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Preface

Another Book on Wireless Networking?
The availability of high performance, low power, and low cost digital signal
processors, and advances in digital communication techniques over the radio
frequency spectrum have resulted in the widespread availability of wireless
network technology for mass consumption. Several excellent books are now
available that deal with the area of wireless communications, where topics of
recent interest include multiple-input-multiple-output (MIMO) systems, space
time coding, orthogonal frequency division multiplexing (OFDM), and multiuser
detection. Wireless networks are best known in the context of first- and second-
generation mobile telephony (AT&T’s analog AMPS system in the first generation,
and the GSM and CDMA digital systems in the second generation). There are
books that provide coverage of such wireless networks, and also those that
combine a comprehensive treatment of physical layer wireless communication with
that of cellular networks.

In the last decade, however, there has been an explosion in the development
and deployment of new wireless network technologies, and in the conceptuali-
zation of, and research in, a variety of newer ones. From the ubiquitous WiFi
coffee shop and airport networks to the emerging WiMAX systems, which promise
broadband wireless access to mobile users, the menu of wireless access networks
promises to become so comprehensive that wired access from user devices may
soon become a relic of the past. Research on wireless mesh networks (so-called
ad hoc wireless networks), which started in the 1970s, is being pursued with
renewed vigor due to the availability of inexpensive and interoperable mobile
wireless devices. In addition, the widespread use of wireless sensor networks (in
conjunction with emerging standards such as Zigbee and IEEE 802.15.4) is a
clear and present possibility. Thus the variety and scale of wireless networks is
unprecedented, and, in teaching courses in our institutions, we have felt the need
for a comprehensive analytical treatment of wireless networking, keeping in mind
the technical developments in the past, the present, and the future. This book is
the outcome of our efforts to address this need.

The foremost aspect of networking, wireline or wireless, is the design of
efficient protocols that work. Taking the view that the devil is in the detail,
protocols with “working code” often gain widespread acceptance. With the
increasing variety in networks and applications, and also in their scale, complex
interactions (e.g., between devices using a particular protocol, or between
protocols at the various layers) need to be understood. Although computer
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simulation is a useful vehicle for understanding the performance of protocols,
it is not always sufficient, because, once again, the devil is in the detail.
The assumptions made in deriving simulation models play an important role
in the results that are obtained. If a simulation program simply encodes the
standard, then running the simulation only provides a plethora of numbers,
with no new insights being gained. Further, large simulation models, although
possibly closer to reality, take a lot of effort to develop and debug, and are
slow to execute, thus rendering them not very useful in the early stages of
experimentation with algorithms. This is where analytical models become very
important. First, the process of deriving such models from the standards, or from
system descriptions, provides very useful insights. Second, the analytical models
can be used to help verify large simulation programs, by providing exact results
for subcases of the model being simulated. Third, research in analytical modeling
is necessary to develop models that can be programmed into simulators, so as
to increase simulation speed. Finally, the analytical approach is very important
for the development of new and efficient protocols, and there is a trend toward
optimization via reverse engineering of well-accepted protocols.

In addition to the variety of networks and protocols that need to be
understood, there is a large body of fundamental results on wireless networks
that have been developed over the last fifteen years that give important insights
into optimal design and the limits of performance. Examples of such results
include distributed power control in CDMA networks, optimal scheduling in
wireless networks (with a variety of optimization objectives involving issues such
as network stability, performance, revenue, and fairness), transmission range
thresholds for connectivity in a wireless mesh network, and the transport capacity
of these networks. Further, the imminence of sensor networks has generated a large
class of fundamental problems in the areas of stochastic networks and distributed
algorithms that are intrinsically important and interesting.

This book aims (1) to provide an analytical perspective on the design and
analysis of the traditional and emerging wireless networks, and (2) to discuss
the nature of, and solution methods to, the fundamental problems in wireless
networking. For the sake of completeness, traditional voice telephony over GSM
and CDMA wireless access networks also is covered. The approach is via various
resource allocation models that are based on simple models of the underlying
physical wireless communication.

About the Book and the Viewpoint
After the specification of the protocols and the verification of their correctness,
we believe that networking is about resource allocation. In wireless networks, the
resources are typically spectrum, time, and power. That theme pervades much
of this book in our quest for models for performance analysis, for developing
design insights, and also for exploring the fundamental limits. Once a problem
has been analytically formulated, we draw upon a wide variety of techniques
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to analyze it. In this process we will use techniques drawn from, among others,
probability theory, stochastic processes, constrained optimization and duality, and
graph theory. We believe it is necessary to make forays into these areas in order to
bring their power to bear on the problem at hand. However, we have attempted to
make the book as self-contained as possible. Wherever possible, we have used only
elementary concepts taught in basic courses in engineering mathematics. A brief
overview of most of the advanced mathematical material that we use is provided
in the appendix. Also, wherever possible we have avoided the theorem–proof
approach. Instead, we have developed the theorems or results and then formally
stated them.

After the introductory chapter, we begin the presentation of the main material
of the book in Chapter 2 by giving an overview of the physical layer issues
that are so much more important to understand wireless networks than they
are for wireline networks. Wireless networks are viewed as being either access
networks or mesh networks. In access networks mobile wireless nodes connect to
an infrastructure node, and in mesh networks they form an independent internet
and may or may not connect to an infrastructure network. Access networks are
covered in Chapters 4 through 7 and mesh networks are covered in Chapters 8
through 10.

The wireless networking aspect of the book begins in Chapter 3. Like in our
earlier book, Communication Networking: An Analytical Approach, we precede
the discussion on access networks by listing the issues and setting the performance
objectives of a wireless network in Chapter 3. FDM-TDMA cellular networks (of
which GSM networks are a major example) are discussed in Chapter 4, with the
focus on signal-to-interference ratio analysis, on channel allocation, and on the
call blocking and call dropping performance. Chapter 5 is on CDMA networks
where the main emphasis is on interference management via power allocation.
Whereas the traffic model in Chapter 4 and in much of Chapter 5 is an arrival
process of calls, each with a rate requirement, in Chapter 6, on OFDMA access
networks, we consider buffered models, and discuss power allocation over time
and over carriers with the objectives of stability and mean delay. In Chapter 7,
we discuss the performance of distributed allocation of channel time in wire-
less LANs.

We begin our discussion of mesh networks in Chapter 8 by considering
optimal routing and scheduling in a given mesh network. One can view this class of
problems as the optimal allocation of time and space in a network. In Chapter 9
we explore fundamental limits of this time and space allocation to the flows.
Chapter 10 is on the emerging area of sensor networks, a rich field of research
issues including connectivity and coverage properties of stochastic networks, and
distributed computation.

Some of the material in Chapter 5 and most of the material in Chapters 6
through 10 are being covered in a wireless networking textbook for the first time.
We have not obtained new results for the book but we have trawled the literature
to pick out the fundamental results and those that are illustrative of the issues
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and complexities. Wherever possible, we have simplified the models for pedagogic
convenience.

Using the Book
This is a graduate text, though a final year undergraduate course could be
supplemented with material from this text. Some understanding of networking
concepts is assumed. A quick introduction may also be obtained from Chapter 2
of our earlier book, Communication Networking: An Analytical Approach. Most
of the chapters are self-contained and we believe that an instructor can pick
and choose the chapters. A course that needs to cover voice and data access
networks (including cellular networks and wireless LANs) could be based on
Chapters 4 through 7. One can say that these chapters are tied closely to real
networks. Chapters 8 through 10 are of a more fundamental and abstract nature.
A course with a more current research emphasis could be built around Chapters 6
through 10.

The publisher maintains a website for this book at www.mkp.com. We
maintain a website for the book at ece.iisc.ernet.in/∼anurag/books. These websites
contain errata, additional problems, PostScript files of the figures used in the book,
and other instructional material. An instructor’s manual containing solutions to
all the exercises and problems and some supplementary problems is also available
from the authors.

Arthur Clarke had said that the communications satellite will make inevitable
the United Nations of the Earth. Wireless communication and networking are
making these United Nations flatter, and possibly more democratic with unbridled
opportunities for all. So let’s “unwire, cut the cord, and go wireless.” And, while
we do it, let us step back a bit and understand them from the ground up!
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CHAPTER 1

Introduction

The idea of sending information over radio waves (i.e., wireless commu-
nication) is over a hundred years old. When several devices with radio
transceivers share a portion of the radio spectrum to send information to

each other, we say that we have a wireless communication network, or simply a
wireless network.

In this chapter we begin by developing a three-layered view of wireless
networks. We delineate the subject matter of this book—that is, wireless
networking—as dealing with the problem of resource allocation when several
devices share a portion of the RF spectrum allocated to them. Next, we provide a
taxonomy of current wireless networks. The material in the book is organized
along this taxonomy. Then, in this chapter, we identify the common basic
technical elements that underlie any wireless network as being (1) physical wireless
communication; (2) neighbor discovery, association, and topology formation; and
(3) transmission scheduling.

Finally, we provide an overview of the contents of the remaining nine chapters
of the book.

1.1 Networking as Resource Allocation
Following our viewpoint in [89] we view wireline and wireless communication
networks in terms of the three-layered model shown in Figure 1.1. Networks
carry the flows of information between distributed applications such as telephony,
teleconferencing, media-sharing, World Wide Web access, e-commerce, and so on.
The points at which distributed information applications connect to the generators
and absorbers of information flows can be viewed as sources and sinks of traffic
(see Figure 1.1). Examples of traffic sources are microphones in telephony devices,
video cameras, and data, voice, or video files (stored on a computer disk) that are
being transmitted to another location. Examples of traffic sinks are telephony
loudspeakers, television monitors, or computer storage devices.

As shown in Figure 1.1, the sources and sinks of information and the
distributed applications connect to the communication network via common
information services. The information services layer comprises all the hardware
and software required to facilitate the necessary transport services, and to attach
the sources or sinks to the wireless network; for example, voice coding, packet
buffering and playout, and voice decoding, for packet telephony; or similar
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Wireline Bit Carrier
Infrastructure

Resource Allocation

Algorithms

Resource Allocation

Algorithms

sources and/or sinks
distributed applications

Shared Radio Spectrum
(a portion of the RF spectrum)

Information Services

Figure 1.1 A conceptual view of distributed applications utilizing wireline and wireless
networks. Wireless networking is concerned with algorithms for resource allocation
between devices sharing a portion of the radio spectrum. On the other hand, in wireline
networks the resource allocation algorithms are concerned with sharing the fixed
resources of a bit transport infrastructure.

facilities for video telephony or for streaming video playout; or mail preparation
and forwarding software for electronic mail; or a browser for the World
Wide Web.

We turn now to the bottom layer in Figure 1.1. In wireline networks the
information to be transported between the endpoints of applications is carried
over a static bit-carrier infrastructure. These networks typically comprise high-
quality digital transmission systems over copper or optical media. Once such links
are properly designed and configured, they can be viewed as “bit pipes,” each
with a certain bit rate, and usually a very small bit error rate. The bit carrier
infrastructure can be dynamically reconfigured on the basis of traffic demands,
and such actions are a part of the cloud labeled “resource allocation algorithms”
in the figure.

The left side of the bottom layer in Figure 1.1 corresponds to wireless
networks. Typically, each wireless network system is constrained to operate in
some portion of the RF spectrum. For example, a cellular telephony system may
be assigned 5 MHz of spectrum in the 900 MHz band. Information bits are
transported between devices in the wireless network by means of some physical
wireless communication technique (i.e., a PHY layer technique, in terms of the
ISO-OSI model) operating in the portion of the RF spectrum that is assigned
to the network. It is well known, however, that unguided RF communication
between mobile wireless devices poses challenging problems. Unlike wireline
communication, or even point-to-point, high-power microwave links between
dish antennas mounted on tall towers, digital wireless communication between
mobile devices has to deal with a variety of time-varying channel impairments
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such as obstructions by steel and concrete buildings, absorption in partition walls
or in foliage, and interference between copies of a signal that traverse multiple
paths. In order to combat these problems, it is imperative that in a mobile or
ad hoc wireless network the PHY layer should be adaptable. In fact, in some
systems multiple modulation schemes are available, and each of these may have
variable parameters such as the error control codes, and the transmitter powers.
Hence, unlike a wired communication network, where we can view networking
as being concerned with the problems of resource sharing over a static bit carrier
infrastructure, in wireless networking, the resource allocation mechanisms would
include these adaptations of the PHY layer. Thus, in Figure 1.1 we have actually
“absorbed” the physical wireless communication mechanisms into the resource
allocation layer. Hence, we can define our view of wireless networking as being
concerned with all the mechanisms, procedures, or algorithms for efficient sharing
of a portion of the radio spectrum so that all the instances of communication
between the various devices obtain their desired quality of service (QoS).

1.2 ATaxonomy of Current Practice
In this book, instead of pursuing an abstract, technology agnostic approach, we
will develop an understanding of the various wireless networking techniques in the
context of certain classes of wireless networks as they exist today. Thus we begin
our treatment by taking a look at a taxonomy of the current practice of wireless
networks. Figure 1.2 provides such a taxonomy. Several commonly used terms of
the technology will arise as we discuss this taxonomy. These will be highlighted
by the italic font, and their meanings will be clear from the context. Of course,
the attendant engineering issues will be dealt with at length in the remainder of
the book.

Fixed wireless networks include line-of-sight microwave links, which until
recently were very popular for long distance transmission. Such networks basically
comprise point-to-point line-of-sight digital radio links. When such links are set
up, with properly aligned high gain antennas on tall masts, the links can be viewed
as point-to-point bit pipes, albeit with a higher bit error rate than wired links. Thus
in such fixed wireless networks no essentially new issues arise than in a network
of wired links.

On the other hand the second and third categories shown in the first level of
the taxonomy (i.e., access networks and ad hoc networks) involve multiple access
where, in the same geographical region, several devices share a radio spectrum to
communicate among themselves (see Figure 1.3). Currently, the most important
role of wireless communications technology is in mobile access to wired networks.
We can further classify such access networks into two categories: one in which
resource allocation is more or less static (akin to circuit multiplexing), and the other
in which the traffic is statistically multiplexed, either in a centralized manner or
by distributed mechanisms.
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Figure 1.3 The left panel shows some access networks (a cellular telephony network,
and a wireless local area network (WLAN), where the access is via an AP (access point)),
and the right panel shows a mesh wireless network of portable computers.
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Cellular wireless networks were introduced in the early 1980s as a technology
for providing access to the wired phone network to mobile users. The network
coverage area is partitioned into regions (with diameters ranging from hundreds
of meters to a few kilometers) called cells, hence the term “cellular.” In each cell
there is a base station (BS), which is connected to the wired network, and through
which the mobile devices in the cell communicate over a one hop wireless link.
The cellular systems that have the most widespread deployment are the ones that
share the available spectrum using frequency division multiplexed time division
multiple access (FDM-TDMA) technology. Among such systems by far the most
commercially successful has been the GSM system, developed by a European
consortium. The available spectrum is first partitioned into a contiguous up-link
band and another contiguous down-link band. Each of these bands is statically
or dynamically partitioned into reuse subbands, with each cell being allocated
such a subband (this is the FDM aspect). The partitioning of the up-link and
down-link bands is done in a paired manner so that each cell is actually assigned
a pair of subbands. Each subband is further partitioned into channels or carriers
(also an FDM aspect), each of which is digitally modulated and then slotted in
such a way that a channel can carry up to a fixed number of calls (e.g., 8 calls)
in a TDM fashion. Each arriving call request in a cell is then assigned a slot in
one of the carriers in that cell; of course, a pair of slots is assigned in paired
up-link and down-link channels in that cell. Thus, since each call is assigned
dedicated resources, the system is said to be circuit multiplexed, just like the
wireline phone network. These are narrowband systems (i.e., users’ bit streams
occupy frequency bands just sufficient to carry them), and the radio links operate at
a high signal-to-interference-plus-noise-ratio (SINR), and hence careful frequency
planning (i.e., partitioning of the spectrum into reuse subbands, and allocation
of the subbands to the cells) is needed to avoid cochannel interference. The need
for allocation of frequency bands over the network coverage area (perhaps even
dynamic allocation over a slow timescale), and the grant and release of individual
channels as individual calls arrive and complete, requires the control of such
systems to be highly centralized. Note that call admission control, that is, call
blocking, is a natural requirement in an FDM-TDMA system, since the resources
are partitioned and each connection is assigned one resource unit.

Another cellular technology that has developed over the past 10 to 15 years
is the one based on code division multiple access (CDMA). In these networks, the
entire available spectrum is reused in every cell. These are broadband systems,
which means that each user’s bit stream (a few kilobits per second) occupies
the entire available radio spectrum (a few megahertz). This is done by spreading
each user’s signal over the entire spectrum by multiplying it by a pseudorandom
sequence, which is allocated to the user. This makes each user’s signal appear
like noise to other users. The knowledge of the spreading sequences permits
the receivers to separate the users’ signals, by means of correlation receivers.
Although no frequency planning is required for CDMA systems, the performance
is interference limited as every transmitted signal is potentially an interferer for
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every other signal. Thus at any point of time there is an allocation of powers
to all the transmitters sharing the spectrum, such that their desired receivers can
decode their transmissions, in the presence of all the cross interferences. These
desired power levels need to be set depending on the locations of the users, and the
consequent channel conditions between the users and the base stations, and need
to be dynamically controlled as users move about and channel conditions change.
Hence tight control of transmitter power levels is necessary. Further, of course, the
allocation of spreading codes, and management of movement between cells needs
to done. We note that, unlike the FDM-TDMA system described earlier, there is no
dedicated allocation of resources (frequency and time-slot) to each call. Indeed,
during periods when a call is inactive no radio resources are utilized, and the
interference to other calls is reduced. Thus, we can say that the traffic is statistically
multiplexed. If there are several calls in the system, each needing certain quality
of service (QoS) (bit rate, maximum bit error rate), then the number of calls in the
system needs to be controlled so that the probability of QoS violation of the calls is
kept small. This requires call admission control, which is an essential mechanism
in CDMA systems, in order that QoS objectives can be achieved. Evidently, these
are all centrally coordinated activities, and hence even CDMA cellular systems
depend on central intelligence that resides in the base station controllers (BSCs).

Until recently, cellular networks were driven primarily by the needs of circuit
multiplexed voice telephony; on demand, a mobile phone user is provided a
wireless digital communication channel on which is carried compressed telephone
quality (though not “toll” quality) speech. Earlier, we have described two
technologies for second generation (2G) cellular wireless telephony. Recently, with
the growing need for mobile Internet access, there have been efforts to provide
packetized data access on these networks as well. In the FDM-TDMA systems,
low bit rate data can be carried on the digital channel assigned to a user. As
is always the case in circuit multiplexed networks, flexibility in the allocation of
bandwidth is limited to assigning multiple channels to each user. Such an approach
is followed in the GSM-GPRS (General Packet Radio Service) system, where, by
combining multiple TDM slots on an FDM carrier, shared packet switched access
is provided to mobile users. A further evolution is the EDGE (Enhanced Data rates
for GSM Evolution) system, where, in addition to combining TDM slots, higher
order modulation schemes, with adaptive modulation, are utilized to obtain shared
packet switched links with speeds up to 474 Kbps. These two systems often are
viewed, respectively, as 2.5G and 2.75G evolutions of the GSM system. These are
data evolutions of an intrinsically circuit switched system that was developed for
mobile telephony. On the other hand there is considerable flexibility in CDMA
systems where there is no dedicated allocation of resources (spectrum or power).
In fact, both voice and data can be carried in the packet mode, with the user bit
rate, the amount of spreading, and the allocated power changing on a packet-
by-packet basis. This is the approach taken for the third generation (3G) cellular
systems, which are based entirely on CDMA technology, and are meant to carry
multimedia traffic (i.e., store and forward data, packetized telephony, interactive
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video, and streaming video). The most widely adopted standard for 3G systems is
WCDMA (wideband CDMA), which was created by the 3G Partnership Project
(3GPP), a consortium of standardization organizations from the United States,
Europe, China, Japan, and Korea.

Cellular networks were developed with the primary objective of providing
wireless access for mobile users. With the growth of the Internet as the de facto
network for information dissemination, access to the Internet has become an
increasingly important requirement in most countries. In large congested cities,
and in developing countries without a good wireline infrastructure, fixed wireless
access to the Internet is seen as a significant market. It is with such an application
in mind that the IEEE 802.16 standards were developed, and are known in the
industry as WiMAX. The major technical advance in WiMAX is in the adoption
of several high performance physical layer (PHY) technologies to provide several
tens of Mbps between a base station (BS) and fixed subscriber stations (SS) over
distances of several kilometers. The PHY technologies that have been utilized are
orthogonal frequency division multiple access (OFDMA) and multiple antennas
at the transmitters and the receivers. The latter are commonly referred to as
MIMO (multiple-input-multiple-output) systems. In an OFDMA system, several
subchannels are statically defined in the system bandwidth, and these subchannels
are digitally modulated. In order to permit up-link and down-link transmissions,
time is divided into frames and each frame is further partitioned into an up-link and
a down-link part (this is called time division duplexing (TDD)). The BS allocates
time on the various subchannels to various down-link flows in the down-link part
of the frame and, based on SS requests, in the up-link part of the frame. This kind
of TDD MAC structure has been used in several earlier systems; for example,
satellite networks involving very small aperture satellite terminals (VSATs), and
even in wireline systems such as those used for the transmission of digital data
over cable television networks. WiMAX specifications now have been extended
to include broadband access to mobile users.

We now discuss the third class of networks in the mobile access category in
the first level of the taxonomy shown in Figure 1.2—distributed packet scheduling.
Cellular networks have emerged from centrally managed point-to-point radio
links, but another class of wireless networks has emerged from the idea of random
access, whose prototypical example is the Aloha network. Spurred by advances
in digital communication over radio channels, random access networks can now
support bit rates close to desktop wired Ethernet access. Hence random access
wireless networks are now rapidly proliferating as the technology of choice for
wireless Internet access with limited mobility. The most important standards for
such applications are the ones in the IEEE 802.11 series. Networks based on
this standard now support physical transmission speeds from a few Mbps (over
100s of meters) up to 100 Mbps (over a few meters). The spectrum is shared in
a statistical TDMA fashion (as opposed to slotted TDMA, as discussed, earlier,
in the context of first generation FDM-TDMA systems). Nodes contend for the
channel, and possibly collide. In the event of a collision, the colliding nodes back
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off for independently sampled random time durations, and then reattempt. When
a node is able to acquire the channel, it can send at the highest of the standard
bit rates that can be decoded, given the channel condition between it and its
receiver. This technology is predominantly deployed for creating wireless local
area networks (WLANs) in campuses and enterprise buildings, thus basically
providing a one hop untethered access to a building’s Ethernet network. In the
latest enhancements to the IEEE 802.11 standards, MIMO-OFDM physical layer
technologies are being employed in order to obtain up to 100 Mbps transmission
speeds in indoor environments.

With the widespread deployment of IEEE 802.11 WLANs in buildings, and
even public spaces (such as shopping malls and airports), an emerging possibility is
that of carrying interactive voice and streaming video traffic over these networks.
The emerging concept of fourth-generation wireless access networks envisions
mobile devices that can support multiple technologies for physical digital radio
communication, along with the resource management algorithms that would
permit a device to seamlessly move between 3G cellular networks, IEEE 802.16
access networks and IEEE 802.11 WLANs, while supporting a variety of packet
mode services, each with its own QoS requirements.

