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1 Wireless Communications
and Networking with Unmanned
Aerial Vehicles: An Introduction

The past few years witnessed a major revolution in the area of unmanned aerial vehicles
(UAVs), commonly known as drones, due to significant technological advances across
various drone-related fields ranging from embedded systems to autonomy, control, secu-
rity, and communications. These unprecedented recent advances in UAV technology
have made it possible to widely deploy drones across a plethora of application domains,
ranging from delivery of goods to surveillance, environmental monitoring, traffic con-
trol, remote sensing, and search and rescue. In fact, recent reports from the Federal
Aviation Administration (FAA) anticipate that sales of UAVs may exceed seven million
in 2020, and many industries are currently investing in innovative drone-centric applica-
tions and research. To enable all such applications, it is imperative to address a plethora
of research challenges pertaining to drone systems, ranging from navigation to auton-
omy, control, sensing, navigation, and communications. In particular, the deployment of
UAVs in tomorrow’s smart cities is largely contingent upon equipping them with effec-
tive means for communications and networking. To this end, in this book, we provide
a comprehensive treatment of the wireless communications and networking research
challenges and opportunities associated with UAV technology. This treatment begins in
this chapter, which provides an introduction to UAV technology and an in-depth dis-
cussion on the wireless communication and networking challenges associated with the
introduction of UAVs.

1.1 Brief Evolution of UAV Technology

A UAV is, in essence, an unmanned aircraft or robot that can fly in nearly unconstrained
locations either autonomously or while being remotely controlled by an operator. In
the early twentieth century, UAV technology was mostly restricted to military envir-
onment. For instance, many references [1–4] trace back the origin of drones to the
nineteenth century when unmanned balloons were used to bomb the city of Venice in
Italy. Then, after some failed or unused UAV-like experiments (such as the US Army’s
Kettering Bug [5]) in the early 1900s, military UAV technology started to improve
and evolve during the Second World War and throughout the Cold War. These early
attempts at providing unmanned aircrafts were mostly restricted to well-defined and

This work is supported by the U.S. National Science Foundation under Grants CNS-1446621, IIS-1633363,
CNS-1836802, CNS-1739642, OAC-1541105, and OAC-1638283.
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very confined military missions, such as reconnaissance or combat surveillance. Despite
their restricted application space, these early developments in UAV technology provided
an important foundation for the modern-day commercial drone revolution, which really
started in the mid-2000s when new applications of UAVs, such as disaster relief, search
and rescue, and infrastructure inspection, began to take shape, driven by a number of
governments. Meanwhile, the first commercial UAV permit was issued in 2006. Fol-
lowing this event, the French company Parrot produced their Parrot AR Drone in 2010,
which was arguably one of the first UAVs ready to be operated by end-users using a
WiFi connection and a smartphone. The Parrot AR Drone was an important first step
toward popularizing the idea of consumer-operated drones that can be employed for
recreational as well as commercial purposes.

However, the true catalyzer for the UAV technology was Jeff Bezos’ 2013 announce-
ment about his intentions to deploy a UAV-based delivery system for Amazon. This
announcement was also followed by similar ideas from other major companies such as
Google, who debuted their drone-delivery Wing project in 2014. Since then, the interest
and investment in UAV technology for commercial applications began an exponen-
tial growth both in terms of applications and technology. Most recently, UAVs have
become inherently equipped with important communications, computer vision, and
machine learning techniques that turned them into truly autonomous and multipurpose
devices. This, in turn, led to a surge of new startups, research, and standardization efforts
focused on the multifaceted technological and social challenges of UAV technology.
These research efforts are rapidly culminating in major breakthroughs across multiple
application domains. It is, therefore, inevitable to envision that the next five years or
so will witness some of the first real-world deployments of drones across various sec-
tors in the global economy. Such deployments will range from the initial introduction
of drone-delivery systems in the near term to a wide-scale deployment of UAV-based
autonomous, flying taxis in the long term.

These rapid recent developments in UAV technology have naturally led to many
research problems that cut across multiple fields, including navigation, control, machine
learning, and communications. In particular, the ability of UAVs to fly in nearly uncon-
strained locations, coupled with their flexibility and agility, makes them particularly
appealing for wireless communications applications. Indeed, communications and net-
working provide one of the most important emerging applications for UAVs; thus, it is
essential to investigate the challenges and opportunities brought forward by UAVs in this
domain. The wireless communications and networking applications and challenges of
UAVs naturally depend on the type of UAV and associated government regulations. As a
result, next, we first provide a classification of UAVs depending on their types and then
delve into the wireless communications and networking challenges and opportunities.

1.2 UAV Types and Regulations

Prior to delving into the wireless communications challenges of UAVs, we first pro-
vide an overview on the different types of UAVs available as well as recent regulatory
progress regarding their deployment.
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1.2.1 Classification of UAVs

In general, the terms “UAV” and “drone” can be used to refer to any type of flying,
unmanned robot that can be remotely controlled and has multipurpose functions. How-
ever, depending on the application, one can choose different types of UAVs, while taking
into account their capabilities (e.g., sensors, size, weight, battery life, etc.) and their
flight abilities (e.g., altitude, ability to hover, etc.). Although one can provide different
ways to classify UAVs, one initial classification can be done based on the flight altitude
of the UAVs and their size. In particular, UAVs can be generally grouped into two key
categories: low-altitude platforms (LAPs) and high-altitude platforms (HAPs). LAPs
are usually small-sized UAVs that can fly at low altitudes that range from tens of meters
up to a few kilometers. LAPs are able to move rapidly and are very flexible in their
deployment. For instance, most UAVs that have been recently considered in end-user
and commercial applications are essentially LAPs. Examples of LAPs include the pre-
viously mentioned Parrot AR Drone as well as the popular DJI Phantom drone series.
According to the FAA, LAPs will be allowed to fly without permit for a maximum alti-
tude of 400 ft. To exceed this altitude, LAP operators must seek special permissions
from the FAA [6].

In contrast to the small and flexible LAPs, HAPs are larger and more capable UAVs
that are used to fly at high altitudes (typically above 17 km). HAPs are often quasi-
stationary and used for long-term mission purposes. Prominent examples of HAPs
include Airbus’ Zephyr [7], which is a stratospheric UAV that can operate as a pseudo-
satellite while harnessing solar energy, and Google’s Project Loon [8], a HAP balloon
that can be placed at an altitude of 18 km to provide long-term wireless connectivity
to rural areas. HAPs are generally much larger and much more enduring than LAPs;
thus, they can be deployed for longer-term, satellite-like missions. Meanwhile, LAPs
are more appropriate for time-sensitive missions due to their ability to quickly deploy
and move. In general, HAPs can be operated continuously for up to a few months of
continuous operations (and even longer if energy limitations are overcome). In contrast,
current LAP technology limits their continuous operation to a few hours (depending
on battery capability and ability to recharge if needed). Naturally, HAPs are also more
costly than LAPs.

Both HAPs and LAPs can be further categorized depending on the type of robot/drone
being used, as shown in Figure 1.1. For instance, LAPs can be further grouped into
fixed-wing, rotary-wing, and balloon UAVs. Compared to rotary-wing UAVs, fixed-
wing LAPs, such as small aircrafts, have a higher weight and speed, and they are able
to remain aloft by moving forward. In contrast, rotary-wing UAVs have the ability to
hover over a specific geographical area while remaining stationary if needed. Mean-
while, HAPs can be further grouped into airships, aircrafts, and balloons. Airships are
the largest type of HAPs, and they have significant power and load capabilities. They
are often deployed in a quasi-stationary manner for long-term continuous missions (up
to a few years). HAP balloons, on the other hand, are relatively lightweight HAPs that
can operate for a few months continuously. They are deployed primarily for stationary
missions. Moreover, aircraft HAPs are also lightweight; however, in contrast to bal-
loons, they can fly and move around an area (typically flying in a circle and in a less
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UAV 
Classifica�on

Type of 
drone wing

Al�tude 

High-al�tude 
pla�orm 

(HAP)

Low-al�tude 
pla�orm (LAP)

Fixed-wing

Rotary-wing

- Long endurance (months or years).
- Long-term missions.
- Quasi-sta�onary. 
- Al�tude above 17 km.
- Heavy loads and power.

- Fast and flexible deployment.
- Quick mobility.
- Cost-effec�ve. 
- Typically flies up to several hours.
- Such as quadcopter, helikite, small aircra�s.
- Such as small aircra�s. 
- Cannot hover.
- High speed.
- Can carry high payload.
- Can fly for several hours.
- Rela�vely heavy payload 
(e.g., 100 kg).
- Can be used for LAPs and also 
HAPs.

- Such as quadrotor drone.
- Deployed exclusively as LAP.
- Can hover. 
- Low speed.
- More energy limited than
   fixed-wing.
- Less than 1 hour flight 
   dura�on for typical drones.
- Low payload (e.g., few kgs).

Airship

- Mostly for HAPs.
- Quasi-sta�onary.
- Highly capable ships.
- Endurance can go up to a few years.
- High payload (hundreds of kgs), high power 
(kiloWa�s).

Balloon

- Used for both LAPs and HAPs.
- Sta�onary.
- Can be tethered to overcome power challenges.
- Can stay up for a few months.
- Payload of up to 100 kg, and power of up to hundred 
Wa�s.

Figure 1.1 Classification of UAVs.

flexible manner than HAPs). HAP aircrafts are also suitable for missions of up to a
few months.

As will be evident from the subsequent chapters of this book, both HAPs and LAPs, in
their various categories, will play important roles in wireless communication scenarios.
Indeed, the various features of LAPs and HAPs exposed in Figure 1.1 will naturally
impact the role they will take from a wireless and networking perspective.

1.2.2 UAV Regulations

The application domains of UAVs is not only limited by their types, but it is also
constrained by potential regulations that various governmental agencies may impose.
For instance, although the application domain of UAVs includes countless use cases,
these use cases are accompanied by various privacy, public safety, security, collision
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Table 1.1 Initial regulations for the deployment of UAVs without any specific permit.

Country Maximum altitude Minimum distance Minimum distance
to people to airport

United States 122 m N/A 8 km
Australia 120 m 30 m 5.5 km
South Africa 46 m 50 m 10 km
United Kingdom 122 m 50 m N/A
Chile 130 m 36 m N/A

avoidance, and data restrictions and concerns. To handle these concerns, numerous
efforts have recently emerged to provide regulations to control the use and operation
of UAVs while taking into account their types and capabilities. For regulatory purposes,
five key criteria are often considered [9, 10]:

1 Applicability: applicability involves specifying the scope (considering type, weight,
and role of UAVs) within which certain regulatory rules will be applied.

2 Operational limitations: these include restrictions on the locations where UAVs can
fly or operate. For instance, many European cities, such as Helsinki in Finland, have
recently designated various areas as no-fly zones for UAVs. Such location constraints
naturally impact all sorts of applications in which UAVs will be used.

3 Administrative procedures: these include precise, legal processes that must be put in
place in order to deploy and use a UAV.

4 Technical requirements: these include constraints on the communications, control,
and mechanical capabilities of drones.

5 Ethical constraints: in order to operate UAVs (and any other autonomous systems),
it is imperative to introduce ethical considerations that must be followed by UAV
operators. Such considerations include ways to protect the privacy of generated data
and the way in which a UAV can be used in commercial and military scenarios.

UAV regulations vary between different countries and types of geographical areas
(e.g., urban or rural). In the United States, regulations for UAV operations are issued
by the FAA and National Aeronautics and Space Administration (NASA). For instance,
NASA is planning to develop UAV control frameworks in collaboration with the Federal
Communications Commission (FCC) and the FAA. The FCC is currently investigating
if a new spectrum policy needs to be established when operating drones for communi-
cation purposes. In Table 1.1, we list a number of UAV regulations in various countries
[9]. All such regulations must be accounted for when treating UAV-related research
problems, particularly communication problems.

1.3 Wireless Communications and Networking with UAVs

UAVs, in all of their types and sizes, provide ample opportunities for wireless
communication applications. In general, all types of UAVs can be equipped with wire-
less interfaces. Such interfaces can operate at either unlicensed, WiFi frequencies or
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Table 1.2 UAV networks versus terrestrial networks.

UAV Wireless Networks Terrestrial Wireless Networks

• Spectrum is scarce. • Spectrum is scarce.
• Three-dimensional network models. • Mostly two-dimensional network models.
• Inherent ability for line-of-sight

communication due to altitude.
• Difficulty to maintain line-of-sight.

• Elaborate and stringent energy constraints
and models.

• Well-defined energy constraints and
models.

• High dynamics due to high
mobility.

• Mobility confined to a few models (e.g.,
pedestrians, cars, etc.).

• Hover and flight time constraints. • No inherent timing constraints.

licensed, cellular frequencies. Naturally, equipping UAVs with wireless communica-
tions capabilities will pave the way for a plethora of new application domains for UAV
technologies. Across these application domains, we can see three primary communi-
cation roles for UAVs: (a) UAVs as aerial base stations (or access points) that can
be deployed to provide wireless networking and communications capabilities to vari-
ous geographical areas, (b) UAVs can leverage existing infrastructure (e.g., cellular or
WiFi) to communicate with one another or with ground devices, and (c) UAVs can be
deployed as aerial relays that can provide an extension to the coverage and connec-
tivity of existing wireless infrastructure. Across all those three roles, as summarized
in Table 1.2, one can identify a number of key technical differences between conven-
tional networks, terrestrial wireless networks, and wireless networks that must support
UAVs.

For each one of the three use cases, various research challenges must be overcome, as
discussed next.

1.3.1 UAVs as Flying Wireless Base Stations

The first natural use case for UAVs in communication applications is the flying base
station (BS) case. In this use case, the UAV itself is used as a provider of wireless
communication services. For instance, LAPs can be used to provide on-demand wire-
less networking capabilities to areas that lack coverage or that are currently congested,
such as hotspot areas. Indeed, the flexibility and agility of LAPs allows network oper-
ators to use them for providing rapid and on-demand connectivity whenever needed.
Meanwhile, HAPs can be deployed for longer-term wireless coverage purposes. In fact,
HAPs are a central component of most recent proposals for providing connectivity to
rural areas (e.g., Google’s Loon project). This is due to the fact that HAPs can remain
flying for long periods of time and, thus, can provide continuous broadband services to
rural or remote areas in which ground wireless infrastructure is sparse or hard to deploy.
Moreover, by jointly using LAPs and HAPs as flying base stations, one can construct
a multitier three-dimensional (3D) wireless network that incorporates both short-term
and long-term coverage solutions. Such a fully fledged UAV-based wireless network is
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Table 1.3 UAV base station versus terrestrial base station.

UAV Base Stations Terrestrial Base Stations

• Deployment is naturally three-dimensional. • Deployment is typically two-dimensional.

• Unique propagation environment with scarcely
available models.

• Well-established models for the propagation
environment.

• Short-term, frequently changing deployments. • Mostly long-term, permanent deployments.

• Mostly unrestricted locations. • Few, selected locations.

• Mobility dimension. • Fixed and static.

envisioned to be an important stepping stone toward delivering global wireless connec-
tivity. A summary of the key differences between terrestrial BSs and UAV-based BSs is
shown in Table 1.3.

Naturally, designing a wireless network that relies on flying UAV BSs (LAPs or
HAPs), brings forward a number of unique research challenges and opportunities that
stem from the unique features of UAV BSs shown in Table 1.3:

• The deployment of flying BSs is, by nature, done in 3D space. Indeed, the altitude
dimension provides a new degree of freedom that a network operator can exploit to
enhance connectivity, such as by establishing line-of-sight (LOS) links between flying
BSs and ground users. However, the flying nature of UAV BSs also brings in new
research challenges, such as the need for dynamically optimizing their deployment
locations as well as managing their mobility.

• The air-to-ground wireless channel presents a new propagation environment whose
characteristics can significantly differ from conventional terrestrial channel models
(e.g., Rayleigh models). Indeed, propagation modeling and measurements are an
important research challenge for UAV BSs. Along those same lines, there is a need for
realistic air-to-air channel models (e.g., for communication between multiple UAVs
of possibly different types) in order to deploy a fully fledged wireless cellular network
that leverages UAVs. We do note that propagation challenges are not restricted to the
UAV BS role, but they are pervasive across all wireless communication roles of UAVs.

• When dealing with UAV BSs, it is imperative to explicitly take into account the
dynamics (e.g., control), mobility, and flight constraints of the UAVs. For instance,
depending on their class (HAP or LAP) and type, UAVs can have different battery
and power capabilities. These capabilities will directly impact the quality-of-service
(QoS) that these UAVs can provide when servicing wireless users. For example, the
hover time constraints of rotary-wing LAPs will impose a maximum wireless service
time that such UAVs can deliver for a given geographical area. As such, character-
izing the performance of a wireless network that relies on UAV BSs must explicitly
factor in these UAV-specific constraints.

• Resource management in a network with UAV BSs differs substantially from resource
management in classical cellular networks. On the one hand, the aforementioned
flight constraints provide new resources (e.g., flight time, on-board energy) that must
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be managed along with conventional wireless resources (e.g., spectrum). On the other
hand, the ability of UAVs to fly and hover brings forward a unique opportunity to
leverage high-frequency bands (e.g., millimeter wave) that can benefit from the ease
with which UAVs can establish LOS connections. As a result, the design of new
resource management schemes that are cognizant of these unique features of UAV
BSs is a very important research challenge.

1.3.2 UAVs as Wireless Network User Equipment

To enable the various UAV applications previously mentioned, UAVs must be able
to communicate with existing wireless networks, such as cellular or WiFi networks.
In such scenarios, UAVs act as user equipment (UE) of the wireless network. When
UAVs are used as UAV UEs of a ground wireless cellular network, they are often
referred to as cellular-connected UAVs. Cellular-connected UAV UEs will enable a
myriad of new application domains in which communications between UAVs and
a ground cellular infrastructure is necessary for the UAVs to deliver application-
specific data, to acquire control information, and to achieve the objective of their
mission. Examples of such applications include delivery drones, real-time surveil-
lance and multimedia transmission, and UAV-assisted transportation networks [11].
As discussed in the UAV BS case, the introduction of aerial UAV UEs that fly in
unrestricted locations and communicate in 3D space, will lead to unique wireless
networking challenges that are not dealt with in a ground network. In particular,
deploying cellular-connected UAV UEs requires overcoming some of the following key
challenges:

• Managing network interference becomes much more challenging when UAV UEs are
deployed. This is due to the fact that flying UAV UEs will now generate LOS inter-
ference on ground BSs and ground UEs, which can potentially lead to significant
performance degradation. As such, it is necessary to introduce new interference man-
agement solutions that are cognizant of the unique, 3D properties of UAV UEs and
their capabilities.

• Current wireless infrastructure has been designed to maximize the performance of
ground users. As a result, many design choices have been made without accounting
for the possibility of having flying users. For example, current cellular network BSs
have been developed in a way to maximize antenna coverage to the ground. As a
result, current BSs will have their antennas tilted downward toward the ground. Con-
sequently, these BSs cannot serve flying UAV UEs using their main antenna lobe and
will have to rely on their side or back lobes. Hence, optimizing antenna usage for
coexisting aerial and ground UEs is a key challenge for wireless communication with
cellular-connected UAV UEs.

• For mission-critical applications such as delivery drones, the UAVs will need to use
the cellular infrastructure to receive status information and control data. Such data
will be very time sensitive and critical, and, thus, there is a need to develop new
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techniques to guarantee low latency, reliable communications among UAV UEs, and
ground cellular infrastructure.

• Given the difference in the propagation environment between ground users and UAV
UEs, a network operator must design new techniques to identify ground and aerial
users. Identification becomes particularly challenging when a terrestrial device (e.g.,
a smartphone) is attached to a UAV to act as a UAV UE. In such a case, the network
cannot rely on traditional authentication or reporting mechanisms, and, thus, new
identification techniques are needed. Performing device identification is a necessary
step toward properly integrating UAV UEs into cellular systems, since it will allow the
system to better map aerial and ground interference and then perform proper resource
optimization and management.

• Most UAV-based systems plan the trajectory of their UAVs based on the specific mis-
sion objectives. In fact, it is very common to optimize the trajectory of UAVs in a way
to minimize the mission time. However, when UAVs are deployed over a wireless net-
work as UAV UEs, their trajectory will not only affect the mission objectives, but it
will also impact the performance of the wireless network. For example, if the trajec-
tory of a given UAV UE passes through many ground BSs, it may cause substantial
LOS interference to those BSs and degrade the QoS of the wireless system. Hence,
it is necessary to develop new wireless-aware trajectory optimization solutions that
can balance the various objectives of a UAV system, including mission objectives and
wireless network performance.

• Along with trajectory optimization, handover and mobility management are also two
prominent technical challenges for cellular networks with UAV UEs. These chal-
lenges will be significantly exacerbated by the fact that the mobility of UAV UEs is
much more dynamic than that of ground devices. In particular, the diversity of paths
and locations that UAV UEs can visit, along with their 3D nature, will bring for-
ward new mobility management challenges that are not dealt with in ground cellular
systems.

• As is the case for the UAV BS scenario, UAV UEs will also face challenges pertain-
ing to the aerial propagation environment as well as the need for dynamic resource
management.

1.3.3 UAVs as Relays

The third use case scenario for UAVs in a wireless environment is one in which the UAVs
act as relay stations that provide a relaying link between a transmitter and a receiver. In
particular, the use of UAV relays is suitable for enhancing the coverage of a ground
network or for overcoming obstacles (e.g., high hills or high-rise buildings) that can
prevent the possibility of LOS communication between a transmitter and a receiver.
The use of UAV relays has also been particularly popular for providing connectivity
among the ground users of mobile ad hoc networks. Another important application for
UAV relays is the use of a flying ad hoc network to provide backhaul connectivity to a
ground wireless or cellular users. In UAV relay use case scenarios, the UAV will act as a
transceiver that receives data from a ground device and then relays this data (via one or
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more hops) to other devices. While deploying UAV relays shares many challenges with
the UAV BS and UAV UE cases, it also has its own unique challenges:

• To perform proper relaying, UAVs must rely on well-designed cooperative commu-
nication mechanisms. For instance, UAVs can potentially adopt classical cooperative
relaying schemes, such as amplify-and-forward or decode-and-forward. However, the
fundamental performance limits of such mechanisms were mostly studied for ground
networks, and, hence, there is a need for a more comprehensive analysis on the relay-
ing performance of flying, UAV-based networks. In addition, more advanced relaying
mechanisms will also be needed to cope with unique features of UAVs, such as their
mobility and dynamics.

• For proper relaying, UAVs will need to coordinate their positioning and potential
transmission. To do so, the UAVs must rely on their control system. As a result, there
is a need for new communication and control codesign mechanisms that can take into
account, jointly, the performance of the control and communication systems. Such
mechanisms will also be able to account for exogenous factors, such as wind, which
can affect the performance of UAV relays. Here, it is noteworthy to mention that joint
communications and control problems are also relevant for the UAV BS use case.

• The use of relaying will require UAVs to establish multi-hop communication links
in the air. The formation and optimization of such multi-hop, airborne networks is
a major research challenge when UAVs act as relays. For instance, given that the
air-to-air link is not yet well understood, it is challenging to design dynamic routing
and multi-hop communication algorithms that can adapt to this link’s propagation
environment. Moreover, the development of scaling laws tailored toward the flying
nature of multi-hop UAV relays will also be needed to understand the performance
limits of a flying multi-hop UAV network.

• The use of HAPs for relaying can also be an interesting research challenge. HAPs pro-
vide stable connections and, hence, can potentially help in relaying data from ground
users and from LAPs. However, given the long distances over which HAPs, LAPs, and
users will communicate, the design of power-efficient and reliable communication
methods will be needed.

1.4 Summary and Book Overview

Clearly, deploying UAVs for wireless networking purposes brings in a plethora of chal-
lenges, use cases, and opportunities. In the rest of this book, we will explore those
challenges and associated problems, while focusing on the following themes:

• In Chapter 2, we provide an in-depth overview of the various applications in which
UAVs can be used for communication purposes. This overview will then drive the
different research questions that follow in subsequent chapters.

• In Chapter 3, we focus on the physical layer aspects of UAV communications,
particularly on radio propagation and waveform designs for aerial wireless users.
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• In Chapter 4, we provide a rigorous performance analysis of wireless networks with
UAVs, while focusing on the achievable network performance in terms of coverage,
rate, and other related QoS metrics.

• In Chapter 5, we focus on the deployment of UAVs (particularly UAV BSs), and we
study a number of problems for optimally deploying UAVs while optimizing wireless
networking metrics.

• In Chapter 6, we turn our attention to issues of mobility management and, particularly,
wireless-aware path planning for communication networks with UAV UEs.

• In Chapter 7, we introduce comprehensive frameworks that enable the optimization of
wireless network resources (e.g., spatial, spectral, or temporal resources) while taking
into account the unique features of UAV BSs and UAV UEs.

• In Chapter 8, we study the problem of cooperation among UAVs, and we also
investigate how coordinated transmissions can be leveraged to improve wireless
communication performance with UAV UEs.

• In Chapter 9, we provide a panoramic and practical overview on how mobile technolo-
gies, such as long-term evolution (LTE) wireless cellular systems and the emerging
fifth-generation (5G) new radio networks, can support UAVs.

• In Chapter 10, we conclude this book by delving into the security of UAV net-
works. In particular, we discuss a number of frameworks to mitigate prominent cyber
attacks that can target UAV systems, particularly UAV systems that are equipped with
communication capabilities.

Notations: In the rest of this book, given that each chapter is self-contained and develops
comprehensive analytical models for the treated research problems, the notations used
in each chapter are specific to that chapter and do not extend to other chapters.



2 UAV Applications and Use Cases

Chapter 1 provided a broad motivation for wireless communications and networking
with UAVs. In this chapter, we expand on the motivation of Chapter 1 by providing a
holistic overview of several key applications and use cases of UAVs in various wireless
networking scenarios. These scenarios are relevant to all of the UAV roles discussed in
Chapter 1, including UAV BS and UAV UE. For the role of UAV BS, we focus on the
use of UAVs in a variety of applications, including public safety, the Internet of Things,
caching, edge computing, and smart cities. Then, we discuss a handful of important
applications for UAV UEs. These applications will then drive much of the analysis and
technical discussions in subsequent chapters.

2.1 UAVs for Public Safety Scenarios

Natural and man-made disasters such as floods, fires, and earthquakes have devastat-
ing impacts on the economy and human life. In the aftermath of large-scale disasters,
wireless ground infrastructure, such as BSs and cell towers, are often damaged and
telecommunication services become unavailable. Such services are essential for con-
necting victims, first responders, and individuals who are located in the disaster zone. In
these situations, it is necessary to establish robust, flexible, and reliable wireless com-
munication systems that can provide support for public safety and disaster management
tasks. Indeed, having reliable wireless connectivity can significantly reduce economic
losses and fatalities in the aftermath of disasters. Clearly, in such scenarios, relying
solely on the preexisting ground infrastructure is not apropos.

To this end, one promising approach to overcome the lack of disaster-resilient wire-
less infrastructure is to deploy flying UAV BSs that can provide wireless services to a
desired geographical area during or after a disaster (see Figure 2.1 as an example). Con-
sidering the fact that a UAV BS is not physically attached to ground infrastructure, it
can freely and effectively move in three-dimensional space and in nearly unconstrained
locations. Hence, a UAV BS can provide a rapid approach to enable necessary wireless
connectivity in disaster-affected environments. In fact, with flexibility, reconfigurabil-
ity, and mobility, a drone-based aerial wireless network can enable reliable connectivity
among the various human actors present in a disaster-affected area, such as first respon-
ders, residents, and potential victims. Furthermore, aerial UAV BSs can autonomously
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Figure 2.1 The use of drones with wireless communication capabilities in public safety scenarios.

update and optimize their location so as to ensure that users located in a large geo-
graphical area are completely covered and are able to quickly receive their time-critical
communication services. Indeed, UAV BSs are one of the most promising technologies
to provide connectivity for public safety scenarios. Beyond serving disaster-affected
areas, UAV BSs can provide communication support to individuals stranded in remote
areas (e.g., lost in a mountainous area). Moreover, in public safety cases, one can also
use UAV UEs to provide delivery of medicine and other pressing needs to remote or
poorly connected areas. Clearly, UAV BSs and UAV UEs with wireless communication
capabilities will play a prominent role in disaster management, public safety, and emer-
gency situations. Such a role has already been explored in recent years, such as during
Hurricane Harvey, where drone-based communication was used. We will explore the
various fundamental and theoretical challenges of UAV communications in such scenar-
ios, across Chapters 3–7, and we will revisit some of these challenges, from a practical
cellular networking perspective, in Chapter 9.

2.2 UAV-Assisted Ground Wireless Networks for Information Dissemination

Given the flexibility, maneuverability, and high chance of establishing LOS drone-
to-ground communications, UAVs equipped with communication capabilities can be
leveraged for information dissemination as well as coverage expansion of ground wire-
less and cellular networks [12, 13]. For example, as we can observe from Figure 2.2,
UAV BSs can facilitate fast and efficient information dissemination in device-to-device
(D2D) communication networks as well as mobile ad hoc networks. Naturally, wireless
D2D devices suffer from a limited communication range (due to energy constraints) and
significant interference in large networks. In such scenarios, mobile UAVs (including
both UAV BSs and UAV relays) can assist the D2D network by quickly disseminating
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Figure 2.2 Drone-assisted ground networks with D2D capabilities.

important information and multi-casting any desired data to D2D devices thus reducing
the number of D2D transmissions, which, in turn, translates into reduced interference
for the network and reduced energy consumption for the devices. One key application
of a drone-D2D integrated network is in emergency scenarios where critical information
needs to be disseminated within a short period of time. In fact, UAVs can cooperate with
D2D networks to improve energy efficiency, connectivity, and spectral efficiency of cel-
lular networks. We also note that, in UAV-assisted ground networks, the joint design of
drones’ mobility and device clustering can also bring substantial performance gains.

Meanwhile, UAVs can also assist vehicle-to-vehicle (V2V) communications by dis-
seminating safety and traffic messages among vehicles within a vehicular network. In
this case, a ground vehicular network can leverage either dedicated UAV BSs to send
this information or it can also rely on existing, flying UAV UEs that can take on the role
of a UAV relay to disseminate information. Clearly, by leveraging the three key roles
of UAVs discussed in Chapter 1, one can significantly improve the coverage, reliability,
latency, and efficiency of information dissemination in various terrestrial networks that
support D2D and V2V communication links.

2.3 Three-Dimensional MIMO and Millimeter-Wave Communication
with UAVs

Another promising use case of UAVs is in enhancing communication at high-frequency
millimeter-wave bands as well as leveraging notions pertaining to full-dimensional
MIMO, massive MIMO, and reconfigurable antenna array systems. In cellular networks,
3D MIMO (in horizontal vertical directions) has recently received significant atten-
tion [14–20]. As we can observe from Figure 2.3, 3D beamforming allows the control of
a beam toward any location in 3D, which can be useful for interference mitigation [21].
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Figure 2.3 3D beamforming using a drone.

In comparison with traditional 2D MIMO systems, the use of 3D MIMO can potentially
yield a superior performance across various metrics, such as data rate, and it can also
provide simultaneous support for a larger number of users. 3D MIMO is particularly
effective when there is a need for serving a significantly large number of users located
at various elevation angles (e.g., in high-rise buildings and streets) [12, 20]. Considering
the fact that UAV BSs can be naturally deployed at high altitudes relative to ground users
(as well as relative to conventional ground BSs, as discussed in Chapter 1), the eleva-
tion angles between UAVs and users can be simply identified. In addition, the ability to
establish LOS links between flying UAVs and ground users allows the employment of
robust 3D beamforming when using UAV BSs.

Meanwhile, multiple UAVs can be used in coordination with one another so as to form
a single, flexible, reconfigurable, and wireless antenna array system in the sky [22]. For
such a UAV-based antenna array, each antenna element is a UAV that can adjust its
position. Such UAV-based antenna array has a number of benefits over a traditional
fixed antenna array system: (1) variable number of antenna elements, (2) maximizing
beamforming gain by optimizing the locations of drones, (3) mechanical beamforming
with moving drones, and (4) creating any arbitrary array geometry in 2D and 3D. In
Chapter 8, we will provide an in-depth study on the benefits of such a cooperative UAV
antenna array.

Another promising application of UAVs within the wireless domain is that of
drone-based millimeter-wave communication [12, 23–25]. Naturally, due to the high
propagation loss in high frequencies, millimeter-wave communications will need LOS
links between transmitters and receivers. In this regard, drones, which are capable of
establishing LOS links, can be a key enabler for providing high-capacity wireless ser-
vices via millimeter-wave communications. As we will also briefly discuss in Chapter 9,
this wireless application of UAVs will be particularly apropos for 5G systems and
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beyond [26] in which millimeter-wave communication will be central to the cellular
network architecture. We can envision UAV BSs that provide millimeter-wave connec-
tivity as well as UAV UEs that use such connectivity to transmit surveillance or virtual
reality data to ground BSs. The blend of UAVs, across all their roles, and high-frequency,
millimeter-wave bands will be a promising wireless domain for drone communication
technologies.

2.4 Drones in Internet of Things Systems

The massive deployment of a diverse set of Internet of Things (IoT) devices that range
from smart meters to wearables and wireless implants introduces new wireless network-
ing challenges that can potentially benefit from the presence of UAVs. In particular,
small, power-limited IoT devices, such as those used in many key IoT application
domains such as healthcare, transportation, and smart cities, among others [27–30],
require a robust wireless networking infrastructure that can provide them with the
necessary long-term coverage needed to deliver their services. In such scenarios, a num-
ber of fundamental challenges such as connectivity, coverage, reliability, latency, and
energy efficiency must be carefully addressed. Specifically, the battery limitations of
IoT devices significantly impacts coverage range and reliability of IoT communica-
tions. Therefore, it is necessary to have a wireless networking solution that can meet
IoT requirements for deep coverage, reliability, and energy efficiency. Moreover, the
scattered and massive nature of IoT devices requires a flexible wireless system that can
provide pervasive coverage across very large geographical areas.

Clearly, for addressing such IoT challenges, one can exploit UAVs with communi-
cation capabilities. Indeed, flying drones are seen as a major enabler for meeting the
wireless networking requirements of IoT devices. For example, UAV BSs can effectively
support IoT services in both uplink and downlink scenarios across scattered geograph-
ical areas. For uplink, UAV BSs can dynamically move based on the locations of IoT
devices to collect IoT data in an energy-efficient and reliable way. This dynamic use
of UAVs for IoT data collection will be explored in detail in Chapter 5. For downlink,
drones can be optimally deployed close to IoT devices and provide deep coverage for
the IoT system [31]. Clearly, the use of UAVs and the deployment of the IoT will have
many intertwined wireless communication challenges and opportunities.

2.5 UAVs for Virtual Reality Applications

Another use case of drones is in virtual reality (VR) applications, as shown in Figure 2.4.
In this case, UAVs can be used for delivering VR applications, for collecting tracking
data on VR users, for monitoring VR user movement, and for providing general wireless
connectivity to VR applications. For instance, UAV UEs can be equipped with cameras
to collect the 360◦ contents that will be requested by the ground VR users [32, 33].
For example, a given ground VR user can use UAV UEs with cameras to engage in VR
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Figure 2.4 Drones in VR applications and millimeter-wave communications.

environments that encompass the landscape of a mountain, an entire city, or a remote
stadium. In these scenarios, the UAVs, acting as UAV UEs, will first collect the VR
images that are requested by the ground VR users using their onboard cameras, and
then they will transmit these VR images to the ground BSs. Finally, the BSs will send
the VR images to the ground VR users. Deploying UAVs for such VR applications
requires overcoming a number of challenges, such as:

• High rate, low delay: The data size of VR content, such as a full, immersive image,
will generally be very large. Meanwhile, the delay requirement of each VR user is
typically less than 20 ms. In consequence, for transmitting remote, VR content via
the use of UAV UEs equipped with VR apparatus, it is necessary to design new wire-
less communication techniques that can ensure high data rates as well as low-latency
communication.

• Limited energy: The use of cameras to capture VR images can consume significant
energy from the onboard energy source of the UAV. The power of the drones (particu-
larly LAPs) is typically provided by a limited-capacity battery. Consequently, there is
a need for new techniques that can guarantee the required VR application QoS while
minimizing the energy consumption needed for the VR content collection, processing,
and transmission by the UAVs.

Beyond data collection and VR content transmission, one can leverage sensor-equipped
UAV UEs for tracking VR users. For instance, in conventional VR systems, user body
movement (e.g., hand movement or orientation change) can be readily detected by the
sensors that are installed on walls or ceilings. However, such a static deployment of
sensors limits the application range of VR, since it is clearly not practical to continu-
ously change the locations of the sensors as VR users move from one location to another
(indoor or outdoor). For example, a VR user might install its VR sensors in the living
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room. In such a case, even if wireless VR support is available for the user’s VR appa-
ratus, it will be cumbersome to change the locations of VR sensors if the user decides
to use the VR device in a different room. Indeed, to provide more seamless support for
VR applications, particularly for wireless VR applications, it can be desirable to use
sensors that can dynamically change their location. In such scenarios, one can readily
equip those VR sensors on UAV UEs and exploit the mobility of the drones to track
each VR user’s movement. Naturally, such scenarios will also bring forth many wire-
less challenges ranging from the need for reliable sensor data collection to the need for
low-latency transmissions.

Last but not least, in a VR use case, UAV BSs can also be used to provide wireless
VR connectivity, particularly for outdoor VR applications. Moreover, for an outdoor VR
user, one can also employ UAV relays to transmit VR contents that cannot be directly
transmitted from ground BSs to ground VR users. Clearly, the VR domain will admit
numerous UAV wireless communication and networking use cases.

2.6 Drones in Wireless Backhauling for Ground Networks

In conventional cellular networks, the most common method to connect wireless base
stations to a core network is through a wired backhaul. Nevertheless, wired connec-
tions are prohibitively expensive, and their deployment could be infeasible due to
geographical limitations and restrictions [34–36]. To address the shortcomings of wired
backhauling, wireless backhauling has been introduced as a reliable and cost-effective
solution. Meanwhile, wireless backhauling can become inefficient due to the presence
of obstacles and due to the potential increase in wireless interference. Such factors can
impair the performance of wireless backhauling and limit its use cases [37]. To cope
with this limitation, it is very natural to exploit UAVs that can complement and sup-
port ground wireless and wired backhaul networks. Indeed, UAVs can be deployed to
provide a cost-effective, reliable, and high-speed wireless backhauling support for ter-
restrial networks [38]. Particularly, it is possible to achieve an optimal placement of
UAVs (for backhauling purposes) in order to avoid blockage and set up LOS and reli-
able communication links. Furthermore, high-speed wireless backhaul connections can
be established to deal with high traffic demands in congested areas by equipping UAVs
with millimeter-wave communication capabilities. Another advantage of using UAVs
for backhauling is their ability to form a reconfigurable aerial network and introduce
a robust wireless backhauling solution via multi-hop LOS links. With a flexible UAV-
based wireless backhauling technique, the capacity, coverage, and reliability of backhaul
connections can be boosted. In addition, the deployment and maintenance expenses
associated with traditional wired backhauling can be substantially reduced. For back-
hauling purposes, UAVs assume the role of UAV relays or UAV BSs. In addition, as
we will see in Chapter 7, one can exploit the use of HAPs in order to further provide
backhaul support to ground networks as well as to LAP-based UAV networks. Another
promising area in this domain is the integration of HAPs and satellite networks to further
enhance backhauling [39].
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2.7 Cellular-Connected UAV UEs

As we discussed in Chapter 1 and in some of the previous sections, UAVs can also
act as flying users (a.k.a., UAV UEs or drone UEs) within a cellular network. UAV
UEs can be widely used in various scenarios, including surveillance, package/drug
delivery, transportation, IoT, remote sensing, and VR. One evident example of cellular-
connected UAVs applications is Amazon’s Prime Air UAV delivery service [40]. Such
diverse use cases of UAV UEs can be effectively enabled by exploiting the flexibil-
ity, maneuverability, and 3D mobility of UAVs. In general, beyond the few scenarios
discussed in the previous sections, as illustrated in Figure 2.5, the main applica-
tions of cellular-connected UAVs can be categorized into three domains [11]: (1)
UAV-based delivery systems (UAV-DSs), (2) UAV-based real-time multimedia stream-
ing (UAV-RMS) networks, and (3) UAV-enabled intelligent transportation systems
(UAV-ITSs).

UAV UE-based delivery systems allow efficient, low-cost, and quick transportation of
packages, goods, and other items. Moreover, as discussed previously, UAV-DSs play an
active and essential role in performing mission-critical applications by flying to remote

Figure 2.5 Applications and use cases of cellular-connected UAVs.
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areas that are not readily accessible from the ground. In addition, employing flying taxis
for public transportation is another application of UAV-DSs where, instead of delivering
goods, UAV UEs are used to transport passengers. Meanwhile, in the UAV-based RMS
scenario, UAV UEs can be used for high-speed online video streaming and broadcasting,
virtual reality, and real-time tracking of mobile terminals. Finally, UAV UEs can be a key
enabler of intelligent transportation systems for controlling traffic, reporting incidents,
and ensuring the safety and security of roads. In addition, UAV-ITSs can significantly
facilitate vehicular platoons by reducing network congestion in vehicle-to-vehicle com-
munications as well as continuously tracking the status of platoon systems. All of these
applications of UAV UEs bring forward critical wireless networking challenges and
will be addressed, in detail, in the subsequent chapters, particularly Chapters 6, 7, 8, 9,
and 10.

2.8 UAVs in a Smart City

Understanding the global vision set forth by smart and connected cities is prohibitively
affected by practical technological challenges. The examples of which include integrat-
ing the services offered in smart cities with an IoT environment (as shown in Figure 2.6)
and a reliable cellular infrastructure that is resilient to catastrophic situations and able to
handle massive amount of data without sacrificing the quality of service. UAV-assisted
wireless communication is a promising solution to overcome these challenges. UAVs
can be used as data aggregators to effectively collect data across multiple devices in dif-
ferent geographical areas and relay the data to powerful clouds for analytics purposes.
In addition, UAV BSs can be employed to enhance the coverage of wireless networks in
case of an emergency or a disastrous situation. UAVs can also be used to sense the radio
environment maps [41] across a city to help network operators optimize the frequency

Figure 2.6 Drones in a smart city.
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planning efforts. Moreover, UAVs that are used as delivery drones for other commercial
purposes in smart cities can be viewed as an important UAV UE use case in which UAVs
can be serviced by both ground and flying BSs. In addition to data collection capabil-
ities, UAVs can be leveraged to act as mobile cloud computing platforms [42, 43] to
facilitate fog computing and data offloading for devices that have limited computational
and memory resources. Note that the drones operating within the smart city environ-
ment may require to be temporarily placed on designated buildings for purposes such
as battery recharge. In this case, allocating on-demand resources to accommodate drone
operation becomes a challenge. UAV UEs, of all application types, are expected to fill
the skies within a smart city. Indeed, UAVs, in all their roles, will become an inseparable
part of smart cities, from wireless connectivity and operational viewpoints.

2.9 Chapter Summary

ln this chapter, we have provided an in-depth overview on the various applications in
which UAVs can be used for wireless communication purposes. For UAV BSs, we have
presented the use of UAVs in a variety of applications, such as public safety, cover-
age enhancement, multiple-antenna systems, IoT, caching, and smart cities. Moreover,
we have discussed the key roles of UAV UEs within cellular-connected UAV systems
for supporting wide range of use cases from VR applications and medical delivery to
flying taxi scenarios. In the subsequent chapters, given the significant use of UAVs in
many applications, we will analyze the design considerations, deployment optimization,
fundamental limits, and implementation aspects of UAV-enabled wireless networks. In
particular, in Chapter 3 we will focus on physical layer and channel modeling aspects
of UAV communications, particularly in cellular-connected UAV systems. In Chap-
ter 4, we will describe deployment optimization techniques for UAV BSs for coverage
enhancement, IoT, and caching applications. In Chapter 5, the performance and fun-
damental tradeoffs of UAV BS-assisted wireless networks will be presented. Chapter 6
will focus on mobility management of UAV UEs. In Chapter 7, we will discuss how
wireless resources can be optimized for UAV BSs and UAV UEs. Chapter 8 will intro-
duce frameworks for enabling cooperative communications and reconfigurable antenna
array in UAV systems. In Chapter 9, we will focus on implementation aspects of using
UAVs in LTE and emerging 5G systems. Finally, Chapter 10 will present the security
challenges in UAV UE-based delivery systems.



3 Aerial Channel Modeling
and Waveform Design

The radio channel plays a fundamental role in wireless communications systems. It
impacts transceiver design, link budget, interference levels, and network management
and operation. Extensive empirical measurements have been carried out in the past few
decades to develop radio channel models, especially for terrestrial wireless environ-
ments across a wide range of frequencies from sub-GHz to millimeter-wave frequencies.
In order to properly deploy UAVs for wireless communication purposes and to enable
all the UAV-related applications discussed in Chapter 2, it is imperative to develop com-
prehensive channel models tailored to the unique challenges of wireless networks with
UAVs. Compared to terrestrial radio channels, aerial radio channels exhibit many differ-
ent characteristics. For example, at a medium height or above, the direct LOS signal path
between the transmitter and receiver is less likely to be obstructed by other objects in
the propagation environment. Another example is airframe shadowing that occurs when
the signal path is obstructed by the body of the UAV itself during the UAV movement.

Waveform design is another fundamental aspect of wireless communication systems
that must also be studied for networks with UAVs. A waveform is the shape and form of
a wireless signal that carries information bits. Important design considerations include
spectral efficiency, power efficiency, robustness to interference, and implementation
complexity. Due to the diverse UAV applications (as discussed in Chapter 2), differ-
ent wireless communication systems possibly with different waveform choices may be
required to serve different uses. For a UAV communication system requiring high data
rates (e.g., in surveillance use cases or for hotspot coverage), a multicarrier waveform
such as orthogonal frequency division multiplexing (OFDM), which is spectrally effi-
cient and can be efficiently implemented digitally, could be a good candidate. For a UAV
communications system that needs to be robust to interference and jamming, a spread
spectrum waveform such as direct sequence spread spectrum (DSSS) can be considered
due to its inherent property of “hiding” the signal below the noise floor and its resistance
to narrowband jamming. For yet another UAV communications system designed partic-
ularly for a low-power Internet of Things system that is sensitive to power efficiency,
a single carrier waveform with continuous phase modulation (CPM) may be used since
they have constant envelope and the associated power amplifiers can work in a nonlinear
regime to achieve high power efficiency.

This chapter focuses on aerial channel propagation modeling and waveform design.
We begin by introducing the fundamentals of radio wave propagation and modeling
in Section 3.1. In Section 3.2, we provide an overview of the salient characteristics
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of aerial wireless channels for UAVs, with a focus on how they differ from the more
familiar and well-studied terrestrial wireless channels. Next we characterize large-scale
propagation channel effects including path loss, shadowing, LOS probability, and atmo-
spheric and weather effects in Section 3.3. Ray-tracing models for approximating wave
propagation are also discussed. In Section 3.4, we look at the small-scale propagation
effects due to the constructive and destructive combining of multipath signal compo-
nents. Key physical phenomena, including time, frequency, and spatial selectivity, are
explained. Statistics of the corresponding key parameters from representative measure-
ment campaigns and simulation results for aerial wireless channels are surveyed. We
also discuss several statistical models for the envelope and power distributions of aerial
wireless channels. In Section 3.5, we turn our attention to waveform design, by review-
ing “just enough” background in the basics and discussing some of the most widely
used wireless waveforms. These include OFDM, DSSS, and CPM, which have been
adopted in the fourth-generation (4G)/fifth-generation (5G), third-generation (3G), and
second-generation (2G) mobile communications systems, respectively. We will be far
from exhaustive here as waveform design is a rich subject for digital communications
systems. The goal is to have a small set of exemplary waveforms in our repertoire to dis-
cuss the main design considerations for UAV wireless communications and networking.
We conclude the chapter with a short summary.

3.1 Fundamentals of Radio Wave Propagation and Modeling

Radio propagation is the behavior of electromagnetic waves when they propagate in
the environment. Basic radio wave propagation phenomena include reflection, diffrac-
tion, refraction, scattering, and absorption, in addition to the direct LOS propagation.
Figure 3.1 illustrates the basic radio wave propagation phenomena in an air-to-ground
propagation scenario with a UAV UE. Below we briefly describe these propagation
phenomena.

• Reflection is the change of radio wave propagation direction when the radio wave
impinges upon a different medium so that the radio wave is reflected back to the
first medium. How much energy is reflected back to the first medium depends on
the material properties, angle of incidence, radio wave frequency, and radio wave
polarization.

• Diffraction is the bending of a radio wave around the corners of an obstacle, allowing
the radio wave to propagate behind the obstacle. With diffraction, radio waves can
overcome the earth’s curvature and propagate beyond the horizon (e.g., the ground
waves at frequencies below 300 kHz). The diffraction capability depends on the size
of the obstacle relative to the wavelength. In general, when two radio waves encounter
the same obstacle, the one with a larger wavelength diffracts more.

• Refraction is the change of radio wave propagation direction when the radio wave
travels from one medium to another. An interesting refraction phenomenon is the one
at 0.3–30 MHz frequencies, whereby radio waves transmitting into the sky can refract
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Figure 3.1 An illustration of basic radio wave propagation phenomena in an air-to-ground
propagation scenario with a UAV UE.

from the ionosphere layer (a region of the atmosphere from about 60 km to 500 km)
back to the earth beyond the horizon, allowing for long-range radio communications.

• Scattering is the reflection of a radio wave from irregularities on the surface of an
obstacle into different reflected directions. Scattering is a weaker radio wave prop-
agation phenomenon in sub-6 GHz wireless channels but may be substantial in
millimeter-wave frequencies where diffraction becomes lossy and less reliable.

• Absorption is the loss of the energy of a radio wave when the wave hits an obstacle.
The attenuation of the radio wave depends on the properties of the obstacle and the
wavelength. For example, the penetration loss is usually low for glass materials but
may be high for concrete materials. Low-frequency radio waves can penetrate through
brick walls but millimeter waves in the 58–60 GHz band can be absorbed by water
and oxygen significantly.

The details of radio wave propagation can be obtained by solving Maxwell’s equa-
tions with boundary conditions. This requires knowledge of the characteristics of the
physical objects in the environment where radio wave propagation occurs. It is, in gen-
eral, difficult to obtain analytical solutions for the electromagnetic field in a realistic
propagation environment. As an approximation, ray-tracing techniques can be used to
yield accurate predictions on radio wave propagation for a given environment. In these
techniques, rays are generated from source points, and each ray propagating in the
environment may experience reflection, diffraction, refraction, scattering, and absorp-
tion. The models provided by ray-tracing techniques are deterministic. Depending on
the ray-tracing environment and prediction accuracy requirement, the number of rays
that need to be generated can be high, possibly leading to high computation burden and
long processing time. Another disadvantage is that the results only apply to the specific
scenario for which ray tracing is performed. We will discuss ray tracing in more detail
in Section 3.3.2.
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Large-scale propagation channel effects include path loss of radio signal as a func-
tion of propagation distance and shadowing due to signal path obstructions by large
objects such as buildings. Small-scale propagation channel effects refer to the construc-
tive and destructive combining of the multiple signal paths that occur at a small spatial
scale of the order of the signal wavelength. These channel effects cause variations of
the radio channel over time, frequency, and space. To facilitate the design and analysis
of wireless communications systems with time-varying channels, analytical statistical
models based on empirical measurements are often used. These statistical models are
also more suitable to represent classes of channels. They have been used to characterize
both large-scale and small-scale propagation channel effects.

Next, we introduce a mathematical channel model for wireless channels to describe
the channel statistics in time, frequency, and space domains. Consider a single

transceiver pair. Denote by
−→
k the wave-number vector that describes the phase vari-

ation of a plane radio wave emitted from the transmit antenna in a reference coordinate.

The wave-number vector is given by
−→
k = 2π fc

c
−→u , where fc is the frequency of the

radio wave, c is the speed of light, and −→u = −→
k

‖−→k ‖ is the unit wave-number vector.

Denote by −→r the original reference position of the receive antenna. Assuming that the
receive antenna is moving with velocity −→v , the position vector of the receive antenna at
time t can be written as −→x (t) = −→r + −→v t. The time-varying channel impulse response
is then given by

h(t, −→r ) = e−j<
−→
k ,−→x (t)> = e−j 2π fc

c <−→u ,−→v >te−j<
−→
k ,−→r >, (3.1)

where < −→p , −→q > denotes the inner product of the two vectors −→p and −→q . We can see
that the frequency fc of the radio wave has been shifted by an amount �f equal to

�f = fc
c
< −→u , −→v >= v cos(ϕ)

c
fc, (3.2)

where ϕ denotes the angle between the unit wave-number vector −→u and the velocity
vector −→v , and v = ‖−→v ‖ is the moving speed of the receive antenna. This mathematical
wireless channel model is illustrated in Figure 3.2.

The change of the frequency of a wave due to the movement of an observer relative to
the wave source is well known as the effect of Doppler shift. When the observer is either
directly moving toward or away from the source, i.e., ϕ = 0 or ϕ = π , the frequency is
either increased or decreased with a maximum Doppler shift value |�f | = v

c fc. It should
be noted that the amount of Doppler shift is frequency and velocity dependent.

When the electromagnetic wave propagates in the environment, the wave strength is
attenuated due to path loss and shadowing and the wave is delayed when arriving at
the receive antenna. The propagation delay and other propagation phenomena, such as
reflection, diffraction, refraction, and scattering, lead to a phase change of the received
wave. From a baseband perspective, these effects can be captured by a complex channel
gain denoted by a(t). Accordingly, the time-varying channel impulse response is given
by

h(t, τ , −→r ) = a(t)e−j2π�fte−j<
−→
k ,−→r >δ(τ − τd), (3.3)

where δ(τ ) denotes the Dirac delta function and τd is the delay.
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Figure 3.2 An illustration of the mathematical wireless channel model.

Thus far, we have implicitly assumed that there is only one radio wave arriving at
the receive antenna. Due to, for example, scattering, the receive antenna may receive
multiple radio waves that experience different levels of attenuation, Doppler shifts, and
delays. By further incorporating the multipath effect, the time-varying channel impulse
response is given by

h(t, τ , −→r ) =
L−1∑
�=0

a�(t)e
−j2π�f�te−j<

−→
k� ,−→r >δ(τ − τd,�), (3.4)

where we have added a subscript � to our notation to distinguish the complex channel
gain, Doppler shift, wave-number vector, and delay associated with each path �, and L
denotes the number of multipath components.

Note that a small change in path distance can lead to a large phase change of the
received wave at the receive antenna. In particular, a path distance change of a quar-
ter carrier wavelength, i.e., c

4fc
, leads to a path delay change of 1

4fc
and, accordingly, a

significant phase change of π
2 . Minor movements of the objects in the propagation envir-

onment can lead to rapid phase change in each path. If the path distance change is due to
a movement at speed v, the time required for the π

2 phase change is c
4fcv . For a 4G LTE

system operating at a carrier frequency of 2 GHz, a quarter of the carrier wavelength is
3.75 cm. For a medium wireless device speed of 30 km/h, the time required for the π

2
phase change is 4.5 ms.

The receiver may not be able to distinguish two radio waves if their delay differ-
ence is small. Precisely, let W be the channel bandwidth, and let τd,1 and τd,2 be the
delays of the radio waves 1 and 2, respectively. Assume that the received signal is sam-
pled at the fundamental Nyquist sampling rate W. The receiver is not able to resolve
radio waves 1 and 2 if their delay difference is much smaller than the sampling inter-
val, i.e., |τd,1 − τd,2| << 1

W . For paths that are not resolvable, they smear together
and appear in the same tap to the receiver. Therefore, it is more appropriate to think of
each term � in (3.4) as an aggregate multipath component (i.e., a tap) contributed by
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multiple paths instead of a single individual path. The different paths contributing to
the same tap may have different complex channel gains and different Doppler shifts.
As a result, the magnitude of the tap can change significantly in a short time scale
due to the constructive and destructive combining of the multiple paths that fall in the
same tap.

The constructive and destructive combining of the multiple paths causes rapid varia-
tion in the received signal strength. This phenomenon is called fading in the literature.
For narrowband channels, the receiver cannot resolve signal paths at a fine scale, result-
ing in very few taps. Each tap in this case may be a sum of many paths. The received
signal is more prone to rapid variation in the received signal strength due to the construc-
tive and destructive combining of the many paths. By contrast, for a wideband channel,
the receiver can resolve the signal paths at a fine scale. With more taps in the wideband
channel, each tap may be contributed by fewer paths, and thus the tap’s amplitude may
not change as fast as in a corresponding narrowband channel.

Fading occurs at a fine time scale. Due to the movements of the transmitter, the
receiver, or the scatters in the propagation environment, the scatters giving rise to multi-
ple paths may change over time. As a result, the profile of the channel taps (propagation
delays, Doppler shifts, and number of significant taps) may change over time. A model
more general than (3.4) may consider incorporating time-varying delay τ�(t), time-
varying Doppler shift �f�(t), and time-varying number L(t) of significant taps. However,
the variations of these in the aggregate multipath components typically occur at a larger
time scale, and thus in (3.4), we assume that they do not change during the time interval
of interest.

3.2 Overview of Aerial Wireless Channel Characteristics

The fundamentals of radio wave propagation and modeling described in the previous
section apply not only to terrestrial wireless channels but also to the aerial wireless
channels for networks with UAVs (in all of their use cases). Compared to terrestrial
wireless channels, aerial wireless channels exhibit many different characteristics. This
section provides an overview of the salient characteristics of aerial wireless channels. In
later sections, we will delve into more details on the impact of the distinct characteristics
of aerial wireless channels on the channel modeling.

To start with, we define air–ground (AG) channel, air–air (AA) channel, and ground–
ground (GG) channel as follows.

• AG channel is the wireless channel between a transmitter up in the air and a receiver
on the ground, or the other way around.

• AA channel is the wireless channel between a transmitter and a receiver that are both
up in the air.

• GG channel is the wireless channel between a transmitter and a receiver that are both
on the ground.
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Height dependency. The characteristics of a wireless channel strongly depend on
the heights of the transmitter and receiver. As discussed in Chapter 1 and shown in
Figure 1.1, UAVs come in various sizes, shapes, and weights, and fly at different speeds
and heights. A UAV can also fly at different heights during different flight phases. Take
the path loss of the wireless channel between a UAV and a ground station (GS) as
an example. When the UAV is flying below the antenna height of the GS, the prop-
agation environment may be similar to that of terrestrial wireless channels, and thus
existing terrestrial wireless channel models may be applicable to a large extent. When
the UAV is flying well above the antenna height of the GS, the propagation environ-
ment may be close to free space since there are usually no surrounding objects in the
sky. In this case, the path loss may be characterized by the free space path loss or
a two-ray model. For the intermediate heights, new measurements may be needed to
develop a corresponding path loss model. Due to height dependency, different aerial
wireless channel models or parameters may need to be used for different phases of a
flight. In [44], the author divided a flight into three main phases (parking and taxiing,
takeoff and landing, and en-route) and proposed a class of aeronautical wideband chan-
nel models. Similarly, in [45], the authors characterized the channel characteristics in
5 GHz band for the flight phases including parking and taxiing, takeoff and landing,
i.e., when the aircraft was near an airport. Height-dependent channel models have also
been used by the 3G partnership project (3GPP) for UAV communication performance
evaluation [21].

Airframe shadowing. One distinct characteristic of aerial wireless channels is air-
frame shadowing, which refers to the obstruction of the LOS path (often called the
“specular path”) between the transmitter and receiver by the aircraft body. For exam-
ple, when a fixed-wing UAV is making a banking turn to change the heading direction,
the obstruction of the LOS path by the UAV body may occur. The features of air-
frame shadowing depend on the structural, material, and flight characteristics of the
aircraft. The pitch, roll, and yaw rates of change during the flight of a small UAV may
be quite different from those of a large fixed-wing UAV, thereby leading to different
airframe shadowing features. Airframe shadowing could be a severe channel impair-
ment. In [46], the authors found that the airframe shadowing can be up to 28 dB in
5.7 GHz band during banking turns. In [47], the authors reported that the median mea-
sured airframe shadowing loss was on average 15.5 dB in 5 GHz band and that the
duration of the airframe shadowing event was on average 35.2 s. Without proper mea-
sures, airframe shadowing may cause link outage and thus disrupt UAV communication
sessions.

Higher likelihood of LOS propagation. Compared to terrestrial wireless channels,
aerial wireless channels feature a higher likelihood of LOS propagation due to the
absence of surrounding objects aloft in the sky, as shown in Table 1.2. This is especially
true for the AA channel where both the transmitter and receiver are up in the air. For the
AG channel, the likelihood of LOS propagation in general increases with the height of
the antenna aloft in the air, as shown in [48]. Higher likelihood of LOS propagation is
generally favorable for wireless communications as it leads to stronger received signal
strength. However, without proper interference management schemes, higher likelihood
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of LOS propagation may also lead to stronger co-channel interference [49] (a topic that
we also address from a path-planning perspective in Chapter 6).

Multipath components. For aerial wireless channels, multipaths may exist due to
earth-face reflection and scattering from irregularities on the surfaces of ground objects.
For a large UAV, scattering from the surface of its own body may lead to multipaths
as well. Nevertheless, due to the absence of surrounding objects aloft in the sky, radio
waves experience less scattering when they propagate. As a result, the number of multi-
path components tends to be less for aerial wireless channels, and in general it decreases
with the height of the antenna aloft in the air. When the LOS path exists, the ratio of the
energy in the LOS path to the energy in the non-LOS (NLOS) paths, known as the K
factor, is usually larger for aerial wireless channels than for terrestrial wireless channels.
The channel is more deterministic with a larger K factor. In [50], the authors reported
that the mean values of the K factors were 14 dB in 1 GHz band and 28.5 dB in 5 GHz
band in suburban environments. In the presence of earth-face reflection, the reflected
path may lead to signal variation that may be described by the well-known two-ray
model. This was observed, for example, in [51], which found that the aerial wireless
channels could be modeled by an LOS path and earth-face reflection with scattered
components based on measurements in 5 GHz band.

Antenna configuration. Antenna configuration has a major impact on how the wire-
less channels should be modeled. For example, if a UAV is served by the side lobe
of a GS whose antenna is down-tilted for terrestrial devices, the earth-face reflection
or scattered paths to the UAV may become strong as they are amplified by the main
lobe of the GS’s antenna while the LOS path is amplified by the side lobe of the GS’s
antenna [48]. In such a scenario, it might be important to properly model the earth-face
reflection or scattered paths in the corresponding aerial wireless channel model. The
antenna characteristics at the UAV such as type (omni-directional or directional), posi-
tion (mounted at the bottom or on the top of the UAV body), orientation, and polarization
may have implication on the modeling of the corresponding aerial wireless channels as
well [52].

In this section, we have provided an overview of some salient characteristics of aerial
wireless channels, with a focus on how they differ from the more familiar and exten-
sively studied terrestrial wireless channels. There are other important characteristics of
aerial wireless channels, such as frequency dependency and Doppler effects. For fre-
quency dependency, this is a common phenomenon for both terrestrial wireless channels
and aerial wireless channels. For example, the tropospheric attenuation is often negligi-
ble for sub-6 GHz bands but can be severe for millimeter-wave bands. Doppler effects,
i.e., Doppler spread and Doppler shift, will be introduced due to the motions of the
transmitter, the receiver, or the surrounding objects in the propagation environment. For
aerial wireless channels, Doppler effects also exhibit height dependency. Large Doppler
spread may occur when the UAV is close to the ground. The Doppler spread may become
small at high altitudes and is concentrated around the Doppler shift typically caused by
the UAV motion. Some other UAV specific electronic and mechanic characteristics may
also have impact on aerial wireless channels. For more details, we refer to, for example,
the works in [52, 53] and references therein.
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3.3 Large-Scale Propagation Channel Effects

Large-scale propagation channel effects mainly include path loss of radio signal as a
function of propagation distance and shadowing due to signal path obstructions by large
objects such as buildings. The propagation loss is often expressed as a sum of distance-
dependent path loss and shadowing. Several popular path loss models for aerial wireless
channels are described in Sections 3.3.1–3.3.4, while shadowing, including the canoni-
cal log-normal shadowing, model and the relatively unique airframe shadowing in aerial
wireless channels are discussed in Section 3.3.5. In addition to path loss and shadowing,
this section also describes ray-tracing models, LOS probability models, and atmospheric
and weather effects.

3.3.1 Free-Space Path Loss

Free-space path loss is a useful starting point for the characterization of wireless channel
path loss. It is a particularly useful model for aerial wireless channels that feature higher
likelihood of LOS propagation. At high altitudes without the presence of earth-face
reflection, the propagation of electromagnetic waves in AA channels is close to free-
space propagation [54]. Similarly, for an AG channel with either the transmitter or the
receiver high in the air, free-space propagation (possibly with some modification) is a
reasonably accurate approximation for characterizing the path loss of the AG channel in
the presence of LOS, as confirmed by many measurement campaigns [51, 55–58].

The model characterizing the free-space electromagnetic wave propagation goes
back to the work done by Harold T. Friis [59]. Assume that u(t) is a complex base-
band signal at the transmitter. The corresponding passband signal can be written as
s(t) = �(u(t)ej2π fct), where fc is the carrier frequency and we have assumed that the
initial phase is zero for simplicity. For a receiver located at a distance d away from the

transmitter, the signal is scaled by a factor λ
√

GtGr
4πd and experiences a propagation delay

of d
c , where λ is the carrier wavelength, Gt and Gr are the antenna field radiation pat-

terns of the transmit and receive antennas in the LOS direction, respectively, and c is the
speed of light [60]. The received signal will be given by:

r(t) = �
(
λ
√

GtGr

4πd
u

(
t − d

c

)
e

j2π fc
(

t− d
c

))
(3.5)

= �
(
λ
√

GtGr

4πd
e−j2π d

λ u

(
t − d

c

)
e j2π fct

)
. (3.6)

The received power Pr, in Watts, is equal to

Pr = PtGtGr

(
λ

4πd

)2

, (3.7)

where Pt denotes the transmit power. The free-space propagation may be intuitively
understood as follows. The effective isotropic radiated power (EIRP) is the product of
the transmit power and the transmit antenna gain, i.e., PtGt. The power flux density
(Watts/m2) at the receiver is equal to the EIRP divided by the surface area of a sphere
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with radius d, i.e., PtGt
4πd2 . The received power Pr is then given by the product of the power

flux density and the effective antenna area that captures useful energy. The gain of the
receive antenna may be related to the effective area of the antenna and the operating
carrier wavelength as follows [59]:

Gr = 4π

λ2
Ae, (3.8)

where Ae denotes the effective area of the receive antenna. Multiplying the power flux

density PtGt
4πd2 by the effective antenna area Ae = Gr

λ2

4π yields (3.7).

The free-space path loss denoted by PL is defined as Pt
Pr

and follows from (3.7):

PL = 1

GtGr

(
4πd

λ

)2

. (3.9)

We can see that the free-space path loss is proportional to the square of the distance
between the transmit and receive antennas. As the distance increases, the received
power decreases. Further, the free-space path loss is inversely proportional to the square
of the signal wavelength. As an example, comparing the free-space path loss in 1
GHz band to the free-space path loss in 60 GHz millimeter-wave band, the latter
experiences more than 35 dB higher path loss than the former. This simple exam-
ple shows that using millimeter-wave frequencies for UAV communications needs
to overcome this additional large path loss when compared with using sub-6 GHz
frequencies.

Because of the small form factor in millimeter-wave frequencies, substantially more
directional antennas may be permitted at the transmitter or the receiver. Adaptive arrays
may be used for UAV communications at millimeter-wave frequencies. The narrow
beams formed by the adaptive arrays may provide high antenna gains to reduce the path
loss in millimeter-wave bands. Array processing, however, may impose computation
burden at the UAV, and its feasibility depends on the type of the UAV.

3.3.2 Ray Tracing

Two-Ray Models
In an aerial wireless channel, in addition to the direct path, there may exist other paths
between a transmitter and a receiver, particularly when a UAV is flying at a low height.
In such cases, the free-space path loss may not be accurate when used alone. A two-
ray model that considers both the direct path and a ground-reflected path between a
transmitter and a receiver turns out to be a useful model for aerial wireless channel
modeling. It was observed, for example, in [51] that aerial wireless channels can be
modeled by an LOS path and earth-face reflection with scattered components based
on measurements in 5 GHz band. The series of measurements carried out in [50, 61,
62] showed that the propagation path loss in several representative areas (over-water
settings, hilly and mountainous areas, suburban and near-urban environments) mostly
followed the two-ray model with adjustments. Another measurement study in [63] also
reported that about 86% of the measured channel responses over sea surface in 5.7 GHz
band can be represented by the two-ray model.
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Figure 3.3 An illustration of a flat-earth two-ray model in an AG propagation scenario with a
UAV.

We consider a flat-earth two-ray model, where the flatness is a valid assumption when
the maximum distance between the transmitter and receiver is not larger than a few tens
of kilometers. Earth curvature may need to be taken into account when considering
scenarios with larger transceiver distances. We refer interested readers to [61, 64] for a
curved-earth two-ray model.

The flat-earth two-ray model is illustrated in Figure 3.3. The propagation distances
of the LOS path and the ground-reflected path are denoted by d0 and d1, respectively.
The received signal is the superposition of the signal along the LOS path and the signal
along the ground reflection path. Using similar notation as in the free-space path loss
model, the received signal of the two-ray model, denoted by r2ray(t), can be written as

r2ray(t) = �
(

λ

4π

(
rb,0(t) + rb,1(t)

)
e j2π fct

)
, (3.10)

where

rb,0(t) =
√

Gt,0Gr,0

d0
e−j2π

d0
λ u

(
t − d0

c

)
, (3.11)

rb,1(t) = 	
√

Gt,1Gr,1

d1
e−j2π

d1
λ u

(
t − d1

c

)
(3.12)

where Gt,0 and Gr,0 are the antenna field radiation patterns of the transmit and receive
antennas in the LOS direction, respectively, Gt,1 and Gr,1 are the antenna field radiation
patterns of the transmit and receive antennas along the direction of the ground reflection
path, respectively, and 	 is the reflection coefficient for the ground.

Denote by ht and hr the heights of the transmitter and the receiver, respectively. The
propagation distance difference of the LOS path and the ground reflection path, denoted
by �d, is given by

�d = d1 − d0 =
√

(ht + hr)2 + d2 −
√

(ht − hr)2 + d2, (3.13)

where d denotes the horizontal distance between the transmitter and the receiver.
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• When d is very large compared to ht + hr, we can use a Taylor series approximation
for �d to obtain that

�d = d1 − d0 ≈ 2hthr

d
, d 	 ht + hr. (3.14)

Accordingly, the phase difference between the two received signal components,
denoted by �φ, is given by

�φ = 2π
�d

λ
≈ 4πhthr

λd
. (3.15)

• When the delay spread �d
c is much smaller than the Nyquist sampling interval 1

W ,
where W is the signal bandwidth, the direct LOS path and the ground reflection path
are not resolvable and smear together in the same tap at the receiver. In this case, we
have

u

(
t − d0

c

)
≈ u

(
t − d1

c

)
. (3.16)

In other words, the transmission is narrowband.
• For large d, the following approximations hold:

d0 ≈ d1 ≈ d, (3.17)

Gt,0 ≈ Gt,1, Gr,1 ≈ Gr,1, (3.18)

The reflection coefficient for the ground is approximately 	 ≈ −1 [60].

For large d, the received signal power can be approximately calculated as follows:

Pr ≈ Pt

(
λ

4π

)2
∥∥∥∥∥
√

Gt,0Gr,0

d0
+ 	

√
Gt,1Gr,1

d1
e−j�φ

∥∥∥∥∥
2

(3.19)

≈ Pt

(
λ

4π

)2 GtGr

d2

(
4πhthr

λd

)2

(3.20)

= PtGtGrh2
t h2

r d−4, (3.21)

where, in the first line, we have used the narrowband approximation (3.16), and in the
second line, we have used the approximations (3.15), (3.17), (3.18), and 	 ≈ −1. Note
that, starting from the second line, we have started using Gt to denote the approximate
value for Gt,0 and Gt,1, and Gr to denote the approximate value for Gr,0 and Gr,1.

