Danielle Albers Szafir - Rita Borgo -
Min Chen - Darren J. Edwards -
Brian Fisher - Lace Padilla Editors

Visualization
Psychology

@ Springer



Visualization Psychology



Danielle Albers Szafir » Rita Borgo * Min Chen e
Darren J. Edwards ¢ Brian Fisher » Lace Padilla

Editors

Visualization Psychology

@ Springer



Editors

Danielle Albers Szafir
University of Colorado Boulder
Boulder, CO, USA

Rita Borgo

Department of Computer Science
King’s College London

London, UK

Min Chen Darren J. Edwards

OeRC, Department of Engineering Science ~ Department of Public Health
University of Oxford Swansea University

Oxford, UK Swansea, UK

Brian Fisher Lace Padilla

School of Interactive Arts & Technology Northeastern University
Simon Fraser University Boston, USA

Surrey, BC, Canada

ISBN 978-3-031-34737-5 ISBN 978-3-031-34738-2  (eBook)
https://doi.org/10.1007/978-3-031-34738-2

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland
AG 2023

This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether
the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse
of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and
transmission or information storage and retrieval, electronic adaptation, computer software, or by similar
or dissimilar methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.

The publisher, the authors, and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, expressed or implied, with respect to the material contained herein or for any
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Paper in this product is recyclable.


https://doi.org/10.1007/978-3-031-34738-2
https://doi.org/10.1007/978-3-031-34738-2
https://doi.org/10.1007/978-3-031-34738-2
https://doi.org/10.1007/978-3-031-34738-2
https://doi.org/10.1007/978-3-031-34738-2
https://doi.org/10.1007/978-3-031-34738-2
https://doi.org/10.1007/978-3-031-34738-2
https://doi.org/10.1007/978-3-031-34738-2
https://doi.org/10.1007/978-3-031-34738-2
https://doi.org/10.1007/978-3-031-34738-2

Foreword

Visualization Psychology is enormously diverse. Most of what is known about
perception and cognition applies to some degree, and this knowledge is relevant to
a huge diversity of visualization methods ranging from conventional scatter plots to
people collaborating to interpret scientific data in a shared virtual reality workspace.

This volume provides an excellent introduction to this diversity, with cutting edge
research and theory across the breadth of the field. To pick a few examples: We have
basic perceptual research into what makes a color express a greater quality by Karen
Schloss and her collaborators. The broader cognitive processes of Sense-Making is
introduced by Margaret Pohl and collaborators and a more focused introduction to
the importance of cognitive processes in graph comprehension provides depth. We
have introductions to other to bodies of theory such as the cognitive processes of
the visualization designers themselves by Paul Parsons and educational theory by
Stoiber and collaborators. Enjoy the feast!

There was a time in the 1990 when visualization psychology did not exist and
inventions were celebrated, with little attention paid to whether they worked; I
recall that the hottest topics in visualization were a tree structure visualization
invention called the Cone Tree, the CAVE virtual reality viewing environment, and
line integral convolution (LIC) for visualizing flows in liquids and gasses. None
of these turned out to be useful, and this could have been predicted with a little
insight into the perceptual and cognitive issues. ConeTrees because of the mental
gymnastics required for interaction; CAVES for many reasons including occlusion,
vergence-focus conflict, poor interaction affordances, and lack of resolution at the
critical fovea (it is not surprising that HMDs now dominate); and LIC because it
provides a poor stimulus for orientation detectors and lacks perceptual cues for
showing speed effectively.

We can only avoid such costly mistakes if the discipline of data visualization
is grounded in both evaluation and psychological theory. And, although a careful
evaluation can usually avoid egregious mistakes in design, evaluation without theory
only applies after the fact. The proper application of perceptual and cognitive theory
can inform visualization design from the outset.
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We are entering a new Age of Visualization. The massive data sets being
generated in every field of human endeavor can often only be understood with
visualization. Who can comprehend a table with a thousand numbers? But it can be
easy to comprehend a thousand data points represented graphically. Companies such
as Tableau employ perceptual and cognitive scientists to ensure that their products
present data in ways that are clear and not misleading. One good thing that has
come from the COVID disaster is a huge growth in public facing visualizations;
news websites now show maps, times series plots, and sometimes complex network
diagrams. Visualization Psychology provides the theoretical underpinnings of effec-
tive visualization design and this book provides a snapshot of the current state of the
art.

January 2022 Colin Ware
Research Professor, University of New Hampshire, New Hampshire, USA

Author of Information Visualization: Perception for Design, Morgan Kaufmann
and Visual Thinking for Design, Morgan Kaufmann



Preface

Data visualization emerged as an academic subject in 1987 following the NSF Panel
Report on “Visualization in Scientific Computing” edited by Bruce H. McCormick,
Thomas A. DeFanti, and Maxine D. Brown. For several decades, building strong
connections between visualization and psychology has always been a research
agenda in the field of Visualization and Visual Analytics (VIS in short). Many called
for interdisciplinary research between VIS and psychology (e.g., “Information
Visualization, Wings for the Mind,” Stuart Card, 1995, and “Illuminating the Path:
The Research and Development Agenda for Visual Analytics,” James J. Thomas and
Kristin A. Cook, 2005). Several psychologists have exerted most valuable influence
on VIS (e.g., “Visual Thinking for Design,” Colin Ware, 2008).

However, the progress for building connections between VIS and psychology
has not been as rapid as many other advancements in either field. Before 2010, each
VIS conference typically featured 0-2 papers on empirical studies. The VisWeek
2010 in Salt Lake City became a turning point, and since then more and more
empirical study papers have been presented at VIS. Between 2016 and 2019, there
were some 60 empirical study papers in VIS/TVCG tracks. Many young talents who
are knowledgeable in both VIS and psychology emerged in the VIS community,
while many colleagues in psychology are authoring and co-authoring such papers
and attending VIS conferences. It is therefore timely to ask both VIS and psychology
communities: Is there a need for Visualization Psychology as a new interdisciplinary
subject?

There are many branches of applied psychology, such as clinical psychology,
counselling psychology, educational psychology, forensic psychology, health psy-
chology, industrial-organizational psychology, legal psychology, media psychology,
music psychology, occupational psychology, sports psychology, and so on. Almost
all of these are widely recognized academic subjects and have their own conferences
and journals. Since interactive visualization and visual analytics are activities most
commonly encountered in human-centric processes in data science and real-world
data intelligence workflows, many will argue for the necessity and feasibility for
developing Visualization Psychology—as a branch of applied psychology—in a
coherent and organized manner.

vii
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There has been existing activities for empirical research during VIS conferences,
noticeably, the BELIV workshop series and the VISxVISION events. The BELIV
workshops, as the name suggests, have focused on the “evaluation” of visualization
methods and techniques, and there has been a strong emphasis on “beyond” the
traditional controlled experiments. Meanwhile, the VISxVISION events have been
successful in bridging to the vision science community, but as the name suggests,
the scope of VISxVISION cannot easily cover the engagement with scientists
and researchers with expertise in higher-order cognition (including topics such
as analytical reasoning, problem-solving, and collaborative cognition) in studying
complex phenomena in VIS processes. Both series of events are no doubt important
to the development of VIS as a scientific discipline, while stimulating more
interdisciplinary and empirical research.

Advanced data intelligence workflows likely involve both human-centric pro-
cesses (e.g., visualization and interaction) and machine-centric processes (e.g.,
statistics and algorithms). Such workflows feature a diverse range of cognitive
activities. Numerous phenomena in these processes cannot easily be explained using
the existing theories and experiments in VIS and psychology, including some of
the most fundamental questions such as “since visualization is not as precise as
the data being depicted, what is visualization really for, and how visualization
works?” Being able to answer such fundamental questions and explain numerous
real-world phenomena in VIS processes is critical to VIS and data science as
well as psychology. As VIS techniques are for augmenting human cognition,
we must develop VIS techniques by building on the theoretical, empirical, and
methodological knowledge that has already been acquired in psychology. At the
same time, the field of VIS is a rich playground for discovering new knowledge
relevant to both VIS and psychology.

VISPsych

The first IEEE VIS Workshop on Visualization Psychology took place during
IEEE VIS2020, providing a venue for the experts in VIS and psychology to define
the scope of this new subject of Visualization Psychology collectively, and stimulate
new research directions and activities in both fields. The logo of the workshop
features the abbreviations of “Vis” and “Psych” connected by one of the most
popular continuous color maps in visualization. The goals of the workshop were:

* To broaden the scope of empirical research in VIS to involve more cognitive
aspects in addition to considering visualization a vision or perception problem

» To provide researchers in VIS with a significant platform to develop their theories
and experiments in addition to acquiring knowledge from psychology

* To enable researchers in psychology to explore VIS as a rich playground and
carry out research beyond the existing molds
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* To enable the development of the young talents in VIS and psychology through
the development of a new interdisciplinary subject and the provision of a platform
for research communication, publications, and collaboration

This book results from the initiative taken by the VisPsych workshop. The
attendees of the workshop were motivated by the aforementioned goals and
enthused by the technical developments and outlooks presented in the workshop.
Many offered to transform their preliminary ideas, viewpoints, and findings to
chapters to be included in this book. After some two years of enormous effort and
great endurance, these authors produced the wonderful scholarly work featured in
this book, which consists of 15 chapters organized into 3 parts:

e Part [—Visualization Psychology from a Psychology Perspective—contains
five chapters that examine aspects of psychology, including existing theories,
findings, and methodologies, and discuss how such acquired knowledge (e.g.,
findings on color semantics, process theories for graph comprehension, theo-
ries for mental models, and dual-processing models in decision-making) help
understand and interpret phenomena in visualization or such established best
practice (e.g., the diversity of research methods) can influence the development
of Visualization Psychology.

e Part [I—Visualization Psychology from a Visualization Perspective—contains
five chapters, each of which focuses on an important topic in VIS and makes
connections with aspects of psychology. The selected visualization topics include
visualization literacy, visualization of health information, the cognition of visual-
ization designers, and understanding eye tracking data captured in visualization
processes. The discourses presented show that not only these topics can benefit
from the previous work in psychology, but can also inspire researchers in Visu-
alization Psychology to make new discoveries that are scientifically significant
and practically useful. One chapter in this Part presents a coherent argument that
the field of VIS is a fertile laboratory for exploring human cognition, while VIS
research and VIS system development can be grounded in theories of perception
and cognition.

* Part [II—Visualization Psychology from an Experimental Perspective—contains
five chapters, presenting a collection of experimental findings on several topics,
including visualization tasks, perceptual biases, design preferences, uncertainty
visualization, and sensemaking strategies. Through structured literature reviews,
categorized descriptions, and analytical discourse, these chapters demonstrate
that there is an abundance of intriguing and complex phenomena in visualization
processes, which cannot easily be explained by the known theories and experi-
ments in either VIS or psychology, but can benefit from further interdisciplinary
research in a new subject Visualization Psychology.

If the subject of Visualization Psychology were a landscape to be painted
collectively by the scientists and researchers in VIS and psychology, the process
of painting this landscape has just begun. This book would not be in any way a
piece of finished work. It would be better described as a number of earnest and
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thoughtful strokes brushed onto the canvas by a diverse group of authors attempting
to sketch out some major components of the landscape. No doubt, we need many
more scientists, researchers, and practitioners to join this long-term effort. The
landscape would gradually but surely unveil itself with every new stroke resulting
from future research in Visualization Psychology.

We are hugely grateful to all authors of the 15 chapters in this book, and
appreciate their scientific and scholarly discourse as well as collaborative and
enduring effort in completing their ambitious writing plans. In addition, we value
tremendously the contributions made by other authors who submitted their papers
to the VisPsych workshop.

We would like to record our enormous gratitude to all members of the Program
Committee of the VisPsych workshop, including Alfie Abdul-Rahman, Nadia
Boukhelifa, Spencer Castro, Michael Correll, Evanthia Dimara, Kristin M. Divis,
Sarah Dryhurst, Madison Elliott, Steve Haroz, Lane Harrison, Kuno Kurzhals,
Bongshin Lee, Laura Matzen, Christine Nothelfer, Alvitta Ottley, Khairi Reda,
Irene Reppa, Karen Schloss, Yunhai Wang, and Cindy Xiong. They reviewed
the submissions to the VisPsych workshop, and many of them also reviewed the
chapters included in this book. Their time, effort, knowledge, and wisdom are deeply
appreciated, and their comments, critiques, and suggestions have been indispensable
to this book as well as the VisPsych workshop.

We would like to thank all members of the Advisory Board of the VisPsych
workshop, including Sarah Creem-Regehr, Sara Fabrikant, David Laidlaw, Bradley
Love, Sine McDougall, Melanie Tory, Barbara Tversky, and Colin Ware. In partic-
ular, we appreciate very much their advice and suggestions on the scope and future
development of visualization psychology as a new academic subject. Our special
thanks to Barbara Tversky for her keynote speech “How Graphics Communicate?”’
that provided an inspiring opening of the VisPsych workshop, and to Colin Ware for
his scholarly Foreword that introduces this book from the perspective of a pioneer
of Visualization Psychology.

Last but not least, we are in debt to Helen Desmond (Springer) for her advice
and patience throughout this book project. We appreciate the support offered by
the Springer teams for managing the Springer I&TgXstyle and for typesetting,
cover design, web access, and many other matters in the publication process. The
editors of this book also appreciate the editorial fees offered by Springer and have
collectively decided to donate all the fees to IEEE VIS2022 as a sponsorship.

Oxford, UK Min Chen
Surrey, BC, Canada Brian Fisher
Boulder, CO, USA Danielle Albers Szafir
London, UK Rita Borgo
Swansea, UK Darren J. Edwards
Boston, USA Lace Padilla

December 2022
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Part I
Visualization Psychology
from a Psychology Perspective

Visualizations have the power to inspire, compel, and even change our firmly held
beliefs. At their best, visualizations effortlessly reveal the true nature of data to a
wide range of audiences. On the other hand, such raw power can lead to serious
communication failings. For example, the Cone of Uncertainty produced by the
National Hurricane Center leads viewers to incorrectly think that all storms grow
in size over time. Without understanding the psychology of how the mind pro-
cesses visualizations, predicting when or why some visualizations confuse readers,
whereas others are effortlessly understood, can be challenging. By understanding
the psychological processes that drive our experience with visualizations, designers
can avoid predictable pitfalls and create new visualizations that harness the immense
processing power of the brain.

Fortunately, psychology has a long history of using visual stimuli to understand
mental processes. Some of the earliest experiments in psychology (circa 1850) used
participants’ responses to visual stimuli to infer information about the visual system
(relationship between the eye and brain). Today, psychological research offers a
wealth of knowledge about how people perceive, reason, and make decisions with
visual information. Only recently have researchers worked to generalize psycholog-
ical findings to visualizations. As psychologists have historically conducted many
studies with visual stimuli, these results may generalize to visualizations. However,
visualizations may have unique characteristics that reveal new and unexplored
aspects of human cognition, making research at the nexus of psychology and
visualizations exciting to pursue.

The chapters in this part take a psychological perspective by using data visu-
alization research to build on the empirical traditions of psychological sciences,
gaining insights into mental processes. Chapter 1 reviews empirical research on the
use of color in visualizations that examines the generalizability of seminal findings
in color perception and reveals new insights into the relationships among perception,
language, and data attributes. Chapter 1 also provides practical recommendations
for using color in visualizations. Chapter 2 reviews prominent theories of graph
comprehension, each of which offers high-level descriptions of the relationship
between cognitive processes. This chapter details the evolution of psychological the-
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ories of graph comprehension and their application to data visualizations. Chapter 3
reviews theories of mental models of visualizations. Mental models describe the
process by which people create and store internal representations of graphs. Mental
model research can provide valuable insights for optimizing learning and memory
of visualizations. Chapter 4 reviews theories of visualization decision-making and
demonstrates the application of theoretical frameworks. This chapter highlights
how new advances in decision-making can help improve visualizations intended
for public or policy-level decisions. The final chapter (Chap. 5) compares the
publication models for psychology and visualization research, highlighting a need
for greater integration between the fields and alternative publication approaches.

The chapters in this part offer historical and modern perspectives on the
psychology of visualizations, ranging from lower-level processing (e.g., perception)
to higher-level cognition (e.g., decision-making). While revealing new insights
about the mind, these works point to practical design recommendations informed
by human capabilities.

Part I Editor: Lace Padilla
Northeastern University, Boston, USA



Chapter 1 ®
Color Semantics for Visual Creck or
Communication

Karen B. Schloss, Melissa A. Schoenlein, and Kushin Mukherjee

Abstract Visual communication through information visualizations (e.g., graphs,
charts, maps, diagrams, and signage) is central to how people share knowledge.
In information visualizations, visual features such as color are used to encode
concepts represented in the visualization (“encoded mappings”). However, people
have expectations about how colors map to concepts (“inferred mappings”), which
influence the ability to interpret encoded mappings. Inferred mappings have an
effect even when legends explicitly specify the encoded mappings and when
encoded concepts lack specific, strongly associated colors. In this chapter, we
will discuss factors that contribute to inferred mappings for visualizations of
categorical information and visualizations of continuous data. We will then discuss
how these different kinds of factors can be united into a single framework of
assignment inference. Understanding how people infer meaning from colors will
help design information visualizations that facilitate effective and efficient visual
communication.

1.1 Introduction

When observers look at information visualizations such as weather maps, political
polling charts, and airport terminal signage, the input they receive is just an array
of light projected onto the retinas of their eyes. Yet, from this input, observers
ultimately glean knowledge about the world. They find out if it is likely to rain
during their afternoon walk, which political candidate is expected to win an election,
or which direction to dash to reach their gate before their flight departs.

Extensive perceptual and cognitive processing is needed to go from light
stimulating the retina to knowledge about the world. When interpreting information
visualizations, this processing includes, but is not limited to, (1) detecting and
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discriminating visual features (e.g., color, shape, size, texture) [2, 7, 16], (2)
mapping visual features onto the concepts they represent, and [16, 28, 39, 44]
(3) using (1) and (2) to derive implications about information represented in the
visualization [9, 37, 45, 51]. In this chapter, we will focus on (2) by asking: how do
people infer meaning from visual features?

At first, it may seem like the answer is straightforward: people can simply
examine legends, labels, or accompanying text to determine the meanings of visual
features. However, the answer is not so simple. People have expectations about the
meanings of visual features, and visualization designs that violate those expectations
are harder to interpret. Let us consider two examples.

The first example is a study by Lin et al. [18] on the meanings of colors
for visualizations of categorical information. In their study, Lin et al. presented
participants with colored bar charts in which each color represented a different
category (e.g., kinds of fruits) (Fig.1.1a). In one condition, the colors of the
bars were selected by an algorithm that maximized the fit between concepts
and colors. In another condition, the colors were default colors used by Tableau
visualization software (ignoring the concepts represented in the visualization). The
charts included a legend to indicate the category corresponding to each bar color.
Participants were asked to answer questions about the data in the chart, and their
response time (RT) was recorded. RT is a measure of interpretability, such that
faster RTs for correct responses suggest greater interpretability. RTs were faster
when the colors were optimized to match people’s expectations, compared to the
default Tableau colors, even though there was a clear legend indicating the meaning
of the colors in both conditions.

The second example is a study by Schloss et al. [37] on the meanings of color for
visualizations of continuous data. In their study, Schloss et al. presented participants
with colormap data visualizations, in which gradations of colors represented grada-
tions of quantity (Fig. 1.1b). Participants were told that the colormaps represented
alien animal sightings on the planet Sparl, and their task was to indicate whether
there were more sightings early or late in the day. The colormap visualizations
included a legend that specified the mappings between lightness (dark to light) and
quantity (greater to fewer sightings). Overall, participants were faster at correctly
interpreting the colormap when the legend specified darker colors mapped to more.
This is because observers have a dark-is-more bias leading to the expectation that
darker colors map to larger quantities (see Sect. 1.3.1.2).

In both of these examples, legends indicate the meanings of colors. But, when
the encoding indicated in the legend violates people’s expectations, visualizations
are harder to interpret. Thus, understanding visual communication requires under-
standing people’s expectation about the meaning, or semantics, of visual features.
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Color Semantics for Visual Communication

A Algorithm Palette Standard Palette
mapple m apple
banana m banana
H blueberry H blueberry
H cherry H cherry
H grape W grape
peach W peach
H tangerine m tangerine
B Dark-more Light-more
BLEE Greater BLEE Greater
KWIM KWIM
NEEK NEEK
RALT RALT
SLUB SLUB
TASP TASP
VRAY VRAY
WERF Fewer  WERF Fewer
Early Late Early Late
Time Time

Fig. 1.1 (a) Bar charts representing fictitious data about fruit sales, with colors selected by an
algorithm to maximize fit between concepts and colors (left) or colors determined by a standard
Tableau palette order (right) (figure based on stimuli in Lin et al. [18]). (b) Colormap data
visualization representing alien animal sightings at different times of day, with a legend specifying
dark-more mapping (left) or light-more mapping (right) (figure based on stimuli in Schloss et al.
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1.1.1 Visual Semantics from Multiple Perspectives

When discussing visual semantics for visual communication, there are two perspec-
tives to consider: the perspective of the designer and the perspective of the observer.
If these perspectives are aligned, observers are more likely to interpret the message
that the designer intended to convey through the visualization [12, 18,25, 39, 50, 51].

Perspective of the Designer When we use the term “designer,” we do so liberally
to refer to anyone who creates a visualization. This could be a professional designer,
but it could also be an undergraduate student creating a chart from data in their
research methods course, or even a middle school student creating a diagram
of the protocol for their science fair project [39]. In cases where people create
visualizations for the purpose of exploring and finding patterns in their own data
[10], the designer and the observer are the same person.

When a designer creates an information visualization, they use visual features to
represent concepts. This mapping between concepts and visual features is called
the encoded mapping. For example, if the designer constructs a weather map
in which darker colors signify larger amounts of rainfall, the map would have
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a “dark-more” encoded mapping. Designers may deliberately define the encoded
mapping using their own knowledge, using recommendations from other experts, or
using recommender system algorithms [18, 19, 22, 39, 43]. Alternatively, designers
may rely on software defaults, which automatically assign colors to concepts in a
predefined order, regardless of the concepts. In such cases, the encoded mapping is
created though the designer’s actions, but the designer may not explicitly consider
the encoded mapping during visualization design.

Perspective of the Observer When we use the term “observer,” we do so to refer
to anyone who looks at visualizations with the goal of gleaning knowledge from
what they see. Observers include the general public looking at public health data in
the news, travelers looking at maps to find their way, students looking at diagrams
to learn about mathematical or scientific processes in the classroom, and academics
who look at charts to learn about the latest discoveries in their fields.

Observers’ expectations about how visual features should map onto concepts are
called inferred mappings [39]. As established earlier, it is harder for observers to
interpret visualizations when the encoded mapping does not match their inferred
mappings, even in the presence of a clear legend [18, 37, 47]. Moreover, when
the encoded mapping matches their inferred mappings, observers can more easily
interpret the meanings of visual features, even in the absence of a legend [8, 21,
22, 38, 39]. By understanding the nature of observers’ inferred mappings, it is
possible to design visualizations that match those expectations and thus facilitate
visual communication.

1.1.2 Chapter Overview

In this chapter, we will use color as a lens to discuss factors that influence
expectations about the meaning of visual features in information visualizations.
We will discuss color semantics (i.e., the meaning of colors) in the context
of two general kinds of information visualizations: visualizations of categorical
information (Sect. 1.2) and continuous data (Sect. 1.3).

Historically, studies on inferred mappings discussed separate factors relevant
for visualizations of categorical vs. continuous information. However, recent work
suggests that they can be understood under a single framework [40], as we will
discuss at the end of this chapter.

Defining the scope of artifacts that are considered to be “information visualiza-
tions” (“visualizations” for short) is a difficult endeavor (see Fox [9] and Chapter 9
of the present book). Stemming from issues raised in Fox [9], we use “information
visualizations” broadly, in reference to external graphical representations (and
corresponding verbal labels, if present) created to support visual communication.
Here, the term “graphical” pertains to non-verbal markings in which visual features
(e.g., color, shape, size, and texture) are used by a designer to communicate
their intended message [2]. Although this definition of information visualizations
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includes visualizations of data (e.g., charts), it extends to any encoding system
in which designers use non-verbal visual features to communicate their intended
message [51, 53]. For example, an encoding system for recycling bins, in which
a designer uses different colors to represent different kinds of trash/recyclables,
is considered an information visualization. Using this broad definition enables
researchers to identify generalizable psychological principles of how people infer
meaning from visual features, which transcend specific design formats.

We aim for this chapter to serve two key purposes. First, it will help readers
develop an understanding of psychological factors relevant to visual communica-
tion. Second, it will provide designers with knowledge that they can apply to help
make visual communication effective and efficient. However, color semantics for
visual communication is an active field of research. This chapter presents a snapshot
of the field as it is today, but we anticipate that the ideas discussed here will evolve
with new discoveries about how people infer meaning from visual features.

1.2 Color Semantics for Categorical Information

In visualizations of categorical information, discrete colors are used to represent
distinct concepts. For example, Fig. 1.2a (top) shows a chart in which distinct colors
represent different sectors that emit greenhouse gases, and Fig. 1.2a (bottom) shows
a chart in which distinct colors represent different kinds of management for drinking
water facilities. Visualizations of categorical information can be understood in
contrast with visualizations of continuous data. Instead of representing discrete
categories, visualizations of continuous data represent gradations of quantity, such
as farm size across the world and the number of African elephants across Africa in
Fig. 1.2b. In this section, we will focus on visualizations of categorical information,
and we will return to visualizations of continuous data in Sect. 1.3.

One way to consider color semantics for categorical information is to focus
only on the strength of the association between a color and the concept it
encodes. Say, the concepts are watermelon and mango, and the chart is about fruit
preferences. Mango is strongly associated with shades of orange, and watermelon
is strongly associated with shades of red. So, if presented with the bar chart in
Fig. 1.3a, observers would easily infer that orange encodes mango and red encodes
watermelon.

But, what if concepts do not have specific, strongly associated colors, such as the
more abstract concepts in Fig. 1.3b? And, what about cases when multiple concepts
have similarly associated colors, such as the recycling related concepts in Fig. 1.3¢?
If one thinks about inferred mappings only in terms of associations between a single
concept and single color, they may conclude that color cannot meaningfully encode
concepts under such conditions. However, recent work suggests that color semantics
is not so limited [22, 39]. To understand why, we must first draw a distinction
between color—concept associations and inferred mappings.
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B. Visualizations of continuous data
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Fig. 1.2 Examples of visualizations in which color encodes (a) categorical data and (b) continuous
data. Figures have been adapted from [30-33]

1.2.1 Color-Concept Associations vs. Inferred Mappings

It may be tempting to think that people’s expectations about the meanings of
colors in information visualizations simply depend on the association between an
individual color (e.g., yellow) and an individual concept (e.g., banana) represented
in the visualization. However, their expectations, or inferred mappings, are far more
interesting and complex, as we explain below.

1.2.1.1 Color-Concept Associations

Color—concept associations are the degree to which individual colors are associated
with individual concepts. Evidence suggests that people form color—concept asso-
ciations through experiences in the world [41], at least for concepts with directly
observable colors. As for more abstract concepts, some have proposed color—
concept associations are formed by extension from related concrete objects that do
have directly observable colors [36, 48].

For any concept, one can quantify the degree to which that concept is associated
with every possible color that a human can perceive. In practice, when researchers
measure color—concept associations, they sample colors over perceptual color space
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A B

Which bar color represents Which bar color represents
watermelon? mango? safety? comfort? sleeping? driving?

Preference

C

In each set, which bin color represents
trash? paper? glass? metal? compost? plastic?

) — ) —
- () () Isolated
set
) —
- Balanced
set

Fig. 1.3 Examples of visualizations in which colors are used to encode categories, which have
been used as stimuli in experiments on inferred mappings. (a) Bar chart representing data about
watermelon and mango, which are concepts with strong, specific associations [37]. (b) Bar chart
representing data about safety, comfort, sleeping, and driving, which are more abstract concepts
with less specific associations [22]. (¢) Bins for discarding trash/recyclables, where multiple
concepts have similar associations (see Fig. 1.6) [39]

p—
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to make the measurements more tractable [18, 19, 22, 26, 29, 38, 39]. This sample of
colors is called the color library [22]. Figure 1.4 shows color—concept associations
for the concepts banana, celery, sleeping, and driving [22]. The color library is the
“UW-71” colors, which includes 58 colors uniformly sampled over CIELAB color
space [29], plus an additional set of light colors required to include saturated yellows
(see [22] for details).

Color—concept associations can be measured in multiple ways, including asking
people to make judgments of association strength [22, 26, 38, 39, 41] and imple-
menting algorithms that estimate associations from image or language databases
[18, 19, 29, 43]. The mean associations in Fig. 1.4 were obtained by presenting
participants with a concept at the top of the screen and a color patch below. They
rated the association strength between each color and concept on a scale from “not at
all” (0) to “very much” (1). Ratings near the middle of the scale (0.5) indicate a color
was neither strongly associated nor strongly not associated with the given concept.
For example, in the case of banana in Fig. 1.4, yellows are strongly associated, most
blues are strongly not associated, and greens are in the middle around 0.5.

Concepts vary in the degree to which they have strong, specific associated colors
within a given color library [18, 24], called specificity [22]. Here we focus on cases
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Fig. 1.4 Mean color—concept association ratings for the concepts banana and celery (higher
specificity) and sleeping and driving (lower specificity) from [22]. Data were collected by asking
participants to rate how much they associated each color with each concept on a scale from “not at
all” to “very much.” Thus, the middle of the scale (0.5) indicated neutral. The color library was the
UW-71 colors, sampled over CIELAB space. Here, the colors are sorted (left to right) according to
hue angle and chroma, with the achromatic colors placed leftmost

when specificity is based on the mean associations across a group of participants, but
specificity could also be defined based on a single person’s associations. Concepts
have high specificity if they are strongly associated with some colors and weakly
associated with the remaining colors in the color library. For example, Fig. 1.4
shows that celery has high specificity because it is strongly associated with greens
and is weakly associated with the remaining colors. As such, concepts with high
specificity have “peaky” distributions of associations over the color library. In
contrast, concepts have lower specificity if they have more uniform distributions
over the color library. In a fully uniform distribution, all colors would be equally
associated with the concept (i.e., equal bar heights in Fig. 1.4). As shown in Fig. 1.4,
the concepts sleeping and driving have lower specificity than banana and celery
because their distributions are closer to uniform. Specificity can be quantified using
entropy [22, 24], a mathematical measure of the “peakiness” vs. uniformity of a
distribution.

Color—concept associations are essential to interpretations of color meanings
in visualizations, but they are only part of the story. This brings us to inferred
mappings.

1.2.1.2 Inferred Mappings
Inferred mappings are people’s expectations about the meanings of each color

in an encoding system that maps colors to concepts. Cases arise in which people
infer that concepts map to weakly associated colors, even when there are more
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Fig. 1.5 Illustration of the distinction between color—concept associations and inferred mapping
from [39]. (a) Trial in which participants inferred which color mapped to the target concept trash
(arrows and labels to the right are for illustration only and were not part of the trial). (b) Bipartite
graph showing color—concept association strengths for concepts trash (T) and paper (P) with
colors purple (Pu) and white (W). Thicker edges connecting each concept with each color indicate
stronger associations. (¢) Mean proportion of times participants chose each color when the target
was paper or trash (error bars represent standard errors of the means). Participants inferred purple
mapped to trash, even though white was more strongly associated with trash
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strongly associated options. To illustrate this point, we will walk through an example
from Schloss et al. [39] in which participants inferred the meanings of colors on
trash/recycling bins (see Fig. 1.5).

During the experiment, participants were presented with pairs of unlabeled
colored bins and were asked which bin was for disposing a target item named at
the top of the screen. In some trials, the target item was trash (Fig. 1.5a), and in
other trials, the target item was paper. For each target, participants saw all pairwise
combinations of four colored bins (left/right balanced), including white (strongest
associate with paper), dark yellow (strongest associate with trash), and red and
purple (both weakly associated with trash and paper). The association strengths
had been obtained from color—concept association ratings from a different set of
participants [39] and are shown in Fig. 1.6. The association strengths for the example
trial shown in Fig. 1.5a are represented as a bipartite graph in Fig. 1.5b. In a bipartite
graph, edges connect each item in one set (such as colors) to all the items in another
set (such as concepts). In this bipartite graph, the circles represent the concepts
trash (T) and paper (P), the squares represent the colors purple (Pu) and white (W),
and the edge connecting each concept to each color represents the color—concept
association strength (thicker indicates stronger associations).

Schloss et al. [39] considered two possible ways observers might approach this
task. The first approach, local assignment, is simply to choose the color that is most
strongly associated with the target. Local assignment would lead to inferring that
white is for trash in Fig. 1.5. The second approach, global assignment, is to choose
the color that optimizes assignments between all colors and concepts in the encoding
system. To determine the optimal assignments in Fig. 1.5, we can compare the total
goodness or “merit” of one possible assignment (e.g., T-Pu/P—W) to the alternative
assignment (e.g., T-W/P-Pu) and determine which assignment has greater merit.
For now, assume merit is simply color—concept association strength, but we will
return to other definitions of merit below. The assignment that pairs trash with purple
and paper with white has greater total merit. Thus, the global assignment approach
would lead to inferring purple is for trash.
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Fig. 1.6 Mean color—concept association ratings for the Berkeley Color Project 37 (BCP-37)
colors and the concepts paper, plastic, glass, metal, compost, and trash (data from [39]). Colors
are sorted along the x-axis from weak to strong association. Error bars indicate standard errors of
the means. The top associated colors are shared among paper, plastic, and glass and shared among
compost and trash. Arrows point to the optimal colors for each concept using balanced merit

Consistent with global assignment, participants reliably inferred that the purple
bin was for trash (Fig. 1.5¢), even though trash was more strongly associated with
white. This example illustrates the distinction between inferred mappings and asso-
ciations. Associations serve as the input to global assignment, but further processing
leads to people’s inferences about the meanings of colors in visualizations. This
process is called assignment inference.
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1.2.2 Assignment Inference

Assignment inference is the process by which people infer mappings between
visual features and concepts in an encoding system [39]. The process was given this
name because it is analogous to an assignment problem in the field of optimization.
Assignment problems are models for assigning items in one set to items in
another set in a manner that optimizes merit, or the “goodness,” of the assignment
[5,17,23]. Goodness is defined with respect to a given goal. For example, if the goal
is to assign swimmers to strokes in a relay race to minimize time to complete the
race, merit is the time it takes for each swimmer to complete each stroke. Solving
an assignment problem involves finding the best pairings such that the overall merit
across all pairs is as good as possible (i.e., the total time is as short as possible). The
question is what determines merit in assignment inference?

In our discussion of the trash/paper recycling experiment illustrated in Fig. 1.5,
we alluded to the notion of merit in assignment inference as association strength
between each color and concept. We explained that global assignment maximizes
association strength over possible assignments, even if that means assigning con-
cepts to weakly associated colors when there are more strongly associated options.
However, association strength is only one possible way to specify merit, and it is
not necessarily the type of merit that humans use in assignment inference.

To study merit in assignment inference, Schloss et al. [39] assumed the role of
the designer and created two different color sets (a.k.a. palettes) for trash/recycling
bins (Fig. 1.3c). To create the palettes, they used two methods of defining merit
and solved an assignment problem to determine the optimal color set within each
definition. The logic of their experiment was that observers would be better at
interpreting palettes created using a definition of merit that more closely matched
merit in assignment inference. Thus, identifying which palette was easier to interpret
would provide insight into the type of merit in assignment inference.

The two color palettes were designed for six types of trash/recyclables (paper,
plastic, glass, metal, compost, and trash), using two definitions of merit: isolated
merit and balanced merit. Both types of merit were specified as follows, using the
color—concept association data shown in Fig. 1.6.

Isolated Merit Isolated merit for a given color—concept pair is simply the asso-
ciation strength between that color and that concept. It is called “isolated” merit
because it is determined by the association between each color and concept in
isolation, without accounting for other colors or concepts in the encoding system.
When an assignment problem determines the optimal pairings under isolated merit,
it selects color—concept pairs such that the total association strength across all
pairings is as large as possible.

The color palette generated using isolated merit is shown in Fig. 1.7a. Note that
paper, plastic, and glass share similar top associated colors, and compost and trash
share similar top associated colors (Fig. 1.6). As a result, the colors assigned to
those concepts were strongly associated with more than one concept in the encoding
system. For example, plastic was associated with its assigned color, light gray (A3),
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Fig. 1.7 Color palettes and corresponding plots showing the mean proportion of times participants
chose each color for each concept when palettes were generated using (a) isolated merit or (b)
balanced merit. Arrows point up to the correct color, specified by the optimal solution to the
assignment problem using each definition of merit. Error bars represent standard errors of the
means. Data are from [39]

but also was strongly associated with white (WH), the color assigned to paper, and
light blue (LB), the color assigned to glass. These observations highlight a potential
problem with simply maximizing association strength: it may introduce confusablity
when multiple colors are associated with multiple concepts in the encoding system.

Balanced Merit Balanced merit for a given color—concept pair is computed as
the association strength for that color—concept pair, minus the association strength
for the color with the next most strongly associated concept. This definition of
merit is called “balanced merit” because it balances prioritizing color—concept
association strength while avoiding confusability that can arise when a color is
strongly associated with multiple concepts in the encoding system. When an
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assignment problem determines the optimal pairings under balanced merit, it makes
the association difference across all color—concept pairs as large as possible.

This method of defining merit can lead to assigning a concept to a weakly
associated color, which can occur if the color is more associated with that concept
than with all other concepts in the encoding system. For example, the color palette
generated using balanced merit is shown in Fig. 1.7b. In this palette, plastic was
assigned to red (SR), even though plastic is weakly associated with red, because red
is more associated with plastic than with the other concepts (Fig. 1.6).

We note that isolated merit and balanced merit result in the same assignments
when there are only two colors and two concepts in the encoding system. However,
they can diverge when the number of colors and concepts is larger than two, as in
the present experiment.

During the experiment, participants were presented with bins from each palette
(between subjects) along with the list of six concept labels. They were asked
to drag the label to the appropriate bin color. Accuracy was specified as the
optimal assignment between colors and concepts according to the assignment
problem within each source of merit. Figure 1.7 shows the mean proportion of
times participants chose each color for each concept for the isolated merit palette
(Fig. 1.7a) and the balanced merit palette (Fig. 1.7b). The optimal color for each
concept is indicated by an arrow pointing up to the corresponding bar.

Participants were significantly more accurate for the balanced merit palette than
the isolated merit palette, even though some of the associations were weaker in
the balanced merit palette. For the isolated merit palette, they showed confusion,
especially among white, light gray, and light blue for glass and among dark orange
and dark yellow for compost and trash. For the balanced merit palette, participants
consistently identified the correct assignments.

These results suggest that merit in assignment inference is closer to balanced
merit than isolated merit. That is, during assignment inference, observers account
for the difference in associations, and not just maximal associations when inferring
mappings between colors and concepts. These results imply that if a designer aims
to create color palettes that are easy for people to interpret, it is better to prioritize
association difference rather than association strength.

1.2.3 Semantic Discriminability

Examining the data in Fig. 1.7, it can be seen that participants were more likely to
infer “unique mappings” between colors and concepts in Fig. 1.7b than in Fig. 1.7a.
That is, for each concept, there was one color that was chosen more often than
all the other colors in Fig. 1.7b, but multiple colors were chosen similarly often in
Fig. 1.7a. This ability to infer unique mappings is called semantic discriminability
[22, 38]. This idea can be understood by analogy with perceptual discriminability.
Perceptual discriminability concerns the degree to which observers can see the
difference between different colors, whereas semantic discriminability concerns the
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High semantic discriminability Low semantic discriminability

A
Watermelon Watermelon
Avg. accuracy: 79% Avg. accuracy: 50%
B ?
AS =.98 AS =.35

Fig. 1.8 Color palettes with high vs. low semantic discriminability. (a) Example trials from [38]
in which participants inferred which color corresponded to target concept indicated at the top of
the screen. Here, the target was watermelon; on other trials, the target was mango. The average
accuracy is indicated below each example trial. (b) Bipartite graphs showing merit between
watermelon (W) and mango (M) and each color, corresponding to the trials above in (a). Black
edges correspond to the optimal assignment. Semantic distance (AS) for each color pair is
indicated below the corresponding bipartite graph

degree to which observers can discern the difference in meaning between different
colors. For a set of colors to be semantically discriminable, they must first be
sufficiently perceptually discriminable. That is, if colors appear the same, they
cannot communicate different meanings [38].

One may presume that semantic discriminability is the same thing as inter-
pretability, but there is an important distinction. Semantic discriminability concerns
an observer’s inferred mapping, regardless of the encoded mapping specified by
the designer. In contrast, interpretability concerns how well observers can discern
the encoded mapping specified by the designer. To understand this distinction,
consider the bar chart in Fig. 1.8a (left). The chart represents data about the concepts
watermelon and mango using two different bar colors, red and orange. Given these
two colors and concepts, one would readily infer the mapping that watermelon
goes with red and mango goes with orange, not the opposite mapping. As such,
these two colors have high semantic discriminability in the context of the concepts
watermelon and mango. Now, a designer may choose to encode watermelon using
red and mango using orange (matching the observer’s inferred mapping), or they
may encode watermelon with orange and mango with red (opposite of the observer’s
inferred mapping). In both cases, semantic discriminability of the colors is the same,
but interpretability will be greater for the pairing that matches the observer’s inferred
mapping (watermelon-red/mango-orange).

Schloss et al. [38] developed a method to quantify semantic discriminability
using a metric called semantic distance (AS). Semantic distance is a measure of
how likely observers are to infer one assignment over other potential assignment(s)
in an encoding system. Figure 1.8 illustrates examples of color pairs with large
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and small semantic distance, in the context of the concepts watermelon (W) and
mango (M). The bipartite graphs in Fig. 1.8b represent the association strength
between each of the two concepts with each of the two colors, corresponding to
the visualizations directly above (Fig. 1.8a). The colors in Fig. 1.8 (left) have large
semantic distance (AS = 0.98) because the W-red/M-orange assignment has far
greater merit than the W-orange/M-red assignment. Even if these associations vary
due to noise, the difference in merit between the two assignments is sufficiently
large such that W-red/M-orange will remain the optimal assignment (assuming
a magnitude of variability that is typical of this kind of association data). The
colors in Fig. 1.8 (right) have small semantic distance because the W-red/M-green
assignment has only slightly greater total merit than the alternative assignment. If
the associations varied somewhat due to noise, the outcome could reverse—the
W-green/M-red assignment could have greater merit. For formal details on how
semantic distance is computed, see [38].

