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Abstract

In this thesis the effects of inclined magnetic field, Soret and Dufour numbers and

activation energy on the two-dimensional hydromagnetic mixed convective heat

and mass transfer flow of a micropolar fluid over a stretching sheet embedded

in a non-Darcian porous medium with thermal radiation, have been discussed in

detail. The formulated highly non linear equations for the above mentioned flow

are converted into first order ODEs. The shooting method is used to solve the BVP

by using the computational software MATLAB. A built-in MATLAB function

bvp4c is accustomed to bolster the numerical results. The numerical results are

computed by choosing different values of the involved physical parameters and

compared with the earlier published results. The graphical numerical results of

different physical quantities of interest are presented to analyze their dynamics

under the varying physical quantities.
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Chapter 1

Introduction

There are countless industrial applications of heat and mass transfer. The appli-

cations of mass transfer are petrochemical refining, fractional distillation, where

part of crude oil is separated. In short every process of refining leverages mass

transfer. Likewise, the heat transfer has a number of industrial applications e.g.

in food industry meat and poultry processing, snack foods and in chemical indus-

try for batch reactor, continuous processes and in asphalt and concrete industry

for concrete heating and hot mix paving and in industrial laundry for flat work

ironers and steam generators. In many other industries, the process of heat and

mass transfer over a stretching sheet is being used, like glass fiber production,

aerodynamic extrusion of plastic sheets, glass blowing etc. In all these applica-

tions, the obtained products quality mainly depends upon the heat transfer rate

at the stretching surfaces. Many authors like Bhatti [1], Anjali and Ganga [2],

Raju et al. [3] discussed the heat and mass transfer and their applications. Phys-

ically, micropolar fluids usually represent the fluids involving particles which are

rigid, randomly oriented (or spherical) dangled in a viscous medium ignoring the

deformation of particles. Main attention of researchers, now a days, is on the mi-

cropolar fluids because of its inclusiveness in applications such as polymeric fluids,

liquid crystals and chemical suspensions. In [4–9], the micropolar fluids and its

applications have been discussed. The applications of the transfer of heat and

mass on MHD flow was canvassed by Mansour et al [10]. The Viscous dissipation

1
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effects on MHD free convection flow over a nonisothermal surface in a micropolar

fluid was analyzed in [11]. The effects of Joul heating and mass transfer on MHD

flow of a micropolar fluid were discussed by El-hakiem et al. [12] and El-Amin

[13]. Deepa and Murali [14] investigated the dissipation effects on MHD flow of a

micropolar fluid.

The transfer of heat and mass subject to thermal radiation has become the most

popular area of research due to its industrial applications e.g. the radiation and

heat transfer plays a very important role in combustion devices due to the pres-

ence of very high temperature in combustion processes. Some other applications

include, internal combustion engines, combustions of liquid propellants and in

exhaust plums of liquid rockets. Abo-Eldohad and Ghonaim [15], Rahman [16]

described the thermal radiation effect on the flow of micropolar fluids. Thermal

radiation effects on the micropolar fluids are discussed in detail in [17–22]. Heat

source/sink effects can be discussed by considering two situations. First is internal

heat generation or absorption and the second is the external heat generation and

absorption. Both of these are used at a very large scale in industries as well as in

the laboratory experiments. It is also very important to control the heat transfer.

Various studies have been conducted on heat source and sink effects including Pal

and Chatterjee [23, 24], Subhas and Mahesha [25], Rahman et al. [26] and Bataler

[27].

The diffusion flux occurs due to the temperature gradient named as the Soret

effect. The Dufour effect which is the reciprocal of Soret effects has not been

studied yet in the above studies. The Dufour effect is the energy flux which could

be of any form e.g. heat energy, radiative flux and sound energy flux. To delineate

the Dufour effect, a contribution of heat flux is needed which is proportional to

concentration gradient. Therefore we will find its effects on the concentration

distribution. Both of these effects have a vital role in the flow of gases. The Soret

effect is more prominent than the Dufour effect in liquids, however the Dufour

number includes in the study of liquids as well as gases, as many researchers like

Khan et al. [28], Mortimer and Eyring [29], Ali et al. [30], Hayat et al. [31] has

studied both effects the Soret and Dufour numbers for different flows.
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The magnetic field or the magnetic surfaces play an important role in MHD. For

example, along the direction of the magnetic field, the charged particles and the

conducting fluid both can move easily but seldomly against it. Also, there are

some functional variables on which the stability and confinement properties of

fluids depend and these variables are uniform in magnetic configuration. We will

see how the fluid behaves in the presence of the magnetic field at different angles.

The inclined magnetic field effects on fluid flow were explored by Singh et al. [32],

Seth et al. [33] and Dar [34].

Activation energy which characterizes the viscous flow, is actually a least energy

required by a molecule to get out of the region where it is being influenced by

the other molecules. It can also be interpreted as the amount of energy required

to initiate the chemical reaction i.e for a chemical reaction to be proceed, there

should be an appropriate number of molecules so that the total energy of these

molecules is either equal or greater than the activation energy. Its applications

involve chemical engineering, geothermal reservoirs, mechanics of water and oil

emulsions, food processing etc. Researchers who evolved the activation energy’s

effects on different fluid flows are Monkos [35], Maleque [36], Mustafa et al. [37].

Thesis contribution:

In this work, first of all we emulate and scrutinize the work of Mabood [38]. The

work of Mabood [38] is then extended by adding the effects of inclined magnetic

field, activation energy and Dufour number which were not discussed yet in litera-

ture. The formulated highly non linear equations for the above mentioned flow are

converted into first order ODEs under lubricant approach. The shooting method is

used to solve the BVP by using the computational software MATLAB. A built-in

MATLAB function bvp4c is accustomed to assist the numerical results. The nu-

merical results are computed by choosing different values of the involved physical

parameters and compared with the earlier published results. The graphical nu-

merical results of different physical quantities of interest are presented to analyze
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their dynamics under the varying physical quantities.

The thesis is categorized in the following order;

Chapter 2 consists of some basic definitions and terminologies which are very

helpful in understanding the whole work.

Chapter 3 emulates and scrutinizes the work of Mabood [38]. The whole work

in this chapter is reproduced by using the shooting method. A built-in MATLAB

function bvp4c is accustomed to assist the numerical results.

Chapter 4 extends the idea of Mabood [38] by including Dufour number, ac-

tivation energy and magnetic field.

Chapter 5 consists of the conclusions derived from the entire work .

References which are used in this dissertation are catalogued in Bibliography.