The two-ray path loss, denoted by PL2ray, is defined as Pt
Pr

and follows from (3.21):

PL2ray ≈ d4

GtGrh2
t h2

r

. (3.22)

As seen from (3.22), at large values of d, the two-ray path loss increases with the dis-
tance raised to the fourth power. In contrast, the free-space path loss increases with
the distance raised to the second power only. In the regime of large values of d, we
can also observe from (3.22) that the two-ray path loss does not depend on the carrier
frequency.
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It is important to understand the series of assumptions behind the approximate path
loss formula (3.22) for the considered flat-earth two-ray model. As a rule of thumb, the
approximation is valid if the phase difference between the two received signal com-
ponents satisfies that �φ ≈ 4πhthr

λd < 0.6 radian [65], which is equivalent to that

d > 20πhthr
3λ . Consider an urban macro scenario where a GS transmits in 700 MHz band

at the height of 25 m and a UAV receiver is up in the air at the height of hr. Plugging
these numbers into d > 20πhthr

3λ yields that d > 1222hr. For a UAV altitude higher than
82 m, the horizontal distance between the GS and the UAV would have to be more than
100 km such that the path loss formula (3.22) holds. But such large transceiver horizon-
tal separation distance would undermine the basic flatness assumption in the flat-earth
two-ray model.

In the case that the horizontal distance d between the transmitter and receiver is not
large enough compared to ht and hr, a more accurate characterization of the two-ray
path loss is given by [64]

PL2ray ≈ 1

4GtGr

(
4πd

λ

)2

sin−2
(

2πhthr

λd

)
. (3.23)

Note that (3.23) reduces to (3.22) when d is large compared to ht and hr. It can be seen
from (3.23) that there exist alternate maxima and minima in the two-ray path loss.

• When hthr
λd = n

2 , n = 1, 2, ..., PL2ray goes to infinity. In these cases, the two received
signal components are out of phase and completely cancel each other, leading to zero
received signal power.

• When hthr
λd = (2n+1)

4 , n = 0, 1, ..., PL2ray ≈ 4π2d2

λ2GtGr
. In these cases, the two received

signal components are in phase and add constructively, leading to maximal received
signal power.

We can also further observe that the path loss transits from a maximum to a minimum
when hthr

d changes by a factor of λ
4 . We define � > 0 as the required distance increase

such that

hthr

d
− hthr

d + �
= λ

4
. (3.24)

With simple algebraic manipulation, we can obtain that

� = λd2

4hthr − λd
. (3.25)

Note that (3.25) is valid only if d < 4hthr
λ

, because � is negative when d ≥ 4hthr
λ

, con-
tradicting to the assumption that � > 0. This result leads to an interesting observation:
The two-ray path loss pattern with alternate maxima and minima occurs up to a critical
distance of 4hthr

λ
. At the critical distance, the last minimum of the two-ray path loss is

reached, after which the path loss increases sharply with the distance raised to the fourth
power.

In the vertical domain, without loss of generality, let us fix ht and consider the change
of hr needed for the path loss to transit from a maximum to a minimum. It is easy to see
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that the required height change is equal to λd
4ht

. Unlike in the horizontal domain, a critical
height value does not exist here. In other words, for an aerial channel modeled by the
two-ray path loss model, the received signal power at the UAV experiences a sequence
of maxima and minima when the UAV is moving vertically. In contrast, when the UAV
is moving horizontally, the received signal power at the UAV experiences a sequence of
maxima and minima only up to a critical distance.

The two-ray path loss pattern with alternate maxima and minima is an example of
multipath fading, also known as small-scale fading. We will explore small-scale fading
in detail in Section 3.4.

General Ray Tracing
The free-space and two-ray models are among the most simplified electromagnetic
propagation models. General ray tracing can be applied to estimate wireless channel
characteristics, such as path loss, angle of arrival (AoA), angle of departure (AoD),
and tap delays [66] [67]. General ray tracing, based on geometric optics and diffrac-
tion theories, is a numerical method of solving Maxwell’s equations in a high-frequency
regime.

The fundamental concept in ray tracing is the ray concept, which we have used in the
previous discussions of free-space and two-ray models without an explicit definition.
For radio propagation modeling, one can assume that a ray travels in a straight line in
a homogeneous medium or a tube in which the energy is contained and propagated,
and the traveling of the ray obeys laws of reflection, refraction, and diffraction [68]. We
can categorize rays emanated from a point source into four types: direct rays, reflected
rays, diffracted rays, and scattered rays. The categorization, however, is not mutually
exclusive: A ray may undergo a combination of reflection, diffraction, and scattering.

A direct ray is the ray from the source to the field point directly, for example, the one
considered in the free-space path loss model. A reflected ray experiences reflection one
or more times before reaching the field point. The propagation directions of reflected
rays obey the law of reflection. The reflected fields can be determined by Fresnel’s
equations. The primary factors determining reflection mechanism include the frequency,
angle of incidence, conductivity of the reflecting surface, and polarization of the incident
wave. We have already considered one example of reflected rays in the two-ray path loss
models.

Diffraction is the bending of a ray around the corners of an obstacle. Compared to
reflected rays, diffracted rays are more difficult to characterize. An incident ray can
spawn a continuum of diffracted rays. Calculating diffraction coefficients is more com-
plicated, and different formulations may lead to different results. Diffraction can be
characterized by using the geometrical theory of diffraction [69] or the improved uni-
form theory of diffraction [70], among others. Wedge diffraction can be applied to
further simplify diffraction characterization by treating the diffracting object as a wedge
instead of a more general shape [71, 72]. These methods are more pertinent to computer
simulations rather than an analytical study of system performance.

Scattering is the reflection of a ray from irregularities on the surface of an object
into different reflected directions. A scattered ray has a path loss proportional to the
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product of the length of incident segment and the length of reflected segment reaching
the field point due to spreading loss after scattering. For example, scattering causes
free-space path loss to be proportional to distance raised to the fourth power. Though
scattering is a weaker propagation phenomenon, it may not be negligible [73], especially
in millimeter-wave frequencies [74]. For scattering from buildings, the scattered rays
may be divided into specular and nonspecular components [75] and modeled using the
effective roughness concept [76].

Determining the rays from the source to the field point is key in ray tracing. A basic
ray-tracing method may consist of three steps: ray launching, ray tracing, and ray recep-
tion [77]. In ray launching, a large number of rays are generated and emanated from
the source point as uniformly as possible. In ray tracing, a ray is traced from the source
point and is determined if it intersects any object in the propagation environment. This
is usually the most computation-heavy step. A ray may be dropped in the tracing if its
power drops below a certain threshold or it has undergone a given number of reflec-
tions, diffraction, and/or scatterings. In ray reception, a ray is considered reaching the
field point if the ray tube illuminates the receiving field point, followed by calculating
the respective field. We refer to [68, 78] for more in-depth overviews of ray-tracing
methods.

Ray tracing is a popular deterministic radio channel modeling approach that repro-
duces the electromagnetic waves in a specific environment. Its main advantages are high
accuracy [79] and enabling evaluation of wireless channels in situations where measure-
ments are not sufficient or difficult. Its main disadvantage is that it only applies to the
specific environment under investigation. It is computation heavy, but there are methods
to achieve better computational efficiency [68].

As an effective method for propagation modeling, ray tracing has been applied to
aerial wireless channel modeling. In [55], the authors used ray-tracing simulations to
develop path-loss and shadowing models. In [80], ray-tracing simulations were used to
verify the proposed theoretical LOS model for AG radio propagation in urban envi-
ronments. To better understand the wireless channels for low-level maritime UAV
operations, the work [81] developed a simulator to generate a random sea surface in
a deep-water location and collected simulation results to characterize marine wireless
channels as a function of frequency and observable sea surface height for fixed trans-
mitter and receiver locations. A ray-tracing effort was also conducted in [82] for marine
wireless channel modeling over the sea surface.

Ray-tracing analysis was conducted in [83] for urban terrain to validate the experi-
mental results. A statistical propagation model based on urban environment properties
for predicting the AG path loss was proposed in [57] and was validated with ray-tracing
simulations. The work [84] also used ray-tracing simulations to study AG channels in
millimeter-wave frequencies (28 GHz and 60 GHz).

To sum up, ray tracing has a sound physical basis and is a powerful method for prop-
agation modeling. The ray-tracing method has been used for aerial wireless channel
modeling. Combined with empirical and analytical methods, it is playing an increasingly
important role in aerial wireless channel modeling for UAV wireless communications
systems and networking.
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3.3.3 Log-Distance Path Loss Models

A fundamental essence of the large-scale channel effects of radio propagation is that the
path loss increases exponentially with distance. The rate at which the path loss increases
with distance is called path loss exponent. For example, the path loss exponent equals 2
for the free-space path loss and 4 for the two-ray path loss (when the distance is large).
Log-distance path loss models generalize the free-space path loss model and two-ray
path loss models in the sense that the path loss exponent is regarded as a parameter
of the models and is determined based on the propagation environment. Log-distance
path loss models are still much simplified from real propagation environments, but they
capture the essence of the large-scale channel effects of radio propagation. Thus, they
have been widely used for various designs of wireless communications systems, not
only in terrestrial but also in UAV wireless communications systems.

Basic Log-Distance Path Loss Model
The basic form of the log-distance path loss model can be expressed by

PL = K

(
d

d0

)α

, (3.26)

where K is a unit-less scaling factor, d0 is a reference distance for the antenna far field,
and α is the path loss exponent. The path loss in dB scale is given by

PL (dB) = K (dB) + 10α log10

(
d

d0

)
. (3.27)

The reference distance d0 is determined from measurements close to the transmitter.
Due to the effects of antenna near field, the model is generally only applicable to far field
with d > d0. The value of K can be determined through field measurements at distance
d0. The path loss exponent α depends on the propagation environment. The value of
α is usually determined by minimizing the mean squared error between the model and
the empirical measurements. The typical values of α for terrestrial radio environments
range from 2 to 6 [65]. It was also proposed in the literature to model α as a Gaussian
random variable [85], which is, however, a less common approach.

For aerial radio environments, several measurement campaigns have been carried out
to obtain the corresponding path loss exponents. Table 3.1 lists α values for different
environments reported in the literature. It can be seen from Table 3.1 that the exist-
ing measurement campaigns focus on LOS propagation conditions, while measurement
results for NLOS propagation conditions are lacking. The reasons may be twofold: (1)
LOS propagation conditions are common for many existing UAV applications, and (2)
it may be more challenging to conduct aerial wireless channel measurements in NLOS
scenarios, especially in low-altitude urban environments.

It can be further observed from Table 3.1 that the path loss exponents for aerial wire-
less channels tend to be smaller than for terrestrial wireless channels, agreeing with
intuition. Most of the path loss exponent values in Table 3.1 range from 1.5 to 3.0,
which is a consequence of the almost universal presence of LOS propagation conditions
in the measurements. Interestingly, there are some uncommon small path loss exponent



Table 3.1 Path loss exponents measured under different aerial propagation environments.

Reference Scenario UAV type LOS/NLOS Heightsa (m): (GS, aircraft) Frequency (GHz) Path Loss Exponent

[61] Over water S-3B Viking aircraft LOS, NLOS (4.9–235, 762–808) AMSL 0.996–0.977 1.9 (fresh); 1.9 (sea)
5.030–5.091 1.9 (fresh); 1.5 (sea)

[63] Over sea Learjet 35A LOS, NLOS (2.1–7.65, 370–1830) AMSL 5.7 0.14–2.46
[62] Hilly, mountainous S-3B Viking aircraft LOS, NLOS (346.6–2760.6, 1089–4029)

AMSL
0.968 1.3–1.8

5.060 1.0–1.8
[86] Rural Commercial UAV LOS (– , 15–120) AGL 0.8 2.0–2.9
[87] Open field, suburban Quadrocopter LOS (0.07–1.5, 4–16) AGL 3.1–5.3 2.54–3.04
[50] Suburban, near-urban S-3B Viking aircraft LOS, NLOS (171–776, 762–1745) AMSL 0.968 1.7

5.060 1.5–2.0
[88] Cluttered environment – LOS, NLOS (–, 457–975) AMSL 2 4.1
[89] Open field Quadrocopter LOS (3, 20–110) AGL 5.2 2.01
[45] Near airport BeechcraftB-99 LOS (2, up to 914) AGL 5.8 2.0–2.25
[90] Private airfield Senior Telemaster LOS up to (4.3, 46) AGL 5 1.80
[91] Private airfield Self-designed LOS (–, Up to 125) AGL 2.4 1.92 (AA); 2.13 (AG)
[92] – ARES unmanned aircraft LOS (2.4, 200) AGL 2.4 2.34

a AMSL: above mean sea level; AGL: above ground level.
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values (less than 1.5) observed in the measurements, especially for the over-sea scenar-
ios. In particular, the work in [63] reported a path loss exponent value of 0.14 in one of
the measured scenarios and pointed out that it was due to evaporation duct above the sea
surface that resulted in enhanced radio wave propagation.

Modified Log-Distance Path Loss Models
There exist other modified forms of log-distance path loss models, beyond the basic
form given in (3.27). One form closely similar to the basic form (3.27) is the floating
intercept model given by

PL (dB) = 10α log10 (d) + β. (3.28)

Compared to the basic form (3.27), the floating intercept model eliminates the reference
distance d0 and the corresponding path loss value K at distance d0. Instead, the floating
intercept model depends on two parameters α and β, where α is the slope that still bears
the meaning of the path loss exponent and β denotes the intercept. The values of α and β
are usually jointly determined by minimizing the mean squared error between the model
and the empirical measurements.

The floating intercept model was used in the work [86] for radio channel modeling for
UAV communication over cellular networks. Noting the dependency of aerial wireless
channels on UAV height, the authors proposed in [86] to extend the floating intercept
model with height dependent α and β:

PL (dB) = 10α(hu) log10 (d) + β(hu), (3.29)

where hu ∈ [1.5, 120] m denotes the UAV height, and α(hu) and β(hu) determined based
on measurements are given by

α(hu) = max(3.9 − 0.9 log10(hu), 2), (3.30)

β(hu) = −8.5 + 20.5 log10 (min(hu, hFSPL)) , (3.31)

where hFSPL is the height where free-space propagation is assumed.
Another class of modified log-distance path loss models spells out the dependency of

the factor K in the basic form (3.27) on, for example, the antenna characteristics, certain
propagation environment factors, and frequency. For example, the authors in [87] gave
the following modified log-distance path loss model:

PL (dB) = PL0 (dB) + 10α log10

(
d

d0

)
− 10 log10

(
�h

hopt

)
+ Cp + 10 log10

(
1 + �f

fc

)
, (3.32)

where PL0 is the path loss at reference distance d0, �h = |hgnd − hopt|, hgnd is the UAV
height, hopt is the minimum height of the UAV that gives the lowest path loss for a given
environment, Cp is a constant loss factor capturing foliage loss and losses resulted from
UAV antenna orientations, fc is the carrier frequency, and �f is the Doppler variation in
the frequency.
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3.3.4 Empirical Path Loss Models

In aerial wireless channels, especially when a UAV is flying at low altitudes and near
ground clutters such as buildings and trees, the complicated reflection, diffraction, and
scattering effects due to the presence of obstacles may not be accurately modeled by
the free-space path loss, two-ray path loss, or log-distance path loss models. A num-
ber of empirical path loss models have been proposed in the literature to predict the
path loss for aerial wireless channels. The empirical measurements for a given path
loss model were usually conducted in a specific propagation environment for given fre-
quency and distance ranges. These models may find applications beyond the measured
environments, but validations are needed when applying the empirical models to general
environments. In this section, we describe several empirical path loss models for aerial
channel modeling.

Multi-Slope Log-Distance Path Loss Model
Multi-slope log-distance path loss model is an extension of the single slope log-distance
path loss model. It is essentially a piecewise linear approximation of the empirical mea-
surements. The model may specify N − 1 breakpoints, d1, ..., dN−1 with each segment
having a corresponding slope value. The multi-slope log-distance path loss model has
been used to model path loss for terrestrial wireless channels (see e.g., [93]).

A special case of multi-slope log-distance path loss model is the dual-slope model
with only one breakpoint:

PL (dB) =
⎧⎨⎩K (dB) + 10α1 log10

(
d
d0

)
if d0 ≤ d ≤ d1

K (dB) + 10α1 log10

(
d1
d0

)
+ 10α2 log10

(
d
d0

)
if d > d1.

(3.33)

In this dual-slope model, the path loss increases exponentially with distance at the rate
of α1 up to the breakpoint distance d1, after which the path loss increases exponentially
with distance at the rate of α2.

In the context of aerial wireless channel modeling, the dual-slope model has been
used for over-water path loss modeling based on empirical measurements in L-band of
960–977 MHz and in C-band of 5.030–5.091 GHz [61]. The authors in [94] also used
the dual-slope model to fit the empirical measurements collected in a suburban scenario
in 5.76 GHz band.

The work in [48] reported path loss measurement data collected in a helicopter mea-
surement campaign in the carrier frequency of 1.8 GHz. The results are reprinted in
Figure 3.4. In the measurement, the GS height was about 50 m, the height of the sur-
rounding clutters (trees, buildings, etc.) was about 25 m, and the UE height was about
50 m above the ground. From the measurement data, we can see the existence of break-
point: The path loss increases exponentially with distance at the rate of close to 2 up to
the breakpoint distance of about 10 km, after which the path loss increases exponentially
with distance at a much higher rate. Figure 3.4 also shows the 3GPP rural macrocell LOS
and NLOS path loss models for ground UE and the benchmark free space path loss. As
shown in Figure 3.4, the 3GPP rural macrocell LOS and NLOS path loss models for
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Figure 3.4 An illustration of breakpoint in the path loss of AG channel with measurement data. c©
IEEE. Reprinted, with permission, from [48].

ground UE may not be accurate enough for aerial UAV UEs, and, thus, 3GPP developed
new channel models for aerial UAV UEs in Release 15 [21].

Height-Dependent Two-Ray Model
The two-ray path loss expressions (3.22) and (3.23) are obtained under a series of simpli-
fied assumptions. If we do not apply any common simplifications except the narrowband
transmission assumption, the two-ray path loss will then be given by:

PL (dB) = −20 log10

(
λ

4π

)
− 10 log10

∣∣∣∣√G0

d0
+ 	

√
G1

d1
e−jφ

∣∣∣∣2 , (3.34)

where we recall that λ is the wavelength, G0 and G1 are the products of the transmit and
receive antenna field radiation patterns in the LOS direction and in the ground reflection
direction, respectively, d0 and d1 are the propagation distances of the LOS path and the
ground-reflected path, respectively, φ = 2π (d1−d0)

λ
is the phase difference between the

two received signal components, and 	 is the ground reflection coefficient.
Built upon the two-ray path loss (3.34) and motivated by the observation of the path

loss dependency on the elevation angle [55], the authors proposed a height-dependent
two-ray model for AG wireless channels in [83]:

PL (dB) = −20 log10

(
λ

4π

)
− 10α(h) log10

∣∣∣∣√G0(h)

d0
+ 	

√
G1(h)

d1
e−jφ

∣∣∣∣ , (3.35)

where α(h), G0(h), and G1(h) depend on the height h of the UAV’s antenna. Based
on the empirical measurements, the authors introduced three different height zones to
which different model parameters were assigned, as detailed in [83].
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Excess Path Loss Model
An excess path loss model extends a reference path loss by adding an excess path loss
component. For example, the free-space path loss is chosen as the reference path loss in
[56], while the mean terrestrial path loss is chosen as the reference path loss in [95].

The empirical excess path loss model developed in [56] is of particular interest as it
provides insights on AG wireless channel path loss in urban street environments. The
propagation environments are complex and challenging due to the surrounding buildings
around the GS, but urban street environments may become increasingly common for
emerging UAV applications. The authors divided the excess loss, denoted as PLexcess,
into two parts in [56]:

PLexcess (dB) = PLlb (dB) + PLrt (dB). (3.36)

A similar approach has been used for terrestrial wireless channel path loss modeling
(see e.g., [96]). The term PLlb includes the diffraction loss due to the building closest
to the GS, referred to as the last building. The last building is modeled by means of
two knife edges on both outer walls. To approximately calculate the diffraction loss,
Deygout’s method can be used for the case where one edge dominates over the other
[64]. In particular, the diffraction loss can be further decomposed into two terms: one
term due to the main diffracting edge (i.e., the one closest to the GS) and the other due
to the secondary knife edge. The term PLlb may further include contributions from other
rays besides the direct ray diffracted at the last building and reaching the GS, e.g., the
ray reflected on the opposite side of the street [97]. The term PLrt includes the diffraction
loss caused by the multiple buildings between the UAV and the last building.

3.3.5 Shadowing

The deterministic path loss models that we previously discussed do not consider possible
random variations due to blocking objects of different locations, sizes, and dielectric
properties as well as changes in reflecting surfaces and scattering objects. These random
effects give rise to random variation about the path loss known as slow fading, which
calls for statistical models to characterize this random attenuation. It was first shown
in [98] and later validated by many indoor and outdoor measurements that the random
attenuation about the path loss can be characterized by the log-normal shadowing model
[60, 65].

In the log-normal shadowing model, the random attenuation about path loss is
modeled by a random variable χdB with a log-normal distribution given by (in dB):

fχdB(x) = 1√
2πσχdB

exp

(
− (x − μχdB )2

2σ 2
χdB

)
, (3.37)

where fχdB(x) denotes the probability density function of χdB, μχdB is the mean, and
σχdB is the standard deviation of the random variable χdB. The mean attenuation due to
shadowing may be incorporated into the deterministic path loss model, in which case
the mean μχdB = 0 in the log-normal shadowing model.
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Table 3.2 Standard deviations of log-normal shadowing measured under different aerial propagation
environments.

Referencea Heights (m): (GS, aircraft) Frequency (GHz) σχdB

[62] (346.6–2760.6, 1089–4029) AMSL 0.968 3.2–3.9
5.060 2.2–2.8

[50] (171–776, 762–1745) AMSL 0.968 2.6–3.1
5.060 2.9–3.2

[86] (–, 15–120) AGL 0.8 3.4–6.2
[87] (0.07–1.5, 4–16) AGL 3.1–5.3 2.8–5.3
[45] (20, up to 914) AGL 5.8 1.2–9.8
[88] (–, 457–975) AGL 2 5.24

a Refer to Table 3.1 for more information regarding the measurement setups in each reference.

Characterizing the spatial auto-correlation of shadowing is important since blocking
objects for different communication links in close proximity are strongly correlated.
The spatial auto-correlation of shadowing is commonly modeled by a first-order auto-
regressive process. In this model, for two locations separated by distance δ, the spatial
auto-correlation of shadowing denoted by R(δ) is given by [99]:

R(δ) = E[(χdB(d) − μχdB )(χdB(d + δ) − μχdB)] = σ 2
χdB

exp(−δ/dc), (3.38)

where dc is the decorrelation distance denoting the distance at which the auto-correlation
equals the value σ 2

χdB
/e.

The log-normal shadowing model has also been widely assumed in aerial wireless
channel modeling. Table 3.2 summarizes the σχdB values measured under different aerial
propagation environments. The values of σχdB typically range from 5 to 12 dB in terres-
trial macrocells and from 4 to 13 dB in terrestrial microcells [60]. In contrast, it can be
seen from Table 3.2 that the values of σχdB tend to be smaller in aerial wireless chan-
nels, and the higher the antenna height, the smaller the value of σχdB . These results
agree with intuition: As the antenna height increases, there are fewer blocking objects
and less randomness in reflected and scattered rays, leading to smaller shadowing
variation.

A distinct shadowing phenomenon in aerial wireless channels is airframe shadow-
ing, as highlighted in Section 3.2. Recall that airframe shadowing refers to the blockage
of the LOS path by the aircraft body, which may occur during aircraft maneuvering.
Airframe shadowing characteristics depend on the structural, material, and flight char-
acteristics of the aircraft and are independent of the local ground site conditions and link
distance [47]. Airframe shadowing has been mainly studied for manned aircraft at high
altitudes, and not much work has been done to study airframe shadowing for UAV at
low altitudes.

For an aircraft-to-satellite channel, the work [100] reported that the wing shadowing
can yield up to 15 dB attenuation in 20 GHz band. The work [101] simulated airframe
shadowing and reported up to 15 dB shadowing attenuation in 5.12 GHz band. In [46],
the authors measured airframe shadowing during aircraft maneuvering including pitch,
roll, and yaw with two different flight profiles: linear flight route and circular flight route.



44 Aerial Channel Modeling and Waveform Design

The measured carrier frequency was in 5.7 GHz band and the aircraft altitude was kept
at 3.2 km during the measurement. It was found that the shadowing can be up to 9.5
dB and 28 dB for the linear flight route and circular flight route, respectively. From their
measurements, the authors recommended that the shadowing effect can be approximated
by the log-normal distribution with a standard derivation in the range from 6.49 dB to
6.77 dB.

The work in [47] reported measurement results for airframe shadowing depth, dura-
tion, and multiple antenna diversity gain. The results were based on over 200 aircraft
wing/engine shadowing events. The median shadowing loss was, on average, 15.5 dB
in C-band (5060 MHz) and 10.8 dB in L-band (968 MHz), respectively. The shadowing
event duration was on average 35.2 s in C-band and 25.5 s in L-band, respectively. The
authors also proposed an algorithm to reproduce shadowing events and showed that the
deployment of multiple aircraft antennas was useful to mitigate the airframe shadowing.
The authors of [102] also observed airframe blockage during a large turn of the aircraft.

Simulations were preformed in [103] to study shadowing in wireless networks via
HAPs in built-up areas. Four different types of environments (suburban, urban, dense
urban, and urban high-rise) and three different frequency bands (2.0 GHz, 3.5 GHz, 5.5
GHz) were considered. The authors proposed an elevation angle-dependent shadowing
model as follows:

χdB =
{
χdB,LOS LOS

χdB,NLOS + χdB,θ NLOS,
(3.39)

where χdB,LOS is a zero mean log-normally distributed random variable with 3 to 5 dB
standard deviation, χdB,NLOS is a zero mean log-normally distributed random variable
with 8 to 12 dB standard deviation, and χdB,θ represents the additional log-normal shad-
owing as a function of elevation angle denoted by θ . The following fractional rational
function was derived as a best fit to simulation results to approximate the mean μχdB,θ

and standard deviation σχdB,θ :

μχdB,θ , σχdB,θ = g + θ

h + iθ
, (3.40)

where g, h, and i are empirical parameters (different for μχdB,θ and σχdB,θ ).

3.3.6 Line-of-Sight Probability

Ensuring an unobstructed LOS between the transmit and receive antennas is an impor-
tant design consideration for radio frequency link design. In this section, we first
introduce some fundamental concepts such as Fresnel zones and knife-edge diffraction
model to distinguish between the meaning of LOS path and the meaning of unob-
structed LOS propagation. We then discuss LOS probability modeling in aerial wireless
channels.
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LOS Path and Unobstructed LOS Propagation
LOS path – a notion we have introduced and have been using in this chapter – has
a straightforward meaning: the shortest direct path between the transmit and receive
antennas. Unobstructed LOS propagation – a notion we have touched upon earlier in this
chapter – is a bit more convoluted to define precisely. To be considered as unobstructed,
the LOS path and some volume of adjacent space (defined via the concept of Fresnel
zones) should be free of obstructions.

The concept of Fresnel zones is illustrated in Figure 3.5, where a transparent plane
is placed between the transmitter and receiver. The plane is perpendicular to the LOS
path. It is at a distance d1 from the transmitter and d2 from the receiver. Figure 3.5
shows a set of concentric circles with the center being the intersection of the LOS path
and the plane. For a point on the n-th concentric circle, consider the path consisting
of two segments: The first segment is the direct path from the transmitter to the point
on the n-th concentric circle, and the second segment is from the point to the receiver.
The length of this path is nλ

2 greater than the length of the LOS path, and the length
difference of the two paths is referred to as excessive path length.

We define rn as the radius of the n-th concentric circle. If d1, d2 	 rn, the radius can
be approximated as [65]

rn ≈
(

nλd1d2

d1 + d2

) 1
2

. (3.41)

It can be seen that the radii of the concentric circles depend on the frequency and the
location of the plane. The maximum radii are obtained when d1 = d2, i.e., when the
plane is midway between the transmitter and receiver.

Figure 3.5 An illustration of Fresnel zones.
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By joining all the points for which the excessive path length is nλ
2 and repeating

this for all n, we can construct a series of concentric ellipsoids. The first Fresnel zone
is the innermost ellipsoid space in which the LOS path passes through; the second
Fresnel zone is the second innermost ellipsoid space, excluding the first Fresnel zone;
and so on. For unobstructed LOS propagation, the first Fresnel zone should be free of
obstructions to some extent. If there is an obstacle that introduces into the first Fres-
nel zone, the signals reflected or diffracted by the obstacle and the LOS signal sum
at the receiver constructively or destructively depending on the total phase difference.
When the obstacle blocks the direct LOS path, the signal loss could be significant.
The level of diffracted signal reaching the receiver depends on the frequency, shape
of the obstacle, height of the obstacle above the LOS path, and relative locations of the
transmitter, receiver, and obstacle. A rule of thumb is to keep at least 60% of the first
Fresnel zone free of obstructions, in which case the propagation may be considered as
unobstructed LOS.

Estimating diffraction loss for a signal diffracted by a general diffracting object
is complex. The simplest and most commonly used model is the Fresnel knife-edge
diffraction model. The geometry of this model is shown in Figure 3.6. Let �d be the
excessive path length of the diffracted path relative to the LOS path. For the receiver
located in the shadowed region, �d is approximately given by:

�d ≈ (d + d′)
2dd′ h2, (3.42)

where d is the distance between the transmitter and the point of the knife edge, d′ is the
distance between the point of the knife edge and the receiver, and h is the height of the
knife edge relative to the LOS path.

The diffracted signal travels an extra distance �d, leading to a phase shift relative to
the LOS path given by

�φ = 2π�d

λ
= π

2
v2, (3.43)

TX RX

d d′
h

Figure 3.6 An illustration of the Fresnel knife-edge diffraction model.
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where v is the Fresnel–Kirchoff diffraction parameter given by

v =
(

2(d + d′)
λdd′

) 1
2

h. (3.44)

The diffraction gain compared to the free-space propagation is given by

Gd (dB) = 20 log10

∣∣∣∣∫ ∞

v

(
1 + j

2

)
e−j π t2

2 dt

∣∣∣∣ . (3.45)

Approximation equations for (3.45) exist in the literature (see e.g., [60]). The Fresnel
knife-edge diffraction model has also been used in aerial channel modeling. For exam-
ple, the work [104] combined a two-ray reflection model with the knife-edge diffraction
model to model the path loss for cellular connected UAV.

Scattering may lead to stronger received signal than predicted by reflection and
diffraction models alone. Rough surfaces induce scattering, the effects of which are
different from the specular reflection induced by flat surfaces. The surface roughness
and radar cross section (RCS) of a scattering object are the two most important factors
that impact outdoor radio propagation [65].

A surface may be considered rough for a given incidence angle θi if its minimum to
maximum protuberance is greater than a critical height hc given by

hc = λ

8 sin θi
. (3.46)

RCS (units of m2) is defined as the ratio of the scattered power density (in the direction
of observation) to the incident power density, i.e.,

σrcs = lim
r→∞

4πr2Ss

Si
, (3.47)

where σrcs denotes the RCS, Ss denotes the scattered power density, Si denotes the
incident power density, and r denotes the distance from the scattering object to the
observation point. As the RCS increases, a higher received power from the scattered
rays can be expected.

LOS Probability Modeling for Aerial Channels
LOS probability modeling is an essential component of the aerial channel modeling.
Much work has been done to characterize the likelihood of LOS in different aerial
propagation environments. The work [80] used a single knife-edge diffraction model
to determine the LOS probability for AG channels. The model was verified with ray-
tracing simulation results. The model may be more suitable for some European cities
with dense and irregular streets since it assumed uniform street angles.

The authors in [48] used ray-tracing simulation to collect LOS probability statistics
using a high-resolution digital terrain map of a rural area near Stockholm, Sweden. In
the simulation, the GS height was 35 m above the terrain. The results are reprinted in
Figure 3.7 that shows the LOS probabilities obtained from the rural area map data. For
comparison, Figure 3.7 also shows the 3GPP LOS probability formula for ground UE.
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Figure 3.7 LOS probability statistics obtained from ray-tracing simulation using a terrain map of
a rural area near Stockholm, Sweden. The “original reference [9]” in the legend for RMa PLOS
refers to the 3GPP technical report 38.901 that documents the 3GPP studies on channel models
for frequencies from 0.5 to 100 GHz [105]. c© IEEE. Reprinted, with permission, from [48].

A general observation can be made from Figure 3.4: The higher the antenna height, the
higher the LOS probability of the aerial channel.

Built upon a statistical model recommended by the International Telecommunica-
tion Union (ITU) [106], works [57] and [107] proposed a modified sigmoid function to
model the likelihood of LOS in AG channels. The model has been used by several other
works for the analysis of UAV communications systems [108–110].

In the sequel, we describe the statistical model recommended by ITU [106]. The
model characterizes the likelihood of the existence of an LOS path between a transmitter
and a receiver in the presence of building blockage. The characterization of the buildings
is simple. It is based on three statistical parameters related to an urban environment:

• Parameter α: the ratio of the land area covered by buildings to the total land area
(dimensionless);

• Parameter β: the mean number of buildings per unit area (buildings/km2); and
• Parameter γ : a scale parameter that describes the Rayleigh distributed building

heights with probability density function fH(x) given by

fH(x) = x

γ 2
e
− x2

2γ 2 , x ≥ 0, (3.48)

where H represents the random building height in meters.

Under this model, assuming that the buildings are arranged on a regular grid, a ray
of 1 km length passes over

√
αβ buildings. The expected number of buildings lying in

the propagation path between a given transmitter and its receiver, denoted by Nb, is then
given by
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ht

hr

dr

h̄Nb−1h̄0

d0

dNb−1

TX

RX

Figure 3.8 An illustration of the geometry of the LOS statistical model recommended by ITU in
[106].

Nb = �dr
√
αβ/103�, (3.49)

where dr is the horizontal distance from the transmitter to the receiver in meters, and the
floor operation �·� is introduced to get an integer number of buildings.

For a given transceiver pair, the LOS path exists if and only if each building lying in
between the transmitter and receiver is below the height of the point at which the direct
path crosses right above the building. Figure 3.8 shows the geometry, from which we
can see that the model assumes the terrain to be flat or of constant slope over the area of
interest.

We define h̄j as the height of the point at which the direct path crosses right above the
building j, j = 0, ..., Nb − 1. By simple geometric analysis, we can see that h̄j is given
by:

h̄j = ht − dj(ht − hr)

dr
, (3.50)

where ht and hr are the heights of the transmitter and the receiver, respectively, and dj is
the horizontal distance from the transmitter to the building j.

We define {Hj}j=0,...,Nb−1 as a sequence of random variables with Hj being the height
of the building j. The model assumes that {Hj}j=0,...,Nb−1 are independent and identically
distributed (i.i.d.) with Rayleigh distribution given by (3.48). The probability pLOS that
an LOS path exists can be computed as follows:

pLOS = P(∪j=0,...,Nb−1{Hj < h̄j}) =
Nb−1∏
j=0

P(Hj < h̄j), (3.51)

where the second equality follows from the i.i.d. assumption of {Hj}j=0,...,Nb−1. By the
cumulative distribution function of the Rayleigh distribution given by FH(x) = 1 −
e
− x2

2γ 2 , x ≥ 0, we can find that:
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pLOS =
Nb−1∏
j=0

⎛⎝1 − e
− h̄2

j
2γ 2

⎞⎠ . (3.52)

The model further assumes that the buildings are evenly spaced between the transmit-
ter and the receiver. The distance from the transmitter to the building j is given by:

dj =
(

j + 1

2

)
dr

Nb
, j = 0, ..., Nb − 1. (3.53)

Plugging (3.49), (3.50), and (3.53) into (3.52) yields:

pLOS =
�dr

√
αβ/103�−1∏

j=0

⎛⎜⎜⎜⎝1 − exp

⎛⎜⎜⎜⎝−

(
ht − (j+ 1

2 )(ht−hr)
�dr

√
αβ/103�

)2

2γ 2

⎞⎟⎟⎟⎠
⎞⎟⎟⎟⎠ . (3.54)

We emphasize that the LOS probability (3.54) is independent of the frequency. This is
because the model considers the probability of an LOS path (often known as geometrical
or optical LOS), not the probability of unobstructed LOS propagation (often known as
radio LOS). The latter depends on Fresnel zones whose radii depend on the frequency,
as discussed in the first part of this section.

In [107], the authors proposed that the LOS probability (3.54) can be approximated
by a modified sigmoid function:

pLOS(θ ) = 1

1 + a exp(−b(θ − a))
, (3.55)

where θ represents the elevation angle of the antenna in the sky with respect to the
observation point on the ground, and a and b are model parameters that depend on
the propagation environment. This approximation may be more friendly in terms of
analytical studies.

3.3.7 Atmospheric and Weather Effects

The propagation of electromagnetic waves is affected by atmospheric effects. The
gaseous molecules, such as oxygen and water vapor, contribute to some extent to sig-
nal attenuation. The attenuation may be modeled by additional path loss factors that
are additive in decibel units. As the UAV height increases, the atmospheric effects on
electromagnetic wave propagation vary due to the change of humidity, pressure, and
temperature in the atmosphere.

Note that the atmospheric effects may not always attenuate the propagation of electro-
magnetic waves. In Section 3.3.3, we pointed out that some aerial channel measurements
in the over-sea scenarios reported very small path loss exponent values (less than 1.5).
The authors in [63] explained that it was due to an evaporation duct above the sea sur-
face that resulted in enhanced radio wave propagation. Similar signal enhancements due
to evaporation ducts were also reported in the works [111] and [112].

The evaporation duct is a result of the rapid decrease in vapor pressure from the
sea surface (saturated with water vapor) to a height at which the water vapor pressure



3.4 Small-Scale Propagation Effects 51

reaches an ambient value. This is reflected in a decrease in modified refractivity. An
evaporation duct may be considered as a natural waveguide for the propagation of elec-
tromagnetic waves. Depending on the environment, the heights of evaporation ducts
may vary from a few meters to a few tens of meters.

It is also known that weather impacts the propagation of electromagnetic waves. The
weather attenuation is usually a function of link distance, rainfall rate, and the size and
shape of the raindrops. The impact is more significant in the millimeter-wave bands
than in the sub-6 Ghz frequencies, due to the larger electrical size of raindrops in the
millimeter-wave bands. As the link distance increases, the weather attenuation may
become dramatic in the millimeter-wave bands. Therefore, for the design of UAV sys-
tems with millimeter-wave communication, the impact of weather, especially the rain
attenuation effect, should be taken into account [113].

There is a need to calculate the rain attenuation for use in prediction methods. One
model recommended by the ITU can be found in [114]. In this model, the specific atten-
uation γrain (dB/km) is a function of the rainfall rate R (mm/h) given by the power-law
relationship:

γrain = k( f )Rα( f ), (3.56)

where k( f ) is the multiplicative coefficient, α( f ) is the power-law exponent, and both
depend on the frequency f . The coefficients k( f ) and α( f ) are given by

log10 k( f ) =
4∑

j=1

ak, j exp

(
−
(

log10 f − bk, j

ck, j

)2
)

+ mk log10 f + ck (3.57)

α( f ) =
5∑

j=1

aα, j exp

(
−
(

log10 f − bα, j

cα, j

)2
)

+ mα log10 f + cα , (3.58)

where f (in GHz) is in the range from 1 GHz to 1000 GHz. Values for the con-
stants {ak, j, bk, j, ck, j, mk, ck} for the coefficient k( f ) and values for the constants
{aα, j, bα, j, cα, j, mα , cα} for the coefficient α( f ) can be found in [114].

3.4 Small-Scale Propagation Effects

Small-scale propagation channel effects describe the phenomena causing the rapid
fluctuation of radio signals over time, frequency, and space. The fundamental cause
of small-scale propagation channel effects is the multipath components introduced
by wireless channels. A mobile receiver on the ground may receive radio waves
from different directions with different propagation delays and Doppler shifts. These
radio waves may have randomly distributed amplitudes, phases, and AoAs. In Section
3.3.2, the developed ray-tracing models capture the multipath effects for deterministic
channels.

This section focuses on the statistical characterization of the multipath aerial wireless
channels. Here, we will use the general channel model (3.4) introduced in Section 3.1
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for analyzing small-scale propagation channel effects. Note that the model in (3.4) char-
acterizes the channel impulse response (CIR), which is a function of time (t), delay (τ ),
and space (−→r ). To see the frequency dependency more explicitly, the delay domain in
the CIR can be transformed into the frequency domain by applying a Fourier transform:

h(t, f , −→r ) =
∫ ∞

−∞
h(t, τ , −→r )e−j2π f τdτ , (3.59)

where h(t, f , −→r ) is known as the channel transfer function (CTF).
The channel (3.59) is generally modeled as a wide-sense stationary random process in

statistical channel modeling. This implies that the channel auto-correlation is invariant
in time, frequency, and space. Thus, it can be expressed by

Rh(�t,�f ,�−→r ) = E
[
h(t, f , −→r )h∗(t + �t, f + �f , −→r + �−→r )

]
, (3.60)

where �t,�f , and �−→r denote the time difference, frequency difference, and space
difference, respectively.

For communication systems with UAVs in which the propagation environments may
rapidly change (due to, e.g., a UAV moving at a high speed), the channel may be wide-
sense stationary for only a small spatial interval [61]. This is not a unique phenomenon
for aerial wireless channels: The stationary interval or time has been considered for
high-speed terrestrial vehicular channel characterization [115, 116]. In the sequel, we
analyze time, frequency, and spatial selectivity, and the corresponding Doppler spread,
delay spread, and angular spread, separately. We will primarily assume that the channel
is wide-sense stationary unless stated otherwise. It should be understood that the small-
scale channel effects are analyzed in the stationary interval or time during which the
assumption of wide-sense stationary channels is valid.

3.4.1 Time Selectivity and Doppler Spread

Time selectivity refers to the temporal variation of the wireless channel h(t, f , −→r ). For
simplicity, we omit the arguments f and −→r and simply denote the channel as h(t) in this
section. One measure of time selectivity is the coherence time, denoted by Tc, which is
the interval during which the channel at different time instants is correlated. With the
channel auto-correlation function given by Rh(�t) = E[h(t)h∗(t + �t)], the coherence
time can be formally defined as the value of the time difference satisfying that Rh(Tc) =
0.5Rh(0). The longer the coherence time, the less the time selectivity of the channel.
We can categorize the channel as fast fading or slow fading, depending on its coherence
time relative to the transmission duration of a transport block. If the coherence time is
much shorter (resp. longer) than the transmission duration of the transport block, the
channel is categorized as fast fading (resp. slow fading).

The time selectivity is caused by the motions of the transmitter, receiver, and sur-
rounding objects that lead to possibly different time varying Doppler shifts on the
multipath components. The different multipath components that may have different time
varying phase shifts caused by Doppler effects sum constructively and destructively,
affecting the amplitude of the resulting composite signal. Doppler spectrum, denoted by
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Sh(μ), can be computed by applying a Fourier transform to the auto-correlation func-
tion Rh(�t) to transfer from the time domain to the dual Doppler domain. The so-called
Doppler spread Ds is defined as the root mean square of the Doppler spectrum given
by Ds = √

E[μ2] − (E[μ])2, where E[μn] is the n-th moment of the Doppler spectrum
Sh(μ) and is given by E[μn] = ∫∞

−∞ μnSh(μ)dμ/
∫∞
−∞ Sh(μ)dμ. The relationship of the

coherence time and Doppler spread is reciprocal: The smaller the Doppler spread, the
longer the coherence time.

For aerial channels, there are three typical contributors: an LOS component, a spec-
ular ground reflection component, and diffuse scattering components [117]. The LOS
component has a frequency shift as a result of the relative motion of the transmitter and
receiver, while the ground reflection and scattering usually influence the Doppler spread
most. A simplified stochastic model was proposed in [118] to characterize the Doppler
spectrum for the diffuse components. The derived Doppler spectrum is given by

Sh(μ) =
{

Pdf�(θ)
(v/λ)2−(μ−fc)2 |μ − fc| < v

λ

0 otherwise,
(3.61)

where Pd represents the total received power of the diffuse components and f�(θ ) is
the probability density function of the AoA of the diffuse components with respect to
the direction of the aircraft velocity v. The work [119] extended this model by further
considering the geometry of the scatters on the ground in a two-dimensional model. The
derived theoretical results were shown to match their measurement data.

The two-dimensional model in [119] was further extended to a three-dimensional geo-
metric stochastic channel model in [120]. The results reported in [120] showed that the
specific flight trajectories indirectly impact the Doppler power spectrum. For example,
assume homogeneous ground scattering and consider the scenario where two UAVs fly
behind each other at the same height and with the same speed in the same direction. It
was shown that the Doppler spectrum became wider for increasing delay. For the delay
corresponding to the specular ground reflection path, the Doppler spectrum exhibited a
“W” shape. Interestingly, the Doppler spectrum converged to the familiar Jakes’s spec-
trum. For a different scenario with the same setup except that the two UAVs fly toward
each other in opposite directions, a different shape of the Doppler spectrum was shown.
For a given delay, the Doppler spectrum only exhibited positive frequencies. It was
further observed that the position of the Doppler spectrum varied for different delays.

Doppler effects in AG channels were also measured or simulated in a few other works
[45, 121–123]. The work [44] presented a class of Doppler power spectrum models
for different scenarios, including parking, taxing, takeoff, landing, and en-route. The
suggested parameter sets were based on published measurement results and empirical
data. A more recent work [124] presented results on Doppler power profiles measured in
a typical airport environment in 970 MHz frequency band. The GS antenna was placed at
the rooftop of a building at the height of 23 m. Three flight scenarios were investigated.

• En-route cruise: The aircraft flew at an average speed of 216 m/s in the altitude range
[8.5, 10.5] km AMSL. The transceiver distance ranged from 140 km to 350 km. It was
found that all multipath components arrived with the same Doppler shift as the LOS
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path. This is because the multipath components mainly originated from the objects
around the GS antenna and thus were seen under about the same AoA as the LOS
path at a high height, agreeing with intuition.

• Climb and descent: The aircraft flew at an average speed of 170 m/s in the altitude
range [3, 9] km AMSL. The transceiver distance ranged from 20 km to 50 km. It was
found that almost all the multipath components arrived with the same Doppler shift as
the LOS path. However, compared to the en-route cruise scenario, the Doppler spread
increased.

• Takeoff and landing: The aircraft flew at an average speed of 90 m/s in the altitude
range [30, 330] m AGL. The transceiver distance ranged from 0.5 km to 7.5 km. It was
found that the multipath components contributed significantly to Doppler frequencies
other than the one corresponding to the LOS path. This is because when an aircraft
was flying close to the GS, e.g., during the phases of takeoff and landing, the aircraft
saw the scattering objects under a variety of different AoAs.

3.4.2 Frequency Selectivity and Delay Spread

Frequency selectivity refers to the variation of the wireless channel h(t, f , −→r ) with
respect to frequency. For simplicity, we omit the arguments t and −→r and simply denote
the channel as h( f ) in this section. One measure of frequency selectivity is the coherence
bandwidth, denoted by Bc, which is the range of frequencies over which the channel at
different frequencies is correlated. With the channel auto-correlation function given by
Rh(�f ) = E[h( f )h∗( f + �f )], the coherence bandwidth can be formally defined as
the value of the frequency difference satisfying that Rh(Bc) = 0.5Rh(0). The wider
the coherence bandwidth, the less the frequency selectivity of the channel. We can
categorize the channel as frequency-selective fading or flat fading, depending on its
coherence bandwidth relative to the signal bandwidth. If the coherence bandwidth is
much narrower (resp. wider) than the signal bandwidth, the channel is categorized as
frequency-selective fading (resp. flat fading).

The frequency selectivity is caused by the multiple propagation paths arriving at the
receiver with delays proportional to the corresponding path distances. By applying a
Fourier transform to the auto-correlation function Rh(�f ) to transfer from the frequency
domain to the dual delay domain, we can compute the so-called power delay profile,
denoted by Sh(τ ), which models the distribution of the delays and amplitudes of the
different multiple propagation paths. The root mean square of the power delay profile
defines the delay spread as Ts = √

E[τ 2] − (E[τ ])2, where E[τ n] is the n-th moment of
the power delay profile Sh(τ ) and is given by E[τ n] = ∫∞

−∞ τ nSh(τ )dτ/
∫∞
−∞ Sh(τ )dτ .

The relationship of the coherence bandwidth and delay spread is reciprocal: The smaller
the delay spread, the larger the coherence bandwidth.

A number of propagation studies have been carried out to measure the power delay
profiles of aerial wireless channels in different environments and to estimate the corre-
sponding delay spreads. Table 3.3 lists Td values measured in different environments as
reported in the literature. Not surprisingly, Table 3.3 shows that the delay spread value
depends on the terrain and geometry. For example, the work [88] presented delay spread
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Table 3.3 Delay spreads measured under different aerial propagation environments.

Referencea Environment Frequency (GHz) Td (ns)

[61] Over water: Oxnard 5.030–5.091 9.8 (mean)
9.8 (median)
364.7 (max)
2.0 (std deviation)

Over water: Cleveland 5.030–5.091 9.8 (mean)
9.8 (median)
73.3 (max)
1.1 (std deviation)

[63] Over sea: 1.83 km AMSL 5.7 20–38 (median)
Over sea: 0.91 km AMSL 5.7 30–35 (median)
Over sea: 0.37 km AMSL 5.7 335–480 (median)

[62] Mountainous 5.030–5.091 10.1 (mean)
9.8 (median)
177.4 (max)
4.4 (std deviation)

Hilly: Latrobe 5.030–5.091 17.8 (mean)
11.3 (median)
371.3 (max)
12.5 (std deviation)

Hilly: Palmdale 5.030–5.091 19.3 (mean)
11.7 (median)
1044.3 (max)
51.1 (std deviation)

[87] Open field, suburban 3.1–5.3 ≤ 2
[50] Near-urban: Cleveland 5.030–5.091 12.8 (mean)

10.6 (median)
217.5 (max)
8.5 (std deviation)

Near-urban: Latrobe 5.030–5.091 13.9 (mean)
11.0 (median)
1190.8 (max)
13.6 (std deviation)

Urban: Palmdale 5.030–5.091 59.6 (mean)
11.0 (median)
4242.9 (max)
134.4 (std deviation)

Urban: Cleveland 5.030–5.091 9.9 (mean)
9.6 (median)
2029.5 (max)
17.4 (std deviation)

[88] Cluttered environment 2 98.1 (for 7.5o EAb)
54.9 (for 15o EA)
24.3 (for 22.5o EA)
18.3 (for 30o EA)

a Refer to Table 3.1 for more information regarding the measurement setups in each reference.
b EA: elevation angle
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statistics under different elevation angles. The results agree with intuition: The delay
spread decreases as the elevation angle increases. The delay spread values in Table 3.3
are mostly about a few tens of nanoseconds and are seldom larger than a few hundreds
of nanoseconds. This is mainly a consequence of the almost universal presence of LOS
propagation conditions in the measurements.

Given these measurements, different models have been proposed to characterize the
power delay profiles of aerial wireless channels. For example, the Saleh-Valenzuela
model [125], which is a popular power delay profile model originally proposed for
indoor environments, can be used to model the power delay profile of an aerial wire-
less channel when the multipath components have a “clustering” nature. According to
the Saleh-Valenzuela model, the complex baseband channel response is given by:

h(t) =
∞∑

k=0

∞∑
�=0

ak,�δ(t − τk − τk,�), (3.62)

where k is the cluster index, τk is the time of arrival of the first path associated with the
cluster k, τk,� is the time of arrival of the �-th path associated with the cluster k measured
with respect to τk, and ak,� is the complex channel gain of the �-th path associated with
the cluster k.

The mean square values {E[|ak,�|2]}k,� in the Saleh-Valenzuela model are dou-
bly exponential: The powers of the first paths from the clusters decay exponen-
tially, and the powers of the paths within each cluster also decay exponentially.
Mathematically,

E[|ak,�|2] = E[|a0,0|2] exp(−τk/	) exp(−τk,�/γ ), (3.63)

where 	 is the rate of decay of the powers of the first paths from the clusters and γ is
the rate of decay of the powers of the paths within each cluster.

In [50, 61, 62], the authors conducted a series of measurements for different aerial
environments and provided power delay profile measurement results. These results have
been employed to build stochastic tapped delay line models, which can be used in link
level simulations for UAV communications systems.

3.4.3 Spatial Selectivity and Angular Spread

Spatial selectivity refers to the variation of the wireless channel h(t, f , −→r ) with respect
to space. For simplicity, we omit the arguments t and f and simply denote the chan-
nel as h(−→r ) in this section. Spatial selectivity is of particular interest in multi-antenna
systems where signals received at different antennas may undergo different propagation
environments and fade differently. One measure of spatial selectivity is the coherence
distance, denoted by Dc, which is the maximum antenna spacing for which the received
signals at different antennas are correlated. With the channel auto-correlation function
given by Rh(�−→r ) = E[h(−→r )h∗(−→r + �−→r )], the coherence distance can be formally

defined as the largest position displacement such that Rh(�−→r ) ≤ 0.5Rh(
−→
0 ) holds for
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all �−→r satisfying ‖�−→r ‖ ≤ Dc. The larger the coherence distance, the less the spatial
selectivity of the channel.

By applying a Fourier transform to the auto-correlation function Rh(�−→r ) to trans-
fer from the space domain to the dual wave-number domain, we can compute the

wave-number spectrum denoted by Sh(
−→
k ). The root mean square of the wave-number

spectrum defines wave-number spread as Ws =
√

E[(
−→
k )2] − (E[

−→
k ])2, where E[(

−→
k )n]

is the n-th moment of the wave-number spectrum Sh(
−→
k ) and is given by E[(

−→
k )n] =∫∞

−∞(
−→
k )nSh(

−→
k )d

−→
k /

∫∞
−∞ Sh(

−→
k )d

−→
k . The relationship of the coherence distance and

wave-number spread is reciprocal: The smaller the wave-number spread, the larger the
coherence distance.

To understand the physical meaning of the wave-number spectrum, we can expand

the inner product of the wave-number vector
−→
k and position vector −→r

<
−→
k , −→r >>= 2π fc‖r‖

c
(cosφ sin θ + sinφ sin θ + cos θ) , (3.64)

where φ and θ denote the azimuth AoA and elevation AoA, respectively. We can see
that the wave-number spectrum models the power distribution of the different multiple
propagation paths in the angular domain. Instead, we can directly look at the power
angle spectrum, denoted as Sh(φ, θ ), that describes the power distribution of the received
paths with respect to the AoA. Similarly, we can define the concept of an angular spread
as the standard deviation of the power angle spectrum. The relationship between the
coherence distance and angular spread is also reciprocal.

Assuming that the power angle spectra in the azimuth and elevation domains can
be separated, we can generate power angle spectra for azimuth AoA and zenith AoA
separately. Using the azimuth domain as an example, one popular model for the power
angle spectrum is given by the truncated Laplace distribution:

Sh(φ) = 1

(1 − e−√
2π/σ )

√
2σ

e−|
√

2φ
σ

|, φ ∈ [−π ,π ), (3.65)

where σ is a scale parameter.
Spatial selectivity and angular spread have not been widely investigated for aerial

channel modeling in prior art. In [126], the authors exploited the existing analytical and
empirical results on the receive energy distribution in three-dimensional angular space
to analyze angular spread, angular constriction, direction of maximum fading, among
others, for AG channels. In general, with geometry-based stochastic channel models, it
is possible to analyze or simulate spatial selectivity and angular spread for UAV multi-
antenna systems. The basic idea behind the geometry-based stochastic channel models is
to introduce scattering objects according to a given distribution in the propagation envir-
onment. One such model may be found in [127], which also derived the corresponding
analytical density function of the AoA. Several other geometry-based stochastic channel
models proposed for aerial channel modeling may be found in [128–132].
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3.4.4 Envelope and Power Distributions

The statistical time varying envelope |h| of a narrowband channel, or the envelope of
a multipath component in a wideband channel, has been commonly modeled by the
Rayleigh distribution with probability density function f|h|(x) given by

f|h|(x) = x

σ 2
e
− x2

2σ2 , x ≥ 0, (3.66)

where σ is a scale parameter. The physical meaning of σ is that the average channel
gain is 2σ 2. The corresponding power (i.e., squared magnitude |h|2) distribution of the
channel is exponentially distributed with probability density function f|h|2 (x) given by

f|h|2 (x) = 1

σ 2
e
− x

σ2 , x ≥ 0. (3.67)

The Rayleigh fading model is reasonable when there are a large number of statistically
independent reflected and scattered paths contributing to a channel tap. It is a simple
analytically tractable model. However, caution must be exercised when applying this
model to aerial wireless channels, in which a specular LOS component often exists and
there may not be sufficient number of statistically independent reflected and scattered
paths.

Another frequently used model is the so-called Rician model, in which random inde-
pendent reflected and scattered paths are superimposed on a stationary non fading
component (such as the LOS component). The probability density function of the Rician
distributed channel envelope is given by

f|h|(x) = x

σ 2
e
− x2+A2

2σ2 I0

(
Ax

σ 2

)
, x ≥ 0, (3.68)

where A ≥ 0 denotes the peak amplitude of the stationary non fading component and
I0(·) is the modified zero-order first kind Bessel function. The average channel gain in
the Rician fading model equals A2+2σ 2, which is the sum of the power of the stationary
nonfading component and the power of the random multipaths. The ratio between them,
i.e., A2/2σ 2, is known as the K factor, which is often used to describe the Rician fading.
As K → 0, the Rician distribution degenerates to a Rayleigh distribution. As K → ∞,
the stationary nonfading component dominates and the multipath fading components
vanish.

The Rician model has been widely used for aerial channel modeling due to the high
likelihood of LOS [45, 50, 61, 62, 133]. For the NLOS case, the Rayleigh model might
provide a better fit [45, 88, 133]. Table 3.4 lists Rician K factor values for different
environments reported in the literature. In [50, 61, 62], the authors presented K factors
for over fresh water and sea scenarios, hilly and mountainous settings, and also for near-
urban and suburban environments, as summarized in Table 3.4. The Rician K factors
were given in [45] for different phases of the flight (parking, taxiing, takeoff/landing,
and en-route). The K factor of the en-route phase is the largest. This agrees with intuition
and other measurement results. For example, as shown in [88], the K factors are smaller
for small elevation angles compared to large elevation angles.
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Table 3.4 Rician K factor values measured under different aerial propagation environments.

Referencea Environment Frequency (GHz) K factor (dB)

[61] Over water 5.030–5.091 27.3–31.3 (mean)
11.1–12.4 (min)
33.0–35.6 (max)
1.8 (std dev.)

0.960–0.977 12.5–12.8 (mean)
8.7–9.4 (min)
16.5–20.7 (max)
1.2–1.5 (std dev.)

[62] Hilly, mountainous 5.030–5.091 28.8–29.4 (mean)
22.2–23.1 (min)
35.3–40.5 (max)
2.0–2.1 (std dev.)

0.960–0.977 12.8–13.8 (mean)
4.0–5.1 (min)
16.6–16.9 (max)
0.8–1.3 (std dev.)

[50] Suburban, near-urban 5.030–5.091 27.5–29.8 (mean)
7.9–12.7 (min)
33.7–40.2 (max)
1.8–2.4 (std dev.)

0.960–0.977 12.4–14.9 (mean)
−87.1–7.8 (min)
14.7–27.5 (max)
1.2–2.3 (std dev.)

[45] Parking 5.8 1.5 (median)
−2 (min)
5 (max)

Taxing 5.8 6 (median)
5 (min)
7 (max)

Takeoff/landing 5.8 10 (median)
5 (min)
15 (max)

En-route 5.8 ≥ 17 (median)
15 (min)
≥ 20 (max)

a Refer to Table 3.1 for more information regarding the measurement setups in each reference.

A more general fading distribution, the Nakagami fading distribution, is given by:

f|h|(x) = 2mmx2m−1

	(m)Pm
r

e− mx2
Pr , x ≥ 0, (3.69)

where 	(·) is the gamma function, Pr is the average received power, and m ≥ 0.5 is
a fading parameter. For m = 1, the Nakagami fading reduces to Rayleigh fading. For
m = (K+1)2/(2K+1), the Nakagami fading approximates Rician fading with parameter
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K. For m → ∞, the channel becomes deterministic. Some works have also considered
the Nakagami fading model for aerial channel modeling [87, 89, 134].

3.5 Waveform Design

A waveform is the shape and form of a wireless signal that carries information bits.
Designing an appropriate waveform is essential for a UAV-enabled wireless communi-
cation system, as in any other wireless network. In this section, we start with reviewing
the waveform basics, such as power spectral density (PSD), which is a key concept for
spectrum management. Due to the diverse UAV applications outlined in Chapter 2, a
single waveform choice unlikely fits all the UAV wireless communications systems. We
chose a few example popular waveform choices, including OFDM, spread spectrum, and
CPM, to discuss the main design considerations for UAV wireless communications and
networking. All these waveform choices have been used for wireless communications
in unmanned aircraft systems [135]. For more general and comprehensive treatments
of waveform design in digital communications systems, we refer to the textbooks
[136, 137].

3.5.1 Waveform Basics

We start with the canonical complex baseband equivalent representation for passband
signals. A passband signal sp(t) can be written as

sp(t) = √
2sI(t) cos(2π fct) − √

2sQ(t) sin(2π fct), (3.70)

where sI(t) and sQ(t) are real-valued signals. The waveforms sI(t) and sQ(t) are referred
to as the in-phase and quadrature components of the passband signal sp(t), respectively.
The complex baseband equivalent representation sb(t) of the passband signal sp(t) is
defined as

sb(t) = sI(t) + jsQ(t). (3.71)

It is easy to see that sp(t) = �
(√

2sb(t)ej2π fct
)

.

The information carried by a passband signal resides in its complex envelope, i.e.,
the amplitude and phase variations captured in the baseband equivalent representation.
The predictable fast phase variation due to the fixed carrier frequency fc does not carry
information and is subtracted out in the baseband equivalent representation. The choice
of fc in a UAV communication system is mainly determined by the available spectrum
allocated to the system [138].

Due to the scarcity of the radio spectrum and potential interference of waveforms in
neighboring frequency bands, harmonious coexistence of different systems in the same
band or adjacent bands is essential. For example, federal agencies and the military in
the United States use the 1755–1850 MHz band for unmanned aerial systems, among
others. The 1755–1780 MHz portion of the band was auctioned for commercial wireless
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services in 2015 [139]. Some federal systems will remain indefinitely in the 1755–1780
MHz portion, while others will compress operations into the 1780–1850 MHz portion
of the band or relocate to anther band.

To facilitate coexistence, it is essential to determine the spectral occupancy of a
waveform. To this end, we define the PSD for a finite-power signal s(t) as follows:

Ss( f ) = lim
Tw→∞

|STw ( f )|2
Tw

, (3.72)

where STw( f ) is the Fourier transform of sTw(t) = s(t)I[− Tw
2 , Tw

2 ](t). Here Tw is the length

of an observation window and IA(x) is the indicator function of a set A: IA(x) = 1 if
x ∈ A and IA(x) = 0 otherwise.

Modulation deals with how to convert bits into a waveform that can be sent over a
band-limited channel. Linear modulation is a fundamental technique whose baseband
transmit waveform can be written as

u(t) =
∞∑

n=−∞
b[n]gtx(t − nT), (3.73)

where {b[n]} are the data symbols taking values from a fixed constellation, gtx(t) is
a fixed baseband waveform, and T is the symbol duration. Assuming that {b[n]} are
zero-mean and uncorrelated, the PSD of the linearly modulated signal u(t) is given by

Su( f ) = |Gtx( f )|2
T

E[|b[n]|2], (3.74)

where Gtx(f ) is the Fourier transform of gtx(t). We can see that for uncorrelated symbols,
the PSD of a linearly modulated signal is determined by the spectrum of the modulating
waveform. The shape of the PSD shall be designed such that the waveform complies
with regulatory requirements on, for example, inband PSD and out-of-band spurious
emissions.

Beyond going through the transmit filter gtx(t), the transmitted symbols must also go
through a channel gch(t) and a receive filter grx(t). The noiseless waveform at the output
of the receive filter is given by

r(t) =
∞∑

n=−∞
b[n]g(t − nT), (3.75)

where g(t) = (gtx ∗ gch ∗ grx) (t) is the composite filter characterizing the overall system
response. If we sample the receive waveform r(t) at rate 1

T , we obtain r(nT). A natural
question arises: when is r(nT) = b[n], ∀n? The answer is the Nyquist criterion: The
inter-symbol interference (ISI) can be avoided if g(nT) = 1 for n = 0 and g(nT) = 0
otherwise.

It is well known that the minimum bandwidth Nyquist waveform is g(t) = sinc
( t

T

)
,

where sinc(x) = sin(πx)
πx . The sinc pulse decays with 1

t , which is slow and may lead
to large fluctuations in the signal r(t). An example Nyquist waveform with a fast time

decay of 1
t3

is the raised cosine pulse g(t) = sinc
( t

T

) cos(πa t
T )

1−
(

2at
T

)2 , where a is the fractional
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excess bandwidth due to the faster time decay. In practice, since the channel is not under
control, the transmit and receive filters are designed such that the cascade (gtx ∗ grx) (t)
satisfies Nyquist criterion. A typical choice is to set the transmit and receiver filters to
be the square roots (in the frequency domain) of a Nyquist pulse.

3.5.2 Orthogonal Frequency Division Multiplexing

OFDM is a type of multicarrier modulation technique that divides the data stream into
multiple substreams transmitted over different orthogonal subcarriers. OFDM is a pop-
ular scheme for wireless communications and has been adopted in the wireless systems
such as 4G LTE, 5G New Radio (NR), and IEEE 802.11 specifications for WiFi. Many
UAVs are already equipped with WiFi and LTE chips, making OFDM an integral part of
UAV wireless communications systems. OFDM is used in the broadband aeronautical
multi-carrier (B-AMC) system, which is an aeronautical data communications system
intended to be operated in the L-band. The first option in the L-band digital aeronauti-
cal communication system (LDACS) also utilizes OFDM modulation techniques [135].
Many research works on UAV wireless communications and networking have assumed
the use of OFDM as well [140, 141].

The transmit OFDM waveform in the time period [0, T] can be written as follows:

u(t) =
N−1∑
k=0

B[k]ej2π k
T tI[0,T](t), (3.76)

where k is the subcarrier index, B[k] is the symbol transmitted using the subcarrier k at

frequency k
T . The Fourier transform of the waveform gtx,k(t) = ej2π k

T tI[0,T](t) carrying

B[k] equals Gtx,k(f ) = Tsinc(T f − k)e− π
T . If T is large enough such that 1

T is small
compared to the channel coherence bandwidth Bc, the channel gain seen by the k-th
subcarrier is approximately constant Gch(f ) ≈ Gch( k

T ). Then the waveform gtx,k(t) is an
approximate eigenfunction of the channel, i.e.,

(
gtx,k ∗ gch

)
(t) ≈ Gch(

k

T
)gtx,k(t). (3.77)

The approximation becomes exact when T → ∞.

To demodulate B[�], the receiver multiplies the receive waveform with e−j2π �
T and

integrates over the period [0, T], yielding that

1

T

∫ ∞

0
((u ∗ gch)(t)) e−j2π �

T dt ≈ 1

T

N−1∑
k=0

Gch

(
k

T

)
B[k]

∫ T

0
e j2π k−�

T tdt (3.78)

=
N−1∑
k=0

Gch

(
k

T

)
B[k]

e j2π (k−�) − 1

j2π (k − �)
(3.79)

= Gch

(
�

T

)
B[�], (3.80)
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where the first line follows from (3.77). The last equality shows that the different sub-
carriers are orthogonal over an interval of length T if the frequencies are separated by
an integer multiple of 1

T .
The widespread use of OFDM is partly due to the cost-effective discrete imple-

mentation of OFDM using the fast Fourier transform (FFT) and inverse FFT (IFFT).
The waveform u(t) can be represented by the time samples {b[n}] at the sampling rate
1
Ts

= N
T :

b[n] = u(nTs) =
N−1∑
k=0

B[k]e j2π n
N k, (3.81)

which is the inverse discrete Fourier transform (DFT) of the symbol sequence {B[k]}.
The receiver can perform the reverse operation – DFT – on the received time samples
{b[n}] to recover the original data sequence {B[k]}.

Most ISI can be removed by choosing N large enough such that 1
T � Bc. One popular

approach to removing all ISI is to add a cyclic prefix of length Ncp (not shorter than the
channel delay spread) after the IFFT at the transmitter. The cyclic prefix is removed at
the receiver before the FFT. These operations effectively create a circular convolution
of the discrete transmit signal and channel impulse response (which by nature is a linear
convolution). Thus, the noiseless output of the FFT at the receiver is Y[k] = H[k]B[k],
where H[k] is the FFT of the length-L channel impulse response {h[n]}L−1

n=0. The data
symbol B[k] can be recovered by a one-tap frequency equalizer, i.e., H∗[k]Y[k] removes
the channel effect. This makes channel equalization in OFDM easy to implement for
multipath wideband channels.

Adding the cyclic prefix leads to losses of a fraction Ncp
Ncp+N of the time and a frac-

tion Ncp
Ncp+N of the average power not utilized for data communication. The length Ncp

of the cyclic prefix is chosen to cover the typical channel delay spread encountered
in a communication system. On one hand, the OFDM block length N should be cho-
sen as large as possible to minimize the cyclic prefix overhead. On the other hand, the
OFDM block length N should be small enough such that the channel is approximately
constant over the block length N to avoid inter-carrier interference. For the design of
UAV communications systems, Doppler shifts and Doppler spread must be taken into
account. The Doppler effects mainly depend on the frequency, velocity of the aircraft,
and geometry. A large Doppler shift caused by the motion of the aircraft can be esti-
mated and compensated appropriately at the transceiver. The Doppler spread introduces
uncertainty in the frequency of the received signal. A large enough subcarrier spacing
can be used so that the Doppler spread effect is negligible [140, 142]. This is equivalent
to constrain N such that the channel is approximately constant over an OFDM block
length.

The OFDM waveform u(t) can be seen as tight packing of N linearly modulated
narrowband signals. By (3.74), the PSD of the OFDM waveform u(t) will be:

Su( f ) = T
N−1∑
k=0

E[|B[k]|2] (sinc(Tf − k))2 , (3.82)
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where we assumed that the data symbols transmitted on different subcarriers are uncor-
related. The symbol rate is N

T , and the majority of the signal power is contained in the
frequency range

[− N
2T , N

2T

]
. The close to Nyquist signaling rate makes OFDM highly

spectrally efficient.
The main drawback of OFDM is that the peak-to-average-power ratio (PAPR) of the

transmit signal may be high. A high PAPR may require the power amplifiers to back
off into a linear regime that leads to lower power efficiency. Many solutions have been
proposed in the literature to mitigate the PAPR issue in OFDM, such as clipping and
removing some transmitted sequences that result in high PAPR [143].

3.5.3 Direct Sequence Spread Spectrum

Spread spectrum is a modulation technique that increases the transmit signal bandwidth
to mitigate ISI and narrowband interference. The inherent property of “hiding” the signal
below the noise floor and resistance to narrowband jamming make the spread spectrum
particularly desirable for military communication systems. DSSS and frequency hop-
ping spread spectrum (FHSS) are two common spread spectrum techniques. In DSSS,
the data signal is multiplied by a pseudo-random sequence known as spreading code.
DSSS is the fundamental building block in the code division multiple access (CDMA)
based 3G mobile systems. CDMA, together with OFDM, has also been used in the
broad very high frequency (B-VHF) project, which is the first aeronautical communi-
cations system employing multicarrier technology [135]. Some research works on UAV
wireless communications and networking have considered the use of CDMA with DSSS
as well [144–146]. In FHSS, the center frequency of the waveform is hopped over differ-
ent frequencies, determined by a pseudo-random sequence. The work [147] combined
DSSS and FHSS to reduce interference in UAV communications and control.