Having defined semantic distance, the next question is whether semantic distance
predicts observers’ ability to interpret the meanings of colors in information
visualizations. To address this question, Schloss et al. [38] asked participants to
interpret the meanings of colors in bar charts with two colored bars, such as those
in Fig. 1.8a. Each trial had a chart, along with a target concept named above, and
participants indicated which bar (left/right) they thought corresponded to the target
concept. Participants judged many color pairs, which varied in semantic distance
and in perceptual distance (i.e., the difference in appearance of the two colors).
Responses were scored as “accurate” if they matched the encoded mapping, which
was determined as the optimal assignment using balanced/isolated merit (both are
the same when there are two colors and two concepts). The charts did not have a
legend, so participants did not know which response was correct during the task.

Overall, participants were able to infer optimal mappings, but accuracy increased
with increased semantic distance. This effect of semantic distance was independent
of effects of perceptual distance. When perceptual and semantic distance conflicted
(e.g., high semantic distance, low perceptual distance), semantic discriminability
better predicted accuracy. These results suggest that semantic distance does indeed
predict observers’ ability to interpret the meanings of colors in information visual-
1zations.

1.2.4 Assignment Inference for Abstract Concepts?

We have established that observers can use assignment inference to interpret optimal
mappings between colors and concrete concepts with directly observable colors
(e.g., watermelon and mango) [38]. But, is this ability limited to concrete concepts,
or might it extend to abstract concepts without directly observable colors (e.g.,
driving and sleeping)?

Earlier work proposed that some concepts may be “non-colorable,” suggesting
that such concepts cannot be meaningfully encoded using color [18, 43]. “Colorabil-



18 K. B. Schloss et al.

ity” was defined with respect to individual pairs of colors and concepts. Concrete
concepts, such as banana, celery, grape, and eggplant, were considered colorable
because they had strong, specifically associated colors (i.e., high specificity),
whereas abstract concepts, such as sleeping, driving, safety, and comfort, were
considered non-colorable because they lacked strong, specific associated colors (i.e.,
low specificity).

However, this notion of colorability concerns individual concepts alone, and we
know from studies on assignment inference that context plays an important role.
That is, when inferring mappings between colors and concepts, observers account
for all concepts and colors in the scope of an encoding system, not each concept
alone (global assignment, see Sect. 1.2.1.2). And, their ability to perform assignment
inference depends on semantic discriminability of the colors, which concerns the
relative associations between all colors and concepts in an encoding system, not just
each concept alone. These previous findings imply that observers should be able
to use assignment inference to interpret optimal mappings for abstract concepts,
insofar as the colors used to encode those abstract concepts are semantically
discriminable.

Mukherjee et al. [22] tested this hypothesis in an experiment in which partici-
pants interpreted the meanings of colors in visualizations representing data about
abstract or concrete concepts.! During the experiment, participants were presented
with bar charts along with a set of four concept labels, as shown in Fig. 1.9a. Their
task was to drag the labels from the top of the chart and place them under the
colored bar that they thought corresponded to each concept. Figure 1.9a shows two
example trials, one in which the concepts were all abstract, and the other in which
the concepts were all concrete (in other trials abstract and concrete concepts were
sometimes mixed).

Each concept appeared in four different concept sets. For example, the concept
sleeping appeared with driving, safety, and comfort (set 1), with driving, grape, and
banana (set 2), with driving, peach, and cherry (set 3), and with driving, efficiency,
and speed (set 4) (Fig. 1.10). For each concept set, the colors of the bars were
determined based on the optimal assignment using balanced merit, which selected
the four best colors from the UW-71 color library to assign to each of the four
concepts.

Overall, participants were able to interpret the optimal mapping between colors
and concepts. For example, Fig. 1.9b shows the responses for the stimuli from
Fig. 1.9a, plotting the proportion of times participants chose each color for each
concept. The arrows below the x-axis point up at the correct color for each concept.
Participants consistently chose the correct color for both the abstract and concrete
concept sets.

1 The abstract concepts had relatively low specificity (close to uniform color—concept association
distributions), and the concrete concepts had high specificity (peaky color—concept association
distributions), but that correspondence is not always the case (e.g., anger is an abstract concept but
has high specificity).
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Fig. 1.9 Examples of (a) experiment stimuli and (b) corresponding data for abstract concepts (left)
and concrete concepts (right) from Mukherjee et al. [22]. During the task, participants dragged
each concept name to the colored bar that they thought corresponded to each concept. The mean
proportion of times participants chose each color for each concept is shown in (b) with arrows
pointing up to the correct color for each concept. Error bars represent standard errors of the means,
and the horizontal gray line represents chance

However, the ability to interpret the correct color for a given concept varied
depending on semantic discriminability. This relationship is shown in Fig. 1.10.
The plots show the proportion of times that participants chose the correct color
for the target concepts sleeping (left) and banana (right). Each plot has four points,
corresponding to each of the four concept sets in which the target concept appeared.
The x-axis represents the semantic discriminability between the correct color and
the other colors in the palette.> The positive slope of the best-fit lines through the
points illustrates that accuracy increased with increased semantic discriminability.
For example, in set 1, participants were highly accurate at assigning yellow to
banana because the other concepts in the set (eggplant, celery, and grape) did not
compete with banana for yellow. Yet, in set 4, they were less accurate at assigning
yellow to banana because corn competed with banana for yellow. This competition
led to yellow being less semantically discriminable from the other colors in set 4

2 Here, when we are discussing semantic discriminability, we are referring to a metric called
“semantic contrast.” Unlike semantic distance, which quantifies the semantic discriminability of
a color palette as a whole, semantic contrast quantifies the distance between a single color and all
other colors in the palette. Computational details of these two metrics can be found at [22].
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Fig. 1.10 Top: The four concept sets and color palettes for the concepts sleeping (left) and banana
(right) in Mukherjee et al. [22]. Bottom: The proportion of correct responses for the target concepts
sleeping (left) and banana (right) as a function of semantic discriminability of the colors in the
color palettes. Each point corresponds to each of the four concept sets in which the target concepts
appeared. Error bars represent standard errors of the means, and the black lines represent the best-
fit lines through the data points

compared to set 1. Figure 1.10 shows the data for only two out of the 16 concepts
tested in the experiment, but the pattern is representative of the full datasets (see
[22]).

The results of this experiment suggest that people can use assignment inference
to infer optimal mappings for both concrete and abstract concepts. Yet, the ability to
do so depends on the semantic discriminability of the colors, which is determined
based on all of the colors and concepts in an encoding system. In short, context
matters.

1.2.5 Semantic Discriminability Theory

Thus far, we have presented evidence that semantic discriminability is important
for interpreting the meanings of colors in visualizations. The next question is,
what determines whether it is possible to produce semantically discriminable colors
for a set of concepts? To address this question, Mukherjee et al. [22] proposed a
theory called semantic discriminability theory. The theory states that the ability
to produce semantically discriminable colors for a set of concepts depends on the
difference between the color—concept association distributions for those concepts.
This theory is illustrated in Fig. 1.11, which shows three pairs of concept sets,
one set with very different associations (peach and celery), one with moderately
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Fig. 1.11 Color—concept association distributions for concept sets with large, medium, and
small distribution differences, which result in high, medium, and low capacities for semantic
discriminability, respectively. The top two rows show color—concept association distributions for
the 71 colors in the UW-71 color library. The bottom row shows the frequency of color pairs at
varying degrees of semantic distance (AS). An arrow points to the maximum semantic distance
(max AS) for each concept set. Figure adapted from [22]

different associations (driving and comfort), and one with very similar associations
(eggplant and grape). Below each set of color—concept association distributions is a
histogram showing the semantic distance between all pairs of colors in the UW-71
color library for that concept set. Peach and celery, which have a large distribution
difference, have many color pairs with high semantic discriminability, and the
maximum semantic distance (max AS) was a perfect semantic distance of 1. This
maximum semantic distance is called the “capacity” for semantic discriminability.
Examining the other two concept pairs, driving and comfort (medium distribution
difference) have medium capacity for semantic discriminability, and eggplant and
grape (small distribution difference) have low capacity for semantic discriminability.
Note that eggplant and grape have far higher specificity (peakier distributions) than
driving and sleeping, but the capacity for semantic discriminability is lower for the
pair eggplant and grape because the association distributions for eggplant and grape
are too similar to produce semantically discriminable colors.

The relation between capacity for semantic discriminability and distribution dif-
ference shown in Fig. 1.11 highlights only three concept pairs, but Mukherjee et al.
[22] conducted a systematic study of this relationship for all pairwise combinations
of 20 concepts (190 concept pairs in total). The concepts included fruits (peach,
cherry, grape, banana, apple), vegetables (corn, carrot, eggplant, celery, mushroom),
activities (working, leisure, sleeping, driving, eating), and properties (efficiency,
speed, safety, comfort, reliability). In this full dataset, capacity was strongly
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correlated with distribution difference (r = 0.93). Capacity was also correlated with
mean specificity of the individual concepts (r = 0.82), but significantly less so than
with distribution difference. When effects of distribution difference and specificity
were evaluated in a single model, only distribution difference was a significant
predictor of capacity (see [22] for computational details). Aspects of these results
for sets of two colors and concepts also extended to sets of four colors and
four concepts. These results support semantic discriminability theory, emphasizing
the importance of considering the difference between color—concept association
distributions, independent of the specificity of each concept’s distribution alone.

Semantic discriminability theory was originally formulated and studied with
respect to color. However, Mukherjee et al. [22] suggested it as a general theory with
potential to extend beyond color to other visual features (e.g., size, shape, texture)
and perceptual features in other modalities (e.g., sound, odor, touch).

1.2.6 Summary and Open Questions for Visualizations
of Categorical Information

We began Sect. 1.2 by explaining that the notion of inferred mappings is dis-
tinct from color—concept associations. Using assignment inference, observers infer
globally optimal assignments between colors and concepts, even if that means
assigning a color to a weakly associated concept. We then provided evidence
that the ability to perform assignment inference to interpret optimal assignments
depends on the semantic discriminability of the colors. Observers can successfully
perform assignment inference to interpret optimal assignments for abstract and
concrete concepts, as long as the colors representing those concepts are semantically
discriminable. Finally, we discussed semantic discriminability, a theory on the
constraints for producing semantically discriminable colors for a given set of
concepts. Supporting the theory, capacity for semantic discriminability increases
with increased differences between the color—concept association distributions for
the set of concepts. The series of studies in this section emphasize that people’s
inference about the meanings of colors is highly context-specific, depending on the
other colors and concepts in the scope of the encoding system.

Although much has been learned from research on color semantics for categorical
information, many open questions are yet to be answered. Here, we highlight two
such questions.

Cultural Effects? Color—concept associations serve as input to assignment infer-
ence, which result in interpretations of the meanings of colors in visualizations
[36]. If this input differs due to cultural differences in color—concept associations
[13, 14, 49], then the output (interpretation of the meanings of colors) should
also differ. However, if the process underlying assignment inference is a general
cognitive mechanism, and the input is known, then it should be possible to
predict cultural differences in the output. Cross-cultural experiments are needed to
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test if assignment inference is actually a culturally general cognitive mechanism,
and if the current model of assignment inference [22, 39] can predict cultural
similarities/differences in inference about the meanings of colors in information
visualizations.

This logic extends to semantic discriminability theory. The theory implies that
distribution difference will predict capacity for semantic discriminability in any
culture, as long as the association distribution data reflect the associations held by
a given culture. But, if the color—concept associations collected from one culture
are used to predict capacity for another culture that has different color—concept
associations, then the predictions might be misleading and the palettes generated
might not be semantically discriminable for those who are a part of that second
culture. Future research is needed to test whether cultural variations in color—
concept association distribution differences predict cultural variations in capacity
for semantic discriminability.

Extension to Other Perceptual Features? The work described in this section
focused on color, but semantic discriminability theory is broadly defined to apply
to other perceptual features in vision (e.g., shape, visual texture, orientation, size)
and features in other modalities (e.g., sounds, odors, tactile textures) [22]. However,
questions remain as to how to effectively sample perceptual features in these other
domains to test this hypothesis, and which other kinds of perceptual features will
have systematic and distinct enough associations with concepts to support semantic
discriminability.

1.3 Color Semantics for Continuous Data

In Sect. 1.2, we focused on color semantics for visualizations representing categori-
cal information. In Sect. 1.3, we turn to factors that contribute to color semantics
for visualizations of continuous data, such as the colormap data visualizations
(“colormaps” for short) from Fig.1.2b. In colormaps, gradations of color are
mapped to gradations of quantities across a spatial representation [12]. The spatial
representation could take a variety of forms depending on the type of data, including
geographical maps to show climate data across regions of the world, a brain map to
show neuroimaging data across different regions of the human brain, or a matrix to
show gene expression co-occurrences in different samples of organisms.
Traditionally, the literature has drawn a distinction between the kinds of factors
that influence inferred mappings for categorical information and continuous data.
For categorical information, the emphasis has been on “direct” color—concept
associations (Sect. 1.2), whereas for continuous data, the emphasis has been on
“relational” associations. Direct color—concept associations (or direct associations
for short) are just the color—concept associations we discussed in Sect. 1.2, but here
we call them “direct” associations to distinguish them from ‘“relational associa-
tions.” Unlike direct associations, which are the degree to which an individual color
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is associated with an individual concept, relational associations are correspondences
between relational properties of visual features and relational properties of concepts
[40]. For example, observers have a dark-is-more bias, inferring that darker colors
map to larger quantities [4, 8, 21, 37, 40, 47]. The dark-is-more bias is relational
because it concerns the relative lightness within a sequence of colors, rather than
the lightness of any individual color alone.

Although previous work distinguished factors relevant for visualizations of
categorical information and continuous data, recent work by Schoenlein et al. [40]
suggests that inferred mappings for continuous data visualized in colormaps are
influenced by both direct and relational associations. The relative contribution of
these different factors can be understood as different sources of merit in assignment
inference. In the following sections, we will first discuss different kinds of relational
associations for colormaps and then explain how relational and direct associations
can all be considered as sources of merit in assignment inference for colormap data
visualizations.

1.3.1 Relational Associations for Colormaps

Several types of relational associations can contribute to inferred mappings for
colormap data visualizations (Table 1.1). The effects of relational associations on
inferred mappings are governed by at least two main principles:

1. Applicability principle: A relational association can only be activated if it is
applicable to the visualization, given the perceptual properties of the visualiza-
tion.

2. Combination principle: If multiple relational associations are activated, they
will combine to produce the inferred mapping. Sometimes relational associations
work together and sometimes they conflict. When they conflict, they may cancel
each other or some relational associations may dominate others, depending on
their relative strength.

In the following sections, we will discuss empirical evidence for each type of
relational association listed in Table 1.1. In doing so, we will consider perceptual
properties that determine whether each relational association applies to a given
visualization, and how relational associations combine when multiple are activated
at the same time.

1.3.1.1 Structure Preservation

Structure preservation is a relational association in which structure among percep-
tual features corresponds to structural properties among concepts to which they
are mapped [3, 11, 12, 20, 27, 46, 50]. One example of such structure is the
progression of lightness (light to dark) and the progression of quantity (small to
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Table 1.1 Types of relational associations between visual features and quantity

Association type Description Related references

Structure preservation Structure among perceptual features [3, 11, 12, 20, 27, 46, 50]
corresponds to structural properties
among concepts to which they are
mapped.

Dark-is-more bias Regions that appear darker map to [4, 8,21, 37, 40, 47]
larger quantities.

Opaque-is-more bias Regions that appear more opaque map | [1, 35, 37]
to larger quantities.

Hotspot-is-more bias Regions closer to the center of [42, 47]
“hotspots” map to larger quantities.

High-is-more bias Colors higher up on vertically oriented | [12, 37, 47, 50]
legends map to larger quantities.

Structure Preserving Not Structure Preserving
4 4 4

4
3 3 3 3
2 2 2 2
1 1 1 1

Fig. 1.12 Example colormap assigning lightness (light to dark) to quantities (1-4) with legends
that maintain structure preservation (left) and legends that do not maintain structure preservation
(right). Figure adapted from [40]

large). For example, Fig. 1.12 shows a colormap and four accompanying legends
specifying encoded mappings that could correspond to the colormap. The left two
encoded mappings are structure-preserving because gradations of lightness align
with gradations of quantity. From the perspective of structure preservation, both of
these encoded mappings (dark-more and light-more encodings) are equally good.
However, the right two encoded mappings are not structure-preserving because
lightness is scrambled with respect to quantity.

Structure preservation is applicable whenever there is structure among the
concepts that can be preserved by the visual features that represent those con-
cepts. Structure preservation is always applicable when discussing continuous data
because the data have graded structure. Structure preservation is assumed in all of
the rest of the relational associations we will discuss next.

1.3.1.2 Dark-is-More Bias

The dark-is-more bias leads to the inference that darker colors map to larger
quantities [4, 8, 21, 37, 40, 47]. It is applicable when colors in the color scale vary in
lightness. When we say “lightness,” we mean the perceptual dimension of lightness,
going from dark to light (e.g., L* in CIELAB space). We note that in HSB color
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space, both the “saturation” (S) and “brightness” (B) dimensions vary in perceptual
lightness, so when some discuss color scales defined by saturation variation, there is
still lightness variation. Although it is possible for color scales to have no lightness
variation (e.g., vary only in hue or perceptual saturation), in practice, color scales
tend to vary in lightness, which helps perceive spatial structure in data [15, 34, 52].
Thus, the dark-is-more bias is almost always applicable to inferred mappings for
colormaps.

Early evidence for the dark-is-more bias comes from studies in which partic-
ipants were shown colormaps without legends and were asked to indicate which
regions represented “more” (Fig. 1.13a) [8, 21]. Participants systematically chose
the darker regions, suggesting they inferred that darker colors mapped to larger
quantities.

More recent evidence comes from studies in which participants were shown
colormaps with legends specifying the encoded mapping. Participants were asked to

A. Interpretation with no legend

Which state had a greater
data value on the map?

B. Interpretation with different legend conditions

When were there more alien Encoded Mapping
animal sightings (early/late)? Dark-more  Light-more
Greater c o| Greater Greater
QS = [ |
: —
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S 3
o 5 Fewer Fewer
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Fig. 1.13 Types of tasks for assessing inferred mappings for colormaps. (a) Interpretations are
made based on the colormap alone, with no legend to specify the encoded mapping (as in [21]).
Inferred mappings are assessed by examining the proportion of times each option is chosen. (b)
Interpretations are made by reporting the correct answer based on the legend (as in [37]). Inferred
mappings are assessed by determining which encoded mappings facilitate faster response times
(RTs) to make accurate responses (i.e., encoded mappings facilitate faster RTs if they better match
inferred mappings)
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correctly interpret the colormap according to the legend [37]. On half of the trials,
the legend specified dark-more encoding, and on the other half, the legend specified
light-more encoding (Fig. 1.13b). Also, on half of the trials, “greater” was at the top
of the legend, and on half of the trials, it was at the bottom. Participants therefore
had to read the legend on every trial to determine the encoded mapping. Participants
were faster at correctly interpreting the colormap when the legend specified dark-
more encoding, providing further evidence for the dark-is-more bias.

We will discuss what happens when the dark-is-more bias combines with each of
three other relational associations in the following sections.

1.3.1.3 Opaque-is-More Bias

The opaque-is-more bias leads to the inference that regions appearing more opaque
map to larger quantities. This bias is only applicable when regions of the colormap
appear to vary in opacity. The percept of opacity variation can be achieved by
starting with a colored region and decreasing its alpha in a series of steps so that
more and more of the background becomes visible through the region’s surface
[35]. Functionally, this amounts to interpolating between the color of that region
and the color of the background (Fig. 1.14). This interpolation can vary along the
perceptual dimensions of lightness, as described above in Sect. 1.3.1.2, hue, chroma,
or any combination therein.

Apparent opacity variation therefore depends not only on properties of the color
scale used to create the colormap, but also properties of the background. Schloss et
al. [37] developed a metric for quantifying apparent opacity variation, called the
opacity variation index. It is computed for a given color scale and background
by: (1) identifying the endpoint of the color scale that contrasts most with the
background, (2) drawing a line between the color of that region and the color of
the background region in CIELAB space, (3) calculating the distance between each
color on the color scale and its projection onto the line, and (4) computing the root

Opacity variation on different kinds of backgrounds
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Fig. 1.14 Black, white, and blue squares are displayed on different backgrounds to show how
their appearance changes with opacity variation. The squares in the top row are opaque, and they
decrease in opacity in each sequential row below. Colored squares are rendered invisible when they
match the color of the background, but they are included in the diagram for completeness
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Fig. 1.15 Opacity variation in colormap visualizations. (a) Mean response times (RTs) to correctly
interpret dark-more vs. light-more encodings of colorscales varying in opacity when presented
on a white vs. black background. Error bars represent standard error of the means. (b) Plots in
CIELAB space, showing the colors from each color scale (squares) and the interpolation between
the highest-contrast color and the white background (circles). Plots are shown on the plane of L*
(lightness) and b* (yellowness/blueness), and the axis for a* (redness/greenness) is not shown.
The number above each plot is the opacity variation index. (¢) The same as (b), but for a black
background. Figure adapted from [37]

mean-squared error of those distances® (Fig. 1.15b and c). This method is only an
initial approach to quantifying apparent opacity variation in colormaps and likely
can be improved upon in future work. Nonetheless, it was effective at predicting
human performance, as we will discuss next.

Researchers have long considered that the background could have an effect on
people’s inferred mappings for colormaps, but this notion was framed in terms
of contrast with the background [21]. For example, McGranaghan [21] presented

3 As specified in [37], the opacity variation index is defined as log(z + 1), where z is the root
mean-squared error between each point on the color scale (square markers in Fig. 1.15b and c) and
the line between the highest-contrast color and the background (circle markers in Fig. 1.15b and
c). Smaller values correspond to greater perceptual evidence for opacity variation.
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participants with partial maps of the United States, with states colored in various
shades of blue (Fig. 1.13a). Maps were shown on a white, gray, or black background.
McGranaghan hypothesized that participants would infer dark meant more on a
light background, but light meant more on a dark background, in a contrast-is-
more bias. The results showed that participants inferred dark meant more on all
three backgrounds, though the effect was weaker on the black background. This
was taken as evidence against the existence of a potential contrast-is-more bias.

In a subsequent study examining the effects of the background, Schloss et al.
[37] presented participants with colormaps of fictitious data about alien animal
sightings on white or black backgrounds. The color scales were standard scales
used in visualization (Autumn, Hot, and Gray from MATLAB, and ColorBrewer
Blue). As described in Sect. 1.3.1.2, each colormap had a legend, and participants
were asked to interpret the colormap by reading the legend and indicating whether
there were more alien animal sightings early or late in the day (Fig. 1.13b).

The effect of the background lightness depended on the color scale (Fig. 1.15a).
For Autumn and Hot, the background had no effect, and responses were consistent
with a dark-is-more bias on both white and black backgrounds. For ColorBrewer
Blue, the background had a moderate effect, but responses were still consistent
with a dark-is-more bias on both the black and white background (similar to what
McGranaghan [21] reported). For Gray, the background had a larger effect that
trended toward inferences that lighter colors meant more. The authors were initially
puzzled by why the background mattered for some color scales and not others,
until they realized that the colormaps differed in how much the regions appeared to
vary in opacity. Thus, they developed the opacity variation index described above to
test whether these effects could be predicted by apparent opacity variation. Overall,
there was a bias for participants to be faster when the legend specified dark-more
encoding than light-more encoding (dark-is-more bias), but this was modulated by
opacity variation in a manner consistent with an opaque-is-more bias.

This brings us to our first consideration of the combination principle. On a white
background, the dark-is-more bias and opaque-is-more bias work together—the
darker region is also the more opaque region, so response times were especially fast
for dark-more encoding than light-more encoding. On a black background, these
two biases conflict—the darker region is the less opaque, more transparent region.
Under such conflicts, if the opacity variation index was strong (Gray color scale),
the opaque-is-more bias tended to override the dark-is-more bias when combining
to produce the inferred mapping. When the index was moderate (ColorBrewer
Blue color scale), the opaque-is-more bias dampened the effect of the dark-is-
more bias but did not cancel it out. This finding aligns with the results reported
by McGranaghan [21]. Finally, when the index was weak (Autumn and Hot), and
therefore not applicable, there was no opaque-is-more bias activated to influence
the inferred mapping. One can avoid conflicts between the dark-is-more bias and
opaque-is-more bias by either: (1) presenting colormaps on light backgrounds, such
that the two biases work together, or (2) avoiding colormaps that appear to vary in
opacity when displayed on a dark background.
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Lower contrast Higher contrast
More noise Less noise
Dark
hotspot
Light
hotspot

Fig. 1.16 Colormaps with dark (top) and light (bottom) hotspots. Colormaps on the right have
higher lightness contrast and less noise in the underlying dataset than colormaps on the left

1.3.1.4 Hotspot-is-More Bias

The hotspot-is-more bias leads to the inference that regions closer to the center of
“hotspots” map to larger quantities [42, 47]. It is applicable when there is spatial
structure in the data that looks like a hotspot (e.g., concentric rings), such as in
Fig. 1.16.

Until now, in this section, we have discussed colormaps in which there was little
spatial structure in the data to provide a cue to the locus of larger quantities (e.g.,
grids of randomly colored squares [37]). However, Schott [42] raised the possibility
that color-based biases (e.g., dark-is-more bias) may not influence interpretations of
colormaps when there are strong spatial cues to the locus of large quantities, such as
hotspots. Hotspots are properties of datasets in which the region with extreme values
(very high or very low values) is surrounded by roughly concentric regions with less
and less extreme values. These patterns are characteristic of fMRI and EEG signals
from neuroimaging data and storm patterns in meteorological data.

Sibrel et al. [47] tested whether a hotspot-is-more bias exists, and if so, whether it
overrides the influence of the dark-is-more bias. They asked participants to interpret
colormaps containing hotspots, such as those in Fig. 1.16, left. The participants were
told the colormaps represented data about alien animal sightings in different regions
of a planet, and their task was to press the left/right arrow key to indicate whether
there were more sightings on the left or right of the region based on the legend. On
one half of the trials, the hotspot was light, and on the other half, the hotspot was
dark (hotspot location and darker region location were left/right balanced across
trials). In this initial experiment, participants were faster at responding when the
legend indicated dark was more (dark-is-more bias), with no effect of whether the
hotspot was light or dark (no hotspot-is-more bias).

Surprised by this result, Sibrel et al. [47] conducted a series of subsequent
experiments to see if they could find evidence for a hotspot-is-more bias and to
see if they could make it strong enough to override the dark-is-more bias. First they
modified the trial structure such that the hotspot was a reliable cue to the locus of
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the larger quantity. That is, rather than the legend specifying that the colors in the
hotspot mapped to more on 50% of the trials, the legend was biased to indicate that
the hotspot mapped to more on 77% of the trials. Here, they found evidence for a
hotspot-is-more bias. When the hotspot was dark, RTs were faster for dark-more
encoding than light-more encoding, consistent with both the dark-is-more bias and
the hotspot-is-more bias. However, when the hotspot was light, causing a conflict
between the dark-is-more bias and hotspot-is-more bias, the difference in RTs was
significantly weaker. Still the hotspot-is-more bias did not override the dark-is-more
bias. To get the hotspot-is-more bias to slightly, but significantly, override the dark-
is-more bias, it was necessary to not only have the hotspot be a reliable cue, but also
to make it even more perceptually salient through increasing lightness contrast and
reducing visual noise in the image (Fig. 1.16, right).

These results suggest that color-based biases are powerful contributors to inferred
mappings, which cannot be merely dismissed when there is strong spatial structure
in the data.

1.3.1.5 High-is-More Bias

The high-is-more bias leads to the inference that colors positioned higher up on a
vertically oriented legend map to larger quantities. The high-is-more bias is only
applicable when colormaps have vertically oriented legends, which is not always
the case in experiments [21] or in practice, as documented by Christen et al. [6].
The high-is-more bias is part of a more general expectation that larger amounts will
be displayed higher in space [12, 50].

Evidence supporting the high-is-more bias comes from studies showing that
response times to correctly interpret colormaps are faster when “greater” is at the
top of the legend than at the bottom [37, 47] (Fig. 1.13b). Moreover, the dark-is-
more bias has a larger influence when “greater” is at the top of the legend than at the
bottom. One way to view this finding is that when these two biases work together
(i.e., the darker region encodes “more” and “more” is represented at the top of the
legend), inferences are clearer and interpretation is especially easy, but once these
biases conflict, inferences become muddled and interpretation is generally harder.

In Sect. 1.3.1, we have highlighted several kinds of relational associations that
can contribute to inferred mappings, when they are applicable. We also described
what can happen to inferred mappings when different sources of relational associ-
ations combine and which types of relational associations tend to dominate when
different types conflict. Ultimately, a goal in this line of work is to construct
a comprehensive model to predict people’s inferred mappings for information
visualizations, while accounting for all applicable factors for a given type of
visualization. Next, we discuss an initial step toward such a model.
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1.3.2 Assignment Inference for Visualizations of Continuous
Data

Until now in this chapter, we have discussed distinct factors that contribute to
inferred mappings for different kinds of visualizations: direct color—concept asso-
ciations for visualizations about categorical information and relational associations
for visualizations of continuous data. However, recent work by Schoenlein et al.
[40] has bridged these areas by extending the framework of assignment inference
previously established with visualizations of categorical information (Sect. 1.2.2) to
visualizations of continuous data. Their approach is illustrated in Fig. 1.17.

During their study, participants were presented with colormaps such as those
in Fig. 1.17 (left). The colormaps represented fictitious data about environmental
concepts, such as the amount of ocean water in different counties. The task
was to indicate where there was more of the concept, on the left or right side
of the map. There was no legend, so participants responded according to their
inferred mappings. For both colormaps in Fig. 1.17, the dark-is-more bias implies
participants should infer the darker side represents more ocean water. However,
direct associations imply different responses for the top and bottom colormaps. For
the top colormap, direct associations imply they will choose the darker side because
ocean water is more associated with dark blue than with light brown (congruent
with the dark-is-more bias). For the bottom colormap, direct associations imply that
participants will choose the lighter side because ocean water is more associated with
light blue than with dark yellow (incongruent with the dark-is-more bias). How will
participants respond?

This problem can be considered through the framework of assignment infer-
ence. Direct and relational associations are distinct sources of merit, and inferred
mappings are computed over the weighted combination of these two sources of

Example Trials Sources of Merit in Assignment Inference
More ocean water on the left/right? Direct Associations Dark-is-More Bias Combined Merit

oooooooo o) t-0
r Congruent W, + W, =
EEEEEE - IIIIII.

Tleft " Right

rg Incongruent w,

“Rignt

Fig. 1.17 Example trials from Schoenlein et al. [40] in which participants inferred which region
of colormaps (left/right) represented more of the domain concept ocean water. Inferences can be
predicted by simulating assignment inference using a weighted combination of multiple sources of
merit (direct associations and dark-is-more bias), in cases when they are congruent (top row) and
incongruent (bottom row). Figure reproduced from [40]
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merit. Figure 1.17 (right) illustrates this scenario using separate bipartite graphs to
represent merit from direct associations and the dark-is-more bias. The concepts are
the two endpoints of the conceptual dimension (a lot of ocean water, +O, and no
ocean water, —O). The two colors are the two endpoint colors from the color scale
used to create the colormap. Although the colormaps included gradations of colors
and quantities, the problem was reduced to the two endpoint colors and concepts.
This simplification was possible because in their stimuli, association strength and
lightness both varied monotonically between the two endpoint colors. Given that
there were only two colors and two concepts, merit from direct associations could
be treated as association strength between each endpoint color and each endpoint
concept (as described for categorical data in Sect. 1.2.2). Merit for the dark-is-
more bias puts greater value on dark-more/light-less edges than light-more/dark-less
edges (see [40] for details). The question was, how much weight should be put
on direct associations (Wy) vs. the dark-is-more bias (Wp) when combining these
sources of merit?

Schoenlein et al. [40] addressed this question by systematically varying the
amount of weight put on each source while simulating assignment inference, and
determined which weighting best predicted participant’s inferred mappings. They
found that the best combination of weights placed a 0.7 weight on direct associations
and a 0.3 weight on dark-is-more bias. This combined weighting was better for
predicting participant judgments than weighting on each source of merit alone. With
greater weight on direct associations, direct associations overrode the dark-is-more
bias when they were in strong conflict. As such, participants inferred that lighter
colors mapped to more ocean water in the incongruent example in Fig. 1.17.

This study has set up a method for combining multiple sources of merit to predict
inferred mappings in assignment inference. Of course, direct associations and the
dark-is-more bias are only two potential sources of merit in assignment inference.
But, Schoenlein et al.’s [40] approach can be extended to account for all known
direct and relational sources of merit, plus new sources of merit that are yet to be
discovered.

1.3.3 Summary and Open Questions for Visualizations
of Continuous Data

In Sect. 1.3, we have discussed multiple factors that influence inferred mappings
for colormap data visualizations: structure preservation, dark-is-more bias, opaque-
is-more bias, hotspot-is-more bias, high-is-more bias, and direct associations. We
have also presented a framework of understanding how to combine multiple (some-
times competing) sources of merit to predict inferred mappings from assignment
inference.

Still, many questions remain about the nature of inferred mappings for con-
tinuous data, especially with regard to the kind of data being represented and
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the observers’ knowledge about the domain. These questions have been raised in
previous work [6, 37, 40, 47], and we summarize them here.

More of What? When colormaps use color to encode quantities, “more” could
refer to more of the concept being represented, or more of the numerical values used
to measure the concept. For example, when discussing data about response time,
researchers often refer to instances in which people were faster (i.e., when there was
more speed), which corresponds to smaller numbers (i.e., amount of milliseconds).
Under such instances, people may infer that darker colors are mapped to faster
response times, which correspond to smaller numbers. The question is whether the
relational associations reported above, all focusing on what maps to “more,” operate
at the conceptual or numeric level.

Effects of Domain Expertise? Some people have expertise working with col-
ormaps in particular domains (e.g., neuroscientists, climate scientists, epidemi-
ologists). Within these domains, conventions arise, which sometimes violate the
biases reported above. For example, in neuroimaging, there is a convention to
use light-more encodings [6], violating the dark-is-more bias. Questions remain
concerning whether domain experts have qualitatively different inferred mappings
from novices, and if so, whether those differences are constrained to colormaps in
their domain, or generalize to other colormaps on data outside their area of expertise.

Relative Contributions of Different Sources of Merit? Schoenlein et al. [40]
established the relative weighting to be placed on direct associations and the dark-
is-more bias when simulating assignment inference when considering only those
two sources of merit. Open questions concern how to construct a comprehensive
model that places appropriate weight on each source of merit that is applicable for
any given kind of visualization.

Addressing these questions will deepen our understanding of inferred mappings
for colormaps, and this knowledge will help design colormaps that facilitate
interpretability.

1.4 Conclusion

A central goal in the psychology of information visualization is understanding
people’s inferences about the meanings of visual features in visualizations. If
visualizations are designed in a manner that aligns with people’s expectations, then
people can spend less cognitive resources on figuring out what the visual features
mean and focus their effort on figuring out how to use the information presented in
visualizations to think about and act on the world around them.

It may be tempting to seek out prescriptive rules for how to use color to convey
meaning (e.g., use color x to always mean y). However, as discussed in this chapter,
inferences about the meanings of colors are context-dependent, contingent on the
other colors and concepts in the encoding system, as well as spatial properties (e.g.,
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hotspot structure, height in space). Thus, fully anticipating people’s expectations
about the meanings of colors in visualizations will require a comprehensive model
that accounts for all factors influencing inferred mappings. Initial steps toward this
end are showing promising results, but there is much more exciting work to be done.

Although we do not yet have a comprehensive model, designers can still use
the results discussed in this chapter to inform their designs. For example, evidence
suggests that for visualizations of categorical information, it is better to use
color palettes that maximize association difference rather than association strength.
Ultimately, when selecting colors for visualizations, we advocate for learning as
much as possible about the various factors that can influence people’s expectations
about the meanings of colors. Then, use critical thought to consider which factors are
most relevant for a particular visualization, and how to leverage them in a manner
that makes sense for the design as a whole.

By deepening the understanding of color semantics, this field of research is
providing insight into the human ability to translate perceptual input into knowledge
about the world, while providing insight into how to design visualizations that
facilitate visual communication.
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Chapter 2 ®
Theories and Models in Graph Qe
Comprehension

Amy Rae Fox

Abstract Graph comprehension is the act of deriving meaning from graphs, an
activity grounded in visuospatial reasoning that develops through a combination
of instruction and practice. What we know about the mechanisms of graph com-
prehension stems from interleaving lines of inquiry in statistics, computer science,
education, and psychology dating back to the 1980s. In this integrative review, I
describe how models of graph comprehension evolved in response to developments
in cognitive theory, offering a critical commentary on how foundational theories
build upon each other, extending rather than replacing theoretical claims at different
levels of analysis. I illuminate the landscape of contemporary research, before
concluding with an argument for the role of visualization psychology in supporting
theoretical integration across disciplinary boundaries.

2.1 Introduction

There is a conceptual paradox at the center of research on graph comprehension.
The reason we employ graphical displays is that—in relation to text or tables of
numbers—they seem effortless. Deriving meaning from a graph is described as
“seeing” the information, equated with the facile fluency of perception. But this
effortless access obscures a murky, error-ridden reality. Correctly reading a graph is
much harder than we think. After 40 years of empirical research and theory building,
we have learned that our ability to interpret a graph is influenced by a multitude of
interacting factors affecting the display, the individual, and the situation.

In this chapter I offer a historical commentary on the development of graph
comprehension research. I describe how theory in graph comprehension arose out of
empirical research across disciplines and propose a role for visualization psychology
in facilitating theoretical integration. This chapter will be useful for visualization
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researchers looking to navigate the interdisciplinary milieu of graph comprehension,
and students of behavioral and social sciences seeking a primer on this essential area
of research.

2.1.1 What Kind of Graph Is a Graph?

The term external representation is used to indicate things in the world—subject to
experience by human perception—that purposefully refer to other things. External
representations can be constructed for any sensory modality and medium, though
the visualization researcher is particularly interested in those employing graphics
that can be seen on some surface. The text on this page is a visual external
representation, with the letters of the alphabet functioning as symbols referring to
sounds that you have learned to assemble into words from which you construct
a certain understanding of what I intend to communicate. Similarly, a photograph
is a visual external representation, referring via resemblance and analogy to the
scene it depicts. A rich spectrum lies between these symbolic texts (describing the
world) and analogous pictures (depicting the world). The design and interpretation
of external representations belongs to the interdisciplinary realm of semiotics: the
study of meaning-making (see Chap.9). The focus of this chapter is a subset of
external representations colloquially referred to as graphs (from the Greek graphé
“writing, drawing”), charts, or plots: diagrams that convey relationships between
sets of information via visual-spatial variables in a coordinate system (see [0, 62]).
These are not to be confused with another set of representations referred to as
“graphs”: collections of edges that join pairs of vertices (a la “graph theory; node-
link diagrams). Graphs are typically distinguished from maps which use scaled
space to represent geographic relations. Both kinds of graphs belong to the larger
class of diagrams: external representations that use space and simplified visual
forms to convey relationships between their referents. Importantly, the use of these
terms in empirical research is as fluid as the taxonomies that seek to structure them
(see [25, 34, 53]). While the models and theories of comprehension reviewed in
this chapter reference graphs specifically, it is reasonable to infer that the general
purpose mechanisms of graph comprehension may also apply to the larger class of
external representations.

2.2 An Abridged History of Theory in Graph
Comprehension

As is often the case with interdisciplinary research, the study of graph comprehen-
sion arose from the needs of practice, rather than an invariable march of basic theory.
The pioneering graphical inventions of Playfair, Minard, and Galton in the “golden
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age” of visualization were only made mainstream through inclusion in textbooks
(e.g., [11]) and standards reports (e.g., [2]), through championing in professional
texts (e.g., [78]) and essays in scholarly journals (e.g., [21, 45]). As the use of such
“statistical graphics” spread, guidelines were needed for when and how they could
be used to communicate effectively: a call for science to explain the art.

The earliest empirical investigations were published in statistics [22, 24, 82] and
consisted of discrete comparisons between bar and pie charts, testing a viewer’s
performance in judging proportions. Concurrent work in educational psychology
[85] tested secondary school students on their memory of facts learned from bar and
line charts, pictographs, and tables. Studies of this kind were framed as empirical
tests of guidelines offered in textbooks like that of Brinton [11] but were subject to
methodological critiques of construct validity. In contextualizing their results, the
authors tended to frame outcomes as properties of the representations themselves:
a bar chart is more effective at [X] than a pie chart, while contemporary scholars
would identify performance as arising from the interaction between the individual
and representation. This subtle but important difference betrays that the focus
of early efforts was on understanding the nature of the representations and their
properties.

These types of point-to-point and application-grounded studies would continue
for decades, in the absence of frameworks, theories, or models to guide causal
or mechanistic investigation. The work was published in statistics, educational
psychology, computer graphics, and the burgeoning field of HCI. This would
be the case until three developments in the 1980s paved the way for a more
coherent, additive body of research to unfold. First, Jaques Bertin’s seminal work
A Semiology of Graphics was translated from French to English by WJ Berg
(under the supervision of Howard Wainer) in 1983. Bertin was the first to offer
a concise language and structure for decomposing the questions we might ask
about what a graphic is and how it might work. Second, post-cognitive revolution,
substantial theories connecting visual perception to higher order cognition had been
published in cognitive science—notably Marr [52] and Ullman [80]. Finally, the
“mental imagery debate” was well underway, which saw leading cognitive scientists
debating the nature of mental representation. This focuses on representation spurred
interest in external representation and in particular how graphics are leveraged for
problem solving and communication (e.g., [46]).

In the sections that follow, I describe a progression of theoretical development
that has shaped the trajectory of graph comprehension research—work that directly
addresses the fundamental question: how are humans able to read graphs? Our
focus will be on the elaboration of general theory—accounts of the mechanisms
through which our interaction with statistical graphics unfold—rather than individ-
ual empirical contributions. We will see examples of theory reasoned from personal
experience, appeal to logic, and theory reasoned from experimental evidence.
A substantial body of theory has been developed in information visualization
and education that addresses the application of visualization and diagrammatic
representations more broadly, though (cognitive) theory in graph comprehension
can be construed as its foundation, the backbone of investigations exploring specific
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phenomena observed within those interactions. Questions like what kind of graph
is most effective for decision-making? or how can we help learners correctly
interpret a graph? rely on general purpose mechanisms of graph comprehension,
just as questions of effective linguistic communication rely on the underlying
mechanisms of reading and speech comprehension. Figure 2.1 summarizes early
theoretical contributions, including a number of general taxonomic grammars and
computational efforts that are not discussed in further detail.

