved a speed-up in excess of 100:1, for the continuous
plate. In our case, speed-up for the membrane (McLauchlan et al. 1987) is
typically 10:1 (somewhat dependent on the scale λ and the sparsity of the
data).

The principle of multigrid operation is illustrated in figure 6.7. The

Figure 6.7: Multigrid relaxation. In this illustration, grids are shown at

three levels. Relaxation takes place on coarse and fine grids, moving both upwards

and downwards in order to achieve fastest convergence.

problem is that standard SOR, at a single level, rapidly smooths away
error signals of high spatial frequency, leaving a persistent low frequency
error that decays slowly. This happens because each iteration of relaxation
is a local process; high frequencies are removed locally, but low frequencies
require long distance propagation, taking many iterations. That is where
coarse grids help. Low spatial frequencies, projected onto a coarse grid,
become high frequencies with respect to the new grid. To put it another
way, neighbour to neighbour communication on a coarse grid covers more
ground per iteration than on a fine grid. An adaptive scheme switches the
relaxation process between levels (both coarse to fine and fine to coarse).
Switching occurs according to the spectral composition of the error signal,
as measured by local Fourier transformation. For the membrane, “chequer-
board Gauss-Seidel” was found to be most effective. Imagining the grid
at each level to be a chessboard, all the black squares are updated in one
iteration, and all the white ones in the next. This means that, in any one
iteration, each square that is updated has four nearest neighbours that are
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left alone. There is no interaction, therefore, between any pair of squares
being updated. Thus the order of updating does not matter, and therefore
computation is truly parallel within each iteration.

6.3 Overcoming non-convexity

Let us now return to the main problem - dealing with weak continuity
constraints. The energy functions F for weak continuity problems are non-
convex. Convexity is a sufficient condition for all local minima to be global
minima. Since F is non-convex it may have many local minima, many of
which are not global. We showed in section 2 that F does in fact have
many local minima - possibly as many as 2N , for a weak elastic string with
data vector d0, .., dN . This means that naive gradient descent will almost
certainly stick at a local minimum that is of higher cost than the global
minimum. What is more, which local minimum is reached will depend
strongly on the starting point of the descent. For this reason, it was ar-
gued in chapter 3 (where our myopic fly remained trapped at altitude), an
algorithm is needed that has some ability to “look ahead”.

6.3.1 The GNC algorithm

This book proposes the GNC algorithm, already described briefly in chapter
3, and due to be explained fully in the next chapter. The algorithm given
in chapter 3 (figure 3.7, page 49) worked by direct descent, trying small
changes in each of the ui in turn, and accepting them if they reduce the
energy function F (p). More sophisticated gradient following methods (SOR)
are described in the next chapter. For now, recall the central step of the
earlier algorithm: to test a small increment (or a decrement) δ in ui and
compute the energy change

∆F (p) = F (p)(u1, .., ui + δ, .., uN )− F (p)(u1, .., ui, .., uN ). (6.18)

If ∆F (p) < 0 then the change is accepted. This operation is applied in
sequence to the ui, to comprise one iteration. Iterations are repeated, for
a given p, until convergence. Non-convexity parameter p is decreased from
1 (convex) towards 0 (true energy function).

There are three main alternatives to GNC, each somewhat different in
nature. All three are algorithms of general applicability, whereas GNC is
somewhat special to problems involving weak continuity constraints - which
is both its weakness and its strength.

The first of the alternatives is simulated annealing. Kirpatrick et al.
(1982) described its application to the minimisation of non-convex energies.
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Smith et al. (1983) used it for image restoration. Geman and Geman (1984)
also applied it to image restoration, using a cost function that incorporates
weak continuity constraints.

The second is Hopfield’s neural network computation (Hopfield 1984).
It involves constructing a single energy function which is a compromise
between the true F and a convex approximation to F . This compromise
function is somewhat like F (p) in the GNC algorithm, for some intermediate
value of p ∈ [0, 1]. His method of obtaining the convex F ∗ is generally
applicable to integer programming problems, but at the price of being a
rather poor approximation compared with the F ∗ used in GNC.

Finally dynamic programming (Bellman and Dreyfus 1962), previously
used for curve detection by Montanari (1971), has been successfully applied
to the weak string by Papoulias (1985).

6.3.2 Simulated annealing

Simulated annealing is a powerful, general method for finding global optima
of functions which have many local optima. It is based on the algorithm
of Metropolis et al. (1953) for simulating statistical mechanical systems.
Instead of direct descent, some randomness is introduced into the descent
path. This avoids sticking in local minima. The degree of randomness
is controlled by a temperature parameter, which is initially high. As the
system approaches the global minimum, it is allowed to cool.

The structure of the algorithm is superficially similar to GNC. Instead
of sweeping parameter p from 1 to 0, a temperature T is reduced from some
starting value towards 0. And in place of the deterministic updating rule,
increments δ in each ui are tested according to a random rule. The energy
change is defined, similarly to (6.18), but for the actual cost function F ,
rather than for F (p):

∆F = F (u1, .., ui + δ, .., uN )− F (u1, .., ui, .., uN ). (6.19)

The following rule is then applied: if ∆F < 0 then the change is accepted
as before, but if ∆F ≥ 0 then it is accepted randomly, with probability

exp (−∆F/T ) ,

and otherwise rejected. The schedule for reduction of temperature is given
(Geman and Geman 1984) by

T = C/ log(1 + k)

at the kth iteration, where C is an appropriate energy constant, related to
a characteristic energy of the system. When T is large, energy increases
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are often accepted, enabling the system to jump out of local minima. As
T → 0, the system “freezes”, becoming almost deterministic in its descent
towards a minimum of energy.

The generality of simulated annealing is a great attraction. Simulated
annealing can, in a sense, be regarded as a general engine for non-convex
problems. It can be argued however that the additional freedom to choose
a cost function for simulated annealing is not of great benefit for visual
reconstruction problems. For example, a more complex line process (Geman
and Geman 1984) can be used to penalise breaks and endings of edges. But
the hysteresis effect, intrinsic to the membrane and plate, already do that
very satisfactorily. In any case, computational requirements can escalate
alarmingly if an “arbitrary” energy is designed at will. This is illustrated
in the next chapter, where it is shown that energies of second or greater
order necessarily demand much more computation than first order ones.

Comparison of efficiency is difficult, since execution times are strongly
dependent on data and on precise choice of energy function. Execution
time of GNC, for instance, increases markedly when the data is very noisy
(see later), and this may also be the case with simulated annealing. Typical
reported runtimes for simulated annealing with energies most closely com-
parable to ours are around 1000 iterations (Marroquin 1984). Equivalent
runtime for GNC can be as low as 50 iterations, tending to be higher at
large spatial scale λ, µ. Another significant advantage of GNC over simu-
lated annealing is the potential for implementation in conventional analogue
hardware, without the need to use noise generators.

6.3.3 Hopfield’s neural model

Hopfield’s neural model (Hopfield 1984) solves certain boolean program-
ming problems. It can be expressed1 as the minimisation of an energy
F (0), where

F (p) = −1
2

∑
i,j

Ti,jViVj +
∑

i

IiVi +
∑

i

Z
(p)
i (Vi), (6.20)

with respect to Vi ∈ [0, 1]. Constants Ti,j and Ii between them encode prob-
lem constraints and data. The function Z(p), plotted in figure 6.8, controls
convexity, just as in GNC. The final configuration of the Vi represents the
solution. Variables Vi are allowed to take real values in the range [0,1], but
as p→ 0 they are forced naturally towards boolean values2 0,1.

1The notation here is slightly altered from Hopfield’s original, so as to make the
analogy with GNC clear.

2In Hopfield’s formulation, the Vi take values −1, 1, but that is a minor detail.
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Figure 6.8: Control of convexity in Hopfield’s system. When p = 0, the

rectangular energy function forces solutions to be boolean-valued.

It is desired to minimise the energy for p = 0; unfortunately F (0) is non-
convex. In the limit p→ 1, F (p) becomes convex, but of course with totally
different extrema. Hopfield’s procedure uses F (p) with an intermediate
value of p. Recent work suggests that, as in GNC, sweeping p from 1 to
0 may be useful in the neural model (Hopfield and Tank 1985). Whereas
such a strategy will be proven, in the next chapter, to be effective in GNC,
there are as yet no corresponding proofs for neural networks.

The main difference from GNC is that the convex approximation F (1)

in (6.20) is by no means a close one, though general for a certain class of
integer problems. If only one value of parameter p is used, rather than
sweeping p, the solution is not necessarily an extremum of the original
function F . Moreover, optimisation of a convex F (p) in Hopfield’s method
need not yield the solution for F (0), because the extrema of such F (p) are
not generally integer solutions Vi ∈ {0, 1}. In GNC, however, F (1) is often
a sufficiently good approximation to F (0) to yield a correct solution.

In any case, an exact comparison of the methods is difficult because
they solve different problems. The Hopfield scheme might be made to
implement a weak string, for example, by extending it to deal with mixed
real and boolean variables (Yuille 1985). The energy (6.20) would become
a cubic polynomial in ui, li (taking the place of the Vi above), as in (3.3)
on page 42.

6.3.4 Dynamic programming

Dynamic programming is a technique for optimising functions of discrete
variables, applicable when the function F can be decomposed as a sum of
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many functions, each with just a few arguments. Since dynamic program-
ming requires discrete valued variables, the variables ui must be quantised
into M discrete levels.

A dynamic programming algorithm to minimise the energy F of the
weak string runs as follows. First “return functions” φk are defined and
computed by a recurrence relation:

φ0(u1) = min
u0

{
(u0 − d0)2 + g(u1 − u0)

}
φk(uk+1) = min

uk

{
(uk − dk)2 + g(uk+1 − uk) + φk−1(uk)

}
, 1 ≤ 1 < N.

The minimisation here must be done by brute force, testing for each possible
value of uk in succession. As they are computed, the minimising value uk, in
the definition of φk above, defines the value of “policy functions” ψk(uk+1).
Each policy function is stored as an M -element table. Now, as a starting
condition, set uN to the value that minimises

(uN − dN )2 + φN−1(uN ).

The bulk of the work has been done; all that remains, in order to determine
the optimal ui, is a single reverse scan. For k = N−1, ..., 0 perform a single
table lookup to compute

uk = ψk(uk+1).

The method has the great advantage of being exact, regardless of con-
vexity. This is because it is essentially an ordered search over all possible
values of all variables. Unlike direct descent, it makes no use of the local
smoothness of the function F . Papoulias (1985) implemented a dynamic
programming algorithm for the weak string. He showed that, for data el-
ements of length N , the time complexity of the algorithm is O(NM2).
Storage requirement is O(NM).

Papoulias pointed out that the use of dynamic programming is im-
practical for the weak rod, for which the functions f above have not two
but three variables. Time complexity rises to O(NM3) and storage to
O(NM2). Since typical values are N = M = 100, runtime on a microcom-
puter increases from about 1 minute to about 1 hour. For 2D problems, the
membrane and the plate, dynamic programming is quite unusable. This is
because, although the energy function F partitions much as in 1D, there is
no natural ordering of the variables in a 2D array.
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Chapter 7

The Graduated
Non-Convexity Algorithm

At the end of the last chapter, the various methods available for solving
non-convex problems were reviewed. Now, the method proposed in this
book - the GNC algorithm - will be described in some detail. In chapter 3
we saw that there are two main steps. The first is to construct a convex
approximation to the non-convex function, and then proceed to find its
minimum. The way in which such a function can be constructed will be
explained - for the weak string, and then for a more general case. The
second step is to define a sequence of functions, ending with the true cost
function, and to descend on each in turn. Descent on each of these functions
starts from the position reached by descent on the previous one.

Such a procedure is certainly intuitively appealing. It is unlikely that
very strong general statements can be made about its effectiveness for an
arbitrary non-convex cost function. But, in the case of the energy functions
that describe the weak string and membrane, the algorithm can be shown
to be correct (section 7.3) for a significant class of signals. Performance of
the computer implementation also reflects faithfully the variational truths
of chapter 4. It will become apparent that this is a consequence of the
particular convex approximation F ∗ that has been defined. Other plausible
convex approximations, when used in a GNC procedure, fail to find global
minima.

Convergence properties of the algorithm are derived. It is this that leads
to the conclusion that 2nd order schemes must require far more computation
than 1st order ones. Moreover, imposing an integrability constraint in the
second stage of the 1st order plate - natural though it would be to do
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so - would result in very slow convergence. Optimal values for relaxation
parameters are computed. Relaxation algorithms are summarised in a way
that would, hopefully, enable the reader to implement them.

7.1 Convex approximation

7.1.1 Weak string

Recall that the energy

F = D +
N∑

i=1

g(ui − ui−1)

is to be approximated by a convex function

F ∗ = D +
N∑

i=1

g∗(ui − ui−1)

by constructing an appropriate neighbour interaction function g∗. This is
done by “balancing” the positive second derivatives in the first term D =∑

i (ui− di)2 against the negative second derivatives in the g∗ terms. The
balancing procedure is to test the Hessian matrix H (Roberts and Varberg
1976) of F ∗: if H is positive definite then F ∗(u) is a convex function1 of u.

The Hessian H of F ∗ is

Hij =
∂2F ∗

∂ui∂uj
= 2Ii,j +

∑
k

g∗′′(uk − uk−1)Qk,iQk,j , (7.1)

where I is the identity matrix and Q is defined as follows:

Qk,i = ∂(uk − uk−1)/∂ui =

 1 if i = k
−1 if i = k − 1
0 otherwise.