Next, we will focus on DSSS as it is more commonly used. To send a symbol b in
DSSS, a vector b(c[0], ..., c[K − 1])T is sent, where (c[0], ..., c[K − 1])T is a spreading
code and K is the length of the spreading code. In other words, K “chips” are used to
transmit a single symbol. The spreading waveform can be written as

c(t) =
K−1∑
k=0

c[k]ψ(t − kTc), (3.83)

where Tc is the chip duration and ψ(t) is the modulating chip waveform. We assume
that the same spreading waveform is used for all the symbols {b[n]}. Then the transmit
signal can be written as

u(t) =
∑

n

b[n]c(t − nT) =
∑

n

K−1∑
k=0

c[k]b[n]ψ(t − kTc − nT), (3.84)

where T is the symbol duration and T = KTc. The data rate 1
T is typically much smaller

than the chip rate 1
Tc

that determines the transmission bandwidth. The ratio K = T
Tc

is
often called the processing gain of the system.
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Consider the multipath channel h(t) = ∑L−1
�=0 a�δ(t − τ�), where a� and τ� are the

complex gain and delay of the �-th path, respectively. The noiseless receive signal will
then be:

r(t) = (u ∗ h)(t) =
∑

n

b[n]
K−1∑
k=0

c[k]
L−1∑
�=0

a�ψ(t − τ� − kTc − nT). (3.85)

Equalization at the receiver is not required for demodulation. This is due to the fact
that ISI is negligible considering that the symbol duration T is typically large relative to
the channel delay spread in a spread spectrum system. Rake receiver is a common DSSS
demodulation receiver structure that ignores ISI. The Rake receiver involves correlating
the receive signal r(t) with L “fingers”, each of which is a shifted version of the spreading
waveform. We now consider a generic operation for the correlation of r(t) and c(t − τ )
where τ is the delay. The output of the correlation yields the estimation statistic Z(τ ):

Z(τ ) =
∫

r(t)c∗(t − τ )dt (3.86)

=
K−1∑
k=0

c∗[k]
∫

r(t)ψ∗(t − τ − kTc)dt (3.87)

=
K−1∑
k=0

c∗[k](r ∗ ψmf )(kTc + τ ), (3.88)

where ψmf (t) = ψ∗(−t) is the matched filter of the chip waveform ψ(t). We can
see that the de-spreading process involves a discrete correlation of the spreading code
{c[k]} and the output of the chip matched filter ψmf (t) sampled at the time instances
{kTc + τ }.

In the Rake receiver, for demodulating symbol b[n], the received signal r(t) is cor-
related with L “fingers”: a�c(t − τ�), � = 0, ..., L − 1, and the L outputs are coherently
combined, i.e.,

Z[n] =
L−1∑
�=0

a∗
�Z(nT + τ�), (3.89)

where Z[n] represents the estimation statistic for deciding on b[n]. The Rake receiver is
essentially a form of time diversity combining of the signals from the L branches.

3.5.4 Continuous Phase Modulation

In CPM, the baseband representation is in the form of e jθ(t), where θ (t) is a continu-
ous function of time t that encodes the data. The transmit signal has constant envelope
and is not sensitive to amplitude distortion. As a result, the power amplifier can work
in a nonlinear regime to achieve high power efficiency. A prominent CPM example is
the Gaussian minimum shift keying (GMSK) used in the 2G Global System for Mobile
Communications (GSM). GMSK modulation is also used in the all-purpose multichan-
nel aviation communications system (AMACS) proposed in 2007 and in the second
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option of LDACS [135]. Some recent research works also considered using GMSK for
UAV wireless communications systems [148, 149].

The continuous phase function θ (t) can be related to the instantaneous frequency
function u(t) as follows:

θ (t) = 2π
∫ t

−∞
u(τ )dτ , (3.90)

where the instantaneous frequency is linearly modulated

u(t) =
∑

n

b[n]g(t − nT), (3.91)

where {b[n]} are the data symbols and g(t) is the frequency pulse.
We can specify a CPM system by specifying the frequency pulse. One example is

minimum shift keying (MSK) with symbols {b[n]} taking binary values {+1, −1}. The
frequency pulse is a rectangular one given by

g(t) = 1

4T
I[0,T](t). (3.92)

For this MSK system, there are two possible frequency shifts of ± 1
4T . The frequency

separation is 1
2T , which is the minimum spacing needed to preserve orthogonality in

coherent frequency shift keying (FSK).
To improve spectral efficiency, we can use smoother pulses. A common choice is the

Gaussian pulse shape that has a transfer function of the form:

G( f ) = e−β2f 2
, (3.93)

where β is a parameter related to the 3 dB bandwidth B3dB of G(f ) as β =
(

1
2 loge 2

) 1
2

B3dB
.

The Gaussian pulse shape in the time domain is given by:

g(t) =
√
π

β
e
− π2

β2 t2
. (3.94)

MSK with Gaussian pulse shape is known as GMSK.
CPM is a modulation technique with memory. A maximum-likelihood approach can

be used for demodulation by exploiting the trellis structure of CPM and using the
Viterbi algorithm. The maximum-likelihood approach can become quite cumbersome
for a frequency-selective channel, since the number of the states of the extended trellis
structure grows exponentially with the channel delay spread. To reduce the complexity,
a popular approach is to use Laurent’s representation of CPM signals that decomposes
a CPM signal into a sum of parallel linearly modulated signals. The modulating pulse
in the Laurent’s representation is not, however, Nyquist pulse or square root of Nyquist
pulse. Therefore, the ISI is built into the model, which is not surprising given the mem-
ory of the CPM. The dispersive channel induces further ISI. The advantage of Laurent’s
representation is that we could use the equalization techniques developed for linear
modulation to demodulate the received CPM signal.
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3.6 Chapter Summary

Aerial channel modeling and waveform design are undoubtedly two of the most fun-
damental aspects in UAV wireless communications and networking. In this chapter,
we have provided in-depth knowledge and background on the key aspects of channel
modeling and waveform design for UAV wireless communications systems, creating a
foundation for the remainder of the book. Both channel modeling and waveform design
are rich subjects in wireless communications. We refer interested readers to the classic
textbooks [60, 64, 65, 136, 137] for general treatments of the subjects.

Compared to the terrestrial wireless channels, the characteristics of aerial wireless
channels are quite different in many respects due to the different heights at which the
UAV may be operated. This chapter has illuminated the salient characteristics of aerial
wireless channels, provided fundamental treatment of the main areas of aerial radio
propagation and channel modeling, and reviewed the key aerial wireless channel mea-
surement results in the literature. We can see that, despite the distinct characteristics of
aerial wireless channels, the basic channel modeling principles still largely follow the
established theory and modeling methodologies of general wireless channels. The pro-
liferation of UAV applications continues calling for new measurements and models that
can aid the design of the corresponding UAV wireless communications systems.

This chapter has also reviewed the key basics of waveform design. We have dis-
cussed a few example popular waveform choices, including OFDM, spread spectrum,
and CPM, which have been considered for UAV wireless communications and network-
ing. The treatment of these example waveform choices has particularly focused on the
corresponding design considerations for UAV wireless communications. Though a sin-
gle waveform choice unlikely fits all the UAV wireless communications systems, OFDM
has become the dominating waveform in the current major wireless standards and thus
holds the greatest potential. As will be seen in the subsequent chapters, different types
of channel models and waveforms may be used in different scenarios depending on the
problem being solved, the UAV application being addressed, the role of the UAV (BS or
UE), as well as the need for tractability.
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In this chapter, we will focus on the performance limits and metrics for UAV BSs. In
particular, in Section 4.1, we will first have a brief overview on performance analysis
methodologies, such as stochastic geometry. Then, in Section 4.2, we will introduce sev-
eral detailed case studies to analyze the performance limits of wireless communications
with UAVs, while exposing the impact of various unique UAV features, such as altitude,
mobility, line-of-sight communications, and elevation angle, on the various metrics. We
particularly focus on UAV networks that also encompass an underlaid D2D network.
We then conclude the chapter with a brief summary in Section 4.3.

4.1 UAV Network Modeling: Challenges and Tools

In order to characterize the effect of design parameters on UAV-based wireless com-
munication systems, there is a need for a comprehensive analysis on the system
performance [31, 150]. In this regard, the performance of communication systems that
integrate UAVs should be evaluated considering various metrics, including latency,
coverage probability, rate, and link reliability. In fact, the fundamental performance
analysis can demonstrate key tradeoffs when designing wireless networks that encom-
pass UAVs. While characterizing the performance of UAV-enabled wireless networks,
the unique aspects of UAVs (e.g., those we discussed in Chapter 1), such as their mobil-
ity, altitude-depended channels (as exposed in Chapter 3), battery lifetime, and flight
time constraints, need to be taken into account. In particular, the wireless communica-
tion performance of a UAV system is significantly affected by the UAV’s flight time
duration as well as its transmit power, as will be showcased throughout this book and,
particularly, when we deal with deployment in Chapter 5, mobility in Chapter 6, and
resource management in Chapter 7.

Meanwhile, performance analysis of UAVs in coexistence with any terrestrial net-
work is essential for an efficient design of integrated aerial-terrestrial wireless networks.
Characterizing the performance of a heterogeneous network of flying UAV BSs and ter-
restrial BSs is challenging due to the mutual interference between drones and the ground
network. In fact, there is a need for powerful mathematical tools to thoroughly analyze
the performance of drone-enabled wireless networks.

Stochastic geometry (SG) provides powerful mathematical tools, which are used in
many diverse areas, such as ecology, geodesy, and cosmology. In recent years, SG
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Figure 4.1 Illustration of 2D PPP for modeling the locations of users (gray points).

Figure 4.2 Illustration of 2D PCP for modeling the locations of users (gray points).

became a very popular tool for performance analysis of wireless cellular and ad hoc
networks [151, 152]. A fundamental underlying technique for evaluation of key perfor-
mance metrics, e.g., coverage, rate, and throughput, is to endow locations of wireless
nodes as a random point process and then obtain statistical distribution or moments.
Poisson point process (PPP), and Poisson cluster process (PCP) are well-known pro-
cesses that have been significantly used for performance analysis cellular network,
pictorial illustrations of these processes are shown in Figures 4.1 and 4.2. Given the
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effective use of SG in performance analysis of cellular network in 2D and existence of
SG mathematical tools in n-dimensions, SG will provide a set of useful tools for perfor-
mance analysis of 3D UAV networks [153]. To this end, suitable types of point process
for modeling the locations of drones need to be adopted. For example, when deploying
drones in hotspots for capacity enhancement, Poisson and Binomial cluster processes
[152] can be used. Meanwhile, a process such as the Matern hard core process [151] can
be adopted when a minimum distance between UAVs must be ensured for collision
avoidance and interference management. In fact, by leveraging tools from stochas-
tic geometry along with appropriate point process for UAVs and ground networks,
the performance of UAV-enabled wireless networks can be analytically characterized.
Such rigorous performance analysis is an essential step for design and deployment of
UAVs in wireless networks, and it can reveal insights and inherent tradeoffs in UAV
communications.

4.2 Downlink Performance Analysis for UAV BS

In this section, we investigate the performance of a UAV communication system that
coexists with a ground D2D communication network. We evaluate the downlink per-
formance of this network in terms of coverage and system sum-rate. In the considered
model, a UAV BS serves its ground users spread over a geographical area. In addition to
the ground users that will be served by the UAV BS, there are a number D2D users that
operate in an underlay mode using the same band as the UAV BS. More precisely, two
types of users are considered: (1) downlink users (DUs), which are served by the UAV
BS over downlink transmission links, and (2) D2D users that directly communicate with
one another while sharing resources with DUs. In this network, there is interference
between D2D transmissions and UAV BS transmissions. For performance evaluation
of this network, we consider two scenarios: (1) static UAV BS, and (2) mobile UAV
BS. By exploiting tools from SG, we derive closed-form expressions that characterize
the downlink coverage probabilities of DUs and D2D users. Moreover, we evaluate the
overall system performance while capturing the effect of the UAV BS’s height as well
as the D2D users’ density. For the static UAV BS scenario, we determine the optimal
UAV BS’s altitude for which the DU’s coverage probability is maximized. Moreover, the
impact of the UAV’s altitude on the sum-rate of the network consisting of DUs and D2D
users, is analyzed. In the mobile UAV scenario, we characterize the tradeoff between
delay and coverage probability and derive the D2D’s outage probability.

4.2.1 System Model

We study a circular geographical area that encompasses a number of DUs and D2D
user. We use Rc to represent the radius of the considered geographical area. Here, a
single UAV BS is used to provide wireless service for ground users in downlink. The
densities of DUs and D2D users, which are uniformly distributed in the area based on
homogeneous PPPs, are λdu and λd. The average number of DUs and D2D users depends
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Figure 4.3 System model illustration.

on their density as well as the size of the geographical area. Moreover, a D2D transmitter
and receiver pair are separated by a fixed distance [154]. A D2D receiver receives signals
from its associated D2D transmitter, as well as interfering D2D transmitters and the
UAV BS. A DU, which is served by the UAV BS, experiences interference from the
D2D transmitters in the area.

For a given D2D receiver, we can write the signal-to-interference-plus-noise ratio
(SINR) expression:

γd = Pr,d

Ic
d + Iu + N

, (4.1)

where Pr,d represents the D2D user’s received signal power and Ic
d is the aggregated

interference from all interfering D2D users. The term Iu captures the interference caused
by the UAV BS on the D2D transmitter while N captures the noise power. Moreover, we
also have:

Pr,d = Pdd−αd
0 g0, (4.2)

Ic
d =

∑
i�=0

Pddi
−αd gi, (4.3)

Id =
∑

i

Pddi
−αd gi, (4.4)

with g0 being the channel gain between a D2D transmitter and its target receiver.
Also, gi is the channel gain between the D2D receiver and the ith interfering D2D
transmitter. We also consider a Rayleigh fading channel for the small-scale fading at
the terrestrial links [154, 155] and [156], and we define Pd as the transmit power
of a D2D user. In addition, we use di to capture the distance between the D2D
receiver and the interfering transmitter and d0 to capture the fixed distance between
each D2D transmitter/receiver pair. Finally, αd is the path loss exponent for D2D
communications.
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The downlink SINR for a DU that is served by the UAV BS is:

γu = Pr,u

Id + N
, (4.5)

with Pr,u and Id being, respectively, the received signal power from the serving UAV BS
and the sum interference from all ground D2D transmitters.

Considering the SINR metric, the downlink coverage probability for the DUs and
D2D users can be expressed by:

Pcov,du(β) = P
[
γu ≥ β

]
, (4.6)

Pcov,d(β) = P
[
γd ≥ β

]
, (4.7)

where β is the SINR threshold needed for connectivity, γu is the SINR for a DU, and γd

is the SINR for a D2D transmitter.
For UAV-to-ground channel model, we consider the commonly used probabilistic

LOS/NLOS model in which LOS and NLOS links can accrue with specific probabilities
[157]. Moreover, an NLOS link experiences higher attenuation compared to an LOS
link. Based on the probabilistic AG channel model discussed in Chapter 3 and presented
in 3.3.6, the received signal power of a ground user will be [158]:

Pr,u =
{

Pu|Xu|−αu LOS link,
ηPu|Xu|−αu NLOS link,

(4.8)

where Pu represents the transmit power of the UAV BS, |Xu| is the UAV BS-to-user
distance, and αu is the path loss exponent of the air-to-ground link. Also, η is an
excessive attenuation factor associated with the NLOS link. Note that, as discussed
in Chapter 3, the LOS probability can be a function of the propagation environment,
obstacles, and elevation angle, as well as the positions of the UAV BS and the ground
users. The probability of having an LOS link between the UAV BS and a ground
user is [158]:

PLoS = 1

1 + C exp(−B [θ − C])
, (4.9)

with C and B being environment-dependent constants. θ denotes the elevation angle

between the UAV BS and a ground user, θ = 180
π

× sin−1
(

h
|Xu|

)
, |Xu| = √

h2 + r2. The

NLOS probability is given by PNLoS = 1 − PLoS.
Clearly, increasing the elevation angle leads to a higher probability for having an LOS
link between the UAV BS and a ground user.

Based on the considered model, we investigate two scenarios for wireless networking
with a UAV BS: (1) network with a static UAV BS (e.g., hovering or tethered), and (2)
network with a mobile UAV BS. In particular, we will conduct a thorough performance
analysis of these two UAV-based wireless communication system scenarios, in terms of
coverage probability and average sum-rate. Moreover, the impact of a UAV BS’s altitude
as well as the density of D2D users on the overall system performance will be analyzed.



4.2 Downlink Performance Analysis for UAV BS 73

4.2.2 Network with a Static UAV

We will now analyze the performance of the network with a static UAV BS positioned
at altitude h over the center of the considered circular area. We derive the coverage
probability for DUs, which are served by the UAV BS, and for D2D users that operate
in an underlay mode. Note that, when ground users are uniformly distributed on the
geographical area, the downlink coverage performance can be maximized by deploying
the UAV BS over the center of the area.

D2D User Coverage Probability
Let (r,ϕ) be the location of a typical D2D receiver in a polar coordinate system, with r
and ϕ being, respectively, the radius and the angle of the location. We consider a fixed
distance d0 between each D2D transmitter/receiver pair. Next, based on our derivation
in [31], we can state the following result pertaining to the coverage probability for a
typical D2D transmitter.

T H E O R E M 4.1 The coverage probability of a D2D receiver located at (r,φ) and con-
nected to its associated transmitter at a fixed distance d0 will be:

Pcov,d(r,ϕ,β) = exp

(
−2π2λdβ

2/αd d2
0

αd sin(2π/αd)
− βdαd

0 N

Pd

)

×
[

PLoS exp

(
−βdαd

0 Pu|Xu|−αu

Pd

)

+ PNLoS exp

(
−βdαd

0 ηPu|Xu|−αu

Pd

)]
, (4.10)

and |Xu| = √
h2 + r2.

As we can see from this theorem, when the height of the UAV BS increases, the inter-
ference on the D2D users stemming from the UAV BS does not always decrease. In fact,
when the altitude of the UAV BS increases, the coverage probability for the D2D user
can decrease and increase. This is because as the UAV BS’s height increases, both the
UAV-to-ground distance and LOS probability increase, which have conflicting impact
on the D2D coverage probability. Another observation is that when the transmit power
of the D2D user increases, the coverage probability for D2D also increases. Mean-
while, increasing the transmit power of the UAV BS results in a lower D2D coverage
probability due to a higher interference stemming from the UAV. To enhance the D2D
coverage probability, three approaches can be considered: (1) increasing the D2D trans-
mit power, (2) reducing the number of D2D users (i.e., D2D density), and (3) reducing
the separation distance between D2D transmitter/receiver pairs. In a nutshell, this the-
orem clearly showcases how the presence of a flying UAV BS impacts ground network
performance.
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Now, using 4.1, we determine the average coverage probability for D2D users over
the given geographical area. For a uniform distribution of the ground users, we have
f (r,ϕ) = r

πR2
c
, 0 ≤ r ≤ Rc , 0 ≤ ϕ ≤ 2π . Subsequently, the average coverage

probability for the D2D users is:

P̄cov,d(β) = Er,ϕ

[
Pcov,d(r,ϕ,β)

]
= exp

(
−2π2λdβ

2/αd d2
0

αd sin(2π/αd)
− βdαd

0 N

Pd

)

×
Rc∫

0

EIu

[
exp

(
−βdαd

0 Iu

Pd

)]
f (r,ϕ)drdϕ

= exp

(
−2π2λdβ

2/αd d2
0

αd sin(2π/αd)
− βdαd

0 N

Pd

)

×
Rc∫

0

EIu

[
exp

(
−βdαd

0 Iu

Pd

)]
2r

R2
c

dr. (4.11)

As shown in (4.11), increasing the size of the area leads to a higher average coverage
probability. While deploying the UAV BS over a larger geographical area, the UAV BS-
D2D distance will increase, and, therefore, a D2D user experiences less interference
from the UAV BS. We can now present a closed-form expression for D2D coverage
probability in two spacial cases.

Remark 4.1 For Pu = 0 or h → ∞, the average coverage probability for the D2D
users is simplified to [159]:

P̄cov,d(β) = exp

(
−2π2λdβ

2/αd d2
0

αd sin(2π/αd)
− βdαd

0 N

Pd

)
. (4.12)

Clearly, (4.12) represents the D2D coverage probability in overlay mode where the UAV
does not create interference on D2D users.

Downlink Users Coverage Probability
In this subsection, we find the upper and lower bounds for the coverage probability of
DUs communicating with the UAV BS.

T H E O R E M 4.2 The bounds for the DU’s coverage probability are as follows:

P̄L
cov,du(β, h) =

Rc∫
0

PLoS(r, h)LI

(
Pu|Xu|−αu

β
− N

)
2r

R2
c

dr

+
Rc∫

0

PNLoS(r, h)LI

(
ηPu|Xu|−αu

β
− N

)
2r

R2
c

dr, (4.13)
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P̄U
cov,du(β, h) =

Rc∫
0

PLoS(r, h)UI

(
Pu|Xu|−αu

β
− N

)
2r

R2
c

dr

+
Rc∫

0

PNLoS(r, h)UI

(
ηPu|Xu|−αu

β
− N

)
2r

R2
c

dr, (4.14)

where βN < Pu||Xu||−αu . Also, for T > 0 we have:

LI(T) =
[

1 − 2πλd	(1 + 2/αd)

αd − 2

(
T

Pd

)−2/αd
]

× exp

(
−πλd

(
T

Pd

)−2/αd

	(1 + 2/αd)

)
, (4.15)

UI(T) = exp

(
−πλd

(
T

Pd

)−2/αd

	(1 + 2/αd)

)
. (4.16)

with 	(t) =
∞∫
0

xt−1e−xdx representing the gamma function [160].

Proof This proof stems from our work in [31] and is presented here to showcase the
key steps in establishing such a fundamental result. First, we can find that the DU’s
coverage probability, whenever the user is located at (r,ϕ), can be given by:

Pcov,du(r,ϕ,β) = P
[
γu ≥ β

] = PLoS(r)P

[
Pur−αu

Id + N
≥ β

]
+ PNLoS(r)P

[
ηPur−αu

Id + N
≥ β

]
= PLoS(r)P

[
Id ≤ Pur−αu − βN

β

]
+ PNLoS(r)P

[
Id ≤ ηPur−αu − βN

β

]
. (4.17)

Since the CDF of the total interference generated by D2D users does not have closed-
form expression [161] and [162], we present the upper bound and lower bound on the
CDF. Let us consider two categories of D2D transmitters [163]:{

�1 = {�B|Pddi
−αd gi ≥ T},

�2 = {�B|Pddi
−αd gi ≤ T}, (4.18)

in which T represents a threshold used for finding the CDF of the D2D users’
interference.

Let Id,�1 and Id,�2 be, respectively, the power of interference from D2D users that
belong to sets �1 and �2. Subsequently:
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P [Id ≤ T] = P
[
Id,�1 + Id,�2 ≤ T

] ≤ P
[
Id,�1 ≤ T

]
= P [�1 = 0] = E

⎡⎣∏
�B

P(Pddi
−αd gi < T)

⎤⎦
= E

⎡⎣∏
�B

P(gi <
Tdi

αd

Pd
)

⎤⎦ (a)= P

⎡⎣∏
�B

1 − exp(−Tdi
αd

Pd
)

⎤⎦
(b)= exp

⎛⎝−λd

∞∫
0

exp(−Trαd

Pd
)rdr

⎞⎠
= exp

(
−πλd

(
T

Pd

)−2/αd

	(1 + 2/αd)

)
, (4.19)

in (a), we use the properties of Rayleigh fading, and (b) follows from the PGFL of the
PPP.

The upper bound on the CDF of the D2D users’ interference can now be derived as
follows:

P [Id ≤ T] = 1 − P [Id ≥ T]

= 1 −
(
P
[
Id ≥ T|Id,�1 ≥ T

]
P
[
Id,�1 ≥ T

]
+ P

[
Id ≥ T|Id,�1 ≤ T

]
P
[
Id,�1 ≤ T

] )
= 1 −

(
P
[
Id,�1 ≥ T

]+ P
[
Id ≥ T|Id,�1 ≤ T

]
× P

[
Id,�1 ≤ T

] )
= 1 −

(
1 − P [�1 = 0] + P

[
Id ≥ T|Id,�1 ≤ T

]
× P [�1 = 0]

)
= P [�1 = 0]

(
1 − P [Id ≥ T|�1 = 0]

)
. (4.20)

We also have:

P [Id ≥ T|�1 = 0]
(a)≤ E [Id ≥ T|�1 = 0]

T

= 1

T
E

[∑
�

Pddi
−αd gi1(Pddi

−αd gi ≤ T)

]

= 1

T
Edi

[∑
�

Pddi
−αdEgi

[
gi1(gi ≤ Tdi

αd

Pd
)

]]

= 1

T
Edi

⎡⎢⎢⎢⎣∑
�

Pddi
−αd

⎡⎢⎢⎢⎣
Tdi

αd

Pd∫
0

ge−gdg

⎤⎥⎥⎥⎦
⎤⎥⎥⎥⎦
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= 2πPdλd

T

∞∫
0

r−αd

⎛⎜⎜⎜⎝
Trαd

Pd∫
0

ge−gdg

⎞⎟⎟⎟⎠ rdr

= 2πλd	(1 + 2/αd)

αd − 2

(
T

Pd

)−2/αd

, (4.21)

in (a), we use Markov’s inequality, in which P(X ≥ L) ≤ E[X]
L with X ≥ 0 being a

random variable and L > 0. 1(.) represents the indicator function with value of 0 or 1.
Therefore, we can present the lower bound (LI) and the upper (UI) of the CDF of

D2D user’s interference as follows:

LI(T) =
[

1 − 2πλd	(1 + 2/αd)

αd − 2

(
T

Pd

)−2/αd
]

× exp

(
−πλd

(
T

Pd

)−2/αd

	(1 + 2/αd)

)
, (4.22)

UI(T) = exp

(
−πλd

(
T

Pd

)−2/αd

	(1 + 2/αd)

)
, (4.23)

which leads to LI(T) ≤ P{Id ≤ T} ≤ UI(T).
Given (4.17), (4.22), and (4.23), the bounds on the DU’s average coverage probability

are given by:

P̄L
cov,du(β) =

Rc∫
0

PLoS(r)LI

(
Pu|Xu|−αu

β
− N

)
2r

R2
c

dr

+
Rc∫

0

PNLoS(r)LI

(
ηPu|Xu|−αu

β
− N

)
2r

R2
c

dr, (4.24)

P̄U
cov,du(β) =

Rc∫
0

PLoS(r)UI

(
Pu|Xu|−αu

β
− N

)
2r

R2
c

dr

+
Rc∫

0

PNLoS(r)UI

(
ηPu|Xu|−αu

β
− N

)
2r

R2
c

dr. (4.25)

This proves Theorem 4.2.

According to Theorem 4.2, when T >> Pd, we can observe that UI(T) = LI(T) ≈
1−πλd

(
T
Pd

)−2/αd
	(1+2/αd). That is, as the D2D transmit power decreases, the upper



78 Performance Analysis and Tradeoffs

and lower bounds will be tighter. In addition, for λd → ∞, we have UI = LI = 0. In this
case, P̄cov,du = 0 due to a significant amount of interference from D2D transmitters on
the AG links of the DUs. Another observation is that deploying the UAV BS at a higher
altitude can result in a higher coverage probability due to a higher LOS chance. How-
ever, since |Xu| increases by increasing h, the DU’s coverage probability can decrease
considering the fact that both LI and UI decrease. In fact, the DU’s coverage probability
can be maximized by properly adjusting the height of the UAV BS.

From Theorem 4.2, we can also see that as Rc increases, the DU’s coverage probabil-
ity decreases. In contrast, for larger values of Rc, we can see that a higher coverage
probability will be achieved for the D2D users. Meanwhile, the DU’s average cov-
erage probability can improve by reducing the number of D2D transmitters. Next,
based on our result in [31], we can state the following proposition that determines
the coverage probability for the DU when there are no interfering D2D users in the
network.

P RO P O S I T I O N 1 The DU’s coverage probability when Pd → 0 or λd → 0 can be
written by:

P̄cov,du(β) =
∫ min{

[
( Pu
βN )

2/αu−h2
]0.5

,Rc}

0
PLoS(r)

2r

R2
c

dr

+
∫ min{

[
( ηPu
βN )

2/αu −h2
]0.5

,Rc}

0
PNLoS(r)

2r

R2
c

dr. (4.26)

Note that (4.26) represents the maximum DU’s coverage probability, which can be
obtained in the absence of D2D interference.

System Sum-Rate
Here, we present the average achievable transmission rates for the DUs (i.e., the air-to-
ground transmission rates) as well as the D2D users [164]:

C̄du = Wlog2(1 + β)P̄cov,du(β), (4.27)

C̄d = Wlog2(1 + β)P̄cov,d(β), (4.28)

with W being the transmission bandwidth available for DUs and D2D users.
The average sum-rate in the network with all DUs and D2D users can be given by:

C̄sum = Rc
2πλduC̄du + Rc

2πλdC̄d. (4.29)

Considering μ = λdu
λd

leads to:

C̄sum = λdRc
2π

[
μP̄cov,du(β) + P̄cov,d(β)

]
Wlog2(1 + β), (4.30)

where the number of DUs and D2D users in the considered circular geographical area
are, respectively, given by Rc

2πλd and Rc
2πλdu.
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We can now see that the average sum-rate C̄sum is an increasing function of λd as
well as the coverage probabilities of DUs and D2D links. However, the coverage prob-
abilities decrease when the number of D2D users increases. Hence, a higher λd will not
necessarily result in a higher sum-rate. In fact, the system sum-rate can be maximized
by optimally adjusting the density of the D2D users. For example, in a practical cellular
system, the network operator can properly schedule the D2D transmissions in order to
control this density.

Meanwhile, C̄sum depends on the coverage probability and the threshold (β). While
the coverage probability decreases by increasing β, the logarithmic function in C̄sum

increases when β increases. Given such a tradeoff, the sum-rate can be maximized for
an optimum value of the threshold.

4.2.3 Mobile UAV BS Scenario

Now we consider a network in which the UAV BS can move. In this scenario, the UAV
BS’s mobility is exploited to provide full coverage for users in the given geographical
area. Specifically, the UAV moves and stops at some pre-defined locations known as stop
points in order to provide wireless connectivity for DUs. In this wireless network with
a mobile UAV BS, we want to find the minimum number of UAV BS stop points (M)
as well as the locations of stop points such that the coverage requirement for all DUs
within the area is met. The design problem is essentially to entirely cover the considered
circular area with a minimum movement for the UAV BS. To tackle this problem, we
use the disk covering problem [165] framework from mathematics. The disk covering
problem deals with the problem of covering a big disk with the minimum number of
small disks. In particular, this problem aims at finding how to completely cover a given
disk with a minimum number of smaller equally-sized disks that have a specified radius.

Figure 4.4 shows an illustrative example for the disk covering problem that can be
used to analyze the mobile UAV BS scenario. Here, each small disk’s center corresponds
to a UAV BS stop point, and its radius represents the coverage radius of the UAV BS.
Table 4.1 shows the minimum coverage radius that the mobile UAV BS needs in order
to fully cover the circular coverage area, considering a varying number of UAV BS

Coverage area of each UAV

Target area

Figure 4.4 Five disks covering problem.
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Table 4.1 Number of disks and radius of each disk in covering problem.

Number of stop points Minimum required coverage radius (Rmin)

M = 1, 2 Rc

M = 3
√

3
2 Rc

M = 4
√

2
2 Rc

M = 5 0.61Rc

M = 6 0.556Rc

M = 7 0.5Rc

M = 8 0.437Rc

M = 9 0.422Rc

M = 10 0.398Rc

M = 11 0.38Rc

M = 12 0.361Rc

stop points over the area [165, 166]. Subsequently, given the size of the geographical
area as well as the coverage range of the UAV BS, the minimum number of stop points
(and their locations) needed for providing full coverage for DUs within the area can be
determined. In the sequel, we discuss the disk covering-based performance analysis for
the considered mobile UAV BS scenario.

We need to find the maximum UAV BS’s coverage radius for which the DU’s coverage
requirement is satisfied. The UAV BS’s coverage radius corresponds to the maximum
range within which the DU’s coverage probability exceeds the target, ε. Therefore, all
the DUs located within the coverage range of the UAV BS will be considered as covered
by the UAV BS and will have at least an ε coverage probability. The maximum UAV
BS’s coverage range can now be defined as follows:

Rm = max{R|Pcov,du(β, R) ≥ ε, Pu, h} = P−1
cov,du(β, ε), (4.31)

where h and Pu are the altitude and transmit power of the UAV. Also, ε represents the
DU’s coverage probability requirement.

Now, we determine the minimum number of UAV BS stop points needed for full
coverage of the area: {

L = min{M},
Pcov,du(r,ϕ,β) ≥ ε,

(4.32)

where M is the number of stop points and L is the minimum value of M. We also have:

Rmin,L ≤ Rm ≤ Rmin,L−1 → min{M} = L. (4.33)

Given Table 4.1, Rmin,L−1 and Rmin,L represent the minimum radius needed for
completely covering the geographical circular area using L − 1 and L disks.



4.2 Downlink Performance Analysis for UAV BS 81

In this case, in order to ensure that UAV BS uses a minimum transmit power while
covering the area, we should have:

Pu,min = argmin
Pu

{P−1
cov,du(β, ε) = Rmin,L|h}, (4.34)

in (4.34), Pu,min represents the minimum UAV’s transmit power. Therefore, the area is
entirely covered by the mobile UAV BS with the corresponding, minimum UAV BS’s
transmit power as well as the stop points.

In the sequel, we analyze how the number of stop points can affect the coverage time
of the area for serving DUs and the D2D user’s outage probability.

Let us now consider the mobile UAV BS case within a total of M time instances.
At each time instance, the UAV BS and D2D links have simultaneous transmissions.
During these M time instances, the flying UAV BS stops at M stop points and provides
full downlink coverage for the DUs located on the ground. In this case, by increasing M
the total coverage time of the UAV BS will increase since the UAV BS needs to move
more for a higher number of stop points. Here, the total time that the UAV BS flies while
serving DUs is referred to as delay or latency. This delay is a function of the distance
between stop points, the speed of the UAV BS, and the UAV transmission time at each
stop point. This delay can be given by:

τ = Ttr + MTs, (4.35)

where Ttr represents the total flight time of the UAV BS and M is the number of stop
points. Also, Ts is the UAV BS transmission time at each stop point. As discussed in
earlier chapters, the flight time is a function of various factors such as the UAV BS’s
speed, the size of the area, and the locations of the stop points. For instance, we can

show that the flight times for M = 3 and M = 4 are, respectively,
√

3Rc
v and 3Rc

v , with
v being the UAV BS’s velocity and Rc being the radius of the considered circular area.
The transmission time (Ts) is affected by the multiple access scheme. In case of a time
division multiple access (TDMA), the transmission time can be approximated by:

Ts ≈ Ts,1
R2

min(M)

R2
c

U, (4.36)

where Ts,1 captures the UAV BS transmission time needed to service each DU and U is
the total number of DUs. The coverage range of the UAV BS is given by Rmin, which is
a function of M as well as the size of the geographical area.

In the frequency division multiple access (FDMA) case, all ground users can be
served at the same time; hence, we have Ts = Ts,1. Figure 4.5 shows how the total delay
changes by varying the number of stop points. Here, the UAV BS’s speed is 10 m/s, and
two transmission times are considered. As we can infer from Figure 4.5, having a higher
number of stop points yields a larger delay. Furthermore, the delay increases when the
transmission time at each stop point increases. For instance, Figure 4.5 shows that, for
Ts,1 = 20 s, by increasing the number of stop point from 3 to 10, the delay can increase
by a factor of 2.
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Figure 4.5 Coverage delay.

We now seek to find the D2D user’s outage probability during M transmissions of
the UAV BS and D2D users. The outage probability concept is defined as the probabil-
ity that, among M D2D transmissions, at least one transmission becomes unsuccessful.
Let (ri, hi) be the location of stop point i relative to a typical D2D user, with ri being
the horizontal distance between the UAV BS and the D2D user. We assume that the
Rayleigh fading is independent at different time instances. Nevertheless, there is a spa-
tial/temporal correlation in D2D interference at different time instances. Next, we find
the overall D2D user’s outage probability (the proof is found in [31]).

T H E O R E M 4.3 For a wireless network with underlaid D2D transmissions and a mobile
UAV BS, the overall outage probability of the D2D users is:

Pout,d = 1 − exp

⎛⎜⎝−λd

∫
R2

⎡⎢⎣1 −
⎛⎜⎝ 1

1 + β|x|−αd

d
−αd
0

⎞⎟⎠
M⎤⎥⎦ dx

⎞⎟⎠
×

M∏
i=1

EIu,i

[
exp

(
−dαd

0 βIu,i

Pd

)]
exp

(
−dαd

0 βMN

Pd

)
, (4.37)

where Iu,i represents the UAV interference on a D2D user. Also, EIu,i (.) is given by:

EIu,i

[
exp

(
−dαd

0 βIu,i

Pd

)]
= PLoS,i exp

(
−βdαd

0 Pu|Xu,i|−αd

Pd

)

+ PNLoS,i exp

(
−βdαd

0 ηPu|Xu,i|−αd

Pd

)
. (4.38)
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Table 4.2 Simulation parameters.

Description Parameter Value

UAV BS transmit power Pu 5 W
D2D transmit power Pd 100 mW
Path loss coefficient K −30 dB
Path loss exponent for UAV-user link αd 2
Path loss exponent for D2D link αu 3
Noise power N −120 dBm
Bandwidth W 1 MHz
D2D pair fixed distance d0 20 m
Excessive attenuation factor for NLOS η 20 dB
Parameters for a dense urban environment B, C 0.136, 11.95

According to Theorem 4.3, the outage probability increases when M increases. This
is due to the fact that, for a higher number of stop points and UAV BS transmissions,
the D2D users will experience a more severe interference from the UAV BS. As a result,
we can see that Pout,d approaches one, for large values of M. Meanwhile, increasing the
number of UAV BS stop points leads to a higher DU’s coverage probability. Therefore,
there is an inherent tradeoff between the coverage probability of DUs and the overall
outage probability for D2D users, while changing the number of stop points.

4.2.4 Representative Simulation Results

In Table 4.2, we provide the simulation parameters based on [158] and [164]. We evalu-
ate the performance of the considered UAV BS-D2D network while capturing the effect
of different parameters, such as the UAV BS’s height, the number of D2D users, and the
SINR target value.

Figure 4.6 plots the coverage probability for D2D users versus the SINR threshold.
Figure 4.7 also shows the lower bound and upper bound for the coverage probability of
DUs as a function of the SINR threshold. In Figures 4.6 and 4.7, we can compare the
analytical results with the simulation results. As we can see, the D2D coverage proba-
bility and the DU’s coverage probability decrease by increasing the SINR target value.

In Figure 4.8, we show how the system sum-rate is affected by the density of D2D
users. We can first observe that the D2D interference decreases when the number of
D2D transmitters decreases. Nevertheless, a lower D2D user density results in a lower
system sum-rate. Although decreasing the number of D2D users improves the coverage
probability for the ground D2D users, this decrease will negatively impact the system
sum-rate, which is directly proportional to the number of D2D users. From Figure 4.8,
we can see that there is an optimal value (that leads to a maximum sum-rate) for the
density of D2D users. For example, for λdu = 10−4, the sum-rate is maximized when
λd is equal to 0.9 × 10−4.

In Figure 4.9, we analyze how the sum-rate of the considered UAV-enabled wireless
D2D system varies by changing the SINR threshold. Here, the bandwidth is 1 MHz,
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Figure 4.6 DU coverage probability versus SINR target.

2 4 6 8 10 12 14
0

0.1

0.2

0.3

0.4

Threshold (β) in dB

D
2D

 C
ov

er
ag

e 
pr

ob
ab

ili
ty

Theory
Simulation

Figure 4.7 D2D coverage probability versus SINR target.

the UAV BS’s altitude is 500 m, and λdu = 10−4. As β increases, satisfying the SINR
requirement becomes less likely; hence, the coverage probability decreases. However,
given (4.27) and (4.28), increasing β leads to an increase in log2(1 + β). Considering
the overall impact of the SINR threshold on the system sum-rate performance, we can
observe that the sum-rate approaches to zero when β → ∞.

In order to capture the impact of D2D separation distance, d0, on the performance, in
Figure 4.10 we examine the system sum-rate versus d0 and the density of the D2D users.
By decreasing d0, the system sum-rate increases since the D2D coverage probability
also increases. Another observation is that, for higher values of d0, the optimal density
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Figure 4.8 Average sum-rate versus the density of D2D users.
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Figure 4.9 Average sum-rate versus SINR target.

of the D2D users, for which the sum-rate is maximized, increases. For example, when
d0 increases from 5 m to 8 m, the optimal D2D density decreases by about 60%.

Figure 4.11 illustrates the impact of the UAV BS’s height on the coverage probabil-
ities of the D2D users and DUs. For DUs, it is desirable to deploy the UAV BS at an
optimal height for which their coverage probability is maximized. The optimal UAV BS
altitude can be determined based on the tradeoff between LOS probability and distance
between the UAV BS and the DUs. From Figure 4.11, we can see that the maximum
coverage probability for DUs can be attained when the UAV BS is placed at a 500 m
height. For D2D users, however, the UAV is a source of interference. Hence, a wide
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Figure 4.10 Average sum-rate versus d0 and λd .
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UAV BS coverage range is not desirable for the D2D users. As intuitively expected,
the coverage probability for D2D users is maximized when the UAV BS is placed at a
very high altitude where the interference stemming from the UAV BS on the D2D links
becomes negligible. Meanwhile, for some UAV BS altitudes (e.g., 800 m), the D2D
users experience poor coverage due to a strong interference generated by the UAV BS’s
transmissions.
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Maximum system
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Figure 4.12 Average sum-rate versus the altitude of the UAV BS.

Figure 4.12 investigates the impact of the UAV BS’s altitude on the wireless
network’s sum-rate. As shown in this figure, the system sum-rate is maximized at
altitudes 300 m, 350 m, and 400 m for D2D separation distances of 20 m, 25 m, and
30 m. From Figure 4.12, we can clearly observe that the sum-rate increases when
the UAV BS’s altitude exceeds 1300 m. Above this altitude, the DUs are not covered
by the UAV while D2D users still have coverage. By increasing the UAV’s altitude,
the coverage performance of the D2D users improves, which increases the system
sum-rate.

We will now evaluate the performance of the UAV-D2D network in the mobile UAV
BS scenario. Figure 4.13 analyzes the effect of the number of D2D users on the mini-
mum number of UAV BS stop points needed to ensure the DUs’ coverage requirement.
We can directly see that, by increasing the density of D2D users, the DUs receive
stronger interference from the D2D transmitters. Therefore, the number of UAV BS
stop points should increase to meet the SINR requirement of the DUs. For example, the
number of stop points, M, increases from 3 to 8 while increasing the D2D density from
0.2 × 10−4 to 0.8 × 10−4.

In Figure 4.14, we demonstrate the fundamental tradeoff between the DUs’ coverage
probability and the total UAV BS coverage time. Here, the time needed to fully cover the
geographical area is referred to as delay, which depends on the number of stop points.
By increasing the number of stop points, the UAV BS can provide better coverage (i.e.,
higher SINR) for its DUs. For instance, for 10−4 D2D density, to improve the coverage
probability of DUs from 0.4 to 0.7, the number of UAV BS stop points needs to be
increased by a factor of 4.6. This, in turn, results in a higher total UAV BS coverage
time.

Figure 4.15 analyzes the impact of the number of transmission instances, M on the
D2D users’ outage probability. By increasing M, the outage probability of D2D users
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also increases for two reasons. First, with a higher number of transmissions, the prob-
ability of having one D2D transmission failure increases. Second, as M increases, the
interference on D2D receivers generated by the UAV BS increases, thus degrading SINR
of D2D users. As an example, Figure 4.15 shows that by increasing the M from 3 to 7,
the D2D outage probability increases from 20% to 38%.
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Figure 4.15 Overall D2D outage probability versus M.

4.3 Chapter Summary

In this chapter, we have studied the performance limits, metrics, and tradeoffs for a
wireless network that is complemented by a single UAV BS that can be static or mobile.
We have provided a brief overview on stochastic geometry as a powerful tool for per-
formance analysis. Then, we have introduced several detailed case studies to analyze
the performance limits of wireless communications with a UAV BS, while exposing
the impact of various unique UAV BS features, such as altitude, mobility, and line-of-
sight communications. In particular, we have analyzed the performance of a network
that composed of a UAV BS, DUs, which are served by the UAV, and D2D users that
coexist with the UAV and DUs. We have evaluated the performance of such UAV-D2D
network in both static and mobile UAV BS in terms of key metrics, such as coverage
probability, sum-rate, outage probability, and coverage delay. In particular, in the static
UAV scenario, we have derived the coverage probability and system sum-rate for DUs
and D2D users. Meanwhile, in the mobile UAV scenario, using the disk covering prob-
lem framework, we have identified the locations (stop points) of the mobile UAV for
fully covering the given circular geographical area. Furthermore, we have determined
the outage probability of D2D users and captured the impact of the number of UAV BS
stop points on the performance of D2D users and DUs. The performance analysis done
in this chapter provides a fundamental basis for analyzing more complex and varied
scenarios for wireless communications and networking with UAVs. Such scenarios can
incorporate the various UAV roles discussed in Chapter 1 within a variety of UAV use
cases, such as those exposed in Chapter 2. Meanwhile, the fundamental performance of
UAV-based wireless communication systems (in UAV BS and UAV UE scenarios) can
be further studied while capturing UAV’s mobility aspects, temporal channel variations,
and antenna patterns.



5 Deployment of UAVs for Wireless
Communications

Having provided insights on the performance of wireless networks with UAVs in the
previous chapter, our next step is to investigate how UAV BSs can be deployed for
enhancing wireless capacity and coverage. Indeed, the 3D placement of UAVs (in all of
their roles) is an important design challenge in UAV-enabled wireless communication
systems. The adaptive altitude of UAVs as well as their mobility feature allows using
effective deployment schemes. Hence, the problem of optimal placement of UAVs has
attracted remarkable attention in the literature [109, 158, 167–175]. Clearly, the perfor-
mance of wireless networks with UAVs, in general, and wireless networks with UAV
BSs, in particular, is significantly affected by how the UAVs are deployed in a given
region. In general, optimizing UAV deployment is challenging due to the fact that it is a
function of various parameters, such as UAV channel gain, interference between UAVs,
and deployment environment. Furthermore, one must consider the onboard battery lim-
itation of UAVs that naturally affect the system performance. In fact, there is a need for
comprehensive studies on the UAV deployment while designing UAV communication
systems.

Hence, in this chapter, we study the problem of UAV deployment for wireless com-
munication purposes. In particular, we focus on the deployment of UAV BSs whose
locations will strongly impact the performance that they can deliver. To this end, in Sec-
tion 5.1, we start by providing a broad overview on the analytical tools that can be used
to develop optimized deployment strategies for wireless networks with UAVs. Then, in
Section 5.2, we provide a comprehensive study on how UAV BSs can be deployed for
optimizing the wireless coverage for a ground network of wireless devices that seek
to communicate with UAV BSs in the downlink. We shed important light on how to
deploy the UAV BSs, by determining their number and locations, in a way to maximize
network performance under various constraints, such as power. Next, in Section 5.3,
inspired from the IoT application of UAVs in Chapter 2, we study the problem of opti-
mally deploying UAV BSs for collecting data, in the uplink, from ground IoT devices. In
this regard, we show how UAV BSs can be deployed and operate in an energy-efficient
manner to service IoT data collection tasks. Then, in Section 5.4, we turn our attention
to the optimized deployment of UAV BSs that have the ability to cache popular content
and to track the mobility of ground users. In particular, we leverage tools from machine
learning to proactively deploy such UAV BSs and to enable them to predictively cache
content. We then see how one can use learning techniques to address the joint problems
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of deployment, cache management, and resource allocation in a network with UAV BSs.
We then conclude the chapter in Section 5.5.

5.1 Analytical Tools for UAV Deployment

Here, we describe key analytical tools that are needed to address UAV deployment
problems in wireless networks.

5.1.1 Centralized Optimization Theory

Due to the variety of UAV applications in wireless networks, there will be a need
for solving many complex optimization problems. Depending on each specific appli-
cation of UAVs, one must optimize the 3D UAVs’ positions so as to achieve the
maximum network performance considering various metrics, such as rate, coverage,
and energy consumption. While optimizing the locations of UAVs, traditional con-
vex and non-convex optimization methods can be utilized. Next, we discuss two tools
from optimization theory that can be used to study UAV deployment optimization
problems.

Facility Location Theory
The facility location problem deals with the problem of optimal placement of facilities
such that the transportation costs between the facilities and customers are minimized.
This problem is called the location-allocation problem when the demand of all cus-
tomers should be satisfied by multiple facilities. The main components of the facility
location problem include customers (that use certain facilities), facilities that should be
optimally placed, the location space of facilities and customers, and the objective func-
tion, which can depend on the transportation time and distance as well as other factors
[176]. In a general form of the facility location problem, the objective is to determine
the optimal number of facilities as well as their optimal locations, which lead to the
minimum total costs. The costs include the transportation costs, which is a function of
distance between the facilities and customers, and the costs of building the facilities.
The facility location problem can be modeled based on single or multiple facility cases,
capacitated or uncapacitated facilities, and continuous or discrete location space. More-
over, based on the objective function, the facility location problems can be classified into
minisum, minimax, and covering problems. These terms are briefly defined as follows
[177]:

• Continuous vs. discrete: In the discrete location problems, the location of facilities
must be chosen from a set of discrete candidate points. However, in the continuous
case, the facilities are located over a continuous space.

• Capacitated vs. uncapacitated: In the capacitated facility location, the facilities have
a limited capacity to service the users. In the uncapacitated case, the capacity of
facilities is unlimited.
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• Minisum problem: The objective is to minimize the sum of distances/costs to all the
customers.

• Minimax problem: The goal is to minimize the distance/cost to the farthest customer.
• Covering problem: The objective is to place the facilities in a way to maintain the dis-

tance between each customer and the corresponding facility below a desired, specified
threshold.

Next, we describe some of the most common facility location problems.

Categories of facility location problems
Facility location problems can be defined in discrete or continuous space. However, due
to the complexity of continuous domain analysis, most of the literature is focused on the
discrete facility location problems.

• Median problem: In the median problem, the objective is to minimize the average
distance of the facilities to the customers.

• Center problem: In the center problem, the maximum distance between a customer
and its corresponding facility is minimized. This type of problem is suitable for
deploying the emergency stations, and their distance to the farthest demand point
should not exceed a specified value.

• Covering problem: In the covering problems, the goal is to provide maximum cov-
erage for the users. In fact, unlike the median and center problems, the covering
problems do not deal with minimizing the distance between facilities and users.
Instead, the covering problems try to ensure that the distance between each user
and one of the facilities is less than a predefined threshold. Maximizing the cov-
erage for a given number of facilities is called the maximum covering location
problem (MCLP).

If the capacity of the facilities is limited, then there is no guarantee that all the
points are covered simultaneously. In this case, the probability of availability is
considered for each facility and the expected value of coverage is maximized.

Another type of the covering problems is the location set covering problem (LSCP)
in which the number of facilities required to completely cover the desired area is
minimized.

• Stochastic facility location problem: The facility location problems can be catego-
rized into deterministic and stochastic problems. In the deterministic case, all the
parameters are deterministic and known. However, in the stochastic case, different
parameters such as customers’ demands are random. One approach to capture the
uncertainties in the system is to use the scenario planning models.

• Multi-objective facility location problem: In the multi-objective facility location
problem, the facilities are placed while considering different criteria and objec-
tive functions simultaneously. In this case, optimal location of facilities should be
determined in the presence of tradeoffs between different objectives. Typically, in
multi-objective optimization, it is not possible to find an optimal solution for each
single objective. Consequently, efficient solutions, in which none of the objectives
can be improved without degrading others, are usually presented [177].
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• Mobile facility location problem: In the mobile facility location problem, the goal is to
move the facilities to new locations such that the total costs, including the transporta-
tion costs between the facilities and customers as well as the costs of the facilities’
movements, are minimized [178]. In fact, by moving the facilities, the average dis-
tance between the customers and the facilities can be reduced, however, with the cost
of the facilities’ movements.

Circle Packing and Covering Problems
Packing theory is a class of optimization problems that aims to pack objects together
into containers. The main objective in a packing problem is to pack a single con-
tainer as densely as possible [179]. A packing problem has a dual covering problem
in which the number of non-overlapping objects required to completely cover every
region of the container is minimized. More specifically, in geometry, circle packing is
the study of the arrangement of equal or unequal circles on a given 2D shape such that:
(1) no overlapping occurs between circles, and (2) the maximum packing density is
achieved.

The packing density corresponds to the proportion of the given surface covered by
circles. In two-dimensional Euclidean space, the maximum circle packing density is
π

√
3

6 , which obtains a hexagonal packing arrangement. Figures 5.1 and 5.2 show an
illustrative example for circle packing and circle covering on a square area. As will
be seen in subsequent sections, circle packing and covering problems can be used
to tackle important UAV placement problems. The generalization of a circle packing
problem is referred to as a sphere packing problem, which usually considers identical
spheres.

Figure 5.1 Packing circles inside a square (packing problem).
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Figure 5.2 Covering a square with circles (covering problem).

5.2 Deployment of UAV BSs for Optimized Coverage

In this section, we study the optimal 3D placement of UAV BSs to maximize the wireless
coverage in downlink, inspired from our work in [168]. Moreover, while maximizing
the coverage, we aim to minimize the transmit power of UAV BSs so as to reduce
their energy consumption as well as any potential interference on ground networks.
More precisely, a framework for optimizing the positions of UAV BSs is developed
while factoring in the size of the geographical area, the number of available UAV
BSs (equipped with directional antennas), and the coverage requirements of ground
users. First, as a function of each UAV’s altitude and the antenna beamwidth, the UAV
coverage probability for serving ground users is derived. Then, a method for optimal
placement of multiple UAV BSs is designed based on the notion of circle packing
theory [180].

5.2.1 Deployment Model

As we can see in Figure 5.3, we study a wireless network problem in which M UAV
BSs must be placed over a given circular geographical area in order to provide wireless
connectivity for ground users. The UAV BSs are stationary LAPs (e.g., rotary-wing UAV
BSs) and have the same altitude and transmit power. The UAV BS’s antenna gain, which
uses a directional antenna with a half beamwidth θB, is given by [181]:

G =
{

G3dB,
−θB

2 ≤ ϕ ≤ θB
2 ,

g(ϕ), otherwise,
(5.1)
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Figure 5.3 System model.

where G3dB ≈ 29000
θ2

B
with θB in degrees is the main lobe gain, and ϕ is the sector

angle [182]. In (5.1), g(ϕ) represents the antenna gain outside of the main lobe of the
directional antenna. For the AG channel between the UAV BS and a ground user, we
consider the probabilistic LOS/NLOS model described in Section 3.3.6. In this case, the
received signal power for a user served by UAV BS j can be expressed by [157]:

Pr, j(dB) =
{

Pt + G3dB − LdB − ψLOS, LOS link,
Pt + G3dB − LdB − ψNLOS, NLOS link,

(5.2)

where Pt is the transmit power of each UAV BS, Pr, j is the received signal power, and
G3dB is the UAV BS antenna gain measured in dB. LdB represents the large-scale path
loss for UAV BS-to-user communications:

LdB = 10nlog

(
4π fcdj

c

)
, (5.3)

where c is the speed of light, fc is the carrier center frequency, dj is the distance between
a ground user and UAV BS j, and n ≥ 2 represents the path loss exponent in AG
communications. Moreover, ψLOS ∼ N(μLOS, σ 2

LOS) and ψNLOS ∼ N(μNLOS, σ 2
NLOS)

represent shadow fading with normal distribution for LOS and NLOS links, separately.
These shadow fading normal distributions have the following mean and variance values:
(μLOS, σ 2

LOS), and (μNLOS, σ 2
NLOS). Naturally, the variance is a function of the elevation

angle and type of the environment, which is given by [157]:

σLOS(θj) = k1 exp(−k2θj), (5.4)

σNLOS(θj) = g1 exp(−g2θj), (5.5)

where θj = sin−1(h/dj) is the elevation angle between UAV j and a ground user, and k1,
k2, g1, and g2 are constants that depend on the type of environment. In this model, the
LOS probability is: [157]:

PLOS, j = α

(
180

π
θj − 15

)γ

, (5.6)
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where α and γ are constants values that capture the environment effects. Also, the
probability of NLOS link is PNLOS, j = 1 − PLOS, j.

5.2.2 Deployment Analysis

First, we determine the coverage radius of each UAV BS based on the coverage require-
ment of ground users. To find the coverage radius, based on our result in [168], in
Theorem 5.1, we derive the downlink coverage probability when serving a ground user.
Then, an efficient approach for placing multiple flying UAV BSs is proposed with the
goal of maximizing the total downlink coverage performance.

T H E O R E M 5.1 The downlink coverage probability for a ground user served by UAV
BS j is:

Pcov = PLOS, jQ

(
Pmin + LdB − Pt − G3dB + μLOS

σLOS

)
+ PNLOS, jQ

(
Pmin + LdB − Pt − G3dB + μNLOS

σNLOS

)
, (5.7)

where r ≤ h.tan(θB/2) is the horizontal distance of the ground user from the projection
of the UAV on a geographical area, Pmin = 10 log

(
βN + β Ī

)
is the minimum required

received power for a successful detection at the ground receiver, and N is the noise
power. β represents the SINR threshold, and Ī is the mean interference power received
from the nearest interfering UAV, which can be written by:

Ī ≈ Ptg(ϕk)

[
10

−μLOS,k
10 PLOS,k + 10

−μNLOS,k
10 PNLOS,k

](
4π fcdk

c

)−n

. (5.8)

Note that Q(.) is the Q function.

Proof We present this proof from [168] in order to provide the readers with a step-by-
step discussion on how to show such fundamental results on UAV BS deployment. First,
we note that the downlink coverage probability for a ground user while considering the
mean interference between UAV BSs can be derived as follows:

Pcov = P

[
Pr, j

N + Ī
≥ β

]
= P

[
Pr, j(dB) ≥ Pmin

]
= PLOS, jP

[
Pr, j(LOS) ≥ Pmin

]+ PNLOS, jP
[
Pr, j(NLOS) ≥ Pmin

]
(a)= PLOS, jP [ψLOS ≤ Pt + G3dB − Pmin − LdB]

+ PNLOS, jP [ψNLOS ≤ Pt + G3dB − Pmin − LdB]

(b)= PLOS, jQ

(
Pmin + LdB − Pt − G3dB + μLOS

σLOS

)
+ PNLOS, jQ

(
Pmin + LdB − Pt − G3dB + μNLOS

σNLOS

)
, (5.9)

where P[.] is the probability notation, and Pmin = 10 log
(
βN + β Ī

)
. Clearly, due to the

use of directional antennas, interference received from the nearest UAV k is dominant.
Hence, Ī can be written as:
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Ī ≈ PLOS,kE
[
Pr,k(LOS)

]+ PNLOS,kE
[
Pr,k(NLOS)

]
= Ptg(ϕk)

[
10

−μLOS
10 PLOS,k + 10

−μNLOS
10 PNLOS,k

](4π fcdk

c

)−n

.

where E[.] is the expectation function taken over the received interference power. (a)
follows from (7.1), and (b) is the result of the complementary cumulative distribution
function (CCDF) of a Gaussian random variable. Finally, we use r ≤ h.tan(θB/2), which
shows a user is covered by a UAV BS when it is located within its coverage beam. This
proves the theorem.

From Theorem 5.1, we can see that increasing a UAV BS’s height results in a higher
path loss and LOS probability, thus a longer coverage radius. Moreover, by increasing
the number of UAV BSs, the interference stemming from the nearest UAV BS increases
since the UAV BSs are placed closer to each other. The coverage radius of each UAV
is defined as ru, which essentially represents the maximum range within which the
coverage probability for a ground user exceeds a given threshold (ε). The coverage
radius of each UAV BS is a function of the antenna beamwidth, the transmit power,
the coverage threshold, the number of UAV BSs, as well as the locations of UAV BSs.
Mathematically, a UAV BS’s coverage radius is expressed by:

ru = max{r|Pcov(r, Pt, θB) ≥ ε}. (5.10)

Using the result in (5.10), we now wish to see how to deploy UAV BSs such that
the total coverage is maximized, while avoiding any overlap between the UAV BSs’
coverage areas. Moreover, UAV BSs use a minimum transmit power so as to maximize
their coverage lifetime. Then, we can formally pose our UAV placement problem:

(�r∗
j , h∗, r∗

u)
i∈{1,...,M}

= arg max M.r2
u, (5.11)

st. ||�rj−�rk|| ≥ 2ru, j �= k ∈ {1, ..., M}, (5.12)

||�rj + ru|| ≤ Rc, (5.13)

ru ≤ h.tan(θB/2), (5.14)

where Rc is the radius of the considered circular area, and M is the number of UAV BSs.
�rj represents the 2D position of UAV BS j projected on the geographical area, and ru

shows the maximum UAV’s coverage radius. (5.12) guarantees that overlap between the
coverage areas of the UAV BSs is avoided, and (5.13) ensures that UAV BSs only cover
the inside of the desired geographical area.

Solving (5.11) is a complex and challenging task given the high number of unknowns
as well as the highly nonlinear nature of the optimization problem. We tackle (5.11)
using the notion of a circle packing problem [180] discussed in the previous section. In
this problem, multiple circles need to be placed inside a given plane in a way that pack-
ing density with these non-overlapping circles is maximized. In Figure 5.4, we illustrate
the optimal packing of three identical circles within a big circle. In Table 5.1, we list the
radius of each small circle for which the maximum packing density is achieved when
placing multiple small circles inside a given big circular area [180]. Clearly, the radius
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Table 5.1 Covering a circular area with radius Rc using identical UAVs –
the circle packing in a circle approach.

Number of Coverage radius of Maximum total
UAV BSs each UAV BS coverage

1 Rc 1

2 0.5Rc 0.5

3 0.464Rc 0.646

4 0.413Rc 0.686

5 0.370Rc 0.685

6 0.333Rc 0.666

7 0.333Rc 0.778

8 0.302Rc 0.733

9 0.275Rc 0.689

10 0.261Rc 0.687

x

ruru

Rc

desired area

30º

Figure 5.4 Packing problem in a circle with three circles.

of each circle decreases as the number of circles increases. Note that the total cover-
age corresponds to the packing density, which is the maximum portion of the circular
area covered by small circles. As an example, we derive the optimal packing method
for M = 3. Consider a circular area with radius Rc. To maximize the packing density,
every two small circles must be tangent to each other and all circles be bounded by the
big circle in Figure 5.4. In this case, the small circles’ centers are on the vertices of an
equilateral triangle. Considering Figure 5.4, we have x = ru

cos(30o) and

Rc = ru + x = ru

(
1 + 2√

3

)
→ ru =

√
3Rc

2 + √
3

≈ 00.464Rc.

Here, each circle (or disk) represents the coverage area of each UAV BS. Then the
total coverage can be maximized by maximizing the packing density. This corresponds
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to the problem of maximizing the coverage area with non-overlapping smaller circles.
Subsequently, based on the size of the given geographical area and the number of UAV
BSs, one can find the 3D UAV BSs’ positions along with their coverage radius. Mean-
while, the height of the UAV BSs is related to the beamwidth and the coverage radius
by h = ru

tan(θB/2) .

5.2.3 Representative Simulation Results

The following simulation results are based on fc = 2 GHz, α = 0.6, γ = 0.11, k1 =
10.39, k2 = 0.05, g1 = 29.06, g2 = 0.03, μLOS = 1 dB, μNLOS = 20 dB, and n = 2.5
[157]. Also, we consider ε = 0.80, β = 5, and N = −120 dBm.

Figure 5.5 examines the optimal altitude of the UAV BSs as a function of their num-
ber. We can observe that the UAV BSs’ height decreases by increasing their number.
To deploy more UAV BSs, they should be deployed at a lower altitude in order to
avoid potential overlap (and hence interference) between their coverage areas. As we
can see from Figure 5.5, while increasing the number of UAV BSs from 3 to 6, the
UAV BSs’ altitude decreases from 2000 m to 1300 m. Moreover, this figure shows that
the UAV BSs are placed at lower altitudes when using directional antennas with higher
beamwidths.

Figure 5.6 illustrates the minimum number of UAV BSs needed to meet a given cov-
erage requirement for ground users within a geographical area. The coverage threshold
represents the portion of the entire area that must be covered by multiple UAV BSs.
Here, we consider Pt = 35 dBm and θB = 80o. From Figure 5.6, we can see that, in
order to meet a 0.7 coverage requirement, we can deploy one or more than 6 UAV BSs.
Note that the minimum number of required UAV BSs depends on the size of the target
geographical area. For instance, for Rc< 5400 m, deploying one UAV BS meets a 0.6
coverage requirement, however, more UAV BSs will be required to cover a larger area.
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Figure 5.5 Drone altitude versus number of UAV BSs.
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Figure 5.6 Number of required UAV BSs versus radius of the ground area that must be covered.

Hence, the minimum number of UAV BSs needed to provide a desired coverage is a
function of the coverage threshold as well as the size of the geographical area.

5.2.4 Summary

In summary, we have introduced an efficient framework that can be employed for
optimal placement of UAV BSs in order to deliver wireless connectivity to a given
geographical area. We first have derived the downlink coverage probability for ground
users. Next, by exploiting circle packing theory, we have presented a framework for 3D
placement of identical UAVs to provide a maximum wireless coverage with minimum
transmit power. In particular, we have described key design aspects of UAV BS deploy-
ment considering drone altitude, transmit power, antenna bandwidth, and the number of
UAV BSs.

5.3 Deployment of UAV BSs for Energy-Efficient Uplink Data Collection

As discussed in Chapter 2, UAV BSs can play an important role in the IoT, par-
ticularly when considering IoT applications in which the IoT devices are small,
battery-constrained devices, including radio frequency identification devices (RFIDs)
and sensors [28, 29]. These low-power devices may not be able to have long-range com-
munication for sending their data [29]. In this case, flying UAV BSs can be intelligently
used to effectively collect IoT data from ground devices.

Although the operations of a UAV BS for such an IoT data collection application were
discussed in detail in Chapter 2, in this section, we develop a framework for optimizing
the 3D placement and mobility of UAV BSs to enable energy-efficient uplink communi-
cations for terrestrial IoT devices. Here, UAV BSs are used to successfully collect data
from IoT devices in an energy-efficient manner. In fact, by optimizing the deployment
and locations of UAV BSs along with the device-UAV BS association rule and transmit
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power of each IoT device, the wireless IoT system can guarantee reliable uplink com-
munications for its devices, while also minimizing the total power (hence operating in
an energy-efficient manner). Building on our work in [109], for this IoT data collection
use case, we study two scenarios for the use of UAV BSs: (1) static case, in which the set
of active IoT devices does not change, and (2) dynamic case, in which a time-varying
activation process is considered for the ground IoT devices.

5.3.1 System Model and Problem Formulation

For our model, we investigate an IoT system that encompasses a set L of L ground
(low-power) IoT devices. Moreover, a set K of K flying UAV BSs are utilized in order
to collect data from IoT devices using uplink communication links. In the considered
system, an IoT device is served by a UAV BSs if its uplink SINR exceeds a predefined
threshold. We consider an FDMA multiple access scheme with R orthogonal channels.
We use Emax to designate each UAV BS’s energy used for mobility. The positions of
device i ∈ L and UAV BS j ∈ K are (xi, yi) and vj = (xuav

j , yuav
j , hj), as illustrated in

Figure 5.7. Note that we consider a cloud server for managing the UAV BSs’ positions,
the device-UAV BS cell association, as well as each IoT device’s transmit power.

Here, the IoT network is analyzed within a time interval [0, T] during which the
devices can be activated. In this interval, the locations of the UAV BSs and device-
UAV BS associations are updated according to the positions of active devices. We use
the term update time to represent the time instances for updating UAV BSs’ locations
and associations. The update times are denoted by tn, 1 ≤ n ≤ N shows update time n,
where N is the number of updates. Each IoT device that becomes active within [tn−1, tn)
is serviced by the UAV BSs during [tn, tn+1). These update times are design parameters
that depend on the devices’ activation. Given this UAV BS-IoT network, our goal is to

Figure 5.7 Model for an IoT application in which UAV BSs are engaged in uplink data collection
of IoT device data.
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find the optimal 3D drones’ positions and device associations at each update time tn such
that the total devices’ transmit power is minimized while satisfying SINR requirements
of all devices. In addition, we present a framework for finding the update times and the
drones’ mobility in the considered time-varying IoT network.

5.3.2 Ground-to-Air Channel Model

For ground-to-air communications, we consider the probabilistic path loss model,
described in Section 3.3.6 of Chapter 3, with the following LOS probability: [31, 158,
170]:

Pij
LOS = 1

1 + ψ exp(−β
[
θij − ψ

]
)
, (5.15)

where ψ and β are a function of the carrier frequency and environment. θij represents the

elevation angle, θ = 180
π

× sin−1
(

hj
dij

)
, where dij =

√
(xi − xuav

j )2 + (yi − yuav
j )2 + h2

j

is the distance between UAV BS j and device i.
Now, the path loss between device i and UAV BS j is [158]:

Lij =
⎧⎨⎩ η1

(
4π fcdij

c

)α
, LOS link,

η2

(
4π fcdij

c

)α
, NLOS link,

(5.16)

where α is the path loss exponent, fc is the carrier frequency, η1 and η2 are the excessive
path loss coefficients for LOS and NLOS links, and c is the light’s speed. Also, Pij

NLOS =
1 − Pij

LOS.
Subsequently, the average path loss between device i and UAV BS j will be:

L̄ij = Pij
LOSη1

(
4π fcdij

c

)α

+ Pij
NLOSη2

(
4π fcdij

c

)α

=
[
Pij

LOSη1 + Pij
NLOSη2

] (
Kodij

)α ,

(5.17)

where Ko = 4π fc
c .

5.3.3 Activation Model of IoT devices

IoT devices can be active based on the services they provide. For example, IoT devices
may periodically report their data in weather monitoring and smart grid applications.
In contrast, in health monitoring applications, IoT devices can be randomly activated.
In such time-varying IoT systems, UAV BSs should be dynamically deployed for data
collection according to the activation process of IoT devices. Naturally, the optimal
locations of the UAV BSs and their update times depend on the activation process of
the IoT devices. Here, we focus on the case of random activation of IoT devices. In
the random activation scenario, the simultaneous transmissions of massive IoT devices
within a short period of time can result in bursty traffic [183]. In order to capture such
traffic characteristics, 3GPP suggests the use of a beta distribution for the activation of
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IoT devices [184]. In this model, each IoT device becomes active at time t ∈ [0, T] based
on the beta distribution [184–186]:

f (t) = tκ−1(T − t)ω−1

Tκ+ω−1B(κ ,ω)
, (5.18)

where κ and ω are the beta distribution’s parameters, [0, T] is the activation time interval
of IoT devices, and B(κ ,ω) = ∫ 1

0 tκ−1(1 − t)ω−1dt represents the beta function [187].
In the following, for each update time tn, we present a joint optimization problem that

can be used to determine the 3D positions of UAV BSs, the cell association rule between
IoT devices and UAV BSs, and the transmit power of all active IoT devices:

(OP):

min
vj,c,P

Ln∑
i=1

Pi , ∀i ∈ Ln, ∀j ∈ K, (5.19)

s.t.
Piḡici(vci)∑

k∈Zi

Pkḡkci(vci) + σ 2
≥ γ , (5.20)

0 < Pi ≤ Pmax, (5.21)

where Ln is the set of IoT devices’ indices at tn, and Ln is the number of active devices. P
represents a transmit power vector whose each element Pi is the transmit power of device
i. The 3D location of UAV BS j is denoted by vj. c is a vector of device-drone associa-
tions whose each element ci is the index of the UAV BS, which is associated with device
i. The maximum transmit power of each IoT device is limited to Pmax, the noise power is
denoted by σ 2, and ḡici(vci) represents the average channel gain between device i and its
associated UAV BS. Moreover, ḡkci(vci) shows the average channel gain between inter-
fering device k and UAV BS ci. Zi represents the set of interferer devices that transmit
over the same channel as device i. γ is the SINR threshold for IoT devices, and (5.21)
captures the maximum transmit power constraint for IoT devices. Here, (OP) is referred
to as the original problem. It should be noted that solving (5.19) is a challenging task.
First, the optimization variables are mutually dependent. Second, the optimization prob-
lem is highly nonlinear and non-convex. In the sequel, a practical framework for solving
(OP) is presented.