The reader will notice that our understanding of graph comprehension did not
progress via development of competing models and theories. Rather, research has
unfolded as a progressive elaboration of a vast problem space, with works that
shed light on disparate aspects or tasks, and others that expand on prior theory
at different levels of detail, iterating rather than refuting. Half of the challenge is
deciding what questions need to be answered, and here lies the power and difficulty
of such interdisciplinary inquiry.

2.2.1 A Semiology of Graphics: Bertin

To utilize graphic representation is to relate the visual variables to the components of the
information. With its eight independent variables, graphics offers an unlimited choice of
constructions for any given information. (...) The basic problem in graphics is thus to
choose the most appropriate graphic for representing a given set of information. — Bertin
[6, p. 100]

Jacques Bertin (1918-2010) was a French cartographer, born in the suburbs of
Paris and educated in the School of Cartography at the Sorbonne. An esteemed
map-maker, he contributed to new methods of cartographic projection as the head
of research at France’s National Center for Scientific Research (CNRS) [58]. Yet his
most widespread legacy would be the first and most far-reaching effort to provide a
theoretical foundation to the design of information graphics, first offered in the text
Sémiologie Graphique [5].

Bertin’s volume resists concise summary,! though its most oft-cited concepts in
contemporary writing, are the visual variables and levels of organization, which
taken together form a table of perceptual properties: a heuristic for information-
visual mapping (Fig. 2.2a). Bertin organized the tools at our (external) representa-
tional disposal in terms of space (two planar dimensions: location on a surface)
and the visual (retinal) properties along with marks positioned within the space can
vary: size, value, texture, color, orientation, and shape. In short, the visual variables

1 Any attempt to summarize the 400 page volume would be too brief, and this author is convinced
that although widely cited, the depth of Bertin’s intellectual contributions is underestimated on
account of opaque linguistic constructions. Bertin also contributed theory on levels of reading
[p. 141], stages of processing[140], functions of graphics[p. 160], and information processing[p.
166]. The motivated reader is strongly encouraged to give “Part 1. Semiology of the Graphic Sign-
System” a close reading [6].
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Early Theoretical Contributions to Graph Comprehension

Year
1967

1981/2

1983

1984

1985

1986

1987

1987

1989

1990

1993

1994

2002

2002/3

2008

Author
Bertin

Pinker

Bertin

Cleveland
& McGill

Kosslyn

Mackinlay

Cleveland
& McGill

Simkin

& Hastie

Kosslyn

Pinker

Lohse

Gillan & Lewis

Shah &
Freedman

Peebles
& Cheng

Trafton, et al

Key Contributions
visual variables; levels of organization

early version of Pinker 1990,
as MIT report

english translation by WJ Berg

ordering of elementary perceptual tasks (codes);
(re-articulates Bertin's visual variables with partial accuracy
rankings)

Book review in the J. Amer. Stalistics Assoc contained
thorough but accessible primer of contemporary information
processing psych as applied to graphics

codification of graphic design criteria in a form that can be used
by the presentation tool, including expanded (theoretical) ranking
of elementary codes

expanded set of elementary codes with refined accuracy
rankings

judgement tasks; elementary mental processes
(demonstrates interaction of encoding & task; positions
Cleveland & McGill in context of Pinker & information
procesing)

analytic scheme for deconstructing graphs; acceptability
principles (thorough treatment, framing common graphical
intuitions in terms of information processing)

first general process account; (schema-theoretic account
from information processing perspective)

computational (symbolic, GOMS) production-system model
predicting scanpath & response time from question & graph

computational Mixed Arithmetic-Perceptual (MA-P) model
derived from task analyses

construction-integration model of graph comprehension
(builds upon Pinker 1990 to integrate iteration &
prior-knowledge driven processing)

ACT-R/PM based computational model capable of predicting
scanpaths on cartesian graphs under questions

argues for explicit inclusion of 'spatial processing’ and
‘cognitive integration' in existing models

43

Fig. 2.1 Early influential theories, frameworks, and models in Graph Comprehension [32, 49, 59,

60, 76]
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(A) Bertin (1967, 1983)
LEVEL OF THE VARIABLE

VISUAL VARIABLES

A. R. Fox

ASSOCIATIVE SELECTIVE ORDERED QUANTITATIVE
(simifar) (different, groups) (ordered) (proportional)

Position Position Position Position

Size Size Size Size

Color (value) Color (value) Color (value)

Texture Texture Texture

Color (hue) Color (hue)

Orientation Orientation

Shape

(B) Cleveland & McGill (1984, 1987)

ELEMENTARY
PERCEPTUAL TASKS

QUANTITATIVE
(1984)

Position (along a common scale)
Position (along a non-aligned scale)

Length, Direction, Angle
Area
Volume, Curvature

Shading, Coler (saturation)

(C) Mackinlay (1986)

PERCEPTUAL TASKS

NOMINAL

Position
Color (hue)
Texture
Connection
Containment
Density
Color (saturation)
Shape
Length
Angle

Slope

Area

Volume

DATATYPE

ELEMENTARY CODE

DATA TYPE
ORDINAL

Position
Density
Color (saturation)
Color (hue)
Texture
Connection
Containment
Length
Angle

Slope

Area

Valume

QUANTITATIVE
(1987)

Position (along a common scale)
Position (along a non-aligned scale)
Length

Angles

Slopes*

Areas

Volumes

Densities

Color (saturation)

Color (hue)

QUANTITATIVE

Position

Length

Angle

Slope

Area

Volume

Density

Color (saturation)
Color (hue)

Fig. 2.2 Four contributions ranking perceptual accuracy of visual-spatial encodings. Bertin (a)
was reasoned phenomenologically, Cleveland and McGill (b) derived from experimental studies
with quantitative proportion judgments, which (¢) Macklinlay [51] extended for nominal and
ordinal data reasoning from existing psychophysics studies, not empirically validated in the context
of graph comprehension
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offer eight channels into which information can be mapped. Bertin argued these
channels have varying capacities for adequately representing different aspects of
information: a correspondence between the nature of the information and perceptual
requirements for discerning it in graphical form. In an orthogonal scheme, he posited
four levels of organization that govern what about some information we might
seek to perceive. Selective perception involves discerning categorical belonging;
associated perception grouping like instances; and ordered perception discerning
step-wise order and quantitative perception discerning the absolute value of an
instance or numeric ratio between instances. Bertin asserted that to map data to a
visual variable, the level of organization of the data must correspond to the capacity
of the visual variable (Fig. 2.2a). Any mismatch is a source of “graphic error” [6, p.
64].

Bertin envisioned a unifying framework that could govern the design of all kinds
of graphics. A CNRS colleague reflected that it was the exposure to hundreds of
representations from different scientific domains—brought to Bertin for advice—
that endowed him with the sort of global perspective required to write a text
as comprehensive as Sémiologie Graphique [7]. In modern parlance, we would
say Bertin offered a structured design space for mapping information-to-graphical
marks. Though it is important to note that these ordered mappings were inferred
from a combination of logical reasoning and perceptual experience rather than
experimental evidence. Bertin’s treatise is partially descriptive: structuring his
observation of the components of graphical communication, and prescriptive: offer-
ing guidelines for how and when certain mappings should be made. In justification
of the levels of organization assigned to each variable, Bertin offers a test, a sort
of phenomenological self-check (or to the researcher, suggested experimental task)
that should convince the reader. In this way, the classification of visual variables
can be read as a set of hypotheses for controlled psychophysics experiments. The
continued influence of Bertin’s work should remind us of the value of the kind
a priori theorizing required to construct such a theoretical framework. He did not
conduct experiments or build models to explain data, but rather imposed a coherent
logical structure on a disorganized set of phenomena growing rapidly in importance.
Though perceptual experiments would follow, Bertin’s visual variables still stand as
the most common starting point for information-graphic mapping in visualization
design. His work is widely cited in the pioneering research in computer graphics
and information visualization, as well as the psychological studies of graphical
perception that would begin in earnest in the 1980s.

2.2.2 Elementary Structures in Graphical Perception:
From Cleveland and McGill to Simkin and Hastie

We do not pretend that the items on our list are completely distinct tasks; for example,
judging angle and direction are clearly related. We do not pretend that our list is exhaustive;
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for example, color hue and texture (Bertin 1973) are two elementary tasks excluded from
the list because they do not have an unambiguous single method of ordering from small to
large and thus might be regarded as better for encoding categories rather than real variables.
Nevertheless the list . . . is a reasonable first try and will lead to some useful results on graph
construction. — Cleveland and McGill [16, p. 532]

The Semiology of Graphics would not be published in English until 1983,
and as graphic displays of information became prevalent in American statistical
journals in the early 1970s, calls were made for more systematic inquiry. A “theory
of graphical methods” was needed [21, p. 5] in order to overcome the state of
“dogmatic and arbitrary” design guidance of the time [45, p. 29]. William Cleveland
and Robert McGill were statisticians at Bell Labs when they answered this call,
publishing a series of empirical studies in the Journal of the American Statistical
Association (JASA) which they described as theory for the relative accuracy for
a set of elementary perceptual tasks readers perform to extract the values of real
variables from statistical graphs [16]. In subsequent years, Cleveland and McGill
refined their terminology, replacing perceptual tasks [16] with graphical-perceptual
tasks [17], basic graphical judgments [18], and finally, elementary codes [19], with
influential publications spanning venues of statistics, HCI, and popular science.
Claims made in their initial 1984 work were tested by additional experiments
and deeper engagement with contemporaneous theories of vision, resulting in the
much refined 1987 publication ranking accuracy of an expanded set of elementary
codes (Fig. 2.2b).> These codes describe channels available for mapping quantitative
information to graphic form. In this sense, the authors re-articulated the visual
variables described by Bertin [5, 6] and further ordered them according to human
accuracy in making quantitative relational judgments. Cleveland and McGill’s
variables do not match those of Bertin and, however, are admittedly neither
exhaustive nor mutually exclusive [16, p. 532]. One explanation for this discrepancy
is their having conceived of the codes on the basis of their personal experience with
statistical graphs, while Bertin set out to theorize a structure that could account for
the visual-spatial properties of all graphic marks on 2D surfaces.

Cleveland and McGill’s approach was partially deductive—structured a poste-
riori from personal experience and perceptual theory (e.g., [74]) and inductive,
generalizing from reviews of psychophysical experiments (e.g., [4]), and their own
original studies. It is perhaps most accurate to characterize their studies as tests of
Bertin’s hypotheses for the appropriate visual variables for quantitative perception.
The experimental task asked participants—presented with two marked graphic
components—to indicate “what percentage the smaller is of the larger” (p. 539),
an operationalization of Bertin’s test for quantitative perception: “ask the reader the
value of the larger sign if a value of one is attributed to the smaller sign” [6, p. 69].

2 Nonetheless, the more preliminary 1984 publication remains the most widely cited of their works,
with nearly eight times as many citations as the 1987 elaboration [as reported by Google Scholar
and Web of Science, January 2021]. This observation reinforces the importance of tracing the
intellectual history of theoretical works to find their most mature form and should serve as a
warning against cherry-picking references.
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While Bertin reasoned that only the planar dimensions (spatial location) and size
can adequately communicate quantitative information, Cleveland and McGill give
us the relative accuracy of ten encodings for the same task. Their experimental data
support Bertin’s hypothesis that spatial location (e.g., position along common scale,
position along non-aligned scales) can carry this information most accurately. If
length is imputed as the size variation of a line [6, p. 71] and area the size variation
of a point, then the data support Bertin’s conclusions about the size variable, but not
in relation to direction (Bertin’s orientation for line) or angle (potentially construed
as shape). There is enough discrepancy suggested in the empirical results to warrant
further scrutiny of Bertin’s criteria for judging a variable as applicable to a particular
level and of the experimental tasks themselves.

Four years later, Northwestern University psychologists David Simkin and Reid
Hastie offered JASA a contextualization of Cleveland and McGill’s elementary
codes, under a framework of information processing psychology [72]. Simkin and
Hastie emphasized that performance of graphical perception depends not only on
the way information is encoded but also on the judgment tasks performed by the
human beings for whom the graphs are intended. Building upon Follettie [26], they
differentiated between measurement, discrimination, proportion, and comparison
judgments (Fig.2.3a). It is important to note that all of Cleveland and McGill’s
studies used proportion judgments. Follettie, and later Simkin and Hastie, brought
awareness to a whole new range of judgment tasks for which statistical graphs
are used. Most importantly, they demonstrated that choosing a graphic mapping
for a variable of data should not only depend on the data type (Bertin’s level of
organization) but also on the judgment task the designer wants the reader to perform.
They offered empirical demonstrations of the interaction between elementary codes
and judgment tasks (e.g., comparison judgments were most accurate with simple
bar charts (position along common scale) while proportional judgments were most

Elementary Mental Processes
(Simkin & Hastie, 1987)

ANCHORING PROJECTION o
— anchor — | | projection
. o] 5% . .
SCANNING _.34% SUPER- . u .super-.l_
|_| scan — IMPOSITION [ 2 imposition
. P _—
~ 25%

Fig. 2.3 Schematic diagram of Simkin and Hastie’s theorized Elementary Mental Processes,
adapted from (1987)
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accurate with simple pie charts (angles)). Moving beyond encoding, they theorized
four elementary mental processes that could—in an algorithmic sense—explain
relative error and response rates across tasks (Fig.2.3b). The elementary mental
processes can be construed as visual data extraction steps: ordered in procedures
that are executed by the perceptual system in order to accomplish a judgment task.

Over the course of the 1980s, the use of statistical graphics in publishing and
data analysis surged with the development of software packages that made simple
visualizations accessible for personal computer users. The cross-fertilization of
empirical research between perceptual psychology and statistics demonstrated how
demand for design recommendations can drive applied research questions that in
turn inspire basic science research. Though the decade began with a focus on
mapping information to visual forms, it would end with sophisticated hypotheses
about how such mappings would interact with tasks, governed by perceptual rules,
to elicit comprehension.

2.2.3 The Rise of Process Theories

Prior to 1980, there had been very little systematic research on the psychology of
graph comprehension [84]. Over the course of the 1980s, methods and theories from
cognitive psychology began to permeate the community in statistics concerned with
graphical perception. Simkin and Hastie, notably, were psychologists, though they
published their seminal work in the Journal of the American Statistical Association
(JASA) rather than a journal of applied cognition or perception. Their contribution
stood in direct conversation with the earlier work of Cleveland and McGill in the
same venue. In [43], psychologist Stephen Kosslyn published in JASA a review of
five books on charts and graphs, including Bertin [6], Tufte [77], and Chambers [13].
Rather than a straightforward critique however, Kosslyn offered a thorough primer
on relevant concepts from cognitive psychology contextualized with respect to graph
reading. He provided a sketch of contemporary visual information processing [52]
and the distinction between short- and long-term memory [3, 47] before addressing
the extent to which the practical guidance offered by each book comported
with aspects of cognitive theory. Although its citation count pales in comparison
to the aforementioned works, the importance of Kosslyn’s contribution cannot
be overstated. In this cross-disciplinary fertilization, he offered—Ilike Bertin—
a structure for thinking about the scope of what questions might be asked of
graphical performance. He shared a simple (conceptual, process) model of visual
information processing (Fig. 2.4) in which graph perception would be situated. To an
application-focused community of statisticians using graphics, he brought a concise
summary of relevant psychological constructs. While previous efforts focused on
structural questions of encodings and tasks, Kosslyn drew attention to the way that
graph reading unfolds as a process.
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reorganization

capacity limits ¢ knowledge
Perceptual Short Term Long Term
> >
Image > Memory Memory

discriminability
distortion
organization
priorities

Fig. 2.4 A process description of visual information processing, adapted from [44]. The same
figure appeared (without linguistic annotation of the important characteristics) in [43]

But Kosslyn’s influence would not end there. In [44] he published an analytic
scheme for deconstructing graphs® into constituent parts, which could then be
analyzed at the levels of: syntactics (configuration of marks), semantics (the
meaning that arises from configurations), and pragmatics (conveyance beyond direct
interpretation of symbols). This contribution was more structural than procedural,
offering a schema for evaluating graphs with respect to acceptability principles
reasoned from cognitive theory. But in doing so, he would make reference to a
forthcoming publication from his former graduate student Steven Pinker, one that
would go on to stand as the most widely cited theory of graph comprehension.

2.2.3.1 A Theory of Graph Comprehension: Steven Pinker

While experimental psychologist Steven Pinker is most widely recognized for his
popular science books on language and human nature, he got his start in the late
1970s as a doctoral student studying visual cognition with Stephen Kosslyn at
Harvard. His chapter “A Theory of Graph Comprehension” in the book Artificial
Intelligence and the Future of Testing would influence research on the design
and function of visual-spatial displays across psychology, education, and computer
science for decades [62]. In fact, the ideas were influential before publication, with
earlier versions of the theory cited via MIT technical reports from the early 1980s.
Pinker’s theory consists of a series of computational processes that propagate
representations of information across components of a theorized human cognitive
architecture (Fig.2.5). He proposes that graph interpretation begins with construc-
tion of a visual array: a relatively raw, minimally processed representation of the

3 Kosslyn makes a distinction between charts (specifying discrete relations between discrete
entities) and graphs (a more constrained form, requiring at least two scales associated via a “paired
with” relation).
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Fig. 2.5 Three versions of Information Processing accounts of Graph Comprehension. Italic
annotations in blue indicate clarifications, and red indicates changes from prior models. In reading

these diagrams, it is important to recognize they represent processes, not components. The boxes

in Pinker, for example, indicate representations of information, not theorized cognitive structures,

like working memory or executive control. The diagrams are not schematics for the structure of a

cognitive system, but schematics of how information is processed, and care must be taken to avoid

inadvertently reifying them into component structures, which might serve an implementation level

of analysis
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information made available to the nervous system via patterns of intensity on the
retinas. The visual array is then encoded into a visual description: a symbolic,
structural representation of the scene in a form more efficient for computation with
knowledge in memory. A MATCH process then compares the visual description
with the contents of memory in order to select the correct graph schema—a sort of
placeholder indicating the structural relation of information for that particular class
of graph. Once instantiated, information from the visual description is structured
according to the relations of the selected schema. By this point, the external
representation of the graph has been transformed into an internal representation
in some structured, symbolic form that can be interrogated (searched) in order
to extract information. Pinker uses the term conceptual question to refer to the
information the reader wishes to derive from the graph and conceptual message
the information that is actually extracted. A message assembly process searches
the instantiated graph schema for information to translate to the form of the
conceptual message. But processing capacity limitations prevent all the information
from being automatically translated to messages. Rather, the interrogation process
searches the graph schema for information matching the conceptual question. If it
is found, message assembly takes over. But if not, interrogation can traverse the
prior stages of representation (the visual description, then visual array) until the
desired information is found, a top-down search that may require re-encoding the
visual array. Finally, Pinker appeals to a general class of (logical, mathematical, and
qualitative) inferential processes that operate on the conceptual message in service
of answering the conceptual question.

Pinker’s approach was deeply situated in the tradition of information processing,
expressing an orientation toward a computational theory of mind. His explana-
tion functions at Marr’s algorithmic level of analysis—specifying representations
and procedures for transforming them [52]. He offers an exceptionally detailed
account of the properties of the representations he proposes (especially the visual
description) and how they comport with cognitive theory in vision, memory, and
attention. The 1990 publication is not an easy read, and it is my personal opinion
that its scope is often misunderstood and contribution inadvertently reified as its
diagrammatic representation of information processing.* Figure 2.5a is adapted
from Pinker’s Figures 4.14 and 4.19 which he characterizes as “representing the flow
of information specified by the current theory” [62, p. 104]. The diagram depicts
the order of representations and names of processes that transform them but fails to
adequately describe re-encoding of the visual array (by re-attending to the graph)
or the timecourse of decay of any representation based on the capacity limits of
short (i.e., working) memory (e.g., [62, p. 89]). This leads to the misconception
that Pinker does not address the role of working memory or proposes that an entire

4 Just as we are drawn to graphs of empirical results, we are drawn to diagrams of theoretical
offerings. The readers are warned against assuming that a diagram entirely represents a theoretical
account, and writers encouraged to explicitly describe the representational role of diagrams in the
scope of their theory.
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graph is encoded in a single linear process. Rather, it is more appropriate to construe
the diagrammatic representation as a snapshot of the flow of information through
a single iteration of a bottom-up (perceptually driven) loop. We are similarly left
wondering “where” in the mind his representations exist. This is not explicitly
defined in the process diagram nor the text, but it can be reasonably inferred that
all posited internal representations exist in short term (i.e., working) memory, as
this is where processing would occur in the context of the cognitive theories he
references (with the exception of the uninstantiated graph schema, likely in long-
term memory).

Most importantly, justification for the theory rests on a single proposition: that
graph comprehension exploits general purpose cognitive and perceptual mecha-
nisms. Pinker’s chapter was not the culmination of decades of empirical experimen-
tation with graphs, but rather, the application of contemporaneous theories of vision,
memory, and attention to the phenomenon of graph comprehension. This statement
is not offered in critique, but in observation of the variety of ways that theory is
developed. In this case, refutation rests on change to theories of vision, attention,
and memory or evidence that graph comprehension is sufficiently different from the
phenomena used to construct those theories to warrant special purpose cognitive
mechanisms.

2.2.3.2 A Construction-Integration Model: Shah and Colleagues

An alternative to refuting a theory is refining it, by elaboration (specifying detail) or
contextualization (situating in larger scope). In the late 1990s and early 2000s, Priti
Shah and colleagues arguably did both: zooming out to describe the iterations of
information processing when comprehending a graph and zooming in to elaborate
the influence of “top-down” factors.

While prior experimental work focused on the perceptual aspects of graph
comprehension, Cognitive Psychologist Priti Shah’s mid-1990s dissertation work
emphasized the role of cognitive processes in graph comprehension. Though con-
temporary Cognitive Science resists a precise delineation between perception and
cognition, in graph comprehension a distinction is typically drawn between sources
of information. Perception—information arriving via the senses—is referred to
as “bottom-up” processing, while prior knowledge and computation over internal
representations is referred to as “top-down” processing. Like Pinker, Shah, and her
colleagues reasoned that graph comprehension would make use of general purpose
cognitive processes rather than some special graphics engine in the mind. Drawing
inspiration from Walter Kintsch’s well-regarded Construction-Integration Theory
[41], Shah elaborated how the processes of constructing meaning with a graph
might proceed in the same fashion as constructing meaning from text or linguistic
discourse.

Along with Patricia Carpenter, Shah first drew attention to the timecourse of
information processing when reading a graph [12, 67]. Prior perceptual accounts
tended to emphasize holistic pattern recognition processes that allow the readers
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to make the sort of quick proportional judgments used in studies of graphical
perception. Carpenter and Shah employed more complex tasks, asking the readers
to describe graphs and answer comprehension questions. Performance on these
tasks, accompanied by measurements of eye fixations, revealed a more iterative
procedure was taking place: one that involved a serial identification of visual
chunks, followed by inferences and reasoning, repeated until the task goal had been
accomplished. Along with evidence of differential task performance based on prior
knowledge of semantic content, their studies provided support for the claims that
(1) successful graph interpretation depends not only on appropriate information-to-
graphical encoding but also on prior knowledge and skill of the graph interpreter and
(2) graph comprehension is an iterative, multi-stage process. Publications in 2002
drew more strongly from CI Theory, characterizing the timecourse of processing
in terms of two phases: an initial construction phase, where visual chunks activate
relevant prior knowledge and are integrated into a coherent representation, and an
integration phase, where inferences are made over the (coherent) representation
(Fig.2.6a) [30, 68]. The phases follow in order, though can be repeated, and
integration can be followed by further construction, as necessary (Fig. 2.6b).

The astute reader will ask how Shah’s Construction-Integration Model relates
to Pinker’s [62] Theory of Graph Comprehension. The answer depends on one’s
interpretation of each text. In a 2005 review, Shah and colleagues describe their
model as differing from Pinker’s in that it specifies that prior knowledge (and in turn,
expectations) is activated by the encoding of visual chunks, which serve as a top-
down constraint on inferential processing [69]. Pinker also describes the activation
of prior knowledge, though in slightly different terms. Specifically, the MATCH
process “searches” prior knowledge in order to instantiate an appropriate schema
(prior knowledge structure) for the type of graph being perceived [62, p. 101]. In
this way, the prior knowledge of graph type is activated by the (symbolic) visual
description of the graph (the encoded visual chunk). Since inferential processes
act on the instantiated graph schema, this prior knowledge serves to constrain
interpretation. What Pinker does not explicitly describe is the activation of prior
domain knowledge, or any understanding the reader has about the information being
represented by the graph, though a generous interpretation would be that he includes
this constraining influence under the scope of inferential processes (p. 103), a
catch-all term to describe all of the higher order processing (logical, mathematical,
judgments, and decisions) that one performs on the instantiated graph schema. If
Shah’s coherent representation is equated with Pinker’s instantiated graph schema,
then the two accounts are congruous. They are consistent in appealing to general
purpose mechanisms, to describing a serial process of encoding, some form of
integration with prior knowledge, and inferential processing. They both posit the
existence of internal representations: Pinker gives a specific account of a plausible
form of these representations, Shah requires only that they exist, leaving the CI
model with less explanatory power for mechanisms, but greater robustness to change
in the perennial debate on the nature of internal representation. It is this author’s
reading that these two accounts of graph comprehension are highly compatible,
serving to elaborate different aspects of graphical processing at different levels of
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A Construction-Integration Model of Graph Comprehension
(interpreted from Shah 2002)

(A) Two Phases of Graph Comprehension

Construction Phase Integration Phase
| — 1 |
initial processing activation of text 3
of gyaphiceﬂ info & relevant inferences
information prior knowledge
external » |c0herent|
display

representation representation

chunk

(B) A Serial, Incremental Process

__n._l —_— =N —

Y |

integration end

___n___l

Fig. 2.6 A Construction-Integration Model of Graph Comprehension, derived from the text
description in [30, 68]. (a) describes two distinct phases of comprehension: the first involves
encoding visual chunks, while the second involves higher order cognitive processing over the
working internal representation. (b) describes how integration follows some number of iterations
of construction, before processing is either complete and ready for integration

specificity. While Pinker attends to a computationally plausible encoding structure
for graphical information, Shah attends to the more global timecourse of processing
and iterations of “perceptual” and “cognitive” efforts. They both offer testable
predictions about how factors of the graphical display and the graph reader should
differentially influence task performance.
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2.3 The Landscape of Contemporary Research

Statistical graphics have never been more prevalent than they are today in scientific
inquiry, business operations, or popular media. With such a wealth of applications,
it is a good time to be a Visualization Psychologist but is not easy to study the
psychology of visualization because as an applied area of inquiry, both students
and scholars alike must navigate an opaque disciplinary milieu. The readers can
find relevant empirical research in venues as distinct as journals and conferences
of science or math education, learning science, information and library science,
cognitive, educational, perceptual or (general) experimental psychology, vision
science, cognitive science, and of course computer science—where the conference
triad InfoVIS, SciVIS, and VAST claim some epistemic authority of the subject
matter by virtue of naming rights.

In the two decades since Shah’s Construction-Integration model, we have not
seen similar overarching, general process accounts of comprehension. Rather, the
researchers across these fields have progressively elaborated a complex ecosystem
of factors that influence performance on graph comprehension tasks. We can orga-
nize these factors into three groups: those pertaining to the display, the individual,
and the situation.

Display Factors The research on display characteristics tends to center on deter-
mining the most ideal encoding of information, a question of design. Bertin offered
the first experientially deduced guidelines for mapping data to graphic marks [5, 6],
some of which were experimentally tested using relational judgment tasks and
ranked by Cleveland and McGill [16, 19] and further extended by Mackinlay [51]
who ranked encodings according to theorized perceptual accuracy for communicat-
ing quantitative, versus ordered, verses categorical data (see Fig.2.2c). If humans
were perceptual computers, this might be the crux of visualization psychology. But
we are, of course, more delightfully nuanced creatures. Contemporary research has
demonstrated that effectiveness of encodings depends not only on the capacity of
a particular type of mark to carry a certain type of information but also on what
about that information the designer wants the reader to perceive most effortlessly.
Ensemble encoding, for example, relies on characteristic performance of the visual
system to inform encoding choice when the goal is to facilitate, for example,
identification of an outlier, versus recognition of a statistical mean, or apprehension
of clusters within the data [75]. Design choices within a particular encoding strategy
are nuanced as well, as evidenced by research on the use of color. Color hue has been
shown to be particularly effective for encoding data for nominal or absolute value
judgments, while color brightness is superior to hue when encoding the same data
for relative judgments [10, 55]. The plot thickens—design choices become more
complex—when visualizing more than one variable and the interactions between

5 The oft-overlooked footnote to these heuristics is that the rankings are meant to apply when the
reader’s task is an “elementary reading” (extracting a specific value).
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encoding strategies need be considered. Smart and Szafir recently demonstrated
that the shape of a graphic mark significantly influences perception of color and
size [73]; whatever the designer’s most informed intentions, their efforts can be
thwarted by interactions between decisions they make. Similarly, visual saliency
(how “attractive” an area is to the eye) has been shown to influence how humans
attend to visual stimuli [38]; though recent efforts to computationally reconcile
bottom-up saliency models top-down “cognitive” models have proven ineffective
at predicting gaze behavior [48]. While display characteristics were the focus of
the earliest research in graph comprehension, they receive no less attention in
modern research efforts. Designers need practical guidance on when and how to
use animation [8, 79] and 3D [68], how to use signals or instructions to augment
a display and scaffold comprehension [1, 28, 42, 54], and how to use interaction
most effectively [61, 66]. Since the time of Cleveland and McGill, research on
display characteristics has become increasingly nuanced, revealing more factors that
influence how a display should be designed and the interactions between them.

Individual Factors Research on individual differences, or factors that give rise
to differential performance with the same graphic display, is most common in
cognitive and educational psychology and learning science. As Carpenter and Shah
argued, “individual differences in graphic knowledge should play as large a role
in the comprehension process as does variation in the properties of the graph
itself” [12, p. 97]. But what is meant by graphic knowledge? In empirical work,
graph knowledge is tightly entwined with graph reading abilities and expertise.
The terms graphicacy, graphical literacy, graph sense, graphical competence, and
representational competence are used throughout the literature in psychology and
education to refer to a reader’s ability to understand (and potentially create) infor-
mation displayed graphically. If graph comprehension is the act of deriving meaning
from a graph, then graphicacy is its educational flip side: the ability to perform a
graph comprehension task. Some have treated this ability as a foundational step in
cognitive development, akin to numeracy and literacy [31]. Others treat the ability
as a practice, implicating the importance of experience and socio-cultural influences
[64, 65]. In education in particular, the researchers have pursued general learner
characteristics that might serve as pre-requisites or predictors of these graphing
abilities, including mathematical ability [23], working memory [12], and spatial
reasoning [81]. Ulrich Ludewig’s recent doctoral dissertation offers a thorough
reconciliation between perspectives of graph comprehension and graphicacy [50].
It is slightly easier to differentiate between ability and knowledge with respect to
specific graphs, for example, domain knowledge of the information represented
in a particular graph, and knowledge of that particular representation’s graphical
formalisms. The act of graph reading requires that we use our knowledge of a
graph’s formalisms to perform some task (e.g., extract a value, detect a trend),
thereby “learning” something about the domain. In my own research, I have
demonstrated that this procedure is not reciprocal. It is much more difficult to use
prior knowledge of a domain to “reverse engineer” understanding of a graphical
formalism, such as may be required to understand an unfamiliar or unconventional
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type of graph [28, 29]. A reader’s understanding of the concepts represented in a
graph has been shown to guide not only the reader’s interpretation of the display [63]
but early perceptual processing as well [68]. In some cases, a reader’s expectations
seem to “inoculate” them from true relations presented in the data or lead them to
over or underestimate the magnitude of relations. Conversely, domain knowledge
has been shown to support comprehension by making the readers more likely to
ignore “noise” in data [86]. More recently, Jessica Hullman and colleagues have
explored the role of prior beliefs [37, 40] and even judgments of expectations of
others [36] on graph interpretation. Taken together, the research on characteristics
of individuals has provided strong evidence for “top-down” influences on graph
comprehension.

Situational Factors Factors that change comprehension performance of an individ-
ual with a particular display depending on the situation are the least structured, thus
least understood pieces of this factorial puzzle. Affect (emotion) and motivation
clearly influence human performance of any task, and although these are charac-
teristics of an individual, we classify them as situational because they are more
situationally variable—in the context of a repeated measures study, for example—
than the relatively stable® factors like prior knowledge or ability. Task is the most
studied situational factor, though it is at present a hierarchical concept poorly
operationalized across the literature. The term “task demand” is used to indicate
a variety of contextual factors, from a relatively low-level step of information
extraction (i.e., a micro-step in a larger process, such as identifying a location of
interest in a graph), to a specific task or goal provided to a reader in an experiment
(e.g., extract a value, compare two points, characterize a trend), to the context
of some cognitive activity (e.g., analyzing data, making a decision, forecasting,
solving a problem), and to the communicative intent of the designer (e.g., to inform,
educate, entertain, persuade, etc.). In the beginning, there was but a single task:
Cleveland and McGill’s proportional judgments [16, 19]. Folettie, followed by
Simkin and Hastie, elaborated further judgments (measurement, discrimination, and
(non-proportional) comparison) [26, 72]. Bertin also addressed tasks, proposing
three “levels of reading” [6, p. 141]. Other tripartite classifications have been
proposed in the same vein, all structuring how much of the depicted information
the reader need attend to, and how explicit or precise their response should be
[5,6,23,31, 83]. In their application of ensemble encoding theories to visualization,
Szafir and colleagues offer a parallel taxonomy of four tasks-types that require
visual aggregation [75]. These can be partially but not entirely mapped onto the
extant tripartite structures. The most complete deconstruction of the concept of
task can be found in Brehmer and Munzner’s, “Multi-Level Typology of Abstract
Visualization Tasks,” which surveyed an impressive volume of prior task frame-
works in computer graphics and visualization, visual analytics, human—computer
interaction, cartography, and information retrieval [9]. A fruitful undertaking for

6 Variability, of course, depends on the scope of time under consideration.
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visualization psychology would be to extend this typology to include the tripartite
classifications that grew out of education, the lower level tasks elaborated in vision
science, and higher level “communicative context” that is evident in the structure
of the field of visualization itself [27]. A strong underlying assumption of much
research in graph comprehension (and visualization writ-large) is that the graph
designer’s goal is to clearly communicate, “the truth” of some data to the reader.
Thus, the graph should be maximally informative and minimally difficult—the
graphical equivalent of Grice’s maxims for communication. But research in learning
science has taught us that sometimes difficulty is desirable. Perhaps if my graph is
for learning, I might encode data differently so as to scaffold a reader’s process of
discovery and more deeply engage with the data. Alternatively, if the context of my
communication is persuasion, I might use more signals to direct reader’s attention
than I would if the context were exploratory analysis. The role of communicative
context is seen structurally through the emergence of specialized workshops at the
IEEE VIS conference but has not yet been systematically investigated across a full
range of communicative tasks. My own theoretical intuition—reasoned from design
experience and engagement with the literature—is that situational factors are those
that present mediating or moderating influences on other individual and display
characteristics, at either the time of design or comprehension.

A primary challenge facing designers and researchers alike is the sheer number
of factors found to influence comprehension and the fact that they are typically
studied in limited clusters, inconsistently operationalized between studies and
across disciplines. This makes it difficult to conceive of the complex interactions
that may exist between factors and how to go about constructing nuanced guidelines
for designers. The most comprehensive summaries of factors can be found in
[31,33,70] and [35], which features a concise set of empirically grounded principles
for display design that would make a useful addition to the wall of any graph
designer.

2.4 What Remains to Be Discovered

The good news is that “the state of our (sub) discipline is strong.” The bad news is
that it is difficult to navigate and even more difficult to integrate. In the two decades
since the last publication of a general process theory of graph comprehension [68],
the march of empirical research has only quickened, offering insight into factors
that affect graph comprehension, but in forms too piecemeal to be fruitfully and
consistently applied. There are myriad open questions to be answered, from how
exactly factors interact to influence performance to how performance is expressed
in different forms of cognitive activity: decision-making vs. problem solving,
forecasting, learning, or creative construction. We need to explore our boundaries:
how does interaction with the narrowly defined class of “graphs” compared to the
broader class of diagrams or external representations, in general? (see [14, 15] for
thorough treatments). And our field too must address the challenge of traversing
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“lower levels” of explanatory analysis: there is a tremendous gulf of explanation
between conceptual models of graph comprehension and understanding of how
these processes are enacted in the body.

Hegarty [71] and more recently Padilla [56] have convincingly argued for the
importance of cognitive models in guiding visualization research. Hegarty suggests
they are useful for predicting the effectiveness of designs and informing design
decisions. Padilla argues that cognitive models can be used to promote innovation
and evaluate validity of empirical research designs. In sum, they can bridge an
important gap and presuming they are communicated in an appropriate venue, well-
articulated models can help ensure that the “state of the art” in basic research is
available to guide applied efforts in design and instruction. But what kinds of models
do we need, and what makes a model cognitive?

Those seeking easy answers to these questions will fall quickly down a philo-
sophical rabbit hole. Models in science come in all shapes and sizes, with differing
levels of analysis and varieties of explanation. In the social and behavioral sciences
alone, one finds component and structural models, conceptual models, computa-
tional models, and task-analytic and mathematical models. Models differ in what
aspect of a phenomenon they explain (e.g., structures, relationships, processes),
how they are justified (e.g., by phenomenological, experimental or task-analytic
empirical evidence, by logic or appeal to reason), and the way they are represented
(conceptually: typically via words and diagrams or computationally: via math and/or
computer programs). The importance of clearly conceptualizing and subsequently
articulating the scope and purpose and form of a model cannot be overestimated, as
the failure to do so can have tragic consequences for the intellectual trajectory of a
field.

Take, for example, [62] Theory of Graph Comprehension. Setting aside for the
moment that it is characterized as a theory and not a model,” a quick inspection of
its diagrammatic representation (Fig. 2.5a) will reveal no mention of memory. Does
this mean that Pinker believed memory was not involved in graph comprehension?
No, it means that the reader needs clarification on what aspect of the phenomenon
Pinker’s model explains: a propagation of representations and the processes that
transform them. Close reading of the accompanying text reveals what was likely
obvious to readers at the time: all of the representations and processing take place in
some form of memory. Pinker might have chosen to represent this in the diagrams
by locating the representations (boxes) inside other graphics representing memory
structures. This would have been advantageous for subsequent theorists looking to
position their own ideas in relation to his but would also have changed the type of
model, from the flow information processing to the flow of information processing
and component structures—taking on an additional Marrian level of analysis [52].
In applying Pinker’s model to a specific cognitive activity (decision-making),
Padilla and colleagues have done well to clearly articulate the role of memory,

7 Theories are typically treated as superordinate to models, though their exact relation is a topic of
debate in philosophy of science.
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as well their interpretation of the construct of memory itself [57], implicating
a multiple component conception where “a multicomponent system (...) holds
information temporarily and mediates its use in ongoing mental activities” [20,
p. 1160]. While these details may be superfluous for those keen to apply the model,
they are absolutely essential for the ongoing intellectual dialogue expressed via
works of scholarship that move our science forward. Imagine next year a ground-
breaking study is published in a journal of experimental psychology that questions
the multicomponent conception of working memory, supporting a rival account
with implications for how visual attention is directed. Changes to the underlying
constructs on which a model or theory rests should necessitate its re-evaluation, no
different from the need for testing and upgrading software when the libraries on
which they are built mature.

The obvious difficulty is that constructs are transient, under-specified, and cer-
tainly not versioned like packages of code. Too often the precise conceptualization
of constructs is held as tacit knowledge instantiated in encapsulated research labs,
propagated through limited networks via the exchange of students and postdoctoral
scholars.® Too little space is allocated in our written scholarship to descriptions
of what we specifically mean by the terms we use, a symptom of a drive toward
innovation and novelty over depth of explanation. I propose that in theoretical
scholarship we should strive to be a little more like academic philosophy, where
precision and justification in language is not only valued but demanded. We should
be novel in our applications, but religiously rigorous in our theory. Models and
theories should exist in direct dialogue with those that come before, explaining
exactly how and why they differ and offer sufficiently impactful differences to be
worthy of inclusion in the scientific canon.

In this onerous challenge stands a role for visualization psychology: as a mediator
between disciplines (computer science, psychology, and education) and between
professions (basic and applied research, design, and instruction). As a community,
visualization psychology can position itself at the intersection of these goal-driven
efforts and moderate the construction of reference models, intended to integrate
theory across disciplines and levels of analysis that is specifically related to our
phenomena of interest. We need not be concerned with explaining precisely how
memory or attention are instantiated by the body but should take responsibility for
maintaining enough awareness of the progression of those basic theories, so we can
apply and as needed update our own models of how such cognitive phenomena drive
the performance of graph (and visualization) comprehension.

8 see Kaiser [39] for a fascinating intellectual history of this phenomenon with respect to dialects
of Feynman diagrams.
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Chapter 3 )
Mental Models and Visualization Chock or

Florian Windhager and Eva Mayr

Abstract Mental models are internal representations of external phenomena. Dur-
ing their interaction with visualizations, the users construct mental models to
represent these visualizations internally, to visually reason on them and solve
problems with them. This chapter synthesizes existing theories on mental models
and visualization to discuss their role and relevance for the design of visualiza-
tion systems. From a mental models perspective, we discuss two challenges of
visualization design: (a) supporting the initial construction of mental models and
(b) supporting the integration of information from multiple views by synchronous
or sequential coherence techniques. We argue that the theory of mental models
allows to understand visualization research and practice in a more unified fashion
as an advanced model-building endeavor, operating on human computer ensembles
engaged in “distributed cognition.”

3.1 Introduction

Visualizations aim to amplify and augment human cognition and action in face of the
challenges posed by complex data and information [7, 32, 43]. Accordingly, visual-
ization research investigates the cognitive effects of interaction with visualizations
to prove the value of novel techniques. Theoretical reflections of this practice build
on different conceptualizations of cognitive entities and processes—from insights
theory [34] to sensemaking approaches [38]—and more elaborate cognitive science
perspectives [18, 26, 36]. Yet, looking at the state of research, visualization experts
work with rather sketchy conceptions of the cognitive apparatus and its operational
entities and did not extensively explore the question how users build up internal
representations of data, reason with them, and assemble local insights into bigger
internal pictures. This chapter aims to contribute to a better understanding of internal
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representations in visualizations by synthesizing relevant theories and models and
by discussing their relevance for the design of visualizations.

To take first steps in this direction, we turn to the theory of mental models from
a distributed cognition perspective [26] (Sect.3.2). A mental model is an analog
“small scale” internal representation of an external phenomenon [11]. During their
interaction with visualizations—which arguably are models of (data about) external
phenomena themselves [12, 30]—the users construct, adapt, and manipulate their
own mental models of the external visualizations. They then use the external and
the internal representation in a distributed fashion to reason with them, to take
different perspectives on them, to organize and integrate detailed information, and
to derive insights and infer hypotheses for the interpretation of the original, external
phenomena.