Now suppose g∗ were designed to satisfy

∀t g∗′′(t) ≥ −c∗ (7.2)

where c∗ > 0. Then the “worst case” of H occurs when

∀k g∗′′(uk − uk−1) = − c∗,

1In appendix D.2 it is shown that positive definite H means F ∗ is convex, even when
the 2nd derivative of g∗, and hence the 2nd partial derivatives of F ∗, are discontinuous,
as they are for the g∗ defined below in (7.7).
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so that
Hi,j = 2Ii,j +

∑
k

(−c∗)Qk,iQk,j (7.3)

or
H = 2I − c∗QTQ. (7.4)

To prove that H is positive definite, it is necessary simply to show that the
largest eigenvalue vmax of QTQ satisfies

vmax ≤ 2/c∗. (7.5)

In appendix D.1 it is shown that this really is a worst case: convexity of H
in (7.3) does guarantee convexity of H in the general case (7.1).

Construction of a function g∗ with a given bound −c∗ as in (7.2) is
relatively simple. Suppose the extra condition is imposed that

∀t g∗(t) ≤ g(t), (7.6)

then the best such g∗ (closest, pointwise, to g) is obtained by fitting a
quadratic arc of the form − 1

2c
∗t2 + bt+ a to the function g(t), as shown in

fig 7.1. The definition of g∗ ≡ g∗α,λ is now:

Figure 7.1: The local interaction energy function g of fig 6.1 is modified to func-

tion g∗, in order to produce a cost function F ∗ that is convex, and approximates

F .

g∗α,λ(t) =

 λ2(t)2, if |t| < q
α− c∗(|t| − r)2/2, if q ≤ |t| < r
α, if |t| ≥ r

(7.7)

where

r2 = α

(
2
c∗

+
1
λ2

)
, and q =

α

λ2r
. (7.8)
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All that remains now is to choose a value c∗ by determining the largest
eigenvalue vmax of QTQ. Then, to satisfy (7.5) while keeping c∗ as small
as possible (so that g∗ is as close as possible to g), we choose

c∗ = 2/vmax. (7.9)

For example, for the string, it is shown in appendix D that the largest
eigenvalue vmax = 4, so from (7.9) c∗ = 1

2 .

7.1.2 General method

In general, for all 1D and 2D problems, our function F has the form:

F (u) = D +
∑

k

gk(u) (7.10)

where gk(u) = g

(∑
l

Qk,lul

)
(7.11)

with g as before2 and Q is a “circulant” matrix, representing a convolution
operation defined by an array C. For example, for the 1D weak string, the
circulant matrix Q would be

Q =


. . . . . . . . . . . . . . . . . .
. . . −1 1 0 0 . . .
. . . 0 −1 1 0 . . .
. . . 0 0 −1 1 . . .
. . . . . . . . . . . . . . . . . .

 (7.12)

and the corresponding convolution is

C =
(
. . . 0 −1 1 0 0 . . .

)
,

which means

Ck =

 −1 for k = −1
1 for k = 0
0 otherwise.

It can be seen that matrix Q is simply made up of rows which are succes-
sively displaced copies of C. That is the definition of a circulant Q. For
2D problems like the membrane, index k in (7.10) is a double index. The
convolution C is therefore a two dimensional array, so the circulant Q is

2Note that the functions g, g∗, as defined above, do not quite apply to quadratic
variation, or to the invariant membrane. They can be suitably modified however.
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four-dimensional! Strictly, Q is a circulant only if the computational array
is considered to be circular (or toroidal in 2D). To account for boundary
conditions on array borders, Q is slightly modified. But this doesn’t really
affect the computation of eigenvalues, as is shown in appendix D.4.

Now, replacing g by g∗ in (7.10), to obtain

F ∗(u) = D +
∑

k

g∗k(u) (7.13)

where g∗k(u) = g∗

(∑
l

Qk,lul

)
its Hessian can be computed.

Hij =
∂2F ∗

∂ui∂uj
= 2 +

∑
k

g∗′′
(∑

l

Qk,lul

)
Qk,iQk,j . (7.14)

In the worst case
H = 2I − c∗QTQ,

which is positive definite if the largest eigenvalue of QTQ satisfies

vmax ≤ 2/c∗.

So g∗ is as defined in (7.7) with

c∗ = 2/vmax.

The calculation of vmax, for the weak string, rod, membrane and plate
appears in appendix D.3. The task is made relatively easy by the fact that
Q is (almost) a circulant, so that there is a formula (Davies 1979) which
gives all its eigenvalues. The results are summarised in the following table.

c∗

string 1/2

membrane 1/4

rod 1/8

plate (Laplacian) 1/32

The value given for the plate is for the square Laplacian, since an exact
value cannot readily be obtained for quadratic variation. Similarly, exact
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values cannot conveniently be computed for the invariant membrane. It is
almost as useful to have a lower bound on c∗ since that can also be used
to construct a convex function, though not necessarily the closest one. In
the GNC algorithm, to be described next, this simply has the effect of
wasting some computation on “more than convex” approximations, before
the “closest” convex approximation is reached.

7.1.3 Convex approximation for sparse data

The foregoing discussion of convexity does not apply to reconstruction di-
rectly from sparse data. This is because the component D that describes
adherence to data, as we saw in the previous chapter, is

D =
A

K

K∑
k=1

(uik,jk
− dk)2

rather than
D =

∑
i,j

(ui,j − di,j)2.

Since it is not known a priori at which points (ik, jk) there is a data element
dk, no component of D can be “relied upon” to be present. It is necessary
to be able to construct an approximation F ∗ that is convex even when (data
of unlimited sparsity!) the D term is altogether absent. From (7.13), if the
D term is absent,

F ∗(u) =
∑

k

g∗k(u) (7.15)

with g∗k(u) = g∗

(∑
l

Qk,lul

)
, (7.16)

so it is clear that g∗(t) itself must now be convex. This can be done for
t lying in some finite range, as shown in figure 7.2. But the resulting
g∗ is not nearly such a close approximation to g as for the dense case.
Anyway, because of the ambiguity problem discussed in chapter 4, direct
reconstruction from sparse data is not recommended. Instead, sparse data
is first converted to dense using a continuous membrane, using small spatial
scale λ to avoid distortion.

This discussion of sparse data also underlines a general principle. The
more carefully the specific structure of energy F is taken into account, the
closer the convex approximation F ∗ can be made. In the case of sparse
data, a rather general approach had to be used for construction of F ∗, so
the approximation cannot be as good as it was for dense data. Even so,
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Figure 7.2: With sparse data, a convex cost function F ∗ is constructed by

replacing g by g∗, over some finite interval. But the approximation is much

poorer than for dense data (fig 7.1).

specific structure was taken into account insofar as line variable elimination
was still incorporated, so that the energy has the form F (u). Without
that, the energy would have had the form E(u, l), for which it is difficult
to obtain a convex approximation at all, even by the most general methods
(for example Hopfield’s method as in the previous chapter).

7.2 Performance of the convex
approximation

Minimisation of the convex approximation F ∗ is only the first of two steps
of the GNC algorithm. But before proceeding to define the second step, it
is worth looking at the performance of the first step, in its own right. After
all, having constructed an approximation to the cost function F , might
it not be sufficient to minimise that? The answer is “sometimes” - if the
spatial scale constant λ is small enough. But for larger λ, we shall see that
it is essential to proceed to the second step of GNC.

When is the global minimum of F ∗, which can be found by gradient
descent, also the global minimum of F? A completely general answer, that
applies for any data d, cannot be given. But certain strong results can be
obtained for a class of data comprising “isolated” steps and including noise.

The conclusion of the analysis turns out to be that F ∗ behaves exactly
like F except when the step height h is close to the contrast sensitivity
threshold h0. Just how close depends on λ. If λ ≈ 1 then h must be
quite close to h0 before F ∗ starts to behave badly. But if λ � 1 then F ∗

behaves badly almost all the time. Intuitively, the result that F ∗ works well



138 Chapter 7

only for small λ is plausible when one considers g∗α,λ which approximates
gα,λ well only for small λ, as figure 7.3 shows. Hence F ∗ is a much closer

Figure 7.3: Neighbour interaction function g∗α,λ is a much better approximation

to gα,λ for λ ≈ 1 (a) than for λ � 1 (b).

approximation to F when λ is small. These observations apply also to the
membrane, and (substituting µ2 for λ) to the rod and plate.

A test for success in optimising F ∗ (in the sense that the minimum u∗

of F ∗ is also the global minimum of F ) is that:

F ∗(u∗) = F (u∗). (7.17)

Graphical justification of this was given in figure 3.6 on page 48. The
algebraic justification is also simple: g∗ is defined (7.6,7.7) in such a way
that

∀t, g∗(t) ≤ g(t)

(with equality for |t| ≤ q and |t| ≥ r). This means, from (7.10) and (7.13),
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that
∀u, F ∗(u) ≤ F (u)

Combining this with the definition of u∗, that

∀u, F ∗(u∗) ≤ F ∗(u),

and with (7.17) gives
∀u, F (u∗) ≤ F (u). (7.18)

So when (7.17) holds u∗ is the global minimum of F .
Once u∗ has been computed, a formula like (6.6) on page 114 that is

used with F , is needed to recover the line variables. It is obtained from the
definition (7.7) of g∗:

li =

 1, if |ui − ui−1| > r
0, if |ui − ui−1| < q
ambiguous otherwise.

(7.19)

It is easily seen that if and only if no line variables come up ambiguous
then condition (7.17) is satisfied, and the convex optimisation has been
successful. Otherwise the ambiguity must be resolved by the second step
of the GNC algorithm. An example of how this works in practice is given
in figure 7.4.

In appendix E the minimisation of F ∗ for the weak string applied to an
ideal step of height h, is solved. A recurrence relation is obtained for the
components u∗i of u∗. It is shown that if the effective height h of the step
is large enough, or small enough, the test (7.17) succeeds. For intermediate
step heights, however, it fails because at least one of the line variables is
ambiguous in (7.19). The range [h−, h+] of intermediate step heights, which
increases as λ increases, is

[h−, h+] = [h0/
√

2λ, h0

√
2λ] (7.20)

(for λ� 1). For small λ, the range in which ambiguity occurs is small; this
reemphasises that minimising F ∗ is most effective, as a means of finding
the global minimum of F , when λ is small.

This ambiguity result can be shown to apply also to quite general data
(appendix E) provided that potential discontinuities are “isolated”, that
is, separated by a distance somewhat greater than λ. The generalisation,
which works for much the same reasons that it worked in the variational
analysis in chapter 4, applies as follows:

First of all, appealing to the notion of an isolated discontinuity, the
interpretation of line variables can be extended in the following way. Instead
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Figure 7.4: The convex approximation to the weak membrane is applied to

the intensities of image (a). (b) White areas show line-variables that are in

the ambiguous state after optimisation. The second step of the GNC algorithm

is necessary to produce well-defined discontinuities (c). (Scale: λ = 4 pixels;

sensitivity: η = 25%.)
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of requiring all li to be recovered unambiguously, it is enough that they are
recovered unambiguously in an interval [i1, i2] of length several times λ. In
that case the minimisation of F ∗ has succeeded over a central portion of
that interval. (The central portion is constructed by chopping about λ off
each end). The values of u∗i over that portion agree with the true global
minimum ui of F .

Secondly, for a potential discontinuity in non-ideal data, the range of
effective step height h over which the convex minimisation produces an
ambiguous result, is h− < h < h+ as in (7.20). (Effective step height was
defined in figure 4.4 on page 57.) The result holds provided noise and other
variations in di are not too violent - to be specific, provided the gradient in
the fitted membrane everywhere satisfies:

|ui+1 − ui| < M (7.21)

where (appendix E)

M ≈
√
α

4λ3
.

7.3 Graduated non-convexity

The previous sections showed that F ∗ is a useful approximation to F , for
the weak elastic string, for small λ. But for large λ the second step of the
GNC algorithm must be performed.

A one-parameter family of cost functions F (p) is defined, replacing g∗

in the definition (7.13) of F ∗ by g(p). Now g∗ was defined in (7.7) and g(p)

is similar, except that c∗ is replaced by a variable c, that varies with p. For
the string

F (p) = D +
N∑
1

g(p)(ui − ui−1) (7.22)

with

g
(p)
α,λ(t) =

 λ2(t)2, if |t| < q
α− c(|t| − r)2/2, if q ≤ |t| < r
α, if |t| ≥ r

(7.23)

where c =
c∗

p
, r2 = α

(
2
c

+
1
λ2

)
, and q =

α

λ2r
. (7.24)

At the start of the algorithm, p = 1 and c = c∗, so g(1) ≡ g∗. As p
decreases from 1 to 0, g(p) changes steadily from g∗ to g. Consequently F (p)

starts as F ∗, when p = 1, and changes steadily towards F , as p decreases
towards 0.
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The GNC algorithm begins by minimising F (1) (which is the same as F ∗

and hence convex, with a unique minimum). Then, from that minimum,
the local minimum of F (p) is tracked continuously as p varies from 1 to 0.
In principle p should be decreased continuously. In practice, of course, a
sequence of discrete values of p is used. Each F (p) is minimised, using the
minimum of the previous F (p) as a starting point.

The claim is that following such a progression is more effective, espe-
cially when λ is large, than simply optimising F ∗, or than optimising F ∗

and then F . Figure 3.6c on page 48 attempted to give an intuitive feel for
why this might be so.

An analytical explanation can also be given. We will see that the nega-
tive quadratic portion of g(p) is, in effect, “titrated” with the other positive
quadratic terms in F (p) to make certain structures within the emerging
reconstruction unstable. The instability causes them to home onto their
own minimal energy configuration. It is as if the function F (p) were the
true convex envelope (multidimensional!) of F , with respect to just those
structures. Furthermore this behaviour is selective for structure size. That
is, associated with each value of p, there is a characteristic size of structure
in ui. Only structures of that size are unstable, at a given p. Initially, when
p = 1, the characteristic size is as small as it can be - one pixel. Then as
p → 0 it becomes larger until it attains its maximum size which is, one
might have guessed, λ (neglecting discretisation error). In this way F is
optimised “with respect to” all structures, in turn, in increasing order of
size.