Chapter 2

Literature review

In the current chapter, some definitions, basic laws, terminologies, would be de-

scribed which would be used in next chapters.

2.1 Important Definition

Definition 2.1.1 (Fluid). [39]

“You will recall from physics that a substance exists in three primary phases:

solid, liquid, and gas. (At very high temperatures, it also exists as plasma.) A

substance in the liquid or gas phase is referred to as a fluid. Distinction between a

solid and a fluid is made on the basis of the substances ability to resist an applied

shear (or tangential) stress that tends to change its shape. A solid can resist an

applied shear stress by deforming, whereas a fluid deforms continuously under the

influence of shear stress, no matter how small. In solids stress is proportional to

strain, but in fluids stress is proportional to strain rate. When a constant shear

force is applied, a solid eventually stops deforming, at some fixed strain angle,

whereas a fluid never stops deforming and approaches a certain rate of strain.”

Definition 2.1.2 (Fluid mechanics). [39]

“Fluid mechanics is defined as the science that deals with the behavior of fluids at

5
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rest (fluid statics) or in motion (fluid dynamics) and the interaction of fluids with

solid or other fluids at the boundaries.”

Definition 2.1.3 (Fluid dynamics). [40]

“It is the study of the motion of liquids, gases and plasmas from one place to

another. Fluid dynamics has a wide range of applications like calculating force

and moments on aircraft, mass flow rate of petroleum passing through pipelines,

prediction of weather, etc.”

Definition 2.1.4 (Hydrodynamics). [39]

“The study of the motion of fluids that are practically incompressible such as

liquids, especially water and gases at low speeds is usually referred to as hydrody-

namics.”

Definition 2.1.5 (Magnetohydrodynamics). [41]

“Magnetohydrodynamics (MHD) is concerned with the flow of electrically conduct-

ing fluids in the presence of magnetic fields, either externally applied or generated

within the fluid by inductive action.”

Definition 2.1.6 (Micropolar fluid). [40]

“Micropolar fluids are fluids with microstructures. Physically, the micropolar flu-

ids may represent fluids consisting of rigid, randomly oriented(or spherical) parti-

cles suspended in a viscous medium, where the deformation of the fluid particles

is ignored.”

2.2 Types of flow

Definition 2.2.1 (Compressible and incompressible flows). [39]

“A flow is classified as being compressible or incompressible, depending on the level

of variation of density during flow. Incompressibility is an approximation, and a

flow is said to be incompressible if the density remains nearly constant throughout.

Therefore, the volume of every portion of fluid remains unchanged over the course

of its motion when the flow (or the fluid) is incompressible. The densities of liquids
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are essentially constant, and thus the flow of liquids is typically incompressible.

Therefore, liquids are usually referred to as incompressible substances. A pressure

of 210 atm, for example, causes the density of liquid water at 1 atm to change

by just 1 percent. Gases, on the other hand, are highly compressible. A pressure

change of just 0.01 atm, for example, causes a change of 1 percent in the density

of atmospheric air.”

Definition 2.2.2 (Steady versus unsteady flow). [39]

“The terms steady and uniform are used frequently in engineering, and thus it

is important to have a clear understanding of their meanings. The term steady

implies no change at a point with time. The opposite of steady is unsteady. The

term uniform implies no change with location over a specified region. These mean-

ings are consistent with their everyday use (steady girlfriend, uniform distribution,

etc.). The terms unsteady and transient are often used interchangeably, but these

terms are not synonyms. In fluid mechanics, unsteady is the most general term

that applies to any flow that is not steady, but transient is typically used for de-

veloping flows. When a rocket engine is fired up, for example, there are transient

effects (the pressure builds up inside the rocket engine, the flow accelerates, etc.)

until the engine settles down and operates steadily. The term periodic refers to

the kind of unsteady flow in which the flow oscillates about a steady mean.”

Definition 2.2.3 (Laminar versus turbulent flow). [39]

“Some flows are smooth and orderly while others are rather chaotic. The highly

ordered fluid motion characterized by smooth layers of fluid is called laminar.

The word laminar comes from the movement of adjacent fluid particles together

in laminates. The flow of high-viscosity fluids such as oils at low velocities is

typically laminar. The highly disordered fluid motion that typically occurs at

high velocities and is characterized by velocity fluctuations is called turbulent.

The flow of low-viscosity fluids such as air at high velocities is typically turbulent.

The flow regime greatly influences the required power for pumping. A flow that

alternates between being laminar and turbulent is called transitional.”
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Definition 2.2.4 (Viscous and inviscid flow). [39]

“When two fluid layers move relative to each other, a friction force develops be-

tween them and the slower layer tries to slow down the faster layer. This internal

resistance to flow is quantified by the fluid property viscosity, which is a measure

of internal stickiness of the fluid. Viscosity is caused by cohesive forces between

the molecules in liquids and by molecular collisions in gases. There is no fluid with

zero viscosity, and thus all fluid flows involve viscous effects to some degree. Flows

in which the frictional effects are significant are called viscous flows. However, in

many flows of practical interest, there are regions (typically regions not close to

solid surfaces) where viscous forces are negligibly small compared to inertial or

pressure forces. Neglecting the viscous terms in such inviscid flow regions greatly

simplifies the analysis without much loss in accuracy.”

Definition 2.2.5 (Newtonian and non-Newtonian fluids). [42]

“Fluids for which the viscosity is not independent of the rate of shear are referred

as non-Newtonian and the liquids for which the viscosity is independent of the

rate of shear are called Newtonian fluids.”

2.3 Fluid properties

Definition 2.3.1 (Heat transfer). [43]

“The study of heat transfer is directed to

1-The estimation of rate of flow of energy as heat through the boundary of the

system both under steady and transient conditions

2-The determination of temperature field under stwady and transient conditions,

which also will provide the information about the gradient and time rate of change

of temperature at various locations and time. ”

Definition 2.3.2 (Mass Transfer). [43]

“Mass transfer is the flow of molecules from one body to another when these

bodies are in contact or within a system consisting of two components when the

distribution of materials is not uniform. When a copper plate is placed on a steel
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plate, some molecules from either side will diffuse into the other side. When salt is

placed in a glass and water poured over it, after sufficient time the salt molecules

will diffuse into the water body. A more common example is drying of clothes or

the evaporation of water spilled on the floor when water molecules diffuse into the

air surrounding it. Usually mass transfer takes place from a location where the

particular component is proportionately high to a location where the component

is proportionately low. Mass transfer may also take place due to potentials other

than concentration difference.”