Aside from providing an elegant cognitive-theoretical foundation for this kind
of practice, we will argue that a mental model perspective also has implications
for the future design of more complex visualization systems. One reason for this
might be the knowledge about the mental efforts and costs of model building: the
human working memory can only “maintain a limited amount of information (their
capacity) for a finite period” [36] and aims to keep the required working memory
resources, the cognitive load, to a necessary minimum. Even as visualizations allow
to “offload” certain cognitive operations from the working memory to the external
representation, their understanding requires their internal cognitive reconstruction
and connection to existing knowledge—at least to a certain degree. Yet, construction
efforts are known to be highly demanding in terms of working memory capacity and
cognitive load and visualization design is well advised to support such construction
processes.

Thus, we discuss related challenges for the design of visualization systems which
can support the construction and elaboration of mental models in face of rising topic
and data complexity (Sect.3.3). This chapter aims to establish and consolidate a
mental model perspective in visualization, to outline related design challenges, and
to initiate a more systematic discussion and implementation of such techniques and
studies.

3.2 Internal Representations

Visualization research develops external representations of data to support the
internal efforts of human cognition, including decisions about behavioral responses
and actions. Visualization systems thus are designed to serve as ‘“amplifiers,’
“mediators,” or “prostheses” for human cognition and action in face of challenging
(e.g., abstract, multidimensional, or massive) constellations of data [2]. Given this
widely accepted functional stance, visualization designers can benefit from existing
knowledge about internal representations [27]: how users construct them when they
interact with visualizations, how they manipulate them to reason on them, and how
they offload cognition to the external representations. In the following, we will build
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Fig. 3.1 Schematic line up of an extended cognitive system, showing the translation from complex
data and subject matters (left) to an external representation (blue), which is (re)constructed as an
internal representation by a user in working memory and stored in long-term memory (right)

on the theories of distributed cognition (Sect. 3.2.1) and mental models (Sect. 3.2.2)
to discuss future challenges for both—visualization and theory development.

3.2.1 Distributed Cognition

According to the theories of situated and distributed cognition [26], human cogni-
tion cannot be understood without its ubiquitous amplification and augmentation by
cultural artifacts (like tools, data carriers, calendars, or computers) and its constant
social and cultural interaction and resonance with other processing units [21].

Interactive visualizations—as an advanced species of cultural artifacts—thus
allow cognitive systems to expand into human—computer ensembles mediated by
visual displays: in such an extended cognitive system (see Fig. 3.1), humans visually
analyze complex objects of study by means of visual displays (as external represen-
tation on the computer) and continuously build up and manipulate corresponding
mental models (as internal representations in their working memory).

On these (internally—externally) coupled representations, reasoning operations
can take place as visual and cognitive manipulations. As the human working
memory is limited in terms of storage and processing capacity, an extension with
the external representation allows to process more complex information with less
cognitive load. Results then can be stored as individual instances or generalized
structures in long-term memory. Across the distributed architecture of such extended
cognitive systems, basic transaction processes between internal representations on
the user side and external representations on the visualization side play out in
different combinations [27, p.1002]:

» If there is no prior knowledge or existing internal representation, internalization
equals the construction of a new mental model based on a given external
representation (i.e., learning). These processes require a bottom-up synthesis of
visual patterns into various forms of internal representations—and a high amount
of mental effort.
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e As acquired (and generalized) structures, already existing internal representa-
tions (e.g., schemata, scripts) guide the processing and interpretation of external
representations [38].

» Existing internal representations can not only be activated and simulated in
working memory for visual reasoning operations but can also be augmented
by external representations to work in joint as coupled and distributed repre-
sentations, which equals the standard constellation of an visualization-mediated
human—computer ensemble.

For visualization systems, numerous effects have been described how they support
human working memory and cognitive processes [7, 26, 27, 37, 43] and have been
grouped into four functions [17]. (1) External storage of detailed information on
visual displays unburdens the working memory (from imagination, integration,
and memorization) and allows the corresponding internal representation to remain
lean and lightweight. (2) The visual-spatial arrangement of information unburdens
cognition from decoding abstract, alpha-numerical symbols, and sequences of
language-like representations. It enables a more natural interpretation (e.g., of data
items’ relations via “display proximity” [56]) and facilitates visual search and
information integration. (3) Complex analytical operations can be offloaded to the
swift workings of visual pattern recognition and pre-attentive processing [16]. (4)
Strenuous symbol-based reasoning operations with abstract data can be offloaded to
interactions with visual-spatial models of the data. The users then can explore these
visual models perceptually and read off conclusions “without presupposing mental
logics and formal rules” [27, p. 1000].

3.2.2 Mental Models

Cognitive science has developed a variety of concepts to describe and understand
internal representations of external data.! One specifically interesting approach
comes with the theory of mental models: observations and explorations—in physical
[54], as well as in abstract and artificial environments [22]—instruct “the creation
and interpretation of an internal mental model” [50, p.921].

While humans explore physical surroundings or information spaces—from caves
to cities and from libraries to complex datasets—they continuously build up
mental models as analog representations of observed objects, systems, or their
environments and use these mental models to reason on them. In this regard, mental
models are similar to the concept of cognitive “frames” [24], which also integrate,
connect, and organize data from external observations (see Fig. 3.2, left-hand side).
The practical relevance of both, frames and mental models, is their flexibility and

! Prominent concepts include cognitive schemata, cognitive scripts, cognitive images, cognitive
maps, prototypes, or cognitive frames [23, 27].
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Fig. 3.2 Like cognitive frames, mental models connect and organize data in an interactive
loop (left, adapted from [24]). Visualizations provide external templates (center, blue) for the
construction and augmentation of internal mental models (green). Visual reasoning thus equals
the hybrid interplay of such coupled, but distributed representations (right)

their potential to “describe, explain and predict a system’s purpose, form, function,
and state” [17, p. 46].

For more complex external objects or systems like machines or interfaces, two
different conceptions of mental models were developed, which lay their emphasis
either on the structural or on the behavioral and functional aspects of a system
[19]: while a structural model focuses on the spatial or topological arrangement
of a system and its parts [22], a behavioral model represents its dynamic and causal
processes, including the conditional and functional behavior of a system—Ilike how
a device works when used in specific ways [33].

With specific regard to visualizations, Liu and Stasko declare that a mental
model is a functional analog representation to an external interactive visualization
system, which preserves structural and behavioral properties of external systems
[27, p. 1001]. On the structural side, the mental model internalizes the spatial
layout of a visualization, but it also integrates other visual cues (color, hue, size,
etc.), overlaid images, and texts [27, p. 1000]. When seeing data of a subject matter
encoded into a visualization on a display, the analyst’s structural model mirrors the
“spatial, temporal or distributional relations between the data items” [27, p. 1000].
On the behavioral or functional side, mental models include dynamic information
about a structure’s performance and how it reacts to interactions (see Fig.3.2,
right).”

For users of visualizations, the quality of their internal representations and the
related distributed reasoning processes depends to a great extent on the design of

2 As we will argue later on, visualization theory would also benefit from integrating narrative
sequences and stories into the second category of behavioral models (Sect.3.3.2.2), so that the
mental model concept can cover representations of static structures and time-oriented sequences
in an equal fashion—similar to the distinction of cognitive schemata and cognitive scripts [44].
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the external representation, as their internal models are modeled on the base of the
latter.>

However, traditional descriptions of mental models frequently agree on their
non-veridic character: they commonly do not mirror external representations in
an accurate or detailed manner, but they have to be good enough to ensure
(task-specific) functionality or viability. Whether they are serving for descriptive,
explanatory or predictive cognitive operations—internal representations mostly do
so without even coming close to the complexity and full details of its corresponding
external representations or subject matters. They can remain parsimonious, sketchy,
and lightweight but can still be functional, viable, or “runnable” for the achievement
of certain tasks [33]. This is possible only if a mental model is isomorphic to certain
aspects of the external representation, which again has to show isomorphic aspects
with regard to the available data about an external phenomenon [20].

As a full correspondence or richness of detail is no important indicator for the
quality of mental models, other quality indicators have been discussed. Among
them, a model’s inherent coherence and consistency have been emphasized by
cognitive science research as indicator for the integration and connection of relevant
aspects into the internal representation [40, 46, 54]. In the following, we will
elaborate on the role of visualization design for the construction of mental models
and for the coherent integration of information.

3.3 Designing Visualizations from a Mental Models
Perspective

The outlined theory of distributed cognition and model-based reasoning allows to
reflect on the interplay of visualization and cognition in a synoptic fashion and to
reframe known challenges for visualization design from a generic model-building
perspective. In the following, we will focus on two major visualization challenges
and show how they can be theoretically unified and understood as challenges of
model development. Firstly, we will look at the challenge to initially construct
a mental model, when users work with a dataset and/or tool for the first time
(Sect. 3.3.1). Secondly, we will reflect on the challenge to integrate information from
multiple views into larger mental macro models (Sect. 3.3.2). This can be done by
spatial or synchronic coherence techniques (Sect. 3.3.2.1) or by temporal coherence
techniques, commonly referred to as “narrative visualization design” (Sect. 3.3.2.2).

3 Due to the prevalence of user-oriented design, the quality of visualizations as external repre-
sentations is tied back to the quality of the internal representations that they generate (e.g., the
utility, efficiency, correctness, esthetic appeal, etc.). Arguably, it is this circle, which makes it
relevant for visualization designers to know about cognitive principles (i.e., from Gestalt and color
perception to more complex model construction and reasoning processes) to design for the effective
amplification of perceptual and cognitive processes.



3 Mental Models and Visualization 71
3.3.1 Supporting the Initial Construction of Mental Models

Based on their first impression of a visualization, the users form a tentative mental
model, which can be further manipulated and elaborated in working memory. How
much effort has to be put into this construction, and which structure and function
this initial mental model includes, depends on a number of factors—including the
user’s existing internal representations (i.e., visualization literacy, prior knowledge,
domain knowledge), situational factors (i.e., data, tasks, motivation), and the
external representation (i.e., the visualization and system design) itself.* If these
factors do not align with each other, there is a risk that users ignore a visualization
and forego the mental efforts to build up an internal representation. To reduce
this risk and to facilitate the initial construction of a mental model, users can
be actively supported, e.g., by introducing the basic structure of the data and its
visual representation (see Sect. 3.3.1.1) or by functional and behavioral onboarding
support, e.g., by providing transitions from known concepts and visualizations (see
Sect.3.3.1.2).

3.3.1.1 Structural Construction Support: Advance Organizer

In cognitive science, advance organizers have been introduced as effective means
to facilitate the construction of mental models [3]. In general, an advance organizer
is a structural pre-sketch of the information to be learned which is administered in
advance, so as to better organize and integrate subsequent details and information
into this structure. Within the framework of mental models, advance organizers
serve as external sketches or construction plans for the tentative buildup of internal
structures, which then are further elaborated in working memory. Thus, the effort
of model construction is significantly reduced by introducing a simplified model
of a more complex external representation first. The construction of an internal
representation thereby becomes an incremental endeavor.

4 A large part of the basic research on mental models has been done in the context of text
comprehension and with regard to subject matters, where a spatial layout of environmental data
is given. In such a context, understanding an external representation (e.g., the description of a built
environment) requires the construction of a mental model, for which a visual-spatial isomorphy
between relevant aspects of internal and external representations should be achieved—and is
relatively easy to verify. Despite the fact that (the rules of construction for) external representations
preserving a spatial layout are widely known and universally established (e.g., by naturalistic
images, miniature models, or instances of “scientific visualization”), it is known that the initial
build-up of an internal model (i.e., internalization) is cognitively and energetically demanding.
This holds even more true for the internalization of pictures which spatialize abstract or conceptual
data due to the rules of a diagrammatic syntax (often summarized as techniques of “information
visualization™). Especially, if the users are not familiar with the rules of construction, they face
higher barriers as they have to build up both: a (structurally and behaviorally) isomorphic model
from the external representation and a basic understanding of the principles or rules of image
construction (visualization literacy [6]).
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Advance organizers are known to support mastery of content in nonlinear,
unstructured environments like hypermedia [31] or multidimensional information
environments [57]: they not only provide a conceptual overview and facilitate navi-
gation in more complex information spaces but can also raise curiosity and interest.
An advance organizer can be graphical or textual, but graphical representations have
been claimed to be less ambiguous and more concise than textual ones [9].

Advance organizers for visualization systems can take different forms: (1) they
give a simplified overview of the data in a selected single view (e.g., a simplified
visualization, a picture of a visualization anatomy, or a thumbnail preview) or
(2) they present structural information on a dataset [46]. Also, the widely known
visual information seeking mantra “overview first, zoom and filter, then details-on-
demand” [48, p. 337] equals an argument for incremental model construction, so
that overviews internalized in advance allow to organize the subsequent intake of
more detailed information.

For more complex datasets, which encompass more data dimensions than can be
displayed in one single view, a structural data model can facilitate the understanding
of the corresponding more complex visualizations, e.g., as given by multi-view
systems (see Fig. 3.3, right): after introducing multiple data dimensions, they can
support the initial construction of internal representations for individual views and
illustrate their integration into compound visualizations (and internally into mental
macro models) later on.

zing multiple
dimensions

Fig. 3.3 Advance organizer (left) depicting the structure of a multidimensional dataset, whose
encoding into specific visualizations within single views (center) and compound visualizations
(right) could be visually traced
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3.3.1.2 Behavioral Construction Support: Onboarding Techniques

Visualizations are interactive, artificial images, for which users do not only have to
learn their visual structures (i.e., their construction principles and their visual-spatial
Gestalt) but also their behavior via tool functions—especially for the first time
users. From a mental model perspective, this has been addressed as the need to also
build up functional or behavioral mental models (Fig. 3.2, right-hand side). While
many visualization tools convey such behavioral knowledge with help functions
and text or video tutorials, some of this knowledge can also be introduced by
visualization onboarding techniques, which help “users in reading, interpreting, and
extracting information from visual representations of data” [52, p.2]. Especially
novel visualization techniques or complex visualization systems require a certain
amount of training and learning.

Onboarding support for web-based visualization tools is often provided with
guided tours, step-by-step wizards, or initial overlays, which highlight the most
important parts of the graphical user interface and interaction options for the first
time visitors [52]. As such, the users learn what they can do with the visual
representations on screens and how they behave due to user interaction.

Another form of functional onboarding support is to provide training via exam-
ples [15]: the users are walked through visualizations by means of an exemplary
dataset. During this walk-through, they construct a prototypical functional mental
model incrementally and can elaborate it later on for their own datasets.

An interesting onboarding technique for the structural aspects of visualizations
(especially with regard to the origins of mental model research in the field of
spatial cognition [54]) is the use of seamless transitions, which allow to trace
the re-arrangement of familiar spatial constellations into abstract (information)
visualization layouts. These techniques help to transfer structural knowledge (and
context) from existing mental models into novel diagrammatic constellations [42]
(see also Sect.3.3.2.1).

3.3.2 Supporting the Integration of Information from Multiple
Views

Complex visualization systems frequently operate with multiple views [4]. Such
systems require sensemaking and model building on multiple levels of information
integration: their users do not only have to build up internal representations for the
single views but also an integrated compound representation, which we refer to as
mental macro model (Fig. 3.4, top right).

Information integration on a compound or macro level requires additional
cognitive effort. In the following, we will discuss two approaches to support the
construction of internal macro models: (A) either multiple distinct mental models of
individual views are connected in a parallel or synchronous fashion (see Sect. 3.3.2.1
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Fig. 3.4 Depiction of a complex visualization system from a distributed cognition perspective,
with external representation components in blue and internal representation components in green.
Both layers contain basic model-building cycles on the left-hand side, which are coupled by
perception and interaction dynamics (gray). These basic cycles are then extended by macro
modeling cycles (right-hand side)

or (B) the mental model of an individual view is sequentially connected to novel
views (commonly referred to as visual narration or storytelling, see Sect. 3.3.2.2).

3.3.2.1 Synchronous Integration: Coordination and Linkage of Views

When confronted with multiple views in parallel, users have to mentally connect
and integrate information from all views to assemble a bigger picture and to achieve
a more comprehensive understanding. Without further support, users will build up
unconnected mental models first, which have to be interconnected with significant
cognitive effort later on to allow reasoning on their integrated data [22]. In this
context, the design of coordinated visualizations supports coherent information
integration and macro modeling from the beginning.

By offering multiple views in parallel, their diverse encodings are brought into a
spatially adjacent compound constellation, which offers complementary analytical
perspectives for synchronous contemplation [41]. To better connect information
from these views, the visual encoding of data should be handled consistently across
different views (e.g., consistent use of colors, labels, directions of axes, or other
design decisions) [40].

Further integration support is usually provided by coordinated interaction tech-
niques, which enrich a visualization system with further coherence cues to establish
synchronous connections between juxtaposed views. Among the most common
techniques are coordinated selection and highlighting or linking and brushing or
also synchronized panning, scrolling, or zooming [35]. Coordinated interaction
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methods provide instant visual modifications of the same data elements in different
views, which enable the synchronous perceptual integration of parallel views.

An interesting option to literally interconnect multiple views has been proposed
by Collins and Carpendale [10]: as a method to explore relations between two
different views, VisLink connects the same data items on different canvases with
explicit links and thus establishes synchronous perceptual bridges. While this
method could also be extended beyond two views, it is expected to become visually
complex soon.

3.3.2.2 Sequential Integration: Narration, Storytelling, and Seamless
Transitions

A second major principle for connecting multiple views is given by sequential
coherence techniques which interconnect individual views sequentially, i.e., over
time. In this case, it is not spatial, but temporal adjacency—commonly together
with a range of other narrative cues and connections—which provide the binding
relations. Practically, as a pure sequence, sequential integration of visualizations
utilizes an observer’s memory to hold transient perceptions of single views present
in the working memory and to store them as a compound sequence. As such,
pure sequential integration also requires significant mental effort. Therefore, var-
ious other time-oriented connection techniques have been suggested to facilitate
sequential information integration.

In a visualization context, narration and storytelling became a widely used
and much-debated design approach over the last decade. Kosara and Mackinlay
[25] proposed to use storytelling as a more effective way of communicating and
presenting data: “Stories have proven to be not only an incredibly popular way of
conserving information and passing it on, they also provide the connective tissue
between facts to make them memorable” [25, p. 2]. They define a story as a causally
related chain of individual visualizations (see Fig. 3.5, right). This ordered sequence
often, but not necessarily, corresponds to a chronological course of events and
provides the user with a clearly defined path through the data.

From a mental model perspective, the relevance of the growing work on visu-
alization storytelling seems obvious: as a major complement to space-leveraging,
synchronous integration techniques, sequential storytelling utilizes time as an
“orthogonal” dimension of information integration (see Fig.3.5, right) and thus
provides the second major coherence technique for the construction of mental
macro models. Specific examples for such a narrative integration are instantiated
by slideshows (i.e., multiple visualizations further interwoven by spoken or written
language), magazine or scrollytelling designs (e.g., visualizations interwoven by
text), or animation and film-based approaches [47].

Within such sequential arrangements, animated transitions can further strengthen
the coherence between different views by offering fluid and traceable incremental
changes. Various forms of morphing can support the translation from one spatial-
ization method to another and thus provide more elastic macro designs [5]. By
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Fig. 3.5 Macro model construction based on visual coherence techniques for the synchronous
interconnection of multiple views (left, Sect. 3.2.1) and their sequential interconnection, commonly
referred to as narrative visualization or storytelling (right, Sect. 3.2.2)

changing layouts incrementally—as opposed to cutting abruptly—the spatial re-
arrangement can be traced and the shifting of relevant well-known elements can
be followed smoothly and fluidly [13]. These techniques correspond to the concept
of preservation of the mental map [1], which aims at developing algorithms that
keep the number of changing elements to a suitable minimum.

Results from cognitive science [22] and visualization [42] provide evidence that
it is cognitively more efficient to elaborate an existing mental model and transform
it into a new arrangement than to combine two different mental models, which
puts sequential integration in favor of a synchronous integration. The unmediated,
synchronous presentation of two separate layouts can easily lead to two separate
models, whereas their sequential interconnection via storytelling or seamless transi-
tions allow the adaptation and extension of an existing mental model, resulting more
likely in one coherently integrated mental model with less cognitive effort [22].
Results of studies with users prove the value of this technique: “transitions could
save hours to be spent with reading a manual otherwise” [49, p. 637]. Taking these
considerations into account in a recent study, we implemented a seamless transition
from a familiar 2D map view to a 3D space-time cube to help laypersons, who are
unfamiliar with this visualization technique, to understand the functionality of this
visualization. The transition supported users to connect the new visualization with
their mental model of a map and was evaluated as very helpful [58]. These empirical
results indicate that the direction of a transition is very important: designers should
carefully consider which view is presented first—what Tominski et al. refer to as
“prioritized views” [53]—and knowledge of the users’ mental models can support
this decision.

Obviously, synchronous and sequential information integration can also play
together in various ways, which has been discussed as combinations of author-
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driven and reader-driven approaches [47]. While exploration-oriented, synchronous
compound visualizations do not prescribe any specific order or linearity, narrative,
or author-driven visualizations guide through their materials in a predefined way.
Advanced guidance systems thus often search for a balance of both approaches. Like
an advanced organizer (see Sect. 3.3.1.1), they introduce the readers to the story first
and thereby support their construction of a first mental model. Later, users can freely
explore the visualization but can better integrate further information into their initial
mental model.

3.4 Discussion

Current visualization research builds on different cognitive frameworks, producing
a fair amount of terminological and theoretical diversity—which becomes also
visible throughout discussions about visualization foundations [39]. Different the-
ories in visualization focus on different aspects of the analysis process: whereas
sensemaking theories [38] provide a broad framework for the description of the
analysis process, insight theory [34] focuses on the outcomes of the analysis
process. In contrast, the concept of mental models [27] fills a gap in visualization
research: how do users represent a visualization (system) internally to use it for
distributed sensemaking processes and to generate single or interconnected insights?
A better understanding of internal representations can help us to better understand
the contributions of visualization and cognition to a mutually connected (i.e.,
“distributed””) modeling endeavor. Such a unified, model-based approach can also
help to understand some challenges of visualization (systems) better—and to direct
attention to areas where users frequently need additional model-building support. In
this chapter, we drew together existing techniques to support model construction
(i.e., for the initial construction of single views and the further connection of
multiple views) and thus aimed to illustrate how otherwise separated visualization
topics and debates could be organized and mediated in a more unified fashion.

The concept of mental models has received a considerable amount of research in
cognitive science—but also beyond. When we transfer these findings to the field of
visualization, some new questions arise, which remain to be solved in the future.

3.4.1 Macro Models

We consider visualization to be a key competence and practice to provide “bigger
pictures” of complex topics—from society, technology, or ecology—to the society.
Such subject matters are commonly represented by complex text collections only
and remain invisible to the unaided eye. Such bigger pictures—especially in the
form of well-designed visualization systems—can be worth a whole text collection.
But how large can the resulting mental models actually get and how much
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information can be memorized? How much visualized information can users hold
in their working memory (and later recall from their long-term memory) when
a visualization system gets more complex? This size will very likely depend not
only on the users’ motivation and domain knowledge but also on existing internal
representations they can build on. But the design of the visualization (system) and
the coherence techniques discussed in this chapter also play a decisive role. In this
context, we want to argue for the collective development of a whole catalog of
“templates” for mental macro models and corresponding visualization techniques. It
stands to reason that such an endeavor should combine a more systematic collection
of compound visualization designs (see Sect.3.3.2) with a collection of visual
(macro) metaphors [14], which could help to organize the development of shared
mental macro models in education, organizations, or journalism.

3.4.2 Model Quality, Stability, and Depth of Internalization

A certain challenge for the use of the mental model concept comes from its common
connotation to describe a relatively autonomous and stable entity. However, it is
an open question to which degree of detail, coherence, autonomy, and longevity
internal representations of visualizations actually rise—especially in cases where
the first time users meet complex visualization systems. Even if mental models
are said to form as non-veridic, sketchy, and lightweight frames of a visualization
(Sect.2.2), we can expect significant differences in terms of internal modeling
diligence and coherence for different users in different contexts. In this context,
Tversky [54] suggested the term of cognitive collages for internal representations
which do not cross a certain threshold of consistency and coherence, but rather
appear as a distorted mix-up of partial information. In terms of modeling depth,
it is an open question if (aside from a visualization’s structure and behavior) mental
models also include rich information about the underlying data, since we can
offload these to the visualization, or whether we internally represent also data in
our working memory [27].

3.4.3 Advancement of Story Models

Another conceptual challenge comes from the need to evenly cover internal
representations of static structures and dynamic processes with the mental model
concept. While the differentiation of structural and behavioral mental models
already provides a useful distinction, we think that the behavioral model concept
should be further elaborated and enriched to also cover all kinds of time-oriented
phenomena, including transient sequences, processes, dynamics, or complex stories.
While stories in visualization have been robustly defined as causally related chains
of individual visualizations [25], we consider a rich body of work on narrative



3 Mental Models and Visualization 79

mental models (“story world”, cf. [55, 60]) in the area of text comprehension and
narrative research to provide material for the future refinement of narrative visu-
alization techniques [29]: Recipients usually have a whole repertoire of schemata
on how a story is built, how it progresses, and what its constituents are [51].
These schemata reduce cognitive load and allow stories to be processed fast and
efficiently—not only in texts but also in narrative visualizations. Narrative cues and
coherence indices (information on time, place, protagonist, cause, and goal [59])
direct their attention and help recipients to build up and update a narrative mental
model. On a more abstract level, stories guide recipients through a bigger picture by
providing various sequential links between events or places, or, generally speaking,
between different local data elements.

3.4.4 Modality

Are mental models predominantly visual, verbal, or multimodal structures? Working
memory research distinguishes a visual component (visuo-spatial sketchpad) from
a verbal component (phonological loop) for the separated processing of incoming
information. Mental models have been associated to both modalities but are
more often allocated on the visual side, where they can also flexibly integrate
multimodal information (such as tags, comments, or (narrative) context information
in the case of visualization). Related theories (like the dual coding theory [8] or
integrated models of text and picture comprehension [45]) often suggest a two-
layered architecture with numerous transmodal connections for visual-verbal and
verbal—visual translation. This question is especially relevant for the assessment of
mental models (see [28] for a summary of evaluation techniques from cognitive
science): many evaluations build on some kind of verbal reporting (for instance
from think aloud protocols or interviews), but if a mental model is mainly visual,
are such methods valid? Or do they raise additional cognitive load to translate visual
information to verbal one?

3.4.5 Sharing Mental Models

Visualization design—and the evaluation of internal representations—is frequently
oriented toward the amplification of individuals’ performance. By contrast, we see
a need to go beyond the individual and strengthen research into visualizations as
means for the development of shared mental models—and the need for evaluation
methods able to measure these collaborative efforts. Not only to arrive at more
agreed-upon models (e.g., in collaborative constellations and teams) but also to
become aware of meaningful modeling differences, where the understanding of
complementary roles, perspectives, and positions matter for the understanding of
a complex subject matter. To that end, we also consider “discursive” visualization
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practices a desideratum as a means to collectively construct perspective-rich exter-
nal representations. Such discursive visualizations would make traces and layers
of modeling controversies visible—and thus foster the understanding how and to
which degree visual and mental models of public, complex subject matters actually
converge.

The theory of mental models provides a well-sourced cognitive framework for
visualization design with the potential to translate into a unified and instructive
model-building framework from a distributed cognition perspective. While this
work has been started a while ago [26, 27], it still contains a range of open questions.
This chapter introduced the theoretical background, implications for visualization
design, and suggestions for their future development. As such, this framework might
further unfold its potential to instruct visualization research and teaching—and
to draw attention to general questions of (macro) model development support for
visualization novices and non-experts—which tend to go unnoticed in an expert and
performance-oriented research field.
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Chapter 4 )
Improving Evaluation Using Qe
Visualization Decision-Making Models:

A Practical Guide

Melanie Bancilhon, Lace Padilla, and Alvitta Ottley

Abstract In visualization research, evaluation is a crucial step to assess the impact
of visualization on decision-making. Existing work often gauges how good a
visualization is by measuring its ability to induce accurate and fast judgment.
While those measures provide some insight into the efficacy of a graph, underlying
cognitive processes responsible for reasoning and judgment are often overlooked
when they can have significant implications for visualization recommendation.
Cognitive processes do not need to be a black box. There exists multiple models
that describe decision processes, such as theories from behavioral economics and
cognitive science. In this chapter, we compare and contrast different models and
advocate for the inclusion of cognitive models for visualization evaluation in
the context of decision-making. The goal of this work is to show visualization
researchers the advantages of adopting a more mechanistic approach to evaluation
at the intersection of visualization and cognitive science.

4.1 Introduction

We make decisions based on data every day, ranging from trivial to complex. Such
choices could include when to leave the house to catch the bus, take an umbrella
given the chance of rain, or invest in the stock market given the historical trends.
In many instances, charts and graphs have become an integral part of our decision-
making process. Visualization research has provided valuable insight into perceptual
science and has led to the amelioration of chart design and visualization recom-
mendations. Charts frequently appear in information communication, data analysis,
sensitization campaigns, and even medical diagnostics and can significantly impact
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people’s lives. But all charts are not equal. When a new graph or chart is designed,
it is essential to conduct an evaluation under realistic decision-making conditions to
understand and foresee its effect on real-life decisions.

However, it can be hard to know if an evaluation is close enough to natural
decision-making conditions to provide meaningful insights into the efficacy of a
visualization. One way to conduct rigorously valid evaluations is to understand and
simulate the underlying mental mechanisms at work when a viewer completes the
real-world task. Fortunately, cognitive scientists have extensively studied cognitive
mechanisms responsible for interpreting and misinterpreting visual designs under
different modes of reasoning. For example, dual-process theory posits that there
exists two types of decisions operating under distinct cognitive processes: intuitive
(Type 1) and strategic (Type 2) decisions, which require significantly more effort
than Type 1 [33]. In this chapter, we dive into multiple prominent perspectives of
decision-making. We discuss how the researchers can apply frameworks and models
pertaining to visualization design and evaluation in the context of decision-making.
We propose that dual-process cognitive models are some of the most useful and
easily applied for visualization research. This chapter will be helpful for designers
and visualization researchers looking to adopt a more granular approach to decision-
making and conduct holistic evaluations for better visualization recommendations.

4.1.1 Evaluation Methods for Decision-Making

Research on visualization evaluation is vast and varied [17,43], with high tendencies
toward evaluating visualization based on speed and accuracy in perceptual judg-
ments [64]. A relatively small number of studies have focused on evaluating people’s
visualization-aided decisions. Researchers have investigated how visualizations
impact attitudes toward risk and hypothetical decisions [22, 62]. For example, Ruiz
et al. [62] conducted a study where they asked at-risk patients to decide whether they
would opt for screening based on hypothetical risk information about a disease [62].
They found that people are more risk-averse when presented with icon arrays. Kay
et al. [37] evaluated how well different visualizations communicate the uncertainty
of transit data by asking participants to estimate the likeliness of bus arrival times
on a scale of 0 to 100 [37].

In traditional visualization empirical studies, visualizations are often evaluated
by their ability to prompt accurate and fast responses in behavioral tasks, that
may or may not involve making a decision. While it is common to extrapolate the
appropriateness of visualizations for decision-making through these performance-
based measures, there are less attempts to evaluate visualization designs based on
the quality of the decisions they elicit [51]. Empirical evaluations of visualization
are generally challenging [9, 17, 56]. Thus, one possible reason for the lack of
evaluations with decision-making is that it is generally more straightforward to
gauge effectiveness via the speed and accuracy of perceptual judgments. Consider,
for example, the chart shown in Fig.4.1, which shows a given person’s chance
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Fig. 4.1 A bar chart Surviving your Prostate Cancer
comparing the survival rates after 1 year (81 years old)
after one year of surgery 100% 96%

versus conservative
management for a
80-year-old prostate cancer
patient [23]

surgery conservative

of surviving prostate cancer after one year if they choose to have surgery (e.g.,
radical prostatectomy) compared to conservative treatments (e.g., watchful waiting).
One could evaluate this chart based on how well it facilitates fast and accurate
comparisons of the two quantities, or based on the responses from semi-structured
interviews with prostate cancer patients [23]. Experiment protocols like these are
more straightforward than those that measure decisions because it is feasible to
define a ground truth or expected behavior for the analysis of study findings.

In practice, we often use performance-based findings to inform the selection
of visualization designs, implying that accurate decoding likely leads to better
and more informed decisions. Based on our current understanding of perceptual
judgments, the bar chart in Fig. 4.1 uses position for data encoding, and therefore is
ideal for comparing quantities and seeing small differences [12, 13]. However, one
could reasonably assert that the difference between the survival rates for surgery
(100%) and conservative treatment (96%) is statistically insignificant, but the bar
chart might inadvertently emphasize a potentially minor disparity. Existing studies
show that the ideal visualization depends on the task. For example, the superior
representation for magnitude estimation might not be optimal for part-to-whole
judgments [20, 65, 66]. Some researchers have used simulations to observe the
direct impact of visualization design on decisions. In one study by Bancilhon et
al. [4], participants played a lottery game and chose to either enter the lottery or
receive guaranteed monetary gains based on five standard visualization designs.
They analyzed the quality of the decisions based on economic optimality and found
that people made significantly more risk-seeking decisions with circle and triangle
charts [4] (see Sect.4.3.1.2).

Decision-making is complex and multifactorial. In addition to the graph’s
appropriateness, a patient’s decision to have surgery (or not) will depend on
various factors including illness severity age, commodities, and personal finances.
People are also prone to various cognitive biases [16], and individual differences in
personality and cognitive abilities may also influence usability and choice [40, 53].
At a fundamental level, the decision-maker’s perspective drives the decision, and the
typical approach of defining a ground truth in an evaluation is non-trivial. Despite
this challenge, other fields have demonstrated success in modeling and predicting,
and reasoning about how people make decisions [33, 35, 55, 57]. We argue that
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for visualization to be a practical tool for supporting decision-making, we need to
understand the underlying cognitive processes behind decision-making and adopt a
unifying cross-discipline framework to evaluate visualization in this context.

To aid this discussion, we adapt Balleine’s definition of decision [3]:

A decision is a choice between competing courses of actions [3].

4.2 The Science of Making Decisions

Decisions are governed by complex systems of reasoning that scholars have studied
for decades. Researchers in the visualization community have pursued two dominant
approaches to study decision-making under risk. The first provides a detailed and
quantifiable view of decision-making. It assumes that humans make decisions
rationally by weighing the risk and expected outcome of different prospects, two
factors that can be measured and modeled. The second posits that many factors can
influence decision-making. It proposes that humans make both intuitive (Type 1)
and strategic (Type 2) decisions and that decision-makers usually default to using
intuition. These two distinct types of decisions operate under a dual-process system.
To improve visualization research in the context of decision-making, it is crucial to
understand the meaning and implications of decision-making under both umbrellas.
We structure this chapter around two prevalent approaches: The Utility-Optimal
Perspective and The Dual-Process Perspective.

4.3 The Utility-Optimal Perspective

Behavioral economists have long studied how people make choices under risk by
investigating prospects or gambling scenarios. A prospect is a contract:

[(x1, p1)s (X2, p2), - - s (Xns )], (4.1)

which yields x; with probability p;, where ) 7_, p; = 1 [35]. Prospects provide a
simple model for understanding risky decisions. The classical method for evaluating
a gamble is through assessing its expected value. The expected value of a prospect
is the sum of the outcomes where the probabilities weigh each value:

n
ev = Zpixi. (4~2)
i=1
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Consider the gambling scenario from Kahneman and Tversky’s book [35]:

Which do you prefer?
Option A: 50% chance to win $1000, 50% chance to win $0
Option B: $450 for sure

The expected value of option A is 500 (.5 x 1000 + .5 x 0) and the expected
value of option B is 450 (1 x 450). A rational decision-maker would then choose
option A over option B. However, most people would choose the sure payment of
$450. This example highlights the perhaps obvious conjecture that humans are not
always rational [35].

Expected Utility Theory (EUT) is one of the foundational theories of decision-
making and has served for many years as both a model describing economic
behavior [21] and a rational choice model [38]. In particular, it states that people
make choices based on their utility—the psychological values of the outcomes. For
instance, if a person prefers an apple over a banana, it stands to reason that they
would prefer a 5% chance of winning an apple over a 5% chance of winning a
banana. Using EUT, we can assess the overall utility of a gamble:

EU =Zp,-u(xi), (4.3)

i=1

where the function u assigns utility to an outcome. We sum the utilities u of the
outcomes x; weighted by their probabilities p;. This model has its limitations.
It also assumes that humans are consistent and primarily decide on prospects
based on their utility [35, 69]. Nevertheless, EUT provides a standardized tool for
researchers to evaluate peoples’ behavior when choosing among risky options and
is the foundation for the other dominant theory in behavioral economics, Prospect
theory [35].

Unlike EUT, prospect theory embraces the human factors present in decision-
making. Kahneman and Tversky [35] are the pioneer contributors to this knowledge
on bias in decision-making. For example, in their early work, they found that 72
out of 100 experiment participants favored the option of getting $5000 with a
probability of 0.001 (e.g., a small probability event) over the prospect of getting
$5 for sure [35]. Both options have the same expected value, yet most participants
favored the probability associated with getting $5000. In its simplest form, we can
represent the equation for prospect theory as

V=Y m(p)vx), (4.4)

i=1

where the function v assigns value to an outcome and the function 7 is a probability
weighing function that encodes the idea that people are likely to overreact to small
probabilities and underreact to large probability events. In summary, prospect theory
stipulates that (1) people tend to favor the option of getting a large gain with a small
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probability over getting a small gain with certainty and (2) people tend to prefer a
small loss with certainty over a large loss with tiny probability.

4.3.1 Using Utility-Optimality to Evaluate visualizations

Visualization researchers have leveraged utility-optimal theories to investigate
how visualization impacts decisions under risk. By approaching decision-making
from this angle, they create an environment where choices have weights, and
their evaluation considers the utility-optimal option. We highlight two empirical
studies from the visualization community and examine their experimental design,
methodology, and research questions. We will begin with a recent publication
investigating the impact of uncertainty visualization design by simulating a fantasy
football scenario.

4.3.1.1 A Fantasy Football Study

Kale et al. [36] leveraged utility-optimal theories to observe effect size judgments
and decision-making with the four uncertainty visualizations. They used a fantasy
football game to elicit decisions under risk. Participants were shown the number of
points scored by a certain team with and without the addition of a new player. First,
they asked participants to estimate a measure of effect size by asking the following
question: “How many times out of 100 do you estimate that your team would score
more points with the new player than without the new player?”. They also asked
participants to make binary decisions indicating whether they would Pay for the new
player or Keep their team without the new player. On each trial, the participant’s
goal was to win an award worth $3.17M, and they could pay $1M to add a player to
their team if they thought the new player improved their chances of winning enough
to be worth the cost.

They tested four uncertainty visualizations: 95% containment intervals, hypo-
thetical outcome plots (HOPs), density plots, and quantile dot plots, each with
and without means added. They found that while adding means to quantile dot
plots produced significantly more utility-optimal decisions at low variance, it had
no reliable effect on bias in magnitude estimation. Similarly, adding means to
HOPs caused significantly more bias in magnitude estimation across both low and
high variance but had no reliable effect on decisions. By evaluating uncertainty
visualizations using utility-optimality, Kale et al. [36] observed a decoupling of
performance across tasks, where the visualization designs that support the least
biased effect size estimation do not support the best decision-making and vice versa.
The authors attribute this inconsistency to the reliance on different heuristics across
the two different tasks, consistent with Kahneman and Tversky’s theory [35]. This
finding highlights the value of leveraging utility-optimal theories when studying
visualization for decision-making.
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4.3.1.2 A Classic Lottery Game

Many studies that leveraged utility-optimal decision-making theories employed
tasks with hypothetical gains and losses (e.g., [10, 31, 36, 49]). However, it is unclear
if people make the same risk judgments when gains and losses do not tangibly affect
them. To evaluate visualization decision-making with greater ecological validity
(i.e., more closely matching real-world conditions), Bancilhon et al. [4] created a
gambling game that immersed participants in an environment where their actions
impacted the bonus payments they received. The experiment investigated the effect
of five charts on decision-making. Replicating the experiment design of prior work
in the economic decision-making domain [8], the researchers presented participants
with two-outcome lotteries: take the sure gain or gamble at a risk. The experiment
employed a point system for payoff quantities where 1 point equaled $0.01. The
probabilities, p;, were drawn from the set P = {.05, .1, .25, .5,.75, .9, .95} and the
outcomes x| and x; ranged from 0 to 150 points ($0 to $1.50).

Figure 4.2a shows an example of the lottery sheet used in the study. At the end
of the experiment, the game randomly selected one row from each of the 25 lottery
sheets that they saw, and the participant’s choice in that row determined their bonus.
If the participant chose the sure payout in the selected row, their bonus increased
by that amount. If they opted to enter the lottery, the game simulated the lottery to
determine the payment, with the potential gains and the probabilities as parameters.

Overall, the findings from the study [4] validate that we can use utility-optimal
theories to evaluate visualization designs, and that the latter can influence gambling
behavior. They had three major findings. First, the icon array was most likely to
elicit risk neutrality and is, therefore, the most effective design for decision-making.
Second, they found that participants who saw a bar chart exhibited behavior that
was slightly risk-averse, mirroring behavior in the control text-only group. Third,
the triangle chart and circle chart elicited risk-seeking behavior with the greatest
deviation from risk neutrality. It is important to note that these findings are in
line with the magnitude estimation from the prior literature [13] that shows that
proportion estimates with bar charts are more accurate than with triangle and circle
charts.

4.3.2 Qutlook on Using Utility-Optimal Theories for
Visualization Evaluation

Although we only highlighted a few studies in this section, it is essential to note
that other researchers have also examined decision-making with visualization using
a similar framework (e.g., [10, 26, 31, 49, 71]). For example, Padilla et al. [49]
conducted a scenario where participants made resource allocation judgments by
comparing the cost of sending cold-weather aid to alpaca farmers in Peru who
were at risk of losing their livestock due to cold temperatures and the expected
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Instructions: Rriwious e

Bonus: We will determine your bonus by randomly drawing one of the lottery sheets. Your bonus will depend on
how you answer the question. (1 lottery point equals 1 cent)

Sheet 10f 25 Clear Selections  Next Sheet
Lottery:

The chart on the left shows the lottery probabilities:
chance 1o win 1000 points

chance to win 0 points

Which do your prefer?