With reference to the taxonomy in Figure 1.2, we now turn to the category
labeled “ad hoc networks” or “wireless mesh networks.” Wireless access networks
provide mobile devices with one-hop wireless access to a wired network. Thus, in
such networks, in the path between two user devices there is only one or at most
two wireless links. On the other hand a wireless ad hoc network comprises several
devices arbitrarily located in a space (e.g., a line segment, or a two-dimensional
field). Each device is equipped with a radio transceiver, all of which typically share
the same radio frequency band. In this situation, the problem is to communicate
between the various devices. Nodes need to discover neighbors in order to form a
topology, good paths need to be found, and then some form of time scheduling of
transmissions needs to be employed in order to send packets between the devices.
Packets going from one node to another may need to be forwarded by other
nodes. Thus, these are multihop wireless packet radio networks, and they have
been studied as such over several years. Interest in such networks has again been
revived in the context of multihop wireless internets and wireless sensor networks.
We discuss these briefly in the following two paragraphs.

In some situations it becomes necessary for several mobile devices (such
as portable computers) to organize themselves into a multihop wireless packet
network. Such a situation could arise in the aftermath of a major natural disaster
such as an earthquake, when emergency management teams need to coordinate
their activities and all the wired infrastructure has been damaged. Notice that
the kind of communication that such a network would be required to support
would be similar to what is carried by regular public networks; that is, point-
to-point store and forward traffic such as electronic mails and file transfers, and
low bit rate voice and video communication. Thus, we can call such a network a
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multihop wireless internet. In general, such a network could attach at some point
to the wired Internet.

Whereas multihop wireless internets have the service objective of supporting
instances of point-to-point communication, an ad hoc wireless sensor network
has a global objective. The nodes in such a network are miniature devices, each
of which carries a microprocessor (with an energy efficient operating system);
one or more sensors (e.g., light, acoustic, or chemical sensors); a low power,
low bit rate digital radio transceiver; and a small battery. Each sensor monitors its
environment and the objective of the network is to deliver some global information
or an inference about the environment to an operator who could be located
at the periphery of the network, or could be remotely connected to the sensor
network. An example is the deployment of such a network in the border areas of a
country to monitor intrusions. Another example is to equip a large building with
a sensor network comprising devices with strain sensors in order to monitor the
building’s structural integrity after an earthquake. Yet another example is the use
of such sensor networks in monitoring and control systems such as those for the
environment of an office building or hotel, or a large chemical factory.

1.3 Technical Elements
In the previous section we provided an overview of the current practice of wireless
networks. We organized our presentation around a taxonomy of wireless networks
shown in Figure 1.2. Although the technologies that we discussed may appear to
be disparate, there are certain common technical elements that constitute these
wireless networks. The efficient realization of these elements constitutes the area
of wireless networking.

The following is an enumeration and preliminary discussion of the technical
elements.

1. Transport of the users’ bits over the shared radio spectrum. There is, of
course, no communication network unless bits can be transported between
users. Digital communication over mobile wireless links has evolved rapidly
over the past two decades. Several approaches are now available, with var-
ious tradeoffs and areas of applicability. Even in a given system, the digital
communication mechanisms can be adaptive. First, for a given digital mod-
ulation scheme the parameters can be adapted (e.g., the transmit power, or
the amount of error protection), and, second, sophisticated physical layers
actually permit the modulation itself to be changed even at the packet or burst
timescale (e.g., if the channel quality improves during a call then a higher
order modulation can be used, thus helping in store and forward applications
that can utilize such time varying capacity). This adaptivity is very useful in the
mobile access situation where the channels and interference levels are rapidly
changing.
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2. Neighbor discovery, association and topology formation, routing. Except in
the case of fixed wireless networks, we typically do not “force” the formation
of specific links in a wireless network. For example, in an access network
each mobile device could be in the vicinity of more than one BS or access
point (AP). To simplify our writing, we will refer to a BS or an AP as an
access device. It is a nontrivial issue as to which access device a mobile device
connects through. First, each mobile needs to determine which access devices
are in its vicinity, and through which it can potentially communicate. Then
each mobile should associate with an access device such that certain overall
communication objectives are satisfied. For example, if a mobile is in the
vicinity of two BSs and needs certain quality of service, then its assignment
to only a particular one of the two BSs may result in satisfaction of the new
requirement, and all the existing ones.

In the case of an access network the problem of routing is trivial; a mobile
associates with a BS and all its packets need to be routed through that BS.
On the other hand, in an ad hoc network, after the associations are made
and a topology is determined, good routes need to be determined. A mobile
would have several neighbors in the discovered topology. In order to send a
packet to a destination, an appropriate neighbor would need to be chosen,
and this neighbor would further need to forward the packet toward the
destination. The choice of the route would depend on factors such as the bit
rate achievable on the hops of the route, the number of hops on the route,
the congestion along the route, and the residual battery energies in devices
along the route.

We note that association and topology formation is a procedure whose
timescale will depend on how rapidly the relative locations of the network
nodes is changing. However, one would typically not expect to associate and
reassociate a mobile device, form a new topology, or recalculate routing at
the packet timescale.

If mobility is low, for example in wireless LANs and static sensor networks,
one could consider each fixed association, topology, and routing, and
compute the performance measures at the user level. Note that this step
requires a scheduling mechanism, discussed as the next element. Then that
association, topology, and routing would be chosen that optimizes, in some
sense, the performance measures. In the formulation of such a problem, first
we need to identify one or more performance objectives (e.g., the sum of the
user utilities for the transfer rates they get). Then we need to specify whether
we seek a cooperative optimum (e.g., the network operator might seek the
global objective of maximizing revenue) or a noncooperative equilibrium.
The latter might model the more practical situation, since users would tend to
act selfishly, attempting to maximize their performance while reducing their
costs. Finally, whatever the solution of the problem, we need an algorithm
(centralized or distributed) to compute it online.
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If the mobility is high, however, the association problem would need to
be dynamically solved as the devices move around. Such a problem may
be relatively simple in a wireless access network, and, indeed, necessary
since cellular networks are supposed to handle high mobility users. On the
other hand such a problem would be hard for a general mesh network;
highly mobile wireless mesh networks, however, are not expected to be
“high performance” networks.

3. Transmission scheduling. Given an association, a topology, and the routes,
and the various possibilities of adaptation at the physical layer, the problem is
to schedule transmissions between the various devices so that the users’ QoS
objectives are met. In its most general form, the schedule dynamically needs
to determine which transceivers should transmit, how much they should
transmit, and which physical layer (including its parameters, e.g., transmit
power) should be used between each transceiver pair. Such a scheduler would
be said to be cross-layer if it took into account state information at multiple
layers; for example, channel state information, as well as higher layer state
information, such as link buffer queue lengths. Note that a scheduling
mechanism will determine the schedulable region for the network; that is,
the set of user flow rates of each type that can be carried so that each flow’s
QoS is met.

In general, these three technical elements are interdependent and the most
general approach would be to jointly optimize them. For example, in a mobile
Internet access network the mobile devices are associated with base stations. The
channel qualities between the base stations and the mobile devices determine the
bit rates that can be sustained, the transmission powers required, and transmission
schedule required to achieve the desired QoS for the various connections. Thus,
the overall problem involves a joint optimization of the association, the physical
layer parameters, and the transmission schedule.

In addition to the preceding elements that provide the basic communication
functionality, some wireless networks require other functional elements that could
be key to the networks’ overall utility. The following are two important ones,
which are of special relevance to ad hoc wireless sensor networks.

• Location determination. In an ad hoc wireless sensor network the nodes
make measurements on their environment, and then these measurements
are used to carry out some global computation. Often, in this process
it becomes necessary to determine from which location a measurement
came. Sensor network nodes may be too small (in terms of size and
available energy) to carry a GPS (global positioning system) receiver.
Some applications may require the nodes to be placed indoors, where
GPS signals may not penetrate. Hence GPS-free techniques for location
determination become important. Even in cellular networks, there is a
requirement in some countries that, if needed, a mobile device should be
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geographically locatable. Such a feature can be used to locate someone
who is stranded in an emergency situation and is unaware of the exact
location.

• Distributed computation. This issue is specific to wireless sensor net-
works. It may be necessary to compute some function of the values
measured by sensors (e.g., the maximum or the average). Such a
computation may involve some statistical signal processing functions
such as data compression, detection, or estimation. Since these networks
operate with very simple digital radios and processors, and have only small
amounts of battery energy, the design of efficient self-organizing wireless
ad hoc networks and distributed computation schemes on them is an
important emerging area. In such networks there is communication delay
and also data loss; hence existing algorithms may need to be redesigned
to be robust to information delay and loss.

1.4 Summary and Our Way Forward
We began with a discussion of our view of networking as resource allocation.
Figure 1.1 summarizes our view. This was followed by a taxonomy of current
wireless practice in Section 1.2. Next, the common technical elements that
underlie the apparently disparate technologies were abstracted and discussed in
Section 1.3.

Before we can proceed to the core topic of this book—resource allocation
to meet specified QoS objectives—we will need to understand basic models of,
and notions associated with, the wireless channel. Along with this, the important
techniques employed in digital communication will be covered in Chapter 2.
These concepts will be like the building blocks in terms of which our resource
allocation problems will be posed, and answers sought. Essentially, in Chapter 2,
our discussion will be confined to the so-called PHY layer.

However, before commencing our study of resource allocation problems,
we will pause and take a look at the applications that usually are carried on
communication networks. Our objectives will be to understand the characteristics
of the bit streams or the packet streams generated by various applications (the top
layer of Figure 1.1), as well as the performance requirements the streams demand.
This will be the topic of Chapter 3.

Beginning with Chapter 4, we will consider, one by one, the different wireless
networks shown at the second level of our taxonomy (Figure 1.2). In each case,
the emphasis will be on posing and solving resource allocation problems specific
to that type of network. In Chapter 4, narrowband cellular systems will be
studied. Power, bandwidth, and time are the resources here, and the principal
objective is to maintain the signal-to-interference ratio (SIR) at an adequately
high level. Our discussion will give rise to several important concepts, including
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frequency reuse, sectorization, spectrum efficiency, handover blocking, and
channel reservation.

Continuing with cellular access networks, we will focus on CDMA systems
in Chapter 5. The distinguishing feature here is that of universal frequency reuse.
As before, the main theme is to assign power so as to ensure that the signal-
to-interference-plus-noise ratio (SINR) is adequately high. We will see how the
notions of other-cell interference, power control, and hard as well as soft handover
arise in this context.

In Chapter 6, we will turn to OFDMA-TDMA systems, where power,
frequency, and time constitute the basic resources to be allocated. Unlike FDM-
TDMA and CDMA systems, where to each flow a fixed bit rate is assigned,
in OFDMA-TDMA systems, the resources are assigned dynamically over time,
depending on time varying user requirements and channel conditions. Generally
speaking, the objective is to maximize the aggregate bit capacity of a time-varying
channel, subject to a constraint on the average power. The important notion of
the water-filling power allocation will emerge from our discussions.

In Chapter 7, the focus shifts to random-access systems and, in particular,
IEEE 802.11 WLANs. The principal resource here is channel time, and distributed
control of access to the channel is of interest. In a system of n colocated WLAN
nodes, what is the saturation throughput that each can achieve? We will analyze
this important question. Various issues pertaining to the transport of voice and
data traffic over WLANs will also be discussed.

Continuing with our discussion of the various networks according to our
taxonomy, we will study multihop wireless mesh networks in Chapters 8 and
9. In Chapter 8, we assume that a wireless mesh network is given. On this
network, we will address the fundamental question of optimal routing and link
scheduling of packet flows for a given set of source-destination pairs. Again, the
basic resources here are bandwidth, time, and power, and it is of interest to
know which nodes should get access to the bandwidth at what times so as to
achieve the objective of maximizing throughput. Our analysis will lead to the
notions of optimal scheduling and routing. We first consider open loop flows.
The flow rates may be given or they may be unknown. For the latter case, the
important maximum weight scheduling is described in detail. We also consider
routing and scheduling for elastic flows so as to maximize a network utility
function.

In Chapter 9, we will address some fundamental questions that arise in the
context of wireless mesh networks. First, we ask, what is the minimum power level
that nodes can use while ensuring that the network of nodes remains connected?
After a suitable definition of the network capacity we also obtain the capacity of
arbitrary and random networks. Although asymptotic analyses provide interesting
insights, wherever possible, we also consider finite networks.

Finally, in Chapter 10, we will turn to wireless sensor networks. Apart from
power and bandwidth, each sensor itself can be considered as a resource now.
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A variety of new problems arise; for example, if sensors are deployed in a random
manner over a given area, how many of them are required so that every point in
the area is sensed by not less than k sensors? As mentioned before in Section 1.3,
wireless sensor networks often have special needs; for example, localization
and distributed computation. Resource allocation problems for meeting such
objectives will also be discussed.



CHAPTER 2

Wireless Communication:
Concepts,Techniques, Models

We recall from Figure 1.1 in Chapter 1 that, when studying wireless
networks, we will not take the links as given bit carriers but will
be concerned with the sharing of the wireless spectrum resource as

well. The strictly layered approach would view the wireless physical layer as
providing a bit carrier service to the link layer. The link layer just offers packets
to the physical layer, which does the best it can. If on the other hand, there is
interaction between the layers and the link layer can be aware of the time varying
quality of the wireless communication, then it could prioritize, schedule, defer, or
discard packets in order to attempt to meet the QoS requirements of the various
flows. It is therefore important to obtain an understanding of how digital radio
communication is performed, and the issues, constraints, and trade-offs that are
involved. The material in this chapter is well established and is available in great
detail and in much more generality in many books on digital communications. An
excellent up-to-date coverage of this topic is provided in [131] and [43]. Readers
familiar with digital wireless communication can skip this chapter with no loss of
continuity.

Overview
Our approach to modeling, analyzing, and designing resource allocation in
wireless networks will be based on simple models of the techniques that are used
for carrying bit streams over wireless channels. Because of their place in the
seven-layer OSI model, these are also called physical layer techniques or, as an
abbreviation, PHY techniques. In this chapter we will provide these models, and
show how they arise.

In Section 2.1 we will study, in some detail, the simplest binary modulation
over a very simple radio channel in which the only phenomenon that corrupts the
user’s data is additive noise. We will see that the receiver can make errors when
attempting to extract the transmitted bits from the noisy received signal, and we
will relate the bit error rate (BER) to the received signal-to-noise ratio (SNR). We
will see how higher bit rates can be obtained by using higher order constellations
into which blocks of user bits can be mapped. We will briefly discuss how adding
redundant bits at the transmitter, or channel coding, can be used to reduce the BER
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at the expense of a reduction in the user level bit rate. Then, in Section 2.1.4, we
will understand other ways in which propagation over a radio channel can corrupt
the user’s data: these are path loss, shadowing, and multipath fading. The latter
two are stochastic phenomena, and we will see how they are modeled. Section 2.1
will close with an understanding of how random fading causes a deterioration in
the BER achievable for a given SNR.

In Section 2.2 we will explain the idea of channel capacity, and we will
provide Shannon’s formula for the capacity of an additive white Gaussian channel.
The idea of the ergodic capacity of a fading channel will also be introduced.

In Section 2.3 we will study how diversity can mitigate the effect of a fading
channel. Diversity can be obtained in various ways, one of them being by the use
of multiple receive antennas. We will then see that multiple transmit and receive
antennas (i.e., MIMO antenna systems) can also provide a capacity gain by making
the channel look like several independent parallel channels.

Recent mobile wireless access networks have relied heavily on the techniques
of code division multiple access (CDMA), and also, more recently, orthogonal
frequency division multiple access (OFDMA). In these systems, the resources (e.g.,
bandwidth and time) are not statically partitioned over the users. Instead, the
available spectrum is shared dynamically between the users, with the resource
allocation being dynamically adjusted as the user demands and channel condi-
tions vary over time. We study CDMA and OFDMA in Section 2.4.1 and in
Section 2.4.2, respectively.

2.1 Digital Communication over Radio Channels
The primary resource that is shared in a wireless network is the radio spectrum. We
will limit ourselves to the situation in which the communicating nodes share a radio
spectrum of bandwidth1 W , centered at the carrier frequency fc (see Figure 2.1).

2fc fc0 f

W W

Figure 2.1 The nodes in a wireless network share a portion of the radio spectrum.

1The term bandwidth has varied and confusing usage in the wireless networking literature. The RF spectrum
in which a system operates has a bandwidth. When a digital modulation scheme is used over this spectrum
then a certain bit rate is provided; often this aggregate bit rate may also be referred to as bandwidth, and
we may speak of users sharing the bandwidth. This latter usage is unambiguous in the wire-line context.
In multiaccess wireless networks, however, users would be sharing the same RF spectrum bandwidth, but
would be using different modulation schemes and thus obtaining different (and time varying) bit rates,
rendering the use of a phrase such as “bandwidth assigned to a user” very inappropriate.
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C1p (t )

C2p (t 2T )

ChannelModulator Demodulator
101101

noise

100101

Figure 2.2 A sequence of pulses is modulated with the bits to be transmitted. The
basic pulse is p(t). Notice that the bit sequence 101101 is transmitted as +√

Es p(t),
−√

Es p (t − T ), + √
Es p (t − 2T ),. . ., +√

Es p (t − 5T ). There is an error in the third bit, so
that, after detection, the received sequence is 100101.

It is assumed that fc >> W ; for example, fc = 2.4 GHz and W = 5 MHz. All
communication between any pair of nodes in the network can utilize this entire
spectrum.

2.1.1 Simple Binary Modulation and Detection
As shown in Figure 2.2, digital communication is achieved over the given radio
spectrum by modulating a sequence of pulses by the given bit pattern. The pulse,
p(t) (also called the baseband pulse), is chosen so that when translated to the carrier
fc its spectrum fits into the given radio spectrum; that is, in this case, the spectrum
of the baseband pulse will occupy the frequencies

(
−W

2 , +W
2

)
. Taking T = 1

W , it

is possible to define a pulse p(t), that is bandlimited2 to
(
−W

2 , +W
2

)
, and is such

that p(t − kT), k ∈ {. . . , −3, −2, −1, 0, 1, 2, 3, . . .}, constitute an orthonormal set,
that is,

∫ +∞
−∞ p(t)p(t − kT)dt = 0 for k �= 0. Further,

∫ +∞
−∞ p2(t)dt = 1, that is, the

energy of the pulse is 1. The pulses are repeated every T seconds.
In the situation depicted in Figure 2.2, the modulation is very simple: each

pulse in the pulse train is multiplied by +√
Es if the bit to be transmitted is 1, and

by −√
Es if the bit to be sent is 0. Notice that the energy of the modulated pulse

becomes Es. It is said that the modulator maps bits into channel symbols. Thus,
in this example, the symbol set is

{−√
Es, +

√
Es

}
. In general, there could be more

than just two possible symbols; for example, four symbols would permit two
incoming bits to be mapped into each channel symbol. Continuing our simple

2Mathematically, a pulse, p(t), that is bandlimited (e.g., to (− W
2

, + W
2

)) occupies infinite time. Practically,
a pulse that is chosen for a digital modulation scheme has negligible energy beyond a small multiple of T
on either side of its main lobe.
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example, let Ck denote the symbol into which the k-th bit is mapped. When
the pulses are repeated every T seconds, the modulated pulse stream can be
written as

X(t) =
∞∑

k=−∞
Ck p(t − kT) (2.1)

Given this continuous time signal, and recalling the orthonormality of the various
shifts of p(t) by kT, it is easy to see that the following operation recovers the
information carrying sequence Ck.

Ck =
∫ +∞

−∞
X(t)p(t − kT)dt

The baseband signal X(t) is then translated to the radio spectrum shown in
Figure 2.1 by multiplying it with a sinusoid at the carrier frequency. The resulting
signal is

S(t) = √
2

∞∑
k=−∞

Ck p(t − kT) cos(2πfct) (2.2)

The multiplication by
√

2 is to make the energy in the modulated symbols equal3

to Es. Thus, the symbol energy in the transmitted signal is Es Joules/symbol, and
since the symbol rate is 1

T symbols/second, the transmitted signal power is therefore
Es
T Watts. In Figure 2.2 we do not show the translation of the signal by the carrier.
It is as if the channel has been shifted to the baseband.

As shown in Figure 2.2, as the modulated signal passes through the channel,
and is processed in the front-end of the receiver, it is corrupted by noise. This
is taken to be zero mean additive white Gaussian noise (AWGN), which means
that noise just adds to the signal and is a Gaussian random process with a power
spectrum that is constant over the passband of the channel (hence the term “white,”
since all frequencies (“colours”) have the same power). The signal occupies a
band of W Hz around the carrier frequency fc (W

2 Hz below and W
2 Hz above ±fc;

see Figure 2.1). Hence, we need only be concerned with noise that occupies this
band. Such bandpass white Gaussian noise, with a power spectral density of N0

2 ,
is mathematically represented as (see [113])

N(t) = U(t) cos(2πfct) (2.3)

3To see why we have chosen the symbols Ck to be ±√
Es, and the reason for the factor

√
2, notice

that the energy in each transmitted pulse is 2
∫ +∞
−∞ (Ck)2p2(t) cos2(2πfct) dt which can be shown to be

equal to Es.
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where the process U(t) is a zero mean white Gaussian process with power spectral
density N0, bandlimited to

(
−W

2 , +W
2

)
. We can view the noise process U(t) as a

baseband noise process that is translated to the carrier frequency and placed in
the passband of the channel.

It can now be shown (see this chapter’s Appendix) that the previously
described modulation scheme, and the additive white Gaussian noise model, along
with receiver processing, results in the following symbol-by-symbol channel model
that relates the source symbol sequence Ck and the predetection statistic Yk, from
which the source symbol sequence has to be inferred.

Yk = Ck + Zk (2.4)

where Zk is a sequence of i.i.d. zero mean Gaussian random variables with
variance N0

2 .
Figure 2.3 depicts the probability density of Yk under the two possible values

of Ck. These are both Gaussian densities with variance N0
2 . The detector concludes

that the bit sent was 0 if the value of Yk is smaller than the threshold and 1 if the
value of Yk is more than the threshold. An error occurs if 1 is sent and Yk falls
below the threshold, and vice versa. When the source produces 0s and 1s with
equal probabilities then the threshold is midway between the means of the two
densities, that is, the threshold is 0. The probability of error if a 0 was sent is then
given by:

Pr(Yk > 0 | 0 was sent) = Q

(√
2Es

N0

)

depends on
signal
energy

depends on
noise energy

Es Esthreshold

probability density 
of value at detector

if ‘0’ was sent

2

Figure 2.3 The probability densities of the statisticYk under the two possible symbols.
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where Q(τ) : = ∫ ∞
τ

1√
2π

e− x2
2 dx. This can be seen to be the same as the probability

of error if a 1 was sent. Hence the probability of error of the binary modulation
scheme that we have described, under AWGN, is given by

Perror − AWGN = Q

(√
2Es

N0

)
(2.5)

Note that in this example, since each symbol is used to send one bit, the error rate
obtained is also the bit error rate (BER). In Problem 2.1 we find that Perror − AWGN
decreases exponentially with Es

N0
. In particular, for BERs of 10−3 and 10−6 the

Es
N0

values required are approximately 7 dB and 10.5 dB, respectively. We note
that if 1500 byte packets have to be transmitted over a wireless link, then in order
to obtain a packet error probability of 0.01, we need BER ≤ 10−6.