In Figure 5.8, we illustrate a block diagram of the key steps needed for solving the
original optimization problem at each update time. In the first step, for fixed locations of
the UAV BSs, the device-UAV BS associations and transmit power of each IoT device
are optimized. In the second step, considering fixed device-UAV BS associations, the
UAV BSs’ positions and the transmit power of devices are determined. These steps are
performed iteratively until the solution converges.

5.3.4 UAV BS Placement and Device Association with Power Control

We seek to minimize the total IoT devices’ transmit power by optimizing the UAV BSs’
locations, device-UAV BS associations, and uplink transmit power of each IoT devices.
To this end, (OP) is decomposed into two subproblems that need to be solved separately.
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Figure 5.8 Block diagram for the proposed solution.

Device Association and Power Control
Given the positions of the UAV BSs, (OP) can be represented by:

(P1-a):

min
c,P

Ln∑
i=1

Pi , ∀i ∈ Ln, ∀j ∈ K, (5.22)

s.t.
Piḡici∑

k∈Zi

Pkḡkci + σ 2
≥ γ , (5.23)

0 < Pi ≤ Pmax. (5.24)

By solving (P1-a), the device-UAV BS associations as well as the transmit power
of each active IoT device are determined. Given the SINR constraints, the feasibility
of this optimization problem is affected by the UAV BSs’ locations. Next, we provide
upper and lower bounds on the height of UAV BS j that serves device i (the proof is
based on [109]).

P RO P O S I T I O N 2 The lower bound and upper bound for the height of drone j for
successfully serving device i, are:

dij sin

(
1

β
ln

(
ψQ

1 − Q

)
+ ψ

)
≤ hj ≤

(
Pmax

γKα
o σ

2η1

)1/α

, (5.25)

where dij is the distance between UAV j and device i, and Q = Pmax
γ dαij Ko

ασ 2(η1−η2)
− η2

η1−η2
.

Considering fixed locations for the UAV BSs, problem (P1-a) can be transformed to
the classical joint user association and uplink power control problem in cellular net-
works. Hence, we can use the algorithm proposed in [188] and [189] to find the joint
optimal user-UAV BS association and uplink power control given the SINR requirement
and the device’s transmit power constraint. In (P1-a), the IoT devices can be considered
terrestrial users, and the UAVs are obviously acting as BSs. Algorithm 1 provides the
detailed steps for solving (P1-a). In step 3, an initial value for active devices’ transmit
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power is considered. In step 4, ρ(t)
ij is computed at iteration t. Then, based on step 5, we

compute the minimum transmit power of device i when connecting to its serving UAV
BSs. Then, the index of the best UAV BSs, which is assigned to device i, is given in
step 6. In step 7, the transmit power of device i is updated so as to meet SINR thresh-
old γ . Finally, for all IoT devices, steps 4–7 are repeated until the optimal solution is
achieved.

Algorithm 1 Iterative algorithm for joint power control and device-UAV BSs
association

1: Inputs: Locations of UAV BSs and IoT devices
2: Outputs: Device association vector (c), and transmit power of all IoT devices (P).

3: Set t = 0, and initialize P(0) =
(

P(0)
1 , ..., P(0)

K

)
.

4: Define ρ(t)
ij =

σ 2+ ∑
k∈Zi

P(t)
k ḡkj

ḡij
.

5: Find Si(P(t)) = min
j∈K

ρ
(t)
ij .

6: Compute ci(P(t)) = arg min
j∈K

ρ
(t)
ij .

7: Update P(t+1)
i = min

{
γ Si(P(t)), Pmax

}
, ∀i ∈ Ln.

8: Repeat steps 4 to 7 for all IoT devices until P(t) converges.

9: P = P(t), c =
[
ci(P(t))

]
, ∀i ∈ Ln.

For any given locations of UAV BSs, the solution of (P1-a) provides the optimal
devices’ transmit powers as well as the device-UAV BS associations. These results are
inputs to the second subproblem that optimizes the 3D positions of UAV BSs.

Optimizing the Deployment Locations of UAV BSs
Now, we aim to optimize the 3D locations of UAV BSs in order to minimize the total
transmit power of IoT devices in uplink.

By fixing the device-UAV BS associations, the UAV BSs’ locations and transmit
powers of IoT devices can be found by solving the following optimization problem:

(P2-a):

min
vj,P

Ln∑
i=1

Pi , ∀i ∈ Ln, ∀j ∈ K, (5.26)

s.t.
Piḡij(vj)∑

k∈Zi

Pkḡkj(vj) + σ 2
≥ γ , (5.27)

0 < Pi ≤ Pmax, (5.28)

where vj = (xuav
j , yuav

j , hj) is the position of UAV BS j. This problem is difficult to
address because of its non-convexity.
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To solve (P2-a), we separately optimize the position of each UAV BS. First, we opti-
mize the location of each UAV BS based on the locations of its associated devices. Next,
the transmit power (i.e., P∗

i ) of each associated device is updated based on the new posi-
tion of its serving UAV BS. Therefore, we update the UAV BS’s location as well as the
transmit power of its devices. After computing P∗

i at each iteration, Pmax = P∗
i is con-

sidered for the next iteration. This guarantees that the devices’ transmit powers do not
increase in multiple iterations. Note that this procedure must be done for all UAV BSs
one after another, until convergence is achieved.

Considering a single UAV BS j and the set of its associated IoT devices Cj, we need
to solve the following optimization problem:

min
vj

∑
i∈Cj

Fi(vj), (5.29)

s.t. Fi(vj) = γ
(
η1Pij

LOS + η2Pij
NLOS

) (
Kodij

)α⎡⎣∑
k∈Zi

Pk(
η1Pkj

LOS + η2Pkj
NLOS

) (
Kodkj

)α + σ 2

⎤⎦ , (5.30)

Fi(vj) ≤ P∗
i , ∀i ∈ Cj, (5.31)

In order to efficiently solve (5.29), we transform the problem into a quadratic pro-
gramming form. More formally, we use the sequential quadratic programming (SQP)
technique, which is suitable for tackling differentiable and large-scale non-linear opti-
mization problems [190]. In this case, we linearize the constraints of the optimization
problem and approximate the objective function by a quadratic function. Then, sev-
eral quadratic subproblems are solved in order to solve the original optimization
problem.

Up until now, we analyzed the IoT network at one update time during [0, T]. Next, we
consider a time-varying IoT network in [0, T] time period in which the activation pattern
of IoT devices changes and drones dynamically update their positions in different update
times.

5.3.5 Update Time Analysis

Here, we analyze the impact of update times on the IoT data collection performance.
Naturally, the mobility of UAV BSs and update times are affected by the activation
pattern of IoT devices. Considering the fact that the set of active IoT devices varies over
time, UAV BSs must dynamically update their positions while collecting IoT data. Note
that the locations of UAV BSs are updated at specific update times. At different update
times, the number of active IoT devices can be different. The required transmit power
IoT devices and the energy consumption of drones for their movements depend on the
number of update times.

Increasing the number of updates will yield a shorter time duration between each two
consecutive updates. Therefore, fewer active IoT need to be served at each update time.
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With fewer number of active devices, the uplink interference stemming from IoT devices
will be lower. Hence, IoT devices will require lower transmit power to send their data to
UAV BSs while satisfying their SINR constraint. Nevertheless, increasing the number of
updates leads to more movements and higher energy consumption for the UAV BSs. In
a probabilistic activation model of IoT devices (e.g., in health monitoring applications),
each IoT device can be active at time t ∈ [0, T] according to the beta distribution. In this
case, we can state the following theorem from [109], which derives the relation between
update times and the average number of active IoT devices at each update time.

T H E O R E M 5.2 The average number of active IoT devices, an, at update time tn is
given by:

tn = T × I−1
(an

L
+ I tn−1

T
(κ ,ω) , κ ,ω

)
, n > 1, (5.32)

t1 = T × I−1
(a1

L
, κ ,ω

)
, (5.33)

where Ix(.) and I−1(.) are, respectively, the regularized incomplete beta function and
inverse of it. L represents the number of IoT devices in the network. Also, [0, T] is
an interval that represents the entire time period within which the IoT devices can be
activated.

As we can see from 5.2, we need to find the update times according to the activation
of the IoT devices. In this case, tn is a function of the total number of IoT devices as
well as their activation pattern. Another observation is that the update times that the
UAV BSs adopt must be adjusted based on the number of active IoT devices at each
update time. In fact, the number of update times is a design parameter that impacts the
transmit power of IoT devices, interference between devices, and energy consumption
of the UAV BSs.

5.3.6 Representative Simulation Results

We simulate an IoT system with 500 devices on a 1 km × 1 km square geographical
area. We assume that these IoT devices are uniformly distributed over the studied area.
Other simulation parameters are ψ = 11.95 and β = 0.14, and fc = 2 GHz [158]. In
Table 5.2, we show the various parameters that we used in our simulation scenarios.
For update time analysis, we consider κ = 3, and ω = 4 for the beta distribution
[184]. For benchmark comparison, we consider stationary UAV BSs whose locations
are predetermined, and they are not dynamically optimized based on the locations of
active IoT devices.

In Figure 5.9, we show a snapshot of the 3D locations of the deployed UAV BSs
as well as their associated IoT devices. We consider five UAV BSs that collect data
from 100 IoT devices. Here, the UAV BSs deployment strategy and the device-UAV BS
associations are determined such that the total transmit that the IoT devices select for
sending their uplink data to their serving UAV BS is minimized.

Given the SINR and the maximum transmit power constraints, it may not be possible
to serve all IoT devices in the network. Therefore, we evaluate the system’s reliability,
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Table 5.2 Simulation parameters for our IoT system with UAV BSs.

Parameter Description Value

Pmax Maximum transmit power of each device 200 mW

α Path loss exponent for LOS links 2

σ 2 Noise power −130 dBm

γ SINR threshold 5 dB

L Total number of IoT devices 500

η1 Additional path loss to free space for LOS 3 dB

η2 Additional path loss to free space for NLOS 23 dB
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Figure 5.9 Positions of UAV BSs and their associated ground IoT devices for one illustrative
snapshot of our considered simulation setting.

which represents the probability of serving all IoT devices. Figure 5.10 shows the reli-
ability versus Pmax in the considered IoT network with UAV BSs. As we can observe
from Figure 5.10, the wireless network reliability increases by increasing Pmax. With a
higher Pmax, each device will have a higher possibility to send its data to a UAV BS.
Figure 5.10 shows that the proposed approach results in a higher reliability compared
to the stationary case in which UAV BSs are pre-deployed. In fact, we can achieve
a higher reliability by optimizing the deployment positions of the UAV BS according
to the IoT devices’ positions. For example, Figure 5.10 demonstrates that our intro-
duced solution can improve the reliability by 28% compared to the benchmark stationary
case.
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Figure 5.10 Reliability comparison between our optimized UAV BS deployment approach and
pre-deployed stationary UAV BSs using 5 UAVs.
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Figure 5.11 Total transmit power of devices vs. number of UAV BSs in the presence of
interference.

Figure 5.11 illustrates how the total transmit power of IoT devices will vary as the
number of UAV BSs changes. As expected, by using more UAV BSs for data collection,
the power consumption of the IoT devices can be decreased. In this example, for 100
IoT devices and 20 channels, using our solution approach, the devices’ total transmit
power decreases by 91% while deploying 10 UAV BSs compared with 5 UAV BSs.
Also, compared to the stationary deployment scenario, our presented approach leads to
a 45% lower IoT devices’ transmit power.
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Figure 5.12 Total transmit power of devices vs. number of orthogonal channels.

Figure 5.13 Update times for different average number of active devices.

In Figure 5.12, we show the total transmit power of IoT devices as a function of the
number of channels. By increasing the number of channels, the devices can reduce their
transmit powers while sending their data to drones. In fact, more orthogonal channels
leads to uplink lower interference between the IoT devices. Hence, to meet the SINR
requirement, each device can use a lower transmit power. For instance, as shown in
Figure 5.12, the IoT devices’ total transmit power decreases by 68% when the number
of orthogonal channels increases from 25 to 50.

In Figure 5.13, we examine how the average number of active devices, a, is related to
the update times. By increasing the number of update times, the time interval between
two consecutive updates decreases, thus fewer devices will be active. For instance, as
shown in Figure 5.13, in order to have a = 100, the fifth update should happen at
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Figure 5.14 Average number of active devices at update times for the probabilistic activation.

tn = 0.41. In this case, to decrease the average number of active devices from 100 to 50,
the number of update times must be increased by a factor of two.

Figure 5.14 showcases the average number of active IoT devices that needs to be
serviced by UAV BSs at each update time. Here, we normalized the update times
by the entire activation duration, T . From this figure, we observe that, for N = 10,
an decreases when the normalized update time is higher than 0.5. By increasing the
number of update times, the UAV BSs will have to serve fewer IoT devices. For exam-
ple, for tn = 0.6, by increasing the number of updates from 5 to 10, the average
number of active devices can decrease by 55%. This, in turn, reduces the interfer-
ence between devices at the cost of more locations’ updates and movements for the
UAV BSs.

5.3.7 Summary

In summary, we have described an optimization-based method for an efficient deploy-
ment of UAV BSs for IoT data collection tasks whereby information must be transmitted
from terrestrial IoT devices to the flying UAV BSs. We have identified the optimal
locations at which the UAV BSs must be deployed along with the optimal device-UAV
BSs associations and the associated uplink transmit power of each IoT device. The goal
was to maximize performance while minimizing the total transmit power consumption
of the IoT devices. Moreover, we have analyzed the dynamic placement of UAV BSs for
serving IoT devices in a time-varying IoT system. In this scenario, we have character-
ized the relationship between update times of UAV BSs and the number of active IoT
devices based on the activation pattern of the devices.
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Figure 5.15 A CRAN with cache-enabled UAVs.

5.4 Proactive Deployment with Caching

In this section, we introduce a potential application of cache-enabled UAV BSs for
capacity enhancement as well as traffic offloading in cellular networks. We particu-
larly focus on a cellular architecture that relies on a cloud radio access network (CRAN)
[191] in which a central cloud that learns a variety of users’ information is considered.
We show how the concept of networking with human-in-the-loop can be exploited for
designing CRANs that are assisted by UAV BSs. In particular, we describe a framework
for deploying cache-enabled UAV BSs while maximizing the CRAN users’ quality of
experience (QoE). This framework, based on our work in [192], exploits user-centric
information including users’ mobility patterns and their content request distribution. To
characterize QoE, various factors, such as transmission delay and the type of devices, are
taken into account. To effectively deploy cache-enabled UAV BSs, the content request
distribution along with the mobility patterns of ground users are predicted by a cloud
center using the machine learning tools of recurrent neural networks. These predictions
will be used for placing the UAV BSs that will assist the CRAN.

5.4.1 Model

We consider a CRAN that provides wireless services to a set U of U ground users using
a set R of R remote radio heads (RRHs). Along with the terrestrial RRHs, a set K
of K cache-enabled UAV BSs are used to service ground users. These UAV BSs use
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a different frequency from the terrestrial network. RRHs uses the cellular band, and
they connect to the cloud’s pool of the baseband units (BBUs) through fronthaul links.
Also, through fiber backhaul links, the cloud is connected to the content servers. In
the considered model, wireless fronthaul links for drones can create interference on the
RRHs while transmitting to the ground users.

Let N be a set of N content that needs to be stored for the ground users with L being
the size of each content. Let Ck be the set of C cached contents at the storage of UAV
BS k. We assume that C ≤ N and k ∈ K. A user’s content is requested within time slot
τ , and �τ is the time slot duration. In this case, the UAV BSs’ contents can be updated
in every T time slots. The main notations of this section are listed in Table 5.3.

Ground Users’ Mobility Model
For users’ mobility, we consider a periodic model in which a user can regularly go
to specific locations, such as to work premises or to a coffee shop. In the considered
CRAN, every H time duration, BBUs gather information about the users’ locations.
Furthermore, mobile users move with a constant speed. The users’ mobility pattern will
be used to effectively deploy our caching-equipped UAV BSs for serving the ground
users.

The UAV BS-user and RRH-user associations are determined based on the users’ QoE
requirements.

Transmission Model
Here, we present the transmission models for UAV BS-User, BBU-UAV BS, and RRH-
user communications.

For a UAV BS-user link, we consider a probabilistic LOS/NLOS model described in
Chapter 3, Section 3.3.6. In this case, the path loss for LOS and NLOS links between
UAV BS k and ground user i at time t can be given by [193]:

lLOS
t,ki

(
wτ ,t,k, wτ ,t,i

) =
LFS (d0) + 10μLOS log

(
dt,ki

(
wτ ,t,k, wτ ,t,i

))+ χσLOS ,
(5.34)

lNLOS
t,ki

(
wτ ,t,k, wτ ,t,i

)=
LFS (d0)+10μNLOS log

(
dt,ki

(
wτ ,t,k, wτ ,t,i

))+χσNLOS ,
(5.35)

where
(
xτ ,k, yτ ,k, hτ ,k

)
is location of drone k, and wτ ,t,k = [

xt,i, yt,i
]

represents the loca-
tion of user i at time t. LFS (d0) = 20 log

(
d0fc4π

/
c
)

is the free-space propagation. d0

and fc are, respectively the reference path loss distance and the carrier frequency. Also,

c is the speed of light, and dt,ki
(
wτ ,t,k, wτ ,t,i

) =
√(

xt,i − xτ ,k
)2 + (

yt,i − yτ ,k
)2 + h2

τ ,k
represents the drone-user distance. For LOS and NLOS communications, the path loss
exponents are defined as μLOS and μNLOS. Also, χσLOS and χσNLOS are zero-mean Gaus-
sian random variables. We can define the average path loss between UAV BS k and user
i by [194]:

l̄t,ki
(
wτ ,t,k, wτ ,t,i

) = Pr
(

lLOS
t,ki

)
× lLOS

t,ki + Pr
(

lNLOS
t,ki

)
× lNLOS

t,ki , (5.36)
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Table 5.3 List of notations.

Notation Description Notation Description

U Number of users C Number of contents
stored at the cache
storage of a UAV BS

K Number of UAV BSs F Number of intervals in
each time slot

R Number of RRHs H Number of time slots to
collect user mobility

PR Transmit power of RRHs Pt,ki Transmitted power of
UAV BS or RRH

N Number of contents τ , �τ Time slot index, Time
slot duration

lt,ki Path loss of UAVs-users dt,ki Distance between RRHs
or UAV BSs and users

xτ ,k, yτ ,k, hτ ,k Coordinates of UAV BSs δSi,n Rate requirement of
device type

LFS Free-space path loss d0 Free-space reference
distance

fc Carrier frequency lFt,ki Path loss of fronthaul
links

μLOS, μNLOS Path loss exponents χσLOS ,χσNLOS Shadowing random
variable

γV
t,ki, γ

H
t,ki SINR of user i LLOS

t,k , LNLOS
t,k LOS/NLOS path loss

from the BBUs to UAV k

t,�t Small interval, interval
duration

lLOS
t,k , lNLOS

t,k LOS/NLOS path loss
from UAV k to users

c Speed of light ht,ki Channel gains between
RRHs k and user i

D̄τ ,i,n Delay CF
τ ,ki Fronthaul rate of UAV or

RRH k

CV
τ ,ki Rate of UAV BSs-user link CH

τ ,qi Rate of RRH-user link

Qτ ,i,n QoE of each user i T Number of time slots for
caching update

xt,i, yt,i Coordinates of users PB Transmit power of the
BBUs
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with Pr
(

lLOS
t,ki

)
Pr
(

lNLOS
t,ki

)
being the LOS and NLOS probabilities (as defined in

Chapter 3) between UAV BS k and user i.
Subsequently, the SNR for the UAV BS-user link will be:

γV
t,ki = Pt,ki

10l̄t,ki(wτ ,t,k ,wτ ,t,i)
/

10σ 2
, (5.37)

where σ 2 is the noise power, and Pt,ki is the transmit power used by a UAV BS k while
serving user i. We assume that the total bandwidth available for each UAV BS is BV ,
which is equally divided among the associated users. The transmission rate between
UAV BS k and user i is written by:

CV
τ ,ki = 1

Fτ ,i

Fτ ,i∑
t=1

BV

Uk
log2

(
1 + γV

t,ki

)
, (5.38)

where BV is the total UAV BS bandwidth and Uk is the number of users served by this
UAV BS. Also, the number of time intervals allocated to a CRAN user is defined as Fτ ,i.

For BBU-UAV BS communications, we adopt the following probabilistic LOS/NLOS
channel model:

LLOS
t,k = dt,ki

(
wτ ,t,k, wτ ,t,B

)−β , (5.39)

LNLOS
t,k = ηdt,ki

(
wτ ,t,k, wτ ,t,B

)−β , (5.40)

where wτ ,t,B = [
xB, yB

]
denotes the BBU’s location. Also, β shows the path loss

exponent.
Here, we consider E clusters of RRHs. In this case, the signal received by a user that

connects to cluster q of RRHs can be expressed by:

bt,q = √
PRHt,qFt,qat,q + n, (5.41)

where Ht,q ∈ R
Uq×Rq represents a path loss matrix. Uq is the number of users connected

to the RRHs, Rq denotes the number of antennas for RRHs, and PR the RRH’s transmit
power. at,q ∈ R

Uq×1 is the continent received by a user interval t, and nt,q ∈ R
Uq×1 is

the white noise component. In addition, Ft,q = HH
t,q

(
Ht,qHH

t,q

)−1 ∈ R
Rq×Uq represents

the matrix used for beamforming [195].
Now, the SINR for user i is given by:

γH
t,qi = PR

∥∥ht,qi f t,qi

∥∥2

E∑
j=1, j �=q

∑
u∈Uj

PR
∥∥ht, jif t, ju

∥∥2

︸ ︷︷ ︸
other cluster RRHs interference

+ PBgt,Bid
−β
t,Bi︸ ︷︷ ︸

wireless fronthaul interference

+σ 2

,

where Mj and Uj are, respectively, the sets of the RRHs and their associated users.
Also, ht,qi ∈ R

1×Rq represents the channel gain of the RRHs-user link, ht,ki =
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gt,kidt,ki (xi, yi)
−β , gt,ki, and dt,ki (xi, yi) =

√(
xt,k − xt,i

)2 + (
yt,k − yt,i

)2 shows user-

RRHs distance. Moreover, the beamforming vector is defined as f t,qi ∈ R
Rq×1.

Subsequently, the transmission rate of RRHs when serving user i is:

CH
τ ,qi = 1

Fτ ,i

Fτ ,i∑
t=1

Blog2

(
1 + γH

t,qi

)
. (5.42)

Problem Formulation
Consider the transmission between a UAV BS k positioned at wτ ,t,k and a user i
positioned at coordinates wτ ,t,i.

We can now present the problem formulation of efficient placement of cache-enabled
UAV BSs to meet the user’s QoE requirements with a minimum UAV BS transmit power.
In particular, we proactively determine the optimal UAV BS-user associations, contents
that must be cached at UAV BSs, as well as the 3D deployment positions of the UAV
BSs.

min
Ck ,Uτ ,k ,wτ ,t,k

T∑
τ=1

∑
k∈K

∑
i∈Uτ ,k

Fτ ,i∑
t=1

Pmin
τ ,t,ki

(
wτ ,t,k, δR

i,n, nτ ,i
)
, (5.43)

s. t. hmin ≤ hτ ,k, k ∈ K, (5.43a)

m �= j, m, j ∈ Ck, Ck ⊆ N , k ∈ K, (5.43b)

0 < Pmin
τ ,t,ki ≤ Pmax, i ∈ U , k ∈ K, (5.43c)

where Pmin
t,ki

(
wτ ,t,k, δR

i,n, n
) =

(
2δ

R
i,nUk/BV − 1

)
σ 210l̄t,ki(wτ ,t,k ,wτ ,t,i)

/
10.

Also, δR
i,n represents the QoE requirement of each user, nτ ,i shows the user’s content,

and hmin is the minimum height for each drone.
We use Uτ ,k to denote the set of ground users assigned to UAV BS k.

5.4.2 Optimal Deployment and Content Caching for UAV BSs

The content request distribution and movement patterns of ground users can be predicted
using the machine learning tools of echo state networks, which are essentially recurrent
neural networks. More specifically, we will use a conceptor-based echo state network
(ESN) approach [192]. A conceptor-based ESN separates the users’ behaviors into sev-
eral patterns and learns them independently. This, in turn, will significantly enhance
the prediction’s accuracy compared to classical ESN algorithms (the fundamentals of
ESNs will be revisited and discussed in Chapter 6). In our setting, users that are not
served by RRHs will be connected to the drones. The remaining users are clustered
into K clusters, and each UAV BS provides service for one cluster. Here, we opti-
mize the UAV BSs’ deployment positions and determine the caching contents at each
UAV BS.



5.4 Proactive Deployment with Caching 117

Optimal Content Caching for UAV BSs
To find the optimal content caching, we first determine the user-UAV BS association
using a K-mean clustering algorithm [196]. In this case, the ground users are grouped
into K clusters and each cluster is served by one of the UAV BSs in the CRAN.
Given the UAV BS-user association, the optimal set of contents to cache at the UAV
BSs can be determined. The optimal contents to store at the UAV BS storage lead
to a maximum reduction in the UAV BS’s transmit power. The reduction of UAV BS
transmit power is caused by the decrease of the delay requirement. We define vector
pj,i = [

pj,i1, pj,i2, . . . , pj,iN
]

as the content request distribution of user i during period j
that consists of H time slots. The optimal contents that will be stored at each UAV BS
cache can be determined based on the following theorem that we proved in [192].

T H E O R E M 5.3 The optimal set of contents Ck to cache at each UAV BS k during
period T is:

Ck = arg max
Ck

T/H∑
j=1

H∑
τ=1

∑
i∈Uτ ,k

∑
n∈Ck

(
pj,in�Pj,τ ,ki,n

)
, (5.44)

where �Pj,τ ,ki,n =⎧⎨⎩ Pmin
τ ,ki

(
CR
τ ,ki

)
n/∈Ck

− Pmin
τ ,ki

(
CR
τ ,ki

)
n∈Ck

, CR
τ ,ki,n/∈Ck

≥ δSi,n,

Pmin
τ ,ki

(
δSi,n

)
n/∈Ck

− Pmin
τ ,ki

(
CR
τ ,ki

)
n∈Ck

, δSi,n > CR
τ ,ki,n/∈Ck

,

with CR
τ ,ki,n being the transmission delay of drone k at time slot τ while sending content

n. Also, Pmin
τ ,ki

(
wτ ,t,k, CR

τ ,ki, n
)

is represented by Pmin
τ ,ki

(
CR
τ ,ki

)
.

Theorem 5.3 implies that for an equal fronthaul rate for the users, the optimal content

to cache at the UAV BSs will be Ck = arg max
Ck

T/H∑
j=1

H∑
τ=1

∑
i∈Uτ ,k

∑
n∈Ck

pj,in. Furthermore,

Theorem 5.3 shows that the content caching is a function of the users’ content request
distribution and their cell association.

Optimal Deployment Locations for the UAV BSs
We aim to optimize the deployment locations of UAV BSs such that they can service
their users while using a minimum transmit power.

In the following, from [192], we provide a closed-form solution for the optimal
position of UAV BS k with respect to the users’ locations.

T H E O R E M 5.4 The optimal position of UAV BS k at relatively low or high altitudes
(compared to its horizontal distance to users) will be:

xτ ,k =

∑
i∈Uτ ,k

Fτ ,i∑
t=1

xt,iψt,ki

∑
i∈Uτ ,k

Fτ ,i∑
t=1

ψt,ki

, yτ ,k =

∑
i∈Uτ ,k

Fτ ,i∑
t=1

yt,iψt,ki

∑
i∈Uτ ,k

Fτ ,i∑
t=1

ψt,ki

, (5.45)
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Table 5.4 System parameters used for simulating our CRAN with cache-enabled UAV BSs.

Parameter Value Parameter Value Parameter Value

F 1000 Y 0.13 PB 30 dBm

X 11.9 N 25 PR 20 dBm

χσLOS 5.3 H 10 Pmax 20 W

Ntr 1000 d0 5 m σ 2 −95 dBm

Ns 12 λ 0.01 hmin 100 m

Nx 4 β 2 B 1 MHz

μLOS 2 μNLOS 2.4 δSi,n 5 Mbit/s

χ 15 ζ1 0.5 fc 38 GHz

χσNLOS 5.27 η 100 Bv 1 GHz

K 5 C 1 L 1 Mbit

T 120 ζ2 0.5 Nw 1000

where ψt,ki =
(

2δ
R
i,n/B−1

)
σ 210(LFS(d0)+χσ )/10 and σ =

{
σNLOS, for case a) ,
σLOS, for case b) .

Theorem 5.4 allows finding the optimal location of UAV BS k when it is deployed
at high or low altitudes. In order to solve the UAV BS’s location optimization problem
in a general case, an efficient learning algorithm can be used, [197] and [198], which
provides a suboptimal solution.

5.4.3 Representative Simulation Results

For simulating the considered CRAN, we consider a circular geographical area of radius
500 m, 70 ground users, and 20 RRHs. We assume that users and RRHs are uniformly
distributed on the considered area. Table 5.4 shows the main simulation parameters.

Here, we consider the following benchmark cases: (1) optimal algorithm, which uses
precise information about the mobility of users and their content request distribution,
(2) ESN algorithm proposed by [199], and (3) random caching with ESN algorithm
proposed by [199] to predict content request distribution.

In Figure 5.16, we examine how the rate required for meeting the QoE requirement
of ground users changes with the wireless fronthaul rate. Here, the black plot corre-
sponds to the user-UAV BS link and the blue plot is for the user-BBUs link. Clearly, by
increasing the fronthaul rate, the rate needed for satisfying the QoE of users decreases.
Nonetheless, for the user-UAV BS link, the rate does not considerably change while
increasing the fronthaul rate. In this case, caching at the drones allows for the reduction
of the required rate for guaranteeing the QoE requirements of users for low values of the
wireless fronthaul rate.

Figure 5.17 presents the total transmit power of UAV BSs resulting from vari-
ous approaches as function of the number of CRAN users. As shown in this fig-
ure, compared to a classical baseline ESN algorithm (which can only predict one
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Wireless fronthaul rate of each user (Mbit/s)Wireless fronthaul rate of each user (Mbit/s)

Figure 5.16 Rate required to maximize the users’ QoE as the fronthaul rate of each user change.

Figure 5.17 Total transmit power as the number of users varies (K = 5 and C = 1).
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Figure 5.18 Total transmit power as the number of the contents stored in a UAV cache varies
(U = 70 and K = 5).

nonlinear system and thus has lower accuracy compared to concocter-based ESN),
the UAV BSs’ transmit power can be decreased by 17% while using the conceptor-
based ESN approach. This is due to the fact that the conceptor-based ESN uses
more precise information about users’ mobility than the ESN algorithm. This figure
also shows that with the optimal deployment of cache-enabled UAV BSs, the trans-
mit power of the drones can be reduced by 32% compared to the random caching
case.

In Figure 5.18, we examine the total UAV BSs’ transmit power versus the number
of contents that are stored at the UAV BS cache. From Figure 5.18, we observe that
increasing the number of storage units allows the UAV BSs to transmit with a lower
power and, thus, reduce energy consumption. This is because the chance of storing the
users’ request contents at UAV BSs increases if more storage space is available. There-
fore, the UAV BSs can effectively service their associated users while using a minimum
transmit power.

Figure 5.20 shows the average minimum drones’ transmit power as a function of the
number of UAV BSs. By deploying more UAV BSs, the transmit power of each UAV BS
can be reduced. For instance, increasing the number of UAV BSs from 3 to 7 results in
an 86% lower transmit power for each drone. This is because when using more cache-
enabled drones, each UAV BS will need to serve fewer CRAN users. Thus, the average
transmit power that each UAV BS needs in order to communicate with the ground users
can be reduced.



Figure 5.19 Average minimum transmit power and average altitude vs. the number of UAV BSs.

Figure 5.20 Average minimum transmit power as the number of UAV BSs changes (U = 70 and
C = 1).
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5.4.4 Summary

In this section, we have presented a framework for deploying cache-enabled UAV BSs
that provide wireless service to ground CRAN users. In particular, we have optimized
the deployment locations of the UAV BSs using a proactive approach that leverages
machine learning tools from ESNs. The developed solution ensures that the CRAN
users’ QoE is met while using a minimum UAV BSs’ transmit power. To efficiently
deploy cache-enabled UAV BSs, various user-centric information, such as the mobility
pattern of users and their content request distribution, were used. We have also pro-
vided simulation results to show the effectiveness and performance gain of employing
cache-enabled UAV BS-assisted wireless CRANs.

5.5 Chapter Summary

In this chapter, we have focused on the deployment challenges of UAVs, particularly,
UAV BSs. This chapter has provided a detailed development of various deployment case
studies. In Section 5.1, we have presented the key analytical tools needed for performing
UAV deployment in various scenarios. In Section 5.2, we have studied an efficient place-
ment of UAV BSs for providing wireless connectivity to a given geographical area. We
first have derived the downlink coverage probability for ground users. Next, by exploit-
ing circle packing theory, we have presented a framework for 3D placement of identical
UAV BSs to provide a maximum wireless coverage with minimum transmit power. In
Section 5.3, we have described a method for an efficient deployment of drones for
data collection from terrestrial IoT devices. We have identified the optimal locations
of drones, device-drone associations, as well as the uplink transmit power of each IoT
device that ensures a minimum total transmit power consumption of the devices. More-
over, we have analyzed the dynamic placement of drones for serving IoT devices in
a time-varying IoT network. Finally, in Section 5.4, we have provided a framework
for deploying cache-enabled UAV BSs that can provide cache-assisted connectivity to
CRAN ground users. We have optimized the locations of multiple cache-enabled UAV
BSs such that the users’ QoE is satisfied while using minimum UAV transmit power.



6 Wireless-Aware Path Planning
for UAV Networks

While the previous chapter focused on the deployment of UAVs, particularly UAV BSs,
the next step is to analyze the mobility of UAVs. In particular, this chapter delves into the
problem of wireless-aware path planning for UAVs with a focus on UAV UEs and their
ability to connect with ground cellular networks. To this end, we present a very focused
study on interference-aware path planning for cellular-connected UAV UEs in which
each UAV aims to achieve a tradeoff between various QoS and mission goals, such as
minimizing wireless latency and interference caused on the ground network. To this
end, we start this chapter with Section 6.1, which motivates the need for wireless-aware
path planning for UAV UEs. Then, in Section 6.2, we provide a comprehensive system
model for a wireless network with UAV UEs, and we then formally pose the wireless-
aware path planning problem for UAV UEs. Subsequently, in Sections 6.3 and 6.4, we
show how tools from game theory and reinforcement learning can be merged to design
autonomous, self-organizing path planning mechanisms for UAV UEs that can balance
the various wireless and mission objectives of the drones. We also show how some of
the unique features of UAV UEs, such as their altitude and their ability to establish LOS
will have significant impact on the way in which their trajectory is designed. Using
both theoretical and simulation results (detailed in Section 6.5), we study the impact of
various parameters on the performance of both UAV UEs and ground users. We conclude
the chapter in Section 6.6 with some general insights.

6.1 Need for Wireless-Aware Path Planning

UAV trajectory optimization and path planning are instrumental in mitigating interfer-
ence toward ground users while adapting their movement based on their performance
needs as well as the needs of ground UEs. Naturally, the trajectory of UAVs will impact
their own communication performance as well as the performance of ground UEs. This
interplay between UAV path planning and wireless network performance arises for both
the UAV BS and UAV UE use cases. Although path planning and trajectory optimiza-
tion are fundamental problems for UAV systems, the synergies between the trajectories
of the UAVs and the wireless communication system performance bring forth novel
challenges that are not typically addressed in classical UAV navigation and trajectory
optimization works. Indeed, the prior art in UAV path planning focuses mainly on
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non-UAV UE applications [210–213]. For instance, in [210], a distributed path plan-
ning algorithm is proposed for multiple UAVs to deliver delay-sensitive information,
whereas a UAV’s trajectory is optimized in an energy-efficient manner in [211]. In [213],
a fog-networking-based system architecture coordinates a network of UAVs for video
services in sporting events. Nevertheless, while interesting, these works do not account
for UAV UEs and their associated wireless challenges, which make them inadequate for
cellular-connected UAV UEs.

Indeed, when dealing with path planning for cellular-connected UAV UEs, a num-
ber of new challenges must be addressed. First and foremost, the flying nature of UAV
UEs allows them to establish LOS connectivity with ground BSs. This, in turn, is both a
blessing and a curse. On the one hand, the ability to establish LOS connectivity enables
UAV UEs to achieve high QoS. However, this comes at the expense of generating higher
interference on the links of the ground UEs, due to the LOS nature of UAV UE interfer-
ence. Hence, when dealing with trajectory optimization for UAV UEs, one must balance
the tradeoff between improving the QoS of UAV UEs and minimizing their interference
to ground UEs. Second, when dealing with UAV UE path planning, it is imperative for
any trajectory design to explicitly take into account not only the wireless performance
but also the mission time of the UAVs. Third, the coexistence of ground UEs and UAV
UEs will require new ways to optimize and manage the network, while explicitly taking
into account the highly dynamic nature of the UAV UEs.

To this end, in the remainder of this chapter, we will present an in-depth study on path
planning for UAV UEs. We particularly focus on wireless-aware path planning whereby
the trajectory of the UAV UEs is designed while taking into account both mission time
and wireless performance. We then show how the use of game theory and learning can
help in overcoming the challenges of the dynamic UAV UE environment. We finally
shed light on how various network parameters impact the performance of wireless-aware
path planning for UAV UEs.

6.2 Wireless-Aware Path Planning for UAV UEs: Model and Problem
Formulation

We focus on the uplink of a cellular system having a total system bandwidth B and
composed of S ground BSs in set S, Q ground UEs in set Q, and J cellular-connected
UAV UEs in set J . Each ground BS s will communicate with Ks UEs and Ns UAV UEs.
We divided the bandwidth B into C resource blocks (RBs) and each UAV UE j ∈ Ns

is allocated a set Cj,s ⊆ C of Cj,s RBs. Moreover, BS s allocates a set Cq,s ⊆ C of Cq,s

RBs for each one of its ground UEs q ∈ Ks. Note that, at the level of every BS s, a
given RB c is associated with at most one UAV UE j or ground UE q. We then define
(xj, yj, hj) as the 3D coordinate of a UAV UE j and (xq, yq, 0) as the 3D coordinate of
a ground UE q. In our model, the UAV UEs will fly at a fixed altitude hj. However,
the horizontal coordinates (xj, yj) of each UAV UE j will be dynamically changing over
time. Every UAV UE j must move from an initial location oj to a final destination dj

while transmitting data (e.g., surveillance videos, images, sensor readings, etc.) in an
online manner.
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For simplicity, we consider a virtual grid for the UAV UEs’ mobility whereby we
discretize the space into A equally sized unit areas. UAV UEs move along the center
of the areas ca = (xa, ya, za) and, hence, for each UAV UE j, we have a finite set of
possible paths pj. Here, the path pj of each UAV UE j is defined as a sequence of area
units pj = (a1, a2, · · · , al) such that a1 = oj and al = dj. We choose a sufficiently small
area size for the discretized area units (a1, a2, · · · , aA) ∈ A so that, within each area,
the UAV UEs’ positions can be seen as approximately constant at the maximum UAV
UE’s velocity. We consider a constant velocity 0 < Vj ≤ V̂j for each UAV UE where V̂j

is defined as the maximum velocity of UAV UE j. For the AG channel model, aligned
with Chapter 3, we use the following model for the path loss ξj,s,a between a UAV UE j
at location a, and BS s is given by [214]:

ξj,s,a(dB) = 20 log10(dj,s,a) + 20 log10(f̂ ) − 147.55. (6.1)

Here, f̂ represents the center frequency of our system and dj,s,a represents the Euclidean
distance between UAV UE j at location a and BS s. A Rician channel model is assumed
for the small-scale fading between UAV j and ground BS s reflecting the LOS and mul-
tipath scatterers, which can be a reasonable assumption for tractability, as discussed in
Chapter 3. For the links between ground UEs and their BSs, the channel is assumed to
follow Rayleigh fading. Hence, given a carrier frequency f̂ = 2 GHz, we can define the
path loss between a ground UE q and its serving BS s as follows [215]:

ζq,s(dB) = 15.3 + 37.6 log10(dq,s), (6.2)

with dq,s being the distance between BS s and ground UE q.
The average SINR, 	j,s,c,a, achieved by a UAV UE j (at location a) at its serving

ground BS s over RB c is:

	j,s,c,a = Pj,s,c,ahj,s,c,a

Ij,s,c + BcN0
, (6.3)

with Pj,s,c,a = P̂j,s,a/Cj,s being the per-RB transmit power of UAV UE j over RB c
and P̂j,s,a being the total transmit power of UAV UE j. For tractability, we assume that
a UAV UE j will divided its total transmit power equally among all of its associated
RBs. In (6.3), hj,s,c,a = gj,s,c,a10−ξj,s,a/10 is defined as the channel gain between UAV
UE j and BS s on RB c at location a with gj,s,c,a being the Rician fading parame-
ter. Bc is the bandwidth of RB c, and N0 is the power spectral density of the noise.
Ij,s,c = ∑S

r=1,r �=s(
∑Kr

k=1 Pk,r,chk,s,c + ∑Nr
n=1 Pn,r,c,a′hn,s,c,a′ ) is the total interference

power on UAV UE j at BS s when using RB c with
∑S

r=1,r �=s
∑Kr

k=1 Pk,r,chk,s,c and∑S
r=1,r �=s

∑Nr
n=1 Pn,r,c,a′hn,s,c,a′ being, respectively, the interference from the Kr UEs and

the Nr UAV UEs (at their transmission locations a′) serviced by neighboring BSs r and
employing the same RB c as UAV UE j. We define hk,s,c = mk,s,c10−ζk,s/10 as the chan-
nel gain between ground UE k and its associated BS s when using RB c. Here, mk,s,c is
the Rayleigh fading parameter. As a result, the data rate that UAV UE j (located at a and

served by BS s) achieves will be Rj,s,a = ∑Cj,s
c=1 Bclog2(1 + 	j,s,c,a).

We are particularly interested in the latency achieved by the UAV UEs since it is
an important performance metric for many of the UAV UE applications discussed in
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previous chapters. To model this latency, we consider an M/D/1 queue at each UAV UE
and, then, we can find the latency of the link between UAV UE j and its serving BS as
follows [216]:

τj,s,a = λj,s

2μj,s,a(μj,s,a − λj,s)
+ 1

μj,s,a
, (6.4)

with μj,s,a = Rj,s,a/ν being the service rate over link (j, s) at location a where ν is the
packet size. Here, λj,s is defined as the average packet arrival rate stemming from UAV
UE j over link (j, s). For the ground UEs, we are interested in the data rate as a key
performance metric. In this context, for a ground UE q that is connected to a BS s, we
can define the data rate as:

Rq,s =
Cq,s∑
c=1

Bclog2

(
1 + Pq,s,chq,s,c

Iq,s,c + BcN0

)
, (6.5)

where hq,s,c = mq,s,c10−ζq,s/10 is the channel gain between ground UE q and its BS s
over RB c and mq,s,c is the Rayleigh fading parameter. Using an equal power allocation
assumption over the RBs, we define Pq,s,c = P̂q,s/Cq,s as the transmit power of UE
q to its serving BS s on RB c with P̂q,s being the total transmit power of ground UE
q. Iq,s,c = ∑S

r=1,r �=s(
∑Kr

k=1 Pk,r,chk,s,c + ∑Nr
n=1 Pn,r,c,a′hn,s,c,a′ ) is the total interference

power experienced by ground UE q at BS s over RB c where
∑S

r=1,r �=s
∑Kr

k=1 Pk,r,chk,s,c

and
∑S

r=1,r �=s
∑Nr

n=1 Pn,r,c,a′hn,s,c,a′ correspond, respectively, to the interference from
the Kr UEs and the Nr UAV UEs (at their respective locations a′) associated with the
neighboring BSs r and that employ the same RB c as ground UE q.

6.2.1 Problem Formulation

The objective is to find the optimal wireless-aware path for each UAV UE j based on
its mission goals and its interference toward the ground cellular system. In other words,
the interference level that each UAV UE causes on the ground UEs and other UAV
UEs, the transmission delay, and the time needed to reach the destination should be
minimized. To do this, at each location a ∈ A, the paths of the UAV UEs’ will be opti-
mized jointly with the cell association vector and the power control vector. A directed
graph Gj = (V , Ej) is defined for each UAV UE j where V is the set of vertices cor-
responding to the centers of the unit areas a ∈ A and Ej is the set of edges formed
along the path of UAV UE j. We define ̂P as the transmission power vector with each
element P̂j,s,a ∈ [0, Pj] representing the transmission power level of UAV UE j to its
associated BS s at location a where Pj is the maximum transmission power of UAV
UE j. We define a path formation vector α whose element αj,a,b ∈ {0, 1} represents, for
each UAV UE j, whether or not a directed link is formed from area a toward area b.
We also define a UAV UE to BS association vector β with each element βj,s,a ∈ {0, 1}
indicating whether or not, at location a, UAV UE j is associated with ground BS s.
Formally, we can formulate an optimization problem to determine the path, cell associ-
ation vector, and power control strategies for each UAV UE located at area a (along its
path pj):
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min
̂P,α,β

ϑ

J∑
j=1

S∑
s=1

Cj,s∑
c=1

A∑
a=1

S∑
r=1,r �=s

P̂j,s,ahj,r,c,a

Cj,s
+ �

J∑
j=1

A∑
a=1

A∑
b=1,b �=a

αj,a,b

+ φ

J∑
j=1

S∑
s=1

A∑
a=1

βj,s,aτj,s,a, (6.6)

A∑
b=1,b �=a

αj,b,a ≤ 1 ∀j ∈ J , a ∈ A, (6.7)

A∑
a=1,a �=oj

αj,oj,a=1 ∀j ∈ J ,
A∑

a=1,a �=dj

αj,a,dj=1 ∀j ∈ J , (6.8)

A∑
a=1,a �=b

αj,a,b −
A∑

f =1, f �=b

αj,b, f = 0 ∀j ∈ J , b ∈ A (b �= oj, b �= dj), (6.9)

P̂j,s,a ≥
A∑

b=1,b �=a

αj,b,a ∀j ∈ J , s ∈ S, a ∈ A, (6.10)

P̂j,s,a ≥ βj,s,a ∀j ∈ J , s ∈ S, a ∈ A, (6.11)

S∑
s=1

βj,s,a −
A∑

b=1,b �=a

αj,b,a = 0 ∀j ∈ J , a ∈ A, (6.12)

Cj,s∑
c=1

	j,s,c,a ≥ βj,s,a	j ∀j ∈ J , s ∈ S, a ∈ A, (6.13)

0 ≤ P̂j,s,a ≤ Pj ∀j ∈ J ,s ∈ S, a ∈ A, (6.14)

αj,a,b ∈ {0,1}, βj,s,a ∈ {0,1} ∀j ∈ J , s ∈ S, a, b ∈ A. (6.15)

Our objective function here captures the total interference level that the UAV UEs cause
on neighboring BSs along their paths, the length of the paths of the UAV UEs, and their
wireless transmission delay. ϑ , � , and φ are multi-objective weights used to control
the tradeoff between the three performance metrics that we considered. These weights
can be adjusted to meet the requirements of each UAV UE’s mission. For instance,
the time to reach the destination is critical in search and rescue applications while the
latency is important for online video streaming applications (as inferred from Chapter 2,
the importance of these metrics vary across different UAV UE applications). Constraint
(6.7) guarantees that each area a is visited by UAV UE j at most once along its path pj.
Constraints (6.8) ensure that the trajectory chosen by each UAV UE j begins at its initial
location oj and ends at its final destination dj (i.e., the mission destination and origin
will not change). (6.9) ensures that, whenever a UAV UE j visits area b, this UAV UE
should also leave from area b (b �= oj, b �= dj). Using constraints (6.10) and (6.11), we
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ensure that UAV UE j will transmit to BS s at area a with power P̂j,s,a > 0 only if UAV
UE j actually visits area a, i.e., a ∈ pj and where UAV UE j is associated with BS s at
location a. (6.12) guarantees that each UAV UE j can be served by one BS s at every
location a along its path pj. Constraint (6.13) represents an upper limit, 	j, on the SINR
value 	j,s,c,a of the transmission link between UAV UE j (located at a) and ground BS s,
over RB c. This constraint will thereby guarantee a successful decoding of the packets
transmitted by the UAV UE to its serving BS.

Solving the centralized optimization problem is challenging due to the various param-
eters and objectives involved. In addition, developing centralized wireless-aware path
planning solutions for UAV UEs is undesirable given the inherently distributed nature
of the system and the fact that UAV UEs will not belong to the wireless network opera-
tor. This, in turn, calls for a distributed solution in which each UAV UE j autonomously
learns its path pj, transmission power level, and association vector at each location a.
To develop such a solution, in the next section, we resort to tools from game theory and
machine learning.

6.3 Self-Organizing Wireless-Aware Path Planning for UAV UEs

6.3.1 Path Planning as a Game

Our overarching goal is to develop a distributed path planning solution that enables each
UAV UE to take actions in a self-organizing and online manner. This multi-agent path
planning problem can be properly modeled as a finite dynamic noncooperative game
model G with perfect information [217]. In particular, the UAV UE path planning game
is defined by a tuple G = (J , T , Zj,Vj,�j, uj) with the set J of UAV UEs being the
set of agents/players. T is defined as a finite set of game stages that represent the steps
needed by all UAV UEs to arrive at their missions’ destinations. For each UAV UE j, Zj

is the set of actions that this UAV UE can select at each given time t ∈ T . Moreover, we
define Vj as the set of all network states that are observed by UAV UE j up to stage T of
the game, and we define �j as a set of probability distributions defined over all zj ∈ Zj.
In our game, uj represents the individual utility function of UAV UE j. At each stage t
of the game, the UAV UEs will take actions simultaneously. To this end, each UAV UE
j will seek to determine its most preferred path pj (from origin to destination) while also
determining the corresponding optimal transmit power and cell association vector for
each location a ∈ A along its path pj. Hence, at each time step t, UAV UE j selects an
action tuple zj(t) = (aj(t), P̂j,s,a(t),β j,s,a(t)), where aj(t)={left, right, forward, backward,
no movement} represents a fixed step size, ãj, in a given direction. For every UAV j,
P̂j,s,a(t) = [̂P1, P̂2, · · · , P̂O] represents O different maximum transmit power levels, and
β j,s,a(t) represents the association vector between UAV UEs and their BSs.

For every UAV UE j, we define a set Lj that includes the Lj BSs that are nearest to this
UAV UE. We can now formally define the network state vj(t) that UAV UE j observes at
stage t:

vj(t)=
[
{δj,l,a(t),θj,l,a(t)}Lj

l=1,θj,dj,a(t),{xj(t),yj(t)}j∈J
]
, (6.16)
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where δj,l,a(t) represents the Euclidean distance between UAV UE j, located at a, to BS l
during stage t, θj,l,a represents the orientation angle (in the two-dimensional, horizontal,
xy-plane) from UAV UE j at location a to BS l expressed by tan−1(�yj,l/�xj,l) [218]
with �yj,l and �xj,l being the difference in the x and y coordinates of UAV UE j and BS
l. Moreover, θj,dj,a is the orientation angle in the xy-plane from UAV UE j at location a
to its destination dj defined as tan−1(�yj,dj/�xj,dj ), and {xj(t),yj(t)}j∈J are the horizontal
coordinates of all UAV UEs at stage t. Moreover, different range intervals are considered
for mapping each of the orientation angle and distance values, respectively, into different
states.

Based on our optimization formulation in (6.6)–(6.15) and incorporating the
Lagrangian penalty method into the utility function definition for the SINR con-
straint (6.13), the utility function for UAV UE j at stage t, uj(vj(t), zj(t), z−j(t)) can be
expressed by:

uj(vj(t), zj(t), z−j(t))=

⎧⎪⎪⎨⎪⎪⎩
�(vj(t), zj(t), z−j(t))+C, if δj,dj,a(t) < δj,dj,a′ (t − 1),

�(vj(t), zj(t), z−j(t)), if δj,dj,a(t) = δj,dj,a′ (t − 1),

�(vj(t), zj(t), z−j(t))-C, if δj,dj,a(t) > δj,dj,a′ (t − 1),

(6.17)

where �(vj(t), zj(t), z−j(t)) is defined as:

�(vj(t), zj(t), z−j(t)) = − ϑ ′
Cj,s(t)∑
c=1

S∑
r=1,r �=s

P̂j,s,a(vj(t))hj,r,c,a(t)

Cj,s(t)

− φ′τj,s,a(vj(t), zj(t), z−j(t))

− ς (min(0,

Cj,s(t)∑
c=1

	j,s,c,a(vj(t), zj(t), z−j(t)) − 	j))
2, (6.18)

subject to (6.7)–(6.12), (6.14) and (6.15). ς is the penalty coefficient for (6.13), and C is
a constant parameter. a′ and a are the locations of UAV j at (t − 1) and t where δj,dj,a is
the distance between UAV UE j and its destination dj. The action space of each UAV UE
j and, thus, the complexity of our game G increases exponentially when updating the 3D
coordinates of the UAV UEs. Nevertheless, each UAV UE’s altitude must be bounded to
guarantee an SINR threshold (for the UAV UE) and a minimum achievable data rate (for
the terrestrial UEs). Next, we present an upper and lower bound for the optimal altitude
of any given UAV UE j that is based on the proof done in [219]:

T H E O R E M 6.1 For all values of ϑ ′, φ′, and ς , a given network state vj(t), and an action
zj(t), the upper and lower bounds on the altitude of any UAV UE j are, respectively:

hmax
j (vj(t), zj(t), z−j(t)) = max(χ , ĥmax

j (vj(t), zj(t), z−j(t))), (6.19)

hmin
j (vj(t), zj(t), z−j(t)) = max(χ , ĥmin

j (vj(t), zj(t), z−j(t))), (6.20)

where χ is the minimum altitude at which a UAV UE can be allowed to fly.
ĥmax

j (vj(t), zj(t), z−j(t)) and ĥmin
j (vj(t), zj(t), z−j(t)) are expressed as:
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ĥmax
j (vj(t), zj(t), z−j(t)) =√√√√√√ P̂j,s,a(vj(t))

Cj,s(t) · 	j ·
(

4π f̂
ĉ

)2
·

Cj,s(t)∑
c=1

gj,s,c,a(t)

Ij,s,c(t) + BcN0
− (xj − xs)2 − (yj − ys)2, (6.21)

and

ĥmin
j (vj(t), zj(t), z−j(t)) = max

r
ĥmin

j,r (vj(t), zj(t), z−j(t)), (6.22)

where ĥmin
j,r (vj(t), zj(t), z−j(t)) represents the minimum altitude that UAV UE j should

operate at with respect to a particular neighboring BS r and is given by:

ĥmin
j,r (vj(t), zj(t), z−j(t))

=
√√√√√ P̂j,s,a(vj(t)) ·∑Cj,s(t)

c=1 gj,r,c,a(t)

Cj,s(t) ·
(

4π f̂
ĉ

)2 ·∑Cj,s(t)
c=1 Īj,r,c,a

− (xj − xr)2 − (yj − yr)2, (6.23)

Theorem interpretation: Theorem 6.1 emphasizes the fact that the optimal altitudes of
UAV UEs will be a function of their objective function, locations of the ground BSs,
network design parameters, and the interference level from other ground UEs and UAV
UEs in the network. Hence, at every time instance t, UAV UE j must adjust its alti-
tude depending on the values of hmax

j (vj(t), zj(t), z−j(t) and hmin
j (vj(t), zj(t), z−j(t), thus

adapting to the network dynamics. The derived upper and lower bounds for the opti-
mal altitude of the UAV UEs will hence allow reducing the action space in our game
G, thereby simplifying the process needed for the UAV UEs to find a solution (a so-
called equilibrium) of the game. Next, the equilibrium point of the studied UAV UE
path planning game G is analyzed.

6.3.2 Equilibrium of the UAV UE Path Planning Game

For the UAV UE path planning game G, the subgame perfect Nash equilibrium (SPNE)
in behavioral strategies must be studied. An SPNE is a profile of agent strategies that
imposes a Nash equilibrium (NE) on every subgame of the original dynamic game. Here,
we need to define the notion of a behavioral strategy that enables each UAV UE to assign
independent probabilities to the set of actions at each network state that is independent
across different network states. Note that, from the seminal result of Selten in [220], we
know that, for any finite-horizon extensive game with perfect information, at least one
SPNE will exist. We now define π j(vj(t)) = (πj,z1 (vj(t)),πj,z2 (vj(t)), · · · ,πj, z|Zj| (vj(t))) ∈
�j as the behavioral strategy of UAV j at state vj(t) and we define �(Z) as the set of
all probability distributions over the action space Z . Below, we can formally define the
concept of an SPNE.

D E FI N I T I O N 6.2 A behavioral strategy (π∗
1(vj(t)), · · · ,π∗

J (vj(t))) = (π∗
j (vj(t)),

π∗−j(vj(t))) constitutes a subgame perfect Nash equilibrium if, ∀j ∈ J , ∀t ∈ T and
∀π j(vj(t)) ∈ �(Z), uj(π∗

j (vj(t)),π∗−j(vj(t))) ≥ uj(π j(vj(t)),π∗−j(vj(t))).
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Consequently, at every given state vj(t) and stage t, each UAV UE j will seek to maxi-
mize its expected sum of discounted rewards, computed as the summation of the imme-
diate reward for a given state along with the expected discounted utility of the next states:

u(vj(t),π j(vj(t)),π -j(vj(t)))

= Eπ j(t)

{ ∞∑
l=0

γ luj(vj(t + l), zj(t + l), z-j(t + l))|vj,0 = vj

}

=
∑
z∈Z

∞∑
l=0

γ luj(vj(t + l), zj(t + l),z-j(t + l))
J∏

j=1

πj, zj (vj(t + l)), (6.24)

where γ l ∈ (0, 1) is a discount factor for delayed rewards and Eπ j(vj(t)) represents an
expectation over trajectories of states and actions whereby actions are chosen based
on π j(vj(t)). Note that uj represents the short-term reward for being in state vj and uj

represents the expected long-term total reward from state vj onward.
We can now observe a clear coupling between the UAV UE’s trajectory optimization,

BS association vector, and power control levels. To find the SPNE, in a network with
multiple UAV UEs, each UAV UE will have to acquire the entire knowledge of the future
rewards (at each information set). Clearly, such knowledge is prohibitive in a wireless
network because it requires each UAV UE to know all possible future actions of all other
UAV UEs. This information-gathering process becomes even more challenging as the
number of UAV UEs grows. We will overcome this challenge by resorting to tools from
deep recurrent neural networks (RNNs) [221] whose dynamic temporal behavior and
adaptive memory enables them to store key previous state information to predict future
actions. In what follows, based on [219], a novel deep reinforcement learning (RL)
algorithm that uses the RNN tools of ESNs (as also used in Chapter 5, Section 5.4.2) is
investigated for solving the SPNE of the UAV UE path planning game G. For clarity of
our discussion, an introduction to deep ESN architecture (which expands on the shallow
ESN studied in Chapter 5) is first provided to show how this tool can allow UAV UEs
to store previous states whenever needed while learning future network states. Then, an
RL algorithm based on the deep ESN architecture is studied and shown to be able to
learn an SPNE of the game.

6.4 Deep Reinforcement Learning for Online Path Planning and Resource
Management

We first begin by explaining what the deep ESN architecture is and how it differs from
a canonical ESN.

6.4.1 Deep ESN Architecture

ESNs are RNNs that include feedback connections and belong to the family of reservoir
computing (RC) [222]. An ESN is composed of an input weight matrix Win, a recurrent
matrix W, and an output weight matrix Wout. One key advantage of ESN is its quick
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and computationally efficient training, which stems from the fact that only the output
weights are altered. Using this basic ESN architecture, we can stack multiple nonlinear
reservoir layers to create a deep ESN architecture. Deep ESNs exploit the advantages
of a hierarchical temporal feature representation at different levels of abstraction while
preserving the RC training efficiency. They can learn data representations at different
levels of abstraction, hence disentangling the difficulties in modeling complex tasks by
representing them in terms of simpler ones hierarchically. We denote by N(n)

j,R the number
of internal units of UAV UE j’s reservoir at ESN layer n. Moreover, for UAV UE j, we
also define Nj,U as the external input dimension and Nj,L as the number of stack layers.
We can now introduce various ESN components:

• vj(t) ∈ RNj,U the external input of UAV UE j at stage t capturing the current state of
the network,

• x(n)
j (t) ∈ R

N(n)
j,R as the state of the reservoir, at layer n, for UAV UE j at stage t,

• W(n)
j,in as the input-to-reservoir matrix of UAV UE j at layer n, where W(n)

j,in ∈ R
N(n)

j,R ×Nj,U

for n = 1, and W(n)
j,in ∈ R

N(n)
j,R ×N(n−1)

j,R for n > 1,

• W(n)
j ∈ R

N(n)
j,R ×N(n)

j,R as the recurrent reservoir weight matrix for UAV j, layer n, and

• Wj,out ∈ R
|Zj|×(Nj,U+∑n N(n)

j,R ) as the reservoir-to-output matrix of UAV j, layer n.

This deep ESN architecture can be essentially used to approximate a function

Fj = (F1
j , F2

j , · · · , F
Nj,L
j ) for learning an SPNE for each UAV UE j at each stage t

of our game. For each n = 1, 2, · · · , Nj,L, function F(n)
j represents the evolution of

the reservoir state at a layer n, i.e., x(n)
j (t) = F(n)

j (vj(t), x(n)
j (t − 1)) for n = 1 and

x(n)
j (t) = F(n)

j (x(n−1)
j (t), x(n)

j (t − 1)) for n > 1. Wj,out and x(n)
j (t) are initialized to zero

while W(n)
j,in and W(n)

j are randomly generated. Even though the dynamic ESN reservoir is
initially randomly generated, it is subsequently combined with the external input, vj(t),
in order to store the network states and with the trained output matrix, Wj,out, so that

it can approximate the reward function. Moreover, the spectral radius of W(n)
j (i.e., the

largest eigenvalue in absolute value), ρ(n)
j , must be strictly smaller than 1 to guarantee

the stability of the reservoir [223]. In essence, the value of ρ(n)
j pertains to the variable

memory length of the ESN reservoir, which enables the introduced deep ESN frame-
work to store key previous state information. Naturally, higher values for ρ(n)

j imply a
longer length for the memory.

A deep ESN architecture includes the input and reward functions. For each deep
ESN at the level of a UAV UE j, we have two different input types: (a) external input,
vj(t), which is fed to the first layer of the deep ESN and captures the current state
of the network, and (b) input that is fed to all other layers for n > 1. For our deep
ESN, the input to any layer n > 1 at stage t is nothing but the state of the previous
layer, x(n−1)

j (t). At a game stage t, for UAV UE j, we define ũj(vj(t), zj(t), z−j(t)) =
uj(vj(t), zj(t), z−j(t))

∏J
j=1 πj,zj (vj(t)) to capture the expected value of the instantaneous

utility function uj(vj(t), zj(t), z−j(t)) in (6.17). Hence, when UAV UE j takes an action zj

at a given network state vj(t), it will obtain the following payoff (reward):
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Figure 6.1 Studied deep ESN architecture.

rj(vj(t), zj(t), z−j(t)) =

⎧⎪⎪⎨⎪⎪⎩
ũj(vj(t), zj(t), z-j(t)), if UAV j reaches dj,

ũj(vj(t), zj(t), z-j(t))+γmaxzj∈ZjWj,out(zj(t+1),t+1)

[v′
j(t), x′(1)

j (t), x′(2)
j (t), · · · , x′(n)

j (t)], otherwise.

(6.25)

In 6.25, v′
j(t + 1) and x′(n)

j (t), respectively, represent the next network state and reser-
voir state of layer (n), at stage (t + 1), when actions zj(t) and z−j(t) are taken at
stage t. Figure 6.1 pictorially describes the studied reservoir architecture of a 2-layer
deep ESN.

6.4.2 Deep ESN-Based UAV UE Update Rule

Each UAV UE will now use a deep ESN update phase in order to store and estimate
the reward function of each path and the associated cell association/power allocation
schemes at a game stage t. In this context, at any stage t, we adopt leaky integrator
reservoir units [224] for updating the state transition functions x(n)

j (t). As a result, for

the first layer x(1)
j (t), we can define the state transition function as follows:

x(1)
j (t) = (1 − ω

(1)
j )x(1)

j (t − 1) + ω
(1)
j tanh(W(1)

j,invj(t) + W(1)
j x(1)

j (t − 1)), (6.26)

where ω
(n)
j ∈ [0, 1] is the leaking parameter at layer n for UAV UE j. This parameter

is directly related to the speed of the reservoir dynamics in response to the input with
larger values of ω(n)

j resulting in a faster response of the corresponding n-th reservoir to

the input. For n > 1, we can define the state transition x(n)
j (t) of UAV UE j as follows:

x(n)
j (t) = (1 − ω

(n)
j )x(n)

j (t − 1) + ω
(n)
j tanh(W(n)

j,inx(n−1)
j (t) + W(n)

j x(n)
j (t − 1)), (6.27)

At a stage t, the deep ESN output yj(t) can be used to estimate each UAV UE j’s
reward depending on this UAV UE’s currently adopted action zj(t) and z−j(t) as well
as the actions of other UAVs (−j), respectively, for the current network state vj(t) after
training Wj,out. This output, therefore, can be derived as follows:

yj(vj(t), zj(t)) = Wj,out(zj(t), t)[vj(t), x(1)
j (t), x(2)

j (t), · · · , x(n)
j (t)]. (6.28)
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In order to train the deep ESN output matrix Wj,out, we employ a temporal difference
RL scheme. In this context, we will use a linear gradient descent scheme that uses the
reward error signal, as defined by the following update rule [225]:

Wj,out(zj(t),t+1) = Wj,out(zj(t),t)+λj(rj(vj(t), zj(t), z-j(t)) − yj(vj(t), zj(t)))[vj(t),

x(1)
j (t), x(2)

j (t), · · · , x(n)
j (t)]T . (6.29)

We now recall that the goal of each UAV UE will now be to minimize the value of the
error function ej(vj(t)) = ∣∣rj(vj(t), zj(t), z-j(t)) − yj(vj(t), zj(t))

∣∣.
6.4.3 Deep RL for Wireless-Aware Path Planning

We can now develop a multi-agent deep RL framework that leverages the introduced
deep ESN architecture and update rule. This framework will be adopted by the UAV UEs
in order to learn their path and resource allocation parameters at an SPNE of the path
planning game G. This RL algorithm will have two phases: training and testing. First,
UAV UEs are trained offline. Subsequently, a testing phase will start, and it pertains to
the actual execution of the RL algorithm during which the weights of Wj,out, ∀j ∈ J are
optimized.
Training phase: For training, each UAV optimizes its output weight matrix Wj,out to
minimize the error function ej(vj(t)) at every stage t. The introduced training phase
admits multiple iterations, each of which has multiple rounds, i.e., the number of steps
required for all UAV UEs to reach their destinations dj. In each round, the UAV UEs
will face a tradeoff between playing the action associated with the highest expected util-
ity and attempting to explore all their possible actions to enhance their reward function
estimates in (6.25). This is nothing but the well-known RL exploration and exploitation
tradeoff. Here, the UAV UEs must properly balance their RL process between exploring
their network environment and exploiting the information that they acquire and accumu-
late from this environment exploration [226]. Here, we will employ the basic ε-greedy
policy that enables the UAV UEs to select, with a probability of 1 − ε + ε

|Zj| , the action
that maximizes their utility value while exploring other possible actions with a proba-
bility of ε

|Aj| . As a result, we can now formally define each UAV UE j’s strategy over its
action space:

πj,zj (vj(t)) =
⎧⎨⎩1 − ε + ε

|Zj| , argmaxzj∈Zj
yj
(
vj(t), zj(t)

)
,

ε
|Zj| , otherwise.

(6.30)

Based on the chosen action zj(t), each UAV UE j updates its location, transmit power
level, and cell association choice, and, then, it calculates its reward function using (6.25).
To identify the next state of the network, each UAV UE j will broadcast its chosen action
to all other UAV UEs. Subsequently, every UAV UE j will update its state transition
vector x(n)

j (t) for each deep ESN layer (n) by using (6.26) and (6.27). At any stage t,
the output yj can now be updated using (6.28). Finally, for each UAV UE j, the output
matrix Wj,out weights can be updated based on the linear gradient descent rule of (6.29).
We summarize this introduced training phase in Algorithm 2.
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Algorithm 2 Training phase of our deep RL algorithm

Initialization:
π j,zj (vj(t)) = 1

|Aj| ∀t ∈ T , zj ∈ Zj, yj(vj(t), zj(t)) = 0, W(n)
j,in, W(n)

j , Wj,out.

for Total number of iterations for training do
while At least one UAV UE j has not reached its destination dj, do

for all UAVs j (in a parallel manner) do
Input: Each UAV UE j obtains an input vj(t) based on (6.16).
Step 1: Action selection

Each UAV UE j picks a random action zj(t) with probability ε,
Otherwise, UAV j selects zj(t) = argmaxzj∈Zj

yj
(
vj(t), zj(t)

)
.

Step 2: Location, cell association, and transmit power update
Each UAV UE j updates its location, cell association and transmission power level based on
the selected action zj(t).

Step 3: Reward computation
Each UAV UE j calculates the values of its reward using (6.25).

Step 4: Action broadcast
Each UAV UE j broadcasts its selected action zj(t) to all other UAV UEs.

Step 5: Deep ESN update
- Each UAV UE j updates the state transition vector x(n)

j (t) for each layer (n) of the deep ESN
architecture based on (6.26) and (6.27).
- Each UAV UE j finds its output yj

(
vj(t), zj(t)

)
using (6.28).

- The weights of the output matrix Wj,out of each UAV UE j are updated using the linear
gradient descent update rule defined in (6.29).

end for
end while

end for

Testing phase: The testing phase is summarized in Algorithm 3. The testing phase per-
tains to the actual execution of the RL process in the network. During the testing phase,
each UAV UE will pick its action in a greedy way (for every state vj(t)). It will then
update its location, cell association, and transmit power level accordingly. Each UAV
UE will subsequently broadcast its chosen action and update its state transition vector
x(n)

j (t) for each deep ESN layer n by using (6.26) and (6.27).
Convergence: Guaranteeing the convergence of the studied deep RL scheme is chal-
lenging as it is highly dependent on the hyperparameters used during training. For
instance, using too few neurons in the hidden layers results in underfitting that under-
mines the neural network to detect the signals in a complicated data set. On the other
hand, using too many neurons in the hidden layers can yield overfitting or an increase in
the training time that hampers the training procedure. However, as shown in [219], if the
algorithm converges, it is guaranteed to find an SPNE of the formulated game. Moreover,
the simulations conducted in [219] did not observe major cases of non-convergence.
Naturally, if a cycling behavior is observed due to non-convergence, the UAV UEs can
simply stop their learning process at any suboptimal solution. While that solution may
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Algorithm 3 Testing phase of our deep RL algorithm

while At least one UAV UE j has not reached its destination dj, do
for all UAV UEs j (in parallel) do

Input: Each UAV UE j obtains an input vj(t) using (6.16).
Step 1: Action selection

Each UAV UE j chooses an action zj(t) = argmaxzj∈Zj
yj
(
vj(t), zj(t)

)
.

Step 2: Location, cell association, and transmit power update
Each UAV UE j updates its location, cell association, and transmission power level based on
the selected action zj(t).

Step 3: Action broadcast
Each UAV j broadcasts its selected action zj(t) to all other UAV UEs.

Step 4: State transition vector update
Each UAV UE j updates the state transition vector x(n)

j (t) for each deep ESN layer (n) using
(6.26) and (6.27).

end for
end while

not be an SPNE, it can still provide a useful suboptimal outcome for a complicated data
set. Naturally, one can consider future extensions to the architecture of the proposed RL
algorithm whereby convergence is always guaranteed.