Enter the lottery, or @ Get 1000 points for sure
Enter the loftery, or @ Get 950 points for sure
Enter the lottery, or © Get 900 points for sure
Enter the lottery, or @ Get 850 points for sure
Enter the lotiery, or () Get BOO points for sure
Enter the lottery, or @ Get 750 points for sure
Enter the lottery, or © Get 700 points for sure
Enter the lottery, or @ Get 650 points for sure
Enter the lottery, o @ Get 600 points for sure
Enter the lottery, or ) Get 550 points for sure

O e OO SRR We will simulate the lottery
and randomly pick a row.

© Enter the lottery, o Get 250 points for sure

© Enter the lottery, or  Get 200 points for sure Your bonus depends on
otk il your selection for that

O Enter the lottery, or  Get 50 points for sure row. (a)
icons triangle bar

pie circle
(b)

Fig. 4.2 The charts and lottery sheet used in the study by Bancilhon et al. [4]. Participants played
a gambling game in which their choices determined their bonuses

value of the penalty for not sending aid, resulting in the deaths of alpacas (see
also, [10, 31]). Perhaps most importantly, for visualization evaluation, the utility-
optimal perspective provides a tractable approach to quantifying and modeling
decision-making under risk. In both Kale et al.’s and Bancilhon et al.’s studies
[4, 36], the researchers leveraged the framework to isolate the effect of visualization
design. In some cases, their results suggest that using visualizations might help to
reduce biases and guide people towards utility-optimality [4].
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It is typical for researchers to design games or simulations to observe people’s
decisions in action. In many cases, it is difficult, if not impossible, to test the impact
of visualizations on decisions in real life as it may give rise to safety, health, and
ethical issues. For example, it might be unsafe and unethical for a gambling game to
test the effect of visualizations that communicate information about a severe health
condition that a participant has or a natural disaster affecting the participant at the
time of the study. The utility-optimal framework using the situational scenarios in
the two studies [4] and [36] provides a good test bed for evaluating visualizations
for decision-making. In order to apply this framework to behavioral studies, there
needs to be a cost associated with each course of action. The utility-optimal decision
should be defined as the one where prospective gains are maximized and losses are
minimized. By quantifying user choices and comparing them to the utility-optimal
decision, we can infer the risk behavior elicited by the visualization design. It is
important to take into account people’s patterns of risk behavior since humans do
not normally default to risk neutrality regardless of the type of representation used.
By providing an incentive to decision-makers, such an experiment design can more
closely mimic real-life choices over hypothetical decision scenarios.

‘While Bancilhon et al. [4] have shown that the visualizations that lead to better
accuracy also induce more optimal decisions, Kale et al. [36] have shown that the
visualization designs that lead to the least bias did not lead to the most optimal
decisions and vice versa. First, this shows that task and visualization choice matter
in evaluation. Second, it raises an important question: how do we define the best
visualization when accuracy and utility-optimal decisions are inconsistent? In Kale
et al’s study [36], one approach to determine the best uncertainty visualization
would be to pick the one with the best compromise between high accuracy and
optimal decision-making. Huang et al. [27] have developed a model of visualization
efficacy that includes speed, accuracy, and cognitive load, which is often overlooked.
One way forward could be to refine this model to include decision-making. Another
approach would be to simply not attempt to choose a single best visualization for
reasoning about uncertainty. Kale et al. [36] have shown that different visualizations
are best for different tasks. There needs to be a common recognition in the
visualization community that a one-size fits all approach could be obsolete.

Furthermore, using utility-optimality for visualization evaluation raises another
crucial question: how do we define the best decisions? Some would argue that
rationality should be the golden standard since it maximizes the potential outcome.
Bancilhon et al. [4] question whether or not that should be the case. If the goal is
rationality, their findings suggest that the icon array was the most likely to elicit risk-
neutral choices. However, since people make decisions according to their personal
inclination to risk, there might be a cost in attempting to steer them toward utility-
optimality. Perhaps an ideal visualization should support the users in making a
decision based on their individual risk behaviors.

In the next section, we examine a different perspective on decision-making,
positing that humans default to intuitive reasoning when making decisions. We
discuss working memory as a metric for usability in visualization decision-making
(Fig. 4.3).
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Fig. 4.3 An illustration of
Type 1 and Type 2 reasoning
as conceptualized by Tversky
and Kahneman [33]. Type 1,
our intuitive system, is at the
forefront of decision
processes, while Type 2, our
analytic system, operates
secondarily

Working memory consists of various mental components that can hold a
limited amount of transformable information for a finite period [14]. In
visualization research, working memory is commonly associated with mental
effort [47]. Note that there is an ongoing debate on the definition of working
memory [14]

4.4 The Dual-Process Perspective

In addition to the biases associated with gains and losses (e.g., prospect theory),
many other cognitive biases are involved when making decisions under risk. One
perspective that describes a large body of biases proposes that people rely on
quantitative reasoning and gist-based intuition—two systems that operate in parallel
[33].

Daniel Kahneman published a book entitled Thinking Fast and Slow, where
he summarized decades of research on a dual-system of decision-making [33]. In
his earlier work, his collaborators and himself differentiated between two types
of processing systems, termed System I (or intuition) and System 2 (or reasoning)
[32] (later termed Type 1 and Type 2). Type 1 processing guides our intuition and
recognition patterns, which occur automatically without effort. In contrast, Type
2 processing is responsible for analytical thinking and requires directed effort to
use [33].

Dual-Process Theory introduces a reasoning model that formalizes the differ-
ences between Type 1 and Type 2 and their impact on decision-making [34, 67].
Proponents of Dual-Process Theory posit that most decisions stem from intuitive
thinking rather than rational and calculated thinking [33]. Type 1 reasoning involves
fast and intuitive thinking, while Type 2 is a slow and analytical method of thinking.
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Scholars propose that Type 2 processing uses significant working memory, while
Type 1 only uses negligible working memory [18]. Using this definition, the
researchers can determine when people are using Type 2 processing by identi-
fying when people show an increase in working memory demand. Visualization
researchers have demonstrated how to measure an increase in working memory
demand using pupillometry (e.g., dilation of pupils [47]), dual-tasking (e.g., doing
two tasks a once [11, 47]), individual differences measures (e.g., working with
participants with high- and low-working memory capacity [10]), the NASA-TLX
(e.g., self-reported work-load [10]), and electroencephalography (e.g., neuroimag-
ing [1]). Type 1 is at the forefront of cognitive processes, and it often requires
significant effort to switch from Type 1 to Type 2 in order to avoid cognitive
biases and misleading heuristics. Despite utilizing different strategies, dual-process
theories propose that the processes do not necessarily occur in separate cognitive or
neurological systems [19].

Other frameworks have adapted the general dual-process perspective as well.
Notably, Reyna and Brainerd introduced Fuzzy Trace Theory (FTT) [58]. The theory
posits that people form two types of mental representations from information: Gist
and Verbatim representations. A verbatim representation is a detailed representation
of an event that often comprises precise numbers and facts. Gist representation, on
the contrary, is vague and high-level and captures the essential meaning of informa-
tion. FTT asserts that people make decisions by extracting meaning from verbatim
input to make a gist-based judgment. According to Reyna and Brainerd [58],
the human memory contains various reasoning-relevant information, ranging from
preserving the exact form of input or only retaining abstract representations. People
operate somewhere between the highest level of gist and the highest level of
verbatim, on a gist-to-verbatim continuum [58]. Typically, humans rely on the least
precise gist representation necessary to make a decision, and this characteristic is
generally referred to as “fuzzy processing preference” [58].

Although there is a long history of theories on dual-processes, the high-level
ideas are similar. They assert that there are two kinds of reasoning. One is implicit,
intuitive, and unconscious, and the other is explicit, conscious, and slow. For
simplicity, we will refer to this general class of theories as Dual-Process theories.

4.4.1 Dual-Process in Decision-Making

Fuzzy Trace Theory states that people make decisions by extracting meaning
from verbatim input to make a gist-based judgment. Because precision is often
associated with accuracy, many believe that quantitative reasoning is superior to
qualitative reasoning. However, in some cases, fuzzy representation of information
does not affect reasoning accuracy [60]. Reyna and Lloyd [59] have shown that
experts in the medical field tend to engage more in gist-based decision-making than
novices. Tversky and Kahneman made the argument that intuition is a synonym for
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recognition [33]. Experts recognize familiar situations and can therefore make fast
and accurate decisions even when they are complex.

Although Type 1 has been proven to be efficient [59, 60], it is also more sus-
ceptible to false first impressions and framing effects [33]. Consider the following
question:

A bat and ball cost $1.10. The bat costs $1 more than the ball. How much does the ball cost?

More than 50% of students at Harvard, Princeton, and the Massachusetts Institute
of Technology routinely gave the incorrect answer, insisting the ball costs 10
cents [33].! Type 1 is at the forefront of cognitive processes, and in order to obtain
the correct answer, a switch from Type 1 to Type 2 is required to overcome cognitive
biases.

Before the acknowledgement of the role of Type 1, many believed that Type 2
was solely in charge of decision-making operations. Expected Utility Theory posits
that people make decisions rationally, using Type 2 to compute the utility of events.
The recognition of dual modes of reasoning lead to the development of prospect
theory [35] (see Sect. 4.3) and revolutionized decision-making research.

4.4.2 Dual-Processes and Visualization Evaluation

In the medical field, researchers have investigated the impact of visualization design
on gist reasoning. For example, Feldman et al.’s first goal [20] was to investigate
which graphical formats induced the most accurate perception of quantitative
information in patients making treatment decisions. Second, they inquired about the
formats that facilitate processing. The authors highlight the importance of ease of
processing, especially when the patient feels overwhelmed by the diagnostic. They
conducted an experiment to test the performance of variations of 6 visualization
formats. Participants had to minimize how long the visualizations appeared on the
screen while remaining accurate when answering questions about the charts. They
were shown two quantities and were asked to make a gist judgment by choosing the
one that showed the larger chance of survival or the smaller chance of side effects.
They were also asked to make a verbatim judgment by determining the size of the
difference.

In this study, Feldman et al. [20] used response time as a proxy for ease of
information processing. Their results suggest that systematic ovals, which encode
data in a natural frequency format, are likely the format that represents the best
compromise for accurate processing of both gist and detailed information while
also demanding relatively little effort. Similarly, Hawley et al. [24] conducted an
experiment investigating gist and verbatim reasoning through similar comparison

I'The correct answer to this problem is that the ball costs 5 cents and the bat costs —at a dollar
more— $1.05 for a grand total of $1.10.
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and estimation tasks. They found that viewing a pictograph was associated with
adequate levels of both gist and verbatim knowledge and that superior medical
treatment choices were made in both cases.

In their work, Feldman et al. [20] question the overall effectiveness of vertical
bars with scales, which was the best visualization for gist reasoning. The authors
state that many patients demand detail-level information, and they defined the best
visualization as the one that is effective in eliciting both types of reasoning. While
this prior work gives evidence that charts using natural frequency encoding perform
better under both gist and verbatim reasoning in comparison tasks, further research
is required to examine whether the findings are generalizable to other tasks.

4.4.3 Qutlook on Using the Dual-Processing Approach
Jor Visualization Evaluation

While the Expected Utility Framework provides a method to mathematically model
decisions, the Dual-Process framework is not straightforward. Feldman et al. [20]
and Hawley et al. [24] have studied how visualization affects Type 1 and Type
2 reasoning in a comparison task. Note that it is possible for both processes to
be used to make a decision. In their respective work, they posit that a magnitude
estimation task brings about Type 2 reasoning, whereas asking the participant to
make a comparison choice triggers Type 1 reasoning. If we apply this inference
to Bancilhon et al’s lottery game study [4] in Sect.4.3.1.2, their results are
consistent with Feldman et al.’s work [20] since the icon array outperforms the
other visualizations in the decision task. Considering Kale et al.’s fantasy football
study [36] in Sect.4.3.1.1, which observed a magnitude estimation task and a
decision task, it is possible that the selected visualizations have different effects
under Type 1 and Type 2 reasoning.

However, our conclusions are solely based on the assumption that the tasks used
actually elicit two distinct types of reasoning. To further research in this area, we
need to answer the following research questions, which are core to understanding
the role of visualization in decision-making:

* How does the mode of reasoning influence decision-making when using visual-
izations?
» Can different visualizations elicit different modes of reasoning?

It is crucial to understand how people make decisions from visualizations.
Understanding whether a visual encoding facilitates gist or verbatim reasoning
can have enormous implications for visualization designers. By expanding our
knowledge in this area, we can tailor visualizations to our audience or a specific
problem area. Bridging the gap between how psychologists and visualization
researchers reason about decision-making can revolutionize how we evaluate and
design visualizations.
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Such knowledge can have massive implications for visualization designers. For
example, visualizations can be tailored and personalized to a specific problem area
or level of audience expertise. Some visualizations are only seen for a short time
so we need a quick way of displaying information so that people get the gist of it.
Moreover, some people might be more prone to gisting and others to probabilistic
reasoning. Factors such as numeracy and spatial ability likely play a role.

Further investigations are needed to understand how people reason under this
dual mode and how it affects their decisions. In the following sections, we examine
cognitive models of decision-making with visualization and advocate for their
integration into visualization research to deepen our understanding of decision-
making processes with different charts.

4.5 Cognitive Models of Decision-Making with Visualization

Cognitive models are an integration of approaches and can be illustrated as process
diagrams that conceptualize their mechanisms processes. By applying a cognitive
model to a problem, a visualization researcher can better understand, model, or even
evaluate the interaction between the user and the visual design at a cognitive level
of analysis, as opposed to strictly behavioral. Before diving into the integration of
a dual-process approach into decision-making research with visualization, we must
first understand how the mind perceives and understands visualization. Pinker [55]
proposed a cognitive model depicting the distinction between two mechanisms in
graph comprehension: bottom-up and top-down mechanisms [55].

Bottom-up processing is when the mind is directly influenced by a visual
stimulus which is utilized to construct a visual description.

Top-down processing is based on the viewer’s goals, experiences, and other
individual differences.

Prior knowledge about the graph is then retrieved from long-term memory in
the form of an established graph schema. It is essential to point out that with
familiar charts, the visual schema will be retrieved from memory faster and more
efficiently, facilitating Type 1 reasoning [48]. This match process also occurs when
visual properties are altered. The viewer then retrieves the graph schema that is the
most similar to the visual array. When a graph schema is retrieved, the viewer uses
the information from the graph schema to interpret the visualization. Bottom-up
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attention is influenced by saliency in the visualization design. Features that attract
bottom-up attention are color, edges, lines, and foreground information.

Graph schema is memorized graphic conventions [55].

When external factors impact knowledge retrieval, the viewer is considered to
be taking a top-down approach. Top-down attention is based on the viewer’s goals,
experiences, and other individual differences. There are other factors that can affect
visualization comprehension, such as the nature of the task. Viewers may need to
transform their mental representation of the visualization based on their task or
conceptual questions, and working memory plays are central role in the process
(Fig.4.4).

4.5.1 Padilla’s Dual-Process Model and the Importance
of Working Memory

Padilla et al. [48] devised a model that combines theories of visualization compre-
hension, decision-making, and working memory. The motivation for this work is
the lack of formalization of research from different fields, making it difficult for sci-
entists to integrate cross-domain findings. The authors explored a cognitive model
of decision-making with visualizations and provide practical recommendations for
visualization designers.

In the previous section, we defined two types of graph comprehension mech-
anisms: bottom-up and top-down. The understanding of these two mechanisms is
crucial in the understanding of Padilla’s Dual-Process Model, with the addition of
working memory, which are the mental processes associated with effort [48].

Padilla et al. [48] assert that working memory plays an important role in decision-
making, but it is often overlooked by visualization researchers as an evaluation
factor. Before diving into how working memory is involved in the dual reasoning
system, let’s look at some of its properties. It is important to note that working
memory capacity is limited [42, 63]. Working memory also increases with task
difficulty and diminishes over time. Researchers such as Cowan et al. [15] suggest
that our ability to store information begins to decay after approximately 5-10
seconds, depending on factors such as the task, type of information, and individual
differences in working memory capacity. One property of working memory capacity
that is relevant to dual-process theory is that it limits the amount of attention we can
allocate to task-relevant information [48].

Padilla et al.’s model [48] suggests that when we deliberately employ working
memory in our decision-making process, we can make slower and more strategic
but cognitively demanding decisions with visualizations. In other words, working
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Fig. 4.4 An illustrative example of Type 1 versus Type 2 decision as characterized by Padilla et
al.’s model [48]. (a) An example of a Type 1 decision process in which the viewer is tasked with
computing the average of the two bars in the graph. A Type 1 approach might make a quick guess
of the middle point between the two bars. (b) An illustration of a Type 2 decision process. The
task is the same as subfigure (a) above. In this example, the viewer takes a slower approach and
estimates the length of each bar. They then compute the average of the two values w. Type 2
activates working memory and can lead to a more effortful but precise estimate if done correctly

memory is what we use to switch from Type 1 reasoning (requiring nominal working
memory) to Type 2 (requiring significant working memory). As described in the
previous section, both Type 1 and Type 2 reasoning can be used to complete the
decision step. Differences in working memory capacity can influence judgments
and consequently decision-making. Lohse [41] found that when participants made
judgments about budget allocation using profit charts, individuals with less working
memory capacity performed equally well compared to those with more working
memory capacity when they only made decisions about three regions (easier task).
However, when participants made judgments about nine regions (harder task),
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individuals with more working memory capacity outperformed those with less
working memory capacity. Other work finds that participants with low-working
memory capacity make more accurate resource allocation decisions when using
density plots and quantile dot plots compared to 95% confidence intervals, point
estimates, or textual expressions of uncertainty [10]. Furthermore, participants with
high-working-memory capacity were most accurate with quantile dot plots and
reported less effort than all other tested methods. This work suggests that 95%
confidence intervals, point estimates, are textual expressions of uncertainty require
more working memory than densities and quantile dot plots [10]. The results of
this study suggest that individual differences in working memory capacity primarily
influence performance on complex decision-making tasks [10, 41].

4.5.2 Outlook on Using Cognitive Models in Visualization

Padilla et al.’s cognitive model [48] in Sect.4.5.1 formalizes the implications of
this dual mode of reasoning for visualization research. This cognitive model is an
integration of multiple theories and takes a holistic approach to modeling decision-
making with visualization. Applying this model can have a significant impact
on design and evaluation of visualization interfaces. We provide some practical
guidance for designers and visualization researchers on how to leverage visual
features to generate Type 1 or Type 2 reasoning and evaluate visualization designs
from a dual-process perspective.

One of the reasons why visualizations are so prominent is because they seem
effortless. In other words, to design charts that bring about accurate, fast, and
effortless reasoning, there needs to be a conscious effort to incorporate design
principles that elicit bottom-up attention on task-relevant information. Padilla’s
model proposes that bottom-up attention is associated with Type 1 reasoning and
top-down attention is more likely to generate Type 2 reasoning. Using this principle,
Padilla et al. allow us to examine core design questions and provide guidelines to
elicit either reasoning type by altering visual features.

Modeling visual attention is an important area of research in psychophysics,
computational modeling, and neurophysiology (see a review of existing work by
Borji and Itti [7]). When making a choice, the decision-maker must first decode
the visualization via their visual system [70]. One way to elicit bottom-up attention
is to align visual features to the users’ existing graph schema. Figure 4.5 shows a
figure from Padilla et al. where at first glance, it might appear that the introduction
of the predator species caused a decline in the population of disease X [48]. If
we look more closely at the graph, we notice that the y-axis is flipped and the
predator species in fact contributed to the growth of species X. When decoding
a visualization, we search our long-term memory for knowledge about how to
interpret the chart and retrieve the graph schema that is the most similar. Altering
graph conventions can cause errors because the graph schema will no longer match
the chart. For example, multiple studies find that when the y-axis is inverted people
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consistently come to the wrong interpretation of the chart [52, 72]. These errors are
likely due to our reliance on graph schema to interpret graphs so much so that we
do not notice when the schema does not match the chart.

One of the main design features that can affect decision type is saliency.
Numerous studies showed that salient information in a visualization draws viewers’
attention (e.g., [25, 25, 30, 45, 50, 61, 68]). First, it is important to identify the main
piece of information that needs to be communicated and then we can direct the
user’s attention to this information using visual features. There exist behaviorally
validated saliency models to determine the prominence of different visual encodings
that will attract viewer’s bottom-up attention, e.g., [28-30]. There is a long history of
using saliency algorithms in computational imagery. For example, pioneering work
by Koch and Ullmnan [39] created a saliency map—a two-dimensional topological
map that encodes conspicuity across the entire scene. The central thesis of their work
is that salient features within a stimulus “stand out,” thus attracting overt attention.
There have been some attempts in the visualization community to use this general
principle to model visual attention in exploratory search tasks [45]. Still, future work
is needed to model attention in the context of decision-making.

A critical component of Padilla et al.’s model is the principle that working
memory is vital for Type 2 processing [48]. It is possible to gain insight into the type
of decision-making generated by a visualization by measuring the user’s working
memory capacity. The amount of working memory generated by a task is commonly
referred to as cognitive load. Remember that Type 1 reasoning does not require
significant working memory contrarily to Type 2. There exists some prior work
where the researchers have used measures of working memory to evaluate ease of
use of visualization. Borgo et al. challenged traditional notions about chart junk
and showed that embellishments do not generate higher cognitive load compared to
other visualizations. By using a dual-task paradigm to evaluate different charts, they
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were able to evaluate differences in working memory elicited by different charts
[6] by observing the dual-task cost. Dual-task cost is described as the decrease in
performance between single and dual tasks. When the user completes two tasks
simultaneously, significant memory is required, and by comparing dual-task cost
across representations, differences in cognitive load can be inferred. There are a
number of other ways to measure working memory. Castro et al. investigated the
effect of various uncertainty visualizations on working memory using an operation
span (OSPAN) task as part of a dual-task paradigm as well as self-reported
measures [10]. They found that quantile dot plots and density plots are equally
effective for low-working-memory individuals, while quantile dot plots elicit more
accurate responses with less perceived effort for high-working-memory individuals.
Moreover, Peck et al. used fNIRS to evaluate information visualization interfaces
and found no difference in cognitive load in bar graphs and pie charts [54]. Other
physical methods include electroencephalogram (EEG) [2] and pupillometry, which
has shown high levels of correlation with working memory [47].

To summarize, two practical ways to elicit decision type are to design according
to graph schema and saliency. For example, to elicit Type 1 reasoning, some
elementary steps include verifying that your visualization does not violate any
graphical conventions and brings forward important information using salient visual
features. To examine decision type, one can observe working memory through self-
reported measures, behavioral, and psychological methods. Padilla et al.’s model
[48] is the most updated description of decision-making with visualizations, and
we advocate that research incorporates this model when evaluating visualization
design. Although we examined various decision-making models that appear in prior
literature, they do not describe the entire visualization decision-making process
using dual-process theory. For example, other models do not account for how
framing effects of the visual or textual data might influence decisions [46]. Other
factors such as individual differences (e.g., working memory capacity or spatial
ability) can mediate the decision process [40, 44, 73] but are not encompassed in
other models. Numerous researchers have voiced the importance of diversifying
evaluation measures in the field of visualization [5], which is possible when using
a cognitive framework. Ultimately, this chapter advocates for measures beyond
the traditional usability measures, which capture how and why the brain processes
visualizations.

4.6 Conclusion

Adopting decision models can have a significant impact on chart design and
visualization evaluation. For instance, measuring working memory will diversify
visualization research by tailoring chart design to individuals with varying levels
of working memory capacity. Knowledge about dual-process reasoning and insight
into cognitive load will enable tailoring visualization design to various tasks.
We assert that for visualization to be reliably effective in real-world decision-
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making settings, research should consider leveraging existing decision theories
when evaluating visual designs. We reviewed various utility-optimal theories, dual-
process models, and cognitive science frameworks and discussed existing and future
directions for visualization research. Much of the work discussed in this chapter
raises valid concerns about evaluation paradigms that emphasize speed and accuracy
measures. Overall, we advocate for evaluation techniques that go beyond traditional
usability measures for better theoretical and practical advancements.
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Chapter 5

Supporting Diverse Research Methods Qe
for Observing Huge Variable Space

in Empirical Studies for Visualization

Alfie Abdul-Rahman, Min Chen, David H. Laidlaw, and Brian Fisher

Abstract In each of the last 5 years, a few dozen empirical studies appeared in
visualization journals and conferences. The existing empirical studies have already
featured a large number of experimental variables. There are many more variables
yet to be studied. While empirical studies enable us to obtain knowledge and insight
about visualization processes through observation and analysis of user experience,
it seems to be a stupendous challenge for exploring such a huge variable space
at the current pace. In this chapter, we discuss the implication of not being able
to explore this space effectively and efficiently and propose means for addressing
this challenge. In particular, we first reason the need for more empirical studies
to examine hypotheses about how the “mind” works in visualization and visual
analytics (VIS) processes. We then outline several progressive approaches to address
such needs. We argue that an important aspect that the VIS research community
can learn from psychology is to increase the diversity of publications in studying
the “mind.” We observe the changing definitions of empirical research papers in
IEEE VIS conferences over the past two decades, suggesting an existing trend of
increasing the diversity of publications in the field of VIS. We present some statistics
about paper types in a number of psychology journals, showing an extensive range
of empirical research in terms of paper types. Our analysis supports the arguments
for studying the “mind” in the context of VIS, for providing empirical research in
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VIS with a diverse range of paper types, and for further developing the synergy
between VIS and psychology.

5.1 Introduction

Many controlled and semi-controlled empirical studies have provided empirical
evidence to compare and measure effectiveness and efficiency of different visualiza-
tion techniques (or approaches, algorithms, systems, workflows, and so on). Some
have provided support to existing theories or models for visualization and visual
analytics, while several have challenged some commonly known assumptions,
wisdoms, and guidelines. Most of such studies consist of one or a few experiments,
each features a few independent and dependent variables. One might wish for
empirical studies to capture all possible independent variables that may be featured
in commonly used visual representations and all dependent variables that could
be used to measure the performance of typical visualization tasks. However, the
sheer number of these variables presents a hindrance to any controlled or semi-
controlled studies. On the other hand, distributing these variables to many studies,
each focusing on a few variables, demands a large research community and a lot of
resources.

Recently, Abdul-Rahman et al. conducted a survey of 32 empirical study papers
[2] in the field of visualization and visual analytics (VIS). They identified 64 types
of independent variables and categorized them into five classes. The first four classes
(56 types) all focused on visual signals, while the fifth class (8 types) focused on
non-visual variables (e.g., task, teaching method, etc.). They observed that “there
is no shortage of studies on independent variables in each category,” but “there
are many more research questions yet to be asked or answered, and the scope of
visualization-related empirical studies is huge.” They concluded:

“It may thus be desirable for the visualization researchers who conduct empirical
studies to be more coherently organized, instead of being distributed sparsely
in InfoVis, SciVis, VAST, and other areas of visualization. This will allow these
researchers to share their expertise (e.g., in the review processes) more easily
and to formulate research agenda in a more ambitious and structured manner.”
“By providing some opportunities to bring all these researchers together, we may
soon see the emergence of a new area of visualization psychology.”

This echoes an earlier observation in another survey [1]: “There are many branches
of applied psychology ... One has to ask that ‘is there a room for visualization
psychology?’ ” In this chapter, we provide further discourse on how to address the
huge variable space in visualization psychology.

In Sect.5.2, we present our observation of the traditional focuses of empirical
research in VIS on hypotheses about the artifacts in visualization images and the
needs for more empirical studies to examine hypotheses about how the “mind”
works in VIS processes. In Sect.5.2.3, we outline several progressive approaches
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to address the need for more studies on the “mind.” We argue that an important
aspect that the VIS research community can learn from the discipline of psychology
is to increase the diversity of publications in studying the “mind.”

In Sect. 5.3, we first observe the changing definitions of empirical research papers
in the IEEE VIS conferences over the past two decades and recognize an existing
trend of increasing the diversity of publications in the field of VIS. We then present
some statistics on paper types in a number of psychology journals, showing an
extensive range of empirical research in terms of paper types. This indicates that
studying the “mind” is facilitated by a diverse range of research activities, which
need to be reported and disseminated in publications of a diverse range of paper
types.

In Sect. 5.4, we summarize the arguments for studying the “mind” in the context
of VIS, for providing empirical research in VIS with a diverse range of paper types,
and for further developing the synergy between VIS and psychology. In addition, we
propose a set of criteria for evaluating empirical research papers, including artifact-
and mind-focused empirical study papers.

5.2 Observations

The main obstacles to the scalability of empirical studies in visualization include (i)
the relatively small number of visualization researchers who design and conduct
empirical studies, (ii) the complex variations in visualization in a combinatoric
manner, and (iii) the narrow hypothesis-based experimental design suitable for
publication requirements. A new area of visualization psychology may adopt the
following strategies to help overcome these obstacles.

5.2.1 More Experimental Scientists

Building on the references collected by Lam et al. [26], Kijmongkolchai et al. [24],
Fuchs et al. [15], and Roth et al. [28], Abdul-Rahman et al. surveyed 129 papers
on visualization-focused empirical studies [1] until 2018. Their statistics show that
on average the Journal of Psychological Review published about 38 papers per
year between 1978 and 2018, while the average number of visualization-focused
empirical studies is about 12 per year between 2010 and 2018. Considering that a
Wikipedia page [33] lists 144 psychology journals, empirical studies that focus on
visualization and visual analytics are drops in the ocean.

The situation is unlikely to improve substantially within the field of visualization
and visual analytics (VIS) as the overall number of scientists, researchers, and
practitioners is small, while a large portion of them are busy with other sub-areas,
such as applications, systems, algorithms, designs, theories, and so on.
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Having Visualization Psychology as an interdisciplinary field and a branch
of applied psychology can potentially attract many researchers in psychology to
design and conduct experiments focused on or closely related to visualization. One
important step to develop the synergy between VIS and psychology is to give an
adequate emphasis on cognition in VIS research. In other words, there are needs for
more studies on the “mind.”

5.2.2 More Studies on the “Mind”

Most visualization-focused empirical studies examine hypotheses about the arti-
facts in visualization images. For example, Laidlaw et al. compared four techniques
for visualizing 2D vector fields [25], Chen et al. compared four visual repre-
sentations for depicting motion signatures in videos [8], and Kanjanabose et al.
compared data tables, scatter plots, and parallel coordinates plots [23]. Sometimes,
such studies of artifacts (e.g., techniques, plots, visual representations, systems,
etc.) have led to findings about the mind. In their artifact-based study, Chen et
al. [8] by chance discovered that participants unconsciously remembered the video
visualization skills acquired in the first study and performed better 3 months later
in the second study than those who did not take part in the first study. This is a
finding about memory and learning—aspects of cognition. Similarly, when studying
data tables, scatter plots, and parallel coordinates plots, Kanjanabose et al. [23]
found that participants could retrieve data values more quickly and accurately with
data tables than with scatter plots and parallel coordinate plots. Since visualization
was commonly considered as a means for viewing data values and many empirical
studies compare artifacts with data retrieval tasks, this raises a question: what
would have happened if data tables had been involved in the comparison, or more
fundamentally, in what condition visualization is better for data retrieval tasks than
data tables?

In recent years, more studies were designed explicitly to study the mind, and
artifacts were moved to a secondary role as stimuli for observing the mind. There
have been studies on memory [5], attention [17], visual grouping [16], knowledge
[24], and so on. Although artifacts were used as stimuli, the experimenters were
aiming for discoveries about the mind, which can be applied to other artifacts
that were not examined in the studies. For example, when Szafir found that the
perception of colors was size-dependent [30], this naturally led to many hypotheses
that the perception of A might be Y-dependent. Here, A is a placeholder for a set of
artifacts being studied, while Y is one or a set of cognitive factors. It could also lead
to a more fundamental hypothesis: must visual encoding be always isomorphic and
can it be polymorphic [9] since human perception could not hold up the isomorphic
requirement anyway [30]? If the latter is true, what cognitive factor (or factors) can
condition polymorphic perception?

The needs for more studies on the “mind” also reflect the increasing research
activities in Visual Analytics—a subfield of VIS—developed during the last
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two decades. The research in visual analytics usually focuses on integrated uses
of machine-centric processes (e.g., statistics and algorithms) and human-centric
processes (e.g., visualization and interaction) in workflows for data-informed
decision-making and knowledge acquisition. The goals of decision-making and
knowledge acquisition naturally place more emphasis on cognition than perception.
From the perspective of visual analytics, there is an urgent requirement for scaling
up the empirical research on the “mind” in VIS.

Meanwhile, the needs for more studies on the “mind” are warranted and entailed
by the recent developments in the Theoretical Foundation of Visualization. One
strand of these developments is an information-theoretic measure of the cost-benefit
of human- and machine-centric processes in visual analytics workflows [10]. It pro-
vides many sound practices in VIS with a mathematical explanation, such as visual
abstraction [32] and overview-first and detail-on-demand [9, 11]. In particular, it
does not demonize information loss in VIS processes but recognizes that it is a
phenomenon common in statistics, algorithms, visualization, and interaction. It also
postulates that the soft knowledge of humans in the loop can alleviate the negative
impact of information loss, especially in VIS processes.

To validate the postulation in [10], Kijmongkolchai et al. designed and conducted
an empirical study to detect and quantify the human knowledge used in a set of trials
featuring VIS processes [24]. They successfully detect the significant role of human
knowledge and found a way to convert the measures of accuracy and response time
to those of benefit and cost as outlined in [10]. Kijmongkolchai et al. also reported
some difficulties in dealing with the unbounded nature of the Kullback-Leibler
divergence, which is part of the original formula in [10]. This prompted further effort
to improve the original formula by evaluating several bounded divergence measures
using both conceptual analysis [12] and empirical data [7]. The empirical studies
for collecting the data involved two types of VIS techniques, volume visualization
and London underground maps, both of which are known to be useful but feature
a significant amount of information loss. The collected empirical data were also
used to exemplify two knowledge measures proposed in [7]. The example shows
the importance of co-development in theoretical and empirical research in the field
of VIS.

Focusing on the mind potentially allows VIS empirical research to make a big
stride in making fundamental advances in the field of VIS. It is likely that studying
the mind is harder than studying artifacts. However, any discovery about the mind
can be translated into inferences about many artifacts. Of course, this is not to
say that we should not study artifacts. Indeed, as mentioned earlier, findings about
artifacts can lead to hypotheses and potentially major discoveries about the mind.
Building on the past studies of artifacts and empirical researchers in VIS, hopefully,
together with more and more colleagues in psychology, we will be able to conduct
more studies on the mind.
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5.2.3 Progressive Approaches

Studying a hypothesis about the mind is entrenched in almost every empirical
study in psychology. It is also a tradition in psychology that a hypothesis is
typically investigated in many empirical studies by several teams. It has been rare
that a hypothesis is confirmed or disproved after the first empirical study on the
hypothesis. A switching of emphasis from artifacts to the mind may instigate more
progressive approaches to studying a challenging hypothesis.

Firstly, empirical researchers in visualization should embrace the tradition of
psychology in scholarly contention and disagreement and should welcome any
serious challenge to an existing theory or finding as long as there is an adequate
empirical evidence or analytical rationale suggesting that the existing theory or
finding might not be 100% correct as many thought. While it is not easy for
reviewers to read papers that challenge their past theories or findings, reviewers
in such situations should exercise a high level of integrity and professionalism, e.g.,
in making an objective assessment, declaring a conflict of interest if appropriate,
and overcoming the prepossession for suppressing the debate through nitpicking.

Secondly, empirical researchers in visualization may explore other forms of
empirical studies that do not involve controlled or semi-controlled experiments. The
BELIV Workshop (https://beliv-workshop.github.io/) is a biennial event. Since it
was established in 2006, it has been encouraging empirical researchers to develop
“new and innovative evaluation methods for visualization tools and techniques.”
While BELIV has a strong focus on artifacts, findings obtained from the evaluation
of some visual representations, interaction techniques, and visualization tools can
also inform the development of new hypotheses, conceptual models, and qualitative
theories about the mind in the context of visualization.

Thirdly, visualization scientists are data scientists and are used to process a
variety of data using data mining and data visualization. Meanwhile, empirical
studies, controlled as well as uncontrolled, collect data about various variables in
visualization processes, including the variables about artifacts as well as those about
the mind. Often such data may not be adequate for confirming a binary hypothesis
in a statistically significant manner. It may feature too many variables, or some
variables may have too many values that cannot be clustered into a few groups.

Nevertheless, if the collected data feature some strong variations in the relation
between the independent and dependent variables, we can discover such relations
using visual analytics workflows where statistics, algorithms, visualization, and
interaction are integrated. We can also use the data to develop data-driven models
and data-driven metrics. Such a model or metric defines a complex causal relation in
a probabilistic or functional manner, which is sometimes perceived to be less definite
than a hypothesis confirmed by an empirical study. In fact, a data-driven model or a
data-driven metric is just an intermediate step stone toward a grand theory.

Fourthly, there are two main types of models: data-driven and theory-driven
models. A data-driven model is typically built directly on the data collected in
one or a set of empirical studies. In psychology, researchers often propose theories
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based on the findings of empirical studies, usually including their own studies
as well as those in the literature. Such theories are usually in the form of one
or a series of causal relations and are treated as hypotheses to be evaluated by
further empirical studies. A theory may become widely accepted after a sufficient
number of experiments have evidenced the theory and no credible counter-example
has been found to falsify the theory. A theory-driven model usually encodes
the theorized causal relations mathematically or procedurally. We should regard
developing and evaluating “hypotheses theories” as a progressive approach in
studying visualization.

Considering both the third and fourth points, empirical researchers in visual-
ization should welcome and embrace such data-driven and theory-driven models,
simply because studying a hypothesis about the mind is usually much more complex
than studying artifacts. Evaluating whether artifact A is better than artifact B may
need one or a few empirical studies. Determining whether a function of the mind,
X(), causes A to be better than artifact B will likely require many intermediate steps.

5.3 The Diversity of Publications in Studying the “Mind”

The types of publications in a discipline reflect the research scopes, methods,
historical predilections, and trend movements in the discipline. In this section, we
first observe the journey of empirical studies in the field of visualization through the
changing lens of paper types defined for IEEE VIS Conferences. The journey very
much encapsulates the changes from early artifact-focused empirical research to the
gradual increase of mind-focused empirical research in the field of visualization and
visual analytics (VIS).

In order to anticipate the potential changes that may benefit mind-focused
VIS empirical research in the future, we provide a short survey of paper types
in psychology. The diversity of paper types exhibited in psychology publications
reflects the publication mechanisms needed for supporting mind-focused empirical
research. This suggests that empirical studies in visualization will enjoy and benefit
from a broader spectrum of empirical and theoretical research in VIS.

5.3.1 The Types of Empirical Research Papers in Visualization

In the field of visualization, the study of human perception and cognition has always
been encouraged. In 2003, the InfoVis program co-chairs first a categorization
visualization paper types. The studies of human perception and cognition fall into
the paper type “Evaluation” [21], which was defined as:
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> ! Evaluation papers are an empirical comparative study of InfoVis techniques
or systems. The authors are not necessarily expected to implement the systems
used in these studies themselves; the research contribution will be judged on the
validity and importance of the experimental results, as opposed to the novelty
of the systems or techniques under study. The conference committee appreciates
the difficulty and importance of designing and performing rigorous experiments,
including the definition of appropriate hypotheses, tasks, datasets, selection of
subjects, measurement, validation, and conclusions. The goal of such efforts
should be to move from mere description of experiments toward prediction and
explanation. We suggest that the potential authors who have not had formal
training in the design of experiments involving human subjects may wish to
partner with a colleague from an area such as psychology or human—computer
interaction who has experience with designing rigorous experimental protocols
and statistical analysis of the resulting data.

Munzner detailed the motivation and rationale of the introduction of the five types
of papers: technique, system, design study, evaluation, and model [27]. IEEE Vis in
2009 (sometimes referred to as SciVis) adopted the definitions of the five types
with some minor modifications, such as changing technique to algorithm/technique,
design study to application/design study, and model to theory/model. In particular,
in the definition of evaluation papers, phrases “human users” and “empirical study”
were explicitly mentioned [19]. Later, the definition was also adopted by IEEE
VAST 2011, after it was transformed from a symposium to a conference in 2010.

In order to reinforce the purposes of empirical studies being not only for
evaluating visual designs and visualization systems but also for studying human
perception and cognition, IEEE VAST 2015 renamed the category of “Evaluation”
papers as “Empirical Study” papers and offered the following definition [18]:

> Empirical Study Papers. In VAST, the goal of empirical studies is typically
to gain knowledge and insight about aspects of visual analytics (VA) through
direct and indirect observation and analysis of user experience. They may provide
empirical evidence to support VA theories or models, compare and measure
effectiveness and efficiency of a set of VA techniques (or approaches, algorithms,
systems, workflows, etc.), and collect data for data-driven metrics. An accepted
empirical study paper may feature one of the following qualities:

1. Novelty. An empirical study reports new discoveries and findings that have
not been previously obtained. The study may examine a new phenomenon in
VA or provide evidence to support or contradict an unconfirmed theoretical
hypothesis or practical wisdom.

2. Innovation. An empirical study features new study methodologies that are
previously unknown to or uncommon in VAST research and are technically

' We use a symbol t> to indicate that a piece of text is quoted directly from the reference cited just
before the text in order to avoid overloading the meaning of quotation marks and italic fonts.
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sound and beneficial in the direct and indirect observation of user experience
and the collection of empirical data. Such a methodology may become a new
template for empirical studies in VA.

Significance. An empirical study presents an experiment that may be substan-
tially more comprehensive or lead to more meaningful statistical inference
than previous studies on the topic.

Impact. An empirical study that may lead to a significant change of our
fundamental understanding of major VA aspects or result in new guidelines
and practices in VA. Such impact may have been evidentially confirmed, or
an initial assessment may have convincingly suggested the potential.

Following the work of a committee called reVISe for some 2 years, IEEE
VIS 2021 introduced a new area model for categorizing visualization papers [20].
The studies of human perception and cognition fall into “Area 1: Theoretical &
Empirical,” where the section of “Empirical” is defined as:

> Empirical Research aims to contribute research methodologies or concrete
results of assessments of a visualization/visual analytics contribution or its
context of use. Topic of interest include:

Research Methodology: general methodologies for conducting VIS research,
e.g., typology, grounded theory, empirical studies, design studies, task analy-
sis, user engagement, qualitative and quantitative research, etc.

Empirical Studies: controlled (e.g., typical laboratory experiments), semi-
controlled (e.g., typical crowdsourcing studies), and uncontrolled studies (e.g.,
small group discussions, think aloud exercises, field observation, ethnographic
studies, etc.), which may be in the forms of qualitative or quantitative research
and which may be further categorized according to their objectives as follows:
Empirical Studies for Evaluation: studies for assessing the effectiveness
and usability of specific VIS techniques, tools, systems, and workflows, for
collecting lessons learned from failures, and for establishing the best practice.
Empirical Studies for Observation, Data Acquisition, and Hypothesis For-
mulation: studies for observing phenomena in visualization processes, stim-
ulating hypothesis formulation, and collecting data to inform computational
models and quality metrics.