We see that the probability of correct detection depends on Es
N0

, which is
the ratio of the symbol energy to the noise power spectral density. Increasing
the symbol energy increases the separation between the two Gaussian probability
densities in Figure 2.3, and hence, for given noise variance, reduces the probability
of Yk falsely crossing the threshold. Similarly, decreasing the noise reduces the
width of the two Gaussian probability densities, thus also reducing the error
probability for a given signal energy.

2.1.2 Getting Higher Bit Rates
In the simple example in Section 2.1.1, since each pulse is modulated by one
of two possible symbols, and the symbol rate is 1

T , the bit rate is therefore
1
T bps. One of the goals in designing a digital communication system over a radio
spectrum is to use this spectrum to carry as high a bit rate as possible. With the
binary modulation example in mind there are two possibilities for increasing the
bit rate.

1. Increase the symbol rate; that is, decrease T.

2. Increase the number of possible symbols, from 2 to M > 2.

Then, in general, the bit rate will be given by
log2 M

T
. There are, however, limits on

both these possibilities.
Note that if the pulse bandwidth is limited to W

2
, the channel bandwidth,

then the pulse duration will not be time limited, and in fact the received signal in a
symbol interval will be the sum of the pulse in that interval and parts of pulses in
neighboring intervals. The pulses therefore have to be appropriately designed to
take care of this effect. This leads to the so-called Nyquist criterion, which limits
the pulse rate to no more than W (i.e., 1

T ≤ W).
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Before we proceed, it is useful to make an observation. We saw in
Section 2.1.1 that the probability of error for that binary signaling system depended
on the ratio Es

N0
. If the signaling rate is 1

T , then the average power in the transmitted

signal is Es × 1
T . The noise power in the channel bandwidth is W N0. Hence the

signal power to noise power ratio (SNR) is given by Es
TWN0

. If, in addition, the

symbol rate is such that T × W = 1, then the SNR is just Es
N0

. Thus we see that
for this example the probability of error depends on the SNR. This is sometimes
called the predetection SNR, as it is the SNR before the receiver attempts to decide
which symbol was sent.

Let us now consider the other alternative for increasing the bit rate; that
is, increasing the number of possible symbols that can modulate the pulses.
Figure 2.4(a) shows the binary symbol set that we have already discussed. This is
called binary pulse amplitude modulation (PAM), or 2-PAM. An example of the
simplest possibility is shown in Figure 2.4(b); this is called 4-PAM. Since each of the
2-bit patterns 00, 01, 10, 11 can be mapped to one of the symbols, this scheme can
transmit 2 bits per symbol. However, in order to achieve a particular probability of
error with a given noise power, the distance between the symbols has to be retained
as in the binary case; to see this consider Figure 2.3, add a Gaussian density
for each new symbol added, and then consider the probability of error between
neighboring symbols. This means that the symbol energy when transmitting the
left-most and right-most symbols in Figure 2.4(b) will be 32 times larger than that
for the other two symbols. This in turn implies a larger average signal power, and
hence a larger SNR (assuming the same noise power) for achieving the same prob-
ability of error. Yet another alternative is shown in Figure 2.5(a) where we have
two-dimensional symbols. Each symbol can be written in the form ce jθ, with c = 1

and θ ∈
{
0, π

2 , π, 3π
2

}
. This symbol set is called QPSK (quadrature phase shift

(b)(a)

Es√⎯
Es√⎯

Es2√⎯
Es2√⎯

Es23√⎯
Es3√⎯

Figure 2.4 Some symbol sets: (a) binary antipodal, (b) 4-level amplitude modulation.
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(b)(a)

Figure 2.5 (a) A complex symbol set with 4 symbols; (b) the symbol set with noise
added.

keying) since all the symbols have the same amplitude but they have different
phases. Now, instead of the form in (2.2), the transmitted signal takes the
general form

S(t) = √
2

∞∑
k=−∞

Ck cos(Θk)p(t − kT) cos(2πfct)

−√
2

∞∑
k=−∞

Ck sin(Θk)p(t − kT) sin(2πfct) (2.6)

Here, the sequence (Ck, Θk) depends on the modulating bits. Thus, basically, the
x-coordinate (i.e., Ck cos(Θk)) of the symbol modulates the carrier cos(2πfct) and
the y-coordinate (i.e., Ck sin(Θk)) of the symbol modulates −sin(2πfct), which is
also called the quadrature carrier (since it is π

2 out of phase with the in-phase
carrier). The bandpass additive noise N(t) has the general form

N(t) = U(t) cos(2πfct) − V(t) sin(2πfct)

where U(t) and V(t) are independent zero mean Gaussian processes with power
spectral density N0, bandlimited to

(
−W

2 , W
2

)
. We can interpret U(t) and V(t) as

the in-phase and quadrature noise processes, respectively.
In fact, we notice that the QPSK signal shown in (2.6) is the superposition

of two orthogonal 2-PAM signals; the in-phase and quadrature signals are both
2-PAM signals. After down conversion (multiplying the signal by

√
2 cos(2πfct)

and also by −√
2 sin(2πfct) and filtering out the high frequency terms), and

multiplication and integration with the pulse p(t), we will obtain the following
pair of statistics:

Y (i)
k = Ck cos(Θk) + Z(i)

k

Y (q)
k = Ck sin(Θk) + Z(q)

k
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where (i) and (q) denote the in-phase and quadrature components. The sequences
Z(i)

k and Z(q)
k are independent, and each is a sequence of i.i.d. zero mean Gaussian

random variables with variance N0
2 . We can write this more compactly by using

complex numbers. Define Yk = Y (i)
k + jY (q)

k and Z(i)
k + jZ(q)

k . Then, we can write

Yk = Xk + Zk (2.7)

where Xk = CkejΘk is the k-th channel symbol. We say that the sequence of complex
random variables Zk are circularly symmetric complex Gaussian.

In Figure 2.5(b) we show the received symbols after corruption by noise; the
noise now has the two-dimensional Gaussian density that is circularly symmetric
about each symbol. Notice from the geometry in Figure 2.5(a) that, by utilizing
both dimensions, for a given probability of error, a smaller symbol spacing can
be used than for the symbol set in Figure 2.4(b), and hence a given BER can
be achieved with less average power. Thus, we have noisy observations of the
two coordinates of the transmitted complex symbol, from which the transmitted
symbol has to be detected. Since in each symbol only one of the phases is used (and
the other is 0, owing to the simple QPSK symbol set), the average signal power is
that of a 2-PAM signal.

As is evident from Figure 2.5 many more symbol sets are possible. If the
amplitude as well as phase of the symbols can vary then it is called QAM
(quadrature amplitude modulation), whereas if only the phase can vary then it is
called a PSK symbol set. Symbol sets are also called constellations. The probability
of error of all the digital modulation and demodulation schemes based on the basic
ideas discussed earlier can be expressed as a function of the SNR at the receiver.

2.1.3 Channel Coding
In a given situation, owing to physical limitations it may not be possible to increase
the SNR so as to achieve the desired BER. The application being transported on the
wireless link may require a lower BER in order to achieve reasonable performance.
For example, if the link is used to transport packets and the packet length is
L bits, then a BER of ε yields a packet error rate of 1 − (1 − ε)L. We will see in
Section 3.4.3 that a high packet error rate can seriously affect the performance of
TCP transfers. Hence, this may place a minimum BER requirement on the link.

For a given digital modulation scheme, the BER as seen by the data
source can be reduced by channel coding. The simplest viewpoint is shown in
Figures 2.6 and 2.7. The channel with the given modulation scheme is viewed as
an error prone binary channel. Blocks of the incoming bits of length K are coded
into codewords of length N(> K), thus introducing redundancy. If the code length
and the codes are judiciously chosen, even after the channel introduces errors,
an errored codeword can be expected to stay close to the original codeword.
In Figure 2.7 we show source bit strings of length K being mapped into code
blocks of length N. Since the number of possible code strings (2N) is larger than
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error control
coder

error control
decoder

binary channel
(introduces bit errors)

adds redundant
bits

extracts transmitted
bits from received

code words 

Figure 2.6 Channel coding: adding redundant bits to protect against channel errors.

code words

“sphere” of
highly probable
errored code words

set of possible blocks
of length K
(2K blocks)

set of possible blocks
of length N
(2N blocks)

Figure 2.7 A channel code maps source bit strings into longer code bit strings (or
codewords); decoding involves identifying the codeword nearest to the received bit
string.

the number of possible source strings (2K), the code words can be chosen so
that there is sufficient spacing between them. Now even if the channel causes
errors, the errored codewords will occupy spheres of high probability around
the transmitted codewords. Hence, by using nearest codeword decoding, the
transmitted codeword, and hence the original source string, can be inferred with
a small residual error probability. The trade-off is that the information bit rate of
the communication link becomes K

N , which is less than 1 information bit per code
bit. This is called the rate of the code, denoted by R.

One trivial way of improving error performance is to increase N, because
this results in the codewords being spaced farther apart; but this reduces the
information rate. It is possible, however, to increase K with N, keeping the
information rate R constant, while reducing the bit error rate to arbitrarily small
values. Shannon’s noisy channel coding theorem states that there is a number C,
called the channel capacity, such that if R < C, then, as the block length increases,
an arbitrarily small bit error rate can be achieved (of course, at the cost of a large
block coding delay). If we attempt to use R > C, then the bit error rate cannot be
reduced to 0.

Recall our analysis of the two-level modulation carried out earlier in this
chapter. We recall that for bit error rates of 10−3 and 10−6 the Es

N0
values required
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were approximately 7 dB and 10.5 dB, respectively. As an example, with a high
quality rate 1

2 code, the required Es
N0

can be reduced by 2 dB for 10−3 and by 5 dB

for 10−6. Of course, the user bit rate drops to 1
2 bit per symbol. This reduction in

Es
N0

is called coding gain.
A coder is followed by a digital modulation scheme that maps code bits

into channel symbols. As discussed in Section 2.1.1, the modulator maps a
certain number of code bits (e.g., 2 in 4-QPSK) into each channel symbol. Thus
the capacity of the overall system (coder—modulator—channel—demodulator—
decoder) can be expressed in terms of bits per symbol. At this point, it is obvious
that in order to achieve this capacity the receiver must know the channel coding
and modulation scheme that the transmitter is using. Shannon also provided
the fundamental relationship between the channel capacity (C) and the signal-
to-noise ratio for an additive white Gaussian noise channel. We will introduce
this relationship later in this chapter. First we need to study models for signal
power attenuation between the transmitter and the receiver.

2.1.4 Delay, Path Loss, Shadowing, and Fading
In the previous discussion we assumed that the transmitted signal was contamina-
ted by only additive white Gaussian noise. This yielded the simple model shown in
(2.4). However, in practical channels, signals undergo attenuation and delay. In
wireless channels, because of propagation over multiple paths, and mobility of the
scatters or of the communicating devices, the attenuation can vary with time and
the relative location between the transmitter and the receiver. We have seen that
the BER performance of a digital communication system depends on the received
SNR. Hence, we are interested in the received signal power after the signal has
passed through the channel.

Radio waves are scattered by the objects on which they impinge. Hence,
unless a very narrow antenna beam is used, the receiver’s antenna receives the
transmitted signal along several paths. There is often a direct or line-of-sight path,
and there are several paths along which the signal reaches the receiver after one or
more reflections from various objects. Energy is lost in reflections, and is absorbed
by media through which the signal passes (partitions and walls). Hence the received
signal is a sum of attenuated and delayed versions of the original signal.

Delay Spread and Intersymbol Interference

Superposition of the delayed signals from the various paths can cause a symbol
from one path to overlap with a neighboring symbol from another path. Let us
examine this issue first. These are electromagnetic signals and hence they travel at
the speed of light; let us take the propagation time to be roughly 0.33 μsec per
100 meters. Hence, this is the kind of delay that can be expected if the various
path lengths differ by no more than 100 m.

If the symbol time is several μseconds (e.g., 100,000 symbols per second)
then there will not be significant overlap between the neighboring symbols, and
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we can assume that the symbols are still separately discernible, except that each
is multiplied by a complex “attenuation.” If this happens then the channel is said
to have flat fading. We will understand the term “flat” when we interpret this
phenomenon in the frequency domain. Then, motivated by (2.7), we can write the
k-th received symbol after down conversion as

Yk = GkXk + Ik + Zk (2.8)

where the various new terms are understood as follows.

1. Gk is the random attenuation of the k-th symbol. Gk, k ≥ 1, is a complex
valued random process. Thus, a transmitted symbol is not only attenuated,
but can also be rotated. Note that the symbol energy is multiplied by |Gk|2.
Let us write Hk = |Gk|2; Hk, k ≥ 1, is a random process, and we need
to characterize it in order to understand the effect of the channel on the
received signal power, and hence the SNR. We note that the Hk are also
called channel gains.

2. Ik is a complex random variable that models the interference (from other
transmissions in the same or nearby spectrum4). We recall that Zk is a
sequence of complex random variables that models the additive noise
(for example, the thermal noise in the electronic circuitry of the receiver)
and is taken to be a white Gaussian random process. A commonly used
simplification is to use the same model even for the interference process, with
the noise and interference processes being modeled as being independent.
The BER then becomes a function of the signal to interference plus noise
ratio (SINR).

For a transmitter receiver pair, the difference between the smallest signal
delay and the largest signal delay is called the delay spread, Td. For example, if the
path lengths differ by no more than 100s of meters then the delay spread would
be in 100s of nanoseconds. When the delay spread is not very small compared to
the symbol time then the superposition of the signals received over the variously
delayed paths at the receiver results in intersymbol interference (ISI). We then
obtain the following linear model:

Yk =
Jd−1∑
j=0

Gk( j)Xk−j + Ik + Zk (2.9)

For every k, Gk( j), 0 ≤ j ≤ Jd − 1, are complex random variables that model the
way the channel attenuates and phase shifts the transmitted symbols. Gk( j) models

4Note that we are taking the simplified approach of treating other users’ signals as interference. More
generally, it is technically feasible to extract multiple users’ symbols even though they are superimposed.
This is called multiuser detection.
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the influence that the input j symbols in the past has on the channel output at k.
Thus, in general, a channel has memory; in the model, the memory extends over Jd
symbols. The memory arises as a consequence of there existing several paths from
the transmitter to the receiver, with the different paths having different delays. The
notation shows that the channel gain at the k-th symbol could be a function of the
symbol index k; this models the fact that fading is a time-varying phenomenon.
As the devices involved in the communication move around, the radio channel
between them also keeps changing.

The delay spread, Td, has been explained previously as a time domain
concept. It can also be viewed in the frequency domain as follows. The symbols
Xk are carried over the RF spectrum by first multiplying them with a (baseband)
pulse of bandwidth approximately W (e.g., 200 KHz), and then upconverting the
resulting signal to the carrier frequency (e.g., 900 MHz) (recall (2.2)). The delay
spread in the channel (i.e., Td) can be such that superposition of variously delayed
versions of some frequency components in the baseband pulse can cancel out. In
such a case, some of the frequency components in the pulses can get selectively
attenuated, resulting in the corruption of the symbols they carry; this is called
frequency selective fading. On the other hand, if Td << 1

W , then the pulse would
be passed through with only an overall attenuation; we recall that this situation
was called flat fading. The reciprocal of the delay spread is called the coherence
bandwidth, Wc. Thus, if Wc >> W then all the frequencies fade together and we
have flat fading.

The assumption of flat fading is reasonable for a narrowband system, where
the available radio spectrum is channelized and each bit stream occupies one
channel. Then the symbol duration becomes larger than the delay spread, and
the model of (2.8) is applicable. This will be the channel model that we will use
when analyzing FDM-TDMA cellular systems in Chapter 4.

On the other hand, consider the situation in which Wc is small compared
to the system bandwidth (Td is large compared to 1

W ); that is, the channel is
frequency selective. Then, in relation to the model in (2.9), and recalling that
the intersymbol interval is 1

W , we observe that frequency selectivity corresponds to
the channel memory extending over more than 1 symbol, and hence to the existence
of ISI. Thus, when high bit rates are carried over wideband channels (i.e., large W)
then techniques have to be used to combat ISI, or to avoid it altogether. We will
encounter CDMA and OFDMA later in this chapter, as two wideband systems that
actually exploit delay spread or frequency selectivity to achieve diversity (a concept
explained in Section 2.3).

In some systems, we can combat ISI by passing the received signal through a
channel equalizer, which can compensate for the various channel delays, making
the overall system (i.e., the channel followed by the equalizer) appear like a fixed
delay channel. In a mobile wireless situation, owing to mobility, the paths that
a signal takes between a transmitter and a receiver may keep changing; hence a
channel equalizer needs to be adaptive. In some systems the problem of signals
arriving over multiple paths is turned into an advantage. If the paths can be



28 2 Wireless Communication: Concepts,Techniques, Models

resolved, and if they fade independently, then their signals can be combined to
reduce the probability of error, for a given received signal-to-noise ratio. Such a
receiver is said to exploit multipath diversity.

A Characterization of the Power Attenuation Process

It follows from the linear model with flat fading, shown in Equation 2.8, that
the received sequence, Yk, k ≥ 1, is also a complex valued random process. The
problem for the receiver, on receiving the sequence of complex numbers Yk, k ≥ 1,
is to carry out a detection of which symbols Xk, k ≥ 1, were sent and hence which
user bits were sent. This problem is particularly challenging in mobile wireless
systems since the channel is randomly changing with time. The analysis and design
of modulation schemes often is based on the analysis of received signal power to
noise power ratios. Hence, it is important to have an effective but simple model
of the channel power attenuation process, Hk.

The process {Hk} is characterized by writing it in terms of three multiplicative
components, that is,

Hk =
((

dk

d0

)−η

· Sk · R2
k

)
(2.10)

Let us write the marginal terms of the stationary random processes in this
expression by dropping the symbol index k. We will now discuss each of these
terms.

The term
(

d
d0

)−η

is the path loss factor. Here, d is the distance between the

transmitter and the receiver when the k-th symbol is being received, d0 is the “far
field” reference distance beyond which this model is applicable, and η is the path
loss exponent, which is typically in the range 2 to 5. The value of d0 relates to
the antenna dimensions and the propagation environment. For distances less than
d0, a different path loss exponent may be used, or, when d0 is very small, we may
assume no path loss.

If the attenuation is measured at various points at a distance d from the
transmitter, then the attenuation will be found to be random, owing to variations
in the terrain, and in the media through which the signal may have passed.
Empirical studies have shown that this randomness is captured well if the second
factor S, in (2.10), has the form 10− ξ

10 , with ξ being a Gaussian random variable
with mean 0 and variance σ2. This is called the shadowing component of the
attenuation, and, since log10 of this term has a Gaussian (or normal) distribution,
it is called log-normal shadowing. It is often convenient to express values of power
and power ratios in the decibel (dB) unit which is obtained by taking 10 log10 of
the value. Hence the shadowing attenuation in signal power is 10 log10 S = −ξ dB,
which is zero mean Gaussian with variance σ2. A typical value of σ is 8 dB.
Considering two standard deviations above and below the mean, this value means



2.1 Digital Communication over Radio Channels 29

that, with a high probability, shadowing can result in a variation of channel gain of
40

(
≈ 10

2×8
10

)
times to 0.025

(
≈ 10

−2×8
10

)
times the mean path loss.

Shadow fading is spatially varying, and hence if there is relative movement
between the transmitter and the receiver then shadow fading will vary. The
correlation in the shadow fading in dB between two points separated by a

distance D is given by σ2e− D
D0 , where D0 is a parameter that depends on the

terrain. Some measurements have given D0 = 500 m for suburban terrains, and
D0 =50 m for urban terrains. Hence if the distance is varying by a few meters per
second (note that 36 Kmph = 10 meters/second) then the shadowing will vary over
seconds, which means that the variations will occur over hundreds of thousands of
symbols.

We now turn to the third factor, R2, in the expression for attenuation in
(2.10). Typical carrier frequencies used in mobile wireless networks are 900 MHz,
1.8 GHz (e.g., these two frequency bands are used in cellular wireless telephony
systems), or 2.4 GHz (e.g., used in IEEE 802.11 wireless LAN systems). Hence,
the carrier wave periods are a few picoseconds. Thus, when the transmitted
signal arrives over several paths then very small differences in the path lengths
(a few centimeters) can cause large differences in the phases of the carriers that are
being superimposed. Thus, although these time delays may not result in ISI, the
superposition of the delayed carriers results in constructive and destructive carrier
interference, leading to variations in signal strength. This phenomenon is called
multipath fading. This is a random attenuation that has strong autocorrelation
over a time duration called the coherence time, Tc; that is, the attenuations
at two time instants separated by more than the coherence time are weakly
correlated. The coherence time is related to the Doppler frequency, fd, which
is related to the carrier frequency, fc, the speed of movement, v, and the
speed of light, c, by fd = fc v

c . Roughly, the coherence time is the inverse of
the Doppler frequency. For example, if the carrier frequency is 900 MHz, and
v = 20 meters/sec, then fd = 60 Hz, leading to a coherence time of 10s of
milliseconds. In the indoor office or home environment, the Doppler frequency
could be just a few Hz (e.g., 3 Hz), with coherence times of 100 s of milliseconds.
The marginal distribution of R2 depends on whether all the signals arriving
at the receiver are scattered signals, or if there is a line-of-sight signal as
well. In the former case, assuming uniformly distributed arrival of the signal
from all directions, the distribution of R2 is exponential with mean E

(
R2),

that is,

fR2 (x) = 1
E
(
R2

)e
(−x/E

(
R2))

The distribution of the amplitude attenuation (i.e., R) is Rayleigh; hence this is also
called Rayleigh fading. On the other hand if there is a line-of-sight component so
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that a fraction K
K + 1 of the signal arrives directly, and the remaining signal arrives

uniformly over all directions, then

fR2 (x) = K + 1
E
(
R2

) e

(
−K− (K+1)x

E(R2)

)
I0

⎛
⎝2

√√√√(
K(K + 1)x

E
(
R2

)
)⎞
⎠

where

I0(x) = 1
2π

∫ 2π

0
e−x cos(θ)dθ

This is called the Ricean distribution.
With this characterization of the attenuation in the received signal power we

can now write the received SNR (denoted by Ψrcv) in terms of the ratio of the
transmitted signal power to the received noise power (denoted by Ψxmt). We have

Ψrcv = Ψxmt · H

= Ψxmt ·
(

d
d0

)−η

· 10
−ξ
10 · R2 (2.11)

Then, in dB, we can write the received SNR as

(Ψrcv)dB = (Ψxmt)dB + 10 log10 H

= (Ψxmt)dB − 10η log10

(
d
d0

)
− ξ + 10 log10 R2 (2.12)

BER with Fading

We now turn to the calculation of the performance of the wireless link in the
presence of fading. We have seen that, although the transmitter may send at a
fixed power, in the presence of fading, the received power, and hence the received
SNR, is time varying. The rate of variation of the SNR depends on the mobility
of the receiver. A receiver that moves short distances over the duration of a
“conversation” (e.g., a voice call, or a file transfer) would sample the distribution
of the Rayleigh fading but would see roughly constant values of path loss and
shadowing. On the other hand a receiver that makes large movements during a
call duration would see variations in all the three attenuation factors during the
call. Let us consider the former situation. In this case the in-call performance
depends on the value of path loss and shadow fading sampled by the call, and on
the distribution of Rayleigh fading, but the performance across calls depends on
the variation in path loss and shadowing as well. We would like the performance
not to fall below some value. For example, there could be a desired upper bound
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on BER; exceedance of this bound would be termed an outage. Let us examine this
point in the context of the binary modulation scheme discussed in Section 2.1.1.
The BER for this modulation scheme was given by (2.5):

Perror − AWGN(Ψrcv) = Q
(√

2Ψrcv

)

If the path loss and shadowing factors during a call are fixed, then we can calculate
the in-call, BER averaged over the fading, as follows:

∫ ∞

0
Perror − AWGN

((
d
d0

)−η

· 10
−ξ
10 · γ · Ψxmt

)
fR2 (γ)dγ

where, as mentioned earlier, for Rayleigh fading, fR2 (·) is the exponential probabil-
ity density with mean E

(
R2).