6.5 Representative Simulation Results

We simulate an 800 m × 800 m square area that we divide into 40 m × 40 m grid areas.
In this area, we randomly and uniformly deploy 15 BSs and we use an uncorrelated
Rician channel with K̂ = 1.59 [227]. We discretize the maximum transmit power of
each UAV into 5 equally separated levels. The external input of our deep ESN, vj(t), is
a function of the number of UAV UEs; hence, the number of hidden nodes per layer,
N(n)

j,R , will change with the number of UAV UEs. Our key simulation parameters are
summarized in Table 6.1.

Figure 6.5 presents the upper bound for the optimal altitude of UAV UE j as the SINR
threshold value, 	̄ changes, for various values of the transmit power. Meanwhile, in Fig-
ure 6.5, we present the lower bound for the optimal UAV UE altitude as the interference
threshold varies, for different transmit power levels. From these figures, we can observe
that the upper bound on the UAV UE’s optimal altitude decreases as 	̄ increases while

its lower bound decreases as the interference threshold
∑Cj,s(t)

c=1 Īj,r,c,a increases. We also
know that the maximum altitude of a UAV UE will be smaller as the ground network
gets denser while its lower bound increases as the ground network data requirements
increase. As a result, in such scenarios, a UAV UE is better off operating at higher
altitudes.
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Table 6.1 System parameters.

Parameters Values Parameters Values

Maximum transmit power (Pj)
for a UAV UE

20 dBm SINR threshold (	j) −3 dB

Transmit power for ground (̂Pq)
for a ground UE

20 dBm Learning rate (λj) 0.01

Noise power spectral density (N0) −174 dBm/Hz RB bandwidth (Bc) 180 kHz
Total bandwidth (B) 20 MHz # of interferers (L) 2
Packet arrival rate (λj,s) (0,1) Packet size (ν) 2000 bits
Carrier frequency (f̂ ) 2 GHz Discount factor (γ ) 0.7
Number of hidden layers 2 Step size (̃aj) 40 m

Leaky parameter/layer (ω(n)
j ) 0.99, 0.99 ε 0.3

Figure 6.2 The (a) upper bound for the optimal UAV UE altitude as function of the SINR
threshold (	̄) for various transmit power levels and ground network density and (b) lower bound

for the optimal UAV UE altitude as function of the interference threshold (
∑Cj,s(t)

c=1 Īj,r,c,a), for
various transmit powers.
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Table 6.2 Performance assessment for one UAV.

# of steps delay (ms) average rate per UE (Mbps)

Wireless-aware approach 32 6.5 0.95
Shortest path 32 12.2 0.76

Figure 6.3 Illustrative snapshot showing the path of a single UAV UE resulting from our
wireless-aware approach and from a shortest path scheme.

Figure 6.3 shows a snapshot of a representative path that a single UAV adopts. In this
snapshot, we show the path resulting from our approach, which is wireless-aware, and
we compare it with the path resulting from a baseline shortest path scheme whose goal is
to minimize the UAV UE mission time. Indeed, in contrast to our studied scheme, which
explicitly factors in wireless metrics during path planning, in the shortest path baseline,
the goal of the UAV UEs is to reach their destinations with the minimum number of
steps. Table 6.2 provides the performance results for the UAV UE’s paths in Figure 6.3.
In our studied RL approach, the UAV UE selects a path away from the densely deployed
ground network area while still maintaining proximity to its serving ground BS. There-
fore, in our approach, the UAV UE clearly balances the goals of optimizing its network
performance and minimizing the time steps needed to complete its mission and reach its
destination. This path clearly minimizes the interference level that the UAV UE induces
on the ground UEs as well as the UAV UE’s wireless latency (see Table 6.2). Therein
the proposed approach achieves a 25% increase in the average rate per ground UE and a
47% decrease in the wireless latency compared to the shortest path, while requiring the
same number of steps to reach the destination.

Figure 6.4 compares the average wireless latency per UAV UE and the average ground
UE rate that result from our wireless-aware approach and the shortest path baseline. In
addition, we use Table 6.3 to compare the number of steps required by all UAV UEs
to arrive at their missions’ destinations. From Figure 6.4 and Table 6.3, we can clearly
observe that our approach achieves a lower wireless latency per UAV UE and a higher
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Table 6.3 The required number of steps for all UAV UEs to reach their corresponding destinations
based on our approach and that of the shortest path scheme for different numbers of UAV UEs.

# of steps 1 UAV 2 UAVs 3 UAVs 4 UAVs 5 UAVs

Wireless-aware approach 4 4 6 7 8
Shortest path 4 4 6 6 7

Figure 6.4 Performance evaluation of our approach in terms of average (a) wireless latency per
UAV and (b) rate per ground UE as compared to the shortest path approach, for different network
sizes.

rate per ground UE, compared to the shortest path baseline. This advantage is seen for
different network sizes. We can also see that our wireless-aware solution needs a number
of steps that is comparable to the shortest path case. In fact, the wireless-aware scheme
provides a better tradeoff between UAV UE latency and ground UE data rate compared
to the shortest path. For example, taking the case of 5 UAV UEs, we can observe that
the introduced solution achieves a 37% increase in the average ground UE data rate and
a 62% decrease in the average (per UAV UE) wireless latency. Indeed, one can adjust
the multi-objective weights of our utility function based on several parameters, such as
the rate requirements of the ground network, the power limitation of the UAV UEs, and
the maximum tolerable wireless latency of the UAV UEs. Figure 6.4 also demonstrates
that an increase in the number of UAV UEs will lead to an increase in the average delay
per UAV UE and a decrease in the average rate per ground UE, for all schemes. This
stems from the increase in the interference level on the ground UEs and other UAV UEs
owing to the LOS links between UAV UEs and their serving ground BSs.

Figure 6.5 examines the impact of the altitude of the UAV UEs on the average, per
UAV UE, wireless latency and the average data rate per ground UE for different util-
ity functions. Clearly, higher UAV UEs’ altitudes lead to an increase in the average
wireless latency (for all utility functions) due to the associated increase in the distance
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Figure 6.5 Performance evaluation of our approach in terms of average (a) wireless latency per
UAV UE and (b) rate per ground UE for different utility functions and for different UAV UE
altitudes.

between the UAV UEs and their serving BSs, which accentuates the path loss effect.
Meanwhile, higher UAV UE altitudes will yield a higher average data rate for the ground
UEs because the path loss effect will now reduce the air-to-ground interference. Clearly,
we can now observe an interesting tradeoff between minimizing the average delay per
UAV UE and maximizing the average ground UE data rate. Hence, alongside the multi-
objective weights, the altitude of the UAV UEs can be modified so as to meet the rate
requirements of the ground UEs while also minimizing the communication latency for
each UAV UE depending on its mission goal.

In Figure 6.6, we show the average transmit power per UAV UE along its path as
function of the number of ground BSs under two utility functions: one that focuses on
minimizing the average latency for each UAV UE and another that focuses on mini-
mizing the interference on the ground UEs. Figure 6.6 shows that adding ground BSs
will have a direct effect on the power levels of the UAV UEs. For instance, for denser
networks, an increase in the transmit power level occurs because of the increase in the
interference from the ground UEs. Hence, the UAV UEs will use a larger transmis-
sion power in order to meet their wireless delay requirements. We can also observe that
the average transmit power level per UAV UE decreases from 36 mW to 29 mW in
the case of minimizing the interference level caused on neighboring ground BSs. This
stems from the fact that, as the number of ground BSs increases, the interference caused
by each UAV UE on the ground network will also increase. This, in turn, will force
each UAV UE to reduce its transmit power. We note that, when minimizing the wireless
latency, the average transmit power per UAV UE will be larger than the case of mini-
mizing the interference level, irrespective of the ground network size. Hence, the UAV
UEs’ transmit power level is a function of their mission objective and the number of
ground BSs.
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Figure 6.6 Impact of densifying the ground network on the average transmit power of the UAV
UEs along their paths.

Figure 6.7 Impact of the ground network size on the average (a) wireless latency per UAV UE and
(b) rate per ground UE for different utility functions and for a constant UAV UE altitude of
120 m.

In Figure 6.7, we show the (a) wireless latency per UAV UE and (b) rate per ground
UE for different utilities as a function of the number of BSs and for a fixed UAV UE
altitude of 120 m. For a denser ground network, we can see that the average wireless
latency per UAV UE will increase while the average per UE rate will decrease. For
instance, when the objective is to minimize the interference level along with energy
efficiency, the average wireless latency per UAV UE increases from 13 ms to 47 ms, and
the average rate per ground UE decreases from 0.86 Mbps to 0.48 Mbps as the number
of BSs increases from 10 to 30.
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Figure 6.8 Average (a) wireless latency per UAV and (b) rate per ground UE as the ground
network size changes, for various utility functions and for different UAV UE altitudes.

Figure 6.8 shows how the (a) wireless latency per UAV UE and (b) rate per ground
UE will vary for different UAV UE altitudes and different ground network size (number
of BSs). As the UAV altitude increases and/or the ground network becomes denser, the
average wireless latency per UAV UE becomes higher. For example, we can observe a
delay increase of 27% as the UAV UEs’ altitude doubles for 20 BSs. Meanwhile, we
observe an increase of 120% as the number of BSs increases from 10 to 30 for a fixed
UAV UE altitude of 180 m. The results in Figure 6.5 demonstrate that the UAV UE’s
maximum altitude will decrease for denser ground networks, and, hence, it is desirable
to operate the UAVs at a lower altitude when the number of BSs increases from 10 to 30.
From Figure 6.8, we can also see that a denser ground network leads to a decrease in the
average data rate per ground UE because of the increase in the interference. Meanwhile,
the average data rate per ground UE will increase as the UAV UEs’ altitude becomes
higher. Clearly, the overall network performance tightly depends on both the UAV UEs’
altitude and the number of BSs. In a dense ground network, UAV UEs must fly at a
lower altitude for applications in which the wireless transmission latency is more crit-
ical and at a higher altitude when a minimum achievable data rate for the ground UEs
is required.

In Figure 6.9, we study the impact of changing the number of nearest BSs (Lj) in the
observed network state, vj(t), of a UAV UE j on the average rate per ground UE for dif-
ferent utility functions. An improvement can be observed in the average rate per ground
UE as the number of nearest BSs in the state definition increases. For instance, when
UAV UEs minimize the interference caused on the ground network, the average rate
per ground UE increases by 28% as the number of BSs in the state definition increases
from 1 to 5. This gain results from the fact that, as Lj increases, the UAV UEs get
a better sense of their surrounding environment and, hence, they can more properly
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Figure 6.9 Average data rate per ground UE when the number of interferer BSs in the state
definition (Lj) changes.

Figure 6.10 Convergence of the offline training phase as function of the learning rate.

choose their next location in a way to minimize the interference level they induce on the
ground network. Another important observation here is that, as Lj increases, the size of
the external input (vj) will be larger, which requires more neurons per layer. This will
then increase the number of iterations needed to converge, which highlights an inter-
esting tradeoff between improving the ground UEs’ performance and maintaining low
algorithmic complexity.

Figure 6.10 shows how the learning rates, λ, affect the average training error ej(vj(t)).
In essence, the choice of a learning rate directly determines the step size that the RL
process must take to reach the SPNE. In this regard, a choice of small values for the
learning rate, e.g., λ = 0.0001, will yield slower convergence. In contrast, choosing
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large learning rate values (e.g., λ = 0.1) reduces the error function for the first few
iterations but that effect levels off thereafter. Figure 6.10 shows that λ = 0.1 will not lead
to convergence during the testing phase. In contrast, λ = 0.0001 and λ = 0.01 will result
in convergence. This is because large initial learning rates will decay the loss function
faster and thus make the model get stuck at a particular region of the optimization space
instead of better exploring it. Clearly, a better performance is achieved for λ = 0.01, as
compared to smaller and larger values of the learning rate. To overcome this issue, we
adopt the early stopping technique to avoid overfitting.

6.6 Chapter Summary

In this chapter, a novel interference-aware path planning scheme that allows cellular-
connected UAV UEs to minimize interference caused on a ground network was
investigated. The problem has been formulated as a noncooperative game in which the
UAV UEs are the players. To solve the game, a deep RL algorithm based on ESNs was
investigated and shown to find an SPNE of the formulated path planning game, if it
converges. The introduced algorithm enables each UAV to decide on its next location,
transmission power level, and cell association vector in an autonomous manner, thus
adapting to the changes in the network. Simulation results have shown that the proposed
approach achieves better wireless latency per UAV and rate per ground UE while requir-
ing a number of steps comparable to the shortest path scheme. The results show that a
UAV UE’s altitude plays a vital role in minimizing the interference level on the ground
UEs as well as the wireless transmission delay of the UAV UE. In particular, the altitude
of the UAV is a function of the ground network density, the UAV UE’s objective, and
the actions of other UAV UEs in the network. Finally, we note that the model that we
designed in this chapter can be to many of the UAV UE use cases that we discussed in
Chapter 2.



7 Resource Management for UAV
Networks

The deployment of UAVs and their mobility require network operators to revisit the way
in which the network resources, such as spatial resources (e.g., cell association) and
spectrum resources, are managed. In particular, the three-dimensional nature of UAV
networks and their mobility bring forward new challenges for resource management.
In this chapter, we primarily focus on how wireless communication resources can be
optimized and managed in wireless networks that support UAVs. In Section 7.1, we
start by analyzing a very unique problem related to wireless networks supported by
hovering UAV BSs: Cell association in the presence of explicit hover time constraints.
Naturally, the presence of hover times for UAVs will drastically change the way in which
cell association is performed. Then, in Section 7.2, we generalize the problem of cell
association to a fully fledged 3D cellular system that integrates both UAV BSs and UAV
UEs. Subsequently, in Section 7.3, we investigate the problem of spectrum and cache
management in a wireless network supported by UAV BSs that are able to access both
licensed and unlicensed spectrum resources. We conclude this chapter with insights on
the problems of resource management in UAV networks.

7.1 Cell Association in UAV-Assisted Wireless Networks under Hover Times
Constraints

In this section, we study the problem of cell association in a wireless network that uses
UAV BSs to provide downlink connectivity to ground users based on our work in [228].
In particular, we study the potential of using hovering UAVs that can stay relatively static
over certain geographical areas to provide wireless communication and connectivity. As
discussed in previous chapters, UAV BSs can indeed complement existing wireless sys-
tems by delivering connectivity to congested (e.g., hotspot) areas, to disaster-affected
areas, as well as to temporary events such as in a stadium or an open-air theater. How-
ever, to provide such connectivity, LAP UAVs such as quadrotor drones, must be able to
hover over a given area for a specified period of time. In this context, the hover time that
a UAV BS can spend over a given geographical area is limited by the battery, energy,
and other hardware limitations of UAVs. As a result, the presence of hover time con-
straints imposes a number of limitations on the quality of the data service that UAV BSs
can provide. Here, our goal is to study how such hover time constraints can strongly
impact the performance and connectivity provided by UAV BSs. In particular, we focus
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on how cell association can be optimally managed to meet the data service requirements
of users, while being cognizant of the hover time constraints of the UAV BSs.

It is noteworthy to mention that problems of cell association for wireless networks
with UAV BSs have been studied in some prior works, such as [229] and [230]. Although
these work show how the area-to-UAV assignment can enhance the wireless capac-
ity of a cellular system, they do not take into account the fact that ground users in a
UAV-assisted wireless network can be spatially distributed in a rather arbitrary man-
ner. Moreover, these works do not explicitly factor in the impact of hover times; which
is necessary to design proper resource and cell association mechanisms. Indeed, the
flight/hover time duration of UAV BSs will bring forward important technical challenges
that are unique to UAV-assisted wireless systems [231] and [232]. In this context, the
hover time of a UAV BS, defined as the flight time during which a UAV BS can remain
relatively stationary in the sky over a certain geographical area to wirelessly commu-
nicate with ground users, affects the performance of the system in various ways. For
instance, a longer UAV hover time can enable the UAV BS to service ground wire-
less users for longer periods of time which, in turn, allows it to sustain higher load
requirements and service a larger geographical area. In contrast, a lower hover time
(as constrained by the onboard battery of a UAV as well as some of the flight regula-
tions discussed in Chapter 1) can limit the amount of data that can be delivered by this
UAV BS. Therefore, to analyze cell association and resource management in a UAV-
assisted wireless network, the hover time constraints must be explicitly accounted for.
In this context, most of the prior UAV studies related to resource management, such as
[25, 42, 157, 169, 171, 229, 233–237], have not considered the hover time constraints,
which motivates the study provided in this section.

7.1.1 System Model

We focus on a D ⊂ R2 geographical area in which multiple wireless users are deployed.
In the two-dimensional spatial plane, the users are distributed according to a given,
generic distribution f (x, y). The network deploys a set M of M UAVs that will be used
as aerial BSs to provide connectivity for the users on the ground1. For each UAV i ∈ M
located at an altitude hi, we define si = (xi, yi, hi) as its 3D coordinate. We consider
the downlink of the wireless network, and we use a frequency division multiple access
scheme for the UAV BSs. For each UAV BS i, we define Pi as the maximum transmit
power and Bi as the total available bandwidth.

Since we are interested in cell association, we will partition the geographical area
into different subareas, as shown in Figure 8.8. For each UAV BS i, we define Ai as the
partition of the geographical area that will be serviced by UAV BS i. In other words,
all users that are positioned in the area Ai will be associated with UAV BS i for wire-
less connectivity. Given that we have M UAV BSs, then, our area will be divided into a
total of M disjoint partitions (one partition per UAV). Each UAV i will have a hover
time τi, which represents the time duration used by UAV i to hover (i.e., relatively
stop) over a corresponding cell area partition to serve ground wireless users. Within

1 To provide backhaul connectivity for this UAV-enabled network, for model simplicity, we consider that
readily available solutions, such as satellites or WiFi, are used [238].
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Figure 7.1 System model.

its hover time duration, each UAV BS will connect to the cellular ground users, perform
control and computations, and transmit the needed data to the devices. Hence, we can
define a variable Ti that captures the effective data transmission duration within which
a given UAV i will be serving its associated users. Naturally, Ti will be smaller than the
total hover time, because the UAV will use its hover time not only for wireless trans-
mission purposes but also to perform control and computing functions. Therefore, we
define a UAV control time function gi(.) that depends on the total number of users in
Ai. gi(.) captures the fraction of the hover time that is not used for effective wireless
data transmission. This control time translates into the total duration that a UAV BS i
must spend for control and computation functions, setting up connections, and perform-
ing signaling. Intuitively, the control time increases with the total number of users in a
given cell.

Hereinafter, the total amount of data (i.e., in bits) that each UAV BS sends to a given
ground user will be referred to as the data service. This data service is impacted by a
number of key factors such as the effective data transmission time (stemming from the
flight time) and the network bandwidth, which itself depends on the hover time and the
control time. Clearly, this data service will be impacted by the hover time. In particular,
for a wireless network with UAV BSs, we can consider two types of resources: (a)
bandwidth (as is done in a classical cellular network), and (b) effective data transmission
times that depend on the hover time (a unique feature of UAV networks).

Now that the model is setup, one can consider two important resource management
scenarios. Scenario 1, which we call UAV communications under hover time con-
straints, is a case in which, given the maximum imposed hover time durations (dictated
by each UAV BS’s flight and energy restrictions), the goal is to find an optimal cell par-
titioning for the area that maximizes the average amount of data transmitted to ground
users in a fair manner. In particular, Scenario 1 involves partitioning the area in an opti-
mal way based on both the hover time constraints and the spatial distribution of the
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wireless users. In short, Scenario 1 asks the following question: Under a maximum,
per UAV hover time constraint, how can the network maximize the total data service
while including fairness (e.g., load balancing) constraints? Scenario 1 mainly pertains
to resource-limited wireless transmission scenarios in which the amount of resources
(for our case: hover times and bandwidth resources) is not sufficient to completely meet
the needs of the wireless users. An illustrative example of Scenario 1 is one in which
battery-limited UAV BSs are deployed in geographical hotspots that have a high load of
users and associated demands for wireless networking.

Alternatively, one can consider a second scenario, Scenario 2, called UAV communi-
cation under load constraints. Here, the objective is to optimize the hover times of the
UAV BSs in a way to completely meet the data service demands (in bits) required by
the ground users. Scenario 2, therefore, poses the following problem: Under a known
load requirement for each ground user (at each location), how can the network min-
imize the average hover times of the UAV BSs? Answering this question allows a
wireless network to satisfy the demands of its users with a minimum hover time from
the UAV BSs. Minimizing the hover time will, in turn, lead to indirectly minimizing the
energy consumption of the UAVs. The analysis of Scenario 2 is particularly apropos for
public safety and emergency situations in which all ground users must be quickly and
efficiently served by aerial UAV BSs.

In the scope of this chapter, we will provide an analytical exposition on the solution of
Scenario 1. For Scenario 2, given that the approach is somewhat analogous to Scenario 1,
we will restrict our attention to a few insightful numerical results.

To model our network, we need to use a proper AG channel model. As discussed in
Chapter 3, several AG channel models exist for UAV networks. Within the scope of this
section, we adopt the widely used probabilistic path loss model discussed in Chapter 3
and provided by ITU [239] and the work in [157]. This model includes both an LOS and
NLOS component. For notational convenience and coherence, we redefine this model
here. For instance, the path loss between UAV BS i and a given user at location (x, y)
will be:

!i(x, y) =

⎧⎪⎨⎪⎩
(

4π fcdo
c

)2 (
di(x, y)/do

)2
μLOS, LOS link,(

4π fcdo
c

)2 (
di(x, y)/do

)2
μNLOS, NLOS link,

(7.1)

where μLOS and μNLOS are different attenuation factors for LOS and NLOS connec-
tions. Meanwhile, the variable fc represents the carrier frequency, do represents the free-

space reference distance, and c is the speed of light. di(x, y) =
√

(x − xi)2 + (y − yi)2 + h2
i

represents the distance between a UAV i and an arbitrary user at location (x, y). We then
define the LOS probability for any UAV BS to user link, as follows:

PLOS,i = b1

(
180

π
θi − 15

)b2

. (7.2)

In (7.2), θi = sin−1( hi
di(x,y) ) represents the elevation angle (in radians) between the UAV

BS and the ground user while b1 and b2 are constants that capture the environment
impact. Recall that the NLOS probability will be given by: PNLOS,i = 1 − PLOS,i. Now,

given that do = 1 m and Ko =
(

4π fc
c

)2
, we can define the average path loss as
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Kodi
2(x, y)[PLOS,iμLOS + PNLOS,iμNLOS]. Then, we can find the power of the received

signal from a UAV i:

P̄r,i(x, y) = Pi

Kodi
2(x, y)

[
PLOS,iμLOS + PNLOS,iμNLOS

] , (7.3)

with Pi being the transmit power of UAV BS i. We can write the SINR received by any
ground user at coordinate (x, y) and served by UAV BS i:

γi(x, y) = P̄r,i(x, y)

Ii(x, y) + σ 2
, (7.4)

where the term Ii(x, y) = β
∑
j �=i

P̄r, j (x, y) captured the interference experienced by a user

at location (x, y) and stemming from all UAV BSs other than UAV BS i. We also define
0 ≤ β ≤ 1 as a weight factor to control the amount of interference (e.g., as a term
that can be used to allow some form of interference mitigation). β = 1 and β = 0,
respectively, represent two extreme scenarios: a full interference and an interference-free
scenario.

Next, for a given user at coordinate (x, y) and served by UAV BS i, we can define the
data rate:

Ci(x, y) = W(x, y) log2 (1 + γi(x, y)), (7.5)

where W(x, y) is the bandwidth allocated to the user at (x, y). As a result, the data service
provided by UAV BS i to the user at (x, y) will be given by:

Li(x, y) = TiCi(x, y), (7.6)

where Ti is UAV BS i’s effective transmission time. Here, Li(x, y) is essentially the total
number of bits sent to a ground user located at coordinate (x, y). This data service term
will be a function of several parameters such as the user’s location, the allocated band-
width, the location of the serving UAV, as well as Ti, the effective data transmission time
of UAV BS i. As discussed earlier, now, each UAV has two key resources to allocate to
its ground users: the effective data transmission times and the bandwidth. Naturally, the
amount of resources that each user can obtain is dependent on various network parame-
ters that include the partitioning of the cells, the bandwidth and hover time of the UAVs,
and the total number of users. Having defined our general model, we can now analyze
cell association and partitioning for Scenario 1.

7.1.2 Optimal and Fair Cell Partitioning for Data Service Maximization under Hover Time
Constraints

As discussed previously, in Scenario 1, the goal is to derive the optimal cell parti-
tions that can maximize the average data service to the wireless users while taking into
account the restrictions on the hover times of the UAV BSs and the current spatial dis-
tribution of the ground users. We assume that each cell will be assigned to a single UAV
BS. Meanwhile, all users within a given cell will be serviced by the UAV BS that is
assigned to that cell. To perform cell partitioning, it is customary to use classical par-
titioning approaches, such as Voronoi and weighted Voronoi diagrams [240]. However,



150 Resource Management for UAV Networks

these known techniques do not explicitly take into account the spatial distribution of
users, which can lead to imbalanced cell partitions and loads across cells. In short, con-
ventional Voronoi-based cell partitioning approaches can lead to a highly unfair data
service for the users. In contrast, while maximizing the total data service, our approach
will ensure that resources are equally shared among all users. Hence, our approach
avoids creating unbalanced cell partitions, thereby leading to better fairness compared
to classical Voronoi solutions.

The hover time τi that UAV BS i uses to serve the users located in its cell Ai will
encompass the effective data transmission time and the control time. To ensure fairness,
we impose the following condition:

Ti = τi − gi

(∫
Ai

f (x, y)dxdy

)
, ∀i ∈ M, (7.7)

where gi is the control time, which depends on the number of the users in Ai. Here,
we can note that, given the spatial distribution of users, f (x, y), and the total number of
users, N, the average number of users in partition Ai can be defined as N

∫
Ai

f (x, y)dxdy
[241].

From (7.5) and (7.6), we observe that the term TiBi can be viewed as the resources
that UAV BS i employs to serve users in Ai. Therefore, in order to ensure a fair resource
allocation policy, we should have:

TiBi∫
Ai

f (x, y)dxdy
= TjBj∫

Aj
f (x, y)dxdy

, ∀i �= j ∈ M, 2 (7.8)

where (7.8) guarantees that a UAV BS that has more bandwidth and a longer hover time
will provide service to more users.

Given (7.8) and
∫
D f (x, y)dxdy =

M∑
k=1

∫
Ak

f (x, y)dxdy = 1, we can derive the following

constraint on the number of users in each partition:∫
Ai

f (x, y)dxdy = BiTi

M∑
k=1

BkTk

, ∀i ∈ M. (7.9)

By inspecting (7.9), we can observe that the number of users in each generated optimal
partition depends on the resources of the UAV BSs. For instance, if the UAV BSs have
the same bandwidths and hover times, then (7.7)–(7.9) lead to

∫
Ai

f (x, y)dxdy = 1
M ,

∀i ∈ M. In other words, identical UAV BSs will serve equally loaded cells.
Given (7.5), (7.6), and (7.9), we can define the average data service at location (x, y) ∈

Ai:

Li(x, y) = TiBi

N
∫
Ai

f (x, y)dxdy
log2 (1 + γi(x, y)) =

(
1

N

M∑
k=1

BkTk

)
log2 (1 + γi(x, y)) .

(7.10)

2 Note that, given hover times of the UAVs, τi, ∀i ∈ M, we can compute Ti, ∀i ∈ M by solving the system
of equations in (7.7) and (7.8).
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We can now formally pose an optimization problem whose goal is to optimally par-
tition the service area of the UAV BSs so as to maximize the average data service, as
follows:

max
Ai, i∈M

M∑
i=1

∫
Ai

(
1

N

M∑
k=1

BkTk

)
log2 (1 + γi(x, y)) f (x, y)dxdy, (7.11)

s.t.
∫
Ai

f (x, y)dxdy = BiTi

M∑
k=1

BkTk

, ∀i ∈ M, (7.12)

γi(x, y) ≥ γth, if (x, y) ∈ Ai, ∀i ∈ M, (7.13)

Al ∩ Am = ∅, ∀l �= m ∈ M, (7.14)⋃
i∈M

Ai = D, (7.15)

where (7.12) is a constraint on the load of each cell while (7.13) is the necessary con-
dition for associating each user to a UAV i. (7.30) and (7.31) guarantee disjoint cell
partitions whose union covers the entire considered area D.

Given (7.13), we introduce a function qi(x, y) =
(
γi(x,y)
γth

)−n
with n being a large num-

ber (i.e., tends to +∞), and, then, we subtract qi(x, y) from the objective function in
(7.11). Now, we can observe that, whenever constraint (7.13) is violated, qi(x, y) goes
+∞ and, thus, point (x, y) will not be assigned to UAV i or equivalently (x, y) /∈ Ai.
Hence, whenever the problem is feasible, we can omit (7.13) while penalizing the objec-

tive function in (7.11) by qi(x, y). We now let λ = 1
N

M∑
k=1

BkTk, and ωi = BiTi
M∑

k=1
BkTk

. Then,

the optimization in (7.11) can be cast as the following minimization problem:

min
Ai, i∈M

M∑
i=1

∫
Ai

−(λlog2 (1 + γi(x, y)) − qi(x, y)
)

f (x, y)dxdy, (7.16)

s.t.
∫
Ai

f (x, y)dxdy = ωi, ∀i ∈ M, (7.17)

Al ∩ Am = ∅, ∀l �= m ∈ M, (7.18)⋃
i∈M

Ai = D. (7.19)

There are many challenges that must be overcome in order to solve (7.16). These
challenges include the continuity of the optimization variables Ai, ∀i ∈ M, the fact
that f (x, y) is a generic function of x and y, and the presence of complex constraints
in (7.17). We will therefore use mathematical tools from the field of optimal transport
theory [242] to overcome these challenges and find the optimal cell partitions, Ai, for
which the average total data service is maximized. Optimal transport theory essentially
studies matching problems between two continuous or discrete sets using a so-called
transport map T , which is used to map one set to another. In our considered scenario,
we have a continuous distribution of users that must be matched to a discrete set of



152 Resource Management for UAV Networks

UAV BS locations. In general, the optimal cell partitions can be obtained by optimally
mapping the users to the UAV BSs.

Given (7.16), the cell partitions are related to the concept of a transport map by [243]:{
T(v) =

∑
i∈M

si1Ai (v);
∫
Ai

f (x, y)dxdy = ωi

}
, (7.20)

where ωi = BiTi
M∑

k=1
BkTk

, as given in (7.17), is directly related to the hover time and the

bandwidth of the UAV BSs. Also, 1Ai (v) is an indicator function that will be 1 if v ∈ Ai,
and 0 otherwise. Given this notation, we can cast (7.16) within the optimal transport
framework as follows. Given a continuous probability measure f of users, and a discrete
probability measure	 = ∑

i∈M
ωiδsi corresponding to the UAVs, we must find the optimal

transport map for which
∫
D J (v, T(v))f (x, y)dxdy is minimized. In this case, δsi is the

Dirac function, and J is the transportation cost function, which is used in (7.16) and is
given by:

J(v, si) = J(x, y, si) = qi(x, y) − λlog2 (1 + γi(x, y)) . (7.21)

We can now see that our cost function, J, and the source distribution, f , are contin-
uous. In this case, by using the so-called Monge-Kantorovich problem from optimal
transport, we can state the following theorem (whose proof can be found in [228]):

T H E O R E M 7.1 The optimization problem in (7.16) is equivalent to the following
unconstrained maximization problem:

max
ψi,i∈M

{
F(ψT ) =

M∑
i=1

ψiωi +
∫
D
ψc(x, y)f (x, y)dxdy

}
, (7.22)

where ψT is a vector of variables ψi, ∀i ∈ M, and ψc(x, y) = inf
i

J(x, y, si) − ψi.

Theorem 8.2 shows that the complex optimal cell partitioning problem in (7.16) can
be transformed to a tractable optimization problem with M variables. Hence, by solving
(7.22), we can obtain the optimal values of ψi, ∀i ∈ M that can then be used to derive
the optimal cell partitions. This solution, in fact, can be completely characterized by the
following theorem [228]:

T H E O R E M 7.2 Given (7.22), F is a concave function of variables ψi, i ∈ M. We also
have:

∂F

∂ψi
= ωi −

∫
Di

f (x, y)dxdy, (7.23)

where Di = {
(x, y)|J(x, y, si) − ψi ≤ J(x, y, sj) − ψj, ∀j �= i

}
.

Theorem 7.2 shows the concavity of F as a function of ψT . As a result, by maximiz-
ing F, we can derive the optimal values for ψi, ∀i ∈ M. Subsequently, given the optimal
ψi, ∀i ∈ M, (7.20) can be employed to derive the optimal cell partitions correspond-
ing to (7.16). In particular, as shown in [228], a gradient-descent-based approach can
ultimately be used to find the optimal partition by leveraging the result of Theorem 7.2.
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Table 7.1 Simulation parameters.

Parameter Description Value

fc Carrier frequency 2 GHz
Pi Transmit power of each UAV BS 0.5 W
No Noise power spectral density −170 dBm/Hz
N Number of ground users 300
μLOS Additional path loss to free space for LOS 3 dB
μNLOS Additional path loss to free space for NLOS 23 dB
B Bandwidth 1 MHz
α Control time factor 0.01
h Altitude of a UAV BS 200 m
u Load per user 100 Mb
μx,μy Mean of the truncated Gaussian distribution 250 m, 330 m
b1, b2 Environmental parameters (dense urban) 0.36, 0.21 [157]

As proven in [228], one can follow a similar approach to address the cell partitioning
problem under Scenario 2. Next, we will provide a set of simulation results that show-
case the impact of hover time on the overall operation of a wireless network that uses
UAV BSs. The results will include insights from both Scenario 1 and Scenario 2.

7.1.3 Extensive Simulations and Numerical Results

We evaluate the developed framework by using extensive simulations. We use a two-
dimensional truncated Gaussian distribution to deploy wireless ground users within a
rectangular area of size 1000 m × 1000 m. This spatial distribution is chosen since it
is an accurate representation of a hotspot area. We use a grid-based deployment for the
UAVs, and we deploy them at an altitude of 200 m. Unless stated otherwise, we consider
a full interference case with β = 1. We use gi(Nai) = α(Nai)

2 for the control time with
α being an arbitrary constant. Other parameters are provided in Table 7.1. We compare
our results, obtained based on the developed optimal cell partitioning approach, with the
classical weighted Voronoi diagram baseline. All statistical results are averaged over a
large number of independent runs.

Representative Results for Scenario 1

In Figures 7.2 and 7.3, we show an illustrative, comparative example of the partitions
resulting from our studied approach and a classical weighted Voronoi diagram. Here,
an illustration of UAV partitions under a nonuniform user distribution is presented. This
example includes a total of five UAV BSs that are servicing ground users distributed
according to a nonuniform, truncated Gaussian spatial distribution. Here, we set the
maximum hover time to 30 minutes, a typical value for quadcopter UAV BSs [244].
These figures use a darker color for areas that have a higher user density. Figure 7.3
shows that the cell partitions related to UAV BSs 4 and 5 have significantly more users
compared to partition 1. Hence, under hover time restrictions, ground users that are
positioned in cell partitions 4 and 5 cannot be fairly served by UAV BSs. However,
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Figure 7.2 Optimal transport-based cell partitions.
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Figure 7.3 Weighted Voronoi diagram.

the optimal cell partitions resulting from our discussed approach are derived in a way
that the average data service under a fairness constraint is maximized. For instance,
Figure 7.2 demonstrates that the size of cell partitions 4 and 5 decreases compared to
the weighted Voronoi diagram. Hence, the developed solution leads to better fairness
among the users compared to the weighted Voronoi case.

The fairness of the studied scheme is further evaluated in Figure 7.4 using the popu-
lar Jain’s fairness index for different values of σo, which is a parameter that determines
how uniform the truncated Gaussian distribution will be. Here, we note that larger val-
ues of σo imply a more uniform spatial distribution. Figure 7.4 clearly demonstrates
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Figure 7.4 Jain’s index for fairness (in terms of average data service) of the developed solution
compared to Voronoi.

that the studied, hover-time cognizant solution yields better fairness as exemplified by
the minimum Jain’s index resulting from both solutions. In particular, the developed
framework is much more fair in scenarios with highly non-uniform spatial distribu-
tions (i.e., practical, real-worldistic hotspot scenarios). Clearly, whenever the distri-
bution becomes more uniform, the developed approach will tend toward the Voronoi
case.

In Figure 7.5, we show how the interference factor β affects the average total data
service. Figure 7.5 first corroborates the intuition that a lower interference will lead to a
higher data service for the users. For instance, for a scenario with 5 UAV BSs, the data
service can be tripled by reducing β from 1 to 0.1. From this figure, we can also observe
that using more UAV BSs is only beneficial if proper interference mitigation (i.e., a low
β) is done. For example, Figure 7.5 shows that doubling the number of UAV BSs from
5 to 10 provides a substantial gain (about 56%) if β = 0.1. However, this gain is only
5% for β = 1.

Figure 7.6 shows the impact of the maximum hover time on the data service. One
interesting result from Figure 7.6 is the fact that the use of a small number of UAV
BSs (i.e., 5 UAV BSs) with a relatively large hover time (40 minutes) yields a better
performance compared to a case with a double number of UAV BSs (10 UAV BSs) with
a maximum hover time of 30 minutes. Therefore, an additional 10 minutes of hover time
can lead a better performance than doubling the number of UAV BSs. Naturally, these
gains stem not only from the hover time but also from the fact that adding UAV BSs can
increase interference. Nonetheless, this result clearly showcases the importance of the
hover time in resource management for wireless networks with UAV BSs. For system
operators, in many scenarios, it can be more efficient to deploy more capable UAV BSs
(with more energy to fly/hover as discussed in Chapter 1) than to deploy a larger number
of UAV BSs with shorter flying times.
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Figure 7.5 Average data service resulting from the studied solution as a function of the
interference factor.

30 35 40 45 50 55 60

Maximum hover time of each UAV (min)

0

20

40

60

80

100

120

140

T
ot

al
 d

at
a 

se
rv

ic
e 

(G
b)

10 UAVs
5 UAVs

Figure 7.6 Impact of the maximum hover time on the network performance.

Representative Results for Scenario 2
Next, we present illustrative results for Scenario 2. Recall that, in this scenario, the
objective is to minimize the hover time under a data service requirement for each ground
user. In the numerical results, we set this data service requirement to a value of 10 Mb.

First, in Figure 7.7, we show how the network bandwidth impacts the total hover time
needed by the UAVs. In this figure, we compare two bandwidth allocation schemes:
an optimal bandwidth allocation that minimizes the hover time (derived in [228]), and
a baseline equal bandwidth allocation. From this figure, we can first see that a larger
bandwidth leads to a smaller hover time. Therefore, having more bandwidth can enable
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Figure 7.7 Impact of bandwidth and bandwidth allocation on the average (per UAV) hover time.

1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

Number of UAVs

A
ve

ra
ge

 h
ov

er
 ti

m
e 

(m
in

)

1
2
3
4
5
6
7
8
9
10

To
ta

l b
an

dw
id

th
 u

sa
ge

 (M
hz

)

Figure 7.8 Average hover time as function of the network size (number of UAVs) and bandwidth.

the UAV BSs to serve the ground user (at a given target rate) more quickly. Moreover,
Figure 7.7 also shows that optimizing the bandwidth while being aware of the hover
time can reduce this hover time by up to 51% compared to a hover time-agnostic equal
bandwidth allocation.

In Figure 7.8, we present the average total UAV BS hover time as a function of the
number of UAV BSs for an interference-free scenario. In this case, we can clearly
see that the total bandwidth usage linearly increases with the network size. Fig-
ure 7.8 also shows that using a larger number of UAV BSs can potentially reduce
the total hover time for an interference-free scenario. For example, from Figure 7.8,
we can see that tripling the number of UAV BSs increases from 2 to 6 leads to
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Figure 7.9 Impact of interference on the average hover time of UAV BSs.

a 53% decrease in the total hover time. Nevertheless, deploying more UAVs in an
interference-free scenario will require more bandwidth. Therefore, the results of this
figure uncover a very clear fundamental tradeoff between bandwidth and hover time:
A network designer can operate its network in a more spectrally efficient manner (i.e.,
use less bandwidth), if it can deploy UAV BSs that can hover for longer periods of
time.

Finally, in Figure 7.9, we assess the impact of interference on the hover time.
Naturally, a higher interference will require longer hover times from the UAV BSs
because of the lower associated transmission rate. For lower transmission rates, the
UAV BSs need to hover for a longer time duration to meet the service demands
of the ground users. From this figure, we can see that, for a full interference case
(at β = 1), the average hover time is more than four times larger than the one
resulting from the interference-free case (at β = 0). Hence, to account for the
hover time capabilities of the UAV BSs, one must properly control the way in which
interference is managed in the network via scheduling and interference mitigation
techniques.

7.1.4 Summary

In this section, we have analyzed the impact of the hover time of UAV BSs on the
performance that they can achieve in a network. In particular, we have studied a com-
prehensive solution for optimizing cell association and partitioning, for UAV-assisted
wireless networks, in the presence of hover time constraints. We have first shown that a
complete characterization of the solution is possible using tools from optimal transport
theory. Then, we have shed light on how various parameters, such as bandwidth, inter-
ference, and the users’ spatial distribution, can impact the hover time and data service
performance of a network with UAV BSs. The results of this section can serve as a basis
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for studying more complex resource management and cell association mechanisms in a
UAV-assisted wireless network.

7.2 Resource Planning and Cell Association for 3D Wireless Cellular
Networks

In the previous section, we focused on wireless networks in which UAVs play the sole
role of UAV BSs that support ground users. However, in future wireless networks, par-
ticularly in 5G and 6G networks, we envision that two types of UAVs will be deployed:
UAV BSs and UAV UEs, as articulated in Chapters 1 and 2 of this book. In such net-
works, UAV BSs may be used to support not only ground users but also flying UAV
UEs. To this end, in this section, building on the work in [245], we go beyond the two-
dimensional model of Section 7.1 to design a fully fledged 3D cellular network that
encompasses both UAV BSs and UAV UEs. In such a scenario, we focus on the interac-
tions between these two types of UAVs, and we study how one can generalize classical
two-dimensional network models (e.g., hexagonal cells) to 3D space. Such a generaliza-
tion will entail proper planning of spatial reuses (i.e., how to perform frequency planning
in 3D) and will require new ways to perform cell association in 3D space. The developed
model will also incorporate HAPs for providing backhaul connectivity.

Here, we note that, in the current state of art on UAV communications, most model
have focused on a single use case: UAV BS or UAV UE. For instance, the majority
of works on deployment such as [169, 174, 246] and resource management [247–249]
consider only UAV BSs with ground users and no flying UEs. Meanwhile, the prior
works on UAV UEs [219, 250, 251] have only focused on how such UAV UEs can make
use of ground BSs and did not focus on the possibility of UAV-to-UAV communica-
tion between UAV BSs and UAV UEs. In general, given the high potential of having
both UAV UEs and UAV BSs deployed in future networks, as motivated by the various
applications of Chapter 2, it is imperative to study a fully fledged 3D wireless cellular
network that integrates both UAV use cases. Such a study will be done in this section
with a focus on resource planning and management.

7.2.1 A Rigorous Model for 3D Cellular Networks

We consider the 3D wireless cellular network illustrated in Figure 8.8 that encompasses
a set N of N UAV BSs (LAPs), a set L of L UAV UEs, and several HAP UAVs. In
the considered aerial 3D network, UAV BSs serve UAV UEs over the downlink while
HAPs are used to provide backhaul connectivity [252] for UAV BSs. We consider each
UAV BS to be equipped with omnidirectional antennas for full 3D connectivity. HAPs
can provide a suitable backhaul solution for our 3D network, since they can establish
LOS backhaul links while also adjusting their location with respect to the positions of
the UAV BSs. While it is possible to use different backhaul types for the considered 3D
network [253], we employ HAP UAVs that can connect via free-space optical (FSO)
communications backhaul links to the UAV BSs. Such a choice is done to enhance the



160 Resource Management for UAV Networks

reliability and latency of the backhaul link, compared to the use of terrestrial wireless
connections. We also assume that each UAV BS will connect to the closest HAP (provid-
ing the highest rate) for backhauling. We use Cn to represent UAV BS n’s transmission
rate over the backhaul. This rate is assumed to be constant and predetermined for the
considered model. Each UAV BS n will have a transmit power Pn and a bandwidth
Bn. The spatial distribution (in 3D space) of the UAV UEs is given by a generic function
f (x, y, z). This function captures the probability with which each UAV UE can be present
around a 3D location (x, y, z). To estimate this distribution of the UAV UEs, UAV BSs
can use machine learning techniques (e.g., see [245]) without requiring a continuous
tracking of UAV UEs. Analogously to the previous section, we are interested in parti-
tioning the space to find the cells associated with each UAV BS. Here, we focus on a
3D space and, therefore, we divide our space into N 3D cells. Each cell represents a
spatial volume that must be served by a single UAV BS. We define the set Vn to rep-
resent a 3D cell that is associated with a UAV BS n that is serving UAV UEs located
within this 3D cell. As a result, we can compute the average number of UAV UEs within
cell Vn:

Kn = L
∫
Vn

f (x, y, z)dxdydz. (7.24)

In the considered model, we use the FDMA scheme for the UAV BSs. As a result, the
average downlink data rate from a UAV BS n to a UAV UE at coordinate (x, y, z) will
be:

Rn(x, y, z) = Bn

Kn
log2

(
1 + γn(x, y, z)

)
, (7.25)

where Bn
Kn

represents the amount of bandwidth used to service each UAV UE within cell
Vn. This bandwidth is determined by sharing the total bandwidth among the UAV UEs.
In (7.25), γn(x, y, z) represents the SINR experienced by a UAV UE that is positioned at
coordinate (x, y, z) and serviced UAV UE n ∈ N .

To quantify the performance of UAV UEs, we use the average latency as a key metric.
We consider three types of latency measures: (a) transmission latency from UAV BSs
to UAV UEs, (b) computation latency that UAV BSs use to serve UAV UEs, and (c)
backhaul latency for the UAV BS to HAP links. For a UAV BS n ∈ N that is transmitting
data to a UAV UE at coordinate (x, y, z), the transmission latency will be:

τTr
n (x, y, z, Kn) = β

Rn(x, y, z)
, (7.26)

where β represents the size (in bits) of each packet transmitted to each drone-UE.
Next, we can easily define the backhaul transmission latency, which depends on the

load of the UAV BSs and the backhaul data rate. In particular, the average backhaul
latency for the link between a UAV BS n ∈ N and its backhaul-serving HAP, will be:

τB
n (Kn) =

βL
∫
Vn

f (x, y, z)dxdydz

Cn
= βKn

Cn
, (7.27)
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where βL
∫
Vn

f (x, y, z)dxdydz is the average load on UAV BS n and Cn is the maximum
backhaul data rate between UAV BS n and its serving HAP.

Next, to define the computation time, we first observe that it depends on two factors:
(a) the processing speed of a UAV BS, and (b) the size of the data (i.e., load) processed at
each UAV BS. To this end, we introduce a function gn(βKn) to represent the computation
latency at UAV BS n. Here, βKn represents the total data size that UAV BS n must
process. Consequently, we can now define the total latency experienced by any UAV
UE located at a coordinate (x, y, z) and served by UAV BS n:

τ tot
n (x, y, z, Kn) = τTr

n (x, y, z, Kn) + τB
n (Kn) + gn(βKn). (7.28)

Having provided a concrete model for our 3D network, we can now define our objec-
tive, which is to minimize the average latency of the UAV UEs by finding an optimal 3D
cell association between UAV BSs and UAV UEs. To do so, we must first determine how
the UAV BSs can be deployed in a 3D cellular structure. Then, given such a deployment
and given an estimation of the spatial distribution of the UAV UEs, we can determine
the optimal 3D cell partitions Vn, ∀n ∈ N that lead to a minimum average latency for
UAV UEs. This problem can be posed formally as follows:

min
V1,...,VN

N∑
n=1

[∫
Vn

τTr
n

(
x, y, z, Kn

)
f (x, y, z)dxdydz

+ τB
n (Kn) + gn(βKn)

]
, (7.29)

s.t. Vl ∩ Vm = ∅, ∀l �= m ∈ N , (7.30)⋃
n∈N

Vn = V , (7.31)

where Kn = L
∫
Vn

f (x, y, z)dxdydz is the average number of UAV UEs in Vn, which
depends on the 3D cell association and V is the entire considered space in which
UAV UEs can fly. (7.30) and (7.31) are constraints used to guarantee that the derived
3D partitioning will lead to disjoint spaces whose union covers the entire 3D region
considered V .

7.2.2 3D Deployment of a Cellular Network with UAV BSs: A Truncated Octahedron
Structure

Prior to solving our cell association problem, we must properly deploy and plan our
network in 3D space. Given that a 3D cellular network fundamentally differs from
a classical, two-dimensional hexagonal network, it is imperative to first develop a
new approach for 3D deployment of UAV BSs with an associated frequency planning
mechanism in 3D space. Inspired by the way in which hexagons were used for the two-
dimensional case, for 3D, we adopt the notion of a truncated octahedron structure to
deploy the UAV BSs in 3D and to derive feasible integer frequency factors that allow a
characterization of the co-channel interference among UAV BSs.
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RR

Figure 7.10 An illustration of a 3D truncated octahedron.

Indeed, in a classical ground cellular network, hexagonal cells are used for BS plan-
ning. The hexagonal shape was used because non-overlapping hexagons can fully cover
(with no gaps) a two-dimensional space. This shape can also properly approximate
the circular radiation pattern of an omni-directional BS antenna. Inspired from this
approach, in this section, we consider a similar problem in 3D. For instance, in 3D, regu-
lar polyhedron geometric shapes that can tessellate a given space (i.e., fill it entirely with
no gaps) include hexagonal prism, cube, rhombic dodecahedron, and truncated octahe-
dron [254]. From this set, one can see that the closest approximation of a sphere can be
done with the truncated octahedron. In addition, the truncated octahedron [254] mini-
mizes the number of polyhedrons needed to completely cover a 3D space. The truncated
octahedron is a polyhedron in three dimensions with regular polygons faces. As we can
see from Figure 7.10, the truncated octahedron has 14 faces with 8 regular hexagonal
and 6 square, 24 vertices, and 36 edges [255]. As already mentioned, a truncated octa-
hedron can completely fill and tessellate a 3D Euclidean space without overlap among
the different cells. Due to these features, we adopt a truncated octahedron-based cell
structure for modeling and deploying a 3D cellular network.

To form a 3D wireless network, we will deploy the UAV BSs in a way to cover the
entire desired space. Hence, we will first introduce an arrangement of multiple truncated
octahedron cells that completely cover a given space. Then, the UAV BSs will be placed
at the center of each truncated octahedron, as illustrated in Figure 7.11. This deployment
approach provides full coverage for a 3D space, and, as will be evident from the rest of
this section, it will also provide a tractable way to analyze a 3D wireless network. In
addition, this approach will also facilitate tractable frequency planning in 3D space.
Given this approach, we can now determine the exact locations of the UAV BSs and
their associated truncated octahedron cells, from the following theorem:

T H E O R E M 7.3 The three-dimensional locations of drone-BSs in the studied 3D
cellular network are given by:

P{a,b,c} = [
xo, yo, zo

]+ √
2R
[
a + b − c, −a + b + c, a − b + c

]
, (7.32)
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Figure 7.11 Using truncated octahedron cells to deploy a 3D cellular network based on UAV BSs.

where a, b, c are integers chosen from set {..., −2, −1, 0, 1, 2, ...}, and R is the edge
length of the considered truncated octahedrons. [xo, yo, zo] is the Cartesian coordinates
of a given reference location (e.g., center of a specified space).

The proof of this theorem is found in [245]. Theorem 7.3 can be used to find the exact
3D coordinates of UAV BSs that are placed at the centers of truncated octahedrons. By
using Theorem 7.3, as shown in [245], one can also determine the frequency reuse factor
as well as interfering UAV BSs, using the following result:

T H E O R E M 7.4 In the considered 3D cellular network, any feasible integer frequency
reuse factors can be determined by solving the following equations:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

q =
√[

3(n2
1 + n2

2 + n2
3) − 2(n1n2 + n1n3 + n2n3)

]3

27
,

q =
√[

3(m2
1 + m2

2 + m2
3) − 2(m1m2 + m1m3 + m2m3)

]3

64
,

(7.33)

where q is a positive integer that represents the frequency reuse factor. n1, n2, n3, m1, m2,
and m3 are integers that satisfy (7.33) by generating feasible frequency reuse factors.

Theorem 7.4 allows a network operator to determine feasible frequency reuse fac-
tors in a 3D wireless network. This theorem will also allow the operator to determine
the 3D locations of co-channel UAV BSs during frequency planning. For example, for
(n1, n2, n3) = (1, 0, 0), and (m1, m2, m3) = (1, 1, 0), we can obtain a frequency reuse
factor of 1. Indeed, q = 1 pertains to a worst-case scenario where all UAV BSs inter-
fere with one another. For this worst-case scenario, we can determine the locations of
co-channel interfering UAV BSs corresponding to a reference cell with an edge length
R and center (0, 0, 0) by using the columns of the following matrix:

H = √
2R
[
H1 H2

]
3×16

, (7.34)
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where

H1 =
⎛⎝ 1 1 −1 1 1 −1 −1 −1

−1 1 1 1 1 −1 1 −1
1 −1 1 −1 1 −1 −1 1

⎞⎠ ,

H2 =
⎛⎝ 1 −1 2 0 0 −2 0 0

−1 −1 0 2 0 0 −2 0
−1 1 0 0 2 0 0 −2

⎞⎠ .

Each column of matrix H represents a 3D location of one co-channel UAV BS. Having
determined the 3D planning of the wireless network and given an estimation of the
spatial distribution, we can next solve the posed cell association problem.

7.2.3 Latency-Minimal 3D Cell Association

We can now rewrite our 3D cell association problem as follows:

min
V1,...,VN

N∑
n=1

[∫
Vn

βKn

Bn log2
(
1 + γn(x, y, z)

) f̂ (x, y, z)dxdydz

+ βKn

Cn
+ gn(βKn)

]
, (7.35)

s.t. Kn = L
∫
Vn

f̂ (x, y, z)dxdydz, (7.36)

Vl ∩ Vm = ∅, ∀l �= m ∈ N , (7.37)⋃
n∈N

Vn = V , (7.38)

where γn(x, y, z) represents the downlink SINR of a UAV UE at coordinate (x, y, z) ser-
viced by a UAV BS n ∈ N . For air-to-air communications, we consider a practical
bounded path loss model (e.g., see [256] and our discussion in Chapter 3). As a result,
we can write the SINR as follows:

γn(x, y, z) = ηκn(x, y, z)Pn[1 + dn(x, y, z)]−α∑
u∈Iint

ηκu(x, y, z)Pu[1 + du(x, y, z)]−α + NoBn

, (7.39)

dn(x, y, z) =
√

(x − xn)2 + (y − yn)2 + (z − zn)2, (7.40)

du(x, y, z) =
√

(x − xu)2 + (y − yu)2 + (z − zu)2, u ∈ Iint. (7.41)

Here, we define κn(x, y, z) as a channel gain factor between UAV BS n and a UAV UE at
location (x, y, z). This factor will depend on the environment and the positions of UAV
UEs and UAV BSs. For example, κn(x, y, z) = 1 captures an LOS AA communication
while 0 < κn(x, y, z) < 1 represents NLOS conditions. Moreover, in 7.39, the parameter
α represents the path loss exponent, No is the noise power spectral density, η is the path
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loss constant, and (xn, yn, zn) is UAV BS n’s 3D position. dn(x, y, z) and du(x, y, z) are,
respectively, the distance between UAV BSs n and u and a UAV UE located at (x, y, z).
Iint represents the set of co-channel interfering UAV BSs that operate over the same
frequency as UAV BS n.

As observed in the cell association problem of Section 7.1, solving a cell association
problem such as (7.35) is challenging due to the complexity of partitioning a geograph-
ical space. This challenge is exacerbated in the 3D case by the fact that the optimization
variables Vn, ∀n ∈ N , are continuous and mutually dependent 3D association spaces
that are unknown a priori. Also, we can note that the objective function in (7.35) can-
not be expressed in closed form, and, thus, the problem becomes intractable. As done
in Section 7.1, we will overcome these challenges by resorting to tools from optimal
transport theory. However, the 3D aspect of the studied problem here will require new
results to characterize the optimal cell association.

Again, we can use the semi-discrete optimal transport framework to solve our cell
association problem. In particular, we deal with a mapping between a continuous 3D dis-
tribution of UAV UEs and a discrete set of UAV BSs. We can then use optimal transport
tools to characterize the solution [245]:

T H E O R E M 7.5 For a UAV BS l, the optimal 3D cell association that minimizes the
average latency in (7.35) will be given by:

V∗
l =

{
(x, y, z)

∣∣αl + Kl

L
hl(x, y, z) + β

Cl
+ g′

l(βKl)

≤ αm + Km

L
hm(x, y, z) + β

Cm
+ g′

m(βKm), ∀l �= m
}

, (7.42)

where hl(x, y, z) � β

Bl log2

(
1+γl(x,y,z)

) , and αl �
∫
Vl

hl(x, y, x)f̂ (x, y, z)dxdydz.

Theorem 7.5 can be used to completely determine the optimal 3D cell partitions that
allows each UAV BS to minimize the average latency of its transmissions to UAV UEs.
Clearly, from (7.42), we observe that this optimal 3D cell association will be a function
of the different wireless network parameters such as the UAV UEs’ spatial distribution,
the UAV BSs’ locations, the backhaul rate, the network load, and the computing speed
at UAV BSs. Given such parameters, we can use Theorem 7.5 to optimally partition
a 3D space of interest and determine a minimum latency 3D cell association scheme.
Naturally, to minimize the average latency, a UAV BS that is experiencing a better back-
haul link and that possesses a higher computational capabilities or higher bandwidth and
transmit power will serve more UAV UEs. Using this theorem coupled with known opti-
mization algorithms such as those proposed in [245] and [243], one can design efficient
iterative algorithms to find the 3D cell partitioning for any wireless network with UAV
BSs and UAV UEs.
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Table 7.2 Typical parameters used in our 3D network simulations.

Parameter Description Value

fc Carrier frequency 2 GHz
Pn Transmit power of UAV BS 0.5 W
No Power spectral density of the noise −170 dBm/Hz
L Number of UAV UEs 200
Bn Bandwidth for every UAV BS 10 MHz
α Path loss exponent 2
η Path loss constant 1.42 × 10−4

β UAV UE packet size 10 kb
q Frequency reuse factor 1
Cn UAV BS n’s backhaul rate (100 + n) Mb/s
ωn Computation speed for each UAV BS 102 Tb/s
μx,μy,μz Mean of the truncated Gaussian distribution in the

x, y, and z directions
1000 m, 1000 m, 1000 m

σx, σy, σz Standard deviation of the spatial distribution in the
x, y, and z directions

600 m, 600 m, 600 m

κn Channel gain factor 1

7.2.4 Representative Simulation Results

To simulate the studied system, we consider a 3D cubic space of size 3 km×3 km×3 km.
We then deploy a total of 18 UAV BSs using the developed truncated octahedron solu-
tion. The positions of the UAV BSs are found from (7.32) with a ∈ {−1, 0, 1}, b ∈
{−1, 0, 1}, c ∈ {0, 1}, and R = 400 m. We generate a random realization of a continuous
spatial distribution for the locations of the UAV UEs, using a 3D truncated Gaussian dis-
tribution with a given mean and variance. The samples are used for estimating the spatial
distribution of the UAV UEs. We consider a quadratic function of data size (i.e., load of
each UAV BS) to represent the computation time and, thus, for any given UAV BS n,

we define the computation time as gn(βKn) = (βKn)2

ωn
where ωn is the processing speed

of UAV BS n. Unless stated otherwise, we use the parameters of Table 7.2. We compare
our developed 3D cell association with a conventional SINR-based cell association (i.e.,
weighted Voronoi diagram).

In Figure 7.12, we present the average total latency resulting from the studied
approach and the SINR-based scheme, as the number of UAV UEs varies in the network.
Figure 7.12 shows that an increase in the total number of UAV UEs will lead to a higher
total latency. This stems from the fact that a larger network of UAV UEs will lead to a
higher load on the UAV BSs, and, thus, it will increase transmission, backhaul, and com-
putational latencies. From Figure 7.12, we can observe that an increase in the number of
UAV UEs from 200 to 300, leads to, respectively, a 56% and a 42% increase in the total
latency for the SINR-based association and our approach. Moreover, Figure 7.12 clearly
demonstrates that the developed solution yields significant latency reductions compared
to the baseline SINR-based approach. This is because the developed solution explicitly
accounts not only for the SINR but also for the impact of network congestion on the
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Figure 7.12 Variation in the average total latency as the number of UAV UEs changes.

transmission, backhaul, and computational latencies. As a result, the studied solution
can help the network avoid the introduction of highly loaded 3D cells that experience
an excessively high latency. Finally, from Figure 7.12, we can observe that the devel-
oped framework can lead to an average of 43.9% reduction in the average total latency
compared to the baseline.

Next, in Figure 7.13, we evaluate the impact of the transmission bandwidth on the
latency. For instance, a higher bandwidth can lead to a lower transmission latency due
to the associated improvements in the data rates. Consequently, from Figure 7.13, we
can observe how the developed solution can yield significant enhancements in spectrum
efficiency compared to the SINR-based baseline. The developed solution can achieve
a similar performance to the SINR association case, while using less bandwidth. For
example, as per Figure 7.13, to guarantee a maximum total latency of 70 ms, the devel-
oped solution will use 57% less bandwidth compared to the SINR-based baseline.
Figure 7.13 also shows that the rate with which latency is reduced becomes smaller for
larger bandwidth. This is due to the fact that, for a network a larger bandwidth, the trans-
mission latency will be much smaller than the other two latency components (backhaul
and computation).

Next, in Figure 7.14, we study how the transmission, computation, and backhaul
latencies will be affected by a change in the UAV UE load. First and foremost, as intu-
itively expected, a higher load of UAV UEs will increase all three latency components.
However, interestingly, Figure 7.14 shows that the transmission latency increases at a
higher rate than the backhaul and computation latencies. Here, we note that the effect
that the UAV UE load has on the different latency components relates to two key factors:
(a) the relationship between load and latency, and (b) the relationship between the 3D
cell partitions and the load as quantified in (7.42). In essence, as the load changes, the
3D cells and the different latency components will vary in a way to minimize the total
latency.
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Figure 7.14 Transmission, backhaul, and computation latency resulting from the considered
framework vs. load of each UAV UE.

7.2.5 Summary

In this section, we have introduced a novel framework that enables the operation of
a fully fledged 3D wireless cellular network. The developed framework allows a net-
work operator to plan the deployment of UAV BSs, in 3D space, so as to meet the
target wireless performance metrics of flying UAV UEs. In particular, we have devel-
oped a method that allows to jointly deploy a 3D network of UAV BSs, plan the
frequencies over this 3D network, and, then, design a latency-minimizing cell associ-
ation scheme. The key results of this section have shown that the developed solution
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approach significantly reduces the latency of UAV UEs compared to a conventional,
SINR-based cell association baseline. In addition, the developed latency-minimizing
cell association techniques can lead to important improvement in the spectral efficiency
of 3D cellular networks with UAVs. Naturally, this developed framework can then be
extended to account for additional resource management dimensions that include band-
width allocation and power optimization. Another interesting future research direction is
to incorporate a ground, terrestrial network and integrate it into the 3D wireless cellular
system that we developed.

7.3 Managing Licensed and Unlicensed Spectrum Resources in Wireless
Networks with UAVs

In the previous two sections, we focused primarily on the management of spatial
resources, via the development of optimized cell association approaches. However, spec-
trum is yet another important resource in a UAV-assisted wireless network that must
be properly managed. In particular, the spectrum used by flying UAV BSs must be
properly shared in a way to meet the needs of the ground users, while also enhanc-
ing spectrum efficiency and minimizing interference. Consequently, to shed light on
resource management in wireless networks with UAVs, it is imperative to perform spec-
trum management and analyze how spectral resources can be allocated. Moreover, given
the mobility and agility of UAV BSs, it can be potentially beneficial to leverage them
to “cache” popular content that can be commonly downloaded by ground users. The
use of caching can also help UAV BSs alleviate the need for significant transmissions
over the backhaul/fronthaul link between UAV BSs and the core network. Clearly, in
a cache-enabled wireless network, with UAV BSs, the network must manage two key
resources: (a) spectrum and (b) cached content. To this end, in this section, we focus
on this resource management problem within the context of a wireless network assisted
by UAV BSs that are also connected wirelessly to a cloud for fronthauling purposes.
We particularly focus on a scenario in which the UAVs can alleviate problems of spec-
trum scarcity by accessing both licensed and unlicensed bands. Indeed, we will study
how UAV BSs can leverage LTE over the unlicensed band (LTE-U) capabilities so
as to use available WiFi bands to supplement the licensed band resources; whenever
such a use of the unlicensed band does not jeopardize the performance of the ground
WiFi users.

We here note that studying problems of spectrum and resource management in UAV-
assisted wireless networks has been done in [237, 257–263]. However, these prior works
often focus on the UAV-to-ground links, without accounting for the presence of fronthaul
links between UAV BSs and the core network. Moreover, most of these prior works
(except for [257]) do not study the use of LTE-U, jointly with caching, to overcome
the spectrum scarcity and fronthaul limitation problems. Meanwhile, the work in [257]
does not account for the notion of caching. Hence, there is a need to provide a more
comprehensive study of how resources in a wireless network assisted by LTE-U-enabled
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Figure 7.15 Illustration of a system in which multiple, cache-enabled UAV BSs with LTE-U
capabilities are deployed for wireless communication purposes.

UAV BSs can be managed properly, while being cognizant of fronthaul limitations and
the possibility of caching at the UAV BSs’ side.

7.3.1 Model of an LTE-U UAV BS Network

As shown in Figure 7.15, we consider an LTE-U network in which a set K of K UAV
BSs are deployed to serve, over the downlink, a set U of U LTE-U ground users. In this
system, we also consider a ground WiFi network composed of W WiFi access points
(WAPs) that are connected to Nw WiFi users. We equip the UAV BSs with storage units
that they can use to cache popular content. The UAV BSs will connect to a cloud server
via a fronthaul link using (exclusively) the licensed band. The cloud provides connec-
tivity to the core network. Since we focus on an LTE-U scenario, the UAV BSs are
assumed to operate in dual-mode: They can simultaneously access both licensed and
unlicensed spectrum resources. In our model, each UAV BS can allocate at most one
type of resource (i.e., licensed or unlicensed) to each ground user. We assume that each
unlicensed band can be occupied by either UAV BSs or WAPs. UAV BSs will only be
able to use the unlicensed spectrum whenever access to this spectrum does not degrade
the data rate of WiFi users below a minimum, guaranteed target rate.

In the considered system, each UAV BS will share the licensed spectral bands among
its serviced users. To access the unlicensed spectrum in LTE-U, we adopt a duty cycle
method as done in [264]. In such a duty cycle scenario, the UAV BSs will adopt a
discontinuous, duty-cycle transmission pattern so as to access the unlicensed spectrum
while also maintaining the transmission rate of the WiFi users above a given threshold.
Hence, the time slots used to access the unlicensed band will be properly split between
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LTE-U and WiFi users. In this regard, LTE-U UAV BSs will transmit for a time fraction
ϑ and will be muted for a time fraction 1 −ϑ . During the mute-time of the LTE-U UAV
BSs, the WiFi transmissions will occur using the standardized carrier sense multiple
access with collision avoidance (CSMA/CA) protocol [265].

We assume that all ground users request equally sized contents from a set N of N
contents. Contents are stored at the cloud server of the network, and each content will
be of size L. We let pi = [

pi1, . . . , piN
]

be the content request distribution of each user.
Here, each element pij of pi captures the probability that user i requests content j. To
enable caching, we assume that each UAV k has a storage unit that can store a total
of C contents drawn from a set Ck of popular user contents. For the considered LTE-U
network with caching, the transmission of a content to a ground user can be done over
one of four links: (a) licensed band transmission from the cloud to the UAV BS followed
by a licensed band transmission from the UAV BS to the ground user, (b) licensed band
cloud-UAV BS transmission followed by an unlicensed band transmission from the UAV
BS to the ground user, (c) direct, licensed band transmission from the cache of a UAV
BS to the ground user, and (d) direct, unlicensed band transmission from the cache of a
UAV BS to the ground user. Clearly, transmission links (c) and (d) showcase the case in
which caching is used to offload traffic from the fronthaul and alleviate the congestion
on the cloud-UAV BS transmission.

As mentioned earlier, the ground WAPs will use a CSMA/CA scheme with binary
slotted exponential backoff. For this case, using standard WiFi models such as in [266],
we can find the saturation capacity of the Nw WiFi users that share the unlicensed
band:

R (Nw) = Ptr (Nw)Ps (Nw)E [A]

(1−Ptr (Nw))Tσ +Ptr(Nw)(Tc+Ps(Nw)(Ts − Tc))
, (7.43)

with Ptr (Nw) = 1 − (1 − τ)Nw and Ptr (Nw) being the probability of having at least
one transmission in a time slot and τ being each WiFi user’s transmission probability.
Here, Ts is the average time that the channel is sensed busy because of a successful
transmission, Tc is the average time that the channel is sensed busy by each WAP during
a collision, Tσ is the unoccupied slot duration, Ps (Nw) = Nwτ(1 − τ)Nw−1/Ptr (Nw)

is the probability of successful transmission, and E [A] is the average size of a packet.
We consider standard, distributed coordination function access and RTS/CTS access
mechanisms. Tc and Ts can be expressed by [266]:

Ts = RTS
/

CU + CTS
/

CU + (H + E [A])
/

CU

+ ACK
/

CU + 3SIFS + DIFS + 4δ,
(7.44)

Tc = RTS
/

CU + DIFS + δ. (7.45)

Here, H = PHYhdr +MAChdr, and CU represents the bit rate of the WiFi channels. ACK,
RTS, DIFS, SIFS, CTS, and δ represent standard WiFi parameters as given by [266]. To
validate the relationship in 7.43, we assume that the following two conditions hold: (a)
after completing a successful transmission, any given WiFi user will immediately have
a new packet available, and (b) a binary slotted exponential backoff scheme is used.
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Figure 7.16 Example of how time slot allocations between LTE-U and WiFi users can be done.

Clearly, Tc and Ts will significantly affect the WiFi network saturation capacity of a
WiFi network.

Each LTE time slot is composed of TW WiFi slots. Under the chosen duty cycle
approach, on the unlicensed band, UAV BSs can occupy a fraction ϑ of the total TW

time slots. Meanwhile, the remaining fraction (1 − ϑ) of unlicensed time slots will be
occupied by WiFi users. Figure 7.16 illustrates this time slot division between WiFi and
LTE-U users. Now, we can write the (per user) rate over WiFi:

Rw = R (Nw) (1 − ϑ)

Nw
. (7.46)

In 7.46, Nw represents the total number of WiFi users on the unlicensed band. Given a
target data rate requirement γ for each WiFi user, we can use ϑ ≤ 1 − Nwγ

/
R(Nw) to

express the fraction of unlicensed band time slots allocated to an LTE-U user.
Having defined the main components of the system model as well as the associated

WiFi model, next, we properly model the data rates over the various UAV BS-to-ground
user links.

7.3.2 Models for Data Rates and Queuing

Now, we can determine the rates associated with the transmissions of content to the
ground users, via the UAV BSs. This includes the cloud-to-UAV BS fronthaul links
(ground-to-air links) and the AG links from the UAV BSs to the users. For licensed
band transmissions (fronthaul or AG), we assume LOS connections.

The path loss (in dB) experienced by the transmission from UAV BS k to user i over
an LOS licensed band link will be [194]:

lLOS
ki = 20 log

(
4πdkif

c

)
+ ηl + χκ + #,

where 20 log
(
dkif 4π

/
c
)

is the free-space path loss with dki representing the distance
between UAV BS k and ground user i, c capturing the speed of light, and f being the
carrier frequency, sηl captures additional attenuation factors due to the LOS connections
over the licensed band, and χκ is a shadow fading Gaussian random variable with zero
mean and standard deviation κ . # is the small-scale fading power assumed to follow
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a Rician distribution (see our discussions in Chapter 3 on the use of a Rician channel
model for UAVs).