Definition 2.3.3 (Thermal radiation). [43]

“The process by which heat is transferred from a body by virtue of its temperature,

without the aid of any intervening medium, is called thermal radiation. Sometimes

radiant energy is taken to be transported by electromagnetic waves while at other

times it is supposed to be transported by particle like photons. Radiation is found

to travel at the speed of light in vacuum. The term Electromagnetic radiation

encompasses many types of radiation namely short wave radiation like gamma ray,

x-ray, microwave, and long wave radiation like radio wave and thermal radiation.

The cause for the emission of each type of radiation is different. Thermal radiation

is emitted by a medium due to its temperature.”

Definition 2.3.4 (Boundary layer). [44]

“Viscous effects are particularly important near the solid surfaces, where the strong

interaction of the molecules of the fluid with molecules of the solid causes the

relative velocity between the fluid and the solid to become almost exactly zero

for a stationary surface. Therefore, the fluid velocity in the region near the wall

must reduce to zero. This is called no slip condition. In that condition there is no

relative motion between the fluid and the solid surface at their point of contact.

It follows that the flow velocity varies with distance from the wall; from zero at

the wall to its full value some distance away, so that significant velocity gradients

are established close to the wall. In most cases this region is thin (compared to

the typical body dimension), and it is called a boundary layer. ”
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2.4 Conservation laws [39]

“You are already familiar with numerous conservation laws such as the laws of

conservation of mass, conservation of energy, and conservation of momentum.

Historically, the conservation laws are first applied to a fixed quantity of matter

called a closed system or just a system, and then extended to regions in space

called control volumes. The conservation relations are also called balance equations

since any conserved quantity must balance during a process. We now give a brief

description of the conservation of mass, momentum, and energy relations.”

2.4.1 Conservation of mass

“The conservation of mass relation for a closed system undergoing a change is

expressed as msys = constant or dmsys/dt = 0, which is a statement of the obvious

that the mass of the system remains constant during a process. For a control

volume (CV ), mass balance is expressed in the rate form as

min −mout =
dmCV

dt

where min and mout are the total rates of mass flow into and out of the control

volume, respectively, and dmCV /dt is the rate of change of mass within the control

volume boundaries. In fluid mechanics, the conservation of mass relation written

for a differential control volume is usually called the continuity equation.”
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2.4.2 Conservation of momentum

“The product of the mass and the velocity of a body is called the linear momentum

or just the momentum of the body, and the momentum of a rigid body of mass m

moving with a velocity
−→
V is m

−→
V . Newtons second law states that the acceleration

of a body is proportional to the net force acting on it and is inversely proportional

to its mass, and that the rate of change of the momentum of a body is equal to

the net force acting on the body. Therefore, the momentum of a system remains

constant when the net force acting on it is zero, and thus the momentum of such

systems is conserved. This is known as the conservation of momentum principle.”

2.4.3 Conservation of energy

“Energy can be transferred to or from a closed system by heat or work, and the

conservation of energy principle requires that the net energy transfer to or from a

system during a process be equal to the change in energy content of the system.

Control volumes involve energy transfer via mass flow also, and the conservation

of energy principle, also called the energy balance, is expressed as.

Ein − Eout =
dEcv
dt

where Ein and Eout are the total rates of energy transfer into and out of the control

volume, respectively, and dECV /dt is the rate of change of energy within the

control volume boundaries. In fluid mechanics, we usually limit our consideration

to mechanical forms of energy only.”

2.5 Dimensional analysis [39]

“The dimensional analysis is a powerful tool for engineers and scientists in which

the combination of dimensional variables, nondimensional variables, and dimen-

sional constants into nondimensional parameters reduces the number of necessary
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independent parameters in a problem.”

2.5.1 Dimensions and units

“A dimension is the measure of a physical quantity (without numerical values),

while a unit is a way to assign a number to that dimension. For example, length is

a dimension that is measured in units such as microns (µm), feet (ft), centimeters

(cm), meters (m), kilometers (km), etc. Further, force has the same dimensions

as mass times acceleration (by Newtons’s second law). Thus, in terms of primary

dimensions, dimensions of force:

Force =
Mass length

time2
=
mL

t2
,

”

2.5.2 Dimensional homogeneity

“Weve all heard the old saying, You cant add apples and oranges. This is actually

a simplified expression of a far more global and fundamental mathematical law for

equations, the law of dimensional homogeneity, stated as

Every additive term in an equation must have the same dimensions.

Consider, for example, the change in total energy of a simple compressible closed

system from one state and/or time(1) to another (2). The change in total energy

of the system E is given by

∆E = ∆U + ∆KE + ∆PE. (2.1)

where E has three components: internal energy (U), kinetic energy (KE), and

potential energy (PE). These components can be written in terms of the system

mass (m); measurable quantities and thermodynamic properties at each of the two

states, such as speed (V ), elevation (z), and specific internal energy (u); and the

known gravitational acceleration constant (g),



13

∆U = m(u2 − u1), ∆KE = 1
2
m(V 2

2 − V 2
1 ), ∆PE = mg(Z2 − Z1). It is straight-

forward to verify that the left side of Eq. (2.1) and all three additive terms on

the right side of above equations have the same dimensionsenergy. Using the

definitions of above equations, we write the primary dimensions of each term,

{∆E} = {Energy} = {Force.Length} → {∆E} = {mL2

t2
}

{∆U} = {MassEnergy
Mass
} = {Energy} → {∆U} = {mL2

t2
}

{∆KE} = {MassLength2

time2
} → {∆KE} = {mL2

t2
}

{∆PE} = {MassLength
time2

Length} → {∆PE} = {mL2

t2
} .

If at some stage of an analysis we find ourselves in a position in which two additive

terms in an equation have different dimensions, this would be a clear indication

that we have made an error at some earlier stage in the analysis. In addition

to dimensional homogeneity, calculations are valid only when the units are also

homogeneous in each additive term. For example, units of energy in the above

terms may be J , N , m, or kg, m2/s2, all of which are equivalent. Suppose, however,

that kJ were used in place of J for one of the terms. This term would be off by a

factor of 1000 compared to the other terms. It is wise to write out all units when

performing mathematical calculations in order to avoid such errors.”

2.5.3 Nondimensionalization of equations

“The law of dimensional homogeneity guarantees that every additive term in an

equation has the same dimensions. It follows that if we divide each term in the

equation by a collection of variables and constants whose product has those same

dimensions, the equation is rendered nondimensional. If, in addition, the nondi-

mensional terms in the equation are of order unity, the equation is called normal-

ized. Normalization is, thus, more restrictive than nondimensionalization, even

though the two terms are sometimes (incorrectly) used interchangeably. Each term
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in nondimensional equation is dimensionless. In the process of nondimensional-

izing of an equation of motion, nondimensional parameters often appear–most of

which are named after a notable scientist or engineer (e.g., the Reynolds num-

ber and the Froude number). This process is referred to by some authors as the

inspectional analysis.”