Let us write the SNR during the call, with the fading averaged out, as

Ψrcv :=
(

d
d0

)−η

· 10
−ξ
10 ·

(
E
(
R2

)
Ψxmt

)

In many cases it can be shown that the preceding integral expression for in-call
BER can be simplified to the form

Perror−fading
(
Ψrcv

)
for some function Perror − fading. For example, for the binary modulation scheme

discussed earlier, it can be shown that Perror − fading
(
Ψrcv

) = 1
2

(
1 −

√
Ψrcv

1+Ψrcv

)
,

which for large Ψrcv can be observed to decrease reciprocally with SNR (i.e., as
1

Ψrcv
), rather than exponentially, as for unfaded AWGN (see Problem 2.1; see also

Problem 2.4).
During a call, we can write the average SNR (with the averaging being over

the fading), Ψrcv, in dB as

(
Ψrcv

)
dB =

(
ΨxmtE

(
R2

))
dB

− 10η log10

(
d
d0

)
− ξ

The term
(
ΨxmtE

(
R2))

dB is the Rayleigh faded SNR “referred to” d0. We see that
the received SNR, in dB, at a distance d from the transmitter is Gaussian with mean(
ΨxmtE

(
R2))

dB −10η log10

(
d
d0

)
and variance σ2. In order to achieve a certain BER,

say, ε, the received SNR will be required to be above a threshold, say, β; that is,

Ψrcv > β ⇒ Perror − fading
(
Ψrcv

)
< ε
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Violation of this requirement would be called an outage, the probability of which
we would like to limit to Poutage. We note that, since we assumed that during a
call the path loss and shadowing are fixed, Poutage is the outage probability across
calls; that is, the fraction of calls that experience a BER larger than ε. The BER
and outage requirement can then be expressed in the following form:

Pr
((

Ψrcv
)
dB < (β)dB

)
< Poutage

Equivalently,

Pr
((

ΨxmtE
(
R2

))
dB

− 10η log10

(
d
d0

)
− ξ < (β)dB

)
< Poutage

Let us look at an example. Given that d
d0

= 10, η = 3, the shadowing standard
deviation σ = 8 dB, the received SNR threshold is β = 10 dB, and Poutage = 0.01,
the requirement just displayed is satisfied if

(
ΨxmtE

(
R2

))
dB

− 30 − 2.3 × 8 = 10

where the factor 2.3 is obtained from a table of the Gaussian distribution. This
yields (

ΨxmtE
(
R2

))
dB

= 58.4 dB

2.2 Channel Capacity
2.2.1 Channel Capacity without Fading
Consider the following simple version of the general linear model that was shown
in (2.9)

Yk = Xk + Zk (2.13)

where we notice that we have removed the model of ISI, the multiplicative fading
term, and also the additive interference term, leaving just a model in which the
output random variable at symbol k is the input symbol Xk with an additive noise
term Zk. Thus, there is no attenuation of the transmitted symbol, but there is
perturbation by additive noise. When the Xk are taken from a one-dimensional
constellation (as in the beginning of Section 2.1), then the model for the random
process Zk, k ≥ 1, is that these are i.i.d. Gaussian random variables with mean
0 and variance σ2 (see Equation 2.4). This is called an additive white Gaussian
noise (AWGN) channel. The information bits are mapped to the channel symbols
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Xk, which are corrupted by additive noise. The observations Yk have to be used
to infer which symbols were transmitted.

Suppose that the input symbols have the following power constraint:

lim
n→∞

1
n

n∑
k=1

|xk|2 ≤ P (2.14)

that is, the average energy per symbol is bounded by P Joules/symbol. This is a
practical constraint as power amplifiers operate well only in certain limited power
ranges. Also, microwave radiations can be harmful to the body; hence there are
safety regulations on how much power can be radiated by radio transmitters.
Further, when several systems coexist then intersystem interference needs to be
managed. Hence, some form of power constraint usually is required in wireless
communication systems.

If the input symbols are allowed to be only real numbers, then Shannon’s
celebrated Noisy Channel Capacity Theorem states that the maximum rate at
which information can be transmitted over this AWGN channel, in bits/symbol,
is given by

C = 1
2

log2

(
1 + Prcv

σ2

)
bits/symbol (2.15)

where, Prcv is the received signal power per symbol, and Prcv
σ2 is the received

signal-to-noise power ratio. Evidently, here, in the no fading case, we have
Prcv = P. What this result means is that this rate can be achieved with the bit
error rate going to zero as channel coding is done over longer and longer blocks,
with the block length going to ∞.

In Section 2.1.1, we derived the symbol-by-symbol channel model by starting
with a continuous time model for a modulation scheme that used only real valued
symbols. Let us now apply this formula to derive the capacity of that system. We
saw that the additive noise sequence has variance N0

2 . If the power constraint on
the transmitted signal (i.e., S(t) in (2.2)) is P Watts, then the power constraint per
symbol is P = PT = P

W Joules/symbol. Since we are assuming no channel loss,
using (2.15), we obtain the capacity

C = 1
2

log2

(
1 + 2P

N0W

)
bits/symbol (2.16)

If, in (2.13), the input symbols are complex numbers, then the additive noise
is modeled as a sequence of complex valued random variables, which is taken to
be a sequence of i.i.d. zero mean, circularly symmetric Gaussian random variables
with variance σ2 (recall (2.7)). This means that the real and the imaginary parts
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are independent sequences of zero mean i.i.d. Gaussian random variables with the
same variance, σ2

2 . The capacity formula then takes the simple form

C = log2

(
1 + Prcv

σ2

)
bits/symbol (2.17)

where Prcv is the average received power per symbol. Without channel loss Prcv = P.
Now let us apply this to the modulation with complex symbols that led to

the channel model in (2.7). There Zk are i.i.d. zero mean circularly symmetric
Gaussian with variance with the real and imaginary parts have variance N0

2
. Then,

without channel loss, and a power constraint P on the transmitted continuous time
signal, the constraint on the average received energy per symbol is P

W
, yielding the

channel capacity

C = log2

(
1 + P

N0W

)
bits/symbol (2.18)

It is instructive to compare the expressions (2.16) and (2.18); see Problem 2.5.
We note that these capacity expressions gave the answer in bits per symbol.

Often, in analysis it is better to work with natural logarithms. With this in mind
we can rewrite (2.17) as

C = ln

(
1 + Prcv

σ2

)
nats/symbol

Since ln x = log2 x × ln 2, the capacity in nats per symbol is obtained by multiplying
the capacity in bits per symbol by ln 2 ≈ 0.693.

If the symbol rate is 1
T then, for the AWGN channel with complex symbols,

Shannon’s formula yields the bit rate

1
T

log2

(
1 + Prcv

N0W

)
bits/second

where Prcv is average power in the received signal. For the system bandwidth W ,
the bit rate, therefore, is limited to

W log2

(
1 + Prcv

N0W

)
bits/second (2.19)

An important measure of performance of a digital modulation scheme is
C
W bits/Hz; that is, the number of information bits that can be carried per Hertz of
system bandwidth. Let us write Prcv = Eb × C, where we can call Eb the received
energy per bit. (2.19) can then be written as

C
W

= log2

(
1 + Eb

N0

C
W

)
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from which we obtain

Eb

N0
= 2

C
W − 1

C
W

The quantity on the left is the ratio of the received energy per bit to the power spec-
tral density of the additive noise, and is called the signal-to-noise ratio per bit. We

conclude that, in order to achieve C
W

bits/Hz, we require an
Eb

N0
of at least

2
C
W − 1

C
W

.

For example, for C
W

= 1 bit/Hz (a typical number for a FDM-TDMA system such

as GSM), the minimum value of
Eb

N0
= 1 or 0 dB. Practical modulation and coding

schemes need larger values of
Eb

N0
, as seen in the examples earlier in this chapter.

2.2.2 Channel Capacity with Fading
How does a time varying channel attenuation affect the Shannon capacity formula?
If the channel attenuation is h, and the noise is AWGN, then, for transmitted power
Pxmt, the channel capacity is given by (2.19):

W log2

(
1 + hPxmt

N0W

)

Suppose that the transmitter is unaware of the extent of the channel fading, and
uses a fixed power and a fixed modulation and coding scheme. Suppose also
that the fading level varies slowly. Then, for a given level of fading, the receiver
must know h in order for the communication to achieve the Shannon capacity.
To see this, let us look at Figure 2.4(b). If the channel’s power attenuation is
h, the received symbols are multiplied by

√
h. This results in the symbols being

“squeezed” together or spread apart. Obviously, the detection thresholds will need
to depend on the level of fading.

Suppose that Hk is a stationary and ergodic process. It can then be shown
that if the transmitter cannot adapt its coding and modulation, but the receiver
can exactly track the fading, then the channel capacity with fading is given by

Cfading − CSIR =
∫

W log2

(
1 + hPxmt

WN0

)
gH(h)dh (2.20)

where gH(·) is the marginal density of the channel attenuation process Hk. For
example, gH(h) is exponential for Rayleigh fading (see Section 2.1.4). The acronym
CSIR stands for channel state (or side) information at the receiver. Thus the
transmitter can encode at any fixed rate R < Cfading−CSIR, and for large enough
code blocks the error rate can be made arbitrarily small, provided the receiver can
track the channel. It is important to bear in mind that this is an ideal result; to
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achieve it, the channel fades will have to be averaged over and this will result in
large coding delays.

In Problem 2.6 we see that Cfading − CSIR ≤ W log2

(
1 + E(H)Pxmt

WN0

)
, that is, the

capacity with fading is less than that with no fading with the same average SNR.
With fading, there will be times when the SNR is higher than the average and
times when the SNR will be lower than the average. Yet this result shows that
the resulting channel capacity is less than that without fading, as long as the same
average SNR is maintained.

2.3 Diversity and Parallel Channels: MIMO
We emphasise that we are discussing direct point-to-point communication between
a transmitter and a receiver. We have already seen that the signal from the
transmitter can reach the receiver over multiple paths. Since it can be expected that
random fading along these paths will be independent, combining the signals from
these paths in some manner might lead to better performance than working with
the aggregate signal. Such diversity can be obtained in various ways. If the receiver
has multiple antennas (see Figure 2.8), and if the antennas are spaced sufficiently
far apart (at least half the carrier wavelength) then, for the same transmitted signal,

GK

G2

G1

X
^

X

re
ce

iv
er

Figure 2.8 A single-input-multiple-output (SIMO) system comprising one transmit
antenna and K receive antennas.
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the signals received at the different antennas fade approximately independently.5

To see how such independently faded copies can be exploited, let us consider the
following model for the signal received along each path.

Yk = GkX + Zk

where k, 1 ≤ k ≤ K, indexes the diversity “paths,” and X is the transmitted
(complex) symbol. The Zk, 1 ≤ k ≤ K, are zero mean, i.i.d. circularly symmetric
normal random variables, each with variance σ2. Recalling the notation Hk =
|Gk|2, let us write Gk = √

Hkejθk , that is, on the k-th path, the transmitted symbol
X is scaled by

√
Hk and rotated by θk.

Assuming that the receiver knows the values of θk, 1 ≤ k ≤ K, it can be shown
that the optimum strategy is to form a linear combination of the K received signals
by using complex weights μke−jθk , to obtain

Y =
K∑

k=1

μke−jθkYk

=
⎛
⎝ K∑

k=1

μk

√
Hk

⎞
⎠X +

K∑
k=1

μke−jθkZk

Note that rotation by θk does not destroy the circular symmetry of the noise, Zk.
Let the transmitted power be P, that is, E(|X|2) = P. If the symbol detection is
based on the statistic Y, then the performance of this receiver algorithm will be
based on the received SNR

Ψrcv =
(∑K

k=1 μk
√

Hk

)2
P(∑K

k=1 μ2
k

)
σ2

Now, by the Cauchy-Schwartz inequality, we have

⎛
⎝ K∑

k=1

μk

√
Hk

⎞
⎠

2

≤
K∑

k=1

μ2
k

K∑
k=1

Hk

5To understand the relationship between antenna spacing and low correlation between received signals, let
us recall the concept of coherence time. Multipath fading observed by a mobile has low correlation between

time instants separated by Tc, which is roughly the reciprocal of fd = fc
c v, where fc is the carrier frequency,

c is the speed of light, and v is the speed of the mobile. Equivalently, fd = v
λc

, where λc is the wavelength
of the carrier. It follows that fade correlations are weak over a distance equal to the carrier wavelength.
A precise analysis of the phenomenon actually shows that the correlations are weak over distances as little
as half the wavelength. Note that λc = 30 cm for fc = 1 GHz, and λc = 6 cm for fc = 5 GHz.
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with equality when μk = a
√

Hk for some a (i.e., when the vector (μ1, μ2, . . . , μK)

is a multiple of the vector
(√

H1,
√

H2, . . . ,
√

HK
)
). Choosing the weights μk,

1 ≤ k ≤ K, in this way maximizes the predetection SNR, yielding

Ψrcv =
⎛
⎝ K∑

k=1

Hk

⎞
⎠Ψxmt

where, as before, Ψxmt = P
σ2 is the transmit SNR. We now wish to study the bit

error probability for this approach. Suppose that the bit error probability with
AWGN decreases exponentially with the received SNR (see Problem 2.1). Then,
the average bit error rate is proportional to

E
(
e−Ψrcv

) = E
(

e
−
(∑K

k=1 Hk

)
Ψxmt

)

Recall our discussion in Section 2.1.4, and hence, write Hk = πΦk where π is the
path loss and shadowing factor from the transmitter to the receiver (taken to be
a constant over the time scale to which this analysis applies), and Φk, 1 ≤ k ≤ K,
represent Rayleigh fading over the various paths. This yields

E
(
e−Ψrcv

) = E
(

e
−
(∑K

k=1 πΦk

)
Ψxmt

)

Assuming that the fading at the different antennas are independent and identically
distributed, we take the Φk, 1 ≤ k ≤ K, to be i.i.d. exponentially distributed with
mean, say, φ. We then have

E
(
e−Ψrcv

) = (
E
(
e−Φ1πΨxmt

))K

=
(

1
1 + φπΨxmt

)K

≈ (
Ψrcv

)−K

where the approximation holds for large average received SNR Ψrcv = φπΨxmt.
Recall that for Rayleigh fading the probability of error decreased only as the
reciprocal of Ψrcv. Thus, by combining the received signals over multiple paths,
the bit error probability performance has been substantially improved. From the
form for the decay of the bit error probability with Ψrcv, we say that we have a
diversity gain of K.

The transmitter could also just repeat the signal over time, and if the
repetitions are spaced apart by more than the coherence time (see Section 2.1.4)
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then the received signals fade independently. It turns out that commonly used
channel codes provide a better chance of successful decoding if the channel error
process is uncorrelated over the code symbols. We saw earlier that the channel fade
process, Gk, is correlated over periods called the channel coherence time, which
depends on the speed of movement of the mobile device. Interleaving is a way to
obtain an uncorrelated fade process from a correlated one. Basically the transmitter
does not send successive symbols of a codeword over contiguous channel symbols,
but successive symbols are separated out so that they see uncorrelated fading. In
between, other codewords are interleaved. We say that interleaving exploits time
diversity, that is, the fact that channel times separated by more than the coherence
time fade independently. Observe that interleaving introduces interleaving delay,
which adds to the link delay, and hence to the end-to-end delay over the
wireless network. Also, interleaving fails if the fading is very slow, for example
if the relative motion stops, and the transmitter-receiver pair are caught in a
bad fade.

In the discussion earlier in this section, we considered the case in which
multiple independently faded copies of a transmitted symbol arrive at the receiver.
By appropriate combining of these received symbols, the probability of error is
reduced. Suppose that the channel is such that the transmitter can, in parallel,
transmit several symbols, each of which is then independently faded and received.
Then the available power P can be distributed over the parallel channels to obtain
a higher bit rate than if all the power was used on a single channel; see Problem 2.7,
and, for more details, Chapter 6.

Physically, parallel channels between a transmitter-receiver pair can arise
if the system bandwidth is partitioned into several orthogonal channels (e.g.,
by partitioning in frequency and time), and then several of these channels are
simultaneously available for communication between the transmitter-receiver
pair. Even for narrow-band systems, multiple parallel channels can arise if
the transmitter and receiver use multiple antennas (see Figure 2.9). As before,
let the system bandwidth be W Hz. Suppose that there are N transmit antennas
and M receive antennas. Let Gk, i, j

(
1 ≤ i ≤ M, 1 ≤ j ≤ N

)
denote the

channel gain between the transmit antenna j and the receive antenna i, at
the k-th symbol. As we know, these channel gains will capture the path loss,
the shadowing, and the multipath fading, and will be modeled as complex valued
random variables. Let Gk denote the M × N channel gain matrix at symbol k.
Let Xk = (

Xk,1, Xk,2, . . ., Xk,N
)T denote the input symbols into the N transmit

antennas at the k-th symbol time. These too are complex valued, as would be the
case for general two-dimensional constellations. Let Yk = (

Yk,1, Yk,2, . . ., Yk,M
)T

denote the corresponding complex valued channel outputs. Hence, we can
write

Yk = GkXk + Zk
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G1,1

GM,1

G2,1

GM,N

G2,N

1

2

M

N

1

Figure 2.9 A multiple-input-multiple-output (MIMO) system comprising N transmit
antennas and M receive antennas.

where Zk is the M×1 additive noise process. The components of Zk are zero mean
i.i.d. circularly symmetric Gaussian random variables, each with variance σ2; also
the Zk sequence is i.i.d. over k. This also means that Zk,i, 1 ≤ i ≤ M, are complex
with their real and imaginary parts being zero mean independent Gaussian random
variables, each with variance σ2

2 .
There is a total transmit power constraint of P:

lim
n→∞

1
n

n∑
k=1

N∑
j=1

|Xk,j|2 < P

Define, as before, Ψxmt = P
σ2 . Let us also assume i.i.d. Rayleigh fading between

each transmit-receive antenna pair. Then Hk,i,j = |Gk,i,j|2 are i.i.d. exponentially
distributed with a common mean over the antennas, say, φ. If the distance between
the transmit antennas and the receive antennas is large, then the path losses
between the antenna pairs would be the same. Let us denote this common path
loss by π, as in the diversity analysis shown earlier. We “pull” the average path
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loss, and the mean of the Rayleigh fading out of the channel gain matrix, leaving
the mean power gain of the elements in the channel gain matrix to be 1. Then the
received SNR, averaged over Rayleigh fading, is (as before) written as

Ψrcv = φπΨxmt

The transmitter does not know the channel gains, and it can be shown that
the best strategy is for the transmitter to split its power equally over the N transmit
antennas. Then, given a sample of the gain matrix, say, G, it can be shown that
the capacity of this channel is given by

C = W log2

(
det

(
IM + Ψrcv

N
G · G†

))
bits/second (2.21)

where det(·) denotes the “matrix determinant,” IM denotes the M × M identity
matrix, and G† denotes “conjugate-transpose.” Now G·G† is an M×M Hermitian
matrix (i.e., its conjugate-transpose is the same as itself). The theory of matrices
provides the following facts:

1. The eigenvalues of G · G† are real and nonnegative.

2. The number of positive eigenvalues is no more than min{M, N}.
Let us index the eigenvalues in decreasing order of magnitude and denote them
by λ1 ≥ λ2 ≥ . . . ≥ λmin{M,N}. Then using the fact that the determinant of a
square matrix is equal to the product of its eigenvalues, and that the eigenvalues
of IM + Ψrcv

N G · G† are of the form 1 + λj
Ψrcv
N , we obtain the following simpli-

fication:

C = W
min{M,N}∑

j=1

log2

(
1 + λj

Ψrcv

N

)
bits/second (2.22)

We see that, under the assumptions we have made, the multiple transmit antenna
and multiple receive antenna system (also called a multiple-input-multiple-output
(MIMO) system) is equivalent to several parallel channels. Note that, for different
realizations of the channel gain matrix, the gains of the parallel channels (the
eigenvalues λj, 1 ≤ j ≤ min{M, N}) will be different. In effect, we have parallel
channels with random gains.

Let us consider the situation in which M = N, and all the eigenvalues are
equal, say, λ. Then

C = WM log2

(
1 + λΨrcv

M

)
bits/second
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We see that for a single transmit and receive antenna system the capacity
(i.e., W log2(1 + Ψrcv)) scales as log Ψrcv for large Ψrcv, whereas for an M × M
MIMO system (with equal eigenvalues) the capacity scales as M log Ψrcv. This is
called multiplexing gain.

Thus, we find that a multiple antenna system can be used to obtain diversity
gain (as explained above for one transmit antenna and M receive antennas), or can
be used to increase the channel capacity by the creation of parallel spatial channels
between the transmit and receive antenna groups. For an N transmit antenna, and
M receive antenna system, the diversity gain is bounded by M × N, whereas the
multiplexing gain is limited to min{M, N}.

We note that the above discussion assumed that the channel gains are
unknown at the transmitter. If channel gain estimates could be provided to the
transmitter, then it could judiciously choose the transmitted symbols and their
powers so that the better of the parallel spatial channels are assigned the larger
transmit powers. We will study such optimal power allocation problems in the
OFDMA context in Chapter 6.

2.4 Wideband Systems
Unlike the narrow-band digital modulation used in FDM-TDMA systems, in
CDMA and OFDMA the available spectrum is not partitioned, but all of it is
dynamically shared among all the users. The simplest viewpoint is to think of
CDMA in the time domain and OFDMA in the frequency domain. In a wideband
system, a user’s symbol rate is much smaller than the symbol rate that the channel
can carry (i.e., 1

W ).

2.4.1 CDMA
In CDMA a user’s symbol, which is of duration L channel symbols (also called
chips), is multiplied by a spreading code of length L chips. This is called direct
sequence spread spectrum (DSSS), since this multiplication by the high rate
spreading code results in the signal spectrum being spread out to cover the system
bandwidth. If the user’s bit rate is R and the chip rate is Rc (> R), then L = Rc

R (> 1)

and is called the spreading factor. The spreading codes take values in the set
{−1, +1}L and are chosen so that each code is approximately orthogonal to all the
time shifts of the other codes, and also to its own time shifts. Then the spread
symbols are transmitted. All the signals interfere because they occupy the same
radio bandwidth. We provide a simple analysis of such a system, with reference
to the depiction in Figure 2.10.

There are M users. The symbol duration is 1
R , during which there are L chips.

Denote the chip time by τc = 1
Rc

. We can write the transmitted signal from User 1
(see Figure 2.10) as

x1

L−1∑
j=0

S1,j p(t − jτc)
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S1,0 S1,(L 2 1)

S2,0

(2)
S2,(L 2 1)

(2)

x1

1

3

2

Figure 2.10 Depiction of the superposition of CDMA symbols. The transmissions of
three users are shown. The tall ticks denote symbol boundaries and the short ticks
denote chip boundaries. A symbol of User 1 that has the value x1 ∈ {+√

E1, −√
E1}

has been shown. It has been spread by the code S1,j, 0 ≤ j ≤ L − 1. Interfering
symbols of the other users are also shown. The interfering users are assumed to be
chip synchronous but their symbols are randomly offset from that of the symbols of
User 1.

where x1 is the user’s information carrying symbol, S1,j, 0 ≤ j ≤ L − 1, is User 1’s

spreading code, and p(t) is the baseband pulse that is bandlimited to
(
−W

2 , W
2

)
,

and has the property ∫ ∞

−∞
p2(u) du = 1

Let xi ∈ {+√
Ei, −

√
Ei}, where Ei corresponds to the transmit power used by User i.