At time t, we can now define the data rate of the downlink licensed-band transmission
between UAV BS k and user i

Rlki(uki (t)) = uki (t)Fllog2

⎛⎜⎜⎝1+ PK10lLOS
ki

/
10∑

j∈K, j �=k
PK10lLOS

ji

/
10+PChi+ σ 2

⎞⎟⎟⎠, (7.47)

where PK represents each UAV BS’s transmit power, hi = gCid
−α
Ci where gCi is a

Rayleigh fading channel gain between the cloud and user i with dCi being the distance
between them, Fl is the downlink licensed band bandwidth, and PC is the cloud’s fron-
thaul transmit power. σ 2 is the Gaussian noise power, and uki (t) is the fraction of the
downlink licensed band allocated from UAV BS k to user i at time t with

∑
i uki (t) = 1.∑

j∈K, j �=k
PK10lLOS

ji

/
10 captures the interference between user i and all UAV BSs other than

k. All UAV BSs are assumed to use the same spectrum for content transmission, and they
allocate all of their available spectrum resources to their serviced users. As a result, all
UAV BSs (except UAV BS k) will interfere with user i.

To compute the data rate of unlicensed band transmissions between UAV BSs and
ground users, we use (7.46) to obtain the unlicensed band time slot fraction ϑ that can
be occupied by UAV BSs. Given this fraction, the downlink unlicensed band data rate
of a given user i associated with UAV BS k will be:

Ruki(eki (t))=eki(t) ϑFulog2

⎛⎜⎜⎝1+ PK10luki

/
10∑

j∈K, j �=k
PK10luji

/
10 + σ 2

⎞⎟⎟⎠, (7.48)

where luki is the LOS path loss over the unlicensed band, Fu is the bandwidth of the
unlicensed band, and eki (t) is the fraction of ϑ with

∑
i eki (t) = 1.

To compute the fronthaul transmission rates, we first equally divide the total UAV BS
fronthaul bandwidth FC among the users that have received contents from the cloud.
As a result, the fronthaul rate of a given user that requests a cloud content while being
served by UAV BS k will be:

RCk (t) = FC

UC (t)
log2

⎛⎜⎜⎜⎝1 + PCLk∑
j∈K, j �=k

PK10
lLOS
ki

/
10 + σ 2

⎞⎟⎟⎟⎠, (7.49)

where Lk is the LOS path loss from the cloud to UAV BS k and UC(t) is the number of
the users that receive a content from the cloud at time t. UC(t)can be computed by the
content server when the users request contents.

We can now study the queuing process of the studied system. First, we define variable
Vi (t) to capture the random content arrival (number of bits) for user i from the content
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server at the end of time slot t. Since each user can request at most one content during
each time slot t, we have Vi (t) ∈ {0, L}. At the beginning of a given time slot t, we can
derive the queue length (i.e., number of bits) Qi (t) of user i as follows [267]:

Qi (t + 1) = Qi (t) − Rki (t) + Vi (t) , (7.50)

where Rki (t) is user i’s data rate. As shown in Figure 7.15, the content transmission
links include: (a) UAV BS-user on the licensed band, (b) UAV BS-user on the unlicensed
band, (c) cloud-UAV BS-user on the unlicensed band, and (d) cloud-UAV BS-user on
the licensed band. Therefore, we can define the rate of content transmission from UAV
BS k to user i as follows:

Rki (uki (t), eki (t)) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Rlki (uki (t)) , link (a),
Ruki (eki (t)) , link (b),

Ruki(eki(t))RCk(t)
Ruki(eki(t))+RCk(t)

, link (c),

Rlki(uki(t))RCk(t)
Rlki(uki(t))+RCk(t)

, link (d).

(7.51)

where the rate expression of link (c) is obtained from the fact that the time duration of
a single data packet transmitted from the cloud to UAV BS k is 1

/
RCk (t) and a single

data packet transmitted from UAV BS k to user i is 1
/

Ruki (t). Hence, the transmission
data rate from the cloud to user i will be 1

1/RCk(t)+1/Ruki(t)
. In (7.51), links (a) and (b) refer

to scenarios in which the content requested by a user i is already cached by UAV BS k.
In these cases, the requested content can be directly transmitted from UAV BS k to user
i without going through the cloud. In contrast, for links of type (c) and (d), the content
of the users is at the cloud and not cached. Hence, for those links, the transmission of
content to a user i involves having UAV BS k obtain the data from the cloud (over the
backhaul) and then transmitting it to its user. Naturally, we can directly observe that
links (a) and (b) can achieve higher data rates compared to links (c) and (d).

To capture the content transmission delay of each user, we adopt the concept of queue
stability. In essence, a queue Qi (t) is said to be rate stable if [267]:

lim
t→∞

Qi (t)

t
= 0. (7.52)

From [267, Theorem 2.8], we can also see that the queue Qi (t) is rate stable if
Rki (t) ≥ Vi (t).

Having define the various performance metrics used in our model, we can now for-
mally pose the resource management problem that will involve spectrum allocation, user
association, and content caching.

7.3.3 Resource Management Problem Formulation and Solution

Our goal is to design a resource management framework that can effectively allocate
spectrum over the licensed and unlicensed band within the context of a wireless network
served by cache-enabled UAV BSs. The objective is to optimize the resource manage-
ment process in a way to meet the queue stability requirements of all users. This problem
can be formulated as an optimization problem whose goal is to maximize the number
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of users that have stable queues. This maximization requires finding the optimal asso-
ciation Uk for each UAV BS k, the licensed band bandwidth allocation as captured by
indicators uk, the unlicensed band time slot allocations as captured by variables ek, and
the set Ck of contents that each UAV BS k can potentially cache. Formally, this problem
can be posed as follows:

max
uk(t),ek(t),Ck ,Uk

∑
k∈K

∑
i∈Uk

1{
lim

t→∞
Qi(t)

t =0
}

= max
uk(t),ek(t),Ck ,Uk

∑
k∈K

∑
i∈Uj

1{Rki(uki(t),eki(t))≥Vi(t)},
(7.53)

s. t. Rw ≥ γ , (7.53a)∑
i∈Uk

uki (t) = 1, ∀k ∈ K, (7.53b)∑
i∈Uk

eki (t) = 1, ∀k ∈ K, (7.53c)

where 1{x} = 1 when x is true and 1{x} = 0 otherwise, Uk is the set of users served by
UAV BS k, and uk (t) , ek (t) represent the resource allocation indicators on the downlink
licensed and unlicensed bands, respectively.

The first constraint in (7.53) allows the network to maintain the average data rate
of each WiFi user above a desired threshold while the second constraint ensures that
the licensed band allocation will not exceed each UAV BS’s total bandwidth. The last
constraint captures the fact that the time slots over the unlicensed band cannot exceed
the total number of time slots allocated to the UAV BSs. From (7.51), we can see that
Rki (uki(t) , eki (t)) in (7.53) depends on the cached contents, resource allocation, and
user association.

The maximization problem in (7.53) is difficult to solve for various reasons. First,
content caching and spectrum allocation depend on the UAV BS-user association which,
in turn, depends on each user’s data rate. These dependencies make the problem chal-
lenging to address. Second, problem (7.53) can be easily shown to be non-convex and
combinatorial. Third, since caching is involved, UAV BSs must be able to perform some
sort of predictions to understand the users’ content request distributions. To address
these three challenges, as shown in [268], one can adopt machine learning techniques
to solve the joint problem of caching and resource allocation. Although many machine
learning tools can be used for address predictions and network optimization, here, one
can adopt the concept of liquid state machines (LSMs), which is a new type of spiking
neural network [269]. LSMs are apropos for the studied model because they are very
effective at dealing with time-stamped data, such as the content requests of wireless
users. Moreover, LSMs are very effective at dealing with complex problems involving
large spaces of continuous variables, as is the case in our resource management prob-
lem. Indeed, by using LSM, we will allow the network to properly store and track the
users’ behavioral information and network state over time. In particular, an LSM-based
approach will allow the cloud to exploit user behavior information (stored in LSM) to
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Figure 7.17 Average number of stable queue users as function of the network size.

predict the users’ content request distribution and automatically adapt the resource allo-
cation process to any changes in the network environment. Moreover, LSMs are known
to have a very effective training process that can be easily run and operated in a wire-
less network. Using these observations, the work in [268] shows how one can develop
an effective prediction and reinforcement learning algorithm for solving the problem in
(7.53) in a distributed way. The details of the algorithm and solution are omitted here,
and the interested reader is referred to [268]. Next, we will show some representative
results on how LSM-based resource management can be effective for deployment in
UAV-assisted wireless networks.

7.3.4 Representative Simulation Results

To perform our simulations, we use real data from the Youku of China network video
index to train our LSM on content request distributions. Then, we set up a network sim-
ulator in which a circular network area is used with a radius r = 200 m in which we
deploy U = 20 uniformly distributed users and K = 5 uniformly distributed UAV BSs.
We use the MATLAB LSM toolbox to implement the LSM algorithm [269]. All simu-
lation parameters and training processes are based on [268]. We compare the solution
with two schemes: (a) a Q-learning scheme referred to as “Q-learning without cache,”
and (b) a Q-learning scheme that is complemented by LSM predictions, which we refer
to as “Q-learning with cache.”

Figure 7.17 presents the average number of users with stable queue resulting from
the studied solution and the baselines, for different network sizes. In this figure, in
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Figure 7.18 Cumulative distribution function of the data rates achieved by the LSM approach and
baselines.

addition to the two previously mentioned baselines, we also compared with a heuris-
tic search algorithm that relies on a heuristic for finding the optimal resource allocation
while adopting LSM for prediction and user association. From Figure 7.17, we can see
that, for 5 UAV BSs, an LSM-based approach can provide up to 17.8% and 57.1%
gains in terms of the number of stable queue users compared to Q-learning with cache
and Q-learning without cache, respectively. These gains showcase how the ability of
LSM to use predictions to solve the caching and resource management problems can
lead to improved performance. This advantage of LSM is further corroborated in Fig-
ure 7.18, which shows the cumulative distribution function (CDF) of the data rates
resulting from all considered solutions. From Figure 7.18, we can first observe that,
under all studied solutions, the data rate of all users will be less than 2 Mbps, which
is the data rate requirement (per user) used in the simulations. Moreover, Figure 7.18
clearly corroborates the results of Figure 7.17 by showing that an LSM-based approach
yields significant improvements in the CDF of the data rates, when compared with the
Q-learning baselines.

Next, in Figure 7.19, we assess the convergence properties (in terms of number of
iterations) of an LSM-based solution for resource management. Clearly, Figure 7.19
shows that an LSM approach requires 20% fewer iterations to converge compared to
Q-learning with cache. This is once again a byproduct of LSM’s inherent ability to
predict network evolution.

Figure 7.20 shows the impact of the fraction of LTE-U-occupied WiFi time slots on
the average number of stable queue users. Figure 7.20 first shows that, as more WiFi time
slots are occupied by LTE-U users, more users will meet their stable queue requirements
because the UAV BSs will have more slots available on the unlicensed band to allocate
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Figure 7.19 Convergence of the learning algorithms.
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Figure 7.20 Average number of stable queue users as the fraction of WiFi time slots occupied by
LTE-U users varies.

to their users. From Figure 7.20, we can also see that LSM yields up to 41.4% and 10%
gains in terms of the average number of stable queue users, compared to Q-learning and
Q-learning with cache, respectively.

Finally, in Figure 7.21, we study the impact of the fronthaul bandwidth on the trans-
mission rates of the different types of links. Here, we use a randomly chosen user to
illustrate the results. Figure 7.21 shows that, the bandwidth of the fronthaul has no
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Figure 7.21 Network data rates as the bandwidth of fronthaul varies.

impact on the data rates of links (a) and (b) (because they use cached content) while
an increase in the bandwidth leads to better data rates for links (c) and (d). Figure 7.21
also shows that the unlicensed band data rate of links (b) and (c) are higher than the
licensed band data rate of links (a) and (d) because using the unlicensed band allows
the UAV BSs to avoid the licensed band interference from other UAV BSs and from the
fronthaul links.

7.3.5 Summary

In this section, we have shown how the use of UAV BSs with emerging technologies,
such as LTE-U and caching, can yield interesting and challenging resource management
problems. In particular, we have studied a model in which UAV BSs can use LTE-U and
caching to overcome challenges of spectrum scarcity and fronthaul capacity limitations.
In the studied model, the UAV BSs must decide which contents to cache, which users to
serve, and how to allocate their spectrum across licensed and unlicensed bands, while
being cognizant of mutual interference (over the licensed band) and WiFi performance
(over the unlicensed band). We have then posed the joint problems of spectrum allo-
cation, caching, and user association, as a non-convex optimization problem. Then, we
have provided insights on how to develop predictive, machine learning tools to solve
such non-convex resource management problems in large-scale wireless networks with
UAV BSs. Our results have shed important light on how complex resource management
problems arise in UAV networks and on how one can overcome their complexity and
design practical solutions. Naturally, many extensions can be envisioned to this model
such as by integrating UAV UEs as well as by accounting for the presence of ground
BSs that coexist with the UAV BSs and the WiFi network.
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7.4 Chapter Summary

In this chapter, we have shown how the introduction of UAV BSs and UAV UEs in
a cellular networking environment will yield a variety of important resource manage-
ment problems. Such resource management problems include cell association, spectrum
sharing, caching, and overall management of various UAV resources that include spatial,
spectral, and temporal resources. First, we have shown how unique features of UAV BSs,
such as flight time constraints, can impact problems of resource management, in general,
and cell association, in particular. Then, we have designed a fully fledged 3D cellular
network that integrates both UAV BSs and UAV UEs. For this 3D network architec-
ture, we have shown how various planning and resource management problems become
intertwined. We have also shed light on how one can systematically optimize the perfor-
mance (in terms of latency) of such a 3D cellular system. Then, we have concluded the
chapter by studying a joint spectrum allocation, user association, and content caching
problem in a network assisted by UAV BSs. We have shown how these three problems
are synergistic, and we have designed a learning-based solution to solve them in prac-
tical UAV networks. In essence, the models and solutions provided in this chapter can
serve as an important basis for designing effective resource management frameworks
for 3D cellular networks that integrate a heterogeneous set of UAV BSs, UAV UEs, and
ground infrastructure that operate across multiple different radio access technologies
and frequency bands.



8 Cooperative Communications in UAV
Networks

As we discussed in Chapters 1 and 2, leveraging cooperation among multiple UAVs
along with coordinated transmissions is a promising solution for enhancing the perfor-
mance of wireless networks that incorporate UAV BSs and UAV UEs. In the UAV BS
case, multiple UAVs can form a flexible, reconfigurable, and wireless antenna array in
the sky [22] within which each UAV acts as an antenna element of the array (as shown
in Figure 8.2). A reconfigurable UAV-based antenna array system that acts as a fly-
ing BS has a number of key advantages over classical antenna array systems with fixed
elements. For instance, the beamforming gain can be maximized by optimizing the posi-
tion of the UAVs within the array, and beamforming can be done toward any direction
in 3D space. Further, with a large space available in the sky, large-gain antenna arrays of
UAVs can be created. In the UAV UE scenario, cooperative communication among mul-
tiple UAV UEs or BSs (as shown in Figure 8.1) allows boosting coverage and capacity of
the network, particularly when UAV UEs coexist with ground users. In this case, coordi-
nated multi-point (CoMP) transmission plays a key role in enabling efficient cooperative
communications in cellular-connected UAV UE scenarios.

This chapter will, therefore, study a variety of scenarios that involve cooperative com-
munications for wireless networks with UAVs. We will particularly analyze the role of
cooperative communications in improving the connectivity and capacity of UAV UEs
leveraging principles of CoMP among BSs, and we will shed light on the use of UAV-
based antenna arrays as flying UAV BSs. Specifically, in Section 8.1, we introduce a
framework based on CoMP transmission for serving high-altitude cellular connected
UAV UEs while mitigating interference. Using tools from stochastic geometry, upper
bounds on the content coverage probability are derived providing insights on the overall
deployments of UAVs as a function of different system parameters, particularly in the
presence of down-tilted ground BS antennas. Then, in Section 8.2, we study how one
can effectively use multiple quadrotor UAVs as an aerial antenna array that acts as a
single coordinated UAV BS to provide wireless service to ground users. The goal will
be to maximize performance while minimizing the airborne service time for communi-
cation. We will also characterize the optimal rotor’s speed for minimizing the control
time using theoretical postulates of bang-bang control theory. The obtained results shed
light on some fundamental tradeoffs for leveraging antenna array systems. We conclude
the chapter with a summary in Section 8.3.
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Cellular connected UAV UE

Cooperative communication between BSs

Figure 8.1 Cooperative transmission in cellular connected UAV UE scenario.

Flying UAV antenna array: UAV BS

Figure 8.2 Reconfigurable flying antenna array in UAV BS scenario.
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8.1 CoMP Transmission in Wireless Systems with Cellular-Connected UAV
UEs

In this section, based on our work in [270], we introduce a holistic framework that lever-
ages CoMP transmissions for serving high-altitude cellular-connected UAV UEs while
managing cross-cell interference and boosting the received signal-to-interference ratio
(SIR). In particular, we consider a network of BSs that are cache-enabled (i.e., can cache
content similar to the caching approach of Chapter 5) in which an aerial UAV UE down-
loads a previously cached content via CoMP transmission from neighboring ground
BSs. Using tools from stochastic geometry, we derive a considerably tight upper bound
on the content coverage probability as a function of the system parameters. We then
demonstrate how the performance that a flying UAV UE can achieve will be impacted
by a variety of factors, such as the CoMP collaboration distance, the availability of con-
tent, and the target data rate. We then also demonstrate how the down-tilt of the antennas
of the ground BS (discussed earlier in Chapter 1) will limit the performance (in terms of
coverage probability) that an aerial UAV UE can achieve, even when CoMP is used.

8.1.1 A Model for CoMP in Networks with Aerial UAV UEs

We study a wireless cellular network (e.g., a small cell network) composed of a number
of cache-enabled BSs that are distributed based on a homogeneous PPP �b = {bi ∈
R

2, ∀i ∈ N
+} whose density is λb. In this network, there is a UAV UE that is flying at

an altitude hd and located at (0, 0, hd) ∈ R
3. In our model, the BSs are grouped together

in multiple (disjoint) clusters in order to serve the UAV UE [271]. In this case, a cluster
of BSs is denoted by a circle with radius Rc whose center on the ground is located under
the UAV UE (as we can observe in Figure 8.3). The cluster’s area is defined as A = πR2

c .
In this network, BSs located within a cluster can cooperate to transmit cached content to
the UAV UE. We note that at high altitudes there can be strong LOS interference from
BSs. Thus, we assume that multiple BSs (located within a specific range from the UAV
UE) can cooperate to transmit cached contents to the UAV UE.

8.1.2 Probabilistic Caching Placement and Serving Distance Distributions

A BS uses its memory storage capabilities in order to cache content from a file library.
Each file in the library includes content catalog that a UAV UE may request. Various
files are indexed according to popularity, in a descending order. To determine how con-
tent is placed, we adopt a random placement scheme. In this scheme, each content f is
independently cached at each BS with a probability cf , 0 ≤ cf ≤ 1. Moreover, we model
BS caching content as a PPP �bf whose density is λbf = cfλb [151]. Likewise, a BS
that does not cache a given content f can be modeled as another PPP �!

bf with density

λ◦
bf = (1 − cf )λb, �b = �bf ∪ �!

bf . Now, within a cluster, we can find the probability
mass function (PMF) of the number of BSs that will cache content f as follows:

P(n = κ) = (cfλbA)κe−cf λbA

κ! . (8.1)
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Figure 8.3 Illustration of the proposed system model with ground small BSs (SBSs) and a flying
UAV UE.

The model in equation (8.1) is nothing but a Poisson distribution whose mean is
cfλbA.

Considering a cluster with κ BSs with caching capabilities, the distribution of
caching-capable BSs is a binomial point process (BPP). In this model, κ BSs are
uniformly and independently distributed within the cluster. We use �cf = {bi ∈
�bf ∩ B(0, Rc)} to represent the set of cooperative BSs that provide content f , with
B(0, Rc) centered WITH radius Rc.

Given a UAV UE located at the origin in R
2, the UAV UE-to-BSs distances will be

equal to Rκ = [R1, . . . , Rκ ]. Now, by conditioning on Rκ = rκ , rκ = [r1, . . . , rκ ],
we can find the conditional probability density function (PDF) of the joint distances’
distribution, which is given by fRκ

(rκ ).
Also, the PDF of the horizontal distance ri between BS i and the UAV UE can be

expressed by [151]:

fRi(ri) =
{

2ri
R2

c
, 0 ≤ ri ≤ Rc,

0, otherwise,

The conditional joint PDF of the serving distances Rκ = [R1, . . . , Rκ ] can be
determined using the BPP’s i.i.d. property:

fRκ (rκ ) =
κ∏

i=0

2ri

R2
c

. (8.2)

Note that the vertical distance of each BS from the UAV UE is hBS. Here, we use
θt and θB to represent the BS down-tilt angle and the antenna beamwidth in the verti-
cal dimension. In the considered model, the gains of the side lobe and main lobe are
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represented by Gs and Gm, respectively. The distance between BS i to the UAV UE is

di =
√

r2
i + (hd − hBS)2.

8.1.3 Channel Model

The channel gain between BSs and the UAV UE is composed of large-scale fading and
small-scale fading, as discussed in Chapter 3. We consider the probabilistic LOS/NLOS
model (used in prior chapters and exposed in Chapter 3) for the large-scale fading
between BS i and the UAV UE. The channel gain of this model can be given by:

ζv(ri) = AvG(ri)d
−αv
i = AvG(ri)

(
r2

i + (hd − hBS)2)−αv/2, (8.3)

where v ∈ {l, n}, αl and αn represent the path loss exponents for the LOS and NLOS
communication links. Also, the path loss constants (considering a 1 m reference dis-
tance) are denoted by Al and An. The antenna gain for BS i toward the UAV UE is
expressed by:

G(ri) =
{

Gm, for ri ∈ Sbs,
Gs, for ri /∈ Sbs,

in which Sbs includes ris that satisfy hBS − ritan(θt + θB
2 ) < hd < hBS − ritan(θt − θB

2 ).
To capture the small-scale fading, we use a Nakagami-m fading model with the

following PDF:

f (ω) = 2 m
η

mω2m−1

	(m)
exp

(− m

η
ω2), (8.4)

where m and η denote, respectively, the fading parameter and controlling spread param-
eter. Considering the fact that there is a dominant LOS link between a BS and the UAV
UE, we have m > 1.

It can also be shown that the channel power gain distribution has the following PDF:

f (γ ) = ( m
η

)mγm−1

	(m)
exp

(− m

η
γ
)
. (8.5)

The LOS probability between BS i and the UAV UE located at distance ri is computed
by [272]:

Pl(ri) =
max(p−1,0)∏

n=0

[
1 − exp

(
−
(
hBS + h(n+0.5)

m+1

)2

2c2

)]
, (8.6)

where a, b, c are the environment-dependent parameters, h = hd −hBS and p = � ri
√

ae
1000 �.

We will next present a multi-BSs CoMP transmission scheme for mitigating uplink
interference as well as enhancing the performance of the UAV UE. In particular, we
develop a framework to evaluate the performance of cache-capable CoMP transmissions
for cellular-connected UAV UEs.
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8.1.4 Analysis of Coverage Probability

We will now characterize the network performance by finding the coverage probability
for the UAV UE. In the considered model, the transmit power of each BS is Pt, and a
typical UAV UE flies at (0, 0, hd) ∈ R

3. The received signal at the UAV UE, assuming
κ BSs provide a content f , is given by:

P =
κ∑

i=1

P(ri)ωiwiXf︸ ︷︷ ︸
desired signal

+
∑

j∈�!
bf ∩B(0,Rc)

P(uj)ωjwjYj

︸ ︷︷ ︸
Iin

+
∑

k∈�b\B(0,Rc)

P(uk)ωkwkYk︸ ︷︷ ︸
Iout

+ Z, (8.7)

where P(ri) = √
Ptζv(ri)0.5, v ∈ {l, n}, ωi is the Nakagami-m fading for BS i. Also, wi is

the BS i precoder, and Xf represents the channel input symbol transmitted by multiple
BSs. Iin is in-cluster interference, Iout is the out-of-cluster interference, and Yj represents
the transmit signal of interfering BS j. Moreover, we have:

P(uj) =
{

Pl(uj) = √
Ptζl(uj)0.5, for LOS,

Pn(uj) = √
Ptζn(uj)0.5, for NLOS,

with uj is the horizontal distance between the UAV UE and BS j. Z is a circular-
symmetric zero-mean complex Gaussian random variable that represents the noise.

We denote the set of interfering BSs by �b \ �cf =
{

bi ∈ {
�b \ B(0, Rc)

} ∪ {
�!

bf ∩
B(0, Rc)

}}
, and we define �!

cf = {
�!

bf ∩ B(0, Rc)
}
. The set of interfering BSs is shown

by �b \ �cf = {bi ∈ �b \ B(0, Rc)}.
Note that when channel state information is available at the ground BS, the precoder

wi = ω∗
i|ωi| with ω∗

i being the complex conjugate of ωi. Considering the independence of
Xf , Yj, and Yk in (8.7), the SIR for the UAV UE can be derived as follows:

ϒ|rκ =
κ∑

o=0

(
κ

o

) o∏
i=0

Pl(ri)
κ∏

j=o+1

Pn(rj)·

Pt

∣∣∣∣∑o
i=1 ζ

1/2
l (ri)ωi +∑κ

j=o+1 ζ
1/2
n (rj)ωj

∣∣∣∣2
Iin + Iout

, (8.8)

where
∣∣∑o

i=1 ζ
1/2
l (ri)ωi + ∑κ

j=o+1 ζ
1/2
n (rj)ωj

∣∣2 is the square of weighted sum of
κ Nakagami-m random variables. Given the interoperability of a weighted-sum of
Nakagami-m random variables, we find its upper bound using Cauchy-Schwarz’s
inequality:
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∣∣∣∣ o∑
i=1

ζ
1/2
l (ri)ωi +

κ∑
j=o+1

ζ 1/2
n (rj)ωj

∣∣∣∣2 =
( κ∑

i=1

Qi

)2

≤ κ

( κ∑
i=1

Q2
i

)
, (8.9)

with Qi = ζ
1/2
v (ri)ωi being a scaled Nakagami-m random variable (RV), v ∈ {l, n} and

i ∈ Kf . Given ωi ∼ Nakagami(m, η/m), we have Q2
i ∼ 	

(
ki = m, θi = 2ηζv(ri)/m

)
.

In order to find a statistical equivalent PDF of a sum of κ gamma RVs Qi with different
θi values, we use the method of sum of gammas second-order moment match [273,
Proposition 8].

We can show that the equivalent Gamma distribution (J ∼ 	(k, θ )) has the following

parameters: k =
(∑

i kiθi

)2
/
∑

i kiθ
2
i and θ = ∑

i kiθ
2
i /
∑

i kiθi.

To evaluate the accuracy of our second-order moment approximation, in Figure 8.4
we depict the PDF of the equivalent channel gain. Here, a sum of κ gamma RVs can be
approximated by a gamma RV that has the following parameters:

k = m
(∑

i ζv(ri)
)2∑

i

(
ζv(ri)

)2
and θ = η

∑
i ζv(ri)

m
∑

i ζv(ri)
, (8.10)

In this case, the upper bound of the shape parameter k in (8.10) can be given by:

k = m

(∑
i ζv(ri)

)2

∑
i

(
ζv(ri)

)2
≤ m

κ
∑

i

(
ζv(ri)

)2

∑
i

(
ζv(ri)

)2
= mκ , (8.11)

with mκ being an integer.
Now, we will derive the coverage probability for the UAV UE. Conditioning on the

serving distances rκ , the coverage probability can be given by:

Pcov|rκ = P
[
ϒ|rκ > ϑ

] ≈
κ∑

o=0

(
κ

o

) o∏
i=0

Pl(ri)×

κ∏
j=o+1

Pn(rj)P
(κPt

(∑κ
i=1 Qi

)2

Iin + Iout
> ϑ

)
, (8.12)

=
κ∑

o=0

(
κ

o

) o∏
i=0

Pl(ri)
κ∏

j=o+1

Pn(rj)P
( κPtJ

Iin + Iout
> ϑ

)
, (8.13)

where ϑ represents the SIR threshold. We then have the following result on the
unconditional coverage probability of the UAV UE:

T H E O R E M 8.1 The UAV UE coverage probability can be expressed by:

Pcov =
∞∑
κ=1

P(n = κ)
∫ Rc

rκ=0
Pcov|rκ

κ∏
i=0

2ri

R2
c

drκ , (8.14)

where Pcov|rκ shows the conditional coverage probability in (8.16), with � = ϑ/κPtθ .
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Figure 8.4 Monte Carlo simulation of the PDF of the equivalent gain of channels between
cooperating BSs and an aerial UAV UE, including path loss and fading. A PPP realization of
density λb = 20 BS/ km2 is run for a simulated area of 20km2 with m = 3 and Rc = 200m.

Pcov|rκ =
κ∑

o=0

(
κ

o

) o∏
i=0
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∂� k
·
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)
× exp

(
−2πλp

∫ ∞
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(1 − δlPl(v) − δnPn(v)) vdv

)
. (8.16)

Proof This proof is based on our work in [270] and is provided here for guidance

P

( κPtJ

Iin + Iout
> ϑ

)
= P

(
κPtJ > ϑ

(
Iin + Iout

))
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[
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(
κPtJ > ϑ

(
Iin + Iout

))]
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[
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J >

ϑ

κPt

(
Iin + Iout

))]
(a)≈ EIin,Iout

[
k−1∑
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(ϑ/κPtθ )k

k!
(
Iin + Iout

)k
e− ϑ

κPtθ

(
Iin+Iout

)]

(b)= EIin,Iout

[
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(−� )k

k!
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dϑk
LIin+Iout|rκ (� )

]
, (8.15)
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where (a) results from the PDF of a gamma RV and (b) is based on � = ϑ/κPtθ as
well as the Laplace transform of the RV Iin + Iout.

LIin+Iout|rκ (� ) = EIin,Iout

[
exp

(− � (Iin + Iout)
)]

= E

[
e
−�
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·
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)
vdv
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. (8.17)

Finally, we can find the UAV UE coverage probability using (8.13), (8.15), (8.17), and
(8.1).

From (8.14), we can see that increasing collaboration distance and the caching prob-
ability leads to a higher coverage probability for the UAV UE. Moreover, by increasing
the number of caching BSs, the desired signal power will increase.

8.1.5 Representative Simulation Results

Here, we present a number of Monte Carlo simulation results based on our work in
[270]. In Table 8.1 we list the simulation parameters.

Figure 8.5 shows the theoretical upper bound on the coverage probability obtained
from (8.14) and the simulation results for the exact coverage probability, and the upper
bound using Cauchy’s inequality. We can clearly observe that the upper bound obtained
from the use of the Cauchy-Schwarz inequality is very close to the real, exact coverage
probability. While the theoretical upper bound on the coverage probability is not as tight
as the Cauchy-based case, it is close to the exact coverage probability. In Figure 8.5,
we compare the coverage probability of the CoMP transmission approach with a case in
which the UAV UE is served by the nearest ground BS. We can now directly observe that
using CoMP for transmitting the same content from multiple BSs substantially improves
the UAV UE’s coverage probability.
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Table 8.1 Simulation parameters.

Description Parameter Value

LOS path-loss exponent αl 2.09
NLOS path-loss exponent αn 3.75
LOS path-loss constant Al −41.1dB
NLOS path-loss constant An −32.9dB
Antenna main lobe gain Gm 10dB
Antenna side lobe gain Gs −3.01dB
Nakagami fading parameter m 3
Nakagami spreading factor η 2
BS antenna height hBS 30m
Aerial UE altitude hd 100m
Area fraction occupied by buildings a 0.3
Mean number of buildings e 200 per km2

Buildings height Rayleigh parameter c 15
Collaboration distance Rc 200m
Density of BS λb 20 BS/ km2

SIR threshold ϑ 0dB
Down-tilt angle θt 8◦
Vertical beamwidth θB 30◦
Content caching probability cf 1

Figure 8.5 The derived upper bound on the coverage probability is plotted versus the SIR
threshold ϑ .
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Figure 8.6 Coverage probability versus the collaboration distance Rc for the aerial UAV UE and
the ground UE.

In Figure 8.6, we examine the effect of the collaboration distance (Rc) on the cover-
age probability of the ground users and the UAV UE. This figure shows that increasing
the collaboration distance leads to a higher coverage probability. The main reason
behind this result is the fact that, with a larger Rc, more BSs will cooperate with
each other while serving the UEs. The coverage probability for the ground UE is
higher than the UAV UE. However, as the collaboration distance increases, the gap
between the coverage probabilities of the UAV UE and of the ground UE become
smaller.

Figure 8.7 studies how the coverage probability changes by varying the SIR thresh-
old. We can first see that the coverage probability decreases when the SIR threshold
increases. This is because satisfying a higher SIR coverage threshold is less likely
due to the fundamental limitations of a communication system. We also evaluate the
impact of the caching probability cf . As we can see from Figure 8.7, by reducing cf ,
the coverage probability decreases since the number of caching BSs decreases. In fact,
the gain of cooperative communications decreases when the number of caching BSs
is smaller.

8.1.6 Summary

In this section, we have discussed a framework for cooperative transmission and proba-
bilistic caching for serving a UAV UE in a cellular-connected UAV system. In particular,
we have provided a closed-form expression for upper bound of the content coverage
probability. Using Monte Carlo simulations, we have evaluated the theoretical results
and demonstrated the tightness of the given approximation for the coverage probability.
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Figure 8.7 Coverage probability versus SIR threshold ϑ for different content caching probability
cf .

Moreover, we have shown how employing CoMP transmission can enhance the cover-
age probability of the UAV UE. In the next section, we focus on the role of cooperation
in creating virtual antenna arrays of UAVs.

8.2 Reconfigurable Antenna Arrays of UAVs: UAV BS Scenario

As we discussed in Chapter 2, one of the promising use cases of UAVs is in creating a
flexible, reconfigurable, and wireless antenna array in the sky [22] in which each UAV
acts as an antenna element of the array. A reconfigurable UAV-based antenna array sys-
tem has a number of key advantages over classical antenna array systems in terms of
beamforming flexibility and antenna array gain.

In this section, we introduce a framework for deploying a UAV-based antenna array
system that acts as a coordinated, fully fledged UAV BS in the sky. This antenna array-
based UAV BS can then provide wireless service to ground users. The goal is to design
an antenna array of UAVs that serve the ground users within a minimum service time
that is composed of transmission time and the control time. We note that minimizing
the service time is beneficial from both the users and UAVs points of view. For ground
users, lower service time corresponds to less delay as they can be served more quickly.
For UAVs service, time is directly related to the flight time and energy consumption.
Clearly, by decreasing the service time, the flight time and energy consumption of the
flying UAVs decrease accordingly. In order to minimize the service time in the consid-
ered UAV-based antenna array system, we consider two main steps. First, we minimize
the transmission time by optimizing the positions of UAVs within the array. Then, we
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Figure 8.8 Drone-based antenna array.

minimize the control time needed for moving the UAVs while serving different ground
users.

8.2.1 UAV-Based Antenna Array in the Sky: A Basic Model

We study a system that encompasses a set L of L ground users randomly distributed over
a certain geographical area. To serve these users, a set M of M small quadrotor LAP
UAVs are deployed and can cooperate to form an aerial UAV BS. In essence, the M
UAVs can create a wireless antenna array in the sky that acts as a single UAV BS (with
beamforming capabilities), with each element being a UAV, as shown in Figure 8.8. We
focus on a symmetric linear antenna array [274], although other generalizations can
also be considered. The 3D position of UAV m ∈ M and user i ∈ L are denoted
by (xm,i, ym,i, zm,i) and (xu

i , yu
i , zu

i ).We consider a minimum separation distance Dmin

between the two closest UAVs for avoiding a collision between them. The transmitted
signal from UAV m has an amplitude am and a phase βm. The distance between UAV m

and the origin of the antenna array is dm,i =
√

(xm,i − xo)2 + (ym,i − yo)2 + (zm,i − zo)2

with (xo, yo, zo) being the 3D location of the origin in a Cartesian coordinate. More-
over, for each UAV, the antenna radiation pattern is given by w(θ ,φ) (in the spherical
coordinate), with θ and φ being, respectively, the polar angle and the azimuthal angle.

Since ground users are at different locations within the considered area, the UAVs
within the antenna array must change their locations in order to serve them. Note that
UAVs hover at specific locations to serve a user and move to a new location change
the direction of the beam and provide service to a new user. Therefore, in the considered
UAV-based antenna array system, we focus on the mechanical beam steering (by moving
the UAVs) as opposed to the classical electronic beam steering. The service time is a
function of the transmission time, for sending the data, and the control time, for moving
and stabilizing the UAVs. Clearly, the transmission time in downlink is inversely related
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to the data rate of the UAV antenna array. The data rate is a function of the SNR and
hence depends on the gain of the antenna array.

Given the importance of the service time for both UAVs and ground users, we aim to
minimize it by optimizing and controlling the locations of the UAVs (to minimize the
transmission time) and moving them within a minimum control time. For a UAV-to-user
link, a dominant LOS model is considered, given the high altitude of the UAV antenna
array as well as exploiting beamforming that mitigates the multipath effect (and based
on the various arguments provided in previous chapters). The downlink data rate for
serving a given ground user i is:

Ri(xi, yi, zi) = Blog2

(
1 + r−α

i PtKoGi(xi, yi, zi)

σ 2

)
, (8.18)

with xi = [xm,i]M×1, yi = [ym,i]M×1, zi = [zm,i]M×1, m ∈ M representing the locations
of the UAVs servicing user i. Also, B is the transmission bandwidth, and ri is the distance
of the array’s origin to user i. The total UAV antenna array’s transmit power is given
by Pt, the noise power is denoted by σ 2, and Ko is the path loss constant. In 8.18,
Gi(xi, yi, zi) represents the array’s gain while serving user i.

Now, the total gain of the UAV-based antenna array can be given by:

Gi(xi, yi, zi) = 4π |F(θi,φi)|2w(θi,φi)2

2π∫
0

π∫
0

|F(θ ,φ)|2w(θ ,φ)2 sin θdθdφ

η, (8.19)

where 0 ≤ η ≤ 1 is the antenna array’s efficiency, and F(θ ,φ) represents the array
factor, which is expressed by [275]:

F(θ ,φ)=
M∑

m=1

amej[k(xm,i sin θ cosφ+ym,i sin θ sinφ+zm,i cos θ)+βm], (8.20)

where λ is the wavelength, k = 2π/λ is the phase constant, and the overall radiation
pattern of the antenna array can be computed by F(θ ,φ)w(θi,φi) [275].

Now, the total service time that the UAV-based antenna array requires in order to
connect to the ground users can be formulated as:

Tservice =
L∑

i=1

qi

Ri(xi, yi, zi)
+ Tcrl

i (V, xi, yi, zi), (8.21)

where Tservice represents the total service time and qi is the load of user i defined as
the number of bits that must be transmitted to user i. Tcrl

i is the control time during
which the UAVs adjust their locations according to the location of ground user i. In
particular, Tcrl

i captures the time needed for updating the UAVs’ positions from state
i−1 (i.e., locations of UAVs while serving user i−1, i > 1) to state i. The control time is
obtained based on the dynamics of the UAVs and is a function of control inputs, external
forces, and the movement of UAVs. In fact, each UAV needs a vector of control inputs
in order to move from its initial location to a new location while serving different users.
For quadrotor UAVs, the rotors’ speeds are commonly considered as control inputs.
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Therefore, in (8.21), we have V = [vmn(t)]M×4 with vmn(t) being the speed of rotor n of
UAV m at time t. The maximum speed of each rotor is vmax. In this case, the control time
of the UAVs can be minimized by properly adjusting the rotors’ speeds. An important
aspect of operating UAV is stability, which needs to be ensured when serving ground
users by controlling UAV’s rotors’ speeds while factoring in wind dynamics.

Our goal is to minimize the total service time of UAVs by finding the optimal locations
of the UAVs with respect to the center of the array, as well as the optimal control inputs.
More formally, the optimization problem is given by:

minimize
X,Y,Z,V

L∑
i=1

qi

Ri(xi, yi, zi)
+ Tcrl

i (V, xi, yi, zi), (8.22)

st. dm+1,i − dm,i ≥ Dmin, ∀m ∈ M\{M}, (8.23)

0 ≤ vmw(t) ≤ vmax, ∀m ∈ M, w ∈ {1, ..., 4}, (8.24)

where X, Y, and Z are position matrices. In these matrices, row i is vector xi, yi, or
zi, ∀i ∈ L. (8.23) is a constraint for collision avoidance, and (8.24) is related to the
maximum rotor’s speed constraint.

We can observe that the optimization problem in (8.22) accounts for both transmission
time (the first term) and the control time (the second term). Solving this optimization
problem is challenging due to its nonlinearity, non-convexity, and mutual dependence
between various optimization variables. To solve (8.22), we proceed as follows. In the
first step, we minimize the transmission time by optimizing the UAVs’ positions within
the linear antenna array according to the location of each user. Hence, for L users, we
find L sets of locations for the UAV antenna arrays. Then, based on our results in the first
step, we minimize the control time by using an optimal control mechanism for moving
and stabilizing the UAVs.

8.2.2 Transmission Time Minimization: Optimizing UAV Positions within the Array

Here, for each ground user, we find the optimal locations of the UAVs within the array
that ensure a minimum transmission time for serving the user. Considering (8.18),
(8.19), and (8.21), the transmission time can be minimized by maximizing the direc-
tivity of the UAV antenna array with respect to each user. The array factor for the
UAV antenna array with M (assuming M is even) UAVs positioned on the x-axis is
written by:

F(θ ,φ) =
M∑

m=1

amej[kxm,i sin θ cosφ+βm]

(a)=
M/2∑
n=1

an

(
ej[kdn sin θ cosφ+βn] + e−j[kdn sin θ cosφ+βn]

)
(b)= 2

N∑
n=1

an cos (kdn sin θ cosφ + βn), (8.25)
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where N = M/2 and dn represents the distance between element n ∈ N = {1, 2, ..., N}
and array’s origin. In (a), we used the symmetric property of the array, and in (b), we
use Euler’s rule. We can now optimize dn, ∀n ∈ N to achieve the maximum array’s
directivity:

maximize
dn,∀n∈N

4π |F(θmax,φmax)|2w(θmax,φmax)2

2π∫
0

π∫
0

|F(θ ,φ)|2w(θ ,φ)2 sin θdθdφ

, (8.26)

where (θmax,φmax) are the polar and azimuthal angles for which the array’s antenna
pattern is maximized.

To solve (8.26), which is a challenging problem due to its highly nonlinear nature, we
adopt the perturbation technique [274]. Using this technique, we will be able to provide
a suboptimal (with a reasonable accuracy) but tractable solution to (8.26).

UAV Spacing Optimization: A Perturbation Technique
Here, we optimize the distance of UAVs from the origin of the array by using the so-
called perturbation technique. To this end, we start with an initial value for distance
between adjacent UAVs, and then we determine suitable perturbation values used to
update the considered initial value.

The initial distance between UAV n and the array’s center is denoted by d0
n . In this

case, the perturbed distance can be given by:

dn = d0
n + en, (8.27)

where en << λ indicates the perturbation value for UAV n, and λ is the wavelength.
Using (8.27), we can approximate the array factor by:

F(θ ,φ) = 2
N∑

n=1

an cos
(

k(d0
n + en) sin θ cosφ + βn

)

= 2
N∑

n=1

an cos
[(

kd0
n sin θ cosφ + βn

)
+ ken sin θ cosφ

]
(a)≈

N∑
n=1

2an cos
(

kd0
n sin θ cosφ + βn

)

−
N∑

n=1

2anken sin θ cosφ sin
(

kd0
n sin θ cosφ + βn

)
, (8.28)

where (a) is based on the trigonometric identities when sin(x) ≈ x.
Subsequently, we can represent the optimization problem in (8.26) by:

min
e

2π∫
0

π∫
0

F(θ ,φ)2w(θ ,φ)2 sin θdθdφ, (8.29)

s.t. d0
n+1 + en+1 − d0

n − en ≥ Dmin, ∀n ∈ N \{N}, (8.30)
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where e is a vector including all of the perturbation values en, n ∈ N .
Concisely, we consider the following functions that are used in our subsequent

analysis:

F0(θ ,φ) =
N∑

n=1

an cos
(

kd0
n sin θ cosφ + βn

)
, (8.31)

Iint(x) =
2π∫

0

π∫
0

x sin θdθdφ. (8.32)

Then, leveraging our results in [22], we can prove the following:

T H E O R E M 8.2 Our UAV spacing optimization problem in (8.29) is convex. Also, the
optimal perturbation vector is determined by solving: [22]:⎧⎪⎪⎨⎪⎪⎩

e = G−1[q + μL],

μn
(
en − en+1 + Dmin + d0

n − d0
n+1

) = 0, ∀n ∈ N \{N},
μn ≥ 0, ∀n ∈ N \{N}.

(8.33)

with G = [gm,n]N×N being an N × N matrix, and:

gm,n = Iint

(
aman(k sin θ cosφw(θ ,φ))2

× sin
(

kd0
n sin θ cosφ + βn

)
sin

(
kd0

m sin θ cosφ + βm

))
, (8.34)

Moreover, q = [qn]N×1 with:

qn = Iint

(
ank sin θ cosφw(θ ,φ)F0 (θ ,φ)

× sin
(

kd0
n sin θ cosφ + βn

))
. (8.35)

Note that, μL includes Lagrangian multipliers, whose element n is given by μL(n) =
μn+1 − μn. μn is a Lagrangian multiplier corresponding to constraint n.

Based on the result of Theorem 8.2, the UAV-to-origin distance is updated by:

d1 = d0 + e∗, (8.36)

where d1 = [d1
n]N×1, and d0 = [d0

n]N×1, n ∈ N .
After r ∈ N updates, we have:

d(r) = d(r−1) + e∗(r), (8.37)

where e∗(r) represents the optimal perturbation vector at step r.
In the sequel, using d∗, we find the optimal 3D UAVs’ positions, which can yield a

maximum array directivity for each ground user.
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Optimal 3D Locations of UAVs
Now, we seek to maximize the UAV array directivity by optimizing the 3D locations of
the UAVs in the array. We introduce (xu

i , yu
i , zu

i ) and (xo, yo, zo) to represent, respectively,
the 3D locations of user i ∈ L and the origin of the UAV antenna array.

Considering the UAV array’s center as the origin of the coordinate system, we can
present the polar and azimuthal angles of user i as:

θi = cos−1

⎡⎣ zu
i − zo√

(xu
i − xo)2 + (yu

i − yo)2 + (zu
i − zo)2

⎤⎦ , (8.38)

φi = sin−1

⎡⎣ yu
i − yo√

(xu
i − xo)2 + (yu

i − yo)2

⎤⎦ . (8.39)

In the next theorem (whose proof is found in [22]), we derive the optimal positions of
the UAVs.

T H E O R E M 8.3 The optimal UAVs’ positions within the array that maximize the array
directivity for serving user i can be determined by [22]:(

x∗
m, y∗

m, z∗
m

)T =⎧⎨⎩Rrot

(
d∗

m sinαo cos γo, d∗
m sinαo sinβo, d∗

m cosαo

)T
, m ≤ M/2,

−Rrot

(
d∗

m sinαo cos γo, d∗
m sinαo sin γo, d∗

m cosαo

)T
, m > M/2,

(8.40)

where αo and γo are the initial polar angle and the azimuthal angle of UAV m ≤ M/2,
and Rrot represents the rotation matrix used for updating UAVs’ locations:

Rrot =⎛⎝ a2
x(1 − δ) + δ axay(1 − δ) − λaz axaz(1 − δ) + λay

axay(1 − δ) + λaz a2
y(1 − δ) + δ ayaz(1 − δ) − λax

axaz(1 − δ) − λay ayaz(1 − δ) + λax a2
z (1 − δ) + δ

⎞⎠ , (8.41)

where δ = ‖qi · qmax‖, λ = √
1 − δ2, qi =

⎛⎝sin θi cosφi

sin θi sinφi

cos θi

⎞⎠, qmax =
⎛⎝sin θmax cosφmax

sin θmax sinφmax

cos θmax

⎞⎠. Also, a = (
ax, ay, az

)T = qi × qmax is a vector whose elements

are ax, ay, and az.

Using Algorithm 4 (which is based on Theorem 8.3) we can find the optimal UAVs’
positions within the array that can yield a minimum transmission time for each user.
While serving multiple users one-by-one, the UAVs need to update their locations. Next,
we will minimize the control time needed for moving and stabilizing the UAVs.
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Figure 8.9 Illustrative figure for Theorem 8.3.

Algorithm 4 Optimizing UAVs’ locations for maximum array gain toward user i.

1: Inputs: Locations of user i, (xu
i , yu

i , zu
i ), and origin of array, (xo, yo, zo).

2: Outputs: Optimal UAVs’ positions, (x∗
m,i, y∗

m,i, z∗m,i), ∀m ∈ M.
3: Set initial values for distance between UAVs, d.
4: Find e∗ by using (8.33)–(8.35).
5: Update d based on (8.36).
6: Repeat steps (4) and (5) to find the optimal spacing vector d∗.
7: Use (8.38)–(8.41) to determine (x∗

m, y∗
m, z∗m), ∀m ∈ M.

8.2.3 Control Time Minimization: Time-Optimal Control of UAVs

In Section 8.2.2, we determined all the locations where the UAVs need to be while
serving different users. Our next step is to develop a way to minimize the control time
during which the UAVs move between those predetermined locations. The control time
is minimized by optimally adjusting speed of rotors for each quadrotor UAV. In addition,
we capture the impact of wind dynamics on the control of the UAV antenna array.

Dynamic Model for Quadrotor UAV
In Figure 8.10, we provide an illustrative figure for a quadrotor drone that uses four
rotors for hovering and movement, which is done by controlling the rotors’ speeds.

We define (ψr,ψp,ψy) as the roll, pitch, and yaw angles of the UAV located at (x, y, z).
The rotors’ speeds are denoted by vi, i ∈ {1, 2, 3, 4}. For the considered quadrotor UAV,
the total thrust (needed for displacement) and torques (needed for changing orientation)
can be computed by: [276]:⎛⎜⎜⎝

Ttot

κ1

κ2

κ3

⎞⎟⎟⎠ =

⎛⎜⎜⎝
ρ1 ρ1 ρ1 ρ1

0 −lρ1 0 lρ1

−lρ1 0 lρ1 0
−ρ2 ρ2 −ρ2 ρ2

⎞⎟⎟⎠
⎛⎜⎜⎝

v2
1

v2
2

v2
3

v2
4

⎞⎟⎟⎠ , (8.42)
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Figure 8.10 A quadrotor UAV.

where Ttot is the total upward thrust of the UAV (as shown in Figure 8.10). The torques
for the roll, pitch, and yaw movements are, respectively, defined as κ1, κ2, and κ3. In
8.42, ρ1 and ρ2 represent the lift and torque coefficients. Finally, l shows the separation
distance of each rotor from the UAV’s center.

The dynamic equations for a quadrotor UAV can be given by:

ẍ = (
cosψr sinψp cosψy + sinψr sinψy

) Ttot

mD
+ FW

x

mD
, (8.43)

ÿ = (
cosψr sinψp sinψy + sinψr cosψy

) Ttot

mD
+ FW

y

mD
, (8.44)

z̈ = (
cosψr cosψp

) Ttot

mD
− g + FW

z

mD
, (8.45)

ψ̈r = κ2

Ix
, (8.46)

ψ̈p = κ1

Iy
, (8.47)

ψ̈y = κ3

Iz
, (8.48)

where mD indicates the UAV’s mass, and g represents the gravity, and the wind force has
different directions that are given FW

x , FW
y , and FW

z . Moreover, the moments of inertia
are shown by Ix, Iy, Iz.

Based on this UAV’s dynamic model, we now determine the optimal rotors’ speed
for which the UAV updates its position from (xI , yI , zI) to (xD, yD, zD) (i.e., from point
I to D) within the minimum control time. At time t, the 3D position and the attitude of
a UAV are, respectively, denoted by (x(t), y(t), z(t)) and

(
ψr(t),ψp(t),ψy(t)

)
. We further

define variable TI,D as the total control time that a UAV needs for flying from point I to
point D. The time-optimal control problem will now be:

minimize
[v1(t),v2(t),v3(t),v4(t)]

TI,D, (8.49)

st. |vw(t)| ≤ vmax, ∀w ∈ {1, ..., 4}, (8.50)

(x(0), y(0), z(0)) = (xI , yI , zI) , (8.51)(
x(TI,D), y(TI,D), z(TI,D)

) = (xD, yD, zD) , (8.52)
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(
ẋ(TI,D), ẏ(TI,D), ż(TI,D)

) = (0, 0, 0) , (8.53)

where [v1(t), v2(t), v3(t), v4(t)] are the speeds of rotors at time instance t, which are less
than vmax (i.e., the maximum speed of each rotor). Constraints (8.51)–(8.53) refer to the
initial and final positions of the UAV as well as its stability at the final position.

We can now easily see that the optimization problem in (8.49) is nonlinear, non-
convex, and contains an infinite number of variables. This, in turn, makes the problem
intractable and challenging to solve. One way to reduce the complexity of this optimiza-
tion problem is to decompose it into two subproblems considering the displacement and
orientation changes separately. In order to solve (8.49), we need to use a lemma from
the time-optimal control theory [277], as follows.

L E M M A 8.4 (From [277]): Let us consider a moving object during [0, T] with the
following state space equations:

ẋ(t) = Ax(t) + bu(t), umin ≤ u(t) ≤ umax, (8.54)

x(0) = x1, (8.55)

x(T) = x2, (8.56)

with x(t) ∈ RNs and Ns being, respectively, the state vector and the number of elements
in the state. u(t) is a control input that is between umax and umin.

The initial and final states of this moving object are given by x1 and x2. The optimal
control input for which the state update time is minimized can now be written as follows
[277]:

u∗(t) =
{

umax , t ≤ τ ,

umin , t > τ ,
(8.57)

where τ is called the state switching time.

The result given in Lemma 8.4 corresponds to bang-bang solution from time-optimal
control theory. Based on this solution, the optimal control input adopts either its maxi-
mum or minimum value. Using Lemma 8.4 along with a lemma from [22], we provide
a solution to (8.49) and find the optimal speeds of rotors at different time instances.

T H E O R E M 8.5 In order to achieve the minimum control time that a UAV needs to
update its location from position (0, 0, 0) to (xD, yD, zD), the speed of its rotors needs to
be adjusted according to the following equations [22]:

Stage 1:

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

v2 = 0, v1 = v3 = 1√
2

vmax, v4 = vmax, if 0 < t ≤ τ1,

v4 = 0, v1 = v3 = 1√
2

vmax, v2 = vmax if τ1 < t ≤ τ2,

v1 = 0, v2 = v4 = 1√
2

vmax, v3 = vmax, if τ2 < t ≤ τ3,

v3 = 0, v2 = v4 = 1√
2

vmax, v1 = vmax, if τ3 < t ≤ τ4.

(8.58)

Stage 2: v1 = v2 = v3 = v4 = vmax, if τ4 < t ≤ τ5. (8.59)
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Stage 3:

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

v2 = 0, v1 = v3 = 1√
2
vmax, v4 = vmax, if τ5 < t ≤ τ6,

v4 = 0, v1 = v3 = 1√
2
vmax, v2 = vmax, if τ6 < t ≤ τ7,

v1 = 0, v2 = v4 = vmax, v3 = vmax, if τ7 < t ≤ τ8,

v3 = 0, v2 = v4 = 1√
2
vmax, v1 = vmax, if τ8 < t ≤ τ9.

(8.60)

Stage 4: v1 = v2 = v3 = v4 = vmax, if τ9 < t ≤ τ10. (8.61)

Stage 5:

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

v2 = 0, v1 = v3 = 1√
2

vmax, v4 = vmax, if τ10 < t ≤ τ11,

v4 = 0, v1 = v3 = 1√
2

vmax, v2 = vmax, if τ11 < t ≤ τ12,

v1 = 0, v2 = v4 = 1√
2

vmax, v3 = vmax, if τ12 < t ≤ τ13,

v3 = 0, v2 = v4 = 1√
2

vmax, v1 = vmax, if τ13 < t ≤ τ14.

(8.62)

Stage 6: v1 = v2 = v3 = v4 = vF, if t > τ14. (8.63)

Moreover, the total control time of the UAV will be equal to:

TI,D =
√

2dD

(mD

As2
− mD

As4

)
+ 2

vmax

[√
�ψp,1Iy

lρ1
+
√
�ψr,1Ix

lρ1
+
√
�ψp,3Iy

lρ1

+
√
�ψr,3Ix

lρ1
+
√
�ψp,5Iy

lρ1
+
√
�ψr,5Ix

lρ1

]
, (8.64)

with vin and vF being the rotor’s speeds at initial and final positions of the UAV. �ψr,i

and �ψp,i represent the roll and pitch changes in Stage i. Also, dD is the displacement
distance of the UAV. τ1, ..., τ14 are the switching times whose values along with vF value
can be found in [22].

8.2.4 Representative Simulation Results

For simulations, we consider 100 ground users randomly distributed on a geographi-
cal area of size 1 m × 1 km. We also consider 10 single-antenna quadrotor UAVs each
with an omni-directional antenna. In Table 8.2, we list our simulation parameters. For a
benchmark, we consider a UAV antenna array with a fixed separation (half wavelength)
between adjacent UAVs.

In Table 8.3, we provide a representative result on the adjacent UAVs separation dis-
tances. This table clearly shows that, in the proposed flexible UAV antenna array system,
the array is not uniform and the UAV spacing is different for different adjacent UAVs.

In Figure 8.11, we compare the total service time for the flexible UAV antenna array
with the fixed array. Clearly, the proposed flexible antenna array system has a better per-
formance compared to the fixed array since it considers optimal UAVs’ positions within
the array that lead to the maximum array gain. Moreover, we can observe an inherent
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Table 8.2 Parameters used for simulations.

Parameter Description Value

fc Carrier frequency 300 MHz
Pi UAV transmit power 0.1 W
No Total noise power spectral density −157 dBm/Hz
N Number of ground users 100
(xo, yo, zo) Array’s center coordinate (0,0,100) in meters
qi Load per user 100 Mb
α Pathloss exponent 3
Ix, Iy Moments of inertia 4.9 × 10−3kg.m2 [278]
mD Mass of each LOS 0.5 kg
l Distance of a rotor to UAV’s center 20 cm
ρ1 Lift coefficient 2.9 × 10−5 [278]
βm − βm−1 Phase excitation difference for two adjacent antennas π

5(M−1)

Table 8.3 Separation distance of adjacent UAVs in an aerial antenna array with 10 UAVs.

UAVs’ separations (cm),
fc = 300 MHz, λ= 1 m

UAVs’ separations (cm),
fc = 500 MHz, λ= 0.6 m

Compared to
wavelength (λ)

81.9 49.1 81.9 λ

88.7 53.2 88.7 λ

89.8 54.1 89.8 λ

90.7 54.3 90.7 λ

89.8 54.1 89.8 λ

88.7 53.2 88.7 λ

81.9 49.1 81.9 λ

tradeoff between transmission bandwidth and the service time. By increasing the band-
width, the transmission time (as a major component of the service time) decreases. From
Figure 8.11, we can see that, for 10 minutes service time, the bandwidth used for the
flexible UAV antenna array is 2/3 of the fixed array.

Figure 8.12 shows how the number of ground users affects the service time in the
flexible UAV antenna array system and the fixed array case. As the number of users
increases, the transmission time as well as the control time needed for serving the users
increases. From Figure 8.12, we can also see that our proposed UAV antenna array
system, which acts as a UAV base station, outperforms the fixed-array case for various
users. For instance, using our approach, to serve 200 ground users, the flexible array
needs to fly for about 28% less compared to the fixed array.

Figure 8.13 illustrates the control, transmission, and service times as a function of the
number of UAVs used in the flexible antenna array system. By increasing the number of
UAVs (i.e., larger size of the array), the total control time needed for moving the UAVs
will increase. However, with more antenna elements within the array, the gain of the
UAV-based antenna array system increases. For example, as we can see from Figure 8.13
when the number of UAVs increases from 10 to 30, the time needed for controlling the
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UAVs increases by 21%. Nevertheless, in this case, the transmission time for serving the
users can be reduced by 37%.

8.2.5 Summary

In this section, we have presented a framework for deploying a UAV-based wireless
antenna array system for efficiently and quickly serving ground users. In particular,
while providing service to users, we have discussed how to minimize the total service
time, which includes transmission time and control time. To minimize the transmission
time, we have optimized the positions of the UAVs within the antenna array to achieve
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Figure 8.13 Control, transmission, and service times vs. number of UAVs.

a maximum array directivity. To minimize the control time needed for moving and sta-
bilizing the UAVs while serving different users, we have presented an optimal control
mechanism based on the time-optimal control theory to dynamically adjust the speed
of rotors for each UAV. The results have demonstrated promising advantages of flexi-
ble and reconfigurable UAV-based antenna array systems while characterizing inherent
design tradeoffs in these systems.

8.3 Chapter Summary

In this chapter, we have described the role of cooperative communication in improving
the connectivity and capacity of UAV-enabled wireless networks. In a cellular-connected
UAV scenario, we have shown how leveraging principles of CoMP among ground BSs
can improve the coverage performance for UAV UEs by reducing the uplink LOS inter-
ference. In this case, using tools from stochastic geometry, we have derived the content
coverage probability for UAV UEs and provided insights on the overall deployments
of UAVs as a function of different system parameters. Additional insights on the ben-
efits of CoMP can also be found in [279]. In the second part of this chapter, we have
focused on a UAV BS scenario and presented the promising use of multiple quadrotor
UAVs as an aerial antenna array providing wireless service to ground users. In particu-
lar, we have described a practical framework for minimizing the airborne service time
for wireless communications between the UAV antenna array and ground users. This
framework includes optimizing UAVs’ positions within the antenna array for maximiz-
ing beamforming gain and optimally controlling the motion of the UAVs by exploiting
time-optimal control theory. The obtained results have revealed a number of funda-
mental tradeoffs for leveraging reconfigurable flying antenna array systems. Moreover,
our results have shown that there is a very close connection between communications
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and control when dealing with UAV-based systems. These synergies between commu-
nications, control, and cooperation can be further explored in future wireless connected
systems (e.g., see the idea of communications and control in networks with swarms of
UAV UEs in [280] as well as the role of communications and control in future cellular
systems in [26]).



9 From LTE to 5G NR-Enabled UAV
Networks

In the previous chapters, we primarily discussed the fundamental challenges and the
associated theories and tools for the design of wireless communications and networking
solutions with UAV BSs and UAV UEs. In this chapter, we turn to a more practical issue
on how to utilize real-world mobile broadband technologies, including LTE and 5G NR,
for UAV wireless communications and networking purposes.

Nationwide network coverage is desirable for safely incorporating UAV operations
into national airspace. This includes incorporating UAV UEs, UAV BSs, and UAV
relays. Developing a clean slate technology and rolling out a new dedicated nationwide
network would require extensive and intensive investment in research, product develop-
ment, testing, field trials, and infrastructure. The extensive efforts required would lead
to long time-to-market and may not be economically viable [281]. Mobile networks are
already up and running and are providing connectivity for billions of terrestrial devices
worldwide. As cost-efficient connectivity solutions with proven track records, they stand
ready nationwide to offer UAV connectivity services. The recent few years have seen a
surge of activities in utilizing LTE for UAVs, in general, and UAV UEs, in particular
[48, 282]. LTE is the dominant 4G mobile technology that is being widely deployed.
LTE is being further evolved in 3GPP to meet 5G requirements and will become a
5G wireless access technology in addition to 5G NR. LTE stands ready nationwide in
many countries to enable UAV connectivity. 5G NR has the potential of providing more
advanced capabilities [283], though its large-scale nationwide commercial deployment
may take a few years to complete. As shown in previous chapters, if properly designed,
cellular systems, including LTE, 5G, and beyond [26], have a promising potential to
integrate UAVs into their operations, both for providing connectivity (UAV BSs) and
for communicating with the network (UAV UEs). Indeed, UAVs are seen as an integral
component of tomorrow’s 6G wireless networks [26].

We begin the chapter with a review of the roles of mobile and cellular technologies
for UAV applications, expanding on the discussions of previous chapters. We highlight
the use of mobile connectivity and also discuss how mobile technologies can enable
the development of new services for UAVs in key areas, such as identification and reg-
istration, location-based services, and law enforcement, which complement many of
the applications discussed in Chapter 2. Then, throughout Sections 9.2 to 9.4, we dis-
cuss LTE-enabled UAVs in more detail, given that LTE is well positioned for initial
UAV deployment. We start with a tutorial introduction to LTE in Section 9.2, includ-
ing basic design principles, system architecture, radio interface protocols, and physical



208 From LTE to 5G NR-Enabled UAV Networks

layer time-frequency structure. In Section 9.3, we focus on UAV UE use cases in which
UAVs act as LTE UE and discuss the key connectivity issues associated with using ter-
restrial LTE networks to connect UAV UE. These first few section discussions go more
in depth into some of the issues discussed in Chapter 1. In particular, we elaborate more
on the role of real-world LTE technology in integrating UAV UEs. We also touch upon
some performance-enhancing solutions that can optimize LTE connectivity for provid-
ing improved performance for UAV UEs while protecting the performance of terrestrial
mobile devices. As discussed in Chapters 1 and 2, BSs mounted on UAVs can provide
on-demand connectivity in hotspots and emergency communication in natural disaster
zones. As a result, in Section 9.4, we turn our attention to UAV BSs, particularly LTE-
enabled UAV BSs, and we discuss the key practical connectivity issues associated with
deploying a UAV-based LTE network. In Section 9.5, we discuss 3GPP standardization
efforts on connected UAVs that aim to address the anticipated usage of mobile technolo-
gies by UAVs and regulatory requirements. Next, we discuss 5G NR-enabled UAVs in
Section 9.6. The discussion includes a primer on 5G NR essentials, how 5G NR can
provide superior UAV connectivity performance, and the roles of network slicing and
network intelligence for identifying, monitoring, and controlling UAVs in the 5G era.
Finally, Section 9.7 concludes the chapter with a short summary and future outlook for
mobile technologies-enabled UAVs. This chapter, in essence, is a practical complement
to the more fundamental discussions on cellular-connected UAVs done in the previous
chapters.

9.1 Mobile Technologies-Enabled UAVs

9.1.1 Connectivity Aspects

Cellular networks can provide wide-area, secure, reliable, low-latency, high data rate
mobile connectivity to enable a full continuum of consumer and enterprise UAV use
cases, as elaborated in Chapters 1 and 2. For example, broadband connectivity allows
cellular-connected UAV UEs to live stream the data or video it captures. Example
applications include movie and documentary filming, broadcasting of news events,
surveillance, cargo delivery, and infrastructure inspection and surveys. In particular, the
wide-area secure connectivity provided by cellular networks is a key enabler for many
beyond visual LOS UAV applications. In addition, temporary cellular coverage during
special public events can be provided by BS mounted on UAV, as discussed in Chapters 1
and 2.

During natural disasters such as floods, earthquakes, and storms, mobile technologies-
enabled UAVs can fly beyond visual LOS, collect real-time data about the disaster zones,
and transmit the information back to the first responder agencies via the cellular network
if the cellular infrastructure is functional. If the cellular infrastructure is damaged by the
disasters, a group of UAVs may serve as BSs to provide temporary cellular connectiv-
ity or act as relays between the devices in the disaster zones and nearby operational
terrestrial BSs.
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Cellular technologies developed by 3GPP are based on standards from an industry-
wide consensus. 3GPP has developed 4G LTE and the first release of 5G NR standards
and is working on further evolution of LTE and NR standards. The 3GPP standards
provide a global, inter-operable, and scalable platform for the UAV ecosystem. The
licensed spectrum further empowers cellular networks to provide reliable, quality UAV
connectivity. In addition, the mobile connections are encrypted and secure, which can
help meet high standards of data protection and privacy in UAV applications.

The latest mobile technologies, including LTE and 5G NR, have been designed, and
are being further evolved, to connect a wide range of things, including massive IoT
and connected vehicles. These have laid a solid foundation for the initial deployment
of UAVs. The main types of communications that can be supported are summarized as
follows:

• Communication between UAVs and ground control system: With cellular networks
being the backbone of communications systems for the UAV operations, the UAV
operators can maintain connections with their UAVs for command and control as
well as payload communication to ensure safe and proper operations.

• Communication among UAVs: The direct device-to-device communication feature
(also known as sidelink or vehicle-to-vehicle communication) can be adopted for
UAV identification and collision avoidance [284].

• Communication between UAV and air traffic management systems: Cellular net-
works can provide secure, reliable communication channels for UAVs to transmit,
for example, tracking data to the air traffic management system and receive the latest
information, such as airspace constraints, geo-fencing, and alerts from the air traffic
management system.

To address the anticipated need of cellular connected UAV, 3GPP conducted a study
on enhanced LTE support for aerial vehicles in 2017 [21] and introduced enhancements
in its Release 15 to improve the support of LTE technologies for UAVs [285].

9.1.2 Services beyond Connectivity

As elaborated in previous chapters, mobile technologies can play a very prominent role
in the development of new UAV services in addition to providing wireless connec-
tivity. In this section, beyond the applications we discussed in Chapter 2, we further
describe a few exemplary services, including identification and registration, location-
based services, and law enforcement, which will particularly benefit from mobile
technologies.

Mobile technologies can assist with UAV identification and registration. For the iden-
tification of handset devices, the international mobile equipment identity (IMEI) is used
in cellular networks. For the identification of the access service subscriptions, the inter-
national mobile subscriber identity (IMSI) stored on a subscriber identification module
(SIM) card is used in cellular networks. Consumers need to provide proof of identifi-
cation in some countries to register for the cellular services. Likewise, it is necessary
to identify the UAV device and the service subscription. One possible approach is to
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use IMEI to identify the UAV device and the IMSI to identify the service subscription.
It is also necessary to associate a UAV with its owner or pilot to comply with UAV
regulations in many countries. Mobile technologies may be applied to UAV registration
as well. UAV identification and registration may be necessary for both UAV BSs and
UAV UEs.

Mobile technologies can assist with UAV positioning and localization, including inde-
pendent verification of the UAV location for use by authorized users (e.g., air traffic
control, public safety agencies). A basic requirement for any UAV air traffic manage-
ment system is the ability to obtain the location information of the UAV. Most LTE
chipsets today contain an integrated global navigation satellite system (GNSS) receiver.
A UAV may locate its position via GNSS and report the location information to the
ground control center or air traffic management system. The GNSS solution alone may
not be reliable due to potential spoofing and jamming. 3GPP has introduced a rich set
of positioning methods to LTE, such as enhanced cell identity (E-CID), observed time
difference of arrival (OTDOA), UL time difference of arrival (UTDOA), and assisted
GNSS (A-GNSS) supported within a common location service architecture [286].
Mobile network-based positioning can be used to locate a UAV and is well positioned
to provide independent verification of the location information reported by a UAV.

By assisting with UAV identification, registration, and tracking, mobile networks can
help UAV operations comply with law enforcement requirements. Regulatory bodies
are looking into UAV identification and tracking programs that would allow authorized
users to query the identity and metadata of a UAV and its owner or operator. One such
effort has been carried out by the FAA unmanned aerial system (UAS) identification and
tracking aviation rulemaking committee (ARC) [287]. To meet the needs of business,
security, and public safety, 3GPP is also studying the use cases and potential require-
ments for the remote identification and tracking of UAS linked to a 3GPP subscription
[288]. Another inherent advantage of cellular networks is their support of lawful inter-
ception of communications, which is important for law enforcement agencies to ensure
safe UAV operations and protect public safety.