The notion of instability being selective of structure size can be derived
by a development of the earlier argument that F ∗ ≡ F (1) is finely set up to
be just convex. When p = 1 F (p) is unstable with respect to the very small-
est structures. Calling also on the idea (section 4.1.2) that constraining one
end of a piece of elastic string is like pulling on a spring whose spring rate
increases with the length of the piece, the dependence of structure size on
p can be demonstrated.

7.4 Why GNC works

Correctness can be demonstrated for important special cases: the isolated
discontinuity, and a pair of interacting discontinuities. It is shown that,
in these cases, the GNC algorithm reproduces the behaviour predicted by
variational analysis. The second case is particularly significant because its
behaviour (sensitivity varies as 1/

√
a, where a is the separation between

discontinuities) is a distinctive feature of weak continuity constraints; lin-
ear filters followed by thresholding cannot behave in this way. In fact there



The Graduated Non-Convexity Algorithm 143

is a special condition under which the GNC algorithm fails with interacting
steps. Practically, it is unimportant, but it has a theoretical significance
because it indicates that GNC can fail, and that there is therefore no point
in looking for a general proof of correctness. Finally, GNC can be shown to
have the ability to filter noise. In practice, noise filtering performance ap-
proaches variational limits (chapter 4), far exceeding theoretical predictions
of performance of the algorithm itself.

7.4.1 Isolated discontinuity

What is meant here by “isolated”? That after optimisation of the convex
F ∗, all i for which

g∗(∆i) 6= g(∆i)

(where ∆i = ui+1−ui) are separated by distances that are large compared
with λ. Line variables for these i are in the ambiguous “as-yet-undecided”
state3. The separations prevent interaction between them (see appendix
E). All other line variables remain in the continuous state li = 0.

The minimum energy state can be tracked as p varies from 1 to 0 - a
simulation of the GNC algorithm. This is shown in fig 7.5. The outcome -
l0 = 0 or l0 = 1 - depends on whether h exceeds a certain threshold, and
that threshold can be shown to agree with the variationally predicted h0

to within the O(1/λ2) error caused by discretisation (appendix E). Per-
haps more surprisingly, the resulting ui is an exact solution to the discrete
problem of minimising F .

The reason is as follows: the energy F (p)(ui) can be regarded as a
function solely of ∆0, because the movements of ui on either side of the
discontinuity are entirely determined by continuous elastic string behaviour.
All the ui therefore depend linearly on ∆0. (This is just what happened
in the variational case.) It is shown in appendix E (E.18) that (up to an
additive constant):

F (p)(∆0) =
1
2
F(h−∆0)2 + g(p)(∆0). (7.25)

where F is a constant. Now (appendix E) F (p)(∆0) is convex if

c ≤ F

and when c = F , F (p) becomes linear for q ≤ ∆0 ≤ r, causing an instability
which forces F (p) to the global minimum of F (figure 7.6). Thus, (from

3This can be shown to hold, for example, for an ideal step in noise, provided the
amplitude of the noise is not too great (appendix E).
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Figure 7.5: Progress of graduated non-convexity. A step (a) of (effective)

height h may be “pulled” together (b) as the algorithm progresses and finally,

either becomes smooth (c) or snaps back (d). Tracking ∆0 = |u1 − u0| as the

algorithm progresses (p : 1 → 0) determines the outcome. (e) If ∆0 hits the line

labelled q before hitting r then the resulting ui is smooth as in (c) - l0 = 0. But

if the ∆0 line hits r before hitting q, then ui has a step discontinuity as in (d) -

l0 = 1.
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Figure 7.6: GNC is correct for an isolated discontinuity. The GNC

energy function F (p) is effectively dependent on one variable only. As p → 0 c

reaches a critical value F at which the minimum of F (p) must also be the desired

minimum of F .
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(7.24)), when p reaches the value c∗/F the algorithm has reached its final
state - further reduction in p has no effect. Since F ≤ Λ ≈ λ for the isolated
step (appendix E), there is no point in reducing p below about c∗/λ. This
can be shown to be true, not only for an isolated step, but for the weak
string in general. A similar result should hold for the membrane. Figure
7.7 shows how true energy F (u) varies for the weak string, in successive
iterations, as p decreases. As predicted, the final state is reached by the time
p = c∗/λ. It is reached exactly at p = c∗/λ when h ≈ h0, or sooner when h
and h0 differ substantially (in agreement with results in appendix E.5). It is
reassuring to see that, as expected, energy does not decrease monotonically
as GNC progresses. First it increases, then it decreases again - the fly’s
problem (figure 3.4, page 45) has been solved.

7.4.2 Interacting discontinuities

Having shown that the GNC algorithm solves the isolated discontinuity
problem exactly, it is natural to examine the case of interacting discon-
tinuities. It can be shown that GNC almost always solves the problem
correctly, but errs when both the effective step heights h1, h2 are close to
their detection threshold. Of course, when the discontinuities are separated
by a � λ, they do not interact. They just behave as two isolated discon-
tinuities. The worst case is for discontinuities separated by width a � λ
(figure 7.8). Energy F (p) can be regarded as a function of the two variables
∆0,∆a, controlling the size of each discontinuity in u(x):

F (p)(∆0,∆a) =
λ

2
(∆0 − h1)2 +

λ

2
(∆a − h2)2 (7.26)

− λ exp
(
−a
λ

)
(∆0 − h1)(∆a − h2) + g(p)(∆0) + g(p)(∆a).

In the special case h1 = h2, it reduces still further, to be a function of
one variable since ∆0 = ∆a by symmetry:

F (p) = 2
(a

2
(∆0 − h1)2 + g(p)(∆0)

)
. (7.27)

(This is an approximation for the case a � λ.) Formally, this is just the
same as for the isolated discontinuity (7.25) and so F (p) is again correctly
minimised by GNC. The critical value of c at which instability occurs is
c = a. This is an instance of structure size selection in GNC: as p → 0,
interacting discontinuity pairs of progressively increasing separation a = c
(still assuming a � λ) become unstable and reach their minimal energy
configuration. Finally, as c → λ, structures of all sizes have been dealt
with.
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Figure 7.7: Convergence to final energy in GNC. The final state of GNC

is reached when p = c∗/λ (a) (h ≈ h0), or sooner (b) (h0 ≈ 0.6h). (Weak string

(c∗ = 1/2), ideal step, λ = 8, free of noise.)
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Figure 7.8: Interacting discontinuities (a). GNC is exact except for a small

range of effective step heights h1, h2, close to the detection threshold (b).
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Analysis of the general case involves more algebra, which is not repro-
duced here. It is assumed that h1, h2 ≥ 0. As p → 0, F (p) (7.26) passes
through 2 unstable states, one for each variable. The first (when the Hessian
of F (p) becomes singular) occurs at

c = λ
(
1− exp

(
−a
λ

))
or, when a � λ, at c ≈ a. At this point one of the following conditions
must be met:

|∆0| ≤ q or |∆0| ≥ r or |∆a| ≤ q or |∆a| ≥ r.

Then c is increased up to the next unstable value and a second of those
conditions is satisfied. Comparing the outcome with the variational predic-
tion (4.18) on page 61, it turns out to be correct, except for a small range
of values of h1, h2 close to threshold (figure 7.8).

7.4.3 Noise

Variational analysis predicted that the weak string should be more or less
immune to “false alarms” in noise for which

√
α/2 exceeds σ. In practice,

the GNC algorithm gives agreement with that prediction.
It can be shown that the GNC algorithm must reject noise up to about

σ = 1
2

√
α/λ, which falls short of the above limit by a factor of

√
2λ.

Consider data d(x) = 0 with additive noise n(x). If the continuous string
u(x) satisfies 〈

u′
2(x)

〉 1
2
<
q

2
(7.28)

then, in its discretised form,
|∆i| < q

for each i, with probability of 95% or so (because of the factor of 2 in q/2).
In that case, the continuous string solution is a local minimum of F ∗ and
hence must be its global minimum. There are no discontinuities in the
problem, or perhaps (with low probability) a few isolated ones, and GNC
correctly minimises F .

To establish (7.28), the Green’s function (A.6) and the definition of σ
(B.2) are used to show that, for data in a bi-infinite interval,

〈
u′

2(x)
〉 1

2
=
(
σ2

4λ3

) 1
2

.
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Now, on the convex function (p = 1), c = c∗ = 1/2 so that

q ≈ 1
λ2

(
αc∗

2

) 1
2

=
√
α

2λ2

(assuming λ� 1). So condition (7.28) is met provided

σ ≤ 1
2

√
α/λ.

As for the remaining factor of
√

2λ in the limit of noise resistance, here
is what probably happens. Over an interval of length a � λ it can be
shown that 〈

u′
2(x)

〉 1
2 ≈

(
aσ2

3λ4

) 1
2

(7.29)

so that (7.28) is satisfied if σ < 1
4

√
3α/a. Of course the shortest possible

interval in the discrete problem is a = 1 for which the condition becomes
σ < 1

4

√
3α. This is close to the variational limit of performance σ <

√
α/2.

What this suggests is that, after descent on F (p) at p = 1, large amplitude
noise in the data will appear as a sequence of short segments of length
a = 1 or so. As p → 0 and q increases, (7.28) permits larger values of〈
u′

2(x)
〉 1

2
and hence, from (7.29), longer segment length a. This agrees

with behaviour of GNC observed in figure 3.8 on page 50, in which noise is
progressively grouped into longer and longer segments as p decreases.

The addition of noise to, say, an isolated step dominates the progress of
the GNC algorithm. The change in energy F (u) as the algorithm progresses
(figure 7.9) looks entirely different from the noise-free case (figure 7.7). The
most obvious difference is that the final energy is very much less than the
initial energy, and this is due to filtering of the noise. Another difference
is that the fastest energy decrease happens at large p (small c); this is in
accordance with the earlier conjecture that filtering of small scale structure
generated by noise would occur at small c. The removal of noise causes a
rapid decrease in energy, due to remission of penalties for discontinuities.

7.4.4 Summary

It is worth attempting to state, at this point, what is the general property of
the function sequence F (p) that leads to the correctness of GNC as above. It
can be summarised as follows. First of all, the reconstruction problem itself
was expressed in terms of a one-parameter system, with a cost function
F (ui(z)), in which the ui(z) are known to be linear functions. For the
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Figure 7.9: Convergence of GNC in the presence of noise. (Weak string

and data as for figure 7.7a, but with noise added.)

isolated step, for instance, the parameter z was ∆0; all the ui vary as linear
functions of ∆0. Secondly, the family of functions F (p) applied to any such
system, satisfies the following condition: there exists a p such that, for all
z,

either : F (p)′′(z) = 0 (7.30)
or : F (p)(z) = F (z).

What that means is that, for this one parameter system, either F (p) agrees
with F , or it is unstable (as in figure (7.6).

For example, imagine a scheme that involved sweeping the scale param-
eter λ in F from small to large scale, instead of sweeping the parameter
p. Such a scheme would have the advantage of generating a multi-scale re-
construction in one sweep. It would not satisfy the condition (7.30) above.
In practice too, it is found not to work: sweeping λ at constant α consis-
tently supresses discontinuities at coarser scales; sweeping at constant h0

generates too many discontinuities.
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7.5 Descent algorithms

A simple algorithm for GNC was given in figure 3.7 on page 49. This
algorithm has been implemented for the string and the membrane. Its use
(at large values of λ) is reported in (Blake 1983b). It is a direct descent
algorithm and hence provably convergent - energy is monotonic decreasing
and bounded below.

However, it is arguably more effective to do gradient descent, using
local quadratic approximation to determine optimal step sizes. In fact this
is a form of non-linear successive over-relaxation (SOR). For the iterative
minimisation of F (p) (in its general form (7.10)) the nth iteration is

u
(n+1)
l = u

(n)
l − ω

1
Tl

∂F (p)

∂ul
, (7.31)

where 0 < ω < 2 is the “SOR parameter”, governing speed of convergence,
and Tl is an upper bound on the second derivative:

Tl ≥
∂2F (p)

∂u2
l

∀u. (7.32)

A simultaneous version for parallel implementation could easily be obtained
by applying a “chequer-board” updating scheme, as described in the pre-
vious chapter.

Convergence Both successive and simultaneous schemes are convergent
for ω ∈ (0, 2). This is easily proved by observing that each application of
(7.31) is a movement along a piecewise quadratic function of one variable
(ul), towards its minimum. In other words, temporarily regarding F (p)

as a function F (p)(ul) of ul only, it is piecewise quadratic. The proof of
convergence is illustrated graphically in figures 7.10 and 7.11. If w ≤ 1
then the step from u

(n)
l to u(n+1)

l is guaranteed to be downhill all the way -
there is no change of the sign of the gradient. This is because the change in
the gradient is bounded. Suppose, without loss of generality, that initially,
at ul = u

(n)
l , the gradient is negative, that is:

∂F (p)

∂ul

(
u

(n)
l

)
≤ 0. (7.33)

It can easily be shown from (7.32) and the mean value theorem that for
any ul such that

u
(n)
l ≤ ul ≤ u

(n+1)
l ,
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Figure 7.10: Proof of convergence for non-linear SOR. The case w = 1.
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Figure 7.11: Proof of convergence for non-linear SOR. The case w = 2.
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the inequality

∂F (p)

∂ul
(ul)−

∂F (p)

∂ul
(u(n)

l ) ≤ Tl(u
(n+1)
l − u

(n)
l )

holds. Now, from (7.31),

∂F (p)

∂ul
(ul)−

∂F (p)

∂ul
(u(n)

l ) ≤ −w∂F
(p)

∂ul
(u(n)

l ).