Let
√

hi,1 denote the magnitude of the channel attenuation from the transmitter of
User i to the receiver of User 1. For simplicity, let us work at the baseband, and
then we can write the received signal at the receiver of User 1, over the duration
of one symbol, 0 ≤ t ≤ 1

R , as

y(t) =
L−1∑
j=0

√
h1,1 x1 S1,j p(t − jτc) +

M∑
i=2

L−1∑
j=0

√
hi,1 xi,j S(i)

i,j p(t − jτc) + N(t)

where xi,j denotes the value of the symbol of User i that interferes with User 1 at
the j-th chip in User 1’s symbol (see Figure 2.10), S(i)

i,j denotes that a shifted version
(denoted by the superscript (i)) of the spreading code of User i interferes with the
chips of User 1, and N(t) is additive white Gaussian noise with power spectral



44 2 Wireless Communication: Concepts,Techniques, Models

density N0, bandlimited to
(
−W

2
, W

2

)
. The receiver of User 1 now performs the

following operation:

∫ +∞

−∞
y(u)

L−1∑
j=0

S1,j p(u − jτc) du

yielding the following statistic,6 based on which the transmitted symbol from
User 1 has to be detected:

√
h1,1 x1 L +

M∑
i=2

L−1∑
j=0

√
hi,1 xi,j S(i)

i,j S1,j + Z

where Z is zero mean Gaussian with variance N0L (to see how this is obtained, see
the derivation in the appendix of this chapter). The spreading codes are pseudo-
random sequences taking values in {−1, +1}, and hence we model xi, j S(i)

i,j S1,j, 0 ≤
j ≤ L − 1, as i.i.d. random variables taking values in {+√

Ei, −
√

Ei}, each with
equal probability. Thus we obtain the following symbol-by-symbol model for the
CDMA channel:

Yk = L
√

h1,1Xk + Ik + Zk (2.23)

where Ik is the interference, Zk is additive noise (which is an i.i.d. Gaussian
sequence with zero mean and variance N0L), and we have assumed that the channel
gains are not varying with time. Since the interference is the sum of contribu-
tions from many independent random variables, we model it also as having a
Gaussian distribution. Note, from this calculation, that Ik has zero mean, and
variance

M∑
i=2

L hi,1 Ei

Hence, the detection performance will depend on (see Section 2.1.1)

√
L2 h1,1 E1∑M

i=2 L hi,1 Ei + N0L
=

√
L h1,1 P1∑M

i=2 hi,1 Pi + N0W

6The integration over (−∞, +∞) will actually cover neighboring symbols as well. But, because the pulses
p(t − jτc) are orthogonal, the terms that we display are all that we will get.
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where we have taken Rc = W , and Pi = Ei ×Rc as the transmit power of User i (the
power is the energy per chip times the chip rate). Thus the detection performance
depends on the ratio

L h1,1 P1∑M
i=2 hi,1 Pi + N0W

(2.24)

Now we can see why L is also called the processing gain. The effective predetection
signal-to-interference-plus-noise ratio (SINR) for a user is the received SINR
(i.e., h1,1 P1∑M

i=2 hi,1 Pi+N0W
) multiplied by the processing gain L.

Recalling the notation Td for the delay spread of the channel, let us write
Ld = Td

τc
: Ld is the number of chip-times that correspond to the delay spread. Now

consider the signal arriving over paths that have delays that are multiple of the chip-
times. If the receiver can lock into any of these paths, then the transmitted symbol
can be decoded as described earlier. If the paths fade independently, however,
then we can exploit multipath diversity in much the same way as explained
in Section 2.3. Because of the orthogonality property mentioned earlier, at the
receiver, multiplication of the received signal by various shifts of the spreading
code, and appropriate linear combination of the results, yields a detection statistic
that is the sum of several faded copies of the user symbol. Since these shifts
correspond to as many paths from the transmitter to the receiver, this is called
multipath resolution. In the context of CDMA systems this is achieved by the
Rake receiver. We note that this is exactly the same procedure as explained for
receive antenna diversity in Section 2.3. Thus the Rake receiver permits a desired
bit error rate to be achieved with a smaller SINR. Advanced receiver techniques
such as interference cancellation now also are employed in CDMA systems.

Scheduling transmissions in a CDMA system involves a decision as to the
spreading codes and the power levels to be allocated to the users. These determine
the rate at which a particular bit flow can be transmitted. Of course, this decision
will have to be made jointly for all users, since the decision for one user impacts
every other user. We turn to such resource allocation problems in Chapter 5.

2.4.2 OFDMA
We begin by recalling some notation. The system bandwidth is denoted by W ,
and the delay spread by Td. In a wideband system we are dealing with a situation
in which Td >> 1

W , so that intersymbol interference has to be dealt with if we
directly do digital modulation at a symbol rate of 1

W . For example, we may have
W = 5 MHz, and Td = 5 μsec.

OFDMA is based on OFDM (orthogonal frequency division multiplexing)
(see [43]), which can be viewed as statically partitioning the available spectrum into
several (e.g., 128 or 512) subchannels, each of bandwidth B, such that B << 1

Td
.

Thus, a flat fading model can be used for each subchannel.
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If there are n subchannels, then we say that the OFDM block length is
n. The user bit stream is mapped into successive blocks of n channel symbols
that are then transmitted in parallel over the n carriers, so as to occupy the
block time T (>> Td); see Figure 2.11. The term orthogonal in OFDM refers
to the fact that the center frequencies of the subchannels are separated by the
reciprocal of the OFDM block time, T (see Figure 2.12). This makes the carriers
approximately orthogonal over the block time. The subchannels can then be over-
lapping (i.e., B > 1

T ), while the orthogonality between the subcarriers facilitates
demodulation at the receiver.

Let Xj,k, 1 ≤ j ≤ n, denote the j-th symbol in the k-th OFDM block
(see Figure 2.11). The batch of n symbols, which are transmitted in parallel, is also
called an OFDM symbol. Then the earlier discussion suggests that the predetection
channel output can be written as

Yj,k = Gj,kXj,k + Zj,k (2.25)

where j, 1 ≤ j ≤ n, indexes the subcarrier and k ≥ 1 indexes the successive OFDM
symbols. Gj,k denotes the fading on the j-th subcarrier during the k-th OFDM
symbol. Zj,k denotes an additive noise sequence, which is taken to be i.i.d. zero
mean, Gaussian.

X1,k

X2,k

X3,k

X4,k

X5,k

X3,k11

X1,k11

X4,k11

X5,k11

X2,k11

T T T

110100111001110110 011011

{

} } } }
{

} } }
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D
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User bit stream

Successive OFDM blocks

Figure 2.11 Depiction of the mapping of user bits into OFDM symbols. Here there
are five OFDM carriers. Serially arriving user bits are split into pairs that are mapped
successively into five parallel channel symbols (X1,k, X2,k,. . ., X5,k), k ≥ 1 (for example,
the 4-QPSK constellation could be used).These five channel symbols comprise an OFDM
block, which is transmitted over the block timeT.
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T

1

B

W

Figure 2.12 In OFDMA, the system bandwidth, W, is partitioned into overlapping
subchannels, each of bandwidth B, with their center frequencies spaced apart by 1

T
,

whereT is the OFDMA symbol duration.

Let us see how this model can be justified. By the orthogonality requirement,
the carrier spacing is the reciprocal of the OFDM block time, 1

T . Then the number
of carriers, n, is related to the system bandwidth, W , by

1
T

× n = W

As an example, consider T = 100 μsec, so that the carrier spacing is 10 KHz and,
for W = 5 MHz, n = 500. Suppose the channel delay spread, Td, is such that

1
W

× n >> Td

even though 1
W < Td. Then, combining the previous two equations we find that

T >> Td

that is, the delay spread is much smaller than the OFDM symbol duration. We see
that this is true in our numerical example, where T = 100 μsec and Td = 5 μsec.
Thus, the model in (2.25) is justified if the condition 1

W × n >> Td holds. We see
that a frequency selective channel (for which 1

W < Td) gets converted to n parallel
channels, each of which is frequency nonselective.

If it is further true that T × N << Tc, the channel coherence time, for some
N ≥ 1, then over N OFDM blocks (which could constitute an OFDM frame)
the channel can be taken to be constant. For example, taking N = 50 OFDM
symbols, for the numerical values chosen earlier, N × T = 5 ms. Then, for a
channel coherence time of 10 ms, we can take the channel to be constant over an
OFDM frame.

Continuing our running numerical example, suppose that the 64 QAM
constellation is used to modulate the user’s bits. Then, the previously described
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system carries one 64 QAM symbol per carrier, per OFDM symbol time, or OFDM
block time, T. Thus, ideally, we can send 6 bits per carrier over time T, or we
obtain a bit rate of 6× 1

T ×n bits per second, or, with the preceding numerical values,
6×104×500 = 30 Mbps, which is the same as if we could directly use a symbol rate
of W = 5 Msps (mega symbols per second), with 6 bits being carried per symbol.
The latter is, however, hard to achieve due to the difficulty of managing ISI over
a time varying fading channel. Thus, it would seem that OFDM avoids ISI and
provides the ideal bit rate. However, this discussion has ignored several practical
overheads such as guard spaces between neighbouring subchannels, a guard time to
eliminate any intersymbol interference, channel estimation overheads, and framing
overheads.

It can be shown that fading is uncorrelated between subcarriers that are
spaced apart by more than the coherence bandwidth, Wc Hz, which, we recall, is
related roughly reciprocally to the delay spread, Td. Hence, just as time diversity
is exploited in TDM systems, frequency diversity can be exploited in OFDM
systems: successive symbols of a user’s codeword can occupy independently fading
subcarriers.

It is easy to see how this concept can be used to share the flows from multiple
users over a single OFDM link. Depending on the rate requirement of each user,
a certain number of subchannels can be dynamically allotted to each of the users.
Scheduling transmissions over an OFDMA link involves a decision as to how
many subchannels to assign to a user, and what constellations, channel coding,
and power levels to use from time to time, depending on the channel conditions and
user rate requirements. Of course, the decisions for various users are interrelated.
We note that, unlike static allocation on FDM-TDMA systems, the resource
allocation decisions in OFDMA can vary from frame to frame, depending on
channel conditions and traffic demands. We provide some OFDMA resource
allocation formulations and their solutions in Chapter 6.

2.5 Additional Reading
In this chapter we have provided a tutorial overview of digital communication over
wireless channels. The main objective was to provide an understanding of several
models that we will use in the remainder of the book. We will require these physical
layer models in the analysis, optimization, and control of the flow of traffic from
various applications over wireless networks. The subject of this chapter has been
extensively covered in several excellent textbooks; two well-established texts are
the ones by Proakis [113], and by Lee and Messerschmitt [92]. The area of mobile
multiuser communication over wireless channels has made rapid progress in recent
years. It is important to gain an understanding of the mobile wireless channel, and
the analysis of digital communication schemes over mobile wireless channels. We
have provided only the basics; extensive coverage is provided by Stuber [123] and
by Rappaport [116]. Modern topics, such as OFDMA and MIMO communication
are covered in two recent textbooks, one by Tse and Viswanath [131], and the
other by Goldsmith [43].



2.5 Additional Reading 49

Appendix
Derivation of Equation 2.4

The signal received at the front-end of the receiver is given by

Y(t) = S(t) + N(t) (2.26)

At the receiver, the signal is translated back to the baseband by multiplying the
received signal by

√
2 cos(2πfct), which yields

∞∑
k=−∞

Ck p(t − kT)
(
cos(4πfct) + 1

) + U(t)

(
cos(4πfct) + 1

)
√

2

The receiver filters this signal to the frequency interval
(
−W

2 , + W
2

)
. Hence, the

high frequency terms are filtered out (since fc >> W), and we are left with

∞∑
k=−∞

Ck p(t − kT) + 1√
2

U(t) (2.27)

The noise 1√
2

U(t) is white Gaussian with power spectral density N0
2 Watts/Hz.

Since the signal is now bandlimited to the interval
(
−W

2 , + W
2

)
, the average noise

power is W × N0
2 = WN0

2 Watts; this means that

lim
t→∞

1
t

∫ t

0

(
U(x)√

2

)2

dx = WN0

2

where the integrand on the left is the power dissipation if the noise was put across
a 1 ohm resistor; the integration yields energy over (0, t), and the division by time
yields the average power.

The receiver also needs to synchronize to the pulse boundaries. Once this is
done the demodulator then needs to look at each received pulse and determine
which symbol it is carrying. This step is called detection. Let us now see how
the k-th symbol is detected, that is, how it is determined whether Ck = +√

Es, or
Ck = −√

Es. The received signal is multiplied by the pulse p(t −kT) and integrated
over (−∞, +∞), the pulse p(t) being assumed to be known at the receiver.7 Since∫ +∞
−∞ p2(t) dt = 1, and the shifted pulses are orthogonal, this yields

Ck +
∫ +∞

−∞
U(t)√

2
p(t − kT) dt

Now U(t) is a zero mean Gaussian process; hence, using the fact that a linear
combination of Gaussian random variables is again Gaussian, we conclude that

7Since the pulses are practically time limited to some small multiple of T, such an integration can be
performed by storing the received signal for some multiple of T, before starting the integration.
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∫ +∞
−∞

U(t)√
2

p(t − kT) dt is a zero mean Gaussian random variable, which we denote
by Zk. Thus, E(Zk) = 0, and the variance of Zk is obtained as

E

((∫ +∞

−∞
U(t)√

2
p(t − kT) dt

)2
)

= 1
2

E
(∫ +∞

−∞

∫ +∞

−∞
U(t)p(t − kT)U(x)p(x − kT) dt dx

)

Since U(t) is a white Gaussian noise process, with power spectral density N0,
bandlimited to

(
−W

2 , + W
2

)
, it can be shown that the covariance function of U(t)

is given by

E(U(t)U(x)) = N0
sin πW(x − t)

π(x − t)

It then follows that

1
2

E
(∫ +∞

−∞

∫ +∞

−∞
U(t)p(t − kT)U(x)p(x − kT) dt dx

)

= N0

2

∫ +∞

−∞

(∫ +∞

−∞
sin πW(x − t)

π(x − t)
p(t − kT) dt

)
p(x − kT) dx

However, sin πWx
πx is just the transfer function of an ideal low pass filter with

pass band
(
−W

2 , + W
2

)
. Since the pulse p(t) is bandlimited to this same range of

frequencies, we have

∫ +∞

−∞
sin πW(x − t)

π(x − t)
p(t − kT) dt = p(x − kT)

We therefore conclude that

E
(
Z2

k

)
= E

((∫ +∞

−∞
U(t)√

2
p(t − kT) dt

)2
)

= N0

2

In a similar manner it can be shown that E(ZkZl) = 0, for k �= l. Hence, since they
are jointly Gaussian, Zk and Zl are independent for k �= l.

Thus, we find that we have the symbol-by-symbol channel model

Yk = Ck + Zk

where Zk is a sequence of i.i.d. zero mean Gaussian random variables with
variance N0

2 . �
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Problems
2.1 Show that Perror−AWGN decreases exponentially with Es

N0
. (Hint: for large

x, Q(x) ≈ 1
x
√

2π
e− x2

2 .)

2.2 Consider a mobile radio environment in which we model only path
loss and Rayleigh fading. The path loss exponent is η. The transmit
power, averaged over Rayleigh fading, at the reference distance d0 from
a transmitter is P.

a. Write down an expression for the random received power Prcv(d) at a
receiver at a distance d = ad0, and obtain the distribution of Prcv(d).

b. Two cochannel transmitters (indexed 1 and 2) are simultaneously
transmitting at distances d1 = a1d0 and d2 = a2d0 from the receiver.
A transmission can be decoded if its signal to interference ratio
exceeds γ. Ignoring the receiver noise, obtain the probability that the
transmission from Transmitter 1 is decoded, treating the signal from
Transmitter 2 as interference. This is called the capture probability
(of Transmitter 1 over Transmitter 2).

c. Determine β such that if a2 > (1 + β)a1 then the probability of
transmission 1 being decoded is greater than 1−ε (ε > 0 is very small).

2.3 Consider the binary modulation scheme analyzed in Section 2.1.1.
Obtain the bit error rates for various SNR values γ = 12 dB, 11 dB,
10 dB, and 9 dB. In each case, calculate the probability of packet
error for 1500 byte packets. Hence compare the plots in Figure 2.9
with the AWGN plot in Figure 2.12. Hint: Use the approximation

Q(x) ≈ 1
x
√

2π
e− x2

2 .

2.4 For the same situation as Problem 2.3 consider Rayleigh fading. For
average (Rayleigh-faded) SNRs γ = 12 dB, 24 dB, and 36 dB, obtain the
fraction of time that the SNR is less than 9 dB. Hence explain why a very
large SNR is required in Figure 2.12 to obtain a high throughput.

2.5 By using the concavity of log(1 + x), show that the capacity in (2.16) is
less than that in (2.18). What practical insight do we get from this?

2.6 Use Jensen’s inequality to show that Cfading − CSIR ≤ W log2

(
1 + E(H)Pxmt

WN0

)
.

2.7 Consider two AWGN channels with the same (power) fading h, and noise
power σ2. We have an amount of power P to assign. If the power Pi is
assigned to Channel i, the capacity achieved is ln

(
1 + hPi

σ2

)
. Is it better

to put all the power into one channel or to split the power over the
two channels? What is the optimal power assignment, assuming that the
transmitter knows that the two channels have the same power gain?
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CHAPTER 3

Application Models and
Performance Issues

I n Chapter 2 we provided an understanding of the issues and techniques
involved in carrying bit streams over wireless channels. The resources required
to carry a bit stream depend on the characteristics of the stream (e.g., the

average rate, peak rate, and rate variability), and the performance required by
the application generating the bit stream (e.g., an interactive voice call requires
end-to-end delay bounds, but can tolerate some data loss). In this chapter we will
discuss the major types of applications that telecommunication networks are used
for, and the performance issues related to these applications, particularly when
wireless networks are involved.

Overview
We begin by providing a “big-picture” view of telecommunication networks
as they exist today, showing all the elements, including the phone network,
the Internet, and various wireless access networks. Then we outline various
application scenarios that can arise in these interconnected networks. We classify
network applications into three types according to the traffic they generate for the
network to carry, namely, elastic traffic, real-time stream traffic, and store-and-
forward stream traffic. Taking interactive telephony as the principal example of
real-time stream traffic, we point out that the traffic offered to the network can be
either constant bit rate (CBR) or variable bit rate (VBR). We provide the quality
of service (QoS) objectives for each case. The predominant use of the Internet is
for applications such as e-mail and web browsing, which generate elastic traffic.
Such applications are also increasingly important for wireless access networks, as
users begin to use their handheld devices for Internet access. The remainder of the
chapter provides an understanding of this important type of traffic. We show the
need for feedback control of elastic traffic sources. In the Internet such feedback
control is exercised by the Transmission Control Protocol (TCP), which uses an
adaptive window mechanism for managing the rates of elastic traffic sources. The
latter part of this chapter will be devoted to a discussion of the performance of
TCP over wireless links.
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3.1 Network Architectures and Application Scenarios
In Figure 3.1 we provide a simplified view of telecommunication networks as they
exist today. The public switched telephone network (PSTN) has carried telephone
calls for nearly a century. In this network, the calls are multiplexed onto the links
by using circuit switching. Packet switched public data networks have evolved
from the early X.25 networks to the present ubiquitous Internet. Cellular networks
have provided mobile access since the early 1980s, and already have evolved
through three generations of commercial deployment. As discussed in Chapter 1, a
variety of resource allocation techniques are employed in cellular networks; these
techniques will be the subject of Chapters 4, 5, and 6. In campuses and enterprises,
mobile devices such as laptops and personal digital assistants (PDAs) obtain access
to Internet services via wireless local area networks (WLANs). Figure 3.1 also
shows some emerging technologies, namely, wireless metropolitan area networks
(WMANs), and ad hoc multihop wireless mesh networks.

Figure 3.1 also shows certain devices, generically called gateways (GW),
interconnecting the PSTN, the Internet, and cellular networks. Note that we show
only bearer gateways that are in the path of the actual application traffic. Signaling
gateways are also needed because signaling protocols are different in networks
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Figure 3.1 A simplified view of the public switched telephone network (PSTN) and
the Internet, and how they connect with each other and various wireless networking
technologies. GW denotes a gateway; there are gateways for signaling and call control,
and also for transferring traffic across network boundaries. Other abbreviations are:
CO – Central office,TX –Trunk exchange; R – Router.
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that have evolved independently. For example, a signaling protocol called Session
Initiation Protocol (SIP) is used to set up voice calls in the Internet, whereas the
Signaling System No. 7 (SS #7) is used in the PSTN.

In this setting we can identify several different instances of point-to-point
communication, each of which gives rise to certain resource allocation issues.
A common instance is that of a voice call between a fixed line telephone instrument
on the PSTN (e.g., A in Figure 3.1) and a cellular phone (e.g., C). We will often
use the more generic term mobile station (MS) for a mobile device such as a cell
phone or a PDA; in some technologies the terms station (STA) or subscriber
station (SS) are used instead of MS. One of the functions of the gateway, GW,
between the PSTN and the cellular network is to convert between the constant
bit rate (CBR) flow of voice bytes in the PSTN to a lower bit rate voice coding
scheme over the resource limited cellular wireless network. In cellular networks,
typically, voice is handled as a CBR stream of a lower bit rate than that in
the PSTN. In an FDM-TDMA system, such as GSM, there are channels, each
of which can carry one call at a fixed rate. An accepted call is assigned to a
channel for the entire duration of the call. Thus, this is essentially a circuit
multiplexing system. A call for which no free channel is available is blocked and
the main performance measure for the system is the blocking probability, defined
as follows. Let A(t) be the number of call arrivals until time t, and B(t) be the
number of calls blocked in the same time; then the blocking probability Pb is
given by

Pb = lim
t→∞

B(t)
A(t)

whenever the limit exists. In a CDMA cellular system, the voice connection is
handled by assigning to it the required coded rate. However, unlike typical FDM-
TDMA systems, a variety of rates can be assigned. Each accepted call needs to be
assigned a transmit power level, and whether or not a call is accepted depends on
the rate requirements of the other calls that have already been accepted, and the
resulting interference levels once the new call is accepted. Again, the performance
measure of interest is the probability of call blocking.

Another possible type of connection is a voice call between the PSTN
instrument A and a voice over IP (VoIP) endpoint, say, B. The GW between
the PSTN and the Internet then would convert between the CBR flow of voice
bytes in the PSTN to an asynchronous flow of voice packets in the Internet. Since
the packets flow asynchronously in the packet network, and can be queued in
buffers in the network routers, certain new issues arise, which will be discussed in
Section 3.3. Similarly, there could be a voice call between either A or B and the
endpoint D, which accesses the Internet via a WLAN or a WMAN. In such cases,
the packet multiple access mechanism over the wireless access network affects the
performance of the voice call.