9.2 Introduction to LTE

LTE, as its name suggests, is a wireless access technology that has undergone long-
term evolution, starting from the first version in 3GPP Release 8 approved back in
2007 and going through a continuing evolution to the latest Release 16. LTE, also
known as the evolved universal terrestrial radio access (E-UTRA), is built on an
industry-wide consensus and represents a huge collaborative effort in the wireless
industry. In this section, we provide a tutorial introduction to LTE to help under-
stand how the wide range of LTE capabilities can be exploited to support UAV
applications. The introduction in this section is by no means exhaustive. We refer
interested readers to the excellent 4G LTE book [289] and the corresponding 3GPP
technical specifications for a more in-depth understanding of the sophisticated LTE
technology.
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9.2.1 Design Principles

LTE was designed by 3GPP from a clean slate to meet the performance requirements of
new services for mobile devices. It was enabled by the advancement of mobile technolo-
gies and went hand-in-hand with advancement in other technologies such as processor,
memory, color displays, and cameras. The main design targets of LTE included close to
Gbps data rate, latency reduction, increased spectral efficiency, and high spectrum flex-
ibility. These design considerations heavily influenced the main design principles and
choices behind LTE standards, which are described in the following list.

• OFDM transmission: The use of OFDM as the fundamental modulation wave-
form is a distinct feature of LTE compared to the CDMA-based wireless access
technologies in the 3G era. OFDM is an attractive transmission technology for broad-
band communications and can flexibly support different multi-antenna techniques.
While the LTE DL is based on OFDM, the LTE UL is based on single-carrier
frequency division multiple access (SC-FDMA), in which the OFDM modulator
is preceded by a DFT precoder. SC-FDMA is a technique for reducing the cubic
metric of UL signals to achieve lower power amplifier cost and higher power
efficiency.

• Channel-dependent scheduling and rate adaption: The multiple access scheme for
LTE is OFDMA, which can be used to assign different subsets of subcarriers to dif-
ferent individual users. The overall time-frequency resource in LTE is dynamically
shared among the users. At each time instant, the scheduler can decide which part of
the shared resource should be assigned to a user. By taking into account the chan-
nel conditions of the users, the allocation of the shared resource can be performed
to favor users with good channel conditions while maintaining fairness. This type of
channel-dependent scheduling harnesses multiuser diversity from a system perspec-
tive. The modulation and coding scheme for a scheduled user can be chosen to adapt
to the corresponding channel condition. The channel-dependent scheduling and rate
adaption in LTE help enhance overall system capacity.

• Multi-antenna techniques: LTE provides extensive support for different multi-antenna
transmission techniques. Multiple antennas can be used at the transmitter for transmit
diversity and transmit beamforming. Multiple antennas can be used at the receiver for
receive diversity and receive beamforming. Spatial multiplexing and multiuser MIMO
are also supported in LTE. In the LTE DL, ten transmission modes are available:
Transmission mode 1 is used for single antenna transmission, while the other nine
are associated with different multi-antenna transmission schemes. How the multi-
antenna schemes are used is under network control. The use of the multi-antenna
techniques helps improve link robustness, coverage, spectral efficiency, and system
capacity.

• Flexible spectrum and deployment: LTE supports flexible spectrum and deployment
scenarios. Both frequency division duplex (FDD) and time division duplex (TDD) are
supported to enable operation in paired and unpaired frequency bands. FDD supports
both full duplex and half-duplex operation at the terminal. The half-duplex FDD oper-
ation does not require a duplex filter at the terminal and thus can help reduce terminal
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cost. A wide range of carrier bandwidths ranging from 1.4 MHz to 20 MHz are sup-
ported in LTE. To limit implementation complexity, the radio frequency requirements
are defined only for six channel bandwidths: 1.4 MHz, 3 MHz, 5 MHz, 10 MHz,
15 MHz, and 20 MHz, which were chosen based on the known spectrum migration
and deployment scenarios. Nonetheless, they offer enough flexibility for LTE deploy-
ment in different bands and can meet the requirements of different operators that may
have different spectrum resources. Note that the channel bandwidths can go beyond
20 MHz by exploiting carrier aggregation techniques that enable multiple component
carriers to be aggregated and jointly used for transmission.

• Flat system architecture: In addition to the air interface, the system architecture in
LTE is also simplified with fewer nodes in a less hierarchical structure, leading to a
flat radio and core network architecture. The architecture in GSM relies on circuit-
switching, and later packet-switching is added to the circuit-switching in general
packet radio services (GPRS). The 3G universal mobile telecommunications system
(UMTS) keeps the dual-domain concept (circuit and packet) on the core network side.
The voice service is traditionally supported via circuit-switched core in mobile sys-
tems before 4G LTE. In contrast, LTE has a single packet-switched core, evolved
packet core, to support all services, including voice-based on Internet Protocol (IP).
The LTE system architecture is described in more detail in the next section.

9.2.2 System Architecture

The LTE system architecture, known as the evolved packet system (EPS), consists of two
parts: the evolved packet core (EPC) and the radio access network (RAN). Figure 9.1
gives an illustration of the basic architecture of the EPS, where the UE is connected to
the EPC with E-UTRA access. The EPC handles non-radio-related functionality, such as
access control, packet routing and transfer, and mobility management. The RAN handles
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Figure 9.1 An illustration of the basic architecture of the EPS with E-UTRA access.
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radio-related functionality, such as scheduling, link adaptation, and hybrid automatic
repeat request (ARQ).

The EPC has a “flat” architecture to achieve efficient handling of the data traffic. The
user data (i.e., user plane) is separated from the signaling (i.e., control plane) in the EPC.
This functional split facilitates network dimensioning. The main nodes in the EPC are
briefly described as follows.

• Serving gateway (S-GW): S-GW is the user-plane node connecting the LTE RAN to
the EPC. It acts as the mobility anchor when terminals move across different cells and
across different 3GPP radio networks. S-GW transports IP data packets between the
LTE RAN and the EPC.

• Packet data network gateway (P-GW): P-GW connects the EPC to external IP data
networks, such as the internet. P-GW transports packets to and from the external IP
data networks. It also performs various other functions, such as IP address allocation,
quality-of-service enforcement, and packet filtering. It is logically connected to S-
GW.

• Mobility management entity (MME): MME is the control-plane node of the EPC. It
mainly manages terminal access and mobility management functions (tracking, pag-
ing, roaming, and handover). It is the termination point of the non-access stratum
(NAS).

• Policy and charging rules function (PCRF): PCRF interfaces with P-GW to support
quality-of-service enforcement and is also responsible for charging.

• Home subscriber service (HSS): HSS is a database storing subscriber information. It
interfaces with MME to support mobility management, call and session setup, service
authorization, and user authentication.

The LTE RAN is also flat with one type of node known as the eNodeB that termi-
nates the air interface protocol. The eNodeB is connected to the EPC via S1 interface:
the user-plane part, S1-U, carries data traffic between the eNodeB and the S-GW, and
the control-plane part, S1-MME, carries signaling between the eNodeB and the MME.
The eNodeBs are connected via X2 interface among themselves. The X2 interface is
mainly used to support handover, intercell interference management, and multicell radio
resource management.

9.2.3 Radio Interface Protocols

The LTE radio interface is based on a layered architecture. The user-plane RAN pro-
tocols consist of packet data convergence protocol (PDCP), radio link control (RLC),
medium access control (MAC), and physical layer (PHY). The MAC, RLC, and PDCP
together can be referred to as “layer 2” in the protocol stack, while the PHY layer is
often referred to as “layer 1.” The control-plane RAN protocols include an additional
radio resource control (RRC) layer known as “layer 3.”

Figure 9.2 presents the overall RAN protocol stack. Note that the NAS layer in the
control plane and the IP and application layers in the user plane are not part of RAN
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Figure 9.2 An illustration of the overall LTE RAN protocol stack.

protocol stack but are included in the figure for completeness. The RAN protocol entities
are summarized in the following list.

• RRC: The RRC layer performs access stratum control-plane functions, including
the broadcast of system information, the transmission of paging messages, connec-
tion management, mobility management, measurement configuration and reporting,
among others. RRC messages are transmitted using signaling radio bearers.

• PDCP: The PDCP layer performs functions mainly including IP header compression,
data ciphering, integrity protection for control-plane signaling, in-sequence delivery,
and duplicate removal. There is one PDCP entity for each radio bearer.

• RLC: The RLC layer performs functions mainly including segmentation and con-
catenation, ARQ, duplicate detection, and in-sequence delivery. There is one RLC
entity per radio bearer.

• MAC: The MAC layer performs functions mainly including priority handling of log-
ical channels, mapping of logical channels to transport channels, hybrid ARQ, and
scheduling.

• PHY: The PHY layer is responsible for the actual transmission and reception of trans-
port blocks. Its main functions include modulation, coding, multi-antenna mapping,
and layer 1 control functionality.

The MAC layer uses logical channels to provide services to the RLC layer. A logical
channel is associated with a type of information it carries. The PHY layer uses transport
channels to provide services to the MAC layer. A transport channel is defined by how
and with what characteristics the data are transmitted. Each transport channel is mapped
to a corresponding physical channel. A physical channel is defined by the set of time-
frequency resources used for the transmission.
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Figure 9.3 An illustration of the LTE time and frequency structure.

9.2.4 Physical Layer Time-Frequency Structure

OFDM is the fundamental transmission scheme in LTE. Figure 9.3 shows the basic LTE
time and frequency structure. The normal subcarrier spacing in LTE OFDM equals 15
kHz for both downlink (DL) and uplink (UL). In LTE specifications, the basic time unit
is Ts = 1

15000×2048 seconds, which can be considered the sampling interval of an FFT-
based implementation with an FFT size NFFT = 2048 for the 15 kHz subcarrier spacing.
In other words, the nominal sampling rate is fs = 1

Ts
= 30.72 MHz.

In the time domain, LTE transmissions are organized into radio frames, and the length
of a radio frame is Tf = 307200 · Ts = 10 ms. A radio frame is equally divided into
ten subframes, and the length of a subframe is 1 ms. A normal subframe is equally
divided into two slots. Each slot consists of a number of OFDM symbols with cyclic
prefixes. The duration of an OFDM symbol with 15 kHz subcarrier spacing is Tu =
2048 · Ts ≈ 66.7 μs. Two different cyclic prefix lengths are supported: normal and
extended cyclic prefixes. With extended cyclic prefixes, each slot consists of six OFDM
symbols. The length of an extended cyclic prefix is Tecp = 512 · Ts ≈ 16.7 μs. With
normal cyclic prefixes, each slot consists of seven OFDM symbols. The length of a
normal cyclic prefix equals Tcp = 160 · Ts = 5.2 μs in the first OFDM symbol of a slot,
and Tcp = 144 · Ts = 4.7 μs in the subsequent OFDM symbols of the slot.

The physical resource can be described by a time-frequency resource grid. Each
column and each row of the resource grid correspond to one OFDM symbol and one sub-
carrier, respectively. The smallest unit in the time-frequency resource grid is a resource
element composed of one subcarrier over one OFDM symbol. A resource block consists
of 12 consecutive subcarriers in the frequency domain and one slot in the time domain.
Scheduling decisions in LTE can be made in every subframe. The normal basic schedul-
ing unit is a resource-block pair consisting of two time-consecutive resource blocks in
the same subframe.
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9.3 UAV as LTE UE

LTE networks can offer wide-area, secure, and quality wireless connectivity to enhance
the safety of UAV operations beyond visual LOS range. With increasing height above
the ground, the radio environment changes. Using terrestrial cellular networks to pro-
vide connectivity to UAV UEs leads to new challenges, as briefly discussed in Chapter 1
and developed in some of the other previous chapters. In this section, we further elab-
orate on the key connectivity issues associated with using terrestrial LTE networks to
connect UAV UE. We also discuss performance-enhancing solutions that can optimize
LTE connectivity for providing improved performance for UAV UEs while protecting
the performance of terrestrial mobile devices.

9.3.1 Coverage

Cellular networks have been traditionally designed and optimized for terrestrial com-
munication. Cell sites have been planned and selected to provide terrestrial coverage
and serve the increasing terrestrial traffic demand. A common objective is to minimize
the cost of the network while meeting the terrestrial coverage and capacity demand. The
configuration of a cellular network is set to optimize the terrestrial coverage. One par-
ticularly important configuration is BS antenna tilt. As shown through our early analysis
in Chapter 8, the antenna tilt of the BS antennas will have important implications on
the performance of cellular-connected UAV UEs. In essence, the tilt of a BS antenna
represents the antenna inclination relative to a reference pointing direction. BS antennas
in a cellular network are usually tilted down by a few degrees to concentrate the trans-
mit powers toward the ground to reduce intercell interference. There are two types of
antenna tilt: mechanical tilt and electrical tilt. The former is achieved by physically tilt-
ing down the antenna, while the latter is achieved by changing the phases of the antenna
elements in an array antenna.

With down-tilted BS antennas, UAV UE may be served by the side lobes of BS anten-
nas. Figure 9.4 presents a synthesized BS antenna pattern. The antenna array consists
of one column of eight pairs of cross-polarized antenna elements, where the vertical
antenna element space normalized by the wavelength is 0.8. The side lobes are illus-
trated in the synthesized BS antenna pattern in Figure 9.4. We can see that even the
antenna gain of the strongest side lobe is about 14 dB lower than the antenna gain of the
main lobe. Due to the presence of antenna nulls in the side lobes, the strongest received
signal at UAV UE may come from a faraway BS instead of the geographically closest
BS.

The radio channel between a UAV UE flying in the sky and a ground BS usually
enjoys high likelihood of LOS. The more benign propagation condition can make up
for antenna gain reductions, even though the UAV UE may be served by the side lobes.
Consider a rural scenario where sites are placed on a hexagonal grid with 37 sites and
3 cells per site. The LTE system bandwidth is 10 MHz at 700 MHz carrier frequency.
Each BS has two cross-polarized antennas with 6 degrees of downtilt at the height of
35 m. The BS antenna pattern is modeled according to Figure 9.4. Figure 9.5 shows
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Figure 9.4 An illustration of a synthesized BS antenna pattern: theta denotes zenith angle, and phi
denotes azimuth angle. c© IEEE. Reprinted, with permission, from [48].

the DL coupling gain (antenna gain plus path gain) at three different altitudes: 1.5 m
(ground level), 40 m (5 m above the BS antenna height), and 120 m (close to the FAA
altitude limit of 400 ft for small UAV [290]). From the DL coupling gain distributions,
we can see that that the free-space propagation can make up for antenna gain reduc-
tions for UAV UE. The fifth percentile DL coupling gains at the altitudes of both 40
m and 120 m are in fact higher than the fifth percentile DL path gain at the ground
level of 1.5 m. We can also see that the variance of the DL coupling gains are smaller
above the BS antenna height, while the DL coupling gains on the ground level are more
spread out.

The coverage of using existing terrestrial cellular networks to provide connectivity to
UAV UEs may become insufficient above certain heights. To provide coverage higher in
the sky, enhancements to the existing terrestrial cellular networks may be needed. For
example, additional antennas pointing toward the sky may be installed at selected cells
to provide more seamless coverage at higher heights. These observations generally align
with our Chapter 8 analysis.

9.3.2 Interference

The more favorable propagation conditions in the sky lead to strong received signal
powers – not only the desired signal powers but also the co-channel interference signal
powers, as discussed in Chapter 1 and studied in Chapter 6. In particular, when a UAV
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Figure 9.5 An illustration of DL coupling gain distributions versus UAV UE heights. c© IEEE.
Reprinted, with permission, from [48].

UE is flying well above BS antennas, it may have more LOS propagation conditions to
multiple neighboring BSs. In such a scenario, an UL signal transmitted from the UAV
UE may cause interference to multiple neighboring BSs. The increased UL interfer-
ence, if not properly controlled and managed, may cause performance degradation to
the devices on the ground. Similarly, due to the more LOS propagation conditions, DL
signals transmitted from multiple neighboring BSs may cause strong DL interference to
the UAV UE.

Under the same setup as in Figure 9.5, Figure 9.6 shows the DL SINR distributions
at three different altitudes: 1.5 m, 40 m, and 120 m. We can see that the SINR values at
the altitudes of both 40 m and 120 m are statistically lower than the SINR values at the
ground level of 1.5 m. Specifically, at the operating point of 20% resource utilization, the
median SINR values at the altitudes of 40 m and 120 m are 10.9 dB and 11.3 dB lower
than the median SINR at the ground level, respectively. These results show that more
LOS propagation conditions also lead to stronger interfering signals from non-serving
cells to the UAV UE.

Intercell interference is not a new issue. A rich set of tools in terms of both standards
and implementation have been studied and developed for LTE to deal with interfer-
ence. One possible interference mitigation tool is coordinated multi-point transmission
and reception (and its variants). The new challenge here is that a UAV UE may receive
interfering signals from more ground BSs in the DL, and its UL signals are visible
to more cells due to more LOS propagation conditions. As a result, CoMP techniques
may have to be performed across a larger set of cells to mitigate the interference issues
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Figure 9.6 An illustration of DL SINR distributions versus UAV UE heights. From right to left (at
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correspond to the height of 40 m; and the fourth and the fifth curves correspond to the height of
120 m. c© IEEE. Reprinted, with permission, from [48].

at the cost of increased coordination complexity. In Chapter 8, we provided an initial
study of CoMP for UAV UEs, which can be used as a basis for future research in
this area.

Interference can also be handled by receiver techniques, such as interference rejec-
tion combining and network-assisted interference cancellation and suppression. UAV
may be equipped with multiple antennas, which can be used to cancel or suppress the
interfering signals from more ground BSs. With multiple antennas, beamforming that
enables directional signal transmission or reception to achieve spatial selectivity is also
an effective interference mitigation technique.

A simpler interference mitigation solution would be to partition radio resources so
that aerial traffic and terrestrial traffic are served with orthogonal radio resources. The
static radio resource partition may not be efficient since the reserved radio resources
for aerial traffic may be underutilized. If UAV operators can provide supplemental data,
such as flight routes and UAV positions to the network operators, such data can be
utilized for more dynamic and efficient radio resource management. It would also be
possible to reduce interference by designing wireless-aware UAV UE trajectories, as
studied in Chapter 6.
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Uplink power control is yet another powerful interference mitigation technique. An
optimized setting of UL power control parameters may be applied to limit the excessive
UL interference generated by UAV UE. Optimized UL power control can reduce inter-
ference, increase spectral efficiency, and benefit UAV UE as well as terrestrial devices.
An initial view on the impact of power control on interference was provided in Chapter 6
(jointly with trajectory design).

9.3.3 Mobility Support

Mobility support is a distinct feature of cellular networks and why mobile operators
can command higher cellular subscription fees than other forms of telephony and data
access [291, 292]. Seamless and robust mobility support for UAVs moving in the sky
is imperative for maintaining communication service continuity, which is important not
only for good user experience but also for safe control and operation of a UAV. With
increasing height above the ground, the radio propagation environment changes. The
change in the radio propagation environment and other factors, such as down-tilted BS
antennas, result in different signal and interference characteristics for cellular connected
UAV, as described in the previous two sections and in Chapter 1. These may pose new
mobility management challenges for UAVs. Several key questions need to be properly
answered:

• The down-tilted BS antennas may result in fragmented cell association patterns in
the sky. In particular, the strongest signal may come from a faraway BS that may be
chosen by the UAV UE as its serving BS, while the strongest site is usually the closest
one at the ground level. Would the fragmented cell association pattern in the sky result
in more handovers and potentially more handover failures?

• The overall SINR level in the sky is significantly worse than on the ground. The
reduced SINR might lead to a higher probability of handover commands and mea-
surement reports being lost. This may result in a higher risk of radio link failure
(RLF) and failed handover.

Mobility support for cellular devices and UAVs is a complex issue that involves many
detailed aspects. During an early 3GPP study on mobility enhancements for heteroge-
neous networks [293], 3GPP developed a simplified mobility modeling methodology,
which is yet sophisticated enough and can serve as a good reference model for mobility
performance evaluation in cellular networks. This model was also used by 3GPP during
the study on LTE-connected UAV UEs. In the sequel, we introduce this 3GPP mobility
modeling methodology for LTE networks.

Handover failure modeling employs the previously mentioned RLF criteria and pro-
cedures. An RLF occurs when the UE cannot establish or maintain a stable connection
to the serving cell. RLF is detected in LTE upon expiry of the timer T310; or upon
indication from RLC that the maximum number of retransmissions has been reached; or
upon random access problem indication from MAC while none of the timers, including
T300, T301, T304, and T311, are running [294]. We focus on the timers T310 and T311
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and refer to [294] for a detailed description of the other timers that are less relevant for
our discussion herein.

When monitoring the radio link, a UE periodically computes wideband channel qual-
ity indicator (CQI). If the CQI drops below a threshold Qout, lower layers indicate
out-of-sync to higher layers that count subsequent out-of-sync indications. A maximum
number of consecutive out-of-sync indications denoted by N310 can be configured. If
N310 consecutive out-of-sync events are indicated, the UE starts timer T310, whose
expiry would trigger RLF. If the CQI is above another threshold Qin, lower layers
indicate in-sync to higher layers that count subsequent in-sync indications. A maxi-
mum number of consecutive in-sync indications denoted by N311 can be configured.
If N311 in-sync events are indicated, the UE stops timer T310. The timer T310 may
also be stopped upon triggering the handover procedure or upon initiating the connec-
tion reestablishment procedure. At the expiry of T310, if security is activated, the UE
initiates the connection reestablishment procedure; otherwise, the UE goes to the RRC
IDLE state. The timer T311 starts upon the RRC connection reestablishment procedure.
It stops when selecting a suitable E-UTRA cell or a cell using another radio access
network. At the expiry of T311, the UE enters RRC IDLE state.

In the basic PHY processing configuration for the radio link monitoring in non to -
discontinuous reception (DRX) mode, the PHY sample rate for evaluating out-of-sync
and in-sync is typically once every 20 ms. The PHY samples are filtered linearly over a
sliding window. The sliding window lengths are typically 200 ms for evaluating out-of-
sync and 100 ms for evaluating in-sync, respectively.

For the purpose of modeling, the handover procedure is divided into three states, as
shown in Figure 9.7.
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Figure 9.7 An illustration of handover modeling in LTE networks.
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• State 1 is the state before the event A3 entering condition is satisfied. The event A3 is
triggered when a neighbor cell becomes better than the serving cell by an offset.

• State 2 is the state after the entering condition of event A3 is satisfied, but before the
UE successfully receives a handover command.

• State 3 is the state after the UE receives the handover command, but before the UE
successfully sends a handover complete message.

An RLF may occur either in State 1 or State 2. The RLF performance may be measured
by the RLF rate, which is defined as the average number of RLF occurrences per UE
per second.

A handover failure may occur either in State 2 or State 3. In State 2, the UE is attached
to the source cell. In State 3, the UE is attached to the target cell. The handover failure
causes may be divided into three categories.

• RLF in State 2: In this case, the channel quality of the serving cell has become bad
such that an RLF is triggered before the handover process to the target cell can be
executed. This is considered handover failure in the modeling.

• Physical DL control channel (PDCCH) failure in State 2: In this case, timer T310 is
running when the UE expects to receive a handover command in Sate 2. Though RLF
has not been declared, the channel quality of the serving cell has become bad such
that the timer T310 is running. Meanwhile, UE’s measurement report is triggered and
the UE is expecting to receive a handover command. Due to the poor link quality, the
source cell may not receive the UE’s measurement report or the UE may not receive
the handover command from the source cell, resulting in handover failure. PDCCH
failure modeling is used to model this type of handover failure. The PHY sample rate
for evaluating PDCCH failure is typically once every 10 ms. The PHY samples are
typically filtered linearly over a sliding window of 200 ms.

• PDCCH failure in State 3: In this case, the target cell’s DL filtered average wideband
CQI is less than Qout at the end of the handover execution time in State 3. As a result,
the target cell signal quality is not good enough to complete the handover procedure.
PDCCH failure modeling is used to capture this type of handover failure. The PHY
sample rate for evaluating PDCCH failure should be at least two samples during the
typical handover execution time of 40 ms. The PHY samples are typically averaged
to evaluate whether or not the PDCCH failure occurs.

The handover performance may be measured by handover failure rate, which is defined
as the ratio of the number of handover failures to the number of handover attempts
(including both successful handovers and failed handovers).

If a UE switches connection from a cell A to another cell B via a handover and later
switches connection from cell B back to cell A via another handover, and if the time the
UE connects to cell B is less than a minimum time of stay, such an event is known as
ping-pong. The handovers involved in a ping-pong event may be considered unnecessary
handovers, since the UE does not stay connected in the target cell long enough before it
is handed back to the original source cell.
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Next, we describe UE mobility models. UE is initially dropped at a random location
in the simulation area. An initial random moving direction is generated for the UE. The
UE then moves in a straight line in the selected direction at a constant speed. When the
UE hits the simulation boundary, either wrap-around or bouncing-circle model can be
applied. In the wrap-around model, when the UE hits the wrap-around contour, it will
enter the simulation area from a different point on the wrap-around contour and continue
moving in a straight line at a constant speed with the moving direction determined based
on the wrap-around methodology. In the bouncing-circle model, a bouncing circle is
defined within the simulation area. When the UE hits the bouncing circle, it will bounce
back and continue moving in a straight line at a constant speed with a new randomly
generated moving direction.

Based on the 3GPP mobility modeling methodology, mobility performance of LTE-
connected UAV has been evaluated. Example evaluation results may be found in [21,
295].

9.3.4 Latency and Reliability

As discussed throughout this book, reliable and low-latency communication is imper-
ative for many UAV applications. For example, command and control links need to be
robust and reliable, and the packets should be successfully delivered within some latency
bound (depending on the use case) with high probability. In this section, we focus on
the latency and reliability performance of UAV command and control links. Latency and
reliability may be measured in different ways and at different layers. Concretely, in this
section, we follow the latency and reliability definitions used by 3GPP during the study
on scenarios and requirements for 5G access technologies [296].

Latency metrics include control plane latency and user plane latency. Control plane
latency refers to the time it takes to move from a battery-efficient state, such as idle
mode, to the start of a continuous data transfer state, such as the active mode. User
plane latency refers to the time it takes to successfully deliver an application layer
packet from the radio protocol layer 2/3 service data unit (SDU) ingress point to the
radio protocol layer 2/3 SDU egress point with the radio interface. When measur-
ing the user plane latency, it is assumed that neither the transmitter nor the receiver
is restricted by DRX. Reliability is defined as the success probability of delivering
an application layer packet of X bits from the radio protocol layer 2/3 SDU ingress
point to the radio protocol layer 2/3 SDU egress point with the radio interface within L
seconds.

Traffic characteristics of command and control are expected to be different from those
of payload communication. 3GPP usually adopts FTP-based traffic models for perfor-
mance evaluation. The FTP models may be suitable for payload communication but are
less suitable for command and control. During the 3GPP study item on enhancing LTE
support for aerial vehicles [21], it was assumed that the command and control traffic had
similar characteristics as those of voice over IP (VoIP) traffic. In the used traffic model
for command and control, packets arrive periodically with a period of 100 ms and the
packet size is fixed to be 1250 bytes.
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Table 9.1 Reliability simulation results for command and control traffic.

Metric Number of used 1.5 m 30 m 50 m 100 m 300 m
PRBs

Reliability 6 86.81 76.66 16.85 8.49 4.22
(%) 15 98.86 99.79 99.64 99.15 91.91

25 99.35 99.91 99.98 99.89 99.9
50 99.62 99.95 99.98 99.99 99.99

Resource 6 40.91 56.71 89.92 94.97 96.23
utilization ratio 15 11.05 11.26 22.54 29.77 47.27
(%) 25 6.21 5.36 7.51 8.98 11.43

50 2.74 2.41 2.65 2.78 2.92

Representative Simulation Results
Table 9.1 collects some reliability simulation results contributed to the 3GPP study item
[21]. In Table 9.1, reliability is defined with packet size X = 1250 bytes and latency
bound L = 50 ms. Table 9.1 also presents the corresponding resource utilization ratio
statistics. Resource utilization ratio is defined as the fraction of utilized radio resources
averaged over time, frequency, and cells. It is a key performance indicator that can reflect
the interference level in the network.

The reliability performance was simulated in the DL of an urban macro cellular net-
work, where sites are placed on a hexagonal grid with 19 sites and 3 cells per site. The
inter-site distance is 500 m. Each BS has two cross-polarized antennas with 10 degrees
of downtilt at the height of 25 m. The LTE system bandwidth is 10 MHz at 2 GHz carrier
frequency. In each cell, there are 5 aerial UEs. The aggregate aerial traffic demand per
cell is 1250 × 8 × 10 bps per UE × 5 UEs per cell = 500 kbps per cell. In the evaluation,
it was assumed that the scheduler partitioned the radio resources so that aerial traffic and
terrestrial traffic were scheduled in orthogonal frequency resources. With this partition,
the signals to terrestrial UEs and the signals to aerial UAV UEs did not interfere. How-
ever, aerial UEs in a cell still experienced interference from neighbor cells since the
neighbor cells may use the same radio resource to serve other aerial UEs connected to
neighboring cells.

The reliability performance was evaluated at different fixed heights: 1.5 m, 30 m, 50
m, 100 m, and 300 m. Note that the height of 30 m is close to the BS antenna height (25
m). In the evaluation, different numbers of physical resource blocks (PRBs), 6 PRBs,
15 PRBs, 25 PRBs, and 50 PRBs, were used to serve the aerial traffic. These numbers
of PRBs are the same as the supported system bandwidths of LTE. So the evaluation
results are also relevant in the case where a dedicated LTE carrier is deployed to provide
connectivity for low-altitude UAV UEs.

From Table 9.1, we can see that when 6 PRBs are used to serve the aerial traffic, it
is not possible to meet the 50 ms latency bound with a high confidence level (e.g. 90%)
even at the ground level of 1.5 m. The reliability numbers are not high for all the heights
evaluated. The corresponding resource utilization ratios summarized in Table 9.1 help
explain the results. At the ground level of 1.5 m, the resource utilization ratio is already
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40.91%. As the height increases to 50 m, the resource utilization ratio becomes close
to 90% and increases further to ∼95% as the height further increases. These results
indicate that serving the aerial traffic demand of 500 kbps per cell with 6 PRBs is
challenging.

When the number of PRBs used to serve the aerial traffic is increased to 15, it is
possible to meet the 50 ms latency bound with a high confidence level (∼99%) at the
heights of 1.5 m, 30 m, 50 m, and 100 m. At the height of 300 m, the reliability is
reduced to 91.91%. By examining the corresponding resource utilization ratios, we can
see that the resource utilization ratios are lower than 30% for the heights of 100 m and
below, and thus the DL interference experienced at aerial UE is moderate. In contrast,
the resource utilization ratio is increased to 47.27% at the height of 300 m, suggesting
that the DL interference experienced at aerial UE is stronger.

When the number of PRBs used to serve the aerial traffic is further increased to 25,
we can see that the resource utilization ratios are lower than 12% at all the heights,
which implies that the DL interference experienced at aerial UE is minor. In this case,
it is possible to meet the 50 ms latency bound with an even higher confidence level
(∼99.9%). When the number of PRBs used to serve the aerial traffic is further increased
to 50, the resource utilization ratios are further decreased to below 3% and the reliability
performance is further improved.

Remarks on the Reliability Results
The results in Table 9.1 indicate that it is possible to achieve a high reliability (such as
99.9%) if the network uses enough dedicated frequency resources to serve aerial traffic.
There is a tradeoff between reliability performance and the number of PRBs used for
aerial command and control. We find that using 15 PRBs to serve the aerial traffic can
provide ∼99% reliability at the height of 1.5 m, 30 m, 50 m, or 100 m, and ∼90%
reliability at the height of 300 m. Note that the reliability performance was evaluated
under a relatively high traffic demand: there are 5 aerial UAV UEs per cell and each
aerial UE has periodic packet arrivals with a fixed packet size of 1250 bytes and a period
of 100 ms. In the initial deployment of a low-altitude UAV, it is likely that the demand
of aerial command and control traffic is much lower. As a result, fewer PRBs would be
needed when the traffic demand is lower.

A general trend we observe from the resource utilization ratios in Table 9.1 is that
as the height increases from 30 m to 300 m, the resource utilization ratio increases
for the same offered command and control traffic. Take the case with 15 PRBs, for
example. To achieve similar reliability performance (∼99%), the resource utilization
ratio is increased about two times when the height increases from 30 m to 50 m, and
about 3 times when the height increases from 30 m to 100 m.

A key lesson from the reliability evaluation results is that when the resource uti-
lization ratio is low, the DL interference experienced at aerial UE is not severe, which
makes it possible to deliver a small data packet within the 50 ms latency bound with
a high reliability. Though this lesson is drawn from a specific interference mitigation
technique, i.e., using dedicated frequency resources to serve aerial traffic, we expect
that this lesson is true in a more general sense. In particular, it is expected that any
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interference mitigation technique that can lead to satisfactorily received signal qual-
ity would facilitate delivering low-latency high-reliability connectivity services to UAV
UEs.

In this section, we have focused on a simple interference mitigation solution in which
orthogonal frequency resources are used to serve aerial traffic and terrestrial traffic. The
static frequency resource partition may not be efficient since the allocated frequency
resources for aerial traffic may be underutilized. If supplemental data such as flight
routes and positions of aerial UEs are known to the network, such information can
be utilized to achieve more dynamic and efficient radio resource management. Other
resource management solutions, such as those discussed in Chapters 6, 7, and 8, can
also be adopted to further enhance these results.

9.4 UAV as LTE BS

As discussed previously, one can use UAV BSs to provide temporary connectivity to
congested areas (e.g., hotspots), hard-to-reach areas, as well as areas affected by an
emergency or disaster. Indeed, UAV BSs are becoming a crucial part of public safety
networks. Multiple UAV BSs together can provide temporary connectivity to a desig-
nated area on the ground. As shown in our studies of Chapters 4–8, UAV BSs can indeed
provide effective wireless connectivity solutions. In this section, we elaborate further on
the key connectivity issues associated with deploying a network of UAV BSs that adopt
cellular technologies such as LTE.

As in the case of a UAV as LTE UE, interference management is a critical issue
for using UAVs as LTE BSs. In [297], the authors considered deploying UAV BS as
part of an LTE heterogeneous network for public safety communications. LTE Release-
10 enhanced intercell interference coordination (eICIC) and LTE Release-11 further
enhanced intercell interference coordination (FeICIC) were applied to mitigate intercell
interference. The results of [297] showed that with optimized UAV BS locations, the
reduced power subframes in FeICIC can provide considerably higher fifth-percentile
spectral efficiency than the almost blank subframes in eICIC. In [298], the authors
investigated interference management in using UAVs as BSs for emergency commu-
nication in natural disaster zones, where part of the communication infrastructure is
damaged. Simulations were used in [298] to analyze how the throughput performance
can be improved by exploiting the inherent mobility nature of UAVs. In the previous
chapters, we have also discussed many other use cases for UAV BSs.

LTE-U and licensed-assisted access (LAA) are the technology choices for unlicensed
spectrum. Fair coexistence is the main consideration for unlicensed spectrum. As dis-
cussed in Chapter 7, in [257], the authors considered the load balancing issue between
LTE-U UAV BSs and WiFi access points on the ground using a game theoretic approach.
In the design, UAV BSs equipped with LTE-U used regret-based learning for dynamic
duty cycle selection. The proposed approach targeted ensuring satisfactory throughput
performance for all users. Our analysis in Chapter 7 demonstrated how one can use
cache-enabled UAV BSs to serve ground users over both licensed and unlicensed bands.
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Although in Chapter 7 we studied analytically how one can design a 3D cellular
network with UAV BSs, it is important to also shed light on practical considerations for
such a network. In this regard, the deployment of EPC to support an on-demand LTE
network formed out of UAV BSs is a major design issue. The EPC and RAN are usually
connected via wires in terrestrial LTE networks. A similar approach can be used for an
LTE network composed of UAV BSs whereby the EPC is deployed on the ground, the
RAN is mounted on the UAV BS, and the EPC and UAV are tethered by wires. This
approach, however, limits the deployment flexibility and may not scale well to support
a network with multiple UAV BSs. Alternatively, the EPC on the ground and the RAN
mounted on the UAV BS can be connected by wireless communication. The backhaul
wireless connectivity should be carefully designed to achieve requirements of reliability,
communication range, and capacity. Another alternative is to deploy both EPC and RAN
at the UAV BS, as proposed in [299]. In this alternative, the entire EPC is implemented
in one single entity and located on each UAV BS. Realizing this design, however, needs
to address various challenges, including limited compute resource of UAVs and mobility
management.

As discussed in Chapter 1, it is worth stressing again that a third use case of UAVs,
namely UAV as LTE relay can be considered and has also been studied in the litera-
ture, though strictly speaking, it does not belong to the category of UAV as LTE BS.
In [300], the authors proposed to use a swarm of UAVs as relays to compensate tem-
porary overload or site outage in LTE networks. The aerial relay placement, number
of aerial relays, and transmit powers of aerial relays were discussed and analyzed.
The results showed that interference aware positioning of aerial relays could increase
spectral efficiency in overload and outage scenarios. In [301], the authors studied UAV
as LTE relay to provide enhanced LTE connectivity to a ground user from a terres-
trial BS. The communication layer of the customized integrated UAV relay was based
on OpenAirInterface. To maximize the throughput performance, the authors also pro-
posed a placement algorithm that updated the position of the UAV relay in real time
based on user location and wireless channel condition. Many of the designs that we per-
formed in previous chapters of UAV BSs can, in general, be extended to the UAV relay
use case.

9.5 3GPP Standardization on Connected UAV

The 3GPP ecosystem is well positioned to support UAV operation, as detailed in Section
9.1. Meanwhile, regulators are investigating safe UAV operation programs so that UAV
can harmoniously coexist with commercial air traffic and the general public. Regulatory
efforts have been taken in the areas of registration and licensing programs and safety and
performance standards. To address the anticipated usage of mobile technologies by UAV
and regulatory requirements, 3GPP has been conducting a series of works to enhance
cellular standards to better support UAV operation. UAV is often referred to as aerial
UE or aerial vehicle in the 3GPP works. In the sequel we follow these terminologies to
discuss the 3GPP works on connected UAV.
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9.5.1 3GPP Release-15 Study Item on LTE-Connected UAV

To understand the potential of LTE for aerial vehicles, 3GPP conducted a study on
enhanced LTE support for aerial vehicles in 2017. The study assessed the performance
of Release-14 LTE networks used for serving aerial vehicles and identified potential
enhancements for better handling of aerial traffic and not impacting the performance of
terrestrial devices. This study focused on LTE with the intention that the lessons learned
will be applied to 5G NR. The outcomes of the study can be found in the 3GPP TR
36.777 [21].

Evaluation Scenarios
Compared to a terrestrial UE, an aerial UAV UE exhibits different behaviors and experi-
ences different radio conditions. To accommodate the new unique class of aerial devices,
3GPP revisited its performance evaluation framework, which was predominantly con-
structed for terrestrial devices prior to this study item.

When an aerial UAV UE is introduced to an LTE network, the system performance
for both the aerial UAV UE and legacy terrestrial UE needs to be evaluated. For
indoor terrestrial UEs and outdoor terrestrial UEs, 3D urban macro (UMa) and 3D
urban micro (UMi) evaluation scenarios were developed in LTE Release 12 (TR 36.873
[105]) to support full-dimensional MIMO (FD-MIMO) with 2D antenna arrays. Similar
models were also introduced in NR and extended to support carrier frequencies from
0.5 GHz to 100 GHz in TR 38.901 [105]. In addition to UMa and UMi, an evaluation
model for rural macro (RMa) deployments was also developed in NR. The UMa sce-
nario is intended to emulate network deployment scenarios in urban areas with eNodeB
(eNB) antennas mounted above the rooftop levels of surrounding buildings. The UMi
scenario targets urban deployments where the eNB antennas are mounted below the
rooftop levels of surrounding buildings. The RMa scenario is used to model larger cell
sizes in rural areas where the eNB antennas are mounted on the top of towers. Since
aerial UE is studied in LTE networks, the UMa and UMi scenarios in LTE are relevant
for the study. The rural deployment scenario is regarded as an important scenario for
aerial UAV UEs, and thus the RMa scenario defined in NR is also considered in the
study.

An aerial UE is essentially considered as a different type of an outdoor UE. Since
aerial UAV UEs do not exist in the traditional UMa, UMi, and RMa models, these mod-
els must be extended to include aerial UEs with heights generally well above ground
level. The new models with aerial vehicles are referred to as UMa-AV, UMi-AV, and
RMa-AV. In the traditional UMa and UMi scenarios, two types of terrestrial UE are
considered: indoor terrestrial UE and outdoor terrestrial UE. The former accounts for
80% of the terrestrial devices, and the remaining 20% are outdoor terrestrial UEs. The
heights of outdoor terrestrial UEs are fixed at 1.5 m, while the heights of indoor terres-
trial UEs vary up to a maximum height of 22.5 m. The study considers aerial UEs with
a height up to 300 m. Performance statistics are collected for aerial UE with heights
uniformly distributed between 1.5 m and 300 m. The study also considers performance
at fixed aerial UE heights of 50 m, 100 m, 200 m, and 300 m. To study the impact of
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supporting aerial UEs with different densities in a cell, aerial UE ratios of 0%, 0.67%,
7.1%, 25%, and 50% are considered, assuming that the total number of UEs per cell is
15.

In UMa-AV, UMi-AV, and RMa-AV, the channel modeling for terrestrial UE follows
the existing 3GPP channel models. The channel models are extended for aerial UE to
capture the different propagation conditions in the sky. The general principle is to adopt
an aerial UE height-dependent channel modeling approach. When the height of an aerial
UE is within the applicability height range of the terrestrial 3GPP channel models, exist-
ing terrestrial 3GPP channel models are used for the aerial UE. New channel models are
developed and used for aerial UEs with heights outside the applicability height range of
the terrestrial 3GPP channel models. The details of the channel models can be found in
TR 36.777 [21].

Identified Problems and Solutions
Under the evaluation scenarios and channel models described in the previous section,
extensive simulations were performed during the study. The evaluation results, supple-
mented by field trial data, indicate that aerial UEs may cause UL interference to more
cells and observe DL interference from more cells than terrestrial UEs. This is because
an airborne aerial UAV UE experiences LOS propagation conditions to more cells with
higher probability than terrestrial UE does. The extra interference is generally manage-
able for low aerial UAV UE density, for example, when the number of aerial UAV UEs
is no more than one per cell. Also, it is observed that the performance is generally better
in rural environments than in urban environments.

Due to the distinct features of aerial UEs, it is important that mobile networks can
identify if a UE is an aerial UE or a regular ground UE to provide the right service
optimization for the aerial UE while protecting the performance of the ground UE from
the potential interfering signals from aerial UEs. For a legitimate aerial UE, standard
mechanisms can be enforced so that it can be recognized by the networks. For example,
the aerial UE can be required to have a SIM card that is registered for aerial usage if it
would like to use cellular connection. It is also necessary to identify a “rogue” aerial UE
that is not properly registered with the network. This may occur when a normal ground
UE is attached to a UAV and being flown in the network. This phenomenon is being
observed in the field and has drawn much attention from mobile operators, since flying
a UAV with regular terrestrial UE may generate excessive interference to the network
and may not be allowed by regulations in some regions.

To address the identified problems and needs, 3GPP studied interference detection
and mitigation techniques, mobility enhancements, and aerial UE identification.

Interference detection: Interference detection is related to flying mode recognition
because both UL and DL interference increase when an aerial UAV UE is above a
certain height. Interference detection can also be used as a trigger for applying inter-
ference mitigation. Potential solutions are broadly categorized into either UE-based or
network-based solutions. UE-based solutions may utilize UE measurements of reference
signals received power (RSRP), reference signals received quality (RSRQ), reference
signals SINR (RS-SINR), mobility history reports, speed estimation, timing advance
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adjustment values, and location information. Take UE measurements, for example. The
triggering of measurement reports can be linked to the changing interference condition,
e.g., a measurement report is triggered when RSRP or RSRQ values of multiple cells are
above a threshold. Network-based solutions rely on the inter-eNB information exchange.
Such information may include UE measurement reports and UL reference signal con-
figuration. These solutions have requirements on backhaul over a large number of
eNBs.

Downlink interference mitigation: The objective of DL interference mitigation is to
reduce the interference level that an aerial UE experiences. The various DL interference
mitigation techniques evaluated during the study include FD-MIMO, directional anten-
nas at UE, receive beamforming at UE, intra-site joint transmission CoMP, and coverage
extension (for enhancing synchronization and initial access performance of aerial UE).
These solutions do not require additional specification work. Another scheme of coor-
dinated transmission of control and data from multiple cells was briefly discussed.
It, however, requires more study to evaluate its performance as well as specification
impacts.

Uplink interference mitigation: The objective of UL interference mitigation is to
reduce the interference level that a terrestrial UE experiences due to aerial UAV UEs
transmitting in the air. The various UL interference mitigation techniques evaluated dur-
ing the study include FD-MIMO, directional antennas at UE, and power control-based
mechanisms. The first two do not require additional specification work since FD-MIMO
is supported in LTE since Release 13 and the use of directional antennas at a UE is an
implementation choice. Some of the power control-based mechanisms require minor
specification change.

Mobility enhancements: In the simulated baseline networks without interference
mitigation techniques, the mobility performance of an aerial UAV UE is shown
to be worse than that of a terrestrial UE, especially when the aerial UE den-
sity is large. The mobility simulation results further show that aerial UE in the
RMa-AV scenario experiences better mobility performance than in the UMa-AV sce-
nario. Applying interference mitigation techniques to reduce the interference levels
in the network can improve the aerial UE’s mobility performance. The mobility
algorithms can be improved to provide better mobility support for an aerial UAV
UE. For example, handover procedures may be improved by considering conditional
handover and optimization of handover-related parameters considering aerial UE’s
location information, airborne status, and flight path plans. The mobility algorithmic
improvements may also include enhancements to the existing measurement reporting
mechanisms, such as introducing new events and enhancements of event-triggering
conditions.

Aerial UAV UE identification: A combination of subscription information and radio
capability indication from the UE can be used for aerial UE identification. The sub-
scription information can be signaled from MME to eNB to indicate whether the user
is authorized to operate for aerial usage. Aerial UE can indicate its support of aerial-
related functions introduced in Release 15 via radio capability signaling to the eNB.
Another issue studied is aerial UE flight mode detection. Potential mechanisms include
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explicit indication of flight mode by UE, UE-based reporting using altitude information
on altitude information, and interference detection related techniques.

Overall Conclusion of the Study Item
Drawing on comprehensive analysis, extensive simulations, and field trial data, the
3GPP study concludes that LTE networks are capable of serving aerial UAV UEs, but
there may be challenges related to UL and DL interference as well as mobility support.
The challenges become more visible when the density of the aerial UE is high. Both
implementation solutions and specification enhancements are identified to address these
issues. To serve aerial UE more efficiently and limit the impact on terrestrial UE, solu-
tions based on specification enhancements are beneficial. To this end, 3GPP conducted
a follow-up work item in Release 15, which is described in the next section.

9.5.2 3GPP Release-15 Work Item on LTE-Connected UAV

During the study item on enhanced LTE support for aerial vehicles and UAVs, var-
ious performance-enhancing solutions were identified and evaluated. The follow-up
Release-15 work item aimed to specify the features that could improve the efficiency
and robustness of terrestrial LTE networks for providing aerial connectivity services,
particularly for low-altitude UAVs. The key features introduced in the work item
include:

• subscription-based aerial UE identification and authorization;
• flying mode detection based on height and location reporting;
• interference detection based on measurement reporting;
• flight path reporting; and
• open loop power control enhancements.

We will now describe each feature in more detail.
Subscription-based aerial UE identification and authorization: Support of aerial

UE function is stored in the user’s subscription information in the home subscriber
server. The HSS transfers this information to the MME from where it can be provided to
the eNB via the S1 application protocol. In addition, for X2-based handover, the source
eNB can include the subscription information in the X2 application protocol handover
request message to the target eNB. For the intra and inter MME S1-based handover, the
MME provides the subscription information to the target eNB after the handover proce-
dure. The eNB may then combine this information with radio capability indication from
the aerial UAV UE in order to identify whether the aerial UE has been authorized to be
connected to the E-UTRAN network while flying.

Flying mode detection based on height and location reporting: The flying mode
detection is a separate issue. Input to flying mode detection is event-triggered height
and location reporting. A new configurable event within radio resource management
with height threshold is introduced for Release-15 aerial UE. When a UE is configured
with this event, a report is triggered when the UE’s altitude crosses a configured altitude



232 From LTE to 5G NR-Enabled UAV Networks

threshold. In addition to flying mode detection, the exact height information is consid-
ered useful as E-UTRAN may choose to reconfigure, for example, measurements for the
UE when it crosses a height threshold.

Interference detection based on measurement reporting: The flying mode detec-
tion is also related to interference detection as the interference conditions for flying
aerial UAV UEs are different from aerial UEs in terrestrial mode. For interference
detection, which may also serve as input to flying mode detection, an enhancement
to existing events triggered RSRP/RSRQ/RS-SINR reports was introduced. The UE
may be configured to trigger an event such as A3, A4, A5, which all consider neigh-
bor cell measurements, so that measurement report is triggered when the measured
RSRPs/RSRQs/RS-SINRs of multiple cells are above the configured threshold. For
example, event A3 is triggered when the measured RSRP of a neighbor cell becomes
better than the measured RSRP of the serving cell by a certain amount. The enhanced
triggering would require, for example, that three neighbor cells’ RSRP values become
higher than the serving cell’s RSRP value by a certain amount.

Flight path reporting: The support for E-UTRAN to request flight path informa-
tion from UE using RRC signaling was introduced in Release 15. In the request, eNB
may configure the maximum number of waypoints that the UE can include in the
report. Further, the configuration indicates whether the time stamp per waypoint can
be reported. UE reports the flight path if the information is available. In the RRCRecon-
figurationComplete message, the UE may indicate the availability of flight path report.
However, support for indicating updates or changes of the flight path plan that UE may
receive via application layer is not supported in Release 15.

Open loop power control enhancements: Open loop power control is one of the
techniques that can be used to mitigate UL interference from aerial UE. The nominal
received power P0 and fractional path loss compensation factor α are two open loop
power control parameters that were studied during the study item in Release 15.

• In LTE up to Release 14, the parameter α can only be configured in a cell-specific
manner. Given that the degree of the UL interference caused by aerial UE may differ
from one aerial UE to another, it is desirable to introduce a UE-specific alpha param-
eter. In Release 15, the parameter α can be configured in a UE-specific manner for
the physical UL shared channel.

• In LTE up to Release 14, the parameter P0 consists of both cell-specific and UE-
specific components. The UE-specific component of the parameter P0 had a value
range from −8 dB to +7 dB up until LTE Release 14. In Release 15, the value range
of the parameter P0 has been extended to the range from −16 dB to +15 dB to provide
better flexibility in setting open loop power control parameters on a UE-specific basis.

9.5.3 3GPP Release-16 Study Item on Remote UAV Identification

Remote UAV identification and tracking are imperative for authorized parties such as
law enforcement, public safety, and air traffic control agencies to query the identity
and metadata of a UAV and its controller via UAS traffic management (UTM). As



9.5 3GPP Standardization on Connected UAV 233

described in the previous Section 9.5.2, 3GPP introduced subscription-based aerial UE
identification and authorization. In Release 16, 3GPP continues further study into device
identification and auxiliary information as part of a further study on service requirements
[288].

The objective of the study item is to identify the use cases and potential requirements
for the remote identification and tracking of UAV linked to a 3GPP subscription. The
studied aspects include content of identification data, availability of identification data,
and use of identification data. Content of identification data may include UAV identifier,
route data, location, and controller information. Availability of identification data may
include access authorization, privacy, latency, and reliability. Use of identification data
may include tracking, data retention, and authorization to operate.

The outcome of the study is documented in 3GPP TR 22.825 [302]. There are ten use
cases with potential service requirements identified in TR 22.825. These include:

• use case for initial authorization to operate;
• use case for live data acquisition by UTM;
• use case for data acquisition by law enforcement;
• use case for enforcement of no-fly zones;
• use case for distributed closed-field separation service;
• use case for local broadcast of UAS identity;
• use case for differentiation between UAV-specific UE and regular UE attached to

UAV;
• use case for cloud-based NLOS UAV operation;
• use case for UAV fly range restriction; and
• use case for the UAS-based remote inspection.

As an example, we introduce the use case for initial authorization to operate. Con-
sider a switched-on UAS made up of a UAV and a UAV controller. The onboard UE
authenticates with the mobile network and sends UAV data and identifiers to the UTM
to request permission. The request may include flight authorization, access to mobile
data services while flying, and using certain services provided by the UTM. The UAV
controller needs to go through similar authentication and authorization process so that
the mobile network and UTM can associate the UAV with its controller. Depending on
the flight mission and required services, different levels of authentication and authoriza-
tion may be required before the UAS becomes fully operable. For example, in order
to use the UTM services, such as flight tracking and collision avoidance, the UAS
may need to carry out an additional application-level authentication and authorization
process.

As another example, we look at the use case for data acquisition by law enforcement.
An authorized official may want to query a UTM for information of an active UAS.
For example, police may receive a nuisance complaint about a UAV, and thus the police
may query the UTM by providing the information about the geographic area where
the reported UAV is flying. The UTM may then return data of all the active UASs in
the queried area. For a UAS, such data may include the identity of the UAV, identity of



234 From LTE to 5G NR-Enabled UAV Networks

the UAV controller, identity of the UAV operator, flight data, and live location. More
data may be further provided upon request of the authorized official.

Local broadcast of a UAV identity can be a backup means for remote UAS identi-
fication and tracking when the network coverage is not available. This would enable
an authorized official equipped with appropriate equipment to discover an active UAS
within proximity. The authorized official may then query the UTM by providing the
received identity to obtain more information about the UAS from the UTM.

For the detailed description, scenario, and potential service requirements of the other
use cases, we refer interested readers to [302]. The study also includes additional con-
siderations, such as lawful interception and security. It is concluded in the study that
3GPP should create normative service requirements based on the identified potential
requirements to better serve UAS ecosystems with cellular connectivity.

9.6 Towards 5G NR-Enabled UAVs

LTE stands ready nationwide in many countries to enable cellular connected UAVs
and help create innovative services for the UAV industry. Many of the lessons learned
from LTE-enabled UAVs will be adapted for 5G NR-enabled UAV. Although the
next-generation mobile technology, 5G NR, is still in its infancy, it promises much
more capabilities, including delivering enhanced 3D coverage, higher transmission rate,
lower latency, customized end-to-end QoS guarantee, and network intelligence [283].
The improved capabilities of 5G networks will enable large-scale UAV deployments
with more diverse UAV uses, including both UAV as 5G NR UE and UAV as 5G
NR BS.

9.6.1 A Primer on 5G NR

In this section, we provide a short primer of 5G NR essentials. We refer interested
readers to [283, 303] and the corresponding 3GPP technical specifications for a more
in-depth understanding of 5G NR.

5G NR aims to address a variety of usage scenarios from enhanced mobile broadband
(eMBB) to ultra-reliable low-latency communications (URLLC) to massive machine
type communications (mMTC). 5G NR can meet the performance requirements set
by the ITU for international mobile telecommunications for the year 2020 (IMT-2020)
[304]:

• 20 Gbps DL peak date rate and 10 Gbps UL peak date rate in the eMBB usage
scenario;

• 30 bps/Hz DL peak spectral efficiency and 15 bps/Hz UL peak spectral efficiency in
the eMBB usage scenario;

• 100 Mbps DL 5%ile user experienced data rate and 50 Mbps UL 5%ile user
experienced data rate in the dense urban eMBB test environment;

• 0.3 bps/Hz, 0.225 bps/Hz, and 0.12 bps/Hz DL 5%ile user spectral efficiency in the
indoor hotspot, dense urban, rural eMBB usage scenario, respectively; 0.21 bps/Hz,
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0.15 bps/Hz, and 0.045 bps/Hz UL 5%ile user spectral efficiency in the indoor
hotspot, dense urban, rural eMBB usage scenario, respectively;

• 9 bps/Hz, 7.8 bps/Hz, and 3.3 bps/Hz per transmission reception point average
spectral efficiency in the indoor hotspot, dense urban, rural eMBB usage scenario,
respectively; 6.75 bps/Hz, 5.4 bps/Hz, and 1.6 bps/Hz per transmission reception
point average spectral efficiency in the indoor hotspot, dense urban, rural eMBB usage
scenario, respectively;

• 10 Mbps/m2 DL area traffic capacity in the indoor hotspot eMBB test environment;
• 4 ms user plane latency in the eMBB usage scenario; 1 ms user plane latency in the

URLLC usage scenario; 20 ms (10 ms encouraged) control plane latency in the eMBB
and URLLC usage scenarios;

• 1,000,000 devices per km2 in the mMTC usage scenario;
• high network energy efficiency (qualitative measure) with support of a high sleep ratio

and long sleep duration;
• 10−5 success probability of transmitting a layer 2 protocol data unit of 32 bytes

within 1 ms in channel quality of coverage edge for the urban macro URLLC test
environment;

• 1.5 bps/Hz normalized UL traffic channel link data rate for mobility speed up to 10
km/h in the indoor hotspot eMBB usage scenario; 1.12 bps/Hz normalized UL traffic
channel link data rate for mobility speed up to 30 km/h in the dense urban eMBB
usage scenario; 0.8 bps/Hz and 0.45 bps/Hz normalized UL traffic channel link data
rate for mobility speed up to 120 km/h and 500 km/h, respectively, in the rural eMBB
usage scenario;

• 0 ms mobility interruption time in the eMBB and URLLC usage scenarios;
• 100 MHz minimum bandwidth; up to 1 GHz for operation in higher frequency bands

(e.g., above 6 GHz).

The design of 5G NR is forward compatible, which will allow 3GPP to smoothly
introduce new technology components in the future for currently unknown use cases.
Key 5G NR technology components include ultra-lean transmission, support for low
latency, advanced antenna technologies, and spectrum flexibility.

The two main types of architecture in 5G NR are non-standalone (NSA) and stan-
dalone (SA). In the NSA architecture, a UE is connected to both LTE eNB and 5G NR
NodeB (gNB) via E-UTRA – NR dual connectivity (EN-DC), where the eNB acts as
a master node and the gNB acts as a secondary node [305]. In an NSA operation, LTE
is used for initial access and mobility handling while the SA version can be deployed
independently from LTE.

OFDM with cyclic prefix is used for both DL and UL transmissions. The use of DFT-
spread OFDM (DFT-S-OFDM) is also supported for single-layer UL transmission. To
flexibly support different deployment scenarios and a wide range of carrier frequencies,
NR adopts flexible subcarrier spacing of 2μ · 15 kHz (μ = 0, 1, 2, 3, 4): 15 kHz, 30 kHz,
and optionally 60 kHz subcarrier spacing for data channels in sub-6 GHz frequency
bands referred to as frequency range 1 (FR1); 60 kHz and 120 kHz subcarrier spacing
for data channels in above 24 GHz frequency bands referred to as frequency range 2
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(FR2). The cyclic prefix is approximately 4.7 us for the 15 kHz subcarrier spacing, and
it inversely scales with the subcarrier spacing. In the time domain, a subframe consists
of 2μ slots and each slot consists of 14 OFDM symbols.

In NR, rate compatible quasi-cyclic low-density parity-check (LDPC) coding is
used for data channels, while Reed-Muller block coding and cyclic redundancy
check (CRC) assisted polar coding are used for control channels. The modulation
schemes include binary and quadrature phase shift keying (B/QPSK) and quadrature
amplitude modulation (QAM) of orders 16, 64, and 256 with binary reflected Gray
mapping.

NR supports FDD, TDD with semi-statically configured UL/DL configuration,
and dynamic TDD. Transmissions can be scheduled to start at any OFDM sym-
bol in a slot and last only a fraction of a slot needed for the communication. This
type of “mini-slot” transmission can facilitate low-latency use cases and minimize
interference.

9.6.2 Superior Connectivity Performance

5G NR, capable of meeting the ambitious IMT-2020 performance requirements, can pro-
vide superior connectivity performance for 5G NR-enabled UAVs, including enhanced
coverage, faster transmission, and lower latency. From the lessons learned from LTE-
enabled UAVs, as well as our studies in the previous chapters, we know that a UAV
UE served by terrestrial networks tends to experience more interference, cell coverage
irregularities, and complex neighbor cell relationships. These lead to higher coverage
complexity and more challenging mobility management issues for UAV UE. In a 5G
NR network, some selected cells can be equipped with gNB antennas pointing toward
the sky to improve aerial coverage. Neighbor cell coverage and mobility management
strategies can be customized to achieve coverage optimization in the sky. Information,
such as UAV flight path, if available, can be exploited for connectivity management and
optimization.

5G NR supports advanced antenna technologies, including massive MIMO. For
single-user MIMO, it supports a maximum of eight DL transmission layers and four
UL transmission layers, which can increase data rate for the UAV. 5G NR is particularly
designed to support the scheduling of many users on the same time-frequency resource
with multi-user MIMO. This can improve the overall system capacity, facilitating the
support of UAV UE in a 5G NR network. Beam management is introduced in 5G NR.
The beam directions can be improved by utilizing beam-sweeping spatial filters at the
transmitter and receiver. Beamforming can increase the SINR and further improve the
system capacity and coverage.

5G NR supports large bandwidth transmission and reception. The maximum band-
width of an NR carrier is 100 MHz in sub-6 GHz frequency bands (FR1) and 400 MHz
in above 24 GHz frequency bands (FR2), respectively. Carrier aggregation (CA) of up to
16 NR carriers can be further utilized to achieve wider bandwidth. In 5G NR, CA can be
flexibly configured with both intra-band CA and inter-band CA, self-carrier scheduling
and cross-carrier scheduling, and different subcarrier spacing choices for the aggregated
carriers in inter-band CA.
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With advanced antenna technologies and wide bandwidths, 5G NR can provide var-
ious levels of DL and UL high data rates in different frequency bands with different
configurations. In particular, 5G NR is well positioned to serve UAV UE transmitting
high-definition images or videos for augmented reality (AR) and VR immersive expe-
riences that require multi-Gbps data rate. Some recent studies on using UAV UEs for
such applications have been done in [33].

9.6.3 Service Differentiation with Network Slicing

As described in Section 9.6.1, 5G needs to support a wide variety of applications with
different service requirements, while being more flexible, cost- and energy-efficient for
service delivery. Network slicing is one of the key technology components to enable
flexible and scalable 5G mobile networks [306]. Network slicing allows multiple logi-
cal networks to be created and run on top of a common shared physical infrastructure.
The slices of the network are isolated from each other in the control and user planes.
Each slice is a complete end-to-end logical network consisting of network capabilities
and the associated resources for serving a particular service category or even individual
customers [307].

A network slice consists of a radio access network part and a core network part.
3GPP has defined system architecture and functional aspects to support network slicing
in a next-generation radio access network (NG-RAN) and a 5G core network (5GC)
[308, 309]. Network slicing is supported with the basic idea that different protocol
data unit sessions can be constructed for the traffic on different slices. By scheduling
and providing different configurations in layers 1 and 2, the network can realize the
different slices. Under network slicing, customers can be regarded as belonging to dif-
ferent tenant types. Each tenant has its associated service requirements that determine
the corresponding eligible slice types for the tenant.

With network slicing, it is possible to logically distinguish the service and radio
resource management for a UAV UE from those for the terrestrial terminals. Service
differentiation for the different UAV use cases discussed in Chapter 2 can be enabled
by, for example, using different slices to support command and control signaling and
different application data services. The physical network can be partitioned at an end-to-
end level to allow optimized grouping of UAV traffic, such as low-latency UAV traffic
and high data rate UAV traffic, and to isolate them from terrestrial traffic of different
characteristics.

Take UAV command and control, for example. Network slicing is well positioned to
address the latency, reliability, and security requirements of UAV command and control.
A network slice can be constructed to use network elements at appropriate locations to
minimize the length of the communication path to reduce propagation delay. By using
prioritized scheduling and optimized configurations, air-interface latency, core network
latency, and processing delay can be reduced. These collectively reduce the end-to-end
latency for UAV command and control. The slicing reserves resources that may include
hardware, software, and radio resources, which can help improve reliability. Security
and data privacy may benefit from network slicing due to, for example, the isolation of
distinct slices.
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9.6.4 Network Intelligence

5G networks are evolving into highly complex systems that are beyond the capability
of humans to fully comprehend and control. Traditional networking and data analysis
approaches are becoming incompetent to keep pace with the growing complexity in the
5G systems. Networks already generate huge amounts of data today and will generate
much more with the growing scale and multitude of interactions of the 5G systems.
Network intelligence with machine learning, big data analytics, and artificial intelli-
gence [221] are being developed for better extracting information out of the data and
realizing automated network control and management.

3GPP is conducting a series of works toward network intelligence. 3GPP has intro-
duced the stage 3 definition of the network data analytics function (NWDAF) services
in Release 15 [310]. In Release 16, 3GPP continues to study enablers for network
automation [311] and radio access network-centric data collection utilization [312].
The ITU telecommunication standardization sector also established a focus group in
November 2017 to study machine learning for future networks including 5G [313].
Though machine learning, big data analytics, and artificial intelligence in communica-
tions networking are still in their infancy, they are becoming essential to achieve network
intelligence and automation to ultimately realize proactive, self-aware, self-adaptive,
and predictive networking [221].

5G networks with network intelligence are well positioned to efficiently and effec-
tively identify, monitor, and control UAV. Network intelligence at different layers in
the 5G architecture can enable data processing for various purposes. Local learning
and decision making, combined with centralized data consolidation, can achieve effi-
cient UAV identification and management. For example, each local BS can collect radio
measurement data, the time series of user mobility events, and associated contextual
information. The data and knowledge can be shared across sites to construct airborne
radio environment distribution models that can be used to identify UAV UEs with
machine learning methods. To assist with UAV regulations and air traffic management,
centralized intelligence is imperative to obtain a comprehensive global understanding of
networks. This can help, for example UAV flight path planning to avoid coverage holes,
congestion, collisions, and no-fly zones. In some of the previous chapters, we have also
shown how machine learning can be used to perform effective resource management for
various UAV use cases.

9.7 Chapter Summary

Cellular networks have connected tens of billions of devices on the ground in the past
decades and are now ready to support the flying robots – UAVs – in the sky. Mobile tech-
nologies can underpin the UAV ecosystem by providing a wide range of capabilities and
features to identify, track, and control the growing fleet of UAVs from takeoff to land-
ing. The wide-area, quality, secure connectivity offered by cellular networks is essential
for extending the UAV operation range beyond visual LOS. Mobile technologies can
play a role in the development of new UAV services in addition to providing wireless
connectivity.
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The existing mobile LTE networks targeting terrestrial usage can support the ini-
tial UAV deployment, but there may be challenges such as interference and mobility.
Enhancements and the next generation 5G networks will provide more efficient con-
nectivity for wide-scale UAV deployments. Mobile technologies, based on evolving
global standards, will be the essential foundation for the vibrant global growth of the
UAV ecosystem. We envision that 5G networks and beyond (e.g., 6G) will seamlessly
integrate UAVs, in all their three roles: UAV BSs, UAV UEs, and UAV relays.
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In the previous chapters, we focused on showcasing how enabling wireless communi-
cations with UAVs, for both UAV BSs and UAV UEs use cases, can lead to a suite of
important research problems pertaining to communications and networking. However,
equipping UAVs with communications capabilities will also expose them to a broad
range of security threats. Indeed, the advantages of UAVs, which include their agility
and ability to communicate over LOS links, render them vulnerable to a plethora of
security attacks that include both cyber threats, such as jamming spoofing, as well as
physical threats in which an adversary can direct the control system of the UAVs or
simply attempt to physically destroy the UAV. Hence, it is imperative to study and
analyze the security of UAV-equipped networks and to introduce new defense solu-
tions that can help secure UAVs against the aforementioned cyber-physical security
threats.

In consequence, the goal of this chapter is to provide a succinct overview on the
security challenges of UAV-based networks. To this end, in Section 10.1, we start by
providing a general overview on the various security threats facing UAV systems, rang-
ing from communication channel attacks to information attacks and Global Positioning
System (GPS) spoofing attacks. Then, in Section 10.2, we develop, using game theory, a
generic framework that can provide cyber-physical security for UAV applications, such
as delivery systems. We conclude the chapter in Section 10.3 with key remarks on the
security of UAV systems.

10.1 Overview on UAV Security Problems

In this first section, we discuss a number of important security threats that can jeopardize
the operation of a network with UAVs. Cyber-physical attacks on UAVs can vary widely
as they can target different components within the UAV system. For example, some
attacks can target the connection between a UAV and its GSs [314]. Other attacks can
target a UAV’s information either by intercepting the sent information or injecting false
data [315]. Denial of service is yet another form of attack that aims at preventing a UAV
from performing its designated service [316]. Finally, some attacks can target specific
components in the UAV such as its GPS receiver either by jamming or spoofing the
authentic GPS signals [317]. Note that there are also attacks that can target a group of
UAVs to disrupt the connectivity of their UAV networks (UAVNs) [318].
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Communication channel attacks: Attacks to the communication channel of a UAV
system can take many forms such as disrupting the connection between the UAV and the
GS [315]. In this type of attack, the attacker can prevent the GS from communicating
and controlling the UAV in order to steal the UAV or to make the drone operator lose the
UAV. If the attacker wants to steal the UAV, it will first hijack the UAV-GS connection,
and then it will send its own control signals to the UAV in order to lead the UAV to a
place where it can be captured, this is known as a fly-away attack [319]. A similar com-
munication attack can happen if the UAV is being controlled by a mobile application,
in this case, the attacker will de-authenticate the UAV from its legitimate mobile device
and then establish a new connection with a malicious mobile device.

Information attacks: Attacks to the information of UAVs can have a wider range
of effects on the targeted UAV. Eavesdropping on the transmitted information between
a UAV and its communicating receiver (e.g., BS or another UAV) is one of the most
basic attacks that an attacker can launch to access the UAV’s private information. Due
to the lack of strong encryption of the transmitted data (as limited by the UAVs’ compu-
tational capabilities), eavesdropping can have serious effects based on the sensitivity
of the transmitted data. Naturally, here one can envision several solutions to eaves-
dropping ranging from developing lightweight cryptographic algorithms to exploring
physical layer security solutions [320, 321]. While eavesdropping is a passive attack
on the UAV’s information, false data injection represents another important and active
attack against a UAV’s information. In false data injection, the attacker can transmit
manipulated information to a UAV by masquerading the identity of the real control cen-
ter. This form of attack is particularly effective when no authentication is used between
the UAV and the control center. A more powerful data injection attack is known as a
man-in-the-middle attack [314] in which the attacker intercepts the message sent from
the control center, alters it, and resends it to the target UAV. The goal of data injection
attacks can be to mislead the target UAV to perform harmful tasks or to prevent it from
performing its intended task.

Denial-of-service (DoS) attacks: DoS attacks are well-known security threats in
computer networks and wireless networks [322] in which the attacker floods the net-
work with requests in order to exhaust the network resources and, thus, prevents the
legitimate users from obtaining the service. In UAV networks, DoS attacks can prevent
a UAV from performing its mission, particularly for scenarios in which UAVs receive
requests from users. For instance, many UAVs are used as aerial base stations to provide
the necessary cellular connectivity to users in emergency situations or in time-sensitive
applications, such as real-time video streaming in big events [323]. Such UAVs are prone
to DoS attacks where the attacker can send malicious requests to affect the service with
the legitimate users. Another variant of DoS is known as a distributed denial of service
(DDoS) attack in which the attacker uses multiple devices to send the requests so it is
harder for the network to identify the malicious users. The notion of a DoS attack can
also be used by an adversary to compromise the wireless link between a UAV and its
controller [324] either by transmitting a large control request to cause buffer-overflow
at the UAV or sending multiple control signals in parallel to prevent the UAV from
receiving its authentic control signal.
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GPS attacks: The next type of attack targets a UAV’s GPS receiver. GPS jamming
is a common attack against UAVs in which the attacker transmits high power signals to
prevent a UAV from receiving the GPS signals that are used to determine the location.
While there might not be a universal, effective defense against GPS jamming, the authors
in [325] proposed a technique to determine the jammer’s location in order to stop the
jamming source. GPS spoofing is yet another powerful attack that can target UAVs’
GPS receivers. In GPS spoofing attacks, an attacker transmits fake GPS signals to the
UAV’s GPS receivers. These signals are transmitted with slightly higher power than the
authentic GPS signals so the UAV will lock on to these fake signals and determine its
location incorrectly. The attacker can benefit from this by sending the UAV to another
predetermined location where it can be captured [317], which is known as a capture via
a GPS spoofing attack.