So throughout the descent,

∂F (p)

∂ul
(ul) ≤ (1− w)

∂F (p)

∂ul
(u(n)

l )

which, by hypothesis (7.33), remains negative, provided w ≤ 1.
When w > 1 the gradient ∂F (p)/∂ul may change sign on the way to

u
(n)
l , but only if w ≥ 2 (it can easily be shown) can the overshoot be

sufficiently severe that there is no net decrease in cost. Hence for w ∈ (0, 2),
cost is monotonically decreasing and bounded below. The algorithm must
converge. It might appear from figures 7.10 and 7.11 that w = 1 should
give fastest convergence since, for any given step (n, l), w = 1 produces the
largest reduction in the value of F (p). The cumulative effect of many steps,
however, is somewhat different. It turns out that values of w in the range
(1, 2) give fastest overall convergence (see next section).

The terms in (7.31) are computed as follows. The gradient term is

∂F (p)/∂ul = 2(ul − dl) +
∑

k

g
(p)′

α,λ

(∑
s

Qk,sus

)
Qk,l (7.34)

where

g(p)′
α,λ(t) =

 2λ2t, if |t| < q
−c(|t| − r)sign(t), if q ≤ |t| < r
0, if |t| ≥ r

(7.35)

(and Q was defined in (7.10) and (7.11)). The bound Tl on the second
derivative is obtained by differentiating (7.34) and observing that g(p)′′ ≤
2λ2:

Tl = 2 + 2λ2
∑

k

Q2
k,l.

For the rod/plate, of course, λ is replaced by µ2. An iterative (SOR)
scheme for the weak string is summarised in figure 7.12 and one for the
weak membrane in figure 7.13.
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Choose λ, h0 (scale and sensitivity).
Set α = h2

0λ/2.
SOR parameter: w = 2(1− 1/λ).
Function sequence: p ∈ {1, 0.5, 0.25, ..., 1/λ}.
Nodes: i ∈ {0, ..., N}.

For each p, iterate n = 1, 2, ...

For i = 1, ..., N − 1:

u
(n+1)
i = u

(n)
i − ω

{
2
(
u

(n)
i − di

)
+ g

(p)′

α,λ

(
u

(n)
i − u

(n+1)
i−1

)
+ g

(p)′

α,λ

(
u

(n)
i − u

(n)
i+1

)}
/
(
2 + 4λ2

)
Appropriate modification is necessary at boundaries:

u
(n+1)
0 = u

(n)
0 − ω

{
2
(
u

(n)
0 − d0

)
+ g

(p)′

α,λ

(
u

(n)
0 − u

(n)
1

)}
/
(
2 + 2λ2

)
and similarly at i = N .

Figure 7.12: An SOR algorithm for the weak string.
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Choose λ, h0 (scale and sensitivity).
Set α = h2

0λ/2.
SOR parameter: w = 2(1− 1/(

√
2λ)).

Function sequence: p ∈ {1, 0.5, 0.25, ..., 1/2λ}.
Nodes: i ∈ {0, ..., N}, j ∈ {0, ..., N}.

For each p, iterate n = 1, 2, ...

For i = 1, ..., N − 1, j = 1, ..., N − 1:

u
(n+1)
i,j = u

(n)
i,j − ω

{
2(u(n)

i,j − di,j) + g
(p)′

α,λ

(
u

(n)
i,j − u

(n+1)
i−1,j

)
+g(p)′

α,λ

(
u

(n)
i,j − u

(n+1)
i,j−1

)
+ g

(p)′

α,λ

(
u

(n)
i,j − u

(n)
i+1,j

)
+g(p)′

α,λ

(
u

(n)
i,j − u

(n)
i,j+1

)}
/(2 + 8λ2)

Appropriate modification is necessary at boundaries:

For i = 0, j = 0:

u
(n+1)
0,0 = u

(n)
0,0 − ω

{
2(u(n)

0,0 − d0,0) + g
(p)′

α,λ

(
u

(n)
0,0 − u

(n)
1,0

)
+g(p)′

α,λ

(
u

(n)
0,0 − u

(n)
0,1

)}
/(2 + 4λ2)

and similarly at the other corners.

For i = 0, j = 1, ..., N − 1:

u
(n+1)
0,j = u

(n)
0,j − ω

{
2(u(n)

0,j − d0,j)

+g(p)′

α,λ

(
u

(n)
0,j − u

(n+1)
0,j−1

)
+ g

(p)′

α,λ

(
u

(n)
0,j − u

(n)
1,j

)
+g(p)′

α,λ

(
u

(n)
0,j − u

(n)
0,j+1

)}
/(2 + 6λ2)

and similarly at the other sides.

Figure 7.13: An SOR algorithm for the weak membrane.
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7.6 Convergence properties

Analysis of the convergence rate of GNC is difficult. It is possible however,
to obtain exact results for equivalent continuous problems, without weak
constraints (or, to put it another way, in the limit that the penalty constant
α is large). Experimental results have been obtained to show just how far
these results apply also under weak continuity constraints.

7.6.1 Continuous problems

For “Jacobi” relaxation (simultaneous updating of u(n)
i → u

(n+1)
i using

relaxation parameter w = 1), the largest eigenvalue of the iteration matrix
gives a lower bound on the rate of convergence4. This can also be used to
derive convergence rates for successive over-relaxation (SOR), which is a
serial algorithm, and converges in far fewer iterations.

Convergence results are summarised as follows:

Convergence norm: a convenient norm to use as a measure of conver-
gence is the “infinity norm”

‖u‖∞ = max
i
|ui|. (7.36)

At successive iterations, the dynamic norm

‖u(n+1) − u(n)‖∞ (7.37)

is measured as an indication of progress towards convergence. Of course
the quantity of real interest is the absolute norm

‖u(n) − u(∞)‖∞ (7.38)

which is a measure of accuracy of the current u(n) compared with the true
solution. Happily, absolute and dynamic norms are related, in theory, by

‖u(n) − u(∞)‖ ≈ γ‖u(n+1) − u(n))‖, (7.39)

where γ is the decay-time for the algorithm, measured in iterations (see
below). This result is borne out by experiments.

string/membrane: decay time for Jacobi relaxation (number of itera-
tions for an appropriately defined error measure to fall by a factor of 1/e)
is of order λ2. This clearly indicates that convergence is slower for larger
scale constant λ.

4Eigenvalues can be found by a circulant analysis similar to that used for convexity
proofs in appendix D.
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rod/plate: Jacobi decay time is of order µ4. This is born out in practice
- the plate tends to converge slowly. For this reason Terzopoulos found it
essential to use multilevel relaxation for the plate (Terzopoulos 1983), as
described in the previous chapter. This may not be effective when weak
continuity constraints are applied, the problem being non-linear. The rea-
son will be apparent from figures 7.15 and 7.16, which make it plain (in the
case of the string) that convergence without weak constraints is already fast
enough. Multigrid algorithms could be used but, on this type of process
(dense data, scale λ not too large) would give only modest benefit. For the
rod or plate the potential gain is greater, but still limited compared with
Terzopoulos’ experiments when the data is dense. What does take time in
GNC is the treatment of discontinuities. This is what makes the problem
non-linear and takes it outside the scope of classical multigrid algorithms.
(Fourier analysis, for instance, can no longer altogether characterise the
progress of the algorithm.)

2D compared with 1D: decay time (in iterations) is of much the same
order in 2D as in 1D (e.g. the same for membrane as for string).

Successive over-relaxation (SOR): SOR can be made to converge
much faster than Jacobi. If the decay time for Jacobi is γ then that for
SOR is reduced to

√
γ/8 - provided the following optimal SOR parameter

is used (Smith 1978):

w = 2
(

1 +
√

1 + 2γ
1 + γ

)−1

. (7.40)

Assuming λ (µ2) to be somewhat greater than 1, this is approximated by

w = 2
(
1 +

√
2/γ
)−1

. (7.41)

Experiments confirm that this value of w does indeed produce fastest con-
vergence (figure 7.15). If the optimal parameter is not used, however, the
speed increase is comparatively small. For instance Gauss-Seidel relaxation
(the special case of SOR in which w = 1) produces an increase of a factor
of 2 only - the decay time is γ/2. This is illustrated graphically in figure
7.14. Decay times for Jacobi and SOR algorithms are summarised in the
following table.
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Figure 7.14: The theoretically optimal relaxation parameter w does

indeed give fastest convergence. Continuous string, iterated to fixed accu-

racy.
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Decay time
Jacobi SOR optimal w

String 2λ2 λ/2 2/(1 + 1/λ)

Membrane 4λ2 λ/
√

2 2/(1 + 1/
√

2λ)

Rod 6µ4
√

3µ2/2 2/(1 + 1/
√

3µ2)

Plate 20µ4
√

5/2µ2 2/(1 + 1/
√

10µ2)

mixed 1st and 2nd order: as might be expected, the 2nd order term
dominates, so that convergence of a mixed plate/membrane is essentially
as slow as the “equivalent” plate.

gradient data for the plate: suppose that, gradient data p(0) is given,
so that the reconstruction problem is to minimise

E = D + P, where D =
∫

(∇u− p(0))2 dx (7.42)

and P is energy density for a plate. This is like the first order plate problem
(previous chapter) except that there is an implied integrability constraint
because the reconstructed signal is represented as u(x, y), rather than as
p(x, y), q(x, y). Decay time for the corresponding discrete problem becomes
very long - O(N) for data in an N × N array. This is essentially because
integrability of u must be maintained. The associated Green’s function
extends over the entire domain because, effectively, the data is being “inte-
grated” over the entire array. But if integrability is not enforced, as in the
scheme of (5.16) on page 107, then decay time is only O(µ). That is the
situation for the 1st order plate, described earlier.

7.6.2 Adding weak constraints

When weak continuity constraints are imposed, exact analysis is difficult.
Examination of g in (6.5) on page 114 indicates just how narrow the minima
in F are. Narrow minima are likely to be difficult for any algorithm to
find. Width is O(1/λ) for string/membrane, but O(1/µ2) for the rod/plate.
Again the problem becomes harder for increasing scale, and is much harder
for rod/plate than for string/membrane (at similar scales).

Experiments indicate that decay-rates are initially slower than for the
continuous problems, but catch up again as convergence is reached. Figure
7.16a illustrates this. Initially, optimal SOR is no better than Gauss-Seidel,
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Figure 7.15: Decay rates for SOR algorithm. Optimal SOR decays much

faster than Gauss-Seidel, in agreement with theoretical predictions (see text).

(Continuous string, λ = 8, applied to a step of height h in Gaussian noise with

σ ≈ 0.2h.)



The Graduated Non-Convexity Algorithm 163

but then its decay rate increases, although it never becomes as rapid as for
the continuous case (figure 7.15). The degree of this degradation depends
strongly on the presence of noise. Without any noise there is virtually
no degradation (figure 7.16b). The actual value of w that gives optimal
convergence is much as in the continuous case, although slightly increased
under some circumstances. The ratio between absolute and dynamic norms
also agrees experimentally with the value γ predicted theoretically for the
continous case (7.39). Total convergence time for the algorithm is roughly
O(λ) (figure 7.17).

7.6.3 Granularity of the F (p) sequence

In practice p has to decrease in discrete steps, as the GNC algorithm pro-
gresses. What effect does this have on the accuracy of the solution? The
answer is given in appendix E.5, for the case of an isolated step. When p is
decreased continuously, the GNC algorithm minimises F exactly. If instead
successive reductions p → p/P are used then the algorithm continues to
be correct, except when the effective step height h lies in a certain interval
(E.22):

h ∈ [hq, hr] where
hr

hq
≤ P.

So the reduction ratio P is also a bound on the proportionate error in the
“effective” contrast threshold, compared with the true contrast threshold
h0. In practice P is a rather generous bound on the error in h0, and since
it is not usually important to be very accurate about fixing h0, even P = 2
is found to be quite acceptable. Using a value of P that is not too small
saves some computation time, as figure 7.18 shows.

7.6.4 Activity flags

In our serial implementations, activity flags are used to speed convergence
(typically by a factor of 2-10). If no activity occurs in iteration n at node l,
its activity flag al is switched off. (For direct descent, “no activity” means
that u(n+1)

l = u
(n)
l ; but this is inappropriate for gradient descent, where

instead the condition is that |u(n+1)
l −u(n)

l | is below some fixed limit.) But if
there is activity at node l then al is switched on, and so are all neighbouring
nodes am. (Nodes m, l are defined to be neighbours if, for some s, Qs,l 6= 0
and Qs,m 6= 0.) When, in a given iteration, it is time to update the lth
node, al is first examined. If it is off, the node can be ignored. This saves
time particularly on the exponential tail of the convergence, at which point
most ui have reached their steady state.
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Figure 7.16: Decay rates under weak continuity constraints (a) As

figure 7.15, but with weak continuity constraints (h0 ≈ 0.6h) - decay is much

slower. (b) As (a) but without noise - decay is more or less as rapid as for the

continuous case (figure 7.15). (Decay rates for optimisation of F ∗.)
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Figure 7.17: Convergence of GNC, as a function of spatial scale.

Figure 7.18: Convergence time decreases somewhat as the “reduction ratio”

P increases (but to the detriment of accuracy). (λ = 8.)
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The discussion of the GNC algorithm and its convergence properties
is now complete. It remains to stand back a little, discuss some of the
problems that remain to be solved in modelling piecewise continuity, and
consider how application of weak continuity constraints might be extended
to new aspects of Visual Reconstruction. This is done in the next and final
chapter.
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Conclusion

We conclude by mentioning briefly some interesting questions and directions
for further research.