Empirical Studies for Understanding and Theory Validation: studies for
understanding the human factors in visualization processes, including per-
ceptual factors (e.g., visual and non-visual sensory processes, perception,
attention, etc.) and cognitive factors (e.g., memory, learning, reasoning,
decision-making, problem-solving, knowledge, emotion, etc.)

While the methodologies for empirical research are now formally included in
the area, the conceptualization and theorization based on empirical research is
also part of the other section, i.e., “Theoretical” in the same area. In particular,
one particular subcategory of Theoretical Work is Model Development, which
is defined as “conceptual models and simulation models for describing aspects of
visualization processes (e.g., color perception, knowledge acquisition, collaborative
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decision making, etc.).” This is a serious encouragement for formulating qualitative
and quantitative models based on empirical research. In addition, a number of
research topics strongly associated with empirical research, such as quality metrics,
taxonomies and ontologies, also fall into “Area 1: Theoretical & Empirical.”

The changes during the last decade from Evaluation papers to Empirical
Studies papers and then to Empirical Research papers in “Area 1: Theoretical
& Empirical” have enabled the increase of the diversity of publications on human
perception and cognition in the field of visualization. However, as suggested in
the short survey in the next section, the studies of the “mind” in the context of
visualization have yet to be as diverse as those in psychology.

5.3.2 A Survey of Paper Types in Psychology Journals

There are many types of papers featured in different psychology journals. According
to the list at Wikipedia [33], there are nearly 150 psychology journals in 2021.
In this section, we present a survey of the paper types in eleven psychology
journals, all of which are well-established journals and have had, or potentially
will have, strong inference on visualization psychology. We use this survey to
inform us about the diversity in ways of conducting research, discussing research
ideas, and disseminating research results. These fourteen journals are as follows (in
alphabetical order of their abbreviations):

o The American Journal of Psychology (AJP), University of Illinois Press
e Annual Review of Psychology (ARP), Annual Reviews

e Annual Review of Vision Science (ARVS), Annual Reviews

* Behavioral and Brain Science (BBS), Cambridge University Press

* British Journal of Psychology (BJP), The British Psychological Society
* Cognitive Research: Principles and Implications (CRPI), Springer

* European Journal of Psychology of Education (EJPE), Springer

e Frontiers in Psychology (FiP), Frontiers

 International Journal of Psychology (1JP), Wiley

e Journal of Vision (JoV), Association for Research in Vision and Ophthalmology
* Perception (Pec), Sage

* Personality and Social Psychology Review (PSPR), Sage

* Psychological Reviews (PRe), American Psychological Association

e Theory & Psychology (TaP), Sage

Our main selection criteria are:

1. Ease of identifying paper types—When a journal defines paper types explicitly in
its guidance to authors and places papers in each issue under specific categories
of paper types, we can precisely count the number of papers of a specific
paper type. All selected journals on the above list met this criterion. When
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such information is not available, one would have to categorize each paper
subjectively, which is both time-consuming and error-prone.

2. Strong focus on visual perception—Research in the field of visualization and
visual analytics (VIS) has relied extensively on perception research in psychol-
ogy. These include ARVS, JoV, and Pec in the above list of selected journals.
For example, Franconeri et al. [13] recently reviewed empirical research findings
that support guidelines for creating effective and intuitive visualizations for
disseminative visualization. The review covers many aspects of human vision
and perception, e.g., ratio perception, color perception, shape perception, visual
illusions, color blindness, attention, and so on.

3. Representative of cognition research—The review by Franconeri et al. [13] also
covers several aspects of cognition, such as working memory, cognitive biases,
and uncertainty and risk reasoning, suggesting the role of many other cogni-
tive activities (in addition to sensory processing, perception, and attention) in
visualization processes. As the survey by Abdul-Rahman et al. [1] summarized,
visualization may feature perceptual and cognitive activities for sensing, storing,
learning, thinking, motivating, feeling, externalizing, and deviating, and it will
be beneficial for VIS research to draw knowledge and practices from a broader
scope of psychology. We therefore intentionally selected a good number of highly
reputable journals with a strong focus on cognition, which include AJP, ARP,
BBS, BJP, CRPI, IJP, PRe, and TaP. While many visual representations and
visualization systems are designed for data analysts and domain experts, some
are designed for information and knowledge dissemination to the general public.
We therefore included EJPE and PSPR, which feature empirical research topics
particularly relevant to the latter.

4. Paper types relevant but less familiar to the VIS community—Some well-
establish journals, such as BBS, FiP, and PRe in the above list, feature paper types
that are highly relevant to VIS empirical research but are yet available in VIS
publication venues. For example, the BBS format of “target article — open peer
commentary — authors’ response” enables scholarly, transparent, and demo-
cratic discourse in research disciplines, where empirical evidence can sometimes
be conflicting with each other or can often lead to different interpretations and
conclusions. The mission of PRe, which includes “systematic evaluation of
alternative theories,” encourages the scholarly review and analysis of competing
theories and the findings resulting from empirical research. The diverse range of
paper types in FiP complements the common paper type “research article” and
encourages exploratory theoretical, conceptual, and methodological research, as
well as practical applications, system development, and technical innovation.

Collectively, a wide range of paper types were featured in these journals.
Table 5.1 summarizes the occurrences of different category names, in alphabetic
order, in these journals. Each value indicates the number of occurrences of a
category name (row) in a journal (column) in the period between January 2010 and
December 2020.
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In addition, there are various small writings for communicating additional,
supplementary, professional, or organizational information, such as the Addendum,
Award, Call for papers, Correction, Corrigendum, Editorial, Editorial Acknowl-
edgment, Erratum, Introduction, In memoriam, Obituary, Precis, Preface, and
Retraction.

5.3.3 A High-level Categorization

Figure 5.1 shows two word clouds of the words in the category names listed in
the leftmost column of Table 5.1. All plural words are converted to their singular
forms except “notes.” All words are case-insensitive, while all function words are
excluded. Under these processing conditions, there are a total of 58 words in each
word cloud. The color and font size of each word encode the frequency of the word.
When a word appears in multiple category names, the frequency of the word is the
sum of the frequencies of these category names.

In Fig.5.1a, we compute the frequency of a category name by counting the
number of journals that feature such a category name. For example, according to
Table 5.1, five journals have the category “book review,” and its frequency is thus 5.
In Fig. 5.1b, we compute the frequency of a category name by counting the number
of papers and small writings under such a category in all journals that feature the

stud

ommer

article

rep

articles o research

response

DOOK

research

commentary Orlglnal

(a) based on journal occurrences (b) based on paper occurrences

Fig. 5.1 Two word clouds of the words in the category names column of Table 5.1. In (a), the
frequency of each category name is computed based on counting the number of journals that have
this category name. In (b), the frequency of each category name is computed by counting the
number of papers or small writings labeled with this category name. When a word appears in
multiple category names, the frequency of the word is the sum of the frequencies of these category
names. The word clouds were created using WordItOut (https://worditout.com/). (a) Based on
journal occurrences. (b) Based on paper occurrences
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category. Thus, the frequency of “book review” is 534 (205+1414-93+476+419). The
word “book” appears only once among all category names, and thus its frequency is
5 in (a) and 534 in (b). On the other hand, the word “review” appears in seven
category names, and its frequency is the sum of the frequencies of these seven
category names. It is 20 in (a) and 2784 in (b).

From Fig.5.1a, we can observe that words “review” (20 occurrences) and
“article” (17) occur most frequently. Other words that may draw our attention
include “research” (11), “commentary” (8), “report” (7), “response” (6), “book” (5),
“original” (5), and “study” (5). These more frequently occurred words represent
a diverse range of papers. In addition, two words have 4 occurrences, six words
have 3 occurrences, seven words have two occurrences, and thirty-five words have
1 occurrence.

From Fig. 5.1b, we can observe that the words “research” (16,037 occurrences)
and “original” (14,839) occur most frequently. The next group of words includes
“article” (5444), “commentary” (3246), “review” (2794), “open” (2623), and “peer”
(2623). In addition, eighteen words have occurrences in the 3-digit range of [100,
999], and twenty-one words in the 2-digit range of [10, 99], and thirteen words in
the single-digit range of [1, 9].

From Table 5.1, We can also observe that the word “book” only occurs in the
category of “Book review,” while the word “review” is featured in eight category
names. The words “open” and “peer” only occur in the category of “Open peer
commentary,” while the word “commentary” is featured in four category names.
The word “original” only occurs in the category of “Original research,” while the
word “research” is featured in three different category names.

Therefore, we can consider that the category features “book,” “open,” “peer,”
or “original” in its name may likely be part of a super-category. After excluding
these words for further consideration, the words with high-frequent occurrences in
Fig.5.1 are:

ELINT3

article, commentary, report, research, response, review, study

It is not so difficult to see a high-level categorization emerging. In this chapter, we
broadly divide papers and small writings in these eleven journals into the following
five super-categories.

* Articles—These are papers considered as the most typical papers in the journal
concerned. They typically feature original research and are presented in a regular,
full-length format. We intentionally do not use any word to modify “articles”
because some commonly used noun adjuncts or adjectives may stimulate narrow-
minded interpretations. For example,

— Using the word “research” as a noun adjunct might imply other types of papers
are not research papers.

— Using the adjective “original” might suggest that papers in other super-
categories do not contain much original research and would not rather unfair
to many papers in the super-category of Reports.
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— Using the adjective “regular” might exclude papers that are regular in content
and format, but less regular in submission, review, and editorial processes,
e.g., special issue and special section papers.

Commentaries and Responses—Commentaries are normally small writings
that offer comments and opinions on a particular topic or a published paper, while
Responses are the authors’ feedback to the commentaries on specific papers.
In terms of the categories listed in Table 5.1, this super-category includes all
category names featuring words such as “commentary,” “response,” “opinion,”
“debate,” and “forum.”

Reviews—From Table 5.1, we can observe several types of reviews. This super-
category simply includes all category names featuring the word “review.”
Reports—These are relatively short papers that typically offer brief communica-
tion about a research project or a technical aspect. Journals that cater for papers
in this super-category normally label them with category names featuring words
such as “report” and “study,” while avoiding words “article” and “research”
in order to differentiate them from full-length papers in the super-category of
Articles. However, it is more fair-minded to consider most, if not all, such
short papers as research work. We decided not to include the word “studies” in
naming this super-category because many full-length papers in psychology report
empirical studies. It would not be appropriate to associate the word “study” with
only short papers.

Others—This super-category includes all other types of small writings that do
not fall into the super-categories of Commentaries and Responses, Reviews,
Reports. They are typically for communicating additional, supplementary,
professional, or organizational information, such as Addendum, Award, Call
for papers, Correction, Corrigendum, Editorial, Editorial Acknowledgement,
Erratum, Introduction, In memoriam, Obituary, Precis, Preface, and Retraction.

5.3.4 Further Categorization of “Articles”

According to Table 5.1, in six journals (out of eleven), most of their papers fall into
the category “Article,” i.e., AJP 55%, JoV 83%, Pec 75%, PSPR 77%, PRe 86%,
and TaP 71%. This is indeed another reason for the super-category Articles to adopt
the term “article.” Meanwhile, in five other journals, the most common category
name is “Original Research,” i.e., BJP 50%, CRPI 85%, EJPE 99%, FiP 71%, and
1JP 46%.

Publisher Springer, which hosts the journal EJPE, defines the “Original

Research” papers as follows [29]:

> This is the most common type of journal manuscript used to publish full reports

of data from research. It may be called an Original Article, Research Article,
Research, or just Article, depending on the journal. The Original Research format
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is suitable for many different fields and different types of studies. It includes full
Introduction, Methods, Results, and Discussion sections.

Most journals in psychology place a strong emphasis on empirical research. For
example, the American Psychological Association (ASA), which hosts PRe, defines
“Research articles” as [3]:

D> Behavior analysis deals with relations between environmental inputs and behav-

ioral outputs using a behavior analytic conceptual framework. Research articles
present original empirical findings depicting these relations.
Such articles must provide a compelling rationale for the experimental question,
employ methods that are appropriate for answering that question, include
sufficient detail about those methods to allow for replication, present meaningful
data, analyze those data appropriately, and interpret them meaningfully.

Some other journals may focus on more theoretical and methodological research.
For example, TaP defines its scope as [31]:

> Theory & Psychology publishes scholarly and expository papers which explore
significant theoretical developments within and across such specific sub-areas as
cognitive, social, personality, developmental, clinical, perceptual, or biological
psychology.

Many journals are platforms for supporting a diverse range of research work,
including empirical, theoretical, and methodological research. One such journal is
FiP, which makes the diversity particularly explicit through its paper types [14]. FiP
offers nine types of full-length papers, each of which may have up to 12,000 words.
We have included six categories, namely “Original research,” “Hypothesis and
theory,” “Clinical trial,” “Method,” “Study protocol,” and “Technology and code,”
in the super-category Articles, and three other categories of “Review,” “Policy and
practice review,” and “Systematic review” in the super-category Reviews (see also
Sect.5.3.4).

In addition, there are categories indicating whether a paper is submitted and
reviewed in a regular process of the journal or a special process, such as in relation
to a special call for papers. These special processes include “Anniversary article,”
“Editor’s choice,” “Invited article,” “Special issue paper,” and “Special section
paper.”

Among the eleven journals in Table 5.1, only BBS has fewer full-length articles
(3.3%) than its extensive collection of papers in the “Open peer commentary”
category (93.3%). This apparent anomaly is because of the unique format of BBS,
which refers a full-length article as a “Target article” [4]:

> A BBS target article can be (i) the report and discussion of empirical research
that the author judges to have broader scope and implications than might be
more appropriately reported in a specialty journal, (ii) an unusually significant
theoretical article that formally models or systematizes a body of research,
or (iii) a novel interpretation, synthesis, or critique of existing experimental
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or theoretical work. Occasionally, articles dealing with social or philosophical
aspects of the behavioral and brain sciences will be considered.

In BBS, each target article is a significant and controversial piece of work and is
published in the same issue together with 20—40 commentaries from specialists
within and across the discipline concerned and the author’s response to the
commentaries. The level of openness and rigor in scholarly discourse is inspirational
to visualization researchers. We have included the category of “Target article” in
the super-category Articles, while placing “Open peer commentary” and “Author’s
response” in the super-category Commentaries and Responses.

The super-category Articles includes the following categories listed in
Table 5.1:

e Anniversary article (AJP)

e Article (AJP, BJP, 1IP, JoV, Pec, PSPR, PRe, TaP)
e Editor’s choice (BJP)

¢ Clinical trial (FiP)

¢ Invited article (BJP)

* Hypothesis and theory (FiP)

e Method (FiP, JoV)

¢ Original research (BJP, CRPI, EJPE, FiP, 1JP)
* Regular article (BJP)

e Research article (IJP, JoV, PSPR)

* Special issue paper (BJP, 1JP, Pec)

* Special section paper (1JP)

e Study protocol (FiP)

e Target article (BBS, BJP, TaP)

e Technology and code (FiP)

5.3.5 Further Categorization of “Commentaries
and Responses”

Papers in this super-category are common in the field psychology, encapsulating
a research culture that embracing openness in discussion, discourse, and debate.
Difference or disagreement in theoretical understanding and postulation is not
a barrier in accepting a paper that may contain important postulation, which
some reviewers do not agree with. Instead, such difference or disagreement is
“welcomed” and facilitates more papers commonly referred to as Commentaries
and Responses.
FiP defines its categories “General Commentary” and “Opinion” as [14]:

> General Commentary articles provide critical comments on a previous publi-
cation at Frontiers. The authors wishing to submit commentaries on articles
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published outside of Frontiers are encouraged to reformat and submit them as
an Opinion type.

> Opinion articles allow the authors to contribute viewpoints on the interpretation
of recent findings in any research area, value of the methods used, as well as
weaknesses and strengths of scientific hypotheses.

To complement such commentary and opinion papers, the “Response” category
provides the authors of articles that receive open critical commentaries with an
opportunity to respond openly and formally through a short paper.

Behavioral and Brain Science (BBS) provides a unique and ample platform
where the authors and commentators engage in open, extensive, and constructive
interaction on a topic judged to be of broad significance.

These papers are usually much shorter than the full-length papers. For example,
FiP limits the length of a paper in the “Opinion” category to 2000 words and that
in the category of “General commentary” to 1000 words. JoV offers a paper type
“Perspectives,” which present authors’ personal viewpoints on topics and limits
the length of each paper in this category to 4 pages. JoV also offers a paper type
“Point/CounterPoint” that presents two invited articles with opposing views and
limits the length of each paper to 2-3 pages [22].

Some journals use the category name “Letter” for a broad range of small writings
including commentaries. The American Psychological Association (ASA), which
hosts PRe, defines letters as [3]:

> Letters, which comprise no more than 850 words, provide a means for behavior
analysts to share potentially important information that would not be appropriate
for publication in another format. Examples include commentaries on books or
articles, descriptions of interesting research findings or other observations that
merit further investigation, and reports of political or legal events likely to affect
the field.

The Journal of Vision defines letters as [22]

> The journal welcomes submission of Letters to the Editor to be considered for
publication. Letters may concern material published in the journal or issues of
general interest to vision scientists. Letters about material published in the jour-
nal may correct errors or offer different points of view, clarification, or additional
information or analyses in a civil manner. Letters will be evaluated for their
scientific merit, technical quality, and significance. Letters whose arguments or
conclusions require support from experimental evidence or theoretical analyses
are more appropriate as regular submissions and may be declined without review.
The authors whose article is discussed in a Letter will be given an opportunity to

reply.
Our survey of the eleven journals has found the following categories under the
super-category Commentaries and Responses:

* Authors’ response (BBS, BJP, JoV)
e Commentary (BJP, IJP, PRe, TaP)
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¢ Debate (IJP)

* Forum (AJP)

* Frontiers commentary (FiP)
* General commentary (FiP)
e Letter (JoV, PRe)

* Open peer commentary (BBS)
* Opinion (FiP)

* Perspective (FiP, JoV)

* Point/CounterPoint (JoV)

* Response (BJP, JoV, TaP)

¢ Theoretical notes (PRe)

where the category “Point/CounterPoint” was shown in italics because it is a paper
type offered by JoV, but our survey has not found any paper with this category name
in JoV between January 2010 and December 2020.

5.3.6 Further Categorization of “Reviews”

Papers in the super-category of Reviews feature extensive discussions on previously
published research. Among the eleven journals in Table 5.1, nine journals (ARP,
ARVS, EJPE, FiP, IIP, JoV, Pec, PRe, and TaP) offer a generic category “Review.”

Publisher Springer, which hosts the journal EJPE, defines the most common type
of review papers as follows [29]:

> Review articles provide a comprehensive summary of research on a certain
topic and a perspective on the state of the field and where it is heading. They
are often written by leaders in a particular discipline after invitation from the
editors of a journal. Reviews are often widely read (for example, by researchers
looking for a full introduction to a field) and highly cited. Reviews commonly
cite approximately 100 primary research articles.

Publisher Annual Reviews hosts 52 journals that focus almost entirely on review
papers. While the collection covers a broad spectrum of academic disciplines, it
includes four psychology journals (cf. one for computer science). In addition to
ARP and ARVS included in our survey, there are also clinical psychology and
developmental psychology.

As mentioned earlier in Sect.5.3.4 in conjunction with the category of “Target
articles” in BBS, literature review and theoretical discourse and development often
go hand in hand in the psychology literature. American Psychological Association
(ASA), which hosts PRe, defines papers in the “Review category” as review and
conceptual articles and offers the following definition [3]:

> Aurticles in this category summarize previously published research or address
theoretical or conceptual issues of interest to behavior analysts. Such articles
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support conclusions of potential theoretical, clinical, or practical importance to
behavior analysts and are written in a clear and comprehensible style.

The other four journals (AJP, BBS, BJP, and PSPR) also publish review articles
without an explicit category named as “Review” or alike. Some journals offer
specific categories of review papers, and these category names are rather self-
explanatory. Together with the generic category of “Review,” the eleven journals
in Table 5.1 offer the following categories of review papers (in alphabetic order):

¢ Book review (AJP, BJP, FiP, Pec, TaP)

* FEmerging trends in vision science (JoV)

* Essay review (TaP)

¢ Focused review (FiP)

* History of psychology (AJP)

e Mini review (FiP)

* Policy and practice review (FiP)

¢ Review (ARP, ARVS, CRPI, EJPE, FiP, IJP, JoV, Pec, PRe, TaP)
* Systematic review (FiP)

¢ Tutorial review (CRPI)

where “Emerging trends in vision science” is a paper type offered by JoV, though
our survey has not found any paper of this type during the period between January
2010 and December 2020.

5.3.7 Further Categorization of “Reports”

This super-category consists of relatively shorter research papers in comparison with
the full-length research papers. The definition of short- vs full-length is sensitive to
the context of individual journals. These papers are often referred to as research
reports or case studies.

The American Psychological Association (ASA), which hosts PRe, defines
research reports as [3]:

> Research reports are similar to research articles, but no more than 2500 words
in length, with no more than two tables or figures.
Research reports are a convenient venue for reporting findings that are suggestive
but not compelling, technological devices or applications, follow-up data not
adequate to support a research article, or any study that can be accurately
described in few words.

Publisher Springer, which hosts the journal EJPE, defines short reports and letters
collectively as [29]:

> These papers communicate brief reports of data from original research that
editors believe will be interesting to many researchers and that will likely
stimulate further research in the field. As they are relatively short, the format
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is useful for scientists with results that are time sensitive (for example, those
in highly competitive or quickly changing disciplines). This format often has
strict length limits, so some experimental details may not be published until
the authors write a full Original Research manuscript. These papers are also
sometimes called Brief communications.

Meanwhile, Springer defines case studies as [29]:

> These articles report specific instances of interesting phenomena. A goal of
Case Studies is to make other researchers aware of the possibility that a specific
phenomenon might occur. This type of study is often used in medicine to report
the occurrence of previously unknown or emerging pathologies.

ASA uses the term “Case conference” and defines it as [3]:

D> The goal of this type of submission is to provide professionals and students

with an opportunity to acquire skills in behavioral case conceptualization, behav-
ioral assessment methods, and intervention in the context of service delivery
(e.g., Behavior Therapy, Clinical Behavior Analysis, Behavioral Medicine, and
Applied Behavior Analysis).
A secondary goal is the dissemination of behavior analytic assessment and
intervention methods to the broader community of readers. To achieve these
goals, manuscripts describing the use of a controlled case study (A-B design) or
single-subject research design allowing demonstration of functional relationships
are appropriate.

FiP is a publication venue accepting a variety of short papers in addition to full
papers (maximum 12,000 words). These short papers include [14]:

e Maximum 8000 words: “Conceptual analysis”

e Maximum 5000 words: “Community case study,” “Curriculum, instruction, and
pedagogy”

e Maximum 4000 words: “Brief research report”

e Maximum 3000 words: “Case report,” “Data report,” “Mini review,” “Perspec-
tive,” “Policy brief,” “Registered report”

e Maximum 2000 words: “Specialty grand challenge”

In addition, FiP has published papers under category names “Clinical case study,”
“Empirical study,” “Evaluation,” “Protocol,” and “Technology report.” Meanwhile,
although categories “Case report,” “Curriculum, instruction, and pedagogy,” “Policy
brief,” and “Registered report” are listed as FiP paper types [14], and no FiP paper
in our survey period appears to be labeled with any of these category names.

In particular, “Registered report” is referred to as a Stage I paper, outlining a
proposed methodology and analysis which is pre-registered before data collection
[14]. Following the In-Principle Acceptance authors have 1 year to collect data and
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submit a complete manuscript for Stage 2 of peer review [14]. “Registered report”
is also a special paper type offered by BJP, which defines it as [6]:

> Registered Reports are a form of empirical article in which the methods
and proposed analyses are pre-registered and reviewed prior to research being
conducted. This format is designed to minimize bias in deductive science, while
also allowing complete flexibility to conduct exploratory (unregistered) analyses
and report serendipitous findings.

The following list shows the category names under the super-category Reports,
including those listed in Table 5.1 as well as those paper types defined by the eleven
journals. Those defined by the journals but not in the table are listed in italics.

 Brief research report (CRPI, FiP, IJP)
* Case conference (PRe)

* Case report (FiP)

* Clinical case Study (FiP)

* Clinical study Protocol (FiP)

e Community case Study (FiP)

e Conceptual analysis (FiP)

*  Curriculum, instruction, and pedagogy (FiP)
* Data report (FiP)

e Empirical study (FiP)

¢ Evaluation (FiP)

e Policy brief (FiP)

¢ Protocol (FiP)

* Report (EJPE, Pec)

* Registered report (BJP, FiP)

e Specialty grand challenge (FiP)

e Technology (PRe)

* Technology report (FiP)

5.3.8 Further Categorization of “Others”

In addition to the category names listed in Table 5.1, we can find other categories in
some journals. The names of these categories are mostly self-explanatory. Almost
all of them are associated with small writings for communicating additional,
supplementary, professional, or organizational information. They are listed below
in alphabetic order:

¢ Addendum

e Awards

e (Call for papers

e Correction (FiP)
e Corrigendum
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¢ Editorial (FiP)

» Editorial Acknowledgement

¢ Erratum (FiP)

* Introduction

e In Memoriam—a Latin term, meaning “in memory of”
¢ Obituary

e Precis

* Preface

e Retraction

5.3.9 Observations and Discussions

From the above survey, we can make a number of observations:

1. Scale and diversity—In terms of the number of papers and the diversity of
paper types, the current effort of studying the mind in the field visualization is a
drop in the ocean. While it is necessary to increase the effort within the field of
visualization, it will be more effective to encourage researchers in psychology to
investigate research questions about visualization and utilize the well-established
research expertise and publication platforms in the discipline of psychology.

2. Theory development and evaluation—Research in psychology is not limited
to empirical studies. The transformation from studying artifacts to studying
the mind will require visualization researchers to be more interested in theory
development and evaluation. While we can be built on a large and diverse
collection of theories in psychology literature, many of us may have to become
accustomed to the notion that a theory is a hypothesis. It is necessary to propose
theories for abstracting and explaining findings of empirical research, while
empirical research has an important role in testing and questioning existing
theories as well as suggesting new theories.

3. Scholarly discussion, discourse, and debate—It is highly desirable to introduce
new papers in the field of visualization to encourage open and rigorous discus-
sion, discourse, and debate as exemplified by the target articles and open peer
commentaries in BBS.

4. Short papers and reports—The field of visualization has conference-based
platforms for publishing short papers, but no journal-based platform. It is
desirable to develop journal-based platforms to encourage and sustain a diverse
range of practical, analytical, and technical research effort that may not result in
full-length research papers.
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5.4 Conclusions

In data science, interactive visualization and visual analytics brings together
machine-centric processes and human-centric processes. It can provide psychol-
ogists with one of the best platforms for studying the human mind. Therefore,
creating a new interdisciplinary area of visualization psychology will not only
benefit the research and development in the field of visualization but also benefit
the scientific agenda in psychology. In particular, the aforementioned fundamental
questions in visualization are also fundamental questions in perception and cog-
nition. Many currently imperfect guidelines in visualization reflect some limited
understanding in terms of perception and cognition. Failures or shortcomings in
the human mind often inspire some best research topics in psychology. Similarly,
failures or shortcomings of visualization guidelines could inspire some best research
topics in visualization psychology.

Meanwhile, many visualization scientists and researchers are highly skilled
in data analysis and have access to many practical applications. Visualization
psychology can benefit from such skills and applications in developing new research
methodologies and delivering high impact applications.

Having more studies on the mind and having more progressive approaches
naturally lead to an update of the existing evaluation criteria for artifact-focused
empirical study papers. An accepted empirical study paper in visualization psychol-
ogy may feature one of the following qualities:

* Novelty. An empirical study reports new discoveries and findings that have
not been previously obtained. The study may examine a new phenomenon
in visualization or provide evidence to support or contradict an unsupported
theoretical hypothesis or practical wisdom.

e Innovation. An empirical study features new study methodologies that are pre-
viously unknown to or uncommon in visualization research and are technically
sound and beneficial in the direct and indirect observation of user experience and
the collection of empirical data. Such a methodology may become a new template
for empirical studies in visualization.

¢ Significance. An empirical study presents an experiment that is substantially
more comprehensive, or leads to more meaningful statistical inference, than
previous studies on the topic.

e Impact. An empirical study that may lead to a significant change of our
fundamental understanding about visualization or result in new guidelines and
practices in visualization. Such an impact may have been evidently confirmed, or
an initial assessment may have convincingly suggested the potential.

e Data, Evidence, Measurement, and Analysis. An empirical study reports
important data samples, evidence, measurement, and analysis that have not
been previously obtained. The study may contribute toward the discoveries and
findings of a major, fundamental, and complex hypothesis that is difficult to
confirm or disapprove through one or a few empirical studies.
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In addition, we need to develop new threads of research work and scholarly

publications beyond empirical studies, which may include but not limited to
“Hypothesis and theory,” “Modelling and simulation,” “Method,” “Study protocol,”
“Technology and code,” “Open peer commentaries,” “Author’s response,” “Brief
Research Report,” “Case study,” “Data report,” and so on.
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Part 11
Visualization Psychology
from a Visualization Perspective

In developing a book on a new subject discipline called visualization psychology
(VisPsych), different approaches and perspectives should be drawn from both
psychology and visualization (a subject residing mainly in computer science) in
order to present a balanced perspective of this new discipline. Visualization research
has developed a conscious awareness of the two domains naturally and the almost-
inevitable intersection between them.

This part explores studies that are drawn largely from the computer science
domain as opposed to psychology, acting as a complement to the previous part
that draws largely from the psychology domain. The chapters in this part attempt
at making foundational links between visualization and psychology, outlining and
proving, from both theoretical and empirical points of view, the implicit synergy
of the two disciplines. The chapters encourage readers to develop more formal
and better structured collaborations across their disciplinary boundaries, fostering
a virtuous cycle of mutual benefit, which one needs for the progress and further
development of both.

In the first chapter of this part, Chap. 6 “Visualization Onboarding Grounded
in Education Theories,” Christina Stoiber and colleagues present a survey of
approaches from the academic community as well as from commercial products
relating to how to support users in learning how to use new digital technologies.
They emphasize the approach of onboarding, define the concept, and then system-
atically lay out the design space of onboarding in the context of visualization and as
a conceptual framework using learning theories.

In the second chapter of this part, Chap. 7 “Adaptive Visualization of Health
Information Based on Cognitive Psychology: Scenerios, Concepts and Research
Opportunities,” Tobias Schreck and colleagues discuss how evidence-based medical
knowledge, cognitive mechanisms, and novel interactive data visualizations can
potentially be combined to form adaptive and interactive consumer health infor-
mation systems that take into account individual health information needs such as
health literacy.

In the third chapter of this part, Chap. 8 “Design Cognition in Data Visual-
ization,” Paul Parsons introduces the field of design cognition and its relevance
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to visualization (VisPsych). He highlights two relevant paradigms—the rational
solving problem and the reflective practice paradigm. Paul then outlines the
strengths and weaknesses of these in order to reconcile their differences and then
examines these implications in relation to four data visualization topics (defining,
automating, modeling, and teaching data visualization design).

In the fourth chapter of this part, Chap. 9 “Visualization Psychology: Foundations
for an Interdisciplinary Research program,” Amy Rae Fox and James D. Hollan
introduce the first ever Visualization Psychology framework. Unique to the chapter
is the interpretation of the framework as a set of theoretical premises that should
guide any inquiry concerned with psychological intrinsic dimensions of visualiza-
tion. The chapter offers a unique view on how visualization is a fertile laboratory
where theories of perception and cognition can thrive and advance. The authors
provide a strong argument as to why the intersection between visualization and
psychology is not a new one but rather traces its roots back into the origins of
human—computer interaction. They suggest that visualization should be situated in
the much broader context of external representation, semiotic activity, information
processing, and distributed cognitive systems, rather than being relegated within the
computer science realm.

In the fifth chapter of this part, Chap. 10 “Visualization Psychology for Eye
Tracking Evaluation,” Maurice Koch and colleagues provide further empirical
evidence of the implicit synergy between Visualization and Psychology already
highlighted in the previous chapters. The authors’ focus point is this temporal
hardware, i.e., eye-tracking devices in particular. The chapter provides empirical
evidences showing the advantages of employing cognitive models when evaluation
of visualizations is performed through the means of eye-tracking devices. Eye-
tracking technology enables visualization research to deepen its understanding of
the perceptual and cognitive processes at play when interpreting a visualization.
Meanwhile, theories and methodologies from psychology and cognitive science can
benefit the design and evaluation of eye-tracking experiments for visualization.

The chapters in this part draw from visualization theory and practice to provide
strong arguments in favor of the intimate and intertwined relation between visualiza-
tion and psychology. Moreover, they push the boundaries of the discussion toward
an emergent theory that sees a co-dependency of the two disciplines, which are
capable of influencing each other’s research advancements.
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Chapter 6
Visualization Onboarding Grounded Qe
in Educational Theories

Christina Stoiber, Markus Wagner, Florian Grassinger, Margit Pohl,
Holger Stitz, Marc Streit, Benjamin Potzmann, and Wolfgang Aigner

Abstract The aim of visualization is to support people in dealing with large and
complex information structures, to make these structures more comprehensible,
facilitate exploration, and enable knowledge discovery. However, users often have
problems reading and interpreting data from visualizations, in particular when they
experience them for the first time. A lack of visualization literacy, i.e., knowledge in
terms of domain, data, visual encoding, interaction, and also analytical methods can
be observed. To support users in learning how to use new digital technologies, the
concept of onboarding has been successfully applied in other domains. However,
it has not received much attention from the visualization community so far. This
chapter aims to fill this gap by defining the concept and systematically laying
out the design space of onboarding in the context of visualization as a descriptive
design space. On this basis, we present a survey of approaches from the academic
community as well as from commercial products, especially surveying educational
theories that inform the onboarding strategies. Additionally, we derived design
considerations based on previous publications and present some guidelines for the
design of visualization onboarding concepts.
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6.1 Introduction

The term onboarding was originally coined in the context of HR processes to
support new employees in learning about their tasks that are part of their job within
a particular company [40]. The aim of this ongoing process is to communicate
not only formal knowledge about their tasks but also informal knowledge about
organizational culture and its unwritten rules, to the new employees. This concept
has been transferred to other domains such as human—computer interaction (HCI) [6,
8, 10, 18, 22, 38, 50]. More recently, the focus of onboarding has shifted toward
mobile applications. Hulik! introduced the concept of supporting users in learning
smartphone applications and software tools. Kumar defined user onboarding as
“the process of increasing the likelihood that new users become successful when
adopting your product” [42].

We think that it is also useful to conceptualize the process of learning about
complex visualizations that cannot be understood at a first glance by having
visualization onboarding concepts. We define visualization onboarding as follows:
“Visualization onboarding is the process of supporting users in reading, inter-
preting, and extracting information from visual representations of data.” [67].
This learning process often takes place immediately before or while users work
with the visualization and is highly task-oriented. In this context, theories about
learning play an important role. In the visualization community, a considerable
amount of research has addressed the question of how to increase visualization
literacy (see, e.g., [31, 57]). This research is generally based on educational theories
from psychology, especially on constructivist research. The basic assumption is
that knowledge about visualizations can best be acquired by creating one’s own
visualization and actively generating one’s own view about this topic. Similarly,
educational theories can also be adopted to explain the usefulness of onboarding
approaches.

In the literature, several different possibilities of how to realize onboarding have
been suggested (see Table 6.1). Some of them are primarily based on cognitivist
approaches (e.g., tutorials) [43, 49] and Gestalt psychology (using analogy as a
learning principle [58]). The educational theory on which these solutions are based
is sometimes reflected explicitly and sometimes not. The discussion of this topic
could help to clarify which approaches in the design of onboarding systems are
more helpful than others. Informal evidence indicates that tutorials are often not
read, and users just proceed and start working and exploring features of the system
themselves. Nevertheless, commercial systems often rely on tutorials as well as help
websites as onboarding systems, e.g., [1, 32, 47, 69].

We present a descriptive design space, presented in Fig. 6.2, covering aspects
of visualization onboarding especially with the focus on educational theories. We
conduct a systematic literature review to identify the state of the art in visualiza-

Uhttps://useronboard.com, accessed: 2021-04-30.
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Table 6.1 Overview of available visualization onboarding approaches (rows), systematically
characterized along the aspects of our conceptual framework (columns). The table is divided into
academic research and concepts (upper half) and commercial tools (lower half) which make use
of various onboarding concepts. With a main focus on the questions, we took four of them and
mapped them to the categorization of available approaches. The colors refer to the equivalent
questions explained in the subsections of 3 ® —applicable ©— —not applicable, and n.a.—
not available/unknown

Name Who? How? When?
Domain  Data Visual Encoding &  Analytical . Tool-  Context- - . Educational external ]
- 7 " " et € fore / whil
Knowledge Knowledge Interaction Knowledge Knowledge '/P® ledium specific  sensitivity "™V Theory internal before / while
Alper et al., 2017 [4] . . . ®  teaching tool e —  contextfree active CONCIEeNess oo mal before, while
pictograms fading
Ola & Sedig 2017[50]  na. na na. na.  video-tutorial video /  contextiree passive  na external before
soreenshots,
interactive twtorial  Seoee active, experimental
Kwon & Lee, 2016 [44] . ® wakinough, video, oo 't —  contextfree passive,  leaming  extemal before, while
static reactive  model
elements
gy s
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noifcations, topic
embedded
answers
jianatesilelatu 20l . . InfoVis guide e = context-free  active fop-down & /o el before, while
)] questions bottom-up
animated '
Fuchikachorn & . video tutorial visualization —  contexthree e 192miNgLY- o ternal before, while
Mueller, 2015 [59] passive  analogy
sequences
context-
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embedded
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via visual
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visualization fool  elements learning from
shared
experiences
instructional software  /I5U2! active
Firat et al., 2020 [21] . . elements, —  contextfree active external before, while
tool - learning
text, videos, ;
website, video, images, context:  active,
SAS UMP [62] . . . : video, /  senstve, passve,  na internal, external before, while
step-by-step overlays  visual
free reactive
elements
Advizor Solutions text, videos, context
: . . = website, overlay ! /  sensive, passve  na oxternal before, while
Advizor [1] images S
SAP Lumira [61] . . . website, video :::‘g:':e”s‘ v context-free  passive na external before, while
(EHUIT context-  active,
Ei Coroeiazaniics . WS U, LT v sensitive,  passive,  na internal, external before, while
23] interactive guided tour  visual
free reactive
elements
context-
tex, videos,
TIBCO Jaspersoft [73] - - website, overlay e /  sensve, passve  na intornal, external before, while
-ree
Microsoft Power Bl CCEDTE text, videos, context: . .
e . . examples, ask o v /  sensive, passive  na external before, while
questions in app g “free
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4 - - W interactive guided tour, "0 v sensitive, g na internal, external before, while
163] visual passive
courses, books tree
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Tableau Software website, video, text, videos,
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tion onboarding and to categorize the work by summarizing existing onboarding
concepts in scientific publications and commercial visualization tools using the
Five W’s and How [24, 25]. WHY is visualization onboarding needed? WHAT
is visualization onboarding? WHO is the user? Which knowledge gap does the
user have? HOW is visualization onboarding provided? is visualization
onboarding provided? WHEN is visualization onboarding used? Additionally, we
derived design considerations based on the collected publications and provide some
existing guidelines for the application of educational theories for visualization
onboarding in Sect. 6.4.4. Overall, we can report that whether other approaches are
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better for onboarding or it is still not an open question. Empirical research based on
educational theories could help to gain more systematic information about this area.

6.2 Related Work

As visualization onboarding aims at filling the knowledge gaps of users by
supporting the learning of new concepts, it makes sense to build upon knowledge
from the fields of learning theories and cognitive science (see Fig. 6.1). Therefore,
we present the related work for visualization onboarding, educational theories in
visualization and cognitive science, as well as how explicit knowledge relates to
onboarding in the following subsections.

6.2.1 Visualization Onboarding

So far, there has been little discussion about onboarding concepts for visualization
techniques and visual analytics (VA) tools. Tanahashi et al. [70] investigated top-
down and bottom-up teaching methods as well as active or passive learning types.
The bottom-up teaching method is a method focusing on small, detailed pieces
of information on which students then incorporate together for comprehensive
understanding. A top-down teaching method is given when a broad overview
helps to understand the abstract, high-level parts of an idea which then provide
context for understanding its components in detail [70]. Passive learning means
that students only receive the information without participatory dialog. In contrast,
active learning describes an active participation [70]. Their analysis indicates that
top-down exercises were more effective than bottom-up and active learning types
with top-down tasks were the most effective ones. In their comparative study, Kwon
and Lee [43] explored the effectiveness of active learning strategies. Three tutorial

% e
explicit visualization educational
knowledge onboarding theory

Fig. 6.1 Visualization onboarding aims to support end users in comprehending data visualizations
and take full advantage of the tools at hand. With effectively designed onboarding methods, the
knowledge gap of users could be filled. Thus, it makes sense to tap in the field of educational
theories as well as identify how onboarding can benefit from explicit knowledge
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types—static, video-based, and interactive—were used to support the learning of
scatterplot visualizations. They observed that participants who used interactive and
video tutorials outperformed participants who used static or no tutorials at all. In
a study which set out to determine the power of teaching unfamiliar visualization
by linking it to a more familiar one, Ruchikachorn and Mueller [58] found that
the learning-by-analogy concept can be useful when the visualization method to
be learned is inherently more powerful than its counterpart. They assessed four
combinations and compared their difference in visual literacy: scatter plot matrix
against hyperbox, linear chart against spiral chart, hierarchical pie chart against
treemap, and data table against parallel coordinates. The spiral charts seemed to be
the most difficult one to understand for the participants. The authors describe also
another advantage of learning-by-analogy over other forms of demonstrations such
as textual or oral descriptions is the power of visuals, as they bridge any language
barriers. The educational community has also studied how students interpret and
generate data visualizations [5] and how to teach bar charts in early grades [3] using
a tablet app, called “C’est la vis,” supporting elementary school pupils to learn how
to interpret bar charts based on the concreteness fading approach. Concreteness
fading is a pedagogical method where new concepts are presented with concrete
examples at first, before progressively abstracting them. Recently, Bishop et al. [9]
developed a tablet-based tool called Construct-A-Vis, which supports elementary
school children in creating visualization based on free-form activities. They used
scaffolding as a pedagogical method. In detail, they integrated feedback mechanisms
by showing if the visual mapping was correct. Additionally, Bishop et al. [19]
developed an interactive pedagogical method for training and cognition of a treemap
design, as well as a treemap literacy test. The user study showed that students who
interacted with the teaching tool outperformed those students who learned through
slides.