Yet another scenario is that of the MS C being used to browse the contents of
the web server E which is attached to the Internet. We will see later, in Section 3.4,
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that this kind of application is quite different from voice, as there is no intrinsic rate
at which the data should be transferred from the web server to the mobile phone.
Feedback-based rate control algorithms are employed to ensure some sort of rate
fairness between such connections, and efficient utilization of network resources.
In the Internet, such control is exercised by TCP in conjunction with implicit
or explicit congestion feedback from the network. In addition, a cellular access
network such as a CDMA cellular network, or an OFDMA network, would have
its own rate control algorithms. Unlike these centrally controlled cellular systems,
a random access WLAN (see Chapter 7) does not have an explicit rate allocation
mechanism. Hence, when a device such as D is engaged in web transfers from the
Internet, it is of interest to determine what the throughput is, and what kind of
fairness is achieved.

Finally, the MS C or the device D could be displaying a video that is stored in
the server E. Now, once the video starts playing, the network should provide this
connection the average rate required to transport the video stream. Variability in
the rate at which the network transports the video can be compensated by buffering
a sufficient amount of the video in the playout device. Such buffering must be done
in such a way that the playout does not starve (i.e., the buffer empties out), nor
does the buffer overflow.

Figure 3.1 also shows an ad hoc multihop wireless mesh network attached to
the Internet. Although multihop mobile wireless networks have been studied for
more than three decades (in the early years under the name packet radio networks),
even today the deployments of such networks are still experimental. It is one of the
more active research areas in wireless networking, and we will provide a research
oriented discussion in Chapters 8, 9, and 10. The IEEE 802.16 suite of protocols
(popularly known as WiMax) now contains the definition of a mesh networking
standard. Under this standard, nodes that cannot directly access a WiMax base
station (BS) can form a static mesh network that is connected at some point to the
WiMax BS. We can think of these as managed mesh networks. Such networks will
be expected to carry all Internet services, respecting the QoS objectives that we will
describe. On the other hand, ad hoc wireless mesh networks, such as community
networks formed from WiFi access points in homes, cannot be expected to provide
any consistent QoS to the applications they carry. We might expect that these
would be used primarily for nonreal-time store-and-forward applications, such as
e-mail and web browsing.

3.2 Types of Traffic and QoS Requirements
Based on the discussion of the various scenarios in Section 3.1, we can infer that
applications generate one of the types of traffic in the following list. Some example
applications that generate each type of traffic are also listed.

• Elastic traffic; e.g., WWW browsing, FTP file transfers, and electronic
mail
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• Real-time stream traffic; e.g., packet voice telephony

• Store-and-forward stream traffic; e.g., streaming movies or music over
the Internet.

In the remainder of this section we discuss the characteristics of these traffic types,
and also their quality of service (QoS) requirements.

ElasticTraffic

Consider a data file, residing on the disk of the server E (shown in Figure 3.1)
that needs to be transferred to the disk of a portable computer attached to the
Internet (e.g., the laptop D, which connects via a WLAN), or to the memory of
the cell phone C. Although the human (or some machine application) that wishes
to achieve this file transfer would like to have the transfer completed in, say, a
second or two, the source of data itself does not demand any specific transfer rate.
If the data transfer does not lose data, no matter how fast or slow it is (but as long
as the rate is positive), the file will sooner or later get transferred to the destination
device. We say that, from the point of view of the network, this source of traffic is
elastic. Many store-and-forward services (with the exception of media streaming
services) are elastic; e.g., file transfer, WWW download, electronic mail (e-mail).
In this list, the first two are distinguished by the fact that they are nondeferable (i.e.,
the network should initiate the transfer immediately), whereas e-mail is deferable.

We observe that elastic traffic does not have an intrinsic temporal behavior,
and can be transported at arbitrary transfer rates. Thus the following are the QoS
requirements of elastic traffic.

• Transfer delay and delay variability can be tolerated. An elastic transfer
can be performed over a wide range of transfer rates, and the rate can
even vary over the duration of the transfer.

• The application cannot tolerate data loss. This does not mean, however,
that the network cannot lose any data. Packets can be lost in the network
(owing to uncorrectable transmission errors or buffer overflows) provided
that the lost packets are recovered by an automatic retransmission
procedure. Thus effectively the application would see a lossless transport
service. Since elastic sources do not require delay guarantees, the delay
involved in recovering lost packets can be tolerated.

In practice, of course, users will not tolerate arbitrarily poor throughput,
high throughput variability, and large delays. Hence a network carrying elastic
traffic will need to manage its resource-sharing mechanisms in a way such that
some minimum level of throughput is provided. Further, some sort of fairness
must also be ensured between the ongoing elastic transfers.

Elastic traffic can also be carried over circuit multiplexed networks (e.g., the
PSTN or GSM cellular networks), or over networks that allocate a fixed rate to
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the elastic connection (e.g., a second generation CDMA cellular network). In this
case, shaping of the traffic so as to match the allocated rate should be carried out
by the source. Obvious examples would be Internet access over a dial-up line in
the PSTN, or a fixed rate connection over a cellular access network being used for
Internet access.

Real-Time StreamTraffic

Consider digitized speech emanating from an end-device involved in interactive
telephony. This could be a periodic stream of bytes or packets, or, if silence
suppression is employed then it could be an on-off stream of bytes or packets.
Obviously, this source of traffic has an intrinsic temporal behavior, and this pattern
needs to be preserved for faithful reproduction of the speech at the receiver. The
network will introduce delay: fixed propagation delay, and, in packet networks,
queuing delay that can vary from packet to packet (see Figure 3.2). Playout delay
introduced at the receiver (to mitigate the effect of random packet delay variation)
will be larger the more variable the packet delay. Hence, the network cannot serve
such a source at arbitrary rates, as it could in the case of elastic traffic. In fact,
depending on the adaptability of such a real-time stream source, the network may
need to reserve bandwidth and buffers in order to provide an adequate transport
service to the source. Applications such as real time interactive speech or video
telephony are examples of real-time stream sources.

h
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t1 t2 t3

network
output

peak rate 5 R bits/sec

input to
playout device
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Figure 3.2 A sequence of packets from a voice talk-spurt being transported across
a packet network, and then being played out at the receiver after a playout delay.
Each source packet contains h seconds of voice, the packet delays are X1, X2, . . ., the
packets arrive at the receiver at times t1, t2,. . ., and the playout delay is b. Notice that
immediate playout at time t1 would have resulted in the talk-spurt being broken.
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The following are the typical QoS requirements of real-time stream sources.

• Delay (average and variation) needs to be controlled. Real-time interactive
traffic such as that from packet telephony would require tight control of
source-to-sink delay; for example, for wide area packet telephony the
delay may need to be controlled to less than 200 ms with a probability
more than 0.99. Packets that do not conform to the delay bound are
considered to be lost.

• There is tolerance to data loss. Note that, from the point of view of the
receiver, packets can be lost for two reasons: (1) buffer overflows, or
unrecovered link losses in the network, or (2) late arrivals at the receiver.
Owing to the high levels of redundancy in speech and images, a certain
amount of data loss is imperceptible. As an example, for packet voice
in which each packet carries 20 ms of speech, and the receiver does
lost-packet interpolation, 5 to 10% of the packets can be lost without
significant degradation of the speech quality [81], [54]. Because of the
delay constraints, the acceptable data loss target cannot be achieved by
first losing and then recovering the lost packets; in other words, stream
traffic expects the intrinsic loss rate from the packet transport service to
be bounded.

Store-and-Forward StreamTraffic

We can distinguish what we have just described as real-time stream traffic from
the kind of traffic that is generated by applications such as streaming audio and
video. Such applications basically involve a one-way transfer of an audio or video
file stored on the disk of a media server. Consider a video stored in a server being
played over a network. For example, the computer D or the handheld device C
in Figure 3.1 may be used to watch a movie stored in the Server E. In order for
the received video to be useful, the playout device should be continuously “fed”
with video frames so that it is able to reproduce a smooth video output. This can
be achieved by providing a guaranteed rate to the transfer, as would be done, for
example, in a CDMA cellular system in the context of the device C. Alternatively,
owing to the fact that the transfer is one way, a more economical way is to treat the
transfer as elastic, and buffer the video frames as they are received. This would be
the approach taken when the video is transferred over the random access WLAN
to the computer D. Playout is initiated only after a sufficient number of video
frames has been buffered so that a smooth video playout can be achieved in spite
of a variable transfer rate across the contention-based WLAN. Note that the same
description holds for streaming audio.

Thus, the problem of transporting streaming audio or video becomes just
another case of transferring elastic traffic, with appropriate receiver adaptation.
Note, however, that the elasticity here is constrained since the average rate at
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which the network transports the video bit stream must match the rate at which
the video has been coded. Simple interactivity, such as the ability to rewind, can
also be supported by the receiver storing frames that have already been played
out. This, of course, puts a burden on the amount of storage that the playout
device needs to have. An alternative is to trade off sophistication at the receiver
with the possibility of interactivity across the network; that is, the press of the
rewind button stops the video playout, frames stored in the playout device are
used to create a rewind effect, and meanwhile additional past frames are fetched
from the server. But this would need some delay and throughput guarantees from
the network, requiring a service model somewhere in between the elastic and the
real-time stream model that we have described earlier. We conclude that the QoS
requirements of a store-and-forward stream transfer would be the following:

• The average transfer rate provided in the network should match (in fact,
should be greater than) the average rate at which the stored media has
been encoded.

• The transfer rate variability should not be too large.

Thus store-and-forward stream traffic is like stream traffic since it has an
intrinsic average rate at which it must be transported, but it does not have strict
delay bounds, and hence the network can provide it a time varying transfer rate. In
fact, TCP can be used to transport store-and-forward streaming media, provided
the average TCP throughput does not drop below the average coded rate of the
media. The added benefit of TCP is that it recovers lost packets.

Closed and Open Loop Traffic:
It is appropriate to refer to real-time stream traffic as open loop as it has an intrinsic
temporal behavior. Typically, the rate of flow on a connection is determined by the
application, and these sources are not controlled by the network. In some systems,
a limited amount of controllability is possible, by the sink alerting the source of
poor playout quality, to which the source can respond by using a lower bit rate
coder. On the other hand, closed loop controls invariably are used when transpor-
ting elastic traffic, and, hence, such traffic can be called closed loop. By means of
implicit feedback (packet loss) or explicit feedback (control bits in packet headers)
the source of the traffic is made to continually adjust its rate of emitting data.

3.3 Real-Time Stream Sessions: Delay Guarantees
In this section we will discuss traffic modeling and QoS issues for real-time stream
sessions in the context of voice telephony.

3.3.1 CBR Speech
Consider a voice call between a pair of endpoints in Figure 3.1. For example,
the PSTN phone A and the cellular phone C, or between B and D, or between C
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and B. In each end device, electrical signals from a microphone are digitized and
coded by a speech codec. A typical approach is to sample the analog signal from
the microphone at 8000 samples per second, to quantize the resulting continuous
amplitude samples into 256 predetermined levels, and then encode each of these
levels into 8 bits (one byte). The output of such a speech coder is called PCM (Pulse
Code Modulation) coded speech (ITU’s G.711 standard). The PCM encoder, thus,
yields a CBR source that produces 1 byte every 125 μseconds. A PCM source can
be compressed to yield CBR sources at various rates. For example, ITU’s G.729
vocoder takes PCM as the input and produces 10 bytes of coded speech every
10 ms, thus yielding a coded bit rate of 1 KBps (kilobytes per second). However,
this speech coder has a coding delay of 15 ms and a decoding delay of 7.5 ms. An
important measure of the performance of network telephony is the Mouth-to-Ear
(MtoE) delay—the delay between a sound being produced at the source device and
this being heard at the other end. Thus, if the G.729 speech coder is employed,
then there is a minimum MtoE delay of 22.5 ms.

In order to carry a CBR voice source, it is necessary for the network to use
a service rate greater than or equal to the voice bit rate. Further, if the source is
allocated exactly the constant bit rate then there will not be any queuing. Hence,
for CBR sources it is sufficient to allocate the CBR rate. Consider a voice call
between the PSTN phone A and the cell phone C. If the gateway GW converts
PCM speech arriving over the PSTN to CBR speech at rate R, then the cellular
network can just allocate resources so that the voice call is provided a service rate
of R. This is typically what is done in an FDM-TDMA cellular system (such as
GSM), or in a CDMA cellular system. We will discuss resource allocation issues
in these two types of systems in Chapters 4 and 5, respectively.

3.3.2 VBR Speech
In speech generated by interactive telephony, there are low energy periods that
correspond to silences while the speaker listens, or to gaps between words,
sentences, and utterances. The coder output corresponding to these inactive
periods can be discarded or encoded at a lower rate. This yields a variable bit
rate (VBR) coded speech. The VBR speech can be handled as a variable rate byte
stream, or can be packetized for transport over a packet network. One approach
is to take a certain number of bytes from the source (e.g., 160 bytes or 20 ms
of speech from a PCM source) and generate a packet from these. It may happen
that a talkspurt finishes before 160 bytes have been collected; in such a case a
short packet is generated. The packetizer must wait to accumulate a packet; thus
bytes that arrive early in the packet have to wait for those that arrive later, until
the packet is formed. This results in a packetization delay, which can, obviously,
be reduced by using shorter packets. Packets cannot be very short either, as there
could be a significant amount of header overhead in each packet (e.g., in the
Internet there would be at least 12 bytes for RTP (Real-time Transport Protocol),
8 bytes for UDP (User Datagram Protocol), and 20 bytes for IP). If the coder output
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during speech inactivity periods is discarded, then the output of a packetizer will
comprise bursts of packets (during which packets are generated at a constant rate)
and periods during which no packets are generated.

Note that although the inactive periods do not have speech information in
them, the duration of the gaps is indeed information that needs to be conveyed
to the receiver. One of the difficulties in the transport of packetized VBR speech
is in the retention of such timing information. Since packets are transmitted only
during active periods, the inactive periods can only be approximately replicated
at the receiver. It has been found that the resulting errors are not noticeable if
the inactive periods are long. Thus the voice activity detection function (after the
speech encoder) does not discard bytes from short inactive periods.

Consider again the voice conversation between the PSTN phone A and the
cell phone C in Figure 3.1, with VBR speech being used in the cellular network;
that is, the voice arrives over the PSTN as a CBR flow, but is encoded into a VBR
flow at the gateway, GW. Suppose the VBR speech source is allocated the service
rate C in the cellular network (see Figure 3.3). Let us denote by R the peak rate
of the VBR source, and by r̄ the average rate. Thus, for example, if the on-off
VBR source has an average on duration of 400 ms and average off duration of
600 ms, then with R = 64 Kbps, we will have r̄ = 400

400 + 600 × R = 25.6 Kbps. It
is clear that it is a waste of bandwidth to make C > R, and that it is necessary
that C ≥ r̄. Now suppose we take C < R. Notice that when the voice source is
emitting data at the rate R, then the link buffer builds up at the rate (R − C) Kbps.
Any byte that arrives when the buffer level is, say, B bits will be delayed by B

C ms.
A priori, we do not know for how long this rate mismatch will last (the average
rate r̄ = 25.6 Kbps could have been obtained with a 4 sec on time and a 6 sec off
time too!). Hence, if we want to bound the delay of the voice bytes in the link
buffer, in the absence of any other information about the source, our only recourse
is to use C = R.

This approach of peak rate allocation could be one way in which the
cellular network manages its resources, and is typically the approach adopted in
FDM-TDMA and CDMA cellular systems. In CDMA systems, even though the
peak rate is allocated to a call, the on-off nature of VBR speech is exploited
because during the voice silence periods a call does not cause interference (see

r < C < R

R

buffer fills when source rate > service rate

r
-

-

Figure 3.3 An on-off VBR source, of peak rate R Kbps and average rate r Kbps, being
carried by a link of capacity C Kbps, r̄ < C < R.
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Section 2.4.1). On the other hand, if some bounds on source behavior are known,
or if there is a reliable statistical characterization of the output of the speech coder,
then the network could assign a rate C < R, while still meeting the QoS objectives
(techniques for carrying out such a design can be found in [89, Chapters 4 and 5]).
Such a design approach requires a characterization of the source output, but can
lead to a more efficient utilization of the resources of the cellular network.

3.3.3 Speech Playout
Consider VBR coded packetized speech telephony between the devices B and D,
or B and C. At the devices C and D there is the problem of playing out the
individual packets in a way that the original voice patterns are reproduced, in spite
of the random network delays introduced by the packet network. Suppose that
the cellular network handles only CBR speech; then the problem of converting
the speech packets, arriving asynchronously over the Internet, to CBR speech
over the cellular network will be a task of the gateway, GW, between the Internet
and the cellular network.
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Figure 3.4 Jitter in the delay of voice packets, and the need for playout delay at
the receiver. The height of each bar is the delay of the corresponding packet in the
network. On the y-axis, the bottom of each bar is the packet’s send time, and the top
of the bar is the packet’s receive time.
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To understand the problem of playing out asynchronously arriving speech
packets, let us look at Figure 3.4. Consider a packet voice call between the end-
points B and D. If each packet that left B arrived at D instantaneously, then
the packet send times and packet receive times would lie along the y = x line
in the figure. However, the voice packets, in being transported across the wide
area network, will encounter transmission, queuing, and propagation delays. In
addition, the queuing delays will be random, leading to delay variation, also called
delay jitter. These random network delays are depicted in Figure 3.4 by the vertical
bars standing on the slanting line. Each such bar corresponds to one packet, and is
positioned on the x-axis at the send time of the packet. The bursts of packets from
talk-spurts can be identified as consecutive periodically occurring vertical bars. The
gaps between these bursts are the silence periods. The height of each bar represents
the network delay experienced by the packet. Suppose the receiver adopted the
policy of playing out each packet as soon as it was received. We look at the first
talk-spurt and notice that if the first packet was played out beginning from the time
that it was received, its bits would be played out along the slanting line (parallel
to the y = x line) starting from the tip of the first vertical bar. Where this slant
line meets the second bar is where the playout of the first packet would complete,
and the speech decoder would be ready for the next packet. This packet, however,
would be too late. It follows that if an immediate playout policy is adopted at the
receiver, then in the first talk-spurt four out of the seven packets would arrive too
late for playout. Although the coder could attempt to interpolate these lost packets,
such a high frequency of interpolation would lead to very poor speech quality.

An obvious alternative is to adopt the policy of deferred playout. A playout
delay is applied to each packet to allow trailing packets to “catch up.” From
Figure 3.4 it is clear that if all packets are played out starting from the uppermost
slant line, then (for the fragment of the packet process shown) no packet would be
late. Obviously, this naive approach has two practical problems. We do not know
in advance the maximum delay that any packet in the connection will encounter,
and in any case this worst-case delay could be very large. Notice that playout
delays add to the MtoE delay. Suppose, however, that we are able to determine a
value T such that the packet delay rarely exceeds T. Then, as shown in Figure 3.5,

x1

T

b

t1 u1 v1

Figure 3.5 Arriving voice packet delays are stretched to a target delayT. A voice packet
that left the source at time t1 arrives at the receiver at time u1, thus incurring a network
delay of X1. It is buffered for a time b so that its end-to-end delay is T. If X1 >T then
the packet is discarded.
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the receiver can stretch out the delay of each arriving packet to T; thus packets
that are delayed more than T are lost and may be interpolated.

We are still left with the problem of determining a value for T. There are two
alternatives. The packet network may have the ability to provide a delay guarantee
at call setup (e.g., Pr(X > T) < ε where X is the delay of packets in the network;
see Figure 3.5). In such a case, the endpoints specify the traffic characteristics of the
source they want to be carried, and the values of T and ε. The network evaluates
whether the call can be accepted, and, if the call is accepted, the network sets up
the appropriate mechanisms along the path of the call so that the delay objective is
met. Now T is known to the receiver at call setup time, and the procedure shown
in Figure 3.5 can be performed. If the network cannot provide delay guarantees,
then the receiver would need to estimate T as the call progresses. Time stamps
carried by the voice packets in their headers would be used to obtain a statistical
estimate of T. This estimate can then be used to set the playout delays of arriving
packets. Since there is no guarantee, the value of T could be larger than desired
and could vary over time as congestion in the network varies.

3.3.4 QoS Objectives
We gather that the MtoE delay for a packet voice call is the sum of several terms
as shown in the following equation:

MtoE Delay = coding delay + packetization delay

+ network propagation delay

+ network transmission and queuing delay

+ receiver playout delay + decoding delay

In this expression, the network propagation delay is just the signal propagation
delay over the various media interconnecting the routers and switches in the path
of the call. A rule of thumb is to compute this fixed delay as 5 ms per 1000 Km of
cabled transmission. Thus, for example, between points in the continental United
States and India separated by a distance of about 20,000 Km, the one-way WAN
propagation delay would be about 100 ms. For a geostationary satellite link,
the one-way propagation delay is computed as the time taken for radio waves
to travel from the transmitter up to the satellite and then down to the receiving
ground station, or about 250 ms.

In addition to the MtoE delay, some voice packets can be lost, either owing
to buffer overflows in routers, or because they arrive after their scheduled playout
time at the receiver. Thus, an example of the QoS expected by a voice call could be:

Pr
(
MtoE Delay > 200 ms

)
< 0.02

and

Pr
(
Packet Loss

)
< 0.05
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We recall that packet loss includes loss due to late arriving packets, as well as loss
due to buffer overflows and errors in the network. All such missing packets will
need to be interpolated by the voice decoder, which leads to degradation in voice
quality.

Notice that the MtoE delay has some fixed parts (coding and decoding
delay, packetization delay, and propagation delay), and some variable parts
(transmission and queueing delay, and the playout delay). It is these delays that
are governed by the characteristics of the traffic emitted by the source, and the
way the traffic is handled in the network (i.e., the other traffic with which it is
multiplexed, and the resource allocation decisions made by the network). Let-
ting X denote the variable (random) delay, and then subtracting the fixed delays
from the MtoE delay target, the network performance requirement can be
reduced to

Pr(X > T) < ε

where, for example, ε = 0.02. Now consider a call between the devices B and D.
The computer B is attached to the Internet by a high-speed enterprise or campus
LAN, whereas D is attached to the Internet by a contention-based WLAN. One
approach to the analysis of such a situation is to break down the end-to-end QoS
objective into subnetwork-wise objectives. Thus, one could break up the end-to-
end delay bound T as T = T1 + T2, and the probability of violating the delay
bound can be split up as ε = ε1 + ε2. We can call T1 and T2 the delay budgets
in the respective subnetworks. Let the stationary random delay over the Internet
segment of the call be denoted by X1 and that over the WLAN be denoted by X2.
Suppose we ensure that, for each i = 1, 2,

Pr(Xi > Ti) < εi

It will then follow that

Pr(X > T) = Pr(X1 + X2 > T1 + T2)

≤ Pr({X1 > T1} ∪ {X2 > T2})
< ε1 + ε2 = ε

where the first inequality follows from the simple observation that if X1 + X2 >

T1 + T2, then it cannot be that X1 ≤ T1 and X2 ≤ T2; the last inequality is just the
union bound. The resource allocation in the WLAN can then be performed so as
to ensure that the voice packet delay exceeds T2 with a probability less than ε2.
The same approach can be used if end-device D is attached to the Internet via a
WMAN (see Figure 3.1).
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3.3.5 Network Service Models
In the previous section we showed how to derive, from the end-to-end delay QoS
problem for a connection, a QoS objective for the access network. If the access
network accepts calls based on peak rate allocation, then the only issue is to design
the network for a desired call blocking probability. For this purpose, the Erlang
blocking model (see Appendix D) can be used. If the access network assigns a fixed
rate less than the peak rate of a VBR call, then the model depicted in Figure 3.3
can be used. The analysis of such models has been discussed at length in [89,
Chapter 5].