8.1 Further applications in vision

Four visual reconstruction tasks have been discussed in the course of the
book: edge detection, reconstruction of sparse and dense data, and curve
description. But there are others that may be susceptible to treatment by
weak constraints of some kind. Computation of lightness might seem to be
an obvious candidate but in fact it calls for no further application of weak
continuity constraints beyond what is already included in segmentation of
intensity data. Discontinuities in intensity data must be supplied, but the
computation of lightness given the intensity distribution and its disconti-
nuities is a classical, quadratic minimisation problem (Horn 1974, Blake
1985c). Shape from shading (Ikeuchi and Horn 1981) is similar - discon-
tinuities in intensity must be supplied, but beyond that there seems to be
little further use for weak continuity constraints. This is because most if not
all evidence for surface discontinuities is contained in the discontinuities of
intensity. Texture segmentation, however, seems to be a potential applica-
tion of weak continuity constraints. Promising experiments have been done
by Derin and Cole (1986). So far, they assume known MRF texture mod-
els, and a priori fixed numbers of regions. These assumptions need to be
relaxed. Furthermore, analysis of texture in real 3D images would demand
viewpoint invariance, to take care of perspective foreshortening. Segmenta-
tion of optical flow is another promising area, calling for some kind of weak
rigidity constraint - preferring fewer independent motions without insisting
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on absolute rigidity (Buxton and Murray 1985). And in stereoscopic vi-
sion a similar problem arises when several surfaces at different depths are
overlaid, as when looking out of the window through net curtains. Weak
continuity constraints may be appropriate, but extended to deal with mul-
tiple visible surfaces. It might even be feasible to integrate the process into
the stereo algorithm itself, so that a subset of the “ghost field” of potential
stereo matches is grouped directly into surfaces. Indeed this is somewhat
related to the disparity gradient limit (Burt and Julesz 1980) already used
by Pollard et al. (1985) for elimination of ghost matches. There is little
doubt that energy functions with appropriate weak constraints could be set
up for these problems. The real question is whether stochastic or deter-
ministic minimisation algorithms that are computationally feasible can be
designed for them. Furthermore, how far can energy functions be built or
refined by inductive learning, as exhibited to some degree in neural net-
works (Hinton and Sejnowski 1983, Hopfield 1982, Wallace 1985).

8.2 Hardware Implementation

It is clear from the parallel nature of the GNC algorithm (when simul-
taneous updating is used) that it maps efficiently onto massively parallel
machines, whether with cellular (Duff 1978, Marks 1980) or a less regu-
larly structured “MIMD” architecture. The latter, it can be argued (Blake
1983a) is a more efficient use of computing power. The former might lend
itself more naturally to VLSI implementation.

Another intriguing possibility is that of parallel analogue hardware.
Classical quadratic schemes can of course be realised with analogue com-
ponents (Horn 1986, Poggio et al. 1985). Is this still true when weak
continuity constraints are in force? We have done some simulations that
strongly suggest feasibility. The benefits in terms of simplicity and speed
are tempting, and the limited accuracy available from analogue hardware
should not be a problem in reconstruction tasks.

8.3 Mechanical or probabilistic models?

In the introduction, we promised that this chapter would contain a more de-
tailed justification of our preference for mechanical, rather than probabilis-
tic, models of piecewise continuity. Of course the probabilistic viewpoint
has afforded crucial insights, but the mechanical viewpoint seems more ap-
propriate to Visual Reconstruction. The principal reasons are these:
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• MRF parameters (in the form of conditional probabilities) must be
specified, in the probabilistic view of things. It is highly unlikely
however that these would be known in advance, say in the case of
surface models. (Interestingly enough, though, Geman (1987) has
recently proposed a means - “reparametrization” - of learning these
parameters, inductively.)

• The mechanical viewpoint also requires parameters to be specified,
but they are far more natural ones. They depend on: the magnitude
of the Gaussian noise, desired sensitivity to contrast, and spatial scale.
A trade-off between these performance characteristics must be cho-
sen. And it is probably unreasonable to expect there to be a single,
correct spatial scale - rather, the truth lies in multiple scales (Marr
and Hildreth 1980, Koenderinck 1984, Witkin 1983). Nelson’s column
(in Trafalgar Square, London) is a cylinder at coarse scale (when seen
from a considerable distance), but at fine scale it is a corrugated
polyhedral prism.

• The model should, fundamentally, be continuous (as opposed to dis-
crete). Surfaces and intensity distributions in the world are, after all,
continuous. It is only the visual data that is discrete, as a result of
image sampling. The mechanical model is continuous (energy is a
function of surface derivatives), as required, whereas the MRF used
by Geman and Geman is discrete (defined, from the start, in terms
of cells on a grid).

• Availability of a continuous model facilitates variational analysis - a
powerful theoretical tool that predicts properties of function estima-
tion by energy minimisation, for example: contrast sensitivity, natural
scale and resistance to noise. It even provides useful predictions when
the signals being estimated are two-dimensional.

• Implementation of viewpoint invariance (Blake 1984), essential for
veridical reconstruction of 3D surfaces from range data, is made pos-
sible by the explicit presence of differential geometric quantities in
the continuous model.

• The probabilistic view encourages the idea that reconstruction schemes
are limited only by the requirement to find the right probability dis-
tribution. We argue that this is unduly optimistic. The limitations
of MRFs and the constraint of computational tractability severely
curtail freedom to specify a distribution.
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• The probabilistic view has lead to elegant statistical optimisation pro-
cedures, for performing the function estimation. Even so, the me-
chanical viewpoint leads naturally to the Graduated Non-Convexity
algorithm which, whilst less general, is deterministic and efficient.

8.4 Improving the model of continuity

Back in the first chapter, it was pointed out that the first order energy model
of continuity was clearly inadequate. It is attractive because it is tractable,
but it suffers from the “gradient limit”. Second order quadratic energies
do not remove the problem, they just move it to a higher derivative. Even
forgetting problems of computational feasibility, is there a better model?
One promising line of investigation is to try and define an appropriate
function space, rather than a surface energy, and then apply weak continuity
constraints in that space. The fact that gradient maxima are good detectors
of discontinuities (though bad localisers) suggests using spaces of convex or
concave functions. The weak continuity constraint would become a weak
constraint on sign of curvature. The problem, in 1D, is then to minimise

E =
∫

(u− d)2 dx+ αK (8.1)

where u is piecewise convex/concave, with changes of curvature sign at
x = xi, i = 1..K. Minimisation is with respect to u and to the xi. Initial
experiments are quite promising. Fitting monotonic functions (i.e. con-
stant sign of gradient, rather than of curvature) has an impressive noise
smoothing effect (figure 8.1 below). There are of course a number of ques-
tions here: how would the function class be extended to 2D (preserving
viewpoint invariance for surfaces), and could a deterministic algorithm be
used? Good localisation properties of the weak string would be preserved,
because that is intrinsic to least squares regression. Note that the form of
(8.1) does not suggest any fixed, natural scale - presumably effective scales
would be determined by the data.

8.4.1 Psychophysical models

The literature on Gaussian multi-channel models of contrast sensitivity
is well-established (Campbell and Robson 1968, Wilson and Bergen 1979,
Watt and Morgan 1985). It would be interesting to know however, whether
such models successfully predict systematic localisation error for asymmet-
ric stimuli (figure 4.10). A pair of such stimuli, positioned appropriately,
should show a differential error in apparent edge location, of the order of
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Figure 8.1: The noisy signal (a) is effectively filtered by optimally fitting a

monotonic function (b).

twice the size of the finest channel (0.7 minutes of arc in the MIRAGE
model of Watt and Morgan (1985)). Similarly, significant though smaller
errors, random ones this time, should be observed with noisy stimuli. If
such errors were not observed, this would question the validity of current
multichannel linear-filtering models.

8.4.2 The role of visual reconstruction

In conclusion, an important class of reconstruction processes has been in-
vestigated, and proves to have attractive properties not found in methods
based on linear filtering. They are a promising basis for a variety of visual
tasks. They do not, contrary to some speculations, seem to have the capac-
ity to drive an immense, cooperative, data-fusion machine. Instead, well
defined, self-contained reconstruction processes call for subtle integration,
ensuring graceful failure and intelligent, opportunistic control.
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Appendix A

Energy Calculations for
the String and Membrane

A.1 Energy calculations for the string

Methods for calculating extremal energies

Using the of Calculus of Variations on the energy functional

E =
∫ b

−a

{
(u(x)− d(x))2 + λ2(u′)2

}
dx (A.1)

gives the Euler Lagrange equation

u− λ2 d
2u

dx2
= d (A.2)

with the boundary conditions

u
′
|x=−a,b = 0 (A.3)

Green’s function: The solution of (A.2) which satisfies (A.3) is given
by

u(x) =
∫ b

−a

G(x, x′)d(x′) dx′ (A.4)

where G(x, x′) is the Green’s function for the system. It is straightforward
to show that

G(x, x′) =
1

λ sinh(a+b
λ )

cosh
(
x< + a

λ

)
cosh

(
x> − b

λ

)
(A.5)
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where x> (x<) is the greater (lesser) of x and x′.
If the domain is bi-infinite then, letting a, b→∞, gives

G(x, x′) =
1
2λ
e−|x−x′|/λ (A.6)

and u(x) is obtained from (A.4) with infinite limits.

Extremal energy: having obtained u(x) for a finite or bi-infinite region
the extremal energy can be found from

E =
∫ b

−a

d(x)(d(x)− u(x)) dx (A.7)

where again the limits are infinite for a bi-infinite domain.

Derivation of energy formula (A.7): In the following the integration
limits can be either finite or infinite.

E =
∫
{(u− d)2 + λ2(u′)2} dx. (A.8)

Integrating the second term by parts gives

E = λ2[uu′] +
∫
{(u− d)2 − λ2uu′′} dx

The first term is zero by the boundary conditions (A.3), and rearranging

E =
∫
{d(d− u) + u[u− d− λ2u′′]} dx

The expression in square brackets is zero by the Euler Lagrange equation
(A.2). Hence

E =
∫
d(x)(d(x)− u(x)) dx

Calculating extremal energy by fourier transform: this is applica-
ble only to a bi-infinite domain. The energy is given by

E = λ2

∫ ∞

−∞

ω2|d̂(ω)|2

1 + λ2ω2
dω (A.9)

where d̂(ω) is the Fourier transform of d(x) namely

d̂(ω) =
1√
2π

∫ ∞

−∞
d(x)e−ixω dx
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Derivation of energy formula (A.9): Taking the Fourier transform of
the Euler Lagrange equation (A.2) and rearranging:

û =
d̂

1 + λ2ω2

Applying Parseval’s Theorem to (A.8) gives

E =
∫ ∞

−∞

[
λ4ω4

(1 + λ2ω2)2
+

λ2ω2

(1 + λ2ω2)2

]
|d̂|2 dω

which simplifies to (A.9) as required.

Extremal energy for the top hat

As an example, the methods of the previous section, are used to calculate
the energy of the top hat data shown in figure 4.5a on page 59.

Green’s function method The form of (A.7) means that we only need
to find u(x) in the region where d(x) is non-zero - i.e. inside the top hat.
For this region (using equations (A.4) and (A.6))

u(x) =
h

2λ

{
e−

x
λ

∫ x

− a
2

e
x′
λ dx′ + e

x
λ

∫ a
2

x

e−
x′
λ dx′

}
= h

(
1− e−

a
2λ cosh

x

λ

)
− a

2
≤ x ≤ a

2
.

Using (A.7)

E = h2

∫ a
2

− a
2

e−
a
2λ cosh

x

λ
dx

= h2λ(1− e−
a
λ ) (A.10)

Fourier transform method The Fourier transform of d(x) is

d̂(ω) =
2h√
2π

sin aω
2

ω

Using this in (A.9) for the energy gives

E =
4h2λ2

2π

∫ ∞

−∞

sin2 aω
2

1 + λ2ω2
dw

which, using complex contour integration,

= h2λ(1− e−
a
λ ),

agreeing with (A.10) above.
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Extremal energy for the finite ramp

Here the data d(x) consists of a bi-infinite anti-symmetric step of height h,
whose central portion is a (steep) ramp of width a and gradient g = h/a,
as shown in the 4th and 5th rows of figure 4.9 on page 64:

d(x) =

 −h/2 if x < −a/2
gx if |x| < a/2
h/2 if x > a/2

. (A.11)

Using either of the methods above, the energy E for the continuous string
can be shown to be:

E = g2λ2
(
a− λ

(
1− e−a/λ

))
. (A.12)

In the limit that a → 0, d(x) becomes an ideal step of height h, and the
string energy is simply

E =
1
2
h2λ(1 +O(a/λ)). (A.13)

Extremal energy for the step and ramp

Data d(x) is defined over the finite interval [−a, b] as:

d(x) =
{
h for − a ≤ x < 0
gx for 0 ≤ x ≤ b

. (A.14)

Using the Green’s function and equation (A.7), it can be shown that
the energy of the u(x) that extremises (A.1) is:

Eh,g(a, b) = h2λ
sinh

(
a
λ

)
sinh

(
b
λ

)
sinh

(
a+b
λ

) + 2gλ2h
sinh

(
a
λ

) (
1− cosh

(
b
λ

))
sinh

(
a+b
λ

) (A.15)

+g2λ2b− g2λ3 cosh
(

a+b
λ

)
+ cosh

(
a
λ

) (
cosh

(
b
λ

)
− 2
)

sinh
(

a+b
λ

)
Note that, as expected, when g = 0 and a, b � λ this approximates to
h2λ/2 as for the bi-infinite simple step (A.13).

This result is used in chapter 4 to determine the variation in extremal
energy E(ε) as a function of localisation error ε, for the asymmetric step in
fig 4.12 on page 67:

E(ε) =
{
Eh,g(L− ε, 0) + Eh,g(ε, b) for ε < 0
Eh,g(L, ε) + Eh,g(0, b− ε) for ε > 0. (A.16)
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Energy increase under constraint

It is extremely useful to know how extremal energy increases when one
end of a weak string is constrained. It enables increase of energy under
continuity constraints to be computed.