2.6 Dimensionless parameters

Definition 2.6.1 (Skin friction coefficient). [45]

“It is a dimensionless number and is defined as

Cf =
τw

2Qw∞2
,

where τw is the local wall shear stress, ρ is the fluid density and w∞ is the free

stream velocity (usually taken outside of the boundary layer or at the inlet). It

expresses the dynamic friction resistance originating in viscous fluid flow around

a fixed wall.”

Definition 2.6.2 (Eckert number). [45]

“The Eckert number (Ec) is a dimensionless number used in the continuum me-

chanics. It expresses the relationship between a flow’s kinetic energy and enthalpy,

and is used to characterize the dissipation. It is defined as

Ec =
w∞

2

Cp∆T
,

where w∞ (ms−1) fluid flow velocity far from body, Cp is the constant pressure

local specific heat of continuum, ∆T is temperature difference. It expresses the

ratio of kinetic energy to a thermal energy change.”

Definition 2.6.3 (Prandtl number). [45]

“The Prandtl number which is a dimensionless number, named after the German
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physicist Ludwig Prandtl, is defined as

Pr =
ν

α
=⇒ µ/ρ

k/cp
=⇒ ηcp

λ
,

where η stands for the dynamic viscosity, Cp denotes the specific heat and λ repre-

sents the thermal conductivity. This number expresses the ratio of the momentum

diffusivity (viscosity) to the thermal diffusivity. It characterizes the physical prop-

erties of a fluid with convective and diffusive heat transfers. It describes, for

example, the phenomena connected with the energy transfer in a boundary layer.

It expresses the degree of similarity between velocity and diffusive thermal fields

or, alternatively, between hydrodynamic and thermal boundary layers.”

Definition 2.6.4 (Schmidt number). [45]

“

Sc =
µ

ρDm

=
ν

Dm

,

where ν is the kinematic viscosity. Dm is mass diffusivity. is the dynamic viscosity

of the fluid. ρ is the density of the fluid. This number expresses the ratio of the

kinematic viscosity, or momentum transfer by internal friction, to the molecular

diffusivity. It characterizes the relation between the material and momentum

transfers in mass transfer. It provides the similarity of velocity and concentration

fields in mass transfer. For example, molten materials with an equal Schmidt

number have similar velocity and concentration fields. Higher Sc number values

characterize slower mass exchange and higher values of dividing coefficients. This

leads to higher mixing and a tendency to crack in a solidified casting. The criterion

was first introduced by Schmidt in 1929.”

Definition 2.6.5 (Grashof number). [45]

“

Gr = L3g
βT (∆T )

v2
, for temperature profile

L- characteristic length dimension, g-gravitational acceleration, ∆T -temperature

change, β-volume thermal expansion coefficient. It expresses the buoyancy-to-

viscous forces ratio and its action on a fluid. It characterizes the free non-

isothermal convection of the fluid due to the density difference caused by the
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temperature gradient in the fluid.”



Chapter 3

Non-uniform heat source/sink

and Soret effects on MHD

non-Darcian convective flow past

a stretching sheet in a micropolar

fluid with radiation

3.1 Introduction

In the present chapter the effects of Soret number, variable thermal conductivity,

viscous-Ohmic dissipation on the two-dimensional hydromagnetic mixed convec-

tive heat and mass transfer flow of a micropolar fluid over a stretching sheet

embedded in a non-Darcian porous medium with thermal radiation, have been

discussed. The formulated highly non linear equations for the above mentioned

flow are converted into first order ODEs. The shooting method is used to solve the

BVP by using the computational software MATLAB. A built-in MATLAB func-

tion bvp4c is accustomed to assist the numerical results. The numerical results

are computed by choosing different values of the involved physical parameters and

17
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compared with the earlier published results. The behaviour of velocity, angular ve-

locity, temperature and concentration, for different physical parameters has been

investigated. The graphs and tables which are obtained under this investigation

are given and analyzed at the end of this chapter.

3.2 Mathematical modeling

Figure 3.1: Geometry for the flow under consideration.

A 2-D steady mixed convection flow of an incompressible, electrically conducting

micropolar fluid has been considered. The fluid is assumed to flow above and

along x-axis such that y-axis is perpendicular to the fluid motion. Two equal and

opposite forces are brought into action by stretching the sheet to generate the

flow. The sheet is stretched so that the velocity at each instant is proportional to

the distance from its origin (x = 0). The fluid is flowing under the influence of

the magnetic field. The frictional and Ohmic heating are also considered in flow,

produced by the viscous dissipation and Soret effects respectively. The equations

of considered basic laws for flow are given below:

∂u

∂x
+
∂v

∂y
= 0, (3.1)

u
∂u

∂x
+ v

∂u

∂y
=

(
ν +

k1
ρ

)
∂2u

∂y2
+
k1
ρ

∂N

∂y
− νϕ

k
u− Cbϕ√

k
u2 − σB2

0

ρ
u+ gβ′(T − T∞)

+ gβ∗(C − C∞), (3.2)

ρj

(
u
∂N

∂x
+ v

∂N

∂y

)
= γ

∂2N

∂y2
− k1

(
2N +

∂u

∂y

)
. (3.3)
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u
∂T

∂x
+ v

∂T

∂y
=

1

ρCp

∂

∂y

(
K
∂T

∂y

)
− 1

ρCp

∂qr
∂y

+
σB2

0

ρCp
u2 +

q′′′

ρCp
+

µ

ρCp

(
∂u

∂y

)2

,

(3.4)

u
∂C

∂x
+ v

∂C

∂y
= Dm

∂2C

∂y2
+
DmkT
Tm

∂2T

∂y2
. (3.5)

The associated boundary conditions are:

u = uw = bx, v = 0, N = −m∂u

∂y
, T = Tw = T + A0

(x
l

)2
,

C = Cw = C + A1

(x
l

)2
at y = 0,

u→ 0, N → 0, T → T∞, C → C∞ as y →∞.


(3.6)

where u and v are the horizontal and vertical components of velocities.