In some access networks, however, the service rate applied to a connection
may not be constant. For example, in OFDMA systems, the number of bytes to
be served from a queue can vary from frame to frame depending on the fading
in the various carriers, the competing traffic, and the power constraint. Thus, in
this case we have a dynamically controlled server; see Chapter 6. Detailed analysis
of such systems to obtain buffer occupancy distributions or delay distributions
is difficult. Wireless LANs, based on the IEEE 802.11 standard, are contention-
based systems. Hence the service applied to a queue is time varying because the
number of contending nodes varies over time, as some queues empty out while
others receive new traffic. Some progress has been made on developing analytical
models for the performance analysis of wireless LANs; some of these approaches
will be discussed in Chapter 7.

3.4 ElasticTransfers: Feedback Control
Elastic traffic is generated by applications whose basic objective is to move chunks
of data between the disks of two computers connected to the network. Elastic flows
can be speeded up or slowed down depending on the number of flows contending
for the capacity of the network. Figure 3.6 shows that, at the most basic level, an
elastic session simply involves the transfer of some files from one host attached
to the packet network to another host. For example, the two hosts could be
e-mail relays; each file transfer would then correspond to an e-mail being
forwarded toward its destination mail server. Alternatively, the source host could
be an FTP archive, and at the destination host, a user is downloading several files
during an FTP session. A similar example would be that of the source being a web
server, and the destination being a client with a web browser, using the HTTP
(Hyper-Text Transfer Protocol) protocol to browse the files at the server. In an
internet, for example, when a user requests a web page (using an HTTP GET
request), first, a base file is downloaded, which in turn may trigger the transfer of
several embedded objects, such as images. When there are embedded objects, the
exact mechanism for downloading the objects depends on the version of HTTP in
use. In HTTP 1.0, for the transfer of the base file, and for each embedded object
file, a separate TCP connection would be set up between the client and the server.
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Figure 3.6 An elastic session simply involves the transfer of one or more files from
one host to another.

In HTTP 1.1, in order to reduce connection set up overheads, a TCP connection
once set up would be reused for several file transfers between the same client and
server.

In all these cases the basic problem is to transfer each file in its entirety from
the source machine to the destination machine. This is the primary objective. There
is no intrinsic rate at which the files must be transferred. In fact the transfer rate
can vary as a file is transferred. Although the user downloading the files would
want to receive the files quickly, this requirement is not really a part of the service
definition of an elastic session.

Further, we note that there is no intrinsic packet size that the files need to be
segmented into during their transfer. The transfer protocol can just view each file
as a byte stream, and transfer varying amounts of it in each packet.

We will deal primarily with point-to-point elastic sessions, and this is what we
will mean when we use the term “elastic session.” Thus an elastic session involves
a connection between two endpoints. The network determines a route between the
endpoints in each direction; if the session lasts long enough, there is a possibility
that the route, in either direction, changes during the session. During a session,
data transfers may take place in either direction, with possible gaps between the
successive transfers. For example, if a user at a computer logs on to an FTP server,
then FTP’s get or put commands can be used to download or upload files. The
user may need to do some other activities in between the file transfers (e.g., read
what is downloaded and make notes); in user models, these gaps often are referred
to as think times. Similarly, a user browsing a web server would download a web
page, and spend some time looking at it, before downloading another web page
from the same site. If the user shifts to browsing another web server, then we
view this as another session starting, typically over a different pair of network
routes.
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Figure 3.7 Several users dynamically share a link to download files from web servers.

3.4.1 Dynamic Control of Bandwidth Sharing
Figure 3.7 shows a very simple “network” comprising a single link over which
several users, on their respective hosts, are downloading files from some web
servers. Let us take the link capacity to be C bps, and assume that the local
networks attaching the users and the web servers to this link are infinitely fast. We
use this simple scenario to illustrate and discuss some basic issues that arise when
several elastic sessions share the network bandwidth. In fact, the situation depicted
in Figure 3.7 is similar to what happens when several mobile users download files
(text, music, video, etc.) from a server attached to a cellular operator’s own high
speed local area network. The important difference is that in cellular systems the
system bandwidth is not managed as one “fat pipe.”

Suppose, to begin with, a single user initiates a download from a web server
over the link. It is reasonable to expect that an ideal data transfer protocol will
(and should) provide this file transfer with a throughput of C bps. This much
bandwidth is available, and if all of it is provided to the transfer, the session
will be out of the system as early as possible. Now suppose another user starts
a session, while the first file transfer is still progressing. When the corresponding
web server starts transferring data toward the user, the total input rate into the
link (from the web server’s direction) will exceed C bps. If the first file transfer
is proceeding at C bps, then the link’s service rate will be exceeded no matter
how slowly the second server sends its data. This will lead to link congestion. The
network device that interconnects the server’s LAN to the backbone link will have
buffers “behind” this link. These buffers can absorb excess data that accumulate
during this overload, provided the situation does not sustain for long. In addition,
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this situation is clearly unfair, with one user getting the full link rate, and the
other user getting practically no throughput; this situation should not be allowed
to persist.

Both of these issues (congestion and unfairness) require that there be some
kind of feedback (explicit or implicit) to the data sources so that the rate of the first
transfer is reduced, and that of the second transfer is increased, so that ultimately
each transfer obtains a rate of C

2 bps. Now suppose the first file transfer completes;
then, if the second transfer continues to proceed at C

2 bps, the link’s bandwidth is
wasted, and the second session is unnecessarily prolonged. Hence, when the first
session departs, the source of the second session should increase its transfer rate
so that a throughput of C bps is obtained.

In summary, from this discussion we conclude that an explicit or implicit
feedback control mechanism needs to be in place so that as the number of sessions
varies, the transfer rate provided to each session varies accordingly. By an explicit
feedback we mean that control packets flow between the traffic sources, sinks,
and the network, and these packets carry information (e.g., an explicit rate or
a rate reduction signal) that is used by the sources to adapt their sending rates.
On the other hand, implicit feedback can be provided by packet loss or increase
in network delay; that is, a source can reduce its rate on sensing that one of the
packets it sent may not have reached the destination. For example, in much of the
current Internet, TCP (Transmission Control Protocol) uses an implicit feedback-
based congestion control mechanism. Explicit rate control was proposed for the
ABR (available bit rate) service in ATM (asynchronous transfer mode) networks.
The idea was to associate with each ABR session a flow of control cells (called
Resource Management (RM) cells) generated by the source. As the RM cells of
a session flow through the network, the ATM switches in their path could set
an explicit rate value in these cells. The sink would return the RM cells back
to the source, and the source could use the explicit rate in the returned RM
cells to adjust its cell emission rate. On the other hand, TCP uses a window-
based transmission protocol. For a fixed round trip delay, the TCP throughput is
proportional to the average window size. Thus, the window can be adapted to vary
the TCP transfer rate. Window adaptation works by a TCP source detecting lost
packets, taking these as indications of rate mismatch and network congestion,
and voluntarily reducing its transmission rate by reducing the transmission
window.

3.4.2 Control Mechanisms: MAC andTCP
As mentioned in the previous section, and as is clear from our discussions in
Chapter 2, in wideband cellular wireless networks, the entire system bandwidth
is not used as one fat pipe. Instead, radio resource allocation is done on an MS by
MS basis, depending on the channel conditions to the mobiles. Thus, even at the
medium access layer it is possible to implement control strategies that achieve some
sort of a rate allocation objective over the MSs. For example, the objective could be
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equal rate allocation (this is an example of a more general fairness objective called
max-min fairness); such an approach might be very inefficient as the MS with the
weakest link will determine the rate that all MSs obtain. Another objective could
be to allocate rates so as to maximize the total rate over the MSs; such an approach
might be very unfair as MSs with poor connectivity might obtain no throughput.
We will examine MAC level rate allocation for elastic traffic in CDMA cellular
systems in Chapter 5.

In CSMA/CA based wireless LANs, the medium access control protocol
results in some default bandwidth sharing. If only downlink file transfers are
considered then it is found that the IEEE 802.11b standard results in equal rate
sharing, irrespective of the physical rate at which MSs are connected. We will
provide an analytical model for understanding this in Chapter 7.

Bandwidth sharing in the wide area Internet is controlled by the Transmission
Control Protocol (TCP) that resides in all end-systems attached to the Internet,
including Internet-enabled cellular phones. In OSI terminology, TCP is a Transport
Layer protocol. Thus TCP sits between the applications and IP, the Internet’s
packet routing and forwarding protocol. TCP is connection oriented, which means
that a connection has to be established between the endpoints before data transfer
can start, and this connection is taken down when the data transfer completes.
TCP enhances the unreliable, nonsequential packet transport service provided by
IP to a reliable and sequential packet transport service. It uses a window-based
packet loss recovery mechanism to achieve this function. In addition, the window-
based mechanism is employed for two other major functions that TCP provides:
(1) sender-receiver flow control, which prevents a fast source of packets (at the
application level) from overwhelming a slow sink, and (2) adaptive bandwidth
sharing in the network. The TCP transmitter maintains a congestion window that
increases if packets are acknowledged in sequence. On the other hand if the desired
acknowledgment (ACK) fails to show up then the transmitter takes this as an
indication of congestion, and reduces the transmission window. The transmission
window can also be controlled by the receiver, by a window advertisement in the
ACK packets. By the latter means, the receiver can exercise flow control over the
transmitter. For a connection, the number of packets in the network is roughly
related to the TCP window, and the average window divided by the mean round
trip packet delay is an estimate of the TCP throughput.

The adaptive window-based congestion control mechanism of TCP has
evolved over several versions. In the earliest version, any packet loss resulted in a
transmitter time-out, and the reduction of the congestion window to one. A TCP
receiver continues to accept packets even if previous packets are missing. For all
such out-of-order packets, the transmitter returns an ACK packet “asking” for the
first missing packet. These ACKs are called duplicate ACKs. Thus, duplicate ACKs
are an indication of out-of-order packets at the receiver, and multiple duplicate
ACKs are indicative of packet loss. In a later version, called TCP Tahoe, loss
recovery was initiated at the transmitter by the receipt of three duplicate ACKs;
this was called fast retransmit. However, the transmitter dropped the congestion
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window to one. Thus, although loss recovery started earlier than the older version
(say, OldTahoe), the window had again to be built up from one. TCP Tahoe
was followed by TCP Reno in which, on the receipt of three duplicate ACKs,
the congestion window was cut by half, and loss recovery was initiated; this was
called fast retransmit and fast recovery. A more aggressive loss recovery than TCP
Reno was implemented in TCP NewReno. This version was followed by another
improvement in TCP SACK, in which the TCP transmitter uses the ACK packets
to send the pattern of missing TCP packets back to the TCP transmitter.

From the foregoing, we see that the rate allocation achieved by elastic
transfers to or from devices that attach to the Internet via wireless access networks
will be governed by the interaction between the rate allocation strategies in the
wireless MAC, the behavior of the wireless channel, and TCP’s window-based
end-to-end control mechanisms.

3.4.3 TCP Performance over Wireless Links
In [89, Chapter 7] we have discussed the TCP protocol at length and have studied
models for evaluating the performance of TCP-controlled file transfers in several
situations. We studied a model that can be used to obtain the performance of TCP
controlled file transfers with random packet loss. We saw that the performance
of TCP can be significantly affected by packet loss. In these discussions, the
concern was with congestion-related loss; that is, either a packet was lost owing
to buffer overflow, or a packet was deliberately dropped at a router queue owing
to imminent congestion. We were not concerned with the possibility of packet
loss in the physical bit carriers. In a sense, we were assuming a wired physical
infrastructure. Wired links can be properly established so that they have small
BERs. On the other hand, mobile wireless links can have high packet loss rates,
and are subject to random variations in their quality. Also, in CSMA/CA based
wireless LANs, it is unrealistic to model the service provided to a flow as being
at a constant bit rate. It is therefore of interest to study the performance of
TCP transfers over wireless access networks, particularly in light of the growing
importance of mobile wireless access to the Internet.

It is well known that the bandwidth delay product (BDP) (normalized to the
packet length) along a path in a network is defined as

2Cδ

L

where C is the bottleneck link rate along the path of the TCP connection, 2δ

is the round-trip propagation delay (RTPD), and L is the packet length. If the
TCP window grows to the BDP and stays at that value, then the bottleneck link
can be kept fully occupied. This yields the highest possible TCP throughput on
that path. With this in mind, let us consider elastic transfers from the server E
to an MS associated with the cellular network in Figure 3.1. Let us suppose that
the cellular system assigns a fixed service rate to each transfer, where the rate
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depends on the condition of the channel to the MS and on the other MSs that
are being served by the system. Typical service rates would be in 100s of Kbps,
and hence the cellular network would be the bottleneck in the path of the TCP
connection. Even if the server E is 20,000 Km away (halfway around the earth),
thus yielding an RTPD of about 200 ms, we have a BDP of about four packets for a
bottleneck rate of 250 Kbps and L = 1500 bytes. The TCP maximum window size
implemented in various operating systems is 20 packets or more. Hence, assuming
that the wide area Internet has negligible packet loss, the TCP window is well
above the minimum to keep the bottleneck link busy.1 This observation permits
us to make the simplification that we may ignore the wide area packet network,
and study only the interaction between TCP and the behavior of the wireless
link. It is as if the server E was attached to the local area network of the cellular
operator.

Independent Packet Losses

With this discussion in mind, Figure 3.8 shows a simple scenario in which a
mobile host is doing a TCP controlled file transfer from a file server on a wired
LAN. The LAN wireless router network would be located at the base station.
The propagation delay between the base station and the mobile host is negligible.
The BER on the wireless link is such that packets are lost with probability p.
The packets are lost independently; correlated losses owing to channel fading are
not modeled here. Only ACKs are sent from the mobile host to the LAN, and
since these are small (40 bytes), their loss probability is ignored; recall that TCP
uses cumulative ACKs, which further limits the effect of ACK loss. The link layer
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Base Station 
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Figure 3.8 A mobile station transferring data over a wireless link from a server on the
LAN attached to the base station.

1A simple way to quantify the effect of random losses in the wide area Internet is to use the square root

formula
√

1.5
p where p is the packet loss probability. This formula gives an approximation to the mean

window size of a TCP connection over a wide area network, if the loss probability is p and the connection
stays in congestion avoidance. Typical values of p in a well-engineered ISP network would be 0.001 or
0.005. The resulting average window is well above the 4 required to keep the bottleneck link busy.
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protocol is unable to recover all the wireless packet losses; hence any residual
packet losses have to be recovered by TCP. As the TCP transmitter on the file
server grows its window, the wireless link buffer builds up. The buffer can hold as
many packets as needed; that is, there is no buffer loss. Eventually, a loss occurs
in the wireless link, and one of the loss recovery mechanisms is invoked.

The throughput of a large file transfer can be analyzed via a stochastic model
of the TCP protocol with random packet losses. A sample of results obtained from
this analysis is shown in Figure 3.9. The parameters and the results are normalized.
We plot the file transfer throughput versus the packet loss probability. The
throughput is normalized to the bit rate of the wireless link. One set of parameters
that would correspond to the results is LAN speed; 10 Mbps wireless link bit
rate: 2 Mbps; TCP packet length: 1500 bytes (hence the packet transmission
time is 6 ms); time-out granularity: 420 ms; minimum time-out: 600 ms; and
Wmax = 24 packets, where Wmax is the maximum TCP window. The performance
of four versions of TCP is compared: OldTahoe (which is the name we give to
the version of TCP that predates Tahoe and always requires time-outs to recover
losses), Tahoe, Reno, and NewReno. We observe that even with a packet loss
probability of 0.001, the throughput with OldTahoe is less than the full link rate,
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Figure 3.9 File transfer throughput (normalized to the link’s bit rate) vs. packet loss
probability for various versions of TCP; OldTahoe refers to a version that recovers
losses only by timeout. K is the duplicate ACK threshold for fast-retransmit in theTCP
loss recovery protocol. Adapted from Kumar [85].
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and drops to just over 50 percent of the link rate for a packet loss probability
of 0.01. The other three TCP versions implement fast-retransmit and they yield
100 percent throughput at p = 0.001, and better than 95 percent throughput up
to p = 0.01. Beyond 1 percent packet loss, the performance of these versions too
begins to drop, and is not much better than OldTahoe for a 10 percent packet
loss rate. Reno is slightly better than Tahoe up to p = 0.02, but becomes worse
for large loss rates since multiple losses cause it to waste more time than Tahoe.
The more aggressive fast-recovery of NewReno results in this version yielding
almost 90 percent throughput up to p = 0.03. We can make a broad observation
that random packet loss probabilities larger than 1 percent can significantly affect
the performance of TCP, with these parameters. Note that the coarse time-out
and minimum time-out values are large in this example. Smaller values for these
parameters will yield better performance, as losses will then result in less wastage
of link capacity.

Thus, we see that there is a maximum packet loss probability below which
the TCP throughput is just the bit rate of the wireless link. If the packet loss
probability is ensured to be less than this maximum then the effect of TCP can be
ignored, and we can just take the bit rate provided by the MAC mechanisms as
the transfer rate obtained by the elastic application.

If a packet loss probability of p is desired, and the packet length is L bits,
then the BER on the wireless link ε should satisfy the requirement p = 1− (1− ε)L.
An upper bound on p thus yields an upper bound on the BER. Hence we see that
the performance of the application we wish to carry on the wireless link puts a
requirement on the performance of the link. We saw in Chapter 2 that the BER
on a wireless link is a function of the SNR. Hence, for a given modulation and
coding scheme, the desired BER places a requirement on the minimum SNR at
which the link can operate. We also note that a desired packet loss probability can
be obtained by using an ARQ protocol over a physical link with a higher BER than
calculated from the formula above. Since the propagation delay on cellular links
is negligible (i.e., the number of bits “in flight” is much smaller than the packet
length), a stop-and-wait ARQ suffices. The overall effect of using an ARQ protocol
is that we have a lower bit rate link (due to ARQ overheads and retransmissions)
with the desired packet loss rate.

Correlated Packet Losses

We now turn to the performance of TCP controlled file transfers over a fading
channel. In Section 2.1.4 we discussed models for channel fading. We pointed
out that the fading is correlated in time. Thus for a given average BER there
would be periods when the BER is greater than the average, and periods during
which the BER is less than the average. A similar statement can be made for the
packet error rate if fixed length packets are being used, as is typically the case
with large file transfers over TCP. A simple approach is to model the channel as
being in one of two states: a Good state (during which a packet transmission is
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Figure 3.10 Transition structure of the two-state Markov model for a fading channel.

successful), and a Bad state (during which a packet transmission is unsuccessful).
A further simplification is to model the state process as a two-state Markov
process, on the state space {Good, Bad} (see Figure 3.10). The durations in each
state are taken to be multiples of the packet transmission time. The transition
probabilities of the Markov chain are obtained by specifying the amount of fading
that leads to a bad transmission (at other times a good transmission is assumed).
The marginal distribution of the fading process and results about correlations in
the fading process can be used to obtain the transition probabilities. For a packet
length L, channel bit rate C, and Doppler frequency fd, the parameter fd

L
C is

a measure of the fade durations relative to the packet transmission time; thus
fd

L
C = 0.01 means that channel coherence time is roughly 100 packet transmission

times.
Using this Markov model for the channel state, the analysis of the throughput

of a long file transfer under TCP can be performed by developing a certain
stochastic model. In performing this analysis, in addition to the state of the
TCP window adaptation process, the state of the channel will also need to be
maintained. Figure 3.11 shows some typical numerical results with Rayleigh
fading. The normalized throughputs with TCP Tahoe and Reno are plotted versus
the average packet error probability, with and without fading. For the results
with fading, the parameter fd

L
C = 0.01. The other parameters are the same as in

Figure 3.9, except that the local area network is taken to be infinitely fast. Notice
that the performance without fading is similar to that depicted in Figure 3.9.
With fading, the performance is significantly different. For the same probability of
error, we find that the performance of TCP Tahoe increases substantially, whereas
that of TCP Reno drops for p < 3 × 10−2, and improves for large packet loss
probabilities. This can be understood as follows. With independent losses, the
repeated reductions in the window lead to a small effective window; hence when
a loss occurs there are not enough packets in circulation to generate the number
of duplicate ACKs required for a fast retransmit. Thus with uncorrelated losses,
time-outs are more frequent. When packet errors are clustered (as in the case of
fading), the durations between packet loss events are larger. Hence with correlated
packet losses, the TCP transmitter is able to grow its window to larger values than
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Figure 3.11 File transfer throughput (normalized to the link’s bit rate) vs. packet loss
probability for TCP Tahoe and Reno; with independent losses (denoted as i.i.d.), and
with Rayleigh fading with fd

L
C = 0.01. Adapted from Zorzi et al. [144].

in the independent packet loss case (for the same average packet error probability).
When a loss does occur, it is more likely that there are enough successful packets
sent subsequently in the window to trigger a fast retransmit. Even if a time-out does
occur, it is long enough to last out the fade, so that when transmission resumes,
the channel is likely to be in the Good state.

For small values of p, the performance of Reno is worse since Reno requires
additional duplicate ACKs for recovering each lost packet. With correlated losses,
multiple losses are more likely and this results in Reno wasting more time than
Tahoe. Reno attempts to perform a fast-retransmit for each lost packet, spends
time in this process waiting for duplicate ACKs, and then times out anyway.
For large values of p, the two protocols have similar behavior since with the
high loss rate the window grows to small values, the number of duplicate ACKs
are insufficient to trigger a fast-retransmit, and hence it is very likely that both
protocols recover with a time-out.

Although this discussion illustrates the effect of correlated errors on TCP
controlled file transfer performance, it is important to make a comparison by
fixing the average SNR. The same two-state Markov model can be used. The SNR
that corresponds to a Bad state is first fixed. Then for each SNR and Doppler
frequency, the two-state Markov model can be parametrized. Sample results



78 3 Application Models and Performance Issues

10 15 20 25 30 35 40

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

0.8

0.9

1

Mean Signal to Noise Ratio (dB)

P
ac

ke
t t

hr
ou

gh
pu

t, 
no

rm
al

iz
ed

 to
 s

pe
ed

 o
f w

ire
le

ss
 li

nk

TCP Tahoe; no fading
TCP Tahoe; fade = 1 pkts
TCP Tahoe; fade = 2 pkts
limit, speed –>0

Figure 3.12 File transfer throughput (normalized to the link’s bit rate), withTCP-Tahoe,
vs. SNR in dB, with no fading (AWGN only) and with Rayleigh fading.The legend fade =
n pkts means that the mean Bad state duration is n packets, where a Bad state occurs
if the SNR < 10 dB. Adapted from Kumar and Holtzman [87].

for TCP Tahoe are shown in Figure 3.12. In order to compare with the results
presented earlier, no channel coding or link level retransmissions are taken into
account. The normalized throughput is plotted against the average SNR in dB.
We observe that without fading, an SNR of about 12 dB suffices to obtain a TCP
throughput of over 90 percent of the link rate. This is because the packet error
probability itself is very small without fading. With fading, however, much larger
Rayleigh faded SNRs are required; between 25 to 30 dB for a throughput of 90
percent of link rate. We notice that slower fading and hence more correlated errors
improves the TCP throughput, but the throughput even with this improvement is
much worse than that without fading. We also show the case of speed → 0.
This corresponds to the fade level being constant during the entire TCP transfer;
either the channel is good throughout the transfer, or is bad throughout. This is
a bound on the achievable throughput with fading. As the faded SNR decreases,
the probability of the Good state reduces and hence the bound rapidly decreases
for decreasing average faded SNR.