Besides, there are platforms and websites available. For example, The graphic
continuum [68], which provides an overview and helps choose the appropriate
design or visualization type. Additionally, the Data Viz Catalog [55], a library
of different visualization types, seeks to help users understand the encoding
and building blocks of different visualization types. Furthermore, a decision tree
provided by From Data to Viz [28] helps to find an appropriate visualization type
based on the input data. The catalog offers definitions, variations, and the use of
each visualization type in addition to potential issues that may arise during use
and interpretation. These systems are not related to a particular visualization tool,
neither integrate any educational theories nor provide validations. Recently, Wang
et al. [77] presented a set of cheat sheets to support visualization literacy around
visualization techniques inspired by infographics, data comics, and cheat sheets that
are established onboarding methods in domains such as machine learning.

Besides scientific literature, onboarding concepts are integrated in commercial
visualization tools as well. Nowadays most of these commercial visualization tools
already integrate onboarding concepts focusing on the explanation of features, see
Table 6.1. Yalgin [79] presented HelpIn, a design of a contextual in situ help system
to explain features of Keshif [39]. Furthermore, IBM Cognos Analytics [32], for
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example, uses step-by-step tours with tooltips and overlays for onboarding new
users. A more traditional approach is used by the commercial visualization tool
Adpvizor [1], which makes use of textual descriptions to explain the visual mapping
for visualization techniques.

6.2.2 Educational Theories in Visualization and Cognitive
Science

Visualization onboarding supporting users in learning new concepts [67]; therefore
it makes sense to build upon the knowledge from the field of learning theories
and cognitive science. We distinguish between three main educational theories:
behaviorism, cognitivism, and constructivism [16]. Behaviorism is an educational
theory that only focuses on objectively observable behaviors and discounts any
independent activities of the mind [78]. It is based on positive and negative rein-
forcement techniques. Besides, cognitivism is a philosophy of learning, founded on
the premise that learning can be modeled as a kind of information processing [16].
Each of us generates our own “rules” and “mental models,” which we use to
make sense of our experiences. Learning, therefore, is the process of adjusting our
mental models to accommodate new experiences. E-learning systems often integrate
elements from different educational theories. This also applies to most onboarding
systems.

Constructivist theories seem to be the one most appropriate for explaining
learning processes with onboarding systems because they reflect on the application
of learning in a practical context. The concept of cognitive apprenticeship plays
an important role in constructivism [15, 63]. Cognitive apprenticeship is a kind of
guided participation by learners in real processes of knowledge generation. This is
related to the concept of scaffolding [27] where teachers gradually reduce the level
of support for the student until the student is able to work autonomously. Cognitive
apprenticeship and scaffolding can explain processes related to onboarding because
the goal of the learners is to solve a real task, while the guidance is gradually
reduced.

Another theoretical framework relevant for onboarding is graph comprehension,
a theory that aims to explain how users make sense of graphs. Most of the
investigations in this context deal with simple, small graphs [52]. Nevertheless,
the findings from graph comprehension yield interesting results that can inform
the design of visualizations. This is especially valuable for onboarding systems
because investigations in this area often address the issue of how to design graphs
that are appropriate for use in educational contexts. One of the most influential
models in the context of the theory of graph comprehension describes this activity
as consisting of three stages [21]. These three stages are (1) reading the data
(i.e., finding individual data values), (2) reading between the data (i.e., finding
relationships between the data), and (3) going beyond the data (i.e., interpreting
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the data, developing hypotheses about the data). Educational graphs are supposed to
support all three stages, but the ultimate goal is to induce learners to “go beyond the
data,” that is, to reflect on the data and draw conclusions. Shah et al. [66] argue that
inexperienced users typically concentrate on single data points or single lines in line
graphs, whereas experts are able to actually interpret patterns in the data. Peeck [51]
investigated whether it is possible to motivate learners to process graphs more
comprehensively. In this context, the author successfully tested whether specific
instructions for the processing of graphs support learning. The author also postulates
that other measures such as cues to draw the learner’s attention or motivating the
learner to solve simple tasks by using the graphs are beneficial. Based on this
approach, it can be recommended that onboarding should especially support “going
beyond the data” and that instructions and visual cues can help users to better
understand visualizations.

A further learning theory relevant for onboarding is Microlearning. Microlearn-
ing as an approach is a reaction to several technical developments. First, mobile
technologies enable learners to learn flexibly, e.g., on the way to work, while travel-
ing on public transport or while waiting for a physician. In addition, microlearning
is also relevant for workplace learning and continuing education [64]. Employees
in companies or other organizations do not need lengthy explanations but focused
information that is necessary to continue their work. Microlearning has been defined
as “special moments or episodes of learning while dealing with specific tasks or
content, and engaging in small but conscious steps.” [30]. Microlearning usually
encompasses small units of learning that never take longer than 15 min. The
situation described for Microlearning in the context of workplace learning is similar
to the situation of users of complex information visualization systems.

Finally, Gestalt psychology is a theory that might be relevant for the design of
onboarding systems. It is well known that Gestalt psychology has made important
contributions in the area of perceptual psychology. It is less well-known that
Gestalt psychologists also conducted relevant research in the area of reasoning and
problem solving (see, e.g., [29, 46]). This is especially interesting for the design
of visualizations as Gestalt psychologists conceptualized problem solving as the
(sudden) perception of structure in a problem domain. The so-called Aha-moment
is the moment when pieces fall into place and coherent structure is identified. In
this context, the usage of analogies plays an important role because the transfer
of structural knowledge from a well-known domain to an unknown domain is one
of the learning methods that was suggested by Gestalt psychologists. Analogies
can also be used to support onboarding in improving the understanding of complex
visualizations as shown in the concept by Ruchikachorn and Mueller [58].

6.2.3 Knowledge Integration for Onboarding

In this section, we describe how user onboarding can benefit from explicit knowl-
edge sources and contribute to generate new knowledge and insights. Based
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on the previously introduced terminology, we further characterize knowledge in
Sect. 6.3.2.1, listing all the possible knowledge types which are needed, supporting
meaningful onboarding.

In this work, we mainly consider explicit knowledge, i.e., knowledge as the
source for providing onboarding. Usually, two types of prior knowledge are
needed by a user to analyze data: operational knowledge (how to interact with
the information visualization system) and domain knowledge (how to interpret
the content) [11]. While a focus on usability and a perception- and cognition-
aware design can alleviate the need for operational knowledge, domain knowledge
cannot be easily replaced [11]. Stoiber et al. [67] further enhanced the levels
of the users’ prior knowledge for visualization onboarding based on the nested
model [48] as (1) domain knowledge (e.g., vocabulary and concepts), (2) data
knowledge (understanding the particular datatype), (3) visual encoding knowledge
(understanding the visual mapping), (4) interaction knowledge (for performing tasks
and understand relations in the data), and (5) analytical knowledge (knowledge
of different automated data analysis methods)—see Sect. 6.3.2.1 for more details.
However, Chen et al. [11] as well as Stoiber et al. [67] described the term prior
knowledge at different granularities, whereby operational knowledge [11] can be
seen as similar to the combination of visual encoding, interaction, and analytical
knowledge [67].

Thomas and Cook [71] describe that the proper representation of final as well as
intermediate generated knowledge can be useful to support the analytical discourse.
By retaining quality and provenance information, it supports the interoperation
between human and machine components, the collaboration between different users,
as well as tracing the relations between data and derived knowledge products.
In 2005, Thomas and Cook [71, p.35] incorporated prior domain knowledge and
building knowledge structures as one of the open challenges of the VA agenda.
This is supported by the central role of knowledge in the VA process model by
Keim et al. [36, 37] and further process models such as the knowledge generation
model by Sacha et al. [59] and the visualization model by van Wijk [75]. However,
these process models do not differentiate between knowledge in the human and
the machine space. Based on Wang et al. [76] as well as Federico and Wagner
et al. [17], tacit knowledge is exclusively available to/by human reasoning and
can be extracted as explicit knowledge to become machine usable in the VA
environment. Additionally, the integration of explicit knowledge into the VA process
is formalized in several recent models by Wang et al. [76], Ribarsky et al. [54], as
well as Federico and Wagner et al. [17]. Beyond the role of knowledge in the VA
process, only few works discuss the content and structure of explicit knowledge
on a general level [2, 4, 44, 56, 65, 74]. As visualization onboarding aims to fill
different knowledge gaps of the user, the former described knowledge generation
and transformation concepts can be used.
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6.3 Descriptive Design Space

In our previous work [67], we introduced a descriptive design space for visualization
onboarding. This work enhances the design space and discusses the role of
educational theories in the context of onboarding.

6.3.1 Construction of Design Space

We structured the design space based on Five W’s and the appended How [24, 25].
These questions are frequently used to describe a matter from its most relevant
angles in technical documentation and communication. Furthermore, the same
questions have already been employed for structuring the use of visualization for
healthcare informatics [80] and in a survey on the role of visual analytics in deep
learning research [26]. We describe the space of visualization onboarding along the
following questions: WHO is the user? Which knowledge gaps does the user have?
HOW is visualization onboarding provided? is visualization onboarding
provided? WHEN is visualization onboarding used? Inside of each dimension
(question), we defined several categories which are described in detail in the section
below. We followed an open coding approach for the survey of onboarding concepts
where we unified top-down approaches as well as bottom-up categorizations. Where
available, we used the existing taxonomies or frameworks, which we adapt to the
specifics of visualization onboarding.

6.3.2 Design Space Dimensions

The aim of visualization onboarding is to support human in dealing with large
and complex information structures, to make them more comprehensible, facilitate
exploration, and enable knowledge discovery. Nevertheless, the users often have
problems in reading and interpreting data from visualizations, in particular when
they experience them for the first time. In this section, we present the design space
dimensions of visualization onboarding and show its various aspects.

6.3.2.1 WHO Is the User?

Users need to understand the process and reasoning that lead to the visual appear-
ance, interactive behavior, and findings. Making this process transparent to the users
is a central aspect in the design of visual analytics solutions. For conceptualizing
this aspect, we adapt the nested model by Munzner and colleagues [48] as the
guiding framework for presenting different levels of knowledge. The nested model
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Why is visualization onboarding needed? How is visualization onboarding provided?
The aim of visualization is to support humans in dealing with Type  e.g. guided tour, step-by-step Tool-specific
large and complex information structures, to make them more wizards, help center, Yes | No
hensible, facilitate exploration, and enable knowledge nm  documentations, fooltps, overtays,
comprehensible, p s : ¢ g mousover popups. ...
gilscovery. But, users often.haye prgblemsv in reading and . e.g., textual instructions, video,
interpreting data from visualizations, in particular when they medium illustrations/figures, animations, ..
experience them for the first time.
Context-sensitivity Interaction Educational Theory
. . e.g., concretness
context-sensitive passive fading, learning-by-
ﬂ WHAT . doing, learning-by-
context-free active analogy,
. . scaffolding,
What is visualization onboarding? embedded reactive 9
Visualization onboarding is the process of supporting users on
how to read, interpret, and extract information of visual re-
presentations of data.
B WHO external
Who is the user? Which knowledge gap does the user have? internal
When is visualization onboarding used?
before while
——sss——asa—————

Fig. 6.2 A visual overview of the onboarding design space and of how all six questions “Why,
What, Who, How, Where, and When” relate to one another. Each question corresponds to one
paper section as indicated by the numbered tag near each question title

is a unified approach that splits the design into four levels and combines these
with appropriate evaluation methods to mitigate threats to validity at each level.
In order to be able to cover visual analytic approaches and include automated
data analysis components, we expand the original model by adding analytical
methods alongside visual encoding/interaction idioms. Analytical knowledge—
such as different automated data analysis approaches, machine learning methods,
or statistical methods applied to the data—is necessary to understand complex
visualization interfaces and data. Figure 6.2 (3) keeps the nesting but shows an
altered representation of the different levels. The model components represent the
different levels of knowledge that (a) visualization users need in order to correctly
interpret (interactive) visualization artifacts and (b) visualization designers have to
consider when developing onboarding concepts.

The levels consider the users’ prior knowledge such as domain knowledge, data

knowledge, knowledge of visual encoding and interaction concepts, and analytical
knowledge.
Domain knowledge: A specific domain is a particular field of interest by target
users of a visualization tool (e.g., medicine, data journalism, bioinformatics). Each
domain has its own vocabulary for describing the data and problems, workflows, and
how data can be used to solve a problem. Domain knowledge is also an ensemble of
concepts, intellectual tools, and informational resources that a user can draw upon
to put the visualized data into context.
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Data knowledge: Many visualization tools are specific to a particular type of data,
such as multivariate data, hierarchical data, network data, or time-oriented data.
Data knowledge refers to the necessary knowledge for understanding the data types
and structures or statistical properties of the data. In many cases, users need to
know how to get their data into a specific visualization tool as a first step. This
relates to a more technical level of knowledge about a particular file format (e.g.,
CSV, JSON) or structure of the data—data format—(e.g., order and data types of
individual variables).

Visual encoding knowledge: This type of knowledge is the most obvious one
in the context of visualization, as it concerns the visual appearance of the data.
Data elements are mapped to visual marks and channels to form visualizations.
Understanding this mapping is the basis for being able to correctly interpret the
visualization.

Interaction knowledge: Interactivity is crucial for visualization tools. An interac-
tive visualization tool can support the investigation at multiple levels of detail, such
as either a high-level overview or fully detailed views that show a small data subset
only [48]. Understanding the interaction concepts used in a visualization tool is
important for users for an active discourse with the data, i.e., to perform tasks and
understand connections and relationships in the data.

Analytical knowledge is defined as the knowledge of different automated data
analysis methods, for example, clustering (e.g., k-means) or data aggregation (e.g.,
dimensionality reduction). In certain cases, users need to have at least a basic
understanding of their characteristics in order to choose or parameterize them
correctly.

6.3.2.2 HOW Is Visualization Onboarding Provided?

Onboarding type, medium, context sensitivity, interaction, tool-specific, and educa-
tional theory are relevant aspects of the question of how visualization onboarding is
provided. The onboarding type captures the used medium. The form of contextual
aid is extremely important for applications [23]. The help system should be designed
to guide users by demonstration in the context of their own interface. Chilana et
al. [12] developed an approach to provide a new framework for integrating crowd-
sourced contextual help into web applications. In their work, they also discussed
the importance of contextual help and adaptive help systems. Based on these
results, we also integrate the aspect of context sensitivity into our framework for
visualization onboarding. Fernquist et al. [18] introduced a set of the most relevant
aspects for interactive tutorials for a sketching software. Based on their design
space for sketching software, we adopted the aspect of interactivity. Additionally,
we integrated the category tool-specific indicating if the onboarding concept is
connected to a visualization tool or not. Visualization onboarding supports users
in learning new concepts. Hence, we integrated the category of educational theory.
Onboarding type and medium: Onboarding can be provided in different types,
such as guided tours, step-by-step wizards, video-based tutorials, and help centers.
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We derived this terminology from our literature review and Pronovic’s blog article
about context-sensitive and embedded help formats [13]. A particular type of
onboarding consists of a medium which can be, e.g., textual instructions, video,
illustrations/figures, animations, etc.

Context Sensitivity: Context-sensitive help provides assistance at a specific point
in the current state of the tool. It is the smallest possible chunk of information the
user needs to understand at that point. Examples are in-application help centers,
guided tours, or mouseover popups including instructional material. A type of
context-sensitive help is embedded help which goes beyond basic information
and explanations by either detecting the user’s need for help or offering a guided
tour right on the interface. Examples are tooltips, instructions on the interface, or
walkthroughs. Context-free help can be called at any state of usage and does not
relate to the current state of help-seeking. Examples are online documentations and
help videos.

Interaction: Interaction is applied within the onboarding process itself. We refer
to Fernquist [18] for defining the degree of interactivity in onboarding concepts.
Help systems can be passive if the user only consumes the learning material, such
as reading an article or viewing a video. If users can try out the concepts, the
onboarding concept is defined as active. Active tutorials that are aware of the users’
interactions and can respond to these are referred to as reactive.

Educational theory: The aspect of learning and educational theories is crucial
when it comes to onboarding approaches. A systematic categorization of the
educational theories was not possible to conduct as there is no taxonomy avail-
able. Therefore, we collect educational theories, which authors described in their
scientific publications (e.g., concreteness fading [3], learning by analog [58], etc.)
Tool-specific: The category describes if the onboarding concept is designed for
a specific visualization tool (tool-specific) or it is decoupled from it (non-tool-
specific).

6.3.3 is Visualization Onboarding Provided?

Based on Fernquist et al. [18] who introduced a set of the most relevant aspects, we
also adopted the aspect of the integration of onboarding concepts by asking Where is
visualization onboarding provided ?—externally, internally, or as a learning environ-
ment. An onboarding system that is integrated internally into the visualization can
be more helpful for users because they do not have to jump back and forth between
two different systems. External sources for onboarding concepts can be defined as
sources which can be reached independently of the current state of the tool. At the
tightest level of integration, help systems can be provided internally. It should be
pointed out, however, that integrating onboarding systems into the visualization or
visual analytics tools is challenging and requires a considerable effort.
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6.3.4 WHEN Is Visualization Onboarding Used?

The aspect of WHEN describes the temporal aspect of intended onboarding use
(see Fig. 6.2 (6)). Onboarding concepts can be integrated before using the actual
visualization tool (one time or repeated) or called up while the use of a certain tool,
e.g., when support regarding a particular feature is needed.

6.4 Survey on Visualization Onboarding

In this section, we describe the method used for our systematic literature review in
detail. Furthermore, we present the results of the survey based on our descriptive
design space.

6.4.1 Method

To get a comprehensive overview of existing onboarding concepts, we systemati-
cally surveyed the literature published in the main venues in the fields of information
visualization, visual analytics, and HCI. In addition to scientific publications, we
reviewed commercial visual analytic tools based on a recent study about commercial
systems by Behrisch et al. [7] (see Table 6.1). We focused on the following
major conferences and journals: IEEE InfoVis, IEEE VAST, EuroVis, Eurographics,
FEuroVA, IEEE TVCG, Information Visualization (IV), ACM CHI, and ACM UIST.
Due to the fact that the term onboarding is rarely used in the visualization com-
munity, we used the following keywords: data visualization literacy, visualization
literacy, instructional material, and learning. We scanned the title and abstract for
the specific keywords.

We additionally examined papers published as part of various relevant workshops
on the topic of visualization literacy, especially the IEEE VIS DECISIVE Workshop.
We took into account both full and short papers. Moreover, we identified the authors
of the most relevant papers and included further publications by these researchers.
We scanned through the related work sections of the relevant papers to find more
literature related to our topic. We were able to identify a total of nine papers
that focus on onboarding concepts and learning environments for visualization or
visualization tools [3, 9, 20, 34, 43, 45, 49, 58, 70, 79] as well as ten commercial
tools that use a variety of onboarding methods and concepts [1, 32, 47, 53, 60—
62, 69, 72, 73].

Every selected publication was categorized by two coders who are co-authors of
this chapter. After the coding of the nine papers, we discussed the coding criteria
and matched our coding strategy. In case of conflicting codes, coders discussed the
reasons for decisions in order to resolve inconsistencies.
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6.4.2 Results

We reviewed nine scientific publications and ten commercial tools with a special
focus on onboarding concepts summarized in Table 6.1. In the following sections,
we discuss and highlight the most relevant factors of onboarding methods we
discovered.

6.4.2.1 WHO: Who Is the User? Which Knowledge Gap Does the User
Have?

For both the scientific publications and the commercial tools, we recognized
strong emphasis on visual encoding and interaction knowledge as well as data
knowledge [1, 3, 9, 34, 43, 45, 47, 49, 53, 58, 60-62, 70, 72, 79]. Interestingly,
Kwon and Lee [43], Ruchikachorn and Mueller [58], Bishop et al. [9], and the two
visualization tools IBM Cognos Analytics [32] and TIBCO Spotfire [ 73] do not target
data knowledge explicitly, which appears to be surprising as basic data knowledge
is crucial in order to understand the visual encoding of a visualization. Only two
publications [3, 43] cover analytical knowledge, while six of ten commercial tools
provide support in this respect, e.g., classification and regression models [1]. We
were able to identify a lack of domain knowledge in all tools and the majority of
scientific publications. Only two publications focus on domain knowledge in their
onboarding concepts [3, 79]. The publication of Ola and Sedig [49] was an exception
insofar as we could not identify any of the knowledge gaps.

6.4.2.2 HOW: How Is Visualization Onboarding Provided?

In this dimension, we distinguish between five different aspects: onboarding type
and medium, context sensitivity, interactivity, tool-specific, and educational theory
(see Sect.6.3.2.2). In terms of the onboarding type and medium, we found some
similarities within the collection of publications. However, these have been the
most difficult to gather, as the publications vary the most in their onboarding
approaches. In the educational setting [3, 9, 20], the teaching tools use text,
visual elements, as well as pictograms as medium to educate students. In terms
of documented onboarding type, Alper et al. [3] introduced a “tool for teaching
bar charts.” More recently, Firat et al. [20] developed an instructional software
tool for treemap visualizations, and Bishop et al. [9] introduced a “free-form
constructive visualization tool.” Besides, Kang et al. [35] as well as Yal¢in [79]
only integrated fext in their onboarding approaches on overlays. Kang et al. [35]
focused their concept on step-by-step overlays, in contrast, Yalcin [79] used for
his approach overlays including a combination of topic listing, point and learn,
guided tour, notification, and topic answers. A further similarity is the usage of
video and/or animation to onboard users. For example, Ola and Sedig [49] as
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well as Ruchikachorn and Mueller [58] developed video tutorials using animated
visualization sequences [58] (see Fig. 6.3 (3)) and a video [49] to support users
in learning. In addition, we identified other types such as interactive walkthrough
tutorials [43] and InfoVis Guides using text plus questions [70]. In general, most
of the collected onboarding approaches use a combination of different medium and
onboarding approaches.

All commercial tools could be systematically categorized only in terms of
type and media using documentation/explanation websites with screenshots and
textual descriptions (medium). The majority of tools also use videos as a medium
to onboard users. SAS JMP [61], IBM Cognos Analytics [32], and SAS Visual
Analytics [62] integrate step-by-step tutorials or interactive guided tours and
therefore also rely on visual elements (chart parts to interact with, applicable filters,
etc.). TIBCO Jaspersoft [72] and Advizor [1] make use of an in-application help
overlay using text and videos. Additionally, Microsoft Power BI [47], SAS Visual
Analytics [62], Tableau [69], TIBCO Spotfire [73], and QlikTech QlikView [53]
provide a combination of books and courses. One special method to highlight is
the in-application ask questions of Microsoft Power BI [47], which allows the users
to ask a question related to the dataset they are currently working on.

Tool-specific: For the scientific publications, we identified three onboarding
approaches which can be categorized as tool-specific [33, 49, 79]. The remaining
six are non-tool-specific [3, 9, 20, 43, 58, 70]. We call these onboarding concepts
learning environments, which are independent of a specific visualization tool and
can be used in general.

Context sensitivity refers to the three categories: context-free, context-sensitive,
and embedded concepts. Seven out of nine papers designed context-free onboarding
concepts, while only Yalcin [79] and Kang et al. [34] use context-sensitive and
embedded onboarding methods. On the other hand, three out of ten commercial tools
integrate context-free onboarding concepts. The other commercial tools integrate
context-free and context-sensitive methods as they are using documentation web-
sites and also in-application overlays or guided tours. One example is Advizor [1],
which makes use of context-free and context-sensitive onboarding methods (see
Fig. 6.3 (2) for the design of the context-sensitive approach).

A more detailed investigation of the inferactivity of the onboarding concepts
described in publications we found revealed a good balance between the three types
of interaction. The category interactivity is also connected with the used educational
theory. Four of the nine onboarding concepts provide reactive onboarding [9, 35,
43, 79]. For the commercial tools, we observed a strong trend toward passive
interactivity. Only two tools—SAS JMP and IBM Cognos Analytics [32, 61]—cover
all three interactivity types. IBM Cognos Analytics, for example, provides videos
and a website (passive) as well as an interactive guided tour (reactive) to onboard
users.

In terms of the integrated educational theories, we could not find any unique use
of educational theories among the onboarding approaches presented in publications.
Thus, we identified the following aspects: (1) onboarding approach designed
without the integration of educational theories [35, 49, 79], and (2) onboard-
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Fig. 6.3 Onboarding approaches: (1) IBM Cognos [32], (2) Alper et al. [3] onboarding method
based on the concreteness fading educational theory, (3) PowerBI external webpage with instruc-

tional material (screenshots and text) [47], and (4) educational instructional material for treemap
visualization [20]
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ing approaches grounded in educational theories: (2a) concreteness fading [3],
(2b) Experiential learning model [43], (2¢) top-down and bottom-up [70], (2d)
learning-by-analogy [58], (2e) scaffolding via visual feedback, learning from shared
experience [9], and (2f) active learning [20]. In the following, we describe two
examples in detail showing how visualization onboarding has been applied.
Example on Experiential Learning Model (2b): one example for a reactive onboard-
ing is from Kwon and Lee [43], who developed an online learning approach for
parallel coordinates following the experiential learning model (see Fig. 6.3 (6)).
The model defines learning as the process in which knowledge is constructed
via concrete experience and reflection on the experience [41]. Therefore, the
interactive tutorial page integrates the experiential learning model’s four stages
(Concrete Experience, Reflective Observation, Abstract Conceptualization, and
Active Experimentation). The authors implemented the model as follows. For the
first stage, the Concrete Experience, the people are asked to complete a mission. For
the Reflection Observation stage, the onboarding approach provides hints to the user
interactions. Additionally, “the system shows the conceptual goal of the activity at
a successful completion” [43] (Abstract Conceptualization). For the fourth level—
Active Experimentation—the learning approach suggests to repeat the activity to
strengthen the learning. They conducted a comparative evaluation with three tutorial
types (static, video-based, and interactive tutorial walkthrough). They observed that
participants using the interactive and video tutorials outperformed participants with
static or no tutorials.

Example on Learning-by-Analogy (2d): In addition to onboarding using the expe-
riential learning model [43], Ruchikachorn and Mueller [58] proposed a concept
for the teaching of unfamiliar visualizations by using the educational theory of
learning-by-analogy. This is an example of a combination of passive and active
onboarding system. Based on animated visualization sequences (passive), the users
were taught a more advanced visualization technique based on an easier one with
transitions as presented in Fig. 6.3 (3). The user was able to watch the sequences
which can be categorized as a passive interaction. Additionally, the user was able to
start and stop animating the morphing (active).

6.4.2.3 : Where Is Visualization Onboarding Provided?

Our survey of existing work and commercial tools showed that the majority of
onboarding solutions can either be classified as external or internal or a combination
of both sources. Yal¢in [79] and Kang et al. [34] designed an internal onboarding
concept. All other solutions can be categorized as external onboarding approaches.
For commercial tools, there is a fairly equal distribution between only external ones
and those who are external and internal. The majority of commercial tools provide
external material such as documentation sites with text, images, and videos.
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6.4.2.4 WHEN: When Is Visualization Onboarding Used?

Onboarding concepts can be integrated at different states of use—before or during.
Ola and Sedig [49] relied on a before approach, in contrast, Yal¢in [79] and Kang et
al. [34] provide their onboarding while the usage. Other onboarding approaches [3,
9,20, 43,58, 70] can be either used before or while. We detected a clear tendency for
commercial tools as all of the onboarding concepts can be used before and during
usage of the particular visualization tool.

6.4.3 Summary

Considering the WHO question, we observed a strong tendency toward visual
encoding and interaction knowledge [3, 9, 20, 34, 43, 58, 70, 79]. Data knowledge
is also prominent in the literature [3, 20, 34, 70, 79]. However, domain knowl-
edge [3, 79] and analytical knowledge [3, 43] are covered only by two out of
nine investigated papers. Only Alper et al. [3] are targeting all knowledge gaps.
Regarding the question of HOW is onboarding provided? we found a variety
of different onboarding types. This ranges from simple texts instructions [79]
or videos [49, 58] to interactive visual elements [3, 9, 20, 43] or step-by-step
guides [34]. Regarding context sensitivity, most of them are using a context-free
approach [3, 9, 20, 43, 49, 58, 70], with two exceptions that are context-sensitive
and embedded in the visualization tool [34, 79]. Those two exceptions are also
internal looking at the aspect. All others are designed as non-tool-specific
onboarding approaches, i.e., not directly integrated into a visualization tool which
are then external.

In the case of educational theory, however, no general statement can be made
based on the categorization of the papers, since each paper follows a different
educational theory. However, we observed similarities regarding the educational
theories, which are presented in Sect.6.4.4. In general, most of the collected
onboarding approaches of the commercial tools are designed to be used before and
while interacting with a particular visualization tool (WHEN).

None of the commercial tools address or attempt to explain the domain know!-
edge of the users. The tools mainly cover only the data knowledge [1,47, 53, 60-62,
69, 72] as well as the visual encoding and interaction knowledge [1, 32,47, 53, 60—
62, 69, 72, 73]. In general, the tendency to convey analytical knowledge is much
higher with commercial tools [1, 60-62, 69, 73] than with the scientific papers.
In relation to tools, the type of onboarding mainly relies on help websites,
video tutorials, or courses. There are a few exceptions [32, 61, 62] that also
use visual elements offering more interaction. For context sensitivity, it is about
evenly distributed among the tools, but there is no single embedded one. Also, the
interactivity in the tools is mostly passive since the help often is only provided on
demand. Exceptions to this are the three approaches [32, 61, 62] that offer guides
or tutorials directly or react to user interaction. Unfortunately, it was not possible
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to identify an educational theory for any of the commercial tools, but this was
to be expected, since they are established visualization software. The commercial
tools have a balanced ratio in the question of . In terms of the WHEN
question, all the onboarding approaches can be used while or before using the actual
visualization tool.

6.4.4 Existing Design Considerations for Visualization
Onboarding

In this section, we present existing guidelines derived from the collected papers. We
focused on the given medium, type of onboarding, as well as the education theory
used to onboard users.

* Kwon and Lee [43] developed an interactive guide for parallel coordinates
plots based on a learning-by-doing approach. They followed the “Experiential
learning model,” which can be defined as the process in which knowledge is
constructed via concrete experience and reflection on the experience [41]. The
presented interactive tutorial walkthrough integrates textual descriptions as well
as interactive visual elements (see Fig. 6.4 (3)), where, for example, the user can
click on points in integrated parallel coordinates, whereupon lines are drawn that
then connect them.

* In their paper, Ruchikachorn and Mueller [58] developed a teaching concept
to learn and teach unfamiliar visualizations by linking it to a more familiar
one. They followed the learning-by-analogy approach. The authors commented
that their system can be useful when the visualization method to be learned
is inherently more powerful than its counterpart. Their approach overcomes
languages barriers as it uses visuals.

* The results of the conducted study by Tanahashi et al. [70] showed that tutorials
where users can directly interact with the visualization will influence the com-
prehension positively. They suggest to use active learning type (participating
actively in a corresponding dialog) with top-down exercises. In detail, this
means to ask participants to draw more advances, less direct inferences from the
data. Their study revealed that their approach of text-plus-question introductory
tutorials is a useful and practical way to onboarding users to information
visualizations.

* A recent study shows that there is a successful knowledge transfer to another
concrete domain when concrete examples were given as opposed to abstract
ones [14]. Based on these results, Alper et al. [3] developed a tablet app
teaching elementary school pupils bar charts using the pedagogical method of
concreteness fading. The tool provides a space with a reference line (x- and
y-axis) as well as free-form pictograph that represents data in the form of
illustrative icons which are scattered around. Children can stack the icons on
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Fig. 6.4 Onboarding approaches: (1) Advizor [1], (2) learning-by-analogy developed by Ruchika-
chorn and Mueller [58], and (3) interactive tutorial based on Experiential Learning Model [43]
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top of each other and then watch an animated transition morphing the icons into
a more abstract representation of a bar chart (see Fig. 6.3 (2)).

* Bishop et al. [9] developed a free-form construction tool for tablets to engage
pupils with the creation of visualization, as well as to make the visual mapping of
data more explicit. Scaffolding was integrated as educational theory. The results
of their study highlight the advantage of scaffolding within the creation process
of visualizations through visual feedback, configurability, and shared interaction.

When we sum up and generalize the results of the empirical studies of the
papers, as well as the results of the analysis of the design space, we propose the
following guidelines when it comes to design onboarding methods: (1) explain the
visual encoding and interaction concepts [3, 9, 43], (2) use interactive onboarding
approaches, where users can interact with the visualization as well as with the
instructional material [43, 70], (3) concrete experience and reflection can lead to
higher understanding [43, 70], and (4) use animations or videos [3, 43, 58] to show
the data-to-visual mapping.

6.5 Discussion and Conclusion

We presented a descriptive design space for visualization onboarding and presented
design considerations based on the existing empirical studies. The design space
contains the six aspects: WHY is visualization onboarding needed? WHAT is
visualization onboarding? WHO is the user? Which knowledge gap does the
user have? HOW is visualization onboarding provided? is visualization
onboarding provided? WHEN is visualization onboarding used? We conducted a
systematic literature review to develop the presented design space. Additionally,
we also reviewed commercial visualization tools listed in Table 6.1. We especially
focused on educational theories as the aspect of learning is important when it
comes to the design of visualization onboarding (see Table 6.1 and Sect. 6.4.4).
Ways to effectively support the learning process of users with different knowledge
gaps can be considered by using educational theories. However, the literature
lacks educational theories with a special focus on onboarding concepts. We tried
to identify guidelines based on the existing literature, which we presented in
Sect. 6.4.4. Nevertheless, existing theories and results of educational research can
be used to inform the design of onboarding systems.

Onboarding systems can either be designed like help systems, which implies
a cognitivist approach, or they might use a scaffolding approach [9], applying
features such as prompts, tools to structure information, or higher order questions.
Constructivist theory supports the assumption that especially higher order reasoning
processes and the ability to make inferences and draw conclusions from the data
are supported by cognitive apprenticeship or scaffolding in particular. Higherorder
reasoning is not only the last stage in the model suggested by graph comprehension
but also the ultimate goal of most visualization systems. Based on the papers,
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educational theories that support active learning and concrete experience are
appropriate for onboarding. Further research is needed to empirically test these
observations.
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Adaptive Visualization of Health Qe
Information Based on Cognitive

Psychology: Scenarios, Concepts,

and Research Opportunities
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and Andrea Siebenhofer-Kroitzsch

Abstract Consumer Health Information Systems (CHISs) are indispensable in
healthcare. User-centered evidence-based medical information for patients posi-
tively influences therapy success, behavior, and cause—effect comprehension. Also,
improved health literacy allows patients to accept medical advice and share
decision-making and improves doctor—patient communication. Today, CHISs exist
in many different forms. Yet, information is generally provided statically, i.e., the
same medical content is presented to everyone. However, patients vary regarding
previous knowledge and information needs and preference of perception of the
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information, e.g., in textual or visual form. This variation can depend, e.g., on
gender, age, personality, perception, and cognitive aspects.

In this conceptual chapter, we envision how research and knowledge from evidence-
based medical knowledge, cognitive-psychological mechanisms, and interactive
data visualizations can be combined, to form adaptive and interactive consumer
health information systems (CHISs) that take account of individual health informa-
tion needs and increase health literacy by providing a reliable source of medical
knowledge. To this end, we detail the scope and contributions of these disci-
plines to novel visual health information systems which can adapt them to the
information needs and preferences of their consumers. We depict a concept for
an advanced interactive, adaptive, personalized visual CHIS (named ATCHIS).
The concept is based on introducing multidimensional adaptivity in the content,
visual presentation, level of detail, for example, to the provision of evidence-based
medical health information, aiming at the consumers’ full understanding of the
meaning of the provided medical content. We argue that adaptive visual health
information may provide efficiency increase for the general medical system and
improved health literacy. While we do not present concrete results, we lay out the
research opportunities and a possible system architecture to inform and implement
ATCHIS in the future.

7.1 From Static to Adaptive Visual Health Information
Systems

Evidence-based medical research shows that health literacy and treatment success
require that quality-assured medical information is available to the population and
patients [21]. This is the aim of CHIS and providers, ranging from information
folders, brochures, to media reports, web-based discussion forums, and information
portals. Currently, information is presented statically and does not take into account
that the knowledge, information needs, and health treatment situations (or contexts)
of consumers differ significantly. Usually, a one-size-fits-all approach is taken to
provide information, and existing CHISs provide health information unidirection-
ally from the system to users. However, advances in information technology enable
consumers and patients to view health information on the Internet. In addition,
consumers can record data related to their own health, e.g., by using consumer
health trackers. By automatically collecting such data, as well as other forms
of user preference feedback, and based on approaches of data analysis, we can
automatically predict specific health interests of users and dynamically adapt health
information to a particular consumer’s context and requirements. Adaption can be
made regarding the content and its level of detail, as well as its visual representation,
e.g., as text, diagrams, interactive data visualizations, etc. Suitable adaption of
information detail and form of presentation to customers’ requirements, medical
and visual literacy, and cognitive setting and greatly improve the reception and
understanding of information [26, 47]. However, existing static CHISs do not fulfill
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these functions. Also, trustworthy health information targeted to the information
needs of consumers and patients and effective interactive visual representations
of health information are expected to drastically increase the use and acceptance
of health information. This, in turn, may substantially improve patient—doctor
communication and therapy compliance, foster general health literacy, and raise the
effectiveness of the health system as a whole.

Hence, we motivate the need for multidimensional adaptive mechanisms for
CHIS and propose to research techniques for advanced adaptive, human-centered,
interactive and visual CHIS, or ATCHIS. Advanced approaches should aim at
delivering the required information to consumers at a level of detail and using the
visual representations that best fit the consumer’s specific, individual information
needs.

We argue that results from three fields of research can be combined to research
effective new approaches for adaptive, personalized health information: (1) inter-
active, personalized visualization of (2) evidence-based health information, and (3)
fostering cognitive processing. In combination, they allow to research how novel
ATCHIS can be designed, implemented, and evaluated. It can support to define
mechanisms to improve medical information processing in different patient and user
groups. Novel visual interactive techniques that help adapt displayed information
to suit the user context can be developed. The specific roles of these fields can
be described as follows. A more detailed discussion of these areas and their
contribution toward adaptive visual health information will be given in Sect. 7.3
and following.

7.1.1 Interactive Data Visualization for Health Data
Visualization

In visualization, the goal is to find cognitively useful visual representations of data
that enable us to understand complex data and make insightful decisions [70, 112].
Information visualization techniques are interactive, allowing to select, filter, and
navigate data to support task-oriented data analysis such as exploration and hypoth-
esis generation, comparisons, pattern searching, and the verification of dependencies
[116]. Different visualization techniques have been proposed, depending on the type
of data (e.g., time series, geospatial data, textual, or high-dimensional data), and
application domains, including medical information.

The field of Information Visualization can provide concepts and implementations
of adaptive visualizations of health data, building on evidence-based health infor-
mation and cognitive psychology principles in health information use. Specifically,
approaches may be developed to determine appropriate interactive visual repre-
sentations of health information automatically. This requires, relying on Cognitive
Psychology, finding appropriate knowledge structures for the representation of
information on health, the consumers, and visualization processes. Building on
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this, research can be conducted into mechanisms that automatically decide what
information, by which level of detail, and visual representation should be displayed
based on the personal needs of the consumer. This can build on known guidelines
and user studies on the effectiveness of information visualization displays and
methods of machine learning and recommender systems to model and learn user
interest. The latter will allow not only for consumer information according to the
pull principle (consumer explicitly requests information) but also the push principle
(further information is recommended).

7.1.2 Evidence-Based Consumer Health Information as
Information Basis

The field of Evidence-based Consumer Health Information covers the study of exist-
ing CHIS, deriving principles, and goals used in traditional (static, non-interactive)
CHIS, on which we can build on. These principles can inform new approaches, by
incorporating known working methods, while extending and improving them for
multidimensional adaptivity.

Based on existing quality criteria for CHIS, one can define standards for the
methodological quality of the ATCHIS to ensure their trustworthiness. A strictly
evidence-based approach is required to ensure the presented information is of high
quality [31, 67]. This is clearly necessary in view of the heterogeneity and differing
levels of evidence presented in the medical literature, let alone the questionable
quality of information available in the wilds of the Internet.

7.1.3 Cognitive Psychology Principles for Adaptive Health
Information

Cognitive Psychology of adaptive health information systems is a new research
direction, which can cover cognitive aspects involved when consumers seek and
process health information. A key role in this research is the study of pre-knowledge,
motivation, interests, cognitive biases, and expectations that influence the most
suitable quantity, detail, context, and presentation of information for specific
consumers. Adaptation mechanisms needed to suit individual consumer profiles can
be defined. Research into Cognitive Psychology, including such aspects as the iden-
tification of mechanisms of knowledge, motivation, and learning capacity, which
takes into account that human cognition is vulnerable to many known cognitive
biases and misconceptions, can inform the mechanisms for novel ATCHIS. As far as
health information is concerned, this can result in problems such as over-information
or over-diagnosis, which should be taken into consideration by these systems.
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The remainder of this chapter is structured as follows: Sect. 7.2 emphasizes the
importance of a novel ATCHIS on diabetes type II and describes two scenarios
on how such an ATCHIS could provide suitable health information to consumers.
Sections 7.3 to 7.5 provide a review of the previous work and current research
challenges in the three abovementioned fields of research, interactive visualization,
evidence-based health information, and cognitive psychology. Section 7.6 outlines
a foreseen system architecture, and Sect. 7.7 concludes.

7.2 Scenario: Adapting Health Information for Diabetes
Type I1

In the following, we exemplify the need for adaptive visual health information by
an important disease according to two scenarios. The examples show the different
needs and phases in the course of a disease and serve as a reference for building
adaptive health information systems. We select type 2 diabetes mellitus for our use
case because it is highly relevant to public health, affects a broad section of the
population, and is hence well suited for the evaluation of the effects of ATCHIS.
The type of information required varies greatly and includes general information
on the disease, information on the use of devices for blood glucose monitoring or
insulin applications, information on the potential advantages and disadvantages of
various interventions and expected effect sizes, information on adequate footwear
for persons at increased risk of amputation, information supporting behavioral
changes, and specific advice.

Depending on the specific situation and interest, a lower or higher level of
information detail is advantageous. Type 2 diabetes mellitus is a chronic disease,
i.e., affected persons must deal with it over a long period of time. With increasing
age and disease progression, the patient may require or be interested in different
information. For example, information on prevention and lifestyle measures may be
most important at the onset of the disease, while information dealing with secondary
diseases may gain in importance later on. Furthermore, the disease affects people of
different social and educational backgrounds and interests, which may affect the
information they are interested in.