3.3 Dimensionless form of the model

To solve the above system of PDEs numerically, we first convert it into the non-

dimensionalized form. For this we use the following dimensionless variables:

η =

√
b

ν
y, N = bx

√
b

ν
g(η), u = bxf

′
(η), v =

√
bνf(η), θ(η) =

T − T∞
Tw − T∞

,

φ(η) =
C − C∞
Cw − C∞

,

T − T∞ = A0

(x
l

)2
θ(η), Tw − T∞ = A0

(x
l

)2
, C − C∞ = A1

(x
l

)2
φ(η),

Cw − C∞ = A1

(x
l

)2
.


(3.7)

where f and g are the stream and microrotation fuctions respectively and both are

dimensionless, η is the similarity variable, l is the characteristic length. The above,

equation (3.1) is satisfied identically. Remaining governing Eqs are tansformed into

the following form:
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(1 +K)f
′′′

+ ff
′′ − (f ′)2 −Da−1f ′ − α(f ′)2 + kg

′ −Mf
′
+Grθ +Gmφ = 0,

(3.8)(
1 +

K

2

)
g
′′ −K(2g + f

′′
)− f ′g + fg

′
= 0, (3.9)

(1 +R + εθ)θ
′′

+ Pr(fθ
′ − 2f

′
θ) + ε(θ′)2 + PrMEc(f ′)2 + PrEc(f ′′)2 (3.10)

+ (1 + εθ)(Q0f
′
+Q1θ) = 0, (3.11)

φ
′′

+ Sc(φ
′
f − 2φf

′
) + ScS0θ

′′
= 0. (3.12)

The BCs, now, become:

f(η) = 0, f
′
(η) = 1, g(η) = −m0f

′′
(η), θ(η) = 1, φ(η) = 1 at η = 0, (3.13)

f
′
(η)→ 0, g(η)→ 0, θ(η)→ 0, φ(η)→ 0, as η →∞. (3.14)

The dimensionless parameters are defined as

Da−1 =
φν

kb
, M =

σ

ρb
B2

0 , Gr =
gβ′(T − T∞)

b2l
, Gm =

gβ∗(C − C∞)

b2l
, K =

k1
µ
,

Ec =
b2l

A0Cp
, R =

16T 3
∞σ
∗

3k∗k∞
, Sc =

ν

Dm

, S0 =
kT
Tm

(Tw − T∞)

(Cw − C∞)
, Pr =

µCp
K∞

.


(3.15)

The skin-friction coefficient Cf , Nusselt number Nux and Sherwood number Shx

are defined as

Cf =
τw
ρuw2

, Nux =
xqw

k(Tw − T∞)
, Shx =

xmw

Dm(Cw − C∞)
. (3.16)

Here, the heat flux qw, the skin-friction on flat plate τw, and the mass transfer rate

mw are given by

τw =

(
|µ+ k1|

∂u

∂y

)
y=0

, qw = −K
(
∂T

∂y

)
y=0

, mw = −Dm

(
∂C

∂y

)
y=0

. (3.17)

By using the above equations, we have

CfRe
1/2
x = (1 +K)f

′
(0), Nux = −

√
Rexθ(0), Shx = −

√
Rexφ(0). (3.18)
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Here, Rex = uwx
ν

is the local Reynolds number.

3.4 Numerical Treatment

This section is focused on the implementation of the shooting method to solve the

transformed ODEs (3.8)-(3.11) subject to the boundary conditions (3.12)-(3.13).

For this purpose, we first convert the system of ODEs into first order ODEs, by

using the following notations

f = y1, f
′ = y2, f

′′ = y3, g = y4, g
′ = y5, θ = y6, θ

′ = y7, φ = y8, φ
′ = y9.

(3.19)

The resulting system of first order ODEs is:

y′1 = y2,

y′2 = y3,

y′3 =

(
1

1 +K

)
(−y1y3 + y22 +Da−1y2 + αy22 − ky5 +My2 −Gry6 −Gmy8),

y′4 = y5,

y
′

5 =
2

2 +K
(K(2y4 + y3) + y2y4 − y1y5),

y′6 = y7,

y
′

7 =
1

(1 +R + εy6)
(−(y1y7 − 2y2y6)− εy27 − PrMEcy22 − PrEcy23

− (1 + εy6)(Q0y2 +Q1y6)),

y′8 = y9,

y
′

9 = −Sc(y9y1 − 2y8y2 + S0y
′

7).

The resulting form of the BCs is

y1(0) = 0, y2(0) = 1, y4(0) = −m0y3(0), y6(0) = 1, y8(0) = 1,

y2 → 0, y4 → 0, y6 → 0, y8 → 0 as η →∞.
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Table 3.1: Impact of different values of K on CfRe
1/2
x keeping all other pa-

rameters zero

K [46] [38] Current Results
0 -1.000000 -1.000008 -1.0000083
1 -1.367872 -1.367996 -1.3679962
2 -1.621225 -1.621575 -1.6215750
3 - -1.827382 -1.8273821
4 -2.004133 -2.005420 -2.0054202
5 - -2.164823 -2.1648229

Table 3.2: Impact of different values of Pr on CfRe
1/2
x keeping all other

parameters zero

Pr [47] [48] [19] [23] [38] Current Results
1 1.3333 1.33334 1.3333 1.333333 1.33333334 1.33333334
3 2.5097 2.50997 2.5097 2.509725 2.50972157 2.50972157
10 4.7969 4.79686 4.7969 4.796873 4.79687059 4.79687058

To solve these equations numerically, the unbounded domain [0,∞) is replaced

by an appropriate domain [0, ηmax]. To solve the above ODEs by the shooting

method, the initial values of y3(0), y5(0), y7(0), y9(0) are choosen arbitrarily.

During the execution of iterations these initial guesses will be updated by the

Newton’s method and the process will be continued until the following criteria is

met

max{|y2(ηmax)− 0| , |y4(ηmax)− 0| , |y6(ηmax)− 0| , |y8(ηmax)− 0|} < ξ

Throughout this work, ξ has been taken as (10)−5 unless otherwise mentioned

3.5 Results and discussion

For the validity of our MATLAB code, the skin friction factor and the local Nusselt

number have been compared with those already published in literature as shown

in Tables 3.1 and 3.2.
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From tables it can be seen that the results achieved by the present code are found

convincingly very closed to the published results.

Fig. 3.2 represents the velocity profile for different values of K and M while all

other parameters are kept constant. We can see from this figure that as the value

of M is ascalated the velocity profile declined and a reverse scenario is observed

in the case of material parameter K. The velocity is decreased by increasing

the values of M because of an opposite force named as the Lorentz force, which

has the tendency to reduce the velocity. Figure 3.3 divulges the velocity profile

for changing values of Da−1 and m0 while all other parameters are kept constant.