Suppose the optimal configuration of u(x), x ∈ [0, L], under the con-
straint u(0) = z, has energy E(z). Clearly the minimum of E(z), with
respect to z, must be the unconstrained case. Say this case is u = u occur-
ring when z = z. Now u satisfies (A.2) with u(0) = z, u′(L) = 0. Suppose
also w(x) is the solution of

w − λ2 d
2w

dx2
= 0 with w(0) = 1, w′(L) = 0,

then u is given by
u = (z − z)w + u (A.17)

so that uz = w and uzz = 0. Then from (A.1) (with a = 0, b = L),
differentiating twice with respect to z:

Ezz =
∫ L

0

{
2w2 + 2λ2w2

x

}
dx (A.18)

- a function of L, λ only. What is more, higher derivatives of E w.r.t. z are
zero. So, defining E = Ezz/2,

E(z) = E(z − z)2 + const. (A.19)

- depending on data d only insofar as it is needed to compute z. The actual
value of E can be “calibrated” on any convenient data d. An antisymmetric
step of height h has energy Eh,0(L,L) = 2E(z), where Eh,g(a, b) is given in
(A.15) and z = h/2 since, by symmetry, u(0) = h/2. This gives

E = λ tanh
(
L

λ

)
. (A.20)

Energy increase due to a continuity constraint

When u is forced to be continuous at the join of two intervals, it is fixed, at
the ends of both intervals, to a value z. The z is unknown a priori but it
is determined by the requirement to minimize the total increase in energy,
due to both intervals, which is

∆E = E1(z − z1)2 + E2(z − z2)2.
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Increase ∆E is minimized when

z =
E1z1 + E2z2

E1 + E2
(A.21)

so that

∆E = h2

(
1
E1

+
1
E2

)−1

. (A.22)

Fixing both ends of a string

If both ends of a string, in a finite interval of length L, are fixed at values
z1, z2 then the total energy is:

E = E0 + E− ((z1 − z1)− (z2 − z2))
2 + E+ ((z1 − z1) + (z2 − z2))

2 (A.23)

where

E− =
λ

2
coth

(
L

2λ

)
and E+ =

λ

2
tanh

(
L

2λ

)
. (A.24)

As expected, when L � λ the two ends become decoupled and (A.23)
is simply the sum of energies for 2 isolated ends as in (A.19). But when
L� λ, E+ ≈ 0 and the system is tightly coupled.
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A.2 Energy calculations for the membrane

Using the method of Calculus of Variations on the energy functional

E =
∫
{(u− d)2 + λ2(5u)2} dA (A.25)

gives the Euler Lagrange equation

u− λ2 52 u = d (A.26)

with the boundary condition

n.∇u = 0 on C (A.27)

where C is the boundary of the domain and n its normal.
As in 1D u(x) can be obtained from d(x) by using an infinite or finite

Green’s function - this is described in the following sections. First it is
shown that the 1D energy expression (A.7) generalises to 2D. This can be
used for infinite or finite regions.

Derivation of the 2D energy expression

Using the identity

5.(u5 u) = 5u5 u+ u52 u

in the energy functional (A.25), we obtain

E =
∫
{(u− d)2 + λ2[5.(u5 u)− u52 u]} dA.

Using the divergence theorem,

E = λ2

∫
C

u5 u.n dl + λ2

∫
u(u− d−52u) dA+

∫
d(d− u) dA

where the line integral is around the boundary C. The first integral is zero
because of the boundary conditions (A.27). The second is zero because of
the Euler Lagrange equation (A.26), leaving

E =
∫
d(x)(d(x)− u(x)) dA. (A.28)
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A.3 Infinite domain calculations for the
membrane

Derivation of the infinite Green’s function

The Green’s function for (A.26) satisfies the equation

G− λ2 52 G = δ(x− x′).

Taking the Fourier transform and inverting,

G(x,x′) =
1

(2π)2

∫
eik.(x−x′)

(1 + λ2k2)
d2k

where k = |k|. Changing to polar coordinates with the θ = 0 axis along
x− x′, this becomes

G(x,x′) =
1

(2π)2

∫ ∞

0

k dk

∫ 2π

0

dθ
eikr cos θ

1 + λ2k2

where r = |x− x′|. Since (Watson 1952)

J0(x) =
1
2π

∫ 2π

0

eix cos θ dθ,

G(x,x′) =
1
2π

∫ ∞

0

kJ0(kr)
1 + λ2k2

dk

and using the integral representation (Luke 1962)

K0(ax) =
∫ ∞

0

tJ0(xt)
a2 + t2

dt,

we obtain
G(x,x′) =

1
2πλ2

K0

( r
λ

)
(A.29)

For a translationally symmetric problem, one in which d(x, y) is a function
of x only, it can be shown that, as expected, the Green’s function (A.29)
reduces to the 1D Green’s function (A.6).

Fourier transform energy calculation

For an infinite domain the energy is given by

E = λ2

∫ ∞

−∞

∫ ∞

−∞

k2|d̂(k)|2

1 + λ2k2
d2k (A.30)
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where d̂(k) is the 2D Fourier transform of d(x) namely

d̂(k) =
1
2π

∫ ∞

−∞

∫ ∞

−∞
d(x)e−ik.x d2x (A.31)

and k = |k|. Derivation of (A.30) is exactly the 2D analogue of the equiv-
alent 1D result (A.9).

Circular symmetry

If the data has circular symmetry then it is more convenient to use expres-
sions which incorporate the symmetry explicitly - since these are essentially
one dimensional. The Green’s function for this case can either be obtained
from the general Green’s function (A.29) directly (using the addition theo-
rem (Watson 1952) or by constructing the Green’s function from the Euler
Lagrange equation (A.26) expressed in cylindrical polar coordinates (ρ, θ).
The result is

u(ρ) =
∫ ∞

0

G(ρ, ρ′)d(ρ′)ρ′ dρ′ (A.32)

where

G(ρ, ρ′) =
1
λ2
I0

(ρ<

λ

)
K0

(ρ>

λ

)
. (A.33)

For circular symmetry (A.28) for the energy becomes

E = 2π
∫ ∞

0

d(ρ)(d(ρ)− u(ρ))ρ dρ (A.34)

The other method of calculating the energy, via the Fourier transform
(A.30), yields

E = 2πλ2

∫ ∞

0

k3|d̂(k)|2

1 + λ2k2
dk (A.35)

where

d̂(k) =
∫ ∞

0

J0(kρ)d(ρ)ρ dρ. (A.36)

Derivation. For circular symmetry d(x) = d(ρ) (where ρ = |x|), and
changing to polar coordinates with the θ = 0 axis along x the double
Fourier transform (A.31) becomes

d̂(k) =
1
2π

∫ ∞

0

∫ 2π

0

dθ e−ikρ cos θd(ρ)ρ dρ.
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Since (Watson 1952)

J0(x) =
1
2π

∫ 2π

0

e−ix cos θ dθ,

this can be expressed as

d̂(k) =
∫ ∞

0

J0(kρ)d(ρ)ρ dρ.

Similarly, changing to polar coordinates, the energy (A.30) is

E = λ2

∫ ∞

0

k dk

∫ 2π

0

dθ
k2|d̂(k)|2

1 + λ2k2

which gives (A.35).

Extremal energy for the top hat

In this section we use each of the methods of the previous section to calcu-
late the energy of a cylindrical top hat function. The top hat has height h
and radius a, and in cylindrical polars it is

d(ρ) =
{
h if ρ ≤ a
0 otherwise. (A.37)

Green’s function method Because of the form of the energy expression
(A.34) we need only find u(ρ) inside the hat - i.e. ρ ≤ a.

Using equations (A.33) and (A.32) for u(ρ) and identities from (McLach-
lan 1961) we obtain

u(ρ) = h
{

1− a

λ
I0

(ρ
λ

)
K1

(a
λ

)}
.

Then, from (A.34),

E = 2πa2h2K1

(a
λ

)
I1

(a
λ

)
. (A.38)

The modified Bessel functions in this expression have the following asymp-
totic limits

K1(z) ∼
1
z

I1(z) ∼
z

2
z � 1

K1(z) ∼
√

π

2z
e−z I1(z) ∼

ez

√
2πz

z � 1
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Fourier transform method Using equation (A.36)

d̂(k) = h

∫ a

0

J0(ρ)ρ dρ

which, from (McLachlan 1961),

=
haJ1(ka)

k
.

Using equation (A.35) for the energy gives

E = 2πλ2h2a2

∫ ∞

0

kJ2
1 (ka)

1 + λ2k2
dk,

and from the following identity (Watson 1952)∫ ∞

0

kJ2
ν (ka)

x2 + k2
dk = Iν(ax)Kν(ax)

the energy is
E = 2πa2h2K1

(a
λ

)
I1

(a
λ

)
as in (A.38) above.
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Appendix B

Noise Performance of the
Weak Elastic String

The purpose of following sections is to set out the supporting mathematics
for two claims about noise performance.

The first is that noise-induced error in localisation of discontinuities is
very low. For conventional linear smoothing operators followed by non-
maximum suppression, the standard deviation δx of the error satisfies δx ∝
(h/n0)−1, where h/n0 is the signal-to-noise ratio (Canny 1983). But for
the weak elastic string, δx is actually zero, provided signal-to-noise ratio is
not too small.

The second is that the penalty constant α is a direct measure of immu-
nity to noise. If standard deviation of mean noise is σ then “false alarms”
(spurious discontinuities) do not occur if α � σ2. This condition is inde-
pendent of λ.

B.1 Localisation

Consider a weak elastic string with data

d(x) =
{

0 for x ∈ [−L, 0)
h for x ∈ [0, L]

and added noise n(x), which has zero mean, and is homogeneous with
standard deviation n0:

n2
0 =

1
l

〈∫ y+l

y

n2(x) dx

〉
, ∀y, l > 0, y ∈ [−L,L− l] (B.1)
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and the standard deviation of mean (spatially averaged) noise σ is defined
by: 〈(∫ y+l

y

f(x)n(x) dx

)2〉
= σ2

∫ y+l

y

f2(x) dx (B.2)

for y, l > 0, y ∈ [−L,L− l] and an arbitrary function f(x). (The brackets
〈〉 denote expected value.) The quantities σ, n0 are related by

σ2 = ρn2
0,

where ρ is a measure of the coherence length of the noise (ρ → 0 for
uncorrelated noise) and 1/ρ is a measure of noise bandwidth. Typically,
ρ = 1, measured in pixel-diameters, so n0 and σ are numerically equal.

We seek to compute the cost E(uε) of the extremal uε(x), given that it
has a discontinuity at x = ε. Assume ε ≥ 0. The situation is sketched in
figure 4.15 on page 70. Because of the linearity of the problem, the solution
is uε(x) = uε,d(x) + uε,n(x), the sum of the solutions for data alone, and
noise alone, respectively. If the Green’s function is Gε(x, y) then

uε,d =
∫ L

−L

Gε(x, y)d(y) dy and uε,n =
∫ L

−L

Gε(x, y)n(y) dy . (B.3)

From (4.5) on page 55, the extremal energy is

E(uε) =
∫ L

−L

(d+ n)(d+ n− uε,d − uε,n) dx+ α (B.4)

We are interested only in comparing energies; the energy difference is

∆Eε = E(uε)− E(u0) = ∆Eε,d − (Rε −R0) (B.5)

where Rε =
∫ L

−L

(duε,n + nuε,d + nuε,n) dx, (B.6)

and ∆Eε,d is the energy difference for the noise free case. Assuming |ε| �
λ� L then, from (4.23) on page 66 (with g = 0):

∆Eε,d ≈ h2|ε|.

Now the third term in the integral in (B.6) is negligible if the noise is not too
great. The first two terms are equal; this is because in any Sturm-Liouville
problem a real Green’s function must also be symmetric: Gε(x, y) = Gε(y, x),
so that, from (B.3), ∫ L

−L

duε,n dx =
∫ L

−L

nuε,d dx .
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The noise dependent part of ∆Eε, which is Rε −R0, becomes

Rε −R0 = 2
∫ L

−L

n(uε,d − d) dx

(u0,d = d for the particular data chosen) which has zero mean.
A bound on |Rε −R0| can be obtained as follows:

Rε −R0 = 2

(∫ 0

−L

+
∫ ε

0

+
∫ L

ε

)
n(uε,d − d) dx

but uε,d = d for x > ε, so the last interval of integration can be omitted.
Solving for uε,d in the first interval, assuming ε � L, gives uε,d(x) =
Aε exp(x/λ) so that

Rε −R0 = 2AεT + 2
∫ ε

0

n(uε,d − h) dx (B.7)

where Aε is a constant and

T =
∫ 0

−L

n(x) exp
(x
λ

)
dx

which has expected value (B.2)

〈|T |〉 ≤
〈
|T |2

〉 1
2 = σ

(∫ 0

−L

exp
(

2x
λ

)
dx

) 1
2

≈
√
λ

2
σ.

It can be shown that |Aε| ≤ εh/λ, so that

〈|2AεT |〉 ≤ εhσ

√
2
λ

= εhn0

√
2ρ
λ
. (B.8)

Now, as for the other term in |Rε −R0|,∣∣∣∣2∫ ε

0

n(uε,d − h) dx
∣∣∣∣ ≤ 2

(∫ ε

0

n2(x) dx
) 1

2
(∫ ε

0

(h− uε,d(x))2 dx
) 1

2

(B.9)

by the Cauchy-Schwartz inequality. But |h− uε,d(x)| ≤ h so that∣∣∣∣2∫ ε

0

n(uε,d − h) dx
∣∣∣∣ ≤ 2h

√
ε

(∫ ε

0

n2 dx

) 1
2

. (B.10)
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This term dominates, if it is assumed that ρ� λ. The first term (B.8) can
be neglected.