The effect of a GPS spoofing attack is determined by the type of the attack. If the
attacker does not seek to maintain a covert attack, it can theoretically impose any
location on the UAV with the risk of being detected if the UAV is using a spoofing
detection techniques. On the other hand, if the attacker is launching a covert attack, it
will be limited by the changes it can impose on a UAV’s location in order not to be
immediately captured by the spoofing detection techniques. This limit is determined
by the instance drifted distance [326], which depends on the GPS spoofing technique
adopted by the UAV. To illustrate the effects of GPS spoofing attacks, we conduct a
few simulations that rely on the UAV GPS spoofing model in [327]. For instance, in
Figure 10.1, we show the capture possibility of a group of 5 UAVs subject to a GPS
spoofing attack and managed by a common drone operator. In this scenario, the attacker
can spoof the GPS signals of one UAV at each time step. Similarly, one UAV can update
its location, using its neighboring UAVs’ locations at each time step. In Figure 10.1,
the drone operator chooses which UAV must update its location, at each time step, in
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Figure 10.1 The effect of changing the instance drifted distance on the UAVs capture possibility
under deterministic strategies.
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Figure 10.2 The effect of changing the instance drifted distance on the UAVs capture possibility
under random strategies.

a predetermined order. In particular, the drone operator will choose all the UAVs in
sequential order, starting from UAV 1 at the first time step. We can see that the attacker
is able to start capturing UAVs 1 and 5 when the instance drifted distance equals 60
m, it will be also able to capture UAV 2 when the instance drifted distance equals 90
m. Similarly, Figure 10.2 shows a case in which the drone operator chooses a ran-
dom UAV to update its location, at each time step. In Figure 10.2, we can see that
the attacker is able to capture UAVs 1 and 5 when the instance drifted distance is 60
m. However, it can capture UAV 4 starting from the instance drifted distance of 80 m,
which is worse than using the deterministic strategies. These simulation results clearly
showcase how one can study GPS spoofing attacks on UAVs and, then, design corre-
sponding defense strategies. For more insights on such designs, we refer the reader to the
work in [327].

Other attacks: Finally, there are several other attack types that can target a group of
UAVs to disrupt their network connectivity [318]. These attacks have similar effects
to the attacks on wireless sensor networks (WSNs) [328], mobile ad hoc networks
(MANETs) [329], and vehicular ad hoc networks (VANETs) [330]. Although there are
some differences between these types of networks in terms of the available resources,
the amount of transmitted information, and the number of nodes, their similarities can
enable some defense mechanisms to be ported from a system to another, after modifying
it to suit the nature of the new system.

10.2 Security of UAV UEs in Delivery Systems

Following our broad overview of UAV security problems, our next step is to develop
a general framework to study and analyze UAV security for a very specific scenario
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pertaining to UAV delivery systems. For instance, as mentioned in Chapter 2, UAVs
will admit a plethora of real-world applications. In particular, UAV UEs will be central
to many foreseen smart city applications. Such applications particularly include UAV
delivery systems [331, 332], such as Amazon’s Prime Air and Google’s Project Wing,
as well as the use of UAV UEs for search and rescue missions. In such applications, UAV
UEs are primarily tasked with achieving a time-sensitive mission that requires them to
move from a given origin to a destination. Along their travel, UAV UEs will have to
communicate with ground infrastructure (e.g., BSs and GSs) as well as with other UAVs.
This ability to communicate, coupled with their mobility and agility, renders the UAV
UEs of a delivery system highly susceptible to cyber-physical attacks. On the cyber
level, as discussed in Section 10.1, adversaries can attempt to jeopardize the delivery
mission by taking control of the UAV through false data injections or by compromising
the communication system of the UAVs, through jamming or DoS attacks [333–335].
Meanwhile, given that the FAA limited the flight of UAVs to about 400 ft, UAV UEs will
then be within the range of civilian rifles that can be used to physically attack them [336].
Such physical attacks can seriously jeopardize the mission of the UAVs and, thus, lead
to catastrophic consequences for the UAV operator.

Due to these cyber and physical vulnerabilities, in addition to the works discussed
in Section 10.1, the authors in [333–335] have also attempted to identify the various
vulnerabilities of UAV systems (particularly on the cyber side) and, then, provide secu-
rity solutions to overcome those vulnerabilities. However, the majority of these prior
studies still focus on the cyber vulnerability of generic UAV systems and do not take
into account some of the unique features of UAV delivery systems [337, 338], such as
their need for timely delivery and their vulnerability to physical threats. To overcome
this gap in the literature, in this section, we will introduce a framework, built on game
theory and prospect theory, to analyze and understand the cyber-physical vulnerabilities
of UAV delivery systems. This framework, based on our work in [339], will shed light
on how UAV operators can properly manage the security of their UAV delivery systems.

10.2.1 Modeling the Security of a UAV Delivery System

We study the security of a UAV delivery system similar to Amazon Prime Air in which
the delivery system operator will dispatch a UAV UE to deliver online goods to a target
destination. In this studied system, once a delivery is requested, the operator will dis-
patch a UAV UE to deliver the purchased good from a given origin (e.g., a warehouse)
O to a destination D (e.g., the customer premises). The UAV delivery system operator
will seek to minimize the delivery time and associated costs for sending its UAV UE
from O to D. Therefore, it will often seek to choose the shortest path between origin and
destination. However, in our system, we consider the presence of an attacker that can be
located at one of multiple “danger points” (such as locations i and j in Figure 10.3) in
order to attack the UAV UE and compromise its mission. Here, a danger point is a geo-
graphical location along a given path from O to D in which the UAV’s cyber or physical
capabilities are exposed to the attacker. For example, high-rise buildings or high hills
can be potential danger points. These danger points represent a threat source because
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O D
i j

Figure 10.3 Threat points from warehouse (O) to customer location (D).

they can lead to physical proximity and possibly a direct LOS between the UAV and the
adversary. Thus, they enable targeting a traversing UAV with physical (such as shooting
the UAV) and cyber (such as jamming) attacks.

In this section, we assume that the UAV UE belongs to a legitimate operator and that
the attacker is a malicious entity. However, as discussed in [340], the developed frame-
work can also accommodate the case in which the UAV is being used for a nefarious
mission (e.g., to compromise the security of an airport) and the attacker (e.g., a govern-
ment agency) is trying to stop this malicious UAV. In our considered security model,
whenever the attacker is successful, it will be able to completely compromise the UAV
UE (e.g., by destroying it or rendering it out of order). Hence, once an attack is success-
ful, the operator will have to resend its product from O to D (using a new UAV), which,
in turn, leads to substantial delivery delays. As a result, the probability of a successful
attack will directly impact the expected delivery time of the product. Consequently, to
guarantee a timely delivery in the presence of potential adversaries, the UAV operator
can no longer rely on the shortest physical path, which can be potentially risky. Instead,
it must choose alternative paths that can be less risky and can lead to better delivery
times. As shown in Figure 10.4, we define a directed graph G(N , E) to model the UAV
delivery paths between the origin and the destination. This graph has N nodes in the
set N , which represent the danger point locations connected via E edges in set E . We
assume that UAVs can fly in nearly unconstrained locations1 and, hence, the number
of paths between O and D can be infinitely large. Each such path will cross a subset
of danger points (which can also be shared among various paths). Given that we focus
on the security aspect, we can capture the large set of all possible paths via the set of
danger points traversed by each path. Since UAV delivery operators seek to minimize
their delivery time, we assume that the movement of any UAV UE between two danger
points m and n will follow the shortest edge between those two vertices. Hence, in our
graph G, to define an edge between any two nodes, we will only use the shortest path
between those nodes.

In consequence, the graph G(N , E) can be viewed as a compact model for the security
of a UAV delivery system. In particular, this graph is used to represent the continuous
space between O and D using danger points and the shortest edges that link them. For
each edge ek ∈ E that links 2 danger points m and n, we define tk as the time that the
UAV needs to fly from m to n over edge ek. For each danger point n ∈ N , we define pn

as the probability that the attack performed from n is successful.

1 Note that, in the future, the FAA may regulate the UAVs and require them to fly on predefined airways.
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Figure 10.4 A graph representation for a UAV delivery system.

Let H be the set of H paths (with no repeated vertices) from O to D in G. In essence,
each element h ∈ H represents a sequence of danger points that constitute a path from
O to D. Since each h has a unique set of nodes and associated edges, we can represent
h by its sequence of traversed nodes, which is nothing but a subset of N . For example,
from Figure 10.4, h1 � (1, 2, 5, 7, 10) represents a sample path. We can now define an
(H × N) path-node incidence matrix L. Every element lhn, ∀h ∈ H , ∀n ∈ N of this
metric will be equal to 1 if n ∈ h and 0 otherwise. We also define a distance function
f h(.) : h → R (over path h ∈ H). This function outputs the time needed for a node n ∈ h
to reach the destination from the origin, by following a given path h. For example, in
Figure 10.4, f h1 (5) = t1 + t4 where h1 � (1, 2, 5, 7, 10).

In this model, we will refer to the UAV operator, U, as an evader whose goal is to
choose an optimal, preferred path (from O to D) for its UAV that minimizes the expected
delivery time T while potentially evading a successful attack. Meanwhile, we refer to the
attacker A as an interdictor whose goal is to select a danger point from which to attack
the UAV and interdict its path. By doing so, the interdictor can potentially compromise
the UAV and, hence, maximize the delivery time T . Given that the decisions of the
operator and attacker are largely intertwined, it is appropriate to model their interactions
using concepts from game theory [341]. In particular, as discussed next, we formulate a
zero-sum network interdiction game [342] to study the security of this considered UAV
delivery system.

10.2.2 UAV Security as a Network Interdiction Game

In our considered system, the UAV operator’s goal is to find a randomized path selec-
tion strategy, captured via an optimal probability distribution y � [y1, y2, ..., yH]T ∈ Y
chosen over the set H of all possible flight paths from O to D where Y = {y ∈ RH :
y ≥ 0,

∑H
h=1 yh = 1}. The operator has an incentive to randomize its path selection

because, otherwise, if the path selection is done deterministically, it will make it triv-
ial for the attacker to attack the chosen path and compromise the UAV. Here, we also
note that the choice of a probability distribution over the set of actions (as opposed to a
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pure, deterministic choice) is known in game theory as a mixed strategy. Analogously,
we assume that the attacker will also choose an optimal mixed strategy captured by an
optimal probability distribution x � [x1, x2, ..., xN]T ∈ X over the set of attack loca-
tions (i.e., danger points) N . Here, we define X = {x ∈ RN : x ≥ 0,

∑N
n=1 xn = 1}.

Recall that, at a given location n, an attack will not always be successful, instead, the
probability of a successful attack is captured by pn.

For any successful attack, we assume that the drone operator will need to resend a
new UAV UE to replace the compromised one. Hence, in our model, whenever a UAV
UE arrives at a given node n ∈ h of a path h, this UAV may continue its flight along path
h normally with a probability 1 − pn or, alternatively, it will be successfully interdicted
by the adversary with probability pn. The case in which the UAV UE is successfully
attacked will be viewed to be equivalent to having the UAV virtually sent back to the
origin O (because in practice a new UAV UE will be sent to replace the compromised
one). For simplicity, we assume that for any product that is being redispatched after a
successful attack, law enforcement agencies will have already secured path h (that was
taken during the first attempt) and, hence, the operator can safely send its substitute
UAV and item over path h without any security threats. We can now define the expected
delivery time T using the previously defined mixed strategies, as follows:

T =
∑
h∈H

∑
n∈N

yhxn[lhnpn(f h(n)+f h(D))+(1−lhnpn)f h(D)]

=
∑
h∈H

∑
n∈N

yhxn[lhnpnf h(n) + f h(D)]. (10.1)

We can now also define an (H × N) matrix M. Each element mhn of this matrix will
be given by:

mhn = lhnpnf h(n) + f h(D) ∀h ∈ H and n ∈ N . (10.2)

Consequently, we can formally write the expected delivery time as follows:

T = yTMx. (10.3)

Remark 10.1 In the considered system, we consider two losses that stem from the
compromise of a given UAV: (a) economic losses pertaining to the monetary value of
the UAV and its item, and (b) delivery time delays. Given that UAV delivery system
operators will have very stringent delivery times, any delays will be highly detrimental
to the reputation of the operator and its drone delivery program. Hence, minimizing
delivery delays will be one of the primary objectives of UAV delivery system operators.
As a result, hereinafter, we do not account for the economics losses, and we restrict our
attention to the delays incurred by prospective cyber-physical attacks.

In the studied security problem, the operator primarily seeks to minimize its expected
delivery time T while the adversary seeks to maximize T . Clearly, this is a zero-sum
game that can be formally posed as a min-max problem (P1):

(P1): T∗ = min
y

max
x

yTMx, (10.4)

s.t. 1Nx = 1, 1Hy = 1, x ≥ 0, y ≥ 0, (10.5)
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where 1N � [1, ..., 1]T ∈ RN and 1H � [1, ..., 1]T ∈ RH . In (P1), the constraints
primarily pertain to restraining x and y to x ∈ X and y ∈ Y . Meanwhile, the adversary’s
delivery time-maximization problem is nothing but the max-min counterpart of (P1)
introduced later in (10.14).

The distributions y and x chosen by the operator and attacker to solve their zero-sum
game are known as security strategies [341]. Security strategies primarily consider sce-
narios in which an opponent seeks to inflict worst-case scenarios. For example, in (10.4),
the operator will consider that the response of the adversary to any path selection strat-
egy y will encompass the choice of an attack strategy x ∈ X that yields the worst-case
scenario, i.e., the highest possible expected delivery time.

To find a solution for this zero-sum network interdiction game, we follow well-
established approaches for solving zero-sum matrix games [341]. For instance, from
(10.4), we observe that the maximization is done as a function of a given y. In other
words, choosing an optimal x ∈ X is directly dependent on y. We can, therefore,
rewrite (10.4) as follows:

min
y∈Y

u1(y), (10.6)

where u1(y) = maxx∈X yTMx ≥ yTMx ∀x ∈ X .
Since X is an N-dimensional simplex, then, we can rewrite the last inequality as

follows:

MTy ≤ 1Nu1(y). (10.7)

We now make the change of variables ŷ = y/u1(y) and, then, we reformulate the
min-max problem, (P1), as a linear programming (LP) problem (P2):

(P2): min
y∈RH

u1(y) (10.8)

s.t. MT ŷ ≤ 1N , (10.9)

ŷT1H = 1/u1(y), (10.10)

y = ŷu1(y), ŷ ≥ 0. (10.11)

As proven in [343, Chapter 2], (10.8)–(10.11) can be reduced to a standard maximiza-
tion problem (P3):

(P3): max
ŷ

ŷT1H (10.12)

s.t. MT ŷ ≤ 1N , ŷ ≥ 0. (10.13)

The optimal ŷ can then be found by solving (P3). Then, as per (10.10), this solu-
tion can be used to find u1(y). Thus, given u1(y) and ŷ, we can derive the optimal y as
per (10.11).

We can now perform a similar analysis and transformation for the attacker’s max-min
problem. To do so, we first define the attacker’s objective function as follows:

max
x∈X

min
y∈Y

yTMx. (10.14)
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From (10.14), we can observe that the minimization is here performed for a given
vector x. Hence, we define:

u2(x) = min
y∈Y

yTMx and x̂ = x/u2(x). (10.15)

Analogous to what we did for the operator’s min-max problem, we can reduce the
max-min in (10.14) to a standard minimization:
(P4): min

x̂
x̂T1N , (10.16)

s.t. Mx̂ ≥ 1H , x̂ ≥ 0. (10.17)

By solving (P4), as done in (10.10), we find the optimal x̂ and use it to derive u2(x):

x̂T1N = 1/u2(x). (10.18)

Consequently, given the optimal x̂ and u2(x), we can now derive the optimal x as
per (10.15).

From a game-theoretic perspective, solving LP problems (P3) and (P4) leads to a so-
called mixed-strategy Nash equilibrium (NE) of the game, which is formally defined
next:

D E FI N I T I O N 10.1 The strategy profile (y∗, x∗), is an NE (also known as a saddle-point
equilibrium [SPE]) if and only if:

(y∗)TMx∗ ≤ (y)TMx∗ ∀y ∈ Y , (10.19)

(y∗)TMx∗ ≥ (y∗)TMx ∀x ∈ X . (10.20)

We can now use the solutions of (P3) and (P4) to find the expected delivery time T∗
at the NE as shown in the following Proposition 10.2:

PROPOSITION 10.2 The solution strategies (y∗, x∗) constitute an NE of the network
interdiction game, and the solutions of LP problems (P3) and (P4) result in value
functions μ1(ŷ∗) = (ŷ∗)T1H and μ2(x̂∗) = (x̂∗)T1N satisfying μ1(ŷ∗) = μ2(x̂∗) = 1/T .

In summary, the studied problem is formally a finite zero-sum network interdiction
game (defined over matrix M). In this game, for a mixed strategy pair (y, x), the expected
payoffs of the operator U and the attacker A will be, respectively, given by �A(y, x) =
−�U(y, x) = yTMx = T . It is well-known that, for any finite zero-sum game, if y′ is
a mixed security strategy for the first player and x′ is a mixed security strategy for the
second player, then the NE of the game is given by (y′, x′) [343]. As a result, given that
y∗ and x∗ are mixed security strategies for our finite, zero-sum UAV network interdiction
game, then, (y∗ and x∗) will be an NE of the game.

Proceeding from (10.10) and given the equivalence between (P2) and (P3), we can
now write:

u1(y∗) = [(ŷ∗)T1H]−1 ⇒ u1(y∗) = 1/μ1(ŷ∗). (10.21)

However, by definition of u1(y) and T∗, we have:

u1(y∗) = min
y∈Y

u1(y) = min
y∈Y

max
x∈X

yTMx = T∗. (10.22)
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Therefore, using (10.21) and (10.22), we can find:

μ1(ŷ∗) = (ŷ∗)T1H = 1/u1(y∗) = 1/T .

Similarly, we can show the following:

μ2(x̂∗) = (x̂∗)T1N = 1/u2(x∗) = 1/T .

From this analysis, we can see that our game can admit multiple NEs (i.e., multiple
security strategies for every player). Nonetheless, because the game is zero-sum, then all
the equilibria will yield an equal expected delivery time, as shown in [341]. In addition,
these NEs will be interchangeable [341], i.e., if (y∗, x∗) and (y′, x′) are two NEs, then,
(y∗, x′) and (y′, x∗) are also NEs.

Note that, in this subsection, we analyzed the UAV security problem using conven-
tional game theory (CGT) in which players are assumed to be objective and rational.
In practice, given that humans will be involved in two ways – (a) the operator of the
UAV system will involve humans in the planning of its UAV delivery system, and (b)
the adversary will likely be a human decision maker – we can revisit the solutions by
taking into account the bounded rationality of humans. Such an analysis under bounded
rationality is done next.

10.2.3 Security of UAV Delivery Systems in Presence of Human Decision Makers

As discussed, in CGT, it is assumed that each player (operator or adversary) will eval-
uate the likelihood of achieving a certain delivery time objectively and rationally by
using expected values to quantify the benefit of a pair of strategies (y, x). The ability to
compute expectations is a tenet of expected utility theory (EUT) in which it is assumed
that players in a game are rational and can objectively compute probabilistic outcomes,
such as those in (10.1) and equivalently in (10.3).

Nonetheless, many empirical studies, including the Nobel-prize winning prospect the-
ory experiments done by Kahneman in [344], have shown that, in the real world, human
decision makers will not act in a fully rational manner. In particular, when faced with
risk and uncertainty (as is the case of our UAV security game), the decision-making
processes of human individuals can significantly deviate from the fully rational case of
EUT and CGT. For instance, as demonstrated in the field of prospect theory (PT) [344],
human players often evaluate probabilistic outcomes in a subjective manner. Such sub-
jectivity will naturally appear in our UAV security setting due to various factors. On
the one hand, both the UAV operator and the adversary can have their own, subjective
perceptions on the probability of success of an attack at any given danger point. In this
regard, the risk level of any given UAV path or the potential damage that a given attack
at a given location can cause will be subjectively assessed by the operator and the adver-
sary and, hence, the objective expectations on the delivery times that were used in the
previous section may no longer hold. On the other hand, the way in which a given value
for the delivery time is evaluated (by the operator or the attacker) will be subjective and
done differently from EUT. For instance, one of the main performance metrics of a UAV
delivery system is to achieve a very low delivery time. In particular, it is critical for a



10.2 Security of UAV UEs in Delivery Systems 251

UAV operator to meet the target delivery time, To, that it has promised to achieve. For
example, Amazon Prime Air promises a delivery time of less than 30 minutes [332].
Therefore, in a real-world UAV delivery system, the delivery time is not an absolute
quantity. Instead, it is measured with respect to a reference point To since an increase in
the expected delivery time above To will have significant consequences on the reputation
and effectiveness of the UAV delivery system. For example, if Amazon Prime Air cannot
consistently meet its promised delivery time of To = 30 minutes, then its UAV delivery
program may fail and will be significantly affected. Meanwhile, when UAVs are used
in search and rescue or emergency medicine delivery [337, 338] missions, the slightest
delay can have catastrophic outcomes. Clearly, one of the shortcomings of using CGT
for analyzing UAV delivery system security is that it perceives the calculated expected
delivery time as an absolute and objective quantity that the operator and attacker objec-
tively use to choose their mixed strategies. As discussed, in practice, the delivery time
is a relative quantity (with respect to To) that the players will subjectively assess.

We adopt the framework of prospect theory [344] in order to explicitly factor in these
subjective perceptions into our UAV security game. In this regard, we leverage the so-
called weighting and framing effects from prospect theory. The weighting effects allows
us to capture the fact that the players will subjectively assess probabilistic outcomes. In
particular, PT studies showed that human players tend to underweigh high probability
outcomes and overweigh low probability outcomes. Meanwhile, the concept of PT fram-
ing will take into account the fact that the players will analyze their delivery time, not
as an absolute, raw quantity, but rather as a relative quantity with respect to a reference
point.

To integrate these PT effects into our game, instead of merely deriving the delivery
time T in expectation as was done in the previous section, we will define a valuation
function Vz(T) for z ∈ {U, A} that the operator, U, or the attacker, A, will subjectively
define for any given T . By using (10.1), we can define this valuation function as follows
(for z ∈ {U, A}):

Vz(T)=
∑
h∈H

∑
n∈N

yhxn

[
vz

(
lhnωz(pn)f h(n)+f h(D)−Rz

)]
. (10.23)

In equation (10.23), ωz(.) : [0, 1] → R is a nonlinear weighting function that cap-
tures the PT weighting effect and vz(.) : R → R is a nonlinear value function that will
incorporate the PT framing effect. The weighting function in (10.23) captures the sub-
jective perception that each player has of the likelihood of occurrence of probabilistic
outcomes. The outcomes in our game correspond to the achieved delivery time whenever
U selects a path h ∈ H and the adversary targets node n ∈ h for its attack. The achieved
delivery time is clearly a probabilistic outcome since it depends on the underlying prob-
ability of a successful attack. In essence, whenever the operator chooses path h and the
attacker selects node n ∈ h, they will achieve a delivery time of (f h(n) + f h(D)) with
probability pn and a delivery time of f h(D) with probability (1 − pn). Hence, instead of
objectively measuring the probabilities of these two outcomes, in the presence of human
decision makers, our two players will perceive a weighted value of these probabilities.
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For instance, under the PT weighting effect, any player z ∈ {U, A} will view the prob-
ability with which the delivery time would be equal to f h(n) + f h(D) (when U selects
h and A selects n ∈ h) as wz(pn), which is a nonlinear mapping that transforms the
objective probability pn into a subjective weight wz(pn). This PT effect captures the fact
that, in the real world, human players tend to underweight high probability outcomes
and overweight low probability outcomes. To accurately model the subjective probabil-
ity perceptions of each player z ∈ {U, A}, we define a weight wz(pn) based on the Prelec
function that is very popular in PT:

wz(σ ) = exp(−(− ln(σ )γz )), 0 < γz < 1, (10.24)

where γz is a rationality parameter that quantifies the distortion between player z’s
subjective and objective probability perceptions. In this context, a small value for γz

implies lower rationality and larger subjectivity. When γz = 1, ωz(pn) reduces to the
rational probability pn. Meanwhile, when γz is close to 0, we get the fully irrational
case.

Moreover, the value function in (10.23) also incorporates the PT concept of framing
to capture how the operator and attacker value outcomes as gains and losses with respect
to a delivery time reference point Rz (which can, for example, correspond to To) rather
than as absolute quantities. Once the framing effect is included, the value function of
the UAV operator will be defined as follows:

vU(aU) =
{

λU(aU)βU , if aU ≥ 0,

−(−aU)αU , if aU < 0, (10.25)

where aU = lhnωU(pn)f h(n) + f h(D) − RU . (10.26)

In 10.25, the parameters λU , βU , and αU are positive constants (with λU > 1) and ωU(.)
is also a Prelec weighting function. In our game, since the operator is a minimizing
player, then aU ≥ 0 correspond to losses for the operator and aU < 0 corresponds to
gains for operator. The structure of this function allows us to capture key PT properties:
(a) the operator will consider the value of a certain delivery time to be a gain or a loss
depending on how it compares to a subjective reference point RU (e.g. To), and (b) under
PT, losses loom larger than gains, as measured by the loss multiplier λU in (10.25).
This captures the fact that the operator will exaggerate the impact of not meeting its
promised target delivery time. This is due to the potentially detrimental consequences
that excessive delays will have on the reputation and operability of the UAV delivery
system.

Next, we also define a value function for the attacker A that incorporates the PT
framing effect while factoring in the fact that the attacker is a maximizer:

vA(aA) =
{

−λA(−aA)βA , if aA < 0,

(aA)αA , if aA ≥ 0, (10.27)

where aA = lhnωA(pn)f h(n) + f h(D) − RA. (10.28)
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Moreover, to account for PT effects, we introduce the (H × N) matrices MU,PT and
MA,PT whose elements are, respectively, given by (∀h ∈ H , ∀n ∈ N ):

mU,PT = vU

(
lhnωU(pn)f h(n)+f h(D)−RU

)
, (10.29)

mA,PT = vA

(
lhnωA(pn)f h(n)+f h(D)−RA

)
. (10.30)

Consequently, the vendor will find its optimal mixed strategy by solving the following
problem, (P5):

min
y∈Y

max
x∈X

yTMU,PTx, (10.31)

while the defender solves the following problem, (P6):

max
x∈X

min
y∈Y

yTMA,PTx. (10.32)

In a real-world UAV delivery system, neither the UAV operator nor its adversary will
have complete information on each others’ subjectivity levels. Therefore, it is reasonable
to assume that, in such a security setting, each player will assume that its opponent will
be choosing the most damaging (i.e., worst case) strategy. We have captured this fact,
respectively, by the min-max and max-min formulations of (P5) and (P6). Thereby, we
can reduce (P5) and (P6), respectively, into standard maximization and minimization
problems as done in the EUT case. However, in contrast to the CGT case, our analysis
here will not lead to an equilibrium because MU,PT and MA,PT are different [343]. An
analysis of the PT equilibrium can only be done if certain aspects of the models are
modified, as discussed in [340].

10.2.4 Representative Simulation Results

In our simulations, we focus on the directed graph shown in Figure 10.4 with N = 10
vertices and E = 18 edges. Moreover, we define [t1, t2, ..., t18] � [3, 3, 3, 6, 6, 3, 6, 6, 6,
8, 6, 8, 10, 10, 10, 14, 12, 14] and [p1, p2,...,p10] � [0, 0.2, 0.4, 0.2, 0.4, 0.4, 0.5, 0.8,
0.5, 0]. We then number the different paths as follows: [1, 2, ..., 18] � [(2, 5, 7), (2, 5, 8),
(2, 5, 9), (2, 6, 7), (2, 6, 8), (2, 6, 9), (3, 5, 7), (3, 5, 8), (3, 5, 9), (3, 6, 7), (3, 6, 8), (3, 6, 9),
(4, 5, 7), (4, 5, 8), (4, 5, 9), (4, 6, 7), (4, 6, 8), (4, 6, 9)] where, since node 1 (O) and node
10 (D) are part of all paths, a path (i, j, k) corresponds to (1, i, j, k, 10) . Unless stated
otherwise, we choose the PT parameters as follows: λA = λU = 5, βU = βA = 0.8, and
αU = αA = 0.2.

We first study the path lengths and path selection strategies (under CGT and PT) of
the operator for various rationality parameters. These results are shown in Figure 10.5.
First, Figure 10.5a presents the length of each possible path (from origin to destination)
in H. From Figure 10.5a, we can observe that path 8 is the shortest path by paths 2
and 14. Meanwhile, in Figure 10.5b, we present the operator’s optimal path strategy.
Figure 10.5b demonstrates that, under CGT, the shortest path (path 8) is not chosen with
the highest probability. For instance, we can clearly see that paths 7 and 9 are more
likely to be selected by the operator because of the high risk (p8 = 0.8) associated with
the shortest path, path 8. In contrast, as seen from Figure 10.6a (in this figure, we let



254 Security of UAV Networks

Figure 10.5 a) Length of each path in set H. b) Optimal path selection in the CGT and PT cases,
for various values of the rationality parameter.

γ = γU = γA), the weighting effect will flatten the perceived probabilities. Indeed, from
this figure, we can clearly see the impact of PT weighting on the probabilities whereby
high probabilities (pn > 0.4) are underweighted and low probabilities are overweighted.
Moreover, we can see that a very irrational UAV operator (for γ = 0.1) will see the
probability of a successful attack as almost equally likely at all nodes in the graph. As a
result, from Figure 10.5b, we can observe that, in the PT scenario, the operator will be
more likely to travel through the shortest path. Indeed, for a very low rationality level
(e.g., γ = 0.1), the operator will view all paths to be of equal risk and, thus, it will
use the shortest with a likelihood of 94%. In addition, Figure 10.6b presents the optimal
attack strategy of the adversary when γ changes. We can see that, for the CGT case,
the optimal strategy of the attacker is to randomize between nodes 7, 8, and 9 while
assigning the highest probability to node 8, which is part of the shortest path (that is
very risk, i.e., p8 = 0.8. In contrast, for the PT cases, the attacker will primarily target
nodes 5 and 8, which are both part of the shortest path.

Figures 10.5 and 10.6 demonstrate that the PT weighting effect as well as the ratio-
nality parameter will have a significant impact on the achieved delivery time because
they will affect the strategy choices of both players. For instance, Figure 10.7 presents
the variation in the achieved expected delivery time for γ ∈ {0.1, 0.5, 0.9}. In Fig-
ure 10.7, lower rationality levels lead to higher delivery times. Indeed, when γ decreases
from 0.9 to 0.1, the resulting delivery time will increase by about 11%. Note that Fig-
ure 10.7 assumes To = RU = RA = 30. Hence, the distorted perception of probability
leads to a selection of risky path strategies whose expected delivery times will exceed
the desired target. Such delays, as discussed earlier, can have major consequences on
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the UAV operator’s system, particularly for search and rescue and critical applica-
tions [337, 338]. We recall that the delivery time used in our model is, in fact, the
expected flight time of the UAV when under attack. The actual achieved delivery time
will also include additional delays pertaining to processing and re-handling (these added
delays can mathematically seen as additive constants).

In Figure 10.8, for RU = 30, we study how the loss parameter λU can impact the
probability of choosing the shortest path and the achieved expected delivery time. In
essence, a higher value for λU implies that the associated player will amplify its losses
further, i.e., it is more averse to loss. In our UAV scenario, an increase in the value of
λU implies that the consequences of not meeting a target delivery time will be amplified
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for the operator. As a result, higher values of λU will lead the operator to be more risk-
seeking, and, hence, it will tend to select more risky path strategies when those strategies
have shorter path lengths. Figure 10.8a clearly shows that, as λU , the operator will be
more likely to select the shortest path. For example, increasing λU from 1 to 10 leads
to an increase in the probability of choosing the shortest path from 0.51 to 0.81. This
risky path selection strategy will, in turn, lead to an increase in the achieved delivery
time, as clearly seen from Figure 10.8b. An important observation here is that, under the
subjective behavior observed by PT, the expected delivery time exceeds that under CGT
as well as the target delivery time. Hence, this shows that the subjective perception of
probabilities and outcomes by the vendor can impair its chosen path strategies, incurring
delays to the delivery time.

10.2.5 Summary

In this section, we have provided a preliminary study on the security of a UAV-based
delivery system. First, we have discussed how the cyber and physical functions of a
UAV will render it susceptible to cyber-physical attacks. We have then devised a generic
framework that can be used to study the impact of security threats on the performance
of a UAV delivery system. We have used a game-theoretic framework to study this per-
formance, and we have shown how the behavior of the operator and the adversary can
impact the overall delivery time of the system. In particular, using prospect theory, we
have particularly studied cases in which the players have bounded rationality and can
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act in a risk-seeking or risk-averse manner. From the study done in this section, we can
clearly see that security problems are intertwined with the performance of UAV applica-
tions. This, in turn, motivates a holistic study of communications, security, and network
performance for UAV-enabled systems.

10.3 Concluding Remarks on UAV Security

In this chapter, we have shown that a plethora of security threats on UAVs exist, and
those threats can seriously compromise the operation of any network with UAVs. There-
fore, in order to effectively deploy UAVs in the context of the various applications
discussed in Chapter 2, it is imperative to: (a) identify the types of threats that target the
UAV system, and (b) devise defense mechanisms to thwart those threats. Hence, in this
chapter, we have first identified several types of security threats within a UAV system,
and we have discussed their potential effects. Examples include eavesdropping attacks,
jamming, and GPS spoofing attacks. For the GPS spoofing case, we have provided pre-
liminary simulations that show how various parameters impact the attack effectiveness
and how a drone operator can leverage those parameters to improve its defense sys-
tem. Then, we have provided a comprehensive framework for instilling security in UAV
systems, in general, and delivery systems with UAV UEs, in particular. We have used
notions from game theory and prospect theory to design our framework, and we have
discussed the effects of various network parameters, particularly the effect of human
factors. In a nutshell, maintaining the security of UAV systems is a necessity for deliver-
ing their promised applications. Indeed, without proper security measures, adversaries
can compromise the UAV system and leverage it for nefarious purposes. As a result,
designing effective UAV systems requires addressing challenges at the intersection of
communications, networking, and security, as demonstrated in this book.
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[54] M. Walter, S. Gligorević, T. Detert, and M. Schnell, “UHF/VHF air-to-air propagation
measurements,” in Proceedings of the Fourth European Conference on Antennas and
Propagation, April 2010, pp. 1–5.

[55] Q. Feng, J. McGeehan, E. K. Tameh, and A. R. Nix, “Path loss models for air-to-ground
radio channels in urban environments,” in IEEE Vehicular Technology Conference, vol. 6,
May 2006, pp. 2901–2905.

[56] M. Simunek, P. Pechac, and F. P. Fontan, “Excess loss model for low elevation links
in urban areas for UAVs,” Radioengineering, vol. 20, no. 3, pp. 561–568, September
2011.

[57] A. Al-Hourani, S. Kandeepan, and A. Jamalipour, “Modeling air-to-ground path loss
for low altitude platforms in urban environments,” in IEEE Global Communications
Conference, December 2014, pp. 2898–2904.

[58] F. Ono, K. Takizawa, H. Tsuji, and R. Miura, “S-band radio propagation characteristics
in urban environment for unmanned aircraft systems,” in International Symposium on
Antennas and Propagation, November 2015, pp. 1–4.

[59] H. T. Friis, “A note on a simple transmission formula,” Proceedings of the IRE, vol. 34,
no. 5, pp. 254–256, May 1946.

[60] A. Goldsmith, Wireless Communications. Cambridge, UK: Cambridge University Press,
2005.

[61] D. W. Matolak and R. Sun, “Air–ground channel characterization for unmanned aircraft
systems – Part I: Methods, measurements, and models for over-water settings,” IEEE
Transactions on Vehicular Technology, vol. 66, no. 1, pp. 26–44, January 2017.

[62] R. Sun and D. W. Matolak, “Air–ground channel characterization for unmanned aircraft
systems – Part II: Hilly and mountainous settings,” IEEE Transactions on Vehicular
Technology, vol. 66, no. 3, pp. 1913–1925, March 2017.

[63] Y. S. Meng and Y. H. Lee, “Measurements and characterizations of air-to-ground channel
over sea surface at C-band with low airborne altitudes,” IEEE Transactions on Vehicular
Technology, vol. 60, no. 4, pp. 1943–1948, April 2011.

[64] J. D. Parsons, The Mobile Radio Propagation Channel. Hoboken, NJ, USA: Wiley, 2000.



262 References

[65] T. S. Rappaport, Wireless Communications: Principles and Practice. New Jersey: Prentice
Hall PTR, 1996, vol. 2.

[66] F. Ikegami, T. Takeuchi, and S. Yoshida, “Theoretical prediction of mean field strength for
urban mobile radio,” IEEE Transactions on Antennas and Propagation, vol. 39, no. 3, pp.
299–302, March 1991.

[67] K. R. Schaubach, N. Davis, and T. S. Rappaport, “A ray tracing method for predicting path
loss and delay spread in microcellular environments,” in Proceedings of IEEE Vehicular
Technology Conference, May 1992, pp. 932–935.

[68] Z. Yun and M. F. Iskander, “Ray tracing for radio propagation modeling: principles and
applications,” IEEE Access, vol. 3, pp. 1089–1100, July 2015.

[69] J. B. Keller, “Geometrical theory of diffraction,” JOSA, vol. 52, no. 2, pp. 116–130,
February 1962.

[70] R. G. Kouyoumjian and P. H. Pathak, “A uniform geometrical theory of diffraction for
an edge in a perfectly conducting surface,” Proceedings of the IEEE, vol. 62, no. 11, pp.
1448–1461, November 1974.

[71] R. Luebbers, “Finite conductivity uniform GTD versus knife edge diffraction in prediction
of propagation path loss,” IEEE Transactions on Antennas and Propagation, vol. 32,
no. 1, pp. 70–76, January 1984.

[72] K. A. Remley, H. R. Anderson, and A. Weisshar, “Improving the accuracy of ray-
tracing techniques for indoor propagation modeling,” IEEE Transactions on Vehicular
Technology, vol. 49, no. 6, pp. 2350–2358, November 2000.

[73] F. Fuschini, H. El-Sallabi, V. Degli-Esposti, L. Vuokko, D. Guiducci, and P. Vainikainen,
“Analysis of multipath propagation in urban environment through multidimensional
measurements and advanced ray tracing simulation,” IEEE Transactions on Antennas and
Propagation, vol. 56, no. 3, pp. 848–857, March 2008.

[74] T. S. Rappaport, R. W. Heath Jr, R. C. Daniels, and J. N. Murdock, Millimeter Wave
Wireless Communications. New York City, NY, USA: Pearson Education, 2014.

[75] P. Pongsilamanee and H. L. Bertoni, “Specular and nonspecular scattering from building
facades,” IEEE Transactions on Antennas and Propagation, vol. 52, no. 7, pp. 1879–1889,
July 2004.

[76] V. Degli-Esposti, F. Fuschini, E. M. Vitucci, and G. Falciasecca, “Measurement and mod-
elling of scattering from buildings,” IEEE Transactions on Antennas and Propagation,
vol. 55, no. 1, pp. 143–153, January 2007.

[77] M. Catedra, J. Perez, F. S. De Adana, and O. Gutierrez, “Efficient ray-tracing techniques
for three-dimensional analyses of propagation in mobile communications: Application
to picocell and microcell scenarios,” IEEE Antennas and Propagation Magazine, vol. 40,
no. 2, pp. 15–28, April 1998.

[78] M. F. Iskander and Z. Yun, “Propagation prediction models for wireless communication
systems,” IEEE Transactions on microwave theory and techniques, vol. 50, no. 3, pp.
662–673, March 2002.

[79] V. Erceg, S. J. Fortune, J. Ling, A. Rustako, and R. A. Valenzuela, “Comparisons of a
computer-based propagation prediction tool with experimental data collected in urban
microcellular environments,” IEEE Journal on Selected Areas in Communications, vol. 15,
no. 4, pp. 677–684, May 1997.

[80] Q. Feng, E. K. Tameh, A. R. Nix, and J. McGeehan, “WLCp2-06: Modelling the
likelihood of line-of-sight for air-to-ground radio propagation in urban environments,” in
Proceedings of IEEE Global Telecommunications Conference, December 2006, pp. 1–5.



References 263

[81] I. J. Timmins and S. O’Young, “Marine communications channel modeling using the
finite-difference time domain method,” IEEE Transactions on Vehicular Technology,
vol. 58, no. 6, pp. 2626–2637, July 2009.

[82] Y. Wu, Z. Gao, C. Chen, L. Huang, H.-P. Chiang, Y.-M. Huang, and H. Sun, “Ray
tracing based wireless channel modeling over the sea surface near Diaoyu islands,”
in First International Conference on Computational Intelligence Theory, Systems and
Applications, December 2015, pp. 124–128.

[83] N. Goddemeier, K. Daniel, and C. Wietfeld, “Role-based connectivity management with
realistic air-to-ground channels for cooperative UAVs,” IEEE Journal on Selected Areas
in Communications, vol. 30, no. 5, pp. 951–963, June 2012.

[84] W. Khawaja, O. Ozdemir, and I. Guvenc, “UAV air-to-ground channel characterization for
mmWave systems,” in Proceedings of IEEE Vehicular Technology Conference, September
2017, pp. 1–5.

[85] V. Erceg, L. J. Greenstein, S. Y. Tjandra, S. R. Parkoff, A. Gupta, B. Kulic, A. A. Julius,
and R. Bianchi, “An empirically based path loss model for wireless channels in suburban
environments,” IEEE Journal on Selected Areas in Communications, vol. 17, no. 7, pp.
1205–1211, July 1999.

[86] R. Amorim, H. Nguyen, P. Mogensen, I. Z. Kovács, J. Wigard, and T. B. Sørensen,
“Radio channel modeling for UAV communication over cellular networks,” IEEE Wireless
Communications Letters, vol. 6, no. 4, pp. 514–517, August 2017.

[87] W. Khawaja, I. Guvenc, and D. Matolak, “UWB channel sounding and modeling for
UAV air-to-ground propagation channels,” in Proceedings of Global Communications
Conference (GLOBECOM), December 2016, pp. 1–7.

[88] W. G. Newhall, R. Mostafa, C. Dietrich, C. R. Anderson, K. Dietze, G. Joshi, and J. H.
Reed, “Wideband air-to-ground radio channel measurements using an antenna array at
2 GHz for low-altitude operations,” in Proceedings of IEEE Military Communications
Conference, vol. 2, October 2003, pp. 1422–1427.

[89] E. Yanmaz, R. Kuschnig, and C. Bettstetter, “Achieving air-ground communications
in 802.11 networks with three-dimensional aerial mobility,” in Proceedings of IEEE
INFOCOM, April 2013, pp. 120–124.

[90] C.-M. Cheng, P.-H. Hsiao, H. Kung, and D. Vlah, “Performance measurement of 802.11a
wireless links from UAV to ground nodes with various antenna orientations,” in Proceed-
ings of International Conference on Computer Communications and Networks, October
2006, pp. 303–308.

[91] J. Allred, A. B. Hasan, S. Panichsakul, W. Pisano, P. Gray, J. Huang, R. Han, D. Lawrence,
and K. Mohseni, “Sensorflock: An airborne wireless sensor network of micro-air vehi-
cles,” in Proceedings of the 5th International Conference on Embedded Networked Sensor
Systems, November 2007, pp. 117–129.

[92] E. W. Frew and T. X. Brown, “Airborne communication networks for small unmanned
aircraft systems,” Proceedings of the IEEE, vol. 96, no. 12, December 2008.

[93] M. J. Feuerstein, K. L. Blackard, T. S. Rappaport, S. Y. Seidel, and H. H. Xia, “Path loss,
delay spread, and outage models as functions of antenna height for microcellular system
design,” IEEE Transactions on Vehicular Technology, vol. 43, no. 3, pp. 487–498, August
1994.

[94] X. Cai, A. Gonzalez-Plaza, D. Alonso, L. Zhang, C. B. Rodríguez, A. P. Yuste, and
X. Yin, “Low altitude UAV propagation channel modelling,” in Proceedings of European
Conference on Antennas and Propagation, March 2017, pp. 1443–1447.



264 References

[95] A. Al-Hourani and K. Gomez, “Modeling cellular-to-UAV path-loss for suburban environ-
ments,” IEEE Wireless Communications Letters, vol. 7, no. 1, pp. 82–85, February 2018.

[96] J. Walfisch and H. L. Bertoni, “A theoretical model of UHF propagation in urban
environments,” IEEE Transactions on Antennas and Propagation, vol. 36, no. 12, pp.
1788–1796, December 1988.

[97] F. Ikegami, S. Yoshida, T. Takeuchi, and M. Umehira, “Propagation factors controlling
mean field strength on urban streets,” IEEE Transactions on Antennas and Propagation,
vol. 32, no. 8, pp. 822–829, August 1984.

[98] G. L. Turin, F. D. Clapp, T. L. Johnston, S. B. Fine, and D. Lavry, “A statistical model of
urban multipath propagation,” IEEE Transactions on Vehicular Technology, vol. 21, no. 1,
pp. 1–9, February 1972.

[99] M. Gudmundson, “Correlation model for shadow fading in mobile radio systems,”
Electronics letters, vol. 27, no. 23, pp. 2145–2146, November 1991.

[100] M. Holzbock and C. Senninger, “An aeronautical multimedia service demonstration at high
frequencies,” IEEE Transactions on MultiMedia, vol. 6, no. 4, pp. 20–29, October 1999.

[101] J. Kunisch, I. De La Torre, A. Winkelmann, M. Eube, and T. Fuss, “Wideband time-variant
air-to-ground radio channel measurements at 5 GHz,” in Proceedings of the 5th European
Conference on Antennas and Propagation, April 2011, pp. 1386–1390.

[102] J. Naganawa, J. Honda, T. Otsuyama, H. Tajima, and H. Miyazaki, “Evaluating path loss
by extended squitter signals for aeronautical surveillance,” IEEE Antennas and Wireless
Propagation Letters, vol. 16, pp. 1353–1356, 2017.

[103] J. Holis and P. Pechac, “Elevation dependent shadowing model for mobile communica-
tions via high altitude platforms in built-up areas,” IEEE Transactions on Antennas and
Propagation, vol. 56, no. 4, pp. 1078–1084, April 2008.

[104] E. Teng, J. D. Falcão, and B. Iannucci, “Holes-in-the-sky: A field study on cellular-
connected UAS,” in International Conference on Unmanned Aircraft Systems, June 2017,
pp. 1165–1174.

[105] 3GPP, “Study on channel model for frequencies from 0.5 to 100 GHz,” 3GPP TR 38.901,
V15.0.0, June 2018.

[106] ITU-R, “P.1410: Propagation data and prediction methods required for the design of
terrestrial broadband radio access systems operating in a frequency range from 3 to 60
GHz,” Tech. Rep., February 2012.

[107] A. Al-Hourani, S. Kandeepan, and S. Lardner, “Optimal LAP altitude for maximum
coverage,” IEEE Wireless Communications Letters, vol. 3, no. 6, pp. 569–572, December
2014.

[108] R. I. Bor-Yaliniz, A. El-Keyi, and H. Yanikomeroglu, “Efficient 3-D placement of an aerial
base station in next generation cellular networks,” in Proceedings of IEEE International
Conference on Communications, May 2016, pp. 1–5.

[109] M. Mozaffari, W. Saad, M. Bennis, and M. Debbah, “Mobile unmanned aerial vehicles
(UAVs) for energy-efficient Internet of Things communications,” IEEE Trans. Wireless
Commun., vol. 16, no. 11, pp. 7574 – 7589, November 2017.

[110] M. Alzenad, A. El-Keyi, and H. Yanikomeroglu, “3-D placement of an unmanned aerial
vehicle base station for maximum coverage of users with different QoS requirements,”
IEEE Wireless Communications Letters, vol. 7, no. 1, pp. 38–41, February 2018.

[111] H. V. Hitney and L. R. Hitney, “Frequency diversity effects of evaporation duct propaga-
tion,” IEEE Transactions on Antennas and Propagation, vol. 38, no. 10, pp. 1694–1700,
October 1990.



References 265

[112] H. Heemskerk and R. Boekema, “The influence of evaporation duct on the propagation
of electromagnetic waves low above the sea surface at 3-94 GHz,” in International
Conference on Antennas and Propagation, 1993, pp. 348–351.

[113] Z. Xiao, P. Xia, and X.-G. Xia, “Enabling UAV cellular with millimeter-wave communi-
cation: Potentials and approaches,” IEEE Communications Magazine, vol. 54, no. 5, pp.
66–73, May 2016.

[114] ITU-R, “P.838-3: Specific attenuation model for rain for use in prediction methods,” Tech.
Rep., March 2005.

[115] A. Paier, T. Zemen, L. Bernadó, G. Matz, J. Karedal, N. Czink, C. Dumard, F. Tufvesson,
A. F. Molisch, and C. F. Mecklenbrauker, “Non-WSSUS vehicular channel characteriza-
tion in highway and urban scenarios at 5.2 GHz using the local scattering function,” in
International ITG Workshop on Smart Antennas, February 2008, pp. 9–15.

[116] O. Renaudin, V.-M. Kolmonen, P. Vainikainen, and C. Oestges, “Non-stationary nar-
rowband MIMO inter-vehicle channel characterization in the 5-GHz band,” IEEE
Transactions on Vehicular Technology, vol. 59, no. 4, pp. 2007–2015, May 2010.

[117] P. Bello, “Aeronautical channel characterization,” IEEE Transactions on Communications,
vol. 21, no. 5, pp. 548–563, May 1973.

[118] S. M. Elnoubi, “A simplified stochastic model for the aeronautical mobile radio channel,”
in Proceedings of the IEEE Vehicular Technology Conference, May 1992, pp. 960–963.

[119] M. Walter and M. Schnell, “The Doppler-delay characteristic of the aeronautical scatter
channel,” in Proceedings of IEEE Vehicular Technology Conference, September 2011,
pp. 1–5.

[120] M. Walter, D. Shutin, and U.-C. Fiebig, “Joint delay Doppler probability density functions
for air-to-air channels,” International Journal of Antennas and Propagation, vol. 2014,
April 2014.

[121] M. Ibrahim and H. Arslan, “Air-ground Doppler-delay spread spectrum for dense scat-
tering environments,” in Proceedings of the EEE Military Communications Conference,
October 2015, pp. 1661–1666.

[122] T. J. Willink, C. C. Squires, G. W. Colman, and M. T. Muccio, “Measurement and
characterization of low-altitude air-to-ground MIMO channels,” IEEE Transactions on
Vehicular Technology, vol. 65, no. 4, pp. 2637–2648, April 2016.

[123] R. M. Gutierrez, H. Yu, Y. Rong, and D. W. Bliss, “Time and frequency dispersion char-
acteristics of the UAS wireless channel in residential and mountainous desert terrains,” in
IEEE Annual Consumer Communications & Networking Conference, January 2017, pp.
516–521.

[124] N. Schneckenburger, T. Jost, D. Shutin, M. Walter, T. Thiasiriphet, M. Schnell, and U.-C.
Fiebig, “Measurement of the L-band air-to-ground channel for positioning applications,”
IEEE Transactions on Aerospace and Electronic Systems, vol. 52, no. 5, pp. 2281–2297,
October 2016.

[125] A. A. Saleh and R. Valenzuela, “A statistical model for indoor multipath propagation,”
IEEE Journal on Selected Areas in Communications, vol. 5, no. 2, pp. 128–137, February
1987.

[126] S. M. Gulfam, S. J. Nawaz, A. Ahmed, and M. N. Patwary, “Analysis on multipath shape
factors of air-to-ground radio communication channels,” in Wireless Telecommunications
Symposium, 2016, pp. 1–5.

[127] W. Newhall and J. Reed, “A geometric air-to-ground radio channel model,” in Proceedings
of MILCOM, vol. 1, October 2002, pp. 632–636.



266 References

[128] S. Blandino, F. Kaltenberger, and M. Feilen, “Wireless channel simulator testbed for
airborne receivers,” in IEEE Globecom Workshops (GC Wkshps), December 2015, pp. 1–6.

[129] M. Wentz and M. Stojanovic, “A MIMO radio channel model for low-altitude air-to-
ground communication systems,” in IEEE Vehicular Technology Conference, September
2015, pp. 1–6.

[130] A. Ksendzov, “A geometrical 3D multi-cluster mobile-to-mobile MIMO channel
model with Rician correlated fading,” in International Congress on Ultra Modern
Telecommunications and Control Systems and Workshops, 2016, pp. 191–195.

[131] L. Zeng, X. Cheng, C.-X. Wang, and X. Yin, “A 3D geometry-based stochastic channel
model for UAV-MIMO channels,” in IEEE Wireless Communications and Networking
Conference, March 2017, pp. 1–5.

[132] P. Chandhar, D. Danev, and E. G. Larsson, “Massive MIMO for communications with
drone swarms,” IEEE Transactions on Wireless Communications, vol. 17, no. 3, pp.
1604–1629, March 2018.

[133] M. Simunek, F. P. Fontán, and P. Pechac, “The UAV low elevation propagation channel
in urban areas: Statistical analysis and time-series generator,” IEEE Transactions on
Antennas and Propagation, vol. 61, no. 7, pp. 3850–3858, July 2013.

[134] E. L. Cid, A. V. Alejos, and M. G. Sanchez, “Signaling through scattered vegetation:
Empirical loss modeling for low elevation angle satellite paths obstructed by isolated
thin trees,” IEEE Vehicular Technology Magazine, vol. 11, no. 3, pp. 22–28, September
2016.

[135] R. Jain and F. Templin, “Requirements, challenges and analysis of alternatives for
wireless datalinks for unmanned aircraft systems,” IEEE Journal on Selected Areas in
Communications, vol. 30, no. 5, pp. 852–860, June 2012.

[136] R. G. Gallager, Principles of Digital Communication. Cambridge University Press, 2008,
vol. 1.

[137] U. Madhow, Fundamentals of Digital Communication. Cambridge University Press,
2008.

[138] M. Marcus, “Spectrum policy challenges of UAV/drones [spectrum policy and regulatory
issues],” IEEE Wireless Communications, vol. 21, no. 5, pp. 8–9, October 2014.

[139] National Telecommunications and Information Administration, “Aws-3 transition,” Tech.
Rep.

[140] Z. Wu, H. Kumar, and A. Davari, “Performance evaluation of OFDM transmission in UAV
wireless communication,” in Proceedings of the Thirty-Seventh Southeastern Symposium
on System Theory, March 2005, pp. 6–10.

[141] J. Kakar and V. Marojevic, “Waveform and spectrum management for unmanned aerial
systems beyond 2025,” in Proceedings of IEEE International Symposium on Personal,
Indoor, and Mobile Radio Communications, October 2017, pp. 1–5.

[142] C. Bluemm, C. Heller, B. Fourestie, and R. Weigel, “Air-to-ground channel character-
ization for OFDM communication in C-band,” in International Conference on Signal
Processing and Communication Systems, December 2013, pp. 1–8.

[143] Y. Rahmatallah and S. Mohan, “Peak-to-average power ratio reduction in OFDM systems:
A survey and taxonomy,” IEEE communications surveys & tutorials, vol. 15, no. 4, pp.
1567–1592, Fourth quarter 2013.

[144] A. Giorgetti, M. Lucchi, M. Chiani, and M. Z. Win, “Throughput per pass for data
aggregation from a wireless sensor network via a UAV,” IEEE Transactions on Aerospace
and Electronic Systems, vol. 47, no. 4, pp. 2610–2626, October 2011.



References 267

[145] T. D. Ho, J. Park, and S. Shimamoto, “QoS constraint with prioritized frame selection
CDMA MAC protocol for WSN employing UAV,” in Proceedings of IEEE GLOBECOM
Workshops, December 2010, pp. 1826–1830.

[146] J. Li, Y. Zhou, L. Lamont, and M. Déziel, “A token circulation scheme for code assign-
ment and cooperative transmission scheduling in CDMA-based UAV ad hoc networks,”
Wireless Networks, vol. 19, no. 6, pp. 1469–1484, August 2013.

[147] M. Edrich and R. Schmalenberger, “Combined DSSS/FHSS approach to interference
rejection and navigation support in UAV communications and control,” in IEEE Seventh
International Symposium on Spread Spectrum Techniques and Applications, vol. 3,
September 2002, pp. 687–691.

[148] S. J. Maeng, H.-i. Park, and Y. S. Cho, “Preamble design technique for GMSK-based
beamforming system with multiple unmanned aircraft vehicles,” IEEE Transactions on
Vehicular Technology, vol. 66, no. 8, pp. 7098–7113, August 2017.

[149] D. Darsena, G. Gelli, I. Iudice, and F. Verde, “Equalization techniques of control and
non-payload communication links for unmanned aerial vehicles,” IEEE Access, vol. 6, pp.
4485–4496, 2018.

[150] P. G. Sudheesh, M. Mozaffari, M. Magarini, W. Saad, and P. Muthuchidambaranathan,
“Sum-rate analysis for high altitude platform (HAP) drones with tethered balloon relay,”
IEEE Communications Letters, Early access, 2017.

[151] M. Haenggi, Stochastic Geometry for Wireless Networks. Cambridge, UK: Cambridge
University Press, 2012.

[152] F. Baccelli, B. Błaszczyszyn et al., “Stochastic geometry and wireless networks: Volume ii
applications,” Foundations and Trends R© in Networking, vol. 4, no. 1–2, pp. 1–312, 2010.

[153] V. V. Chetlur and H. S. Dhillon, “Downlink coverage analysis for a finite 3-D wireless
network of unmanned aerial vehicles,” IEEE Transactions on Communications, vol. 65,
no. 10, pp. 4543–4558, October 2017.

[154] N. Lee, X. Lin, J. G. Andrews, and R. Heath, “Power control for D2D underlaid cellular
networks: Modeling, algorithms, and analysis,” IEEE Journal on Selected Areas in
Communications, vol. 33, no. 1, pp. 1–13, February 2015.

[155] X. Lin, R. Heath, and J. Andrews, “The interplay between massive MIMO and underlaid
D2D networking,” IEEE Transactions on Wireless Communications, June 2015.

[156] M. Afshang, H. S. Dhillon, and P. H. J. Chong, “Modeling and performance analysis of
clustered device-to-device networks,” available online: arxiv.org/abs/1508.02668, 2015.

[157] A. Hourani, S. Kandeepan, and A. Jamalipour, “Modeling air-to-ground path loss for low
altitude platforms in urban environments,” in Proc. of IEEE Global Telecommunications
Conference (GLOBECOM), Austin, TX, USA, December 2014.

[158] A. Hourani, K. Sithamparanathan, and S. Lardner, “Optimal LAP altitude for maximum
coverage,” IEEE Wireless Communication Letters, vol. 3, no. 6, pp. 569–572, December
2014.

[159] F. Baccelli and B. Blaszczyszyn, “Stochastic geometry and wireless networks, volume
ii-applications,” Foundations and Trends in Networking, vol. 4, no.1-2, 2009.

[160] E. Artin, The Gamma Function. Mineola, NY, USA: Courier Dover Publications, 2015.
[161] R. K. Ganti, “A stochastic geometry approach to the interference and outage characteriza-

tion of large wireless networks,” Ph.D. dissertation, University of Notre Dame, 2009.
[162] S. P. Weber, X. Yang, J. G. Andrews, and G. De Veciana, “Transmission capacity of

wireless ad hoc networks with outage constraints,” IEEE Transactions on Information
Theory, vol. 51, no. 12, pp. 4091–4102, November 2005.

http://arxiv.org/abs/1508.02668


268 References

[163] M. Haenggi and R. K. Ganti, Interference in Large Wireless Networks. Hanover, MA,
USA: Foundations and Trends in Networking, 2009.

[164] S. Shalmashi, E. Björnson, M. Kountouris, K. W. Sung, and M. Debbah, “Energy effi-
ciency and sum rate tradeoffs for massive MIMO systems with underlaid device-to-device
communications,” available online: arxiv.org/abs/1506.00598., 2015.

[165] R. Kershner, “The number of circles covering a set,” American Journal of Mathematics,
pp. 665–671, 1939.

[166] G. F. Tóth, “Thinnest covering of a circle by eight, nine, or ten congruent circles,”
Combinatorial and Computational Geometry, vol. 52, no. 361, p. 59, 2005.

[167] M. Mozaffari, W. Saad, M. Bennis, and M. Debbah, “Drone small cells in the clouds:
Design, deployment and performance analysis,” in Proceedings of IEEE Global
Communications Conference (GLOBECOM), San Diego, CA, USA, December 2015.

[168] M. Mozaffari, W. Saad, M. Bennis, and M. Debbah, “Efficient deployment of multiple
unmanned aerial vehicles for optimal wireless coverage,” IEEE Communications Letters,
vol. 20, no. 8, pp. 1647–1650, August 2016.

[169] E. Kalantari, H. Yanikomeroglu, and A. Yongacoglu, “On the number and 3D placement of
drone base stations in wireless cellular networks,” in Proc. of IEEE Vehicular Technology
Conference, 2016.

[170] R. Yaliniz, A. El-Keyi, and H. Yanikomeroglu, “Efficient 3-D placement of an aerial base
station in next generation cellular networks,” in Proc. of IEEE International Conference
on Communications (ICC), Kuala Lumpur, Malaysia, May. 2016.

[171] A. M. Hayajneh, S. A. R. Zaidi, D. C. McLernon, and M. Ghogho, “Drone empowered
small cellular disaster recovery networks for resilient smart cities,” in Proc. of IEEE Inter-
national Conference on Sensing, Communication and Networking (SECON Workshops),
June 2016.

[172] J. Kosmerl and A. Vilhar, “Base stations placement optimization in wireless net-
works for emergency communications,” in Proc. of IEEE International Conference on
Communications (ICC), Sydney, Australia, June. 2014.

[173] M. Alzenad, A. El-Keyi, F. Lagum, and H. Yanikomeroglu, “3-D placement of an
unmanned aerial vehicle base station (UAV-BS) for energy-efficient maximal coverage,”
IEEE Wireless Communications Letters, vol. 6, no. 4, pp. 434–437, August 2017.

[174] M. Alzenad, A. El-Keyi, and H. Yanikomeroglu, “3-D placement of an unmanned aerial
vehicle base station for maximum coverage of users with different QoS requirements,”
IEEE Wireless Communications Letters, vol. 7, no. 1, pp. 38–41, February 2018.

[175] E. Kalantari, M. Z. Shakir, H. Yanikomeroglu, and A. Yongacoglu, “Backhaul-aware
robust 3D drone placement in 5G+ wireless networks,” in Proc. of IEEE International
Conference on Communications Workshops (ICC Workshops), May 2017, pp. 109–114.

[176] H. A. Eiselt and V. Marianov, Foundations of Location Analysis. Berlin, Germany:
Springer Science & Business Media, 2011, vol. 155.

[177] H. M. Farahani, R.Z., Facility Location: Concepts, Models, Algorithms and Case Studies.
Physica-Verlag, Heidelberg, 2009.

[178] S. Ahmadian, Z. Friggstad, and C. Swamy, “Local-search based approximation algorithms
for mobile facility location problems,” in Proc. of the Twenty-Fourth Annual ACM-SIAM
Symposium on Discrete Algorithms. SIAM, 2013, pp. 1607–1621.

[179] R. L. Graham, B. D. Lubachevsky, K. J. Nurmela, and P. R. Östergård, “Dense packings
of congruent circles in a circle,” Discrete Mathematics, vol. 181, no. 1-3, pp. 139–154,
1998.

http://arxiv.org/abs/1506.00598


References 269

[180] Z. Gáspár and T. Tarnai, “Upper bound of density for packing of equal circles in special
domains in the plane,” Periodica Polytechnica Civil Engineering, vol. 44, no. 1, pp. 13–32,
2000.

[181] K. Venugopal, M. C. Valenti, and R. W. Heath Jr, “Device-to-device millimeter wave
communications: Interference, coverage, rate, and finite topologies,” available online:
arxiv.org/abs/1506.07158, 2015.

[182] C. A. Balanis, Antenna Theory: Analysis and Design. Hoboken, NJ, USA: John Wiley &
Sons, 2016.

[183] K.-C. Chen and S.-Y. Lien, “Machine-to-machine communications: Technologies and
challenges,” Ad Hoc Networks, vol. 18, pp. 3–23, July. 2014.

[184] 3GPP, “Study on RAN improvements for machine type communication,” TR 37.868,
Sept. 2011.

[185] X. Jian, X. Zeng, Y. Jia, L. Zhang, and Y. He, “Beta/M/1 model for machine type
communication,” IEEE Communications Letters, vol. 17, no. 3, pp. 584–587, March 2013.

[186] M. Tavana, V. Shah-Mansouri, and V. W. S. Wong, “Congestion control for bursty M2M
traffic in LTE networks,” in Proc. of IEEE International Conference on Communications
(ICC), London, UK, June 2015.

[187] A. K. Gupta and S. Nadarajah, Handbook of Beta Distribution and Its Applications. Boca
Raton, FL,USA : CRC Press, 2004.

[188] R. D. Yates, “A framework for uplink power control in cellular radio systems,” IEEE Jour-
nal on Selected Areas in Communications, vol. 13, no. 7, pp. 1341–1347, September 1995.

[189] R. Sun, M. Hong, and Z. Q. Luo, “Joint downlink base station association and power
control for max-min fairness: Computation and complexity,” IEEE Journal on Selected
Areas in Communications, vol. 33, no. 6, pp. 1040–1054, June. 2015.

[190] P. T. Boggs and J. W. Tolle, “Sequential quadratic programming,” Acta Numerica, vol. 4,
pp. 1–51, 1995.

[191] M. Peng, Y. Sun, X. Li, Z. Mao, and C. Wang, “Recent advances in cloud radio access
networks: System architectures, key techniques, and open issues,” IEEE Communications
Surveys and Tutorials, vol. 18, no. 3, pp. 2282–2308, Thirdquarter 2016.

[192] M. Chen, M. Mozaffari, W. Saad, C. Yin, M. Debbah, and C. S. Hong, “Caching in the sky:
Proactive deployment of cache-enabled unmanned aerial vehicles for optimized quality-of-
experience,” IEEE J. Select. Areas Commun., vol. 35, no. 5, pp. 1046 – 1061, May 2017.

[193] T. S. Rappaport, F. Gutierrez, E. Ben-Dor, J. N. Murdock, Y. Qiao, and J. I. Tamir,
“Broadband millimeter-wave propagation measurements and models using adaptive-beam
antennas for outdoor urban cellular communications,” IEEE Transactions on Antennas
and Propagation, vol. 61, no. 4, pp. 1850–1859, April. 2013.

[194] A. Al-Hourani, S. Kandeepan, and A. Jamalipour, “Modeling air-to-ground path loss for
low altitude platforms in urban environments,” in Proc. of IEEE Global Communications
Conference (GLOBECOM), Austin, TX, USA, December 2014.

[195] O. Somekh, O. Simeone, Y. Bar-Ness, A. M. Haimovich, and S. Shamai, “Cooperative
multicell zero-forcing beamforming in cellular downlink channels,” IEEE Transactions
on Information Theory, vol. 55, no. 7, pp. 3206–3219, June. 2009.

[196] F. Hoppner and F. Klawonn, Clustering with Size Constraints. Berlin, Germany: Springer
Berlin Heidelberg, 2008.

[197] M. Bennis, S. Perlaza, P. Blasco, Z. Han, and H. Poor, “Self-organization in small
cell networks: A reinforcement learning approach,” IEEE Transactions on Wireless
Communications, vol. 12, no. 7, pp. 3202–3212, June. 2013.

http://arxiv.org/abs/1506.07158


270 References

[198] M. Chen, W. Saad, and C. Yin, “Echo state networks for self-organizing resource
allocation in LTE-U with uplink-downlink decoupling,” IEEE Transactions on Wireless
Communications, vol. 1, no. 1, January 2017.

[199] M. Chen, W. Saad, C. Yin, and M. Debbah, “Echo State Networks for Proactive Caching
in Cloud-Based Radio Access Networks with Mobile Users,” IEEE Transactions on
Wireless Communications, vol. 16, no. 6, pp. 3520–3535, June 2017.

[200] M. V. Menshikov, “Estimates for percolation thresholds for lattices in Rn,” Dokl. Akad.
Nauk SSSR, vol. 284, pp. 36–39, 1985.

[201] H. Kesten, “Asymptotics in high dimensions for percolation,” in Disorder in Physical
Systems: A Volume in Honour of John Hammersley, G. R. Grimmett and D. J. A. Welsh,
Eds. Oxford, UK: Oxford University Press, 1990, pp. 219–240.

[202] D. Reimer, “Proof of the van den Berg–Kesten conjecture,” Combin. Probab. Comput.,
vol. 9, pp. 27–32, 2000.

[203] J. M. Hammersley and G. Mazzarino, “Properties of large Eden clusters in the plane,”
Combin. Probab. Comput., vol. 3, pp. 471–505, 1994.

[204] J. M. Hammersley, “Percolation processes: Lower bounds for the critical probability,”
Ann. Math. Statist., vol. 28, pp. 790–795, 1957.

[205] M. Aizenman and D. J. Barsky, “Sharpness of the phase transition in percolation models,”
Comm. Math. Phys., vol. 108, pp. 489–526, 1987.

[206] M. V. Menshikov, S. A. Molchanov, and A. F. Sidorenko, “Percolation theory and some
applications,” in Probability theory. Mathematical statistics. Theoretical cybernetics, Vol.
24 (Russian). Akad. Nauk SSSR Vsesoyuz. Inst. Nauchn. i Tekhn. Inform., 1986, pp.
53–110, translated in J. Soviet Math. 42 (1988), no. 4, 1766–1810.

[207] J. M. Hammersley, “Comparison of atom and bond percolation processes,”
J. Mathematical Phys., vol. 2, pp. 728–733, 1961.

[208] J. M. Hammersley and G. Mazzarino, “Markov fields, correlated percolation, and the
Ising model,” in The Mathematics and Physics of Disordered Media (Minneapolis, Minn.,
1983), ser. Lecture Notes in Math. Springer, 1983, vol. 1035, pp. 201–245.

[209] J. M. Hammersley and D. J. A. Welsh, “First-passage percolation, subadditive processes,
stochastic networks, and generalized renewal theory,” in Proc. Internat. Research Seminar,
Statist. Lab., Univ. California, Berkeley, Calif. New York City, Ny, USA: Springer, 1965,
pp. 61–110.

[210] J. Yoon, Y. Jin, N. Batsoyol, and H. Lee, “Adaptive path planning of UAVs for delivering
delay-sensitive information to ad-hoc nodes,” in Proc. IEEE Wireless Communications
and Networking Conference (WCNC), March 2017, pp. 1–6.

[211] Y. Zeng and R. Zhang, “Energy-efficient UAV communication with trajectory optimiza-
tion,” IEEE Transactions on Wireless Communications, vol. 16, no. 6, pp. 3747–3760,
June 2017.

[212] M. Messous, S. Senouci, and H. Sedjelmaci, “Network connectivity and area cov-
erage for UAV fleet mobility model with energy constraint,” in Proc. IEEE Wireless
Communications and Networking Conference, April 2016, pp. 1–6.

[213] X. Wang, A. Chowdhery, and M. Chiang, “Networked drone cameras for sports stream-
ing,” in Proc. IEEE International Conference on Distributed Computing Systems (ICDCS),
June 2017, pp. 308–318.

[214] A. Al-Hourani, S. Kandeepan, and A. Jamalipour, “Modeling air-to-ground path loss for
low altitude platforms in urban environments,” in Proc. IEEE Global Communications
Conference, December 2014, pp. 2898–2904.



References 271

[215] 3GPP TR 25.942 v2.1.3, “3rd generation partnership project; technical specification group
(TSG) RAN WG4; RF system scenarios,” Tech. Rep., 2000.

[216] D. Bertsekas and R. Gallager, Data Networks. Upper Saddle River, NJ, USA: Prentice
Hall, March 1992.
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