Figure shows that the velocity profile gets sharper for increasing value of Da−1 and

m0. In Figure, 3.4 it can be seen that as we increase the values of K and M , the

angular velocity increases while all other parameters have the fixed values. Figure

3.5 divulges that as we increase the values of Da−1 and m0, the angular velocity

increases near the wall while all other parameters have fixed values. Figure 3.6

delineates the effect of Q0 and R on the dimensionless temperature profile θ(η). It

is found that with the increasing values of Q0 and R, the thermal boundary layer

thickness increases. An increment in Q0 allows the flow to become more energetic,

this increment in energy increases the overall temperature of the fluid. Figure

3.7 depicts the behaviour of the dimensionless temperature θ(η) which escalates

with escalation of M and declines with the declination of Q1. As we increase

M , the opposite Lorentz force comes into act which offers resistance to the flow

and thus the thermal boundary layer thickness is increased. Figure 3.8 depicts

the behaviour of the dimensionless temperature θ(η) which is observed to increase

with an augmentation in the Ec and decrease for increasing values of K. The

physical reason behind it is that an increment in the dissipation enhances the

thermal conductivity of the fluid which causes an enhancement in the thermal

boundary layer. It is clear from Figure 3.9 that if we increase the inverse Darcy

number and constant number m0 the value of θ(η) increases. In Figure 3.10 it has

been illustrated that the temperature profile increases as the physical parameter ε

increases and decreases with an increment in Pr. This is because when we increase

the Prandtl number Pr, heat diffuses casually away from the sheet, as a result
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the temperature and the thermal boundary layer thickness reduce. Figure 3.11

demonstrates the influence of Grashof number Gr and local inertia-coefficient α

on temperature profile. Here θ(η) is direct in proportion with α and inverse in

proportion with Gr. Figure 3.12 is the illustration of dimensionless concentration

with varying values of S0 and Sc. We can see that φ(η) escalate as S0 escalate and

decline as Sc escalate. Physically Sc is the ratio of momentum to mass diffusivities,

so for larger Sc mass diffusivity reduces which causes decadence in φ. Figure 3.13

is the illustration of dimensionless concentration with varying values of Gm and

M . We can see that φ(η) escalate as M escalate and decline as Gm escalate.

Figure 3.2: Impact of K and M on velocity f ′(η)
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Figure 3.3: Impact of Da−1 and m0 on the velocity f ′(η)

Figure 3.4: Impact of M and K on angular velocity g(η)
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Figure 3.5: Impact of m0 and Da−1 on angular velocity g(η)

Figure 3.6: Impact of R and Q0 on temperature θ(η)
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Figure 3.7: Impact of Q1 and M on temperature θ(η)

Figure 3.8: Impact of Ec and K on temperature θ(η)
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Figure 3.9: Impact of m0 and Da−1 on temperature θ(η)

Figure 3.10: Impact of ε and Pr on temperature θ(η)
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Figure 3.11: Impact of Gr and α on temperature θ(η)

Figure 3.12: Impact of Sc and S0 on the concentration φ(η)
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Figure 3.13: Impact of Gm and M on concentration φ(η)



Chapter 4

Non-uniform heat source/sink

and activation energy effects on

micro polar fluid in the presence

of inclined magnetic field and

thermal radiation

4.1 Introduction

In the present chapter, some new effects which are not discussed yet in published

work of Mabood [38], has been discussed. The effects of inclined magnetic field,

Soret and Dufour number and activation energy on the two-dimensional hydro-

magnetic mixed convective heat and mass transfer flow of a micropolar fluid over

a stretching sheet embedded in a non-Darcian porous medium with thermal ra-

diation have been discussed. The formulated highly non linear equations for the

above mentioned flow are converted into first order ODEs. The shooting method

is used to solve the BVP by using the computational software MATLAB. A built-

in MATLAB function bvp4c is accustomed to bolster the numerical results. The
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numerical results are computed by choosing different values of the involved phys-

ical parameters and compared with the earlier published results. The behaviour

of velocity, angular velocity, temperature and concentration, for different physi-

cal parameters has been investigated. The graphs and tables which are obtained

under this investigation are given and analyzed at the end of this chapter.

4.2 Problem formulation

Figure 4.1: Geometry for the flow under consideration.

The same flow and conditions which were considered in Chapter 3 are consider

here. Extending the idea of Mabood [38], the governing PDEs of the problem

stated as ‘MHD convective flow past a stretching sheet in a micropolar fluid with

thermal radiation along with activation energy, Dufour effect and inclined mag-

netic field’ can be written as

∂u

∂x
+
∂v

∂y
= 0, (4.1)

u
∂u

∂x
+ v

∂u

∂y
=

(
ν +

k1
ρ

)
∂2u

∂y2
+
k1
ρ

∂N

∂y
− νϕ

k
u− Cbϕ√

k
u2 − σB2

0

ρ
u sin2(β) (4.2)

+ gβ′(T − T∞) + gβ∗(C − C∞).
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ρj

(
u
∂N

∂x
+ v

∂N

∂y

)
= γ

∂2N

∂y2
− k1

(
2N +

∂u

∂y

)
, (4.3)

u
∂T

∂x
+ v

∂T

∂y
=

1

ρCp

∂

∂y

(
K
∂T

∂y

)
− 1

ρCp

∂qr
∂y

+
σB2

0

ρCp
u2 sin2(β) +

q′′′

ρCp
+

µ

ρCp

(
∂u

∂y

)2

(4.4)

+
DmkT
CsCp

∂2C

∂y2
,

u
∂C

∂x
+ v

∂C

∂y
= Dm

∂2C

∂y2
+
DmkT
Tm

∂2T

∂y2
− k2r(C − C∞)

(
T

T∞

)n
e
−Ea
KT . (4.5)

The term k2r(C −C∞)
(

T
T∞

)n
e
−Ea
KT represents the Arrhenius equation, where kr is

reaction rate, Ea the activation energy, k is Boltzmann constant and n is the fitted

rate constant. is the inclination angle of magnetic field. The corresponding BCs

for the proposed model are

u = uw = bx, v = 0, N = −m∂u

∂y
, T = Tw = T + A0

(x
l

)2
,

C = Cw = C + A1

(x
l

)2
at y = 0,

u→ 0, N → 0, T → T∞, C → C∞ as y →∞.