A necessary condition for some ε > 0 to be optimal is that

∆Eε = h2ε− (Rε −R0) < 0. (B.11)

We need to find the smallest value e such that

∀ ε > e, ∆Eε > 0 (B.12)

- which would mean that for all ε > e the energy for a discontinuity at
x = ε must be higher than for one at x = 0. Thus there could not be a
discontinuity at x = ε > e, and e is the desired bound on localisation error.
From (B.11), the required condition is that

∀ ε > e,
|Rε −R0|

ε
< h2, (B.13)

and from (B.7) and (B.10), neglecting (B.8),

max
ε>e

|Rε −R0|
ε

≤ max
ε>e

2h
(

1
ε

) 1
2
(∫ ε

0

n2 dx

) 1
2

≈ 2hn0 (B.14)

from (B.1). So now a sufficient condition for (B.13) is that

h

n0
≥ 2. (B.15)

This means that provided signal-to-noise exceeds 2, there is negligible lo-
calisation error.

B.2 Spurious response

Consider data d(x) = 0, x ∈ [−L,L] with additive noise as above. A com-
parison can be made between the energy E(uε) of the optimal solution with
a single discontinuity at ε ∈ [−L,L] and the energy E(uc) of an entirely
continuous solution.

Solutions with a discontinuity at ε are denoted uε = uε,d + uε,n as in
(B.3) and continuous solutions are uc = uc,d +uc,n, with associated Green’s
function Gc(x, x′). The energy difference is

E(uε)− E(uc) =
∫ L

−L

(d+ n)(uc,d + uc,n − (uε,d + uε,n)) dx+ α, (B.16)
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=
∫ L

−L

n(uc,n − uε,n) dx+ α,

since uε,d = uc,d = d = 0. Now

uc,n − uε,n =
∫ L

−L

∆Gε(x, x′)n(x′) dx′

where ∆Gε = Gc −Gε, so

E(uε)− E(uc) =
∫ L

−L

∫ L

−L

n(x)∆Gε(x, x′)n(x′) dx dx′ + α. (B.17)

From the formula (A.5) for the weak string Green’s function in a finite
domain

Gc(x, x′) =
1

λ sinh
(

2L
λ

) cosh
(
x< + L

λ

)
cosh

(
x> − L

λ

)
(B.18)

and

Gε(x, x′) =


1

λ sinh(L+ε
λ ) cosh

(
x<+L

λ

)
cosh

(x>−ε
λ

)
if x, x′ < ε

1

λ sinh(L−ε
λ ) cosh

(x<−ε
λ

)
cosh

(
x>−L

λ

)
if x, x′ > ε

0 otherwise.

(B.19)

Assuming λ� L, it can be shown that

∆Gε(x, x′) ≈


− 1

2λ exp (−2ε+ (x+ x′)) /λ if x, x′ < ε
− 1

2λ exp (2ε− (x+ x′)) /λ if x, x′ > ε
1
2λ exp

(
− |x−x′|

λ

)
otherwise.

(B.20)

From (B.17) and (B.20),

E(uε)− E(uc) = α−R2 (B.21)

where R is a Gaussian random variable

R =
1√
2λ

(∫ ε

−L

n(x) exp
(
x− ε

λ

)
dx −

∫ L

ε

n(x) exp
(
ε− x

λ

)
dx

)
(B.22)

with mean 0, and standard deviation S which can be computed from (B.2):

S2 =
1
2λ
σ2

(∫ ε

−L

(
exp

(
x− ε

λ

))2

dx (B.23)

+
∫ L

ε

(
exp

(
ε− x

λ

))2

dx

)
=
σ2

2
,



200 Appendix B

so
S =

σ√
2
. (B.24)

The conclusion is that, with at least 95% certainty (the 95% two-tail
confidence limit is approximately 2 standard deviations), choosing

α > 2σ2 (B.25)

guarantees (B.21) that
E(uε) > E(uc) (B.26)

- no spurious discontinuity. This result is independent of ε.

B.3 Comparison with a linear operator

Results from the previous 2 sections can now be combined to make a com-
parison of the performance of the weak string in noise, with that of a linear
(Gaussian) operator. Canny’s measures of localisation and signal to noise
performance (for an isolated step) are used (Canny 1983). For the same
signal to noise performance in each case, localisation accuracy is compared.
The following notation is used: sg, δxg denote signal to noise ratio and lo-
calisation error for the output of a Gaussian fiter; sc, δxc similarly for the
weak string. From (Canny 1983) we have, approximately, that

δxg =
√
w

(
h

σ

)−1

(B.27)

and
sg =

√
w
h

σ
, (B.28)

where w is the half-width of the Gaussian filter. For the weak string, we
know from chapter 4 that a step is detected only if its height h satisfies

h > h0 =

√
2α
λ

and from the working leading up to (B.26) false positive discontinuities are
avoided (at 1 standard deviation) if

α > σ2/2

and combining these 2 inequalities gives

h

σ
>

√
1
λ
,
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so that the effective signal to noise ratio is

sc =
√
λ
h

σ
. (B.29)

Thus, when λ = w, sc = sw, so that the weak string and the Gaussian filter
can be regarded as “equivalent” in signal-to-noise performance.

We saw earlier that the weak string is free of localisation error for data in
which h/n0 > 2. But for the same data, localisation error in the equivalent
directional Gaussian filter would be

δxg =
√
ρw

2
=
√
ρλ

2
.
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Appendix C

Energy Calculations for
the Rod and Plate

The purpose of this appendix is to summarise the methods used for the
energy calculations of the rod and plate in chapter 5. The derivations
of many of the expressions are analogous to those given in the string and
membrane appendices, and are not reproduced here. Methods for the mixed
rod and string are similar to those given here for the rod, but details will
not be given.

C.1 Energy calculations for the rod

The rod has the energy functional

E =
∫ b

−a

{(u(x)− d(x))2 + µ4(u′′)2} dx. (C.1)

The function u(x) which minimises E is found using the Calculus of Vari-
ations. It satisfies the Euler Lagrange equation

u+ µ4 d
4u

dx4
= d (C.2)

with the boundary conditions

u′′|x=−a,b = 0, u′′′|x=−a,b = 0, (C.3)

and over a bi-infinite region u(x) can be found from the Green’s function

G(x, x′) =
1
2µ
e
−|x−x′|√

2µ cos
(
|x− x′|√

2µ
− π

4

)
. (C.4)
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For finite and infinite regions

E =
∫
d(x)(d(x)− u(x)) dx, (C.5)

just as for the string.
In a bi-infinite domain the energy can be obtained directly from the

Fourier transform of d(x)

E = µ2

∫ ∞

−∞

ω4|d̂(ω)|2

1 + µ4ω4
dω. (C.6)

C.2 Energy calculations for the plate

The two varieties of the energy functional for the plate, quadratic variation
(5.4) and square Laplacian (5.5), have the same Euler Lagrange equation
namely

u+ µ4 54 u = d (C.7)

but the boundary conditions are different (Grimson 1981). However, for an
infinite domain the Green’s function in both cases is given by

G(x,x′) =
i

4πµ2

{
K0

(√
ir

µ

)
−K0

(
r√
iµ

)}
(C.8)

=
−1

2πµ2
kei
(
r

µ

)
(C.9)

where kei is a Kelvin function (McLachlan 1961), and r = |x − x′|. The
energy is obtained from

E =
∫
d(x)(d(x)− u(x)) dA (C.10)

or from the Fourier transform

E = µ4

∫ ∞

−∞

∫ ∞

−∞

k4|d̂(k)|2

1 + µ4k4
d2k (C.11)

The derivation of these expressions is analogous to that given for the mem-
brane.
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Circular symmetry

The Green’s function takes the form

G(ρ, ρ′) =
1
µ2

{
K0

(√
iρ<

µ

)
I0

(√
iρ>

µ

)

− K0

(
ρ<√
iµ

)
I0

(
ρ>√
iµ

)}
(C.12)

=
1
µ2

{
ker
(
ρ>

µ

)
bei
(
ρ<

µ

)
+ kei

(
ρ>

µ

)
ber

(
ρ<

µ

)}
(C.13)

where ker(x),ber(x) and bei(x) are also Kelvin functions (McLachlan 1961).
The energy expression involving the Fourier transform becomes

E = 2πµ4

∫ ∞

0

k5|d̂(k)|2

1 + µ4k4
dk (C.14)

Top hat example

Using expression (C.14) the energy for the 2D top hat is given by

E = πa2h2

{
K1

(
a√
iµ

)
I1

(
a√
iµ

)
+ K1

(√
ia

µ

)
I1

(√
ia

µ

)}
(C.15)

= 2πa2h2

{
ker1

(
a

µ

)
ber1

(
a

µ

)
− kei1

(
a

µ

)
bei1

(
a

µ

)}
. (C.16)

This has limits

E =
πh2aµ√

2
, a� µ (C.17)

and
E = πh2a2, a� µ. (C.18)
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Appendix D

Establishing Convexity

D.1 Justification of “worst-case” analysis of
the Hessian

In the worst-case analysis of H, we examined the Hessian of F ∗(u), for val-
ues of u at which every instance of the neighbour interaction function g∗(t)
is at its “least convex” - has its most negative 2nd derivative (g∗)′′(t) = −c
(7.2). This analysis can be regarded as applying for all u, to a hypothetical
cost function F+(u), defined as F ∗ but with interaction function

g+(t) = −1
2
ct2 (D.1)

in place of g∗. The worst-case analysis shows that F+ is convex, for all u.
Hence F ∗ is convex if F ∗(u)−F+(u) is convex (a sum of convex functions
is itself convex). It is sufficient that ∀t g∗(t)− g+(t) is convex, that is:

∀t (g∗)′′(t)− (g+)′′(t) ≥ 0 (D.2)

From (7.2) and (D.1), (D.2) does indeed hold.

D.2 Positive definite Hessian is sufficient for
convexity

A positive definite Hessian is only a general guarantee of convexity for a
function with continuous 2nd derivatives (Roberts and Varberg 1976). The
2nd derivatives of F ∗ are not continuous, so a special proof is needed. It
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relies on the special form of F ∗(u) - that it can be decomposed as a sum of
functions of one variable whose arguments are linear combinations of the
ui.

The definition of convexity is that, given two vectors v and w, then

∀r, 1 ≥ r ≥ 0, F ∗(u) ≤ rF ∗(v) + (1− r)F ∗(w) (D.3)

where
u = rv + (1− r)w. (D.4)

Now it is sufficient to prove that, for all such v,w that T (r) ≡ F ∗(u(r)) is
convex as a function of r, for 1 ≥ r ≥ 0. This is done in 2 stages:

1. First we show that if the Hessian H of F ∗ is positive definite, then
T ′′(r) ≥ 0, for 1 ≥ r ≥ 0.

2. Then we show that, given this condition on T ′′, T is convex.

Here are the proofs:

1. From (D.3),
T ′′ = sTHs where s = v −w. (D.5)

It is at this point that the decomposition of F ∗ is used implicitly:
because each of the component functions in the decomposition has
a piecewise continuous 2nd derivative, so T ′′(r) must be piecewise
continuous and hence integrable. Since H is positive definite then,
using (D.5),

∀r T ′′(r) ≥ 0. (D.6)

2. First, by integrating the inequality (D.6),

∀h > 0, T ′(r + h) > T ′(r)

and, integrating again, it is easily shown that, for all h > 0,

T (r + h) ≥ T (r) + hT ′(r) and T (r) ≥ T (r + h)− hT ′(r + h) (D.7)

and hence,for all h > 0, 1 ≥ t ≥ 0,

T (r + h) ≥ T (r + th) + h(1− t)T ′(r + th) (D.8)

and
T (r) ≥ T (r + th)− thT ′(r + th). (D.9)

Multiplying the first of these inequalities by t and the second by 1− t,
adding and rearranging, we obtain:

T (r + th) ≤ tT (r + h) + (1− t)T (r). (D.10)

so that T (r) is convex, as required.
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D.3 Computing circulant eigenvalues

To choose the parameter c∗ in chapter 7, using (7.9) on page 134, it is
necessary to calculate the appropriate largest eigenvalue vmax. Recall that
vmax is defined to be the largest eigenvalue of the matrix QTQ, where
Q is a matrix that describes a linear transformation, as in (7.11). This
linear transformation is in fact a discrete representation of the differential
operator that defines the energy of the fitted surface. Now when Q is a
circulant matrix it can be represented by a convolution C:

Qk,l = Cl−k for some array C. (D.11)

(The index l − k must be evaluated modulo the size of the array C.) Note
that for 2D data the index k becomes a double index k = (i, j) and similarly
for l. And a cautionary note is necessary: in fact Q is not quite a circulant
because of behaviour on the boundary of the finite data array. In fact, if the
data d and the discrete representation u of the fitted function were defined
with “wrapped-around” boundaries (i.e. on a circle in 1D or a torus in 2D)
then Q would be exactly a circulant. The following assumes that Q really
is a circulant, and modifications for the finite boundaries case are given in
appendix D.4. Similarly, the matrix QTQ is represented by the convolution
C2, defined by

C2
m =

∑
p

Cm+pCp. (D.12)

From (Davies 1979), the eigenvalues of a circulant that is represented by a
convolution C2 applied to 1D vectors of length N , are

vm =
∑

r

C2
r exp(2πimr/N), 0 ≤ m < N, (D.13)

and the equivalent formula for 2D N ×N vectors is

vm,n =
∑
r,s

C2
r,s exp(2πimr/N) exp(2πins/N) 0 ≤ m,n < N. (D.14)

The string

The circulant Q for the string is defined by its convolution (7.12)

C =
(
. . . 0 −1 1 0 0 . . .

)
and C2 is easily shown, using (D.12), to be

C2 =
(
. . . 0 −1 2 −1 0 . . .

)
.
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Now applying (D.13),

vm = 2− (exp(2πim/N) + exp(−2πim/N))

= 2(1− cos(2πm/N)),

so that
vmax = 4.

The membrane

The membrane energy is slightly different from the other three, in that its
energy (6.10) leads to a sum of two terms in the Hessian, expressed in terms
of two circulants Q,R with corresponding 2D convolutions C,D:

C =


. . . . . . . . . . . . . . .
. . . 0 −1 0 . . .
. . . 0 1 0 . . .
. . . 0 0 0 . . .
. . . . . . . . . . . . . . .