To be effective, health information must be adapted to suit the current needs
of individual consumers. But currently, the detail and comprehensibility of health
information on type 2 diabetes mellitus, whether in paper form or taken from the
Internet, etc., cannot generally be influenced. Furthermore, it is often difficult for
consumers to obtain the information they need, when they need it, and in a form
they can understand. For much information, it is also impossible for patients to
determine to what extent it is reliable. New ATCHIS should offer comprehensive
evidence-based information at varying levels of detail (from general information,
specific questions, descriptions of the expected clinical effects of interventions,
explanations of pathophysiological mechanisms to original scientific papers) and
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take into account individual social and educational differences. Thereby, they can
make major contributions to improving the care of people with type 2 diabetes
mellitus and improving health literacy.

The specification of scenarios is a useful domain context to inform the adaptation
mechanisms of an adaptive CHIS system. In Sect. 7.6, we discuss an architecture
and possible Machine Learning methods to incorporate scenario specifications.

7.2.1 Consumer Health Information System Scenario 1

A person with known type 2 diabetes mellitus goes to the doctor for a routine check-
up. The doctor determines that the patient’s blood glucose has risen since it was
last checked and is now too high. The doctor recommends intensifying the blood
glucose-lowering therapy. As a key information need, the questions arise to what
extent blood glucose should be lowered and what the potential benefits and harms of
intensified blood glucose reduction are. Based on this scenario, information content
can be adapted and visually presented like exemplified in the following.

Detail Level I: Basic Information on Recommended Intensity of Blood Glu-
cose Reduction ATCHIS will provide information based on recommendations
published in Austrian Diabetes Association and other international guidelines, i.e.,
the intensity of the blood glucose reduction should, in principle, be determined
individually for each person, based on defined criteria. Furthermore, ATCHIS will
provide a list of the corresponding personal criteria that includes examples for
better comprehensibility. For example, when considering the criterion of ‘significant
comorbidities’, intensive glucose lowering is recommended if these comorbidities
are absent or of low severity. However, if there are numerous or severe comorbidi-
ties, moderate glucose lowering is recommended. ATCHIS will show examples
of concomitant diseases (cancer, heart attack, stroke, etc.) which are considered
relevant to the given consumer. The ATCHIS relies on consumer profile information
and explicit/implicit feedback from the consumer to determine what information is
necessary. Furthermore, the way the information is presented gets adapted, e.g., to
overview or summary texts, or symbolic representations based on cognitive profiles
of consumer’s preferences and perceptions, which are also continuously maintained
by the ATCHIS.

Detail Level II: Basic Information on the Benefits and Harms That May
Result from Intensifying Blood Glucose-Lowering ATCHIS will explain that
data from scientific studies show that, e.g., compared to a moderate reduction
in blood glucose, intensified blood glucose-lowering does not reduce mortality,
prevents a heart attack in 2 out of 1000 people, prevents a microvascular event
(e.g., new onset or progression of retinopathy) in 14 out of 1000 people, etc. At
the same time, the studies show that for every person in whom a microvascular
complication was prevented by intensification of therapy measures, there are three
persons in whom severe hypoglycemic events can be expected. The ATCHIS selects
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a visual representation appropriate to the interest and visual and health literacy of
the consumer, e.g., using aggregated or disaggregated medical statistics, which may
involve a diagrammatic representation of probabilities such as Venn diagrams, line
charts, or symbolic representations.

Detail Level III: Presentation of the Content of Scientific Studies on the
Extent of Potential Benefits or Harms of Intensifying Blood Glucose Reduction
ATCHIS will provide information on key publications, guidelines, etc. in terms of
their research questions, content, and methodological quality. The exact research
question, the inclusion criteria, and the number and characteristics of included
studies are presented. In addition, a detailed presentation of the results and the
authors’ conclusions/recommendations is provided. The AT CHIS chooses, based on
consumer profiles, appropriate visual representations of documents. For example,
the text of a document can be reduced or expanded, applying natural language
processing methods to the recommended level of detail (see Sect. 7.6). It may
be possible to represent medical content in different textual or visual form, e.g.,
to represent the dependencies of health on medication and behavior as either a
dependency graph (network), or in textual form, or both. In the systems, consumers
should be able to interactively mark information that interests them. This feedback is
used to update the consumer profile database and search for related documents that
may then be recommended. Based on demand for further information, the system
could respond by giving additional references in key publications or guidelines that
are relevant to the topic and corresponding links to the publications.

In terms of form and visualization and, where reasonably possible, depending on
specific aspects and characteristics (such as gender and age), the content is presented
differently for each level of detail. The presentation will also take into account
findings on the avoidance of cognitive bias. It should ensure that content is evidence-
based. In addition, based on the described information, ATCHIS should present
additional information on the significance of hypoglycemic events at differing
degrees of detail and using different forms of presentation. Likewise, information
on the possible benefits and harms of therapeutic measures (lifestyle, medication,
etc.), i.e., information on the question “How should intensification in blood glucose-
lowering take place?”, can be visualized by means of a network of topics and
the relationships between them. These can then be interactively explored by the
consumer.

The ATCHIS chooses from a spectrum of visualization techniques for the
information, including standard diagrams and maps, symbolic representations, text
visualizations like tag clouds, keyword timelines, document landscapes, citation
graphs, etc. The visualizations are interactive and enable consumers to request
additional information and indicate interest or disinterest in certain aspects, from
which the system learns and updates the consumer profiles.

From a cognitive psychological point of view, each consumer’s information
processing and integration must be analyzed and optimized, taking into account (a)
relevant previous knowledge, health literacy, and the user’s profile, including such
details as age, gender, consumer group (e.g., patient, relative, interested laypersons),
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and information needs, (b) her/his aims and goals associated with information needs,
and (c) all information on the consumer gained from his/her dynamic interactions
and provided feedback that has contributed to sustainable non-biased knowledge.
Optimization is achieved by using the process-oriented formative and summative
evaluation of multidimensional adaptivity and interactivity.

7.2.2 Consumer Health Information System Scenario 2

A person without known diabetes mellitus participates in a routine health exam
and an elevated blood glucose level is detected. Many questions on diabetes
mellitus arise for the person, e.g., Do I really have diabetes mellitus? And if
so, What type of the disease do I have? What consequences will this have for
my health and professional future? And What can I do to reduce the risk of
unwanted health consequences? To answer such questions, information on the
diagnosis and criteria used to establish the diabetes type, the expected prognosis,
and legal aspects are necessary. In addition, information on possible types of therapy
(lifestyle, medication), necessary therapy intensity, and any psychological and social
support is required. The potential benefits and harms of the various interventions
(comparative effects of different drugs, of blood pressure reduction versus blood
sugar reduction, etc.) must also be explained. The need for information will depend
on the person concerned and may depend on the severity of the disease, possible
concomitant diseases, whether the person is employed or not, gender and age,
available resources, etc. The ATCHIS recognizes the information needs and adapts
the health information presentation in terms of the level of detail of the provided
information, content, gender aspects, type of visualization or form of presentation,
to meet specific needs. It will be ensured that the content is evidence-based. A
key requirement of the ATCHIS is that the presentation should take into account
possible cognitive biases of its consumers, which requires tracking appropriately
defined and maintained consumer profiles over the repeated uses. As an example, if a
consumer primarily and repeatedly searches for information units about symptoms,
possible side effects and complications of type 2 diabetes, and its medical treatment,
which can be interpreted as confirmation bias, ATCHIS could suggest information
units about protective behavioral strategies as de-biasing strategy and to increase the
consumers’ self-efficacy [64]. To this end, cognitive psychology principles of health
information need to be researched and reflected in the rules the ATCHIS applies for
adaptive health information presentation.
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7.3 Visual Health Information and Visual Analytics
for Healthcare

According to various studies, existing CHISs lack in readability and suitability [46,
57, 83, 93, 107, 114, 117]. In our vision, medical information should be visualized
such as to be understood by consumers and serve their individual information
needs [18], taking into account evolving information needs and health and visual
literacy. Medical information comprises heterogeneous data types, e.g., textual
descriptions of symptoms and treatments, networks of cause—effect relationships,
time series data to show measurements, and other numeric data quantifying medical
relationships, including uncertainties. Using indirect and direct human-computer
interaction approaches, we can enable to infer automatically information consumers
require. Dynamically updated user profiles can support to retrieve relevant medical
information from appropriately structured knowledge databases. Based on knowl-
edge on the effectiveness of different information visualization techniques for the
satisfaction of different user interests and cognitive properties, we can present this
information in interactive visualizations. The level of detail and visual presentation
should be automatically tailored to the respective user’s needs.

To this end, we can rely on information visualization (specifically, scalable
effective techniques for the display of different types of data), user interaction
techniques (specifically, graphical user interfaces with direct and indirect interaction
modalities), and knowledge technologies (specifically, knowledge representation,
recommender systems, and classification techniques). An ATCHIS may rely on
direct interaction modalities, like question-asking, or selection. It may potentially
also rely on indirect ones, e.g., interaction log data analysis to predict interest and
literacy. With this information, it can adapt the visual information display to the
consumer.

Existing adaptation and recommender systems often control only one infor-
mation modality (e.g., by recommending different products to consumers) or are
focused on a single information presentation format (e.g., texts or audio/video files).
ATCHIS should simultaneously decide what to present, how to present it, and to
observe how users interact with presented information. Based on this, we may
maintain consumer profiles by adapting them to changing information needs over
time.

7.3.1 Previous Work
7.3.1.1 Interactive Data Visualization and Health Data Visualization
In visualization, the goal is to find cognitively useful visual representations of data

that enable us to understand complex data and make insightful decisions [70, 112].
Information visualization techniques are interactive, allowing to select, filter, and
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navigate data to support task-oriented data analysis such as exploration and hypoth-
esis generation, comparisons, pattern searching, and the verification of dependencies
[116]. Different visualization techniques have been proposed, depending on the type
of data (e.g., time series, geospatial data, textual, or high-dimensional data) and
application domains, including medical information. To date, effective visualization
techniques have been proposed. For example, the LifeLine system was among
the first to visually represent patient treatment histories and support interactive
exploration [80]. Electronic health records enable novel visualization applications
for patient data [86]. The KAVAGait approach [110] helps doctors inspect complex
data derived during clinical gait analysis and supports diagnoses and patient
treatment decisions. In [22, 33, 118], timeline-based visualization techniques are
used to display patients’ pathways from a clinical point of view, e.g., patient
flow, summaries of individual periods in treatment, or treatment plans for diabetes
patients. Also, icon-based and radial layout-based visualizations have been explored
to visualize multidimensional health record data [19, 24]. An ATCHIS should rely
on such visualization approaches as a basis to proactively choose and adapt to the
specific information needs, including consumers who are not educated information
or interaction experts.

7.3.1.2 Visual Abstractions and Visual Literacy

Understanding advanced data visualizations and visual interactions depends, among
others, on the visual literacy of a user. Visual literacy can be defined as the ability
to recognize and understand ideas conveyed through visual representations (visible
actions, symbols, or images) [1]. Previous work has focused on design choices and
visual interactions aimed at making exploratory data analysis more comprehensible
to novice users. In [87], a concept of teaching and learning unfamiliar visualizations
by analogy was proposed that uses transformative morphing to explain unfamiliar
visualizations by linking them to more familiar ones. In [20], a design space for
storytelling with timelines was introduced that characterizes 14 different design
choices along three dimensions: representation, scale, and layout.

VisGuides' is a discussion platform that collects visualization guidelines and
allows expert discussion on guidelines and respective empirical results. Depending
on the type of abstraction, cognitive load may occur. As an example, different
visual abstraction methods for scatter plot diagrams, for example, include density-
based [29, 63], cluster-based [58], and regression-based [92] abstractions, which
convey different properties of data in scatter plots. Again, these are valuable
approaches to convey health information, and an ATCHIS should pro-actively
choose, adapt, and present these base visualization techniques to adapt to different
customer information needs and information processing abilities including cognitive
properties and possible cognitive biases.

! VisGuides Forum on Visualization Guidelines. https:/visguides.org/ (accessed July 11, 2020).
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7.3.1.3 Adaptive Visualization for General and Medical Data

An essential aspect of data visualization is enabling insight into data. However, a
key factor is that not all users have the same knowledge and understanding of visual
data representations (see also Sect. 7.5.1.1). Two different user characteristics exist:
long-term user characteristics (e.g., cognitive abilities and expertise) and short-term
characteristics (e.g., cognitive load and attention). Both should be considered when
designing information visualizations [105]. To increase the general effectiveness
of visualizations, they should be adapted to users’ individual visualization needs
and abilities. Studies based on user characteristics, such as perceptual speed, verbal
working memory, visual working memory, and user expertise, have been conducted
to assess the effectiveness of visualization types [105]. A key challenge in adaptation
is to do it automatically. Indirect interaction modalities like eye tracking can
potentially be used. In [100], information on users’ eye gaze patterns is used to
predict user visualization needs. These may help to adapt the visualization to suit
the identified task. Recent work applies data analysis to low-level user interaction
signals. For example, in [76], a hidden Markov model is used to derive learning
interest and predict relevant information items in a visualization developed from
user interaction data. These are interesting approaches to adapting visualization but
require careful set-up of user models and tailoring to specific domains. We aim to
use both codified domain and user knowledge, as well as feedback loops, to develop
user interest models and apply them to the adaptation of information displays.

In medical applications, adaptive visualizations may provide considerable ben-
efits by optimizing insight into, e.g., medical histories, patient observations, lab
results, clinical findings, etc. AdaptiveEHR [51] is a context-based framework that
uses biomedical knowledge structures (ontologies) and graphical disease models
to generate a tailored presentation of patient records based on patient information
needs. In [69], adaptive visual symbols are presented to visualize personal health
records and to summarize a patient’s medical history with the desired complexity.
An adaptive A+CHIS could include several health data visualizations as the basis.
For instance, symbolic representations of medical events [22, 33], fact sheets [103],
or visual depiction of a hierarchy of diseases [24] could be adapted for individual
consumers and their needs. Furthermore, other visualization techniques like Sankey
diagrams, generic network representations, or time-oriented visualizations could be
used to support quantitative data analysis of medical data [45, 82, 111].

7.3.1.4 Knowledge Technologies and Medical Health Information

Integration of information retrieval systems in the form of a medical question-
answering system [41, 73], or an intelligent chatbot [74, 84], can be valuable for
adaptive systems. Chatbots [98] engage patients in a conversation about medical
information needs. Also, question-answering systems can be useful to identify
similar patients, patterns of diseases, and successful treatments and to provide
specific answers to questions. Both question-answering systems and chatbots can
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be applied to ontologies to take queries expressed in natural language and return
answers drawn from available semantic information [4, 59].

Knowledge techniques often rely on structured databases, with semantic infor-
mation being associated with a domain, so that it can be processed automatically
and without human intervention. Ontologies can represent knowledge as a set
of concepts within a domain and to define relationships between the concepts.
Different ontologies exist in the medical domain, e.g., the Unified Medical Lan-
guage System,” the Bioportal Repository of Biomedical Ontologies,> the Disease
Ontology,* or the OLS Repository for Biomedical Ontologies.

In [89], an ontology was used to analyze information from online healthcare
forums. The approach reveals the relationship between patient profiles and health-
related terms extracted from their forum messages.

The ontology captures such patient profile data as age, gender, ethnicity and
habits, and health-related information like diseases, side effects, and symptoms.
In [30], an ontology-based model for diabetic patients is presented to aid doctors
in diagnostic decision-making. An overview of the application and effectiveness of
ontologies in e-Health applications is given in [43]. An ATCHIS can rely on such
ontologies to adapt the health information presentation, for example, by aggregating
or expanding the level of detail of presented information to consumer information
needs.

7.3.2 Research Challenges

In the course of a new research project by the co-authors, we aim to develop,
implement, and evaluate novel ATCHIS aiming to address the above motivated
requirements. We specify the following guiding research challenges and questions
for information visualization for ATCHIS as follows:

e How can health information, including dependencies between health, precon-
ditions, treatment, and behavior, be effectively visualized at different levels of
abstraction, regarding both the information content and presentation form?

e Which direct and especially indirect feedback mechanisms are effective in
recognize the evolving medical interest and visual literacy of consumers?

e How can the profiles of consumers be updated to reflect evolving interest and
literacy?

2Unified Medical Language System. https://www.nlm.nih.gov/research/umls/Snomed/
snomed_browsers.html (accessed July 11, 2020).

3 Bioportal Repository of Biomedical Ontologies. https://bioportal bioontology.org/ (accessed July
11, 2020).

4 Disease Ontology. https://disease-ontology.org/ (accessed July 11, 2020).

5 OLS Repository for Biomedical Ontologies. https://www.ebi.ac.uk/ols/index (accessed July 11,
2020).
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e How can guidelines for effective visualizations be compiled in a knowledge
database for adaptation of visual information?

e How can knowledge from different sources (health information, consumer
profiles, and visualization guidelines) be efficiently compiled into knowledge
databases with semantic representations?

7.4 Evidence-Based Health Information and Systems

CHIS has the task of providing laypersons with a comprehensive overview of
diseases and thus increasing the health literacy in the population. Research addresses
the question of what kind of CHISs are currently available internationally, how they
are structured, how the medical content will be presented to consumers, and how far
these aspects can contribute to the development of a new advanced, adaptive, and
interactive consumer health information system (ATCHIS).

For the development and testing of adaptive health information systems, real-
life scenarios are required. We focus on diabetes mellitus type 2, as it is very
relevant to the public health and affects a wide section of the population [54].
Hence, ATCHIS would deliver great benefits in this area. Diabetes mellitus type
2 is a chronic disease, i.e., affected persons are confronted with it over a long period
of time [10]. Therefore, the type of information required varies greatly depending
on the specific situation and interest. With the progression of the disease and age,
different information is necessary. Evidence-based medical data can be prepared
with regard to different levels of detail and the individual needs of the users. Then,
the information can be combined with new visualization concepts and techniques
as well as with cognitive-psychological research to enable an interactive adaptive
system to present the right information in the most appropriate form.

7.4.1 Previous Work
7.4.1.1 Health Literacy

One of the cornerstones of patient charters, e.g., the Austrian Patient Charter,? is
the right to be informed about one’s own health or illness. This information can
only contribute to strengthening health literacy and promoting informed decision-
making if it is comprehensive and understandable.

In the Health Literacy Survey-Europe (HLS-EU) project in 2011, health literacy
was defined as “people’s knowledge, motivation, and competences to access,

6 Bundesministerium fiir Soziales, Gesundheit, Pflege und Konsumentenschutz. Patientenrechte.
https://www.gesundheit.gv.at/gesundheitsleistungen/patientenrechte/inhalt, 2020 (accessed July
23, 2020).
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understand, appraise and apply health information in order to make judgments and
take decisions in everyday life concerning health care, disease prevention and health
promotion to maintain or improve quality of life throughout the course of life” [96].

The HLS-EU project was conducted among eight European countries (Austria,
Bulgaria, Germany, Greece, Ireland, the Netherlands, Poland, and Spain), according
to which the health literacy of the Austrian population is lower than in other Euro-
pean countries. At 56%, the percentage of people with inadequate or problematic
health literacy is higher than the international average (48%) [95]. Low health
literacy is associated with poorer health outcomes, higher rates of hospitalization,
greater use of emergency care, and higher rates of mortality in the elderly [17].

“Health competence” among individuals requires the ability to read and under-
stand health information and to be able to interpret it and use it for one’s own good. It
is well known that health literacy in the elderly, in poorer people, and in those with
little school education, is lower than in younger, well-educated, and well-situated
persons [17].

7.4.1.2 Consumer Health Information Systems

Shared decision-making and adequate information on health issues are not only in
the interest of patients [42, 68] but also a legal requirement.” CHIS are tools that are
commonly used to support informed decision-making.

Patient information is available from many sources, and its purpose is to provide
patients with a comprehensive picture of their disease. This information should help
patients understand their symptoms and develop a sense of not only benefits, risks,
and side effects but also useless or even harmful interventions [88]. Existing CHISs
aim at patient information and are particularly concerned with:

¢ General knowledge of health, diseases, their effects, and their courses

¢ Interventions to maintain health (prevention and health promotion)

e Early detection, diagnosis, treatment, palliation, rehabilitation, and follow-up
care of diseases and associated medical decisions

¢ Care and coping with illness

* Daily life with an illness®

Health information can be provided in very different situations, for various
target groups, and in a wide range of formats. This includes not only written
information (in printed and digital form) but also audio and video formats and
apps for mobile phones. Dynamic Internet formats such as interactive decision

7 Bundesministerium  fiir ~ Gesundheit und Frauen. Gesundheitsziele Osterreich -
Richtungsweisende Vorschlige fiir ein gesiinderes Osterreich (Langfassung). https://
gesundheitsziele-oesterreich.at/website2017/wp-content/uploads/2018/08/gz_langfassung_2018.
pdf, 2017 (accessed July 23, 2020).

8 Deutsches Netzwerk Evidenzbasierte Medizin e.V. Gute Praxis Gesundheitsinformation. https://
www.ebm-netzwerk.de/de/medien/pdf/gpgi_2_20160721.pdf, 2016 (accessed July 23, 2020).
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aids, which are targeted at a specific decision-making process and often within the
context of a treatment, are also included. As people differ in terms of their abilities,
whether they prefer visual or auditory information, and in the health topics that
interest them, it is essential that health information is individualized. However,
current CHISs generally present content statically and do not take into account
that previous knowledge, the need for information, and the individual situation
of patients can vary. A “one-size-fits-all” approach to providing information is
followed, and CHISs provide health information unidirectionally, i.e., information
flows only from the system to users. Furthermore, the patients themselves are
rarely actively involved in the development process of CHIS. A positive example is
“Stiftung Gesundheitswissen,” a German non-profit foundation that only prepares
health information materials once peoples’ needs have been identified.” It also
delivers information in several different formats such as in text and graphic form
and provides multimedia options such as reality and animated films. Furthermore,
the same health information is presented in a variety of ways in order to spread
the information as widely as possible. When searching for health information,
one encounters a variety of web-based or written materials published by different
organizations and individuals that are of different quality, accuracy, and reliability.
This in turn poses significant challenges for the user in selecting sources and, in
particular, in assessing the credibility and trustworthiness of these sources [90].
Although the use of online formats is increasing [12], according to a report of
the situation prior to 2016, doctors were still the most important provider of
health information. The U.S. National Trends Survey, which has studied changing
communication trends and practices in cancer care for more than a decade, also
reported that doctors are still a more reliable source of health information than
online tools, health authorities, and brochures!® [77]. As far as we know, no
currently available media channel in the health field uses adaptive and interactive
CHIS. One should therefore conduct a systematic review to identify the media
sources that are used to provide medical knowledge to patients and find out whether
interactive health information tools are yet in use.

7.4.1.3 Quality of CHIS

Regardless of whether individuals can understand and interpret information, it
is essential that available information materials are evidence-based and reliable.
However, the quality of health information has several dimensions. In addition to
the correctness of the content, these include the up-to-dateness and completeness of
content, as well as such aspects as readability, appropriate detail, presentation, and

9 Stiftung  Gesundheitswissen. https://www.stiftung- gesundheitswissen.de/ (accessed July 23,
2020).

10 Health information national trends survey. https://hints.cancer.gov/about-hints/learn-more-
about-hints.aspx (accessed July 23, 2020).
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accessibility. Several methodological papers have therefore been written on how to
develop high-quality health information materials and how to assess existing health
information [27, 66]. Unfortunately, the content of health information is often driven
by commercial interests and rarely presents a balanced view.

In the course of a study in Styria, over 1000 print versions of health information
materials from general practices have been collected. All information materials
had considerable shortcomings and did not provide the balanced, comprehensive,
and comprehensible information that would help patients raise their health literacy
and make informed decisions [50]. The same picture is true of online health
information. As shown in a recent systematic review [36] that included 153 cross-
sectional studies, the Internet is not a source of reliable health information for
non-professionals that have no education in medicine.

7.4.2 Research Challenges

Based on the above requirements discussion, we specify the following guid-
ing research challenges and questions for evidence-based health information for
ATCHIS as follows:

e What CHISs are currently available? What are their characteristics and how can
they inform the development of an ATCHIS?

— Which types of CHIS and media are currently used in practice?

— How are current CHIS structured, and what is their level of information detail?

— What are the differences between CHISs? What is the range of different
content, concepts, and other characteristics?

e How can it be ensured that the contents of the ATCHIS are trustworthy and
uncertainties are sufficiently communicated?

— What instruments and criteria are used to assess the methodological quality
of current CHIS? What best practice rules can be deduced for adaptive visual
CHIS?

— How can advanced, comprehensive, evidence-based CHIS be designed and
evaluated for type 2 diabetes mellitus?

— Which approaches can support the filling of health information systems with
quality-assured evidence-based content?

7.5 Cognitive Psychology of Health Information

Adaptive health information systems should reflect the cognitive dimensions of
health information consumption, underlying knowledge, comprehension, and pro-
cessing. The main objective is to facilitate in-depth processing without cognitive
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biases and misconceptions and the effective and sustainable learning of information
units by users of ATCHIS. This should lead to desirable health-related behavior,
such as improved communication between patients and medical doctors and
increased compliance.

To achieve this objective, an approach would be to obtain requirements by user
requirement analysis, e.g., by semi-structured interviews with patients and relatives.
Well-established instructional design principles that facilitate comprehension and
learning processes should hereby avoid the occurrence of cognitive biases and
misconceptions. The adaptation of presented health information would rely on
advanced multidimensional adaptive, personalized, and interactive mechanisms,
including feedback loops (in both directions) between users and the ATCHIS to
increase knowledge, motivation, and health-related behaviors in a non-intrusive
manner. Non-intrusive assessments of previous knowledge, information needs, and
the motives of users should be carried out.

Previous work on knowledge representation, non-intrusive assessment, adaptive,
personalized, and interactive mechanisms, cognitive bias mitigation in visualiza-
tions, and multi-method evaluation approaches will be instrumental to this end.
Design guidelines and principles aimed at facilitating comprehension and an
effective and sustainable learning processes on the one hand, and design guidelines
for mitigating cognitive biases and misconceptions in visualizations on the other,
have so far been considered to be separate research areas. We may overcome
this separation by synthesizing these two areas. Existing solutions and research
into adaptive, personalized, and interactive mechanisms can be combined in an
innovative way, with the aim of attaining ideal adaptation. This process will also rely
on summative evaluation studies that compare non-adaptive and different degrees
and forms of adaptive and interactive ATCHIS with regard to comprehension and
effective and sustainable learning processes.

7.5.1 Previous Work
7.5.1.1 Knowledge Representation

Research on knowledge representation in Cognitive Psychology has a long tradition
(e.g., [56]). Although some overlap exists with computer science (e.g., [79]), with
both disciplines using the same formats (such as mathematical expressions and
procedural codes), it is important to differentiate between the two. In this area, we
will focus on cognitive-psychological approaches (e.g., [5]) which in CHIS have
to meet the following requirements: (a) be suitable for representing both medical
and user knowledge, (b) be able to represent knowledge from different perspectives
because of the multiple, adaptive aims of ATCHIS, and (c) ensure to visually
represent medical and user knowledge in a meaningful and transparent way.

At least the Formal Concept Analysis (FCA), the Knowledge Space Theory
(KST), and a set of graph-based knowledge representations meet these require-
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ments. The FCA (e.g., [15, 113]) visualizes complex information as concept lattices
without loss of information. The KST (e.g., [7, 37, 40]) provides a formal basis
for simultaneously structuring a domain of knowledge and the knowledge of
individuals that is based on prerequisite relations. Finally, graph-based knowledge
representations visualize the inherent structure of meanings (e.g., [3, 8, 97, 106]).

Almost all of these approaches have been successful applied in the provision of
medical information and in medical education: for instance, for application of FCA
[81], of KST [6], or by Graph-based knowledge representations such as Concept
Maps [34], Conceptual Graphs [53], and Mind Maps [2]. The main challenge of
developing ATCHIS for domain and user knowledge representation is to research
how to provide multiple perspectives on the content simultaneously.

7.5.1.2 Adaptive Assessment

In view of the huge amount of medical information and the variety of consumer
needs, a selective presentation will be necessary. User-centered adaptive assess-
ments must guide the selection procedure to suit individual information needs.
Based on the different formats of knowledge representation, adaptive assessment
procedures rely on the transitivity of different underlying structures/relations.
Typical examples refer to (i) difficulty [85], (ii) prerequisites of information units
[37], (iii) subordinated meanings (hyponymy and hypernymy), (iv) preferences,
or (v) graphical knowledge representations [101]. In the medical domain, some
examples of adaptive assessments of knowledge have already been proposed (e.g.,
[48, 60, 78]).

However, research into multidimensional adaptive assessments is lacking. A
second challenge is to gradually replace formative multidimensional assessments
by using non-intrusive, indirect adaptive assessment procedures “in the wild” (i.e.,
self-regulated interactivity, see, for example, [94]). A third challenge is posed by the
need for an indirect adaptive assessment of users’ needs with regard to the properties
of the system in order to improve the usage and acceptance of ATCHIS.

7.5.1.3 Interactivity

ATCHIS is conceptualized for adaptive, interactive, multimodal Human-Computer
Interaction (HCI). Although they are the two sides of the same coin, we must
distinguish between HCI in computer science and in psychology. HCI is also a
topic in psychology for a long time already (see e.g. [25]). Instead of a data-
driven, bottom-up approach, we favor theory-driven top-down approaches for
analyzing interaction data and supporting the user with respect to Self-Regulated
Behavior and Learning (SRBL) [72, 119], which is used as general framework
for modeling the “interactive human behavior in the loops.” Within the SRBL
framework, more specific approaches focus on (i) Information Seeking and Retrieval
Processes [91], (ii) Process-Oriented Feedback [55, 71], (iii) Motivation [13], and
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(iv) Microadaptivity [99]. The challenge is to integrate the different approaches for
supporting the consumer in using ATCHIS interactively for reaching his/her goals
and information needs in operating with the system.

7.5.1.4 Identification and Mitigation of Cognitive Biases

In situations that are uncertain and complex or in case of time constraints,
individuals often apply heuristics, or “rules of thumb,” when making decisions,
or when evaluating the value, importance, and meaning of information. Although
often useful, such heuristics can lead to severe and systematic judgment errors,
referred to as cognitive biases. In the literature, a wide range of cognitive biases
have been identified, such as the confirmation bias, the framing effect, anchoring,
or the Bayes-rate fallacy. Even if the history of cognitive bias research originated in
the late 1960s (e.g., [109]), the mitigation of cognitive biases in visualizations is a
relatively new and emerging research topic. Some suggestions on how appropriate
visualization techniques could mitigate the effects of the aforementioned cognitive
biases have been described in [16, 38]. An example from the context of medical
information is that even experts have difficulties estimating the risk of treatments
when confronted with conditional probabilities [49]. However, such Bayes-rate
fallacies can be easily mitigated by showing frequencies rather than probabilities
[44]. Interactive visualization techniques possess even greater potential to mitigate
certain cognitive biases than static visualizations since the information can be shown
from different perspectives and with different levels of detail.

7.5.1.5 Instructional Design

This refers to the creation of information units that ensure comprehension as well as
an effective and sustainable learning process of users. Cognitive psychology focuses
on the learning process from an information processing perspective. The working
memory and its capacity limitations [11, 32] play a major role, for example, in case
of the cognitive theory of multimedia learning (CTML) [61, 62] and the cognitive
load theory (CLT) [104]. The CTML defines a set of principles for the design
of information units, such as the multimedia principle, which states that pictures
should be accompanied by explanatory text (narration) and vice versa. The CLT
distinguishes between three different types of cognitive load: (a) intrinsic cognitive
load is caused by the learning task itself (e.g., statistical information), (b) Germane
cognitive load refers to activities that are required to foster learning, such as schema
construction, and (c) extraneous cognitive load refers to cognitive activities that are
irrelevant to learning and should therefore be avoided to prevent cognitive overload
among consumers of the information units.
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7.5.1.6 Evaluation of Adaptive Systems

In the context of adaptive health information systems, we favor a multi-method
approach to formative and summative evaluation that combines qualitative and
quantitative methods and statistical analyzes, as well as explorative and (quasi-)
experimental study designs. This multi-method approach toward empirical research
is also reflected in [9] and [14]. Evaluation activities that are particularly challenging
include (i) the collection and monitoring of user requirements, (ii) the holistic
examination of the impact of instructional design guidelines and principles on
user comprehension, learning processes, and the avoidance of misconceptions and
cognitive biases, and (iii) the identification and validation of ideal adaptation by
comparing prototypes that use different degrees of adaptivity and personalization
[75] and differing interactive mechanisms.

7.5.2 Research Challenges

Based on the above requirements discussion, we specify the following guiding
research challenges and questions for cognitive psychology for ATCHIS as follows:

* What instructional design principles should be applied in the construction of
information units to ensure comprehension and an effective and sustainable learn-
ing process? What cognitive biases and potential misconceptions are involved
and/or evoked when interacting with ATCHIS and how can they be detected and
mitigated?

e What advanced aspects of personalization, multidimensional adaptation, and
interaction should be implemented in ATCHIS to ensure the comprehension
and learning process is effective and sustainable? How can these aspects be
improved?

* What cognitive and motivational processes are involved in interacting with the
ATCHIS in a self-regulated manner and how can users’ previous knowledge,
information needs, and motives be assessed in a non-intrusive fashion? What
kind of feedback loops between users and the ATCHIS (in both directions) can
be used to increase knowledge, motivation, and health-related behaviors?

e What are the requirements, motives, and information needs of individual users
and different user groups, such as patients and relatives, when using standard
CHIS? Are existing evaluation methods suitable for comparing non-adaptive and
different degrees and forms of adaptive and interactive A*CHIS with regard to
comprehension and learning processes, motives, and user behavior?
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7.6 Architecture and Machine Learning Methods for an
Adaptive Visual Consumer Health Information System

In the following, we devise a system architecture which can implement an ATCHIS.
It is based on the following core components and makes use of knowledge databases
encoding the domain knowledge on health information, customer description
including cognitive profiles, and visualization rules and guidelines. An adaptation
engine predicts user interest, delivers visual information, and manages user profiles.
We also discuss the key role of Machine Learning in implementing the adaptation
engine.

7.6.1 Overview of Proposed Architectures

The Adaptation Engine (Fig. 7.1 center) drives the selection, adaptation, and
presentation of appropriate health information to consumers, based on their informa-
tion needs, expectations, previous knowledge, etc. The engine queries semantically
structured information from three specific Knowledge Databases (KDBs). Each
KDB uses appropriate semantic structures such as concept maps and ontologies
to store facts and relationships about domains. The Medical KDB (Fig. 7.1 top
left) stores evidence-based knowledge about type 2 diabetes. One example is
information on indications and treatment goals for blood sugar-lowering non-drug
or drug therapy that takes into account the predispositions and behavior of patients,
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Fig. 7.1 System architecture of proposed ATCHIS: an adaptation engine (center) automatically
selects and adapts health information to suit consumers, based on knowledge databases of medical
information (top left), consumer profile information (top right), and visualization guidelines
(bottom left). A visualization engine (bottom right) presents the adapted information and collects
consumer feedback, updating the consumer profile and further improving the user information
provision
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including information on the possible benefits and harms of intensifying treatment.
Another example is criteria for the diagnosis of diabetes and the probability of
specific disease courses in relation to patient compliance and behavior. This KDB
may be populated using selected literature and research data from diabetes research.
The Consumer KDB (Fig. 7.1 top right) stores profiles about consumers and
describes medically and cognitively relevant characteristics such as biophysical
properties like age, gender, medical history, and cognitive properties like pre-
knowledge, interests, preferences and expectations, biases, uncertainties, medical
literacy, etc. This KDB is populated directly when consumers provide data about
themselves and indirectly by inferring interest, e.g., by comparing consumers, or
analyzing consumer interactions with the system. The Visualization KDB (Fig. 7.1
bottom left) stores rules and best practices for the effective visual representation
of data and information, depending on data characteristics, user tasks, and user
visual literacy. Examples include effective diagram types to visualize probabilities
in relation to the visual literacy of consumers, and rules on how to aggregate
and dis-aggregate information, and thus to adjust the provided level of detail and
representation of the information content. This KDB is populated based on existing
visualization research and guidelines.

The specific tasks of the adaptation engine are to initialize the presentation of
information to new consumers. We can assume that at the beginning, no profile
information on new consumers is available. To initialize the consumer profile, e.g.,
explicit selection of topics by users, question-answering sessions, or contextual
prediction of consumer profiles based on similarity to existing consumers are
possible, among others. The tasks of the adaptation engine include keeping track of
returning consumers by updating existing consumer profiles. The Recommender
task comprises mechanisms to decide what information to show to users and at what
level of detail. The Visualizer task determines how to present the information, e.g.,
numerically, textually, symbolically, diagrammatically, interactively, etc.

The Visualization Engine presents health information to the user, provides
interaction mechanisms, and, actively and passively, collects Relevance Feedback
about the consumer, e.g., to determine whether the presented information is helpful
and relevant, not relevant or already known, etc. This feedback is used to further
adapt and improve the health information and to update the consumer KDB. The
visualization engine supports browser-based visualization environments that scale
to different platforms, from mobile devices for on-the-go usage, to desktop settings
at home, and to large touch-displays e.g., made available in practices and public
spaces.

Note that this architecture is flexible with regard to the amount of information
in its specific individual knowledge databases. For a first implementation, repre-
sentative information in the KDBs should be ingested as far as possible. However,
we expect it is not possible to obtain complete information (however measured)
in each domain. For example, it may not be possible or helpful to attempt to
gather all available medical knowledge on diabetes or all imaginable medically
and cognitively relevant consumer characteristics. However, one may ensure that
sufficient representative information is available in each KDB to enable the research,
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development, and evaluation of novel ATCHIS with such an architecture. Infor-
mation may be collected bottom-up, beginning with representative information
provided in existing standard CHIS and gradually extended from the state of the
art.

7.6.2 Machine Learning Approaches for Adaptation
7.6.2.1 Main Methods and Application Possibilities in an Adaptive CHIS

The adaptation engine has many tasks which require appropriate algorithms to
operate. Machine Learning and Data Science [23] are rapidly expanding fields
of technology, which provide a wealth of approaches that can be leveraged for
adaption. Important tasks in Machine Learning are clustering, classification, and
prediction. Clustering groups similar items, useful, e.g., to group information items
on the same topic for recommending to users, or, to assign users of the system
into similar interest groups. Classification assigns labels to new, previously unseen
information items or users. It is useful, e.g., to classify the stage and information
need of a user within a diabetes development scenario (see Sect. 7.2) or the
occurrence of cognitive biases a user may exhibit (see Sect. 7.5.1.4). In prediction,
one extrapolates information following an observed state. This is useful, e.g., to
predict the next information items a user may be interested in, to be able to
recommend it.

Also important to us are methods from Natural Language Processing (NLP) [35].
Information retrieval methods enable finding relevant information in response to
user queries. Similarity can be computed over different information items, from
which clusters of information can be determined for over viewing large amounts
of information. NLP provides methods for fopic extraction from text collections,
and text summarization. The latter is useful to adapt the level of detail by which
information is shown, e.g., either in full text form or in an aggregate or just keywords
describing topics.

Recommender systems research [52] addresses methods to find matching infor-
mation items for users to recommend, with many applications, e.g., in e-Commerce,
social networks, and information search. The methods typically take into account
the recommendation properties of the user, the application and usage context, and
the information domain. Methods are based on recommending items among similar
users (collaborative filtering), recommending similar or dissimilar items (content-
based filtering), and/or modeling and taking into account knowledge about the
application domain. Recently, Health Recommender Systems (HRSs) have emerged
as an important application domain [108]. As the authors of that survey discuss,
goals include improving the understanding of the medical condition, improving
the health condition, and motivating a healthier lifestyle. The adaptive CHIS can
incorporate such methods.
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Our ATCHIS relies in particular on the visual representation of information, and
in the past, visualization systems have incorporated adaptation and recommendation
methods to some extent. The Polaris system [102] implemented a rule-based
approach to choose an appropriate visual representation, based on the specific
dataset to show. The Voyager system [115] supports the interactive exploration of
datasets. The user selects initial data variables of interest, and the system suggests
to expand this selection by additional variables. This approach has been shown
to stimulate interaction and obtain broader insight into the data. In the Draco
framework [65], information visualization design knowledge is formalized and can
be applied to automatically create visualizations for input datasets, to be explored
by the users.

7.6.2.2 Discussion of Machine Learning Approaches

The above is just a selection of techniques from a much larger body of work in
Machine Learning, Recommender Systems, and Visualization Automation. It can be
used to start building an adaptive CHIS system. There are not only many interesting
possibilities but also pitfalls in applying Machine Learning methods to adaptation.
Often, an extensive amount of training data or formal modeling of knowledge like
rules and ontologies is required. The amount and quality of this data is decisive for
the effectiveness of the adaptation. Appropriate training data may not be sufficiently
available due to cost, privacy concerns, or small user and/or expert base. In addition,
typical problems in Machine Learning like data transformation and normalization,
extraction of descriptors/feature vectors as input to the methods, and choice of
parameters need to be solved. Hence, algorithms oftentimes do not work out of
the box.

On the user side, we wish to provide the users with a good understanding of
why the system makes certain adaptations and recommendations. Machine Learning
methods in many cases work as a black box, with the user not being able to
comprehend the decisions and how they relate to her or his data and requests.
Also, the predictions made often come with uncertainties of varying degrees. Recent
approaches try to include the users tight in the Machine Learning process by visual
representations of the data, the algorithms, and the results [39] and hence improve
trust in the results [28].

An adaptive CHIS system can be built step by step, integrating more adaptation
methods over time and gradually evaluating these for the effectiveness, acceptance,
and eventually, influence on the user health and understanding.

7.7 Conclusion

There is an urgent need for adaptive, personalized, and interactive Consumer
Health Information Systems (CHIS), which provide suitable medical information
to consumers, considering their current and evolving information needs, health
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literacy, age, gender, preferences, and knowledge state, etc. To design, implement,
and evaluate such an ATCHIS, a synthesis of profound expertise in the fields
of information visualization, evidence-based health information, and cognitive
psychology is required. The use case for ATCHIS will be type 2 diabetes mellitus
since it is highly relevant to public health and affects a broad section of the
population. As outlined in Sect. 7.2, this use case is more complex than one might
initially think: different patients with type 2 diabetes mellitus may have completely
different information needs, which also affects the what, how, and level of detail of
the information presented to the consumers.

In the course of a research project in Austria with three universities (Graz
University of Technology, Graz University, and Medical University of Graz) lasting
for 4.5 years, an ATCHIS will be desi gned, developed, and evaluated. This ATCHIS
aims to overcome the restrictions of current static CHIS, by introducing innovative
interactive information visualization techniques, evidence-based health information
and principles of cognitive psychology to avoid cognitive biases and misconcep-
tions, over-information or over-diagnosis, and to facilitate comprehension, health
literacy, and desirable health-related behavior, including improved communication
between patients and medical doctors and increased compliance.
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