(4.6)

where x and y are coordinate axis along the continuous surface in the direction

same as direction of motion and normal to it, respectively. The components of

velocity along x− and y−axis are respectively u and v.
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4.3 Dimensionless form of the model

To solve the above system of PDEs numerically, we first convert it into the non-

dimensionalized form. For this we use the following dimensionless variables:

η =

√
b

ν
y, N = bx

√
b

ν
g(η), u = bxf

′
(η), v =

√
bνf(η), θ(η) =

T − T∞
Tw − T∞

,

φ(η) =
C − C∞
Cw − C∞

,

T − T∞ = A0

(x
l

)2
θ(η), Tw − T∞ = A0

(x
l

)2
, C − C∞ = A1

(x
l

)2
φ(η),

Cw − C∞ = A1

(x
l

)2
.


(4.7)

where f and g are the stream and microrotation fuctions respectively and both are

dimensionless, η is the similarity variable, l is the characteristic length. The above,

equation (4.1) is satisfied identically. Remaining governing Eqs are tansformed into

the following form:

(1 +K)f
′′′

+ ff ′′ − (f ′)2 −Da−1f ′ − α(f ′)2 + kg′ −Mf ′ sin2(β) +Grθ +Gmφ = 0,

(4.8)(
1 +

K

2

)
g′′ −K(2g + f ′′)− f ′g + fg′ = 0, (4.9)

(1 +R + εθ)θ
′′

+ Pr(fθ
′ − 2f

′
θ) + ε(θ′)2 + PrMEc(f ′)2 sin2(β) + PrEc(f ′′)2

(4.10)

+ (1 + εθ)(Q0f
′
+Q1θ)

+ PrDfφ
′′

= 0, (4.11)

φ′′ + Sc(φ′f − 2φf ′) + ScS0θ
′′ − Scσ(1 + δθ)ne

−E
1+δθ . (4.12)

The BCs, now, become:

f(η) = 0, f
′
(η) = 1, g(η) = −m0f

′′
(η), θ(η) = 1, φ(η) = 1 at η = 0, (4.13)

f
′
(η)→ 0, g(η)→ 0, θ(η)→ 0, φ(η)→ 0, as η →∞. (4.14)
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The dimensionless parameters are defined as

Da−1 =
φν

kb
, M =

σ

ρb
B2

0 , Gr =
gβ′(T − T∞)

b2l
, Gm =

gβ∗(C − C∞)

b2l
, K =

k1
µ
,

Ec =
b2l

A0Cp
, R =

16T 3
∞σ
∗

3k∗k∞
, Sc =

ν

Dm

, S0 =
kT
Tm

(Tw − T∞)

(Cw − C∞)
, Pr =

µCp
K∞

.


(4.15)

The skin-friction coefficient Cf , Nusselt number Nux and Sherwood number Shx

are defined as

Cf =
τw
ρuw2

, Nux =
xqw

k(Tw − T∞)
, Shx =

xmw

Dm(Cw − C∞)
. (4.16)

Here, the heat flux qw, the skin-friction on flat plate τw, and the mass transfer rate

mw are given by

τw =

(
|µ+ k1|

∂u

∂y

)
y=0

, qw = −K
(
∂T

∂y

)
y=0

, mw = −Dm

(
∂C

∂y

)
y=0

. (4.17)

By using the above equations, we have

CfRe
1/2
x = (1 +K)f

′
(0), Nux = −

√
Rexθ(0), Shx = −

√
Rexφ(0). (4.18)

Here, Rex = uwx
ν

is the local Reynolds number.

4.4 Numerical Treatment

This section is focused on the implementation of the shooting method to solve the

transformed ODEs (4.8)-(4.11) subject to the boundary conditions (4.12)-(4.13).

For this purpose, we first convert the system of ODEs into first order ODEs, by

using the following notations by using the following notations

f = y1, f
′ = y2, f

′′ = y3, g = y4, g
′ = y5, θ = y6, θ

′ = y7, φ = y8, φ
′ = y9.

(4.19)
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The resulting system of first order ODEs is:

y′1 = y2,

y′2 = y3,

y′3 =

(
1

1 +K

)
(−y1y3 + y22 +Da−1y2 + αy22 − ky5 +My2 −Gry6 −Gmy8),

y′4 = y5,

y
′

5 =
2

2 +K
(K(2y4 + y3) + y2y4 − y1y5),

y′6 = y7,

y
′

7 =
1

(1 +R + εy6)
(−Pr(y1y7 − 2y2y6)− εy27 − PrMEcy22 − PrEcy23−

(1 + εy6)(Q0y2 +Q1y6)

− PrDfy
′

9),

y′8 = y9,

y
′

9 = −Sc(y9y1 − 2y8y2 + S0y
′

7) + Scσ(1 + δy6)
ne

−E
1+δy6 .

The resulting form of the boundary conditions is

y1(0) = 0, y2(0) = 1, y4(0) = −m0y3(0), y6(0) = 1, y8(0) = 1,

y2 → 0, y4 → 0, y6 → 0, y8 → 0 as η →∞.

To solve these equations numerically, the unbounded domain [0,∞) is replaced

by an appropriate domain [0, ηmax]. To solve the above ODEs by the shooting

method, the initial values of y3(0), y5(0), y7(0), y9(0) are choosen arbitrarily.

During the execution of iterations these initial guesses will be updated by the

Newton’s method and the process will be continued until the following criteria is

met

max{|y2(ηmax)− 0| , |y4(ηmax)− 0| , |y6(ηmax)− 0| , |y8(ηmax)− 0|} < (10)−5
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4.5 Results and discussion

For the validity of our MATLAB code, the skin friction factor and the local Nusselt

number have been compared with those already published in literature as shown

in Tables 4.1 and 4.2.

Table 4.1: Impact of different values of K on CfRe
1/2
x keeping all other pa-

rameters zero

K [46] [38] Current Results

0 -1.000000 -1.000008 -1.0000083

1 -1.367872 -1.367996 -1.3679962

2 -1.621225 -1.621575 -1.6215750

3 - -1.827382 -1.8273821

4 -2.004133 -2.005420 -2.0054202

5 - -2.164823 -2.1648229

Table 4.2: Impact of different values of Pr on CfRe
1/2
x keeping all other

parameters zero

Pr [47] [48] [19] [23] [38] Current Results

1 1.3333 1.33334 1.3333 1.333333 1.33333334 1.33333334

3 2.5097 2.50997 2.5097 2.509725 2.50972157 2.50972157

10 4.7969 4.79686 4.7969 4.796873 4.79687059 4.79687058

From tables it can be seen that the results achieved by the present code are found

convincingly very closed to the published results.

Fig. 4.2 represents the velocity profile for different values of K and M while all

other parameters are kept constant. We can see from this figure that as the value

of M is ascalated the velocity profile declined and a reverse scenario is observed

in the case of material parameter K. The velocity is decreased by increasing

the values of M because of an opposite force named as the Lorentz force, which
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has the tendency to reduce the velocity. Figure 4.3 divulges the velocity profile

for changing values of Da−1 and m0 while all other parameters are kept constant.