D =


. . . . . . . . . . . . . . .
. . . 0 0 0 . . .
. . . 0 1 −1 . . .
. . . 0 0 0 . . .
. . . . . . . . . . . . . . .

 .

These are essentially the same as C for the string above, but padded out
with zeros to fill a 2D array. Now it is required to find the eigenvalues vm,n

of QTQ+RTR, which from (D.14), are:

vm,n = 4− 2 cos(2πm/N)− 2 cos(2πn/N),

so that
vmax = 8.

The rod

The energy of the plate is given in (6.13) and the equivalent in 1D, for the
rod, is described by a single circulant Q with convolution

C =
(
. . . 0 −1 2 −1 0 . . .

)
.
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The symmetry of C means that Q is symmetric so that QTQ = Q2. If v
is an eigenvalue of Q then v2 is an eigenvalue of QTQ. Now C here is the
same as C2 for the string, so clearly vmax here is v2

max for the string, i.e

vmax = 16

for the rod.

The plate

The square Laplacian energy for a plate is given in (6.13) yielding a convo-
lution

C =


. . . . . . . . . . . . . . .
. . . 0 −1 0 . . .
. . . −1 4 −1 . . .
. . . 0 −1 0 . . .
. . . . . . . . . . . . . . .

 .

As before, QTQ = Q2 so, using (D.14) to obtain the eigenvalues of Q, they
are squared to give eigenvalues of QTQ:

vm,n = (4− 2 cos(2πm/N)− 2 cos(2πn/N))2 ,

so that
vmax = 82 = 64.

D.4 Treating boundary conditions

In the worst case analysis in chapter 7 and in (D.1), the neighbour interac-
tion function for the convex function F ∗ has the form g∗(t) = − 1

2ct
2. Thus

−g∗(t) is convex. Now given the worst-case F ∗ for the circulant case - when
opposite edges of the array are connected toroidally - it is a simple matter
to obtain the worst case F ∗ for the bounded array. Removing the toroidal
connections involves simply subtracting from F ∗ the relevant neighbour in-
teraction terms g∗(t) - i.e. adding −g∗(t). Now each such −g∗(t) is convex,
so any sum of them is convex. Hence if the toroidal worst case is convex, the
corresponding bounded array worst-case must also be convex. So the proof
using circulants, of convexity for the worst-case, holds also for a bounded
array.
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Appendix E

Analysis of the GNC
Algorithm

In this appendix, we analyse the performance of the convex approxima-
tion F ∗ to the discrete cost function F , and the non-convex sequence
F (p), p ∈ [0, 1], for the weak elastic string. This is analogous to the analy-
sis of the continuous problem in chapter 4, but instead of using variational
methods to obtain Euler Lagrange equations, recurrence relations are ob-
tained as an extremum condition for the discrete minimisation. Solutions
of the recurrence relations are obtained with exponential decay similar to
the extremal functions obtained by variational calculus.

With regard to sensitivity and scale behaviour, the solution of the dis-
crete problem agrees with that of the continuous problem, with errors
that are second order in element size, as expected with linear elements
(Zinkiewicz and Morgan 1983).

As for the performance of the GNC algorithm, it is shown that it is
correct - that is, it correctly finds the global minimum of the non-convex
function F - for an important class of problems: those in which the potential
discontinuities are non-interacting (separated by distances large compared
with λ). Some generalisation to interacting discontinuities is possible.

E.1 Setting up the discrete analysis

The family of cost functions used in the GNC algorithm is

F (p) =
∑

i

(ui − di)2 + g(p)(ui − ui−1), (E.1)
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where g(p) is shorthand for g(p)
α,λ, as defined in (7.23) on page 141. Local

minima occur when
∂F (p)/∂ui = 0, ∀i

which, differentiating (E.1), gives:

∀i ui = di −
1
2
g(p)′(ui − ui+1) +

1
2
g(p)′(ui−1 − ui). (E.2)

It assumed in the following analysis that, except at one possible discon-
tinuity between i = 0, 1 (over the set i ∈ {−L1, ..0, ..L2}) the interaction
functions g(p)(ui−ui−1) are in their central quadratic regions (figure 7.1 on
page 133). (It is possible to check, when the analysis is complete, that this
assumption did indeed hold. This is done later.) The assumption means
that

∀i 6= 0, ∆i ≤ q where ∆i = |ui+1 − ui|. (E.3)

so that
∀i 6= 1 g(p)(ui − ui−1) = λ2(ui − ui−1)2

and, differentiating,

∀i 6= 1 g(p)′(ui − ui−1) = 2λ2(ui − ui−1).

The recurrence relation (E.2) becomes, for i < 0 and i > 1,:

ui = di − λ2(2ui − ui+1 − ui−1), (E.4)

which is analogous to the Euler-Lagrange equation (A.2) that describes an
elastic string. For data di = 0 the solution has the form

ui = Ani (E.5)

where n satisfies
n = λ2(1− n)2. (E.6)

Note that n can be expressed in terms of a length parameter Λ:

n = 1− 1/Λ (E.7)

where
Λ2 − Λ = λ2 (E.8)

so that
Λ ≈ λ for large λ. (E.9)

This is the scale over which solutions decay exponentially, corresponding
to λ in the variational analysis.
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E.2 Constraining the discrete string

Variational analysis showed (appendix A) that when a continuous string
over an interval [0, L] is constrained at one end, moved from its natural value
there of z, to a new value z, then the increase in energy is ∆E = E(z− z)2,
where E depends only on λ and L. A similar result can be obtained from
discrete analysis. The proof is similar.

The increase in discrete energy is

∆F = F(z − z)2 (E.10)

and again F is obtained by “calibration”, once, on any convenient data.
Taking di = 0 on i ∈ {0, .., L} with u0 = 1, the solution of the recurrence
relation is ui = ni and the energy is determined from (E.1) (with g(p)(t) =
λ2t2) and simplified using (E.8) so that, assuming L� Λ,

F ≈ Λ. (E.11)

In any case, whatever the value of L,

1 ≤ F ≤ Λ (E.12)

increasing from one bound to the other as L increases from 1. Of course
F in (E.11) agrees closely with E since Λ ≈ λ, differing only because of
discretisation error.

Constraining both ends of an interval also acts as in the variational
analysis (A.23) to give

F = F0 +F− ((z1 − z1)− (z2 − z2))
2 +F+ ((z1 − z1) + (z2 − z2))

2 (E.13)

acting as two independent constraints (F− ≈ F+ ≈ Λ/2) when L� λ.

E.3 Isolated discontinuity

As before, it is possible to compute the increase ∆F in energy, this time dis-
crete energy, when a continuity constraint is imposed between two points.
Assume the points are i = 0, 1 in an interval i ∈ {−L1, ..0, ..L2} (L1, L2 �
λ) and continuity is imposed by coupling the points with the usual elas-
tic connection. The result is proportional to h2 where the “effective” step
height h is now defined to be the value taken by ∆0 when u0, u1 are un-
coupled. Calibration is done to obtain the constant of proportionality, for
a bi-infinite interval, using an ideal step

di =
{
−h/2 for i ≤ 0,
h/2 for i > 0, (E.14)
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and exploiting its antisymmetry. Formula (E.10) is used once for each side
of the step, and the interaction energy between u0, u1 must be added in to
give

∆F = min
∆0

2F
(

1
2
(h−∆0)

)2

+ λ2∆2
0 (E.15)

which, after some algebra, turns out to be

∆F = h2F Λ− 1
2Λ− 1

(E.16)

≈ 1
2
Fh2 (E.17)

in the limit that L1, L2 � λ. In fact ∆F agrees with the variational
equivalent ∆E = 1

2h
2λ, within O(1/λ2). If the data is not bi-infinite then

constants F1,F2 are associated with each side of the discontinuity, and the
effective F for (E.16) is their harmonic mean.

E.4 Cost function sequence

What happens when string energy (E.15) is replaced by a cost function
F (p) in the GNC sequence? Continuing to assume (E.3), behaviour of ui

for i < 0, i > 0 is entirely determined. The whole problem depends just on
∆0, so that F (p) can be regarded as F (p)(∆0).

F (p)(∆0) = F (p)(h) +
1
2
F(h−∆0)2 + g(p)(∆0)− g(p)(h). (E.18)

Differentiating twice, d2F (p)/d∆2
0 is positive except when q < ∆0 < r, in

which case
d2F (p)
d∆2

0

= F − c. (E.19)

This means that F (p)(∆0) is convex as c increases (p decreases) up to c = F .
At that point F (p)(∆0) must be the convex envelope of F (∆0) because they
are equal except over q < ∆0 < r, where F (p)(∆0) is linear (figure 7.6, page
145).

At c = F , ∆0 must move to find the global minimum of F (∆0). At this
point F (p)(∆0) = F (∆0) (7.17), so that ∆0 does not change thereafter as
p→ 0 in the GNC algorithm.

E.5 Discreteness of the function sequence

Ideally, the GNC algorithm would use the whole family of functions F (p), p ∈
[0, 1]. In practice it is restricted to a discrete sequence of p. Clearly there
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will be some error in c, compared with the ideal c = F that makes F (p)(∆0)
just convex, as above. If c is too small then F (p) is “over-convex” and its
minimum may not be the global minimum of F . If c is too large then F (p)

is non-convex and may have two local minima.
Referring to figure 7.6 again, it is apparent that, in either of the two

cases, F (p) has a unique minimum that is the same as the global minimum
of F provided

sign
(
F (p)′(q)

)
= sign

(
F (p)′(r)

)
. (E.20)

From (E.18) (and (7.24) on page 141)

F (p)′(r) = F(r − h)

and
F (p)′(q) = F(q − h) + 2λ2q.

Defining values hr, hq of h to be those at which F (p)′ vanishes at r, q re-
spectively:

hr = r and hq =
F + 2λ2

F
q. (E.21)

When c > F error may occur if

h ∈ [hr, hq]

where, assuming F , c� λ2, and substituting r2 = 2α/c, q = α/(λ2r),

hr

hq
=
F
c
. (E.22)

So when c = F , the interval disappears, as expected since it is the ideal c
above. And when c < F error occurs if

h ∈ [hr, hq], (E.23)

with hr, hq again related by (E.22). This is also useful for analysing the
performance of F ∗ ≡ F (1) on its own. For example, for a weak string
c = c∗ = 1

2 , and in the bi-infinite case F ≈ λ. From (E.21) and (7.8),
assuming λ� 1,

hq ≈
h0√
2λ

and hr ≈ h0

√
2λ

These are the endpoints of the interval of ambiguity [h−, h+] as in (7.20).
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E.6 Checking for continuity of the discrete
solution

Consider an ideal bi-infinite step (E.14): To check that condition (E.3)
holds ∀i 6= 0, it is sufficient to check just for i = 1. This is justified
by noting the antisymmetry of ui and hence the symmetry of ∆i, and by
observing from (E.6) that

∆i = Ani(1− n) (E.24)

so that ∀i > 1 ∆i < ∆1.
It is assumed that

∆0 < r, (E.25)

otherwise a discontinuous solution must already have been found. During
GNC

Λ ≥ c ≥ 1 (E.26)

(see chapter 7). So ∆1 ≤ q if

∆0

∆1
≥ r

q
∀Λ ≥ c ≥ 1

2
. (E.27)

From the definitions of r, q in (7.24),

r

q
= 1 +

2λ2

c
. (E.28)

Minimising F (p)(∆0) in (E.18), with F = Λ as the data is bi-infinite, it can
be shown that

∆0

∆1
=

hΛ− rc

(c/2)(h− r)(1− n)
(E.29)

which, from (E.28), (E.26) and (E.7)

≥ r

q
+

Λ
c
. (E.30)

So, using (E.26) again,
∆0

∆1
>
r

q
(E.31)

as required.
In fact, as there is a margin of Λ/c in inequality (E.31), it is clear that

(throughout GNC)
|∆1 − q| ≥M > 0,
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for some bound M . That means that the above proof continues to hold,
not just for an ideal step, but also for a step in a certain amount of noise.
This is true provided that when the noise (or other variation) is filtered by
a continuous string, no gradients of magnitude exceeding M are generated.
It can be shown that the value of the gradient bound is

M ≈
√
α

4λ3
. (E.32)
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Glossary of notation

SYMBOL MEANING
α penalty for step discontinuity
β penalty for crease discontinuity
γ decay time for convergence
φ surface slant
κ curvature
λ scale parameter for string and membrane
µ scale parameter for rod and plate
ρ coherence length of noise
σ standard deviation of mean noise
∆i difference of adjacent ui

Λ discrete equivalent of λ
c parameter used in definition of g(p)(t)
d(x), d(x, y) data signal
di, di,j discrete forms of d(x), d(x, y)
d vector whose components are di or di,j

g gradient of ramp
gl gradient limit
g0 gradient difference threshold
g(t) neighbour interaction function
g∗(t) approximation to g(t) (for F ∗)
g(p)(t) neighbour interaction function for GNC
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SYMBOL MEANING
h height of step
h0 contrast threshold
h(t, l) neighbour interaction function
li, li,j line variable (flags discontinuities)
l vector of line-variables
mi,j line variable
n0 standard deviation of noise
p non-convexity parameter
p(x, y), q(x, y) components of ∇u
q, r parameters in definition of g(p)

u(x), u(x, y) function fitted to data
ui, ui,j discrete forms of u(x), u(x, y)
u vector whose components are ui or ui,j

w scale parameter of Gaussian
D square error energy
E(u), E(u, l) energy (continuous, discrete)
E elasticity of a piece of string (continuous)
F (u) discrete energy with line variables eliminated
F ∗ convex approximation to F
F (p) family of energy functions for GNC
F elasticity of a piece of string (discrete)
G(x, x′), G(x,x′) Green’s functions for string, membrane
S smoothness term in energy
P penalty term in energy
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