Figure shows that the velocity profile gets sharper for increasing value of Da−1 and

m0. In Figure, 4.4 it can be seen that as we increase the values of K and M , the

angular velocity increases while all other parameters have the fixed values. Figure

4.5 divulges that as we increase the values of Da−1 and m0, the angular velocity

increases near the wall while all other parameters have fixed values. Figure 4.6

delineates the effect of Q0 and R on the dimensionless temperature profile θ(η). It

is found that with the increasing values of Q0 and R, the thermal boundary layer

thickness increases. An increment in Q0 allows the flow to become more energetic,

this increment in energy increases the overall temperature of the fluid. Figure

4.7 depicts the behaviour of the dimensionless temperature θ(η) which escalates

with escalation of M and declines with the declination of Q1. As we increase

M , the opposite Lorentz force comes into act which offers resistance to the flow

and thus the thermal boundary layer thickness is increased. Figure 4.8 depicts

the behaviour of the dimensionless temperature θ(η) which is observed to increase

with an augmentation in the Ec and decrease for increasing values of K. The

physical reason behind it is that an increment in the dissipation enhances the

thermal conductivity of the fluid which causes an enhancement in the thermal

boundary layer. It is clear from Figure 4.9 that if we increase the inverse Darcy

number and constant number m0 the value of θ(η) increases. In Figure 4.10 it has

been illustrated that the temperature profile increases as the physical parameter ε

increases and decreases with an increment in Pr. This is because when we increase

the Prandtl number Pr, heat diffuses casually away from the sheet, as a result

the temperature and the thermal boundary layer thickness reduce. Figure 4.11

demonstrates the influence of Grashof number Gr and local inertia-coefficient α

on temperature profile. Here θ(η) is direct in proportion with α and inverse in

proportion with Gr. Figure 4.12 is the illustration of dimensionless concentration

with varying values of S0 and Sc. We can see that φ(η) escalate as S0 escalate

and decline as Sc escalate. Physically Sc is the ratio of momentum to mass

diffusivities, so for larger Sc mass diffusivity reduces which causes decadence in
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φ. Figure 4.13 is the illustration of dimensionless concentration with varying

values of Gm and M . We can see that φ(η) escalate as M escalate and decline

as Gm escalate. Figure 4.14 portray the effect of σ and K on θη. From figure

we can see that the rising value of σ leads to the reduction in θη with the steep

gradient near the wall. Also θη declines as K escalate. Figure 4.15 showing the

concentration profile for δ and M . Declination of concentration has been observed

for the escalation of δ and the same behaviour is observed for M . This is because

when temperature increases the volume of the fluid increases thus concentration

terms decrease. In Figure 4.16, declination of concentration is observed for the

escalation of n and a reverse scenario is observed in the case of material parameter

K. In flow under consideration the rate law is first order therefore we analyse

the behaviour for values less than (1) and concentration is inversely proportional

to fitted rate constant. Figure 4.17 presents the change of θ(η) for Df and M .

Clearly increasing values of M corresponds to the increasing values of θ(η). Figure

also shows that escalation of Df escalates θ(η). Higher concentration gradient is

observed on increasing Df . This is because the Dufour effect is pointed about the

point of energy flux generation by composition gradient. The influence of magnetic

field at different orientations has been displayed in figs. 4.18, 4.19, 4.20. From

figures it is pretty clear that as we increase the inclination angle fluid flow falls

down. This behaviour is observed due to the reason that usually when magnetic

field is applied it offers maximum resistance as compared to applying it at certain

angle. Hence in the presence of differently oriented magnetic field the velocity

decreases but temperature and concentration increases. On the other hand as

K and n are escalated the temperature and concentration declined respectively,

While velocity increases on increasing values of K.
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Figure 4.2: Impact of K and M on velocity f ′(η)

Figure 4.3: Impact of Da−1 and m0 on the velocity f ′(η)
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Figure 4.4: Impact of M and K on angular velocity g(η)

Figure 4.5: Impact of m0 and Da−1 on angular velocity g(η)
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Figure 4.6: Impact of R and Q0 on temperature θ(η)

Figure 4.7: Impact of Q1 and M on temperature θ(η)
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Figure 4.8: Impact of Ec and K on temperature θ(η)

Figure 4.9: Impact of m0 and Da−1 on temperature θ(η)
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Figure 4.10: Impact of ε and Pr on temperature θ(η)

Figure 4.11: Impact of Gr and α on temperature θ(η)
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Figure 4.12: Impact of Sc and S0 on the concentration φ(η)

Figure 4.13: Impact of Gm and M on concentration φ(η)
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Figure 4.14: Impact of σ and K on concentration φ(η)

Figure 4.15: Impact of δ and M on concentration φ(η)
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Figure 4.16: Impact of n and M on concentration φ(η)

Figure 4.17: Impact of Df and M on concentration φ(η)
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Figure 4.18: Impact of β and K on velocity f ′(η)

Figure 4.19: Impact of β and K on temperature θ(η)
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Figure 4.20: Impact of β and n on concentration φ(η)



Chapter 5

Conclusion

Our thesis presents the non-uniform heat source/sink and activation energy effects

on micropolar fluid in the presence of inclined magnetic field and thermal radiation.

An MHD flow over a stretching sheet is discussed alongwith the Dufour number

and the Soret number effects. The shooting method is used to solve the BVP

by using the computational software MATLAB. A built-in MATLAB function

bvp4c is accustomed to bolster the numerical results. The behaviour of velocity,

temperature, concentration and angular velocity for different physical parameters

have been investigated. The results are also elaborated in graphical and tabular

form. Following conclusions have been drawn from the numerical results.

• The concentration profile declines by the escalation of the fitted rate constant

n, the chemical reaction rate σ and the temperature difference parameter δ.

• In the presence of differently oriented magnetic field the velocity decreases

but the temperature and the concentration increase.

• A higher concentration is observed on increasing the Dufour number. Also

escalation of Df escalates the temperature profile.

• The angular velocity escalates with the escalation in m0, the material param-

eter K, the inverse Darcy number Da−1 and the magnetic field parameter

M .

50



51

• The rate of mass transfer escalates with Soret number and declines with the

escalation of Schmidt number.

• The velocity and the concentration escalate by the escalation in the modified

Grashof number Gm and the thermal Grashof number Gr and a reverse

scenario is observed in the temperature field.
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