3.5 Notes on the Literature
Extensive analytical treatments of QoS issues and models is provided in [89], [133],
and [119]. References [81] and [54] provide a discussion of issues in transporting
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voice over packet networks. The material on analysis of TCP controlled file transfer
throughput over lossy wireless links has been taken from the papers by Kumar
([85], which assumes i.i.d. packet loss) and by Zorzi et al. ([144], which accounts
for correlated packet losses). An approach for two-state Markov modeling of a
fading channel is provided by Zorzi et al. in [146]. Additional references on TCP
throughput analysis with correlated packet losses in the wireless setting are Kumar
and Holtzman [87], Zorzi and Rao [145], and Anjum and Tassiulas [3].
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CHAPTER 4

Cellular FDM-TDMA

The FDM-TDM technique for allocating spectrum and time resources to
calls is the most classical one, and systems based on this technique carry
a substantial majority of the cellular telephony traffic around the world.

Many of the basic techniques of cellular telephony emerged from the design of
such systems; for example, techniques such as frequency reuse management, cell
sectorization, power control, and handover management.

Overview
One of the main ideas developed in this chapter is that of spatial reuse by
partitioning the available FDM carriers into reuse groups, and then allocating these
reuse groups to cells in such a way that cochannel interference is within acceptable
limits. It is shown that the cochannel interference constraint places a constraint on
the D

R ratio, the ratio between the shortest distance between cochannel cells and
the cell coverage radius. This analysis is based on signal-to-interference ratio (SIR)
modeling, where we use a power attenuation model that includes path loss and
shadowing. Assuming that the cells form a hexagonal tessellation of the plane,
the D

R ratio is related to the number of cochannel reuse groups into which the
cells must be partitioned. It is shown how the partitioning of the channels and
other system parameters affect the spectrum efficiency. Once channel allocation
constraints are understood, various channel allocation strategies are considered
and a call blocking analysis is developed. Finally, we consider intercell handovers.
We show how signal strength measurements from neighboring BSs are used to
determine that a call needs to be handed over between cells. An approximate
handover blocking analysis is also shown. The chapter ends with an overview of
call handling in GSM, the most widely deployed FDM-TDMA cellular system.

4.1 Principles of FDM-TDMA Cellular Systems
Suppose that a system bandwidth of Wsystem is to be used for providing FDM-
TDMA based telephony services in a certain coverage area, say a town in some
country. The operator would have to pay a substantial fee to the authority
managing the spectrum in that country, and hence it is in the operator’s interest to
maximize the revenue from operating the service while keeping costs down. We
begin by providing an understanding of the issues involved in the efficient design
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of an FDM-TDMA cellular telephony system. We will refer to a mobile handset as
an MS (mobile station) and to the fixed stations that are connected to the wire-line
network as base stations (BSs).

There are several commercial implementations of FDM-TDMA technology
for mobile telecommunication, the one with the most widespread deployment
being the GSM system (see Section 4.7). In any of these implementations,
the system bandwidth, Wsystem, is partitioned into several nonoverlapping FDM
channels, each of which is then digitally modulated, and then time slotted to
yield FDM-TDM channels. A guard band is left vacant at either end of an
operator’s spectrum allocation to prevent power from one operator’s system from
interfering with another system. For example, in the GSM system the FDM channel
spacing is 200 KHz. After digital modulation, each such channel is time slotted to
provide eight TDM channels, each of which can carry one direction of a digitized
voice call.

Each voice call has two directions, and hence for each call we need two links
to be established, one from the MS to the BS, and one from the BS to the MS. The
way these two links are established is called the duplexing technique. In FDM-
TDMA systems the common duplexing mechanism employed is frequency division
duplexing (FDD); that is, two separate FDM carriers are used to carry the two
directions of a call. Thus, the operator actually gets two nonoverlapping segments
of the radio spectrum, each of bandwidth Wsystem (see Figure 4.1). One of these
is the uplink band and the other is the downlink band. Each band is partitioned
into an equal number of nonoverlapping FDM channels. The FDM channels in
the uplink and downlink bands are then paired, as shown in Figure 4.1, for two
FDM channels j and k. Thus, when we say that FDM channel j is assigned to an
MS, for the purpose of making a telephone call, then actually two TDM slots, one
in each of the two FDM channels with center frequencies f u

j and f d
j , are assigned

to the call, for the entire duration of the call.
For example, if the operator leases a Wsystem of 5 MHz, then (allowing for

a total guard band equal to the bandwidth of one FDM channel), the system can
be used to carry 24 × 8 = 192 simultaneous calls. Let us denote the FDM channel

downlink
band

uplink
band

frequency

fk
u fj

d fk
dfj

u

Figure 4.1 Frequency division duplexing in FDM systems:The FDM channels fu
j and fd

j
are paired, as are the channels fu

k and fd
k .
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bandwidth by W , the number of FDM channels in the system bandwidth by C
(24 in the preceding example), and the number of traffic carrying TDM slots per
FDM channel by s (8 in the preceding example). Let N = C × s be the number of
calls that can be carried simultaneously. We will further denote the set of FDM
carriers by {f1, f2, . . . , fC}. In view of our earlier discussion on duplexing, each
element of the set of carriers {f1, f2, . . . , fC} actually denotes an uplink-downlink
pair.

The system can now be set up as shown in the left panel of Figure 4.2. We
observe that a large power will need to be used in order to serve the MSs at the
periphery of the coverage area, in order to ensure that the power received at either
end of an MS-BS link is such that the SNR exceeds the minimum required for the
desired bit error rate for the voice coder being used. Such MSs will quickly drain
their batteries, and will also cause interference to systems in neighboring coverage
areas. Also, the maximum number of users that can be simultaneously served in
this simple system is N.

Let B(ρ, n) denote the blocking in an Erlang blocking system with a load of
ρ Erlangs and n servers (see Appendix D, Section D.5.1). If the arrival rate of
new calls into the system is λ per second, and the mean holding time of a call
is h seconds, then for this system ρ = λh, and the blocking probability becomes
B(ρ, N). Table 4.1 shows a sample Erlang table from which the number of servers
that would be required to obtain a specified blocking probability for a given traffic
intensity can be obtained.

BS BS BS

BS

BS

BS

Figure 4.2 Spatial reuse: In the left panel, all the MSs associate with one BS, and the
entire band is used to serve all the calls in the desired coverage area. In the right panel
the band is reused at multiple BSs.



n ↓ Loss Probability n ↓
0.0001 0.001 0.002 0.005 0.01 0.02 0.05 0.1 0.2

15 4.7812 6.0772 6.5822 7.3755 8.1080 9.0096 10.633 12.484 15.608 15
16 5.3390 6.7215 7.2582 8.0995 8.8750 9.8284 11.544 13.500 16.807 16
17 5.9110 7.3781 7.9457 8.8340 9.6516 10.656 12.461 14.522 18.010 17
18 6.4959 8.0459 8.6437 9.5780 10.437 11.491 13.385 15.548 19.216 18
19 7.0927 8.7239 9.3515 10.331 11.230 12.333 14.315 16.579 20.424 19
20 7.7005 9.4115 10.068 11.092 12.031 13.182 15.249 17.613 21.635 20
21 8.3186 10.108 10.793 11.860 12.838 14.036 16.189 18.651 22.848 21
22 8.9462 10.812 11.525 12.635 13.651 14.896 17.132 19.692 24.064 22
23 9.5826 11.524 12.265 13.416 14.470 15.761 18.080 20.737 25.281 23
24 10.227 12.243 13.011 14.204 15.295 16.631 19.031 21.784 26.499 24
25 10.880 12.969 13.763 14.997 16.125 17.505 19.985 22.833 27.720 25

Table 4.1 Part of the Erlang table showing the traffic intensity that can be offered to a link of capacity n (rows)
circuits for specified blocking probabilities (columns).

8
4
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Telephony systems typically are designed for blocking probabilities such
as 0.01 or 0.02. If a single phone is expected to provide a load of 0.1 Erlangs
(e.g., two calls per hour, with an average holding time of 3 min), then for a
coverage area with 2500 MSs the Erlang load is 250, and we see that this pro-
posed system (with N = 192) will yield an unacceptable probability of call blocking
B(250, 192).1

The right panel of Figure 4.2 shows the idea of spatial reuse. The MS-BS
communication is done using smaller powers. The same channel can be used in
several places in the system, provided that the cochannel interference is such that
the signal-to-interference plus noise ratio (SINR) of any MS-BS link is maintained
above a threshold. Suppose that, by exploiting spatial reuse, each channel could
be reused, say, five times in the same coverage area; then we would have
effectively multiplied the number of calls that can be simultaneously handled by a
factor of 5.

On further thought, however, a problem becomes evident with the simple
arrangement in Figure 4.2. If an MS is not close to any BS, then in order to serve
it from some BS, on any channel, a large transmission power will need to be used.
This will cause cochannel interference if the same channel is reused elsewhere in
the coverage area, thus rendering spatial reuse less effective.

In order to address this problem, the cellular FDM-TDMA approach is to
tessellate the coverage area into cells, each of which has a BS. The set of FDM
carriers is partitioned into subsets called reuse groups. These channel groups are
then assigned to the cells in such a way that cells with the same group of channels
(called cochannel cells) are not close together. How close cochannel cells can be
depends on the SINR required for reliable communication. Each cell then acts as
an Erlang blocking system for the calls that require a channel in it.

We observe that, if the SINR required is large, then the cochannel cells will
need to be kept far apart. This will require more channel reuse groups, and hence
fewer channels per reuse group. This brings us to another issue. If the reuse groups
have only a small number of carriers in them, then trunking efficiency is lost. By
this we mean the following. For a fixed probability of blocking, ε, let ρε(n) denote
the Erlangs that can be carried when the number of servers is n,

B(ρε(n), n) = ε (4.1)

To understand this, notice that each column of Table 4.1 corresponds to a value of
ε, and each element in that column gives the value of ρε(n) for the corresponding
n in the first column. Now define gε(n) = ρε(n)

n , that is, gε(n) is the Erlangs per
server that can be offered, when the number of servers is n and the target blocking

1Note that the maximum load that 192 servers can carry is just 192, so a load of 250 Erlangs will give a
blocking probability close to 1. As a rule of thumb, for B(ρ, n) to be as small as 0.01 or 0.02, it is necessary
that ρ < n. This follows because, with a blocking probability of ε, the rate of calls that are carried is (1−ε)λ,
and time average number of busy servers is (1 − ε)λh = (1 − ε)ρ (by Little’s Theorem; see Appendix D). For
low blocking, however, the average number of busy servers will be substantially less than n (see Table 4.1).
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probability is ε. For n = 1, note that B(ρ, n) = ρ
1+ρ

, which yields gε(1) = ε
1−ε

.
Thus, a very small load (per server) can be handled if there is just one server.
However, gε(n) increases monotonically to 1 as n increases. Thus, we see that it
is beneficial to not partition the set of carriers into small groups, as this reduces
trunking efficiency.

We conclude that a larger target SINR results in smaller reuse groups, which
results in lower trunking efficiency. It follows that there is a trade-off between
keeping the SINR above a required threshold and keeping the trunking efficiency
high. The number of reuse groups we use in a system will be denoted by Nreuse.

We observe from this discussion that the SINR requirements, the spatial
reuse, and the system efficiency are intimately linked, and some analysis is required
to evaluate the trade-offs.

4.2 SIR Analysis: Keeping Cochannel Cells Apart
In Figure 4.3, we depict uplink and downlink cochannel interference in a
configuration in which a channel is reused at the five BSs shown. The circular
boundaries indicate the coverage of each BS; these are assumed to be of radius R.
The distance between the centers of each of the outer BSs and the one in the middle
is D. It is intuitively clear that a large D

R ratio will be required if the cochannel
interference has to be kept very small. In this section we will study how to carry
out the cochannel interference analysis with a target SINR, in order to determine
the required D

R ratio.

D

R

BS1

BS2

BS3

BS4
MS0

MS0

D 2R

D 2R

D 2R

D 2R
MS4 MS2

MS1

MS3

R

Figure 4.3 Depiction of downlink (left panel) and uplink (right panel) cochannel
interference. In each case the MS0 is taken to be in the most unfavorable position,
such that the desired signal will suffer the maximum attenuation and the interference
will suffer the least attenuation. D is the shortest distance between BSs of cochannel
cells, and R is the coverage radius of each BS.
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For the purpose of studying the cochannel interference, the MS whose signal
performance is being analyzed is considered to be in the most unfavorable position
(at the periphery of its BS’s coverage area), and the interferers are also assumed
to be in the most unfavorable position, as close as possible to the receiver of the
desired transmission. For example, in the right panel of the figure, the uplink is
being considered, and therefore the interferers are cochannel MSs in the other
cells. Notice that these are being assumed to be at the peripheries of their own
cells, and placed so that they are as close as possible to BS0. Such worst case
configurations are used to determine how far away cochannel cells need to
be kept.

At this point we recall the material in Section 2.1.4. Let H denote the channel
power gain (actually, an attenuation) between the transmitter of the desired signal
and its receiver, and let Hi denote the power gain from the i-th cochannel interferer
to the receiver of the desired signal. Let there be NI interferers. We will view
all transmitter powers as being the Rayleigh faded mean values at the reference
distance d0 (see Section 2.1.4). With this convention, let P be the power used
by the transmitter of the desired signal, and Pi, 1 ≤ i ≤ NI be the powers
of the interfering transmitters. It then follows that the SINR at the receiver is
given by

Ψ = PH

N0W + ∑NI
i=1 PiHi

We note that these FDM-TDMA systems use narrowband modulation, and hence
the SINR requirements are in the range of 10 dB to 20 dB. Also the noise power,
N0W , is very small; approximately −120 dBmW (i.e., 10−12 mW). It is, therefore,
assumed that the noise power is much less than the received signal power, and we
neglect this term in the denominator. Let d be the distance between the transmitter
and its receiver, and di the distance between the i-th interfering transmitter and
the receiver. We can then write (see Section 2.1.4)

H =
(

d
d0

)−η

10− (ξ+ξ0)
10

Hi =
(

di

d0

)−η

10− (ξi+ξ0)
10

where ξ, ξ0, and ξi, 1 ≤ i ≤ NI, normally are distributed and correspond,
respectively, to the shadowing at the transmitter of the desired signal, at the
receiver, and at the NI interferers. Here the ξ, ξ0, ξi, 1 ≤ i ≤ NI, are i.i.d. normally
distributed, 0 mean, and with variances σ2

2 ; thus, the lognormal shadowing
standard deviation on any path is σ dB. This form of the lognormal shadowing is
used since shadow fading comprises a part due to the shadowing near the receiver
(which is common to all paths to the receiver), and a part near the transmitters
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(which is assumed to be independent for widely separated transmitters). Hence,
we can write the SINR (or, simply, the SIR) Ψ as

Ψ =
P
(

d
d0

)−η

10− (ξ+ξ0)
10

∑NI
i=1 Pi

(
di
d0

)−η

10− (ξi+ξ0)
10

Notice that the terms ξ0 all cancel. We can then rewrite the SIR expression in the
following form:

Ψ = 10
− 1

10

(
−10 log10 P+10η log10

d
d0

+ξ
)

∑NI
i=1 10

− 1
10 (−10 log10 Pi+10η log10

di
d0

+ξi)
(4.2)

Notice that in the numerator we have a log-normally distributed random variable
of the form 10− 1

10 Q, where Q has units of dB, and is normally distributed with

E
(
Q

) = m :=
(

−10 log10 P + 10η log10
d
d0

)
dB

VAR(Q) = υ := σ2

2

and in the denominator we have a sum of NI log-normally distributed random
variables of the form 10− 1

10 Qi , where Qi also has units of dB, and is normally
distributed with

E
(
Qi

) =
(

−10 log10 Pi + 10η log10
di

d0

)
dB

VAR(Qi) = σ2

2
(= υ)

Thus, we have

Ψ = 10− 1
10 Q∑NI

i=1 10− 1
10 Qi

where Q, Qi, 1 ≤ i ≤ NI, are independent normally distributed random variables
that essentially model the shadowing. Since shadow fading is correlated over
distances of several 10s of meters, we assume that the shadowing is “sampled” once
during a call, and independent samples of the shadow fading random variables
are taken from call to call. We also assume that a call, during its holding time,
samples the entire distribution of the Rayleigh fading; it does not get “stuck” in
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a deep fade. This corresponds to our use of mean transmit powers averaged over
Rayleigh fading.

We are now interested in ensuring that the SIR exceeds a threshold γ with a
high probability, say, 1− ε. Note that, given a target BER, γ will be obtained from
an analysis of the underlying modulation scheme under Rayleigh distributed flat
fading and additive white Gaussian noise; see Section 2.1.4. Then ε would be the
outage probability. What does this probability mean? Consider instances of calls
from or to MSs at the boundaries of the coverage areas of the cells in which they
are handled. Then the fraction of such calls that will experience a BER higher than
the target will be less than ε. This is because for such calls, we have assumed that
the cochannel interferers are placed at the most unfavorable locations; refer back
to Figure 4.3.

One approach to carrying the analysis forward is to approximate the
distribution of

∑NI
i=1 10− 1

10 Qi by a log-normal distribution. Such an approximation
is known to work well. Also, the resulting SIR threshold analysis becomes simple,
since the ratio of two independent log-normal random variables is obviously
log-normal. So, let us write

NI∑
i=1

10− 1
10 Qi ≈ 10− 1

10 QI

The approximation is performed by matching the mean and second moment of the
random variables on the two sides. This is called the Fenton-Wilkinson method, the
details of which can be found in standard texts on wireless digital communication
(see, for example, [123]). Let us suppose that this procedure yields QI as normally
distributed with mean mI and variance vI. Then, we have

Ψ = 10− 1
10 (Q−QI)

or, equivalently,

(Ψ)dB = QI − Q

where QI − Q is in dB, and is normally distributed with mean mI − m and variance
v + vI. Thus, mI − m is the mean SIR in dB, and the SIR variance is v + vI. We need
that QI − Q > (γ)dB with a large probability, where, as usual, (γ)dB = 10 log10 γ.

From Figure 4.3, we notice that in the downlink worst case situation (left panel
of the figure), the BSs are all taken as transmitting to MSs at the peripheries of their
coverage areas. Similarly, in the uplink worst case situation (right panel) the BSs
are all receiving from MSs at the peripheries. We thus assume that the transmission
powers P, Pi, 1 ≤ i ≤ NI, are all equal. It follows from (4.2) that the transmitter
powers cancel in the SIR expression. The mean value, m, corresponds to the path
loss from the transmitter of the desired signal to its receiver. Further, mI depends
on the path losses from the interferers to the receiver, and is the effective path
loss of the interfering transmitters, in dB. We can thus require that mI − m > 0,
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that is, the interferers have a larger effective power attenuation to the receiver
than does the desired transmitter. Figure 4.4 depicts a typical situation, when the
target probability of exceeding γ is being met. The normal density of (Ψ)dB has been
plotted in this figure. It follows that for an outage probability ε (i.e., to ensure that
Pr

(
(QI − Q) < γ

)
< ε,) there is a τε, such that we need to ensure that

mI − m > γ + τε

√
v + vI

Such a τε will be obtained from a table of the tail of the normal distribution. For
example, τ0.01072 = 2.3, as can be seen from Table 4.2. This inequality provides
the insight that shadowing variance of the signal and of the interference add up,
and a larger value of this total variance requires the cochannel reuse to be designed
so that there is a larger difference between the mean interference attenuation and
the signal attenuation, mI − m.

As an application of this analysis, consider the uplink configuration shown
in the right panel of Figure 4.3. Since, in this case, the interferers are as close
as possible to the receiver of the desired signal, this situation is worse than the
downlink situation shown in the same figure. It can be shown that the Fenton-
Wilkinson analysis yields

m = 10η log10 R

mI = 10η log10(D − R) − 1
2a

ln

(
ea2vN3

I

ea2v + (NI − 1)

)

vI = 1
a2 ln

(
ea2v − 1

NI
+ 1

)

mI 2 m�
c in dB

Figure 4.4 A sketch of the normal probability density of the SIR, Ψ, in dB. γ is the
target SIR, and mI − m is the mean SIR.
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z Q(z) z Q(z)

0.0 0.50000 2.0 0.02275
0.1 0.46017 2.1 0.01786
0.2 0.42074 2.2 0.01390
0.3 0.38209 2.3 0.01072
0.4 0.34458 2.4 0.00820
0.5 0.30854 2.5 0.00621
0.6 0.27425 2.6 0.00466
0.7 0.24196 2.7 0.00347
0.8 0.21186 2.8 0.00256
0.9 0.18406 2.9 0.00187
1.0 0.15866 3.0 0.00135
1.1 0.13567 3.1 0.00097
1.2 0.11507 3.2 0.00069
1.3 0.09680 3.3 0.00048
1.4 0.08076 3.4 0.00034
1.5 0.06681 3.5 0.00023
1.6 0.05480 3.6 0.00016
1.7 0.04457 3.7 0.00011
1.8 0.03593 3.8 0.00007
1.9 0.02872 3.9 0.00005

Table 4.2 The probability under the right “tail” of the

normal (Gaussian) distribution: Q(z) = 1√
2π

∫ ∞
z

e
−x2

2 dx.

where a := ln 10
10 ≈ 0.23026. We thus get the requirement

10η log10

(
D
R

− 1
)

> γ + τε

√√√√v + 1
a2 ln

(
ea2v − 1

NI
+ 1

)

+ 1
2a

ln

(
ea2vN3

I

ea2v + (NI − 1)

)
(4.3)

We notice that this inequality places a constraint on the ratio between D, the
distance between cochannel cells, and R, the cell radius. Let us look at two
numerical examples, both with η = 4. Consider first v = 0, that is, there is no
log-normal shadowing, just path loss. The D

R constraint reduces to

40 log10

(
D
R

− 1
)

> γ + 10 log10 NI (4.4)
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Exercise 4.1
Obtain the expression in (4.4) directly from the SIR expression in (4.2).

For NI = 6, we find

40 log10

(
D
R

− 1
)

> γ + 7.78

On the other hand, if the shadow fading standard deviation is 8 dB, then
v = σ2

2 = 32. For η = 4, NI = 6, and outage probability ε = 0.01, (4.3) yields

40 log10

(
D
R

− 1
)

> γ + 25.25

We conclude that shadow fading has a significant effect on the D
R ratio.

Discussion
a. We observe, from the preceding analysis, that as long as the transmitter

powers are all assumed to be equal, the required D
R ratio does not depend

on the actual values of the transmit powers.

b. We notice also that only the ratio D
R is determined, but not the absolute

values of D and R. This provides the important insight that the cell sizes
can be shrunk while retaining the D

R ratio. This increases the system call
handling capacity, since the channel groups in each cell are used to serve
a smaller cell area. This approach to increasing the system capacity has
its limitation, however. As the cell size decreases the MSs tend to more
frequently require intercell handovers. Since the blocking of handover
requests leads to the dropping of ongoing calls, an increase in handover rates
needs more channels to be reserved for handover handling (see Section 4.6),
thus leading to a possible reduction in call handling capacity. In addition, the
higher frequency of handovers results in more signaling load, thus possibly
overloading the call handling processors in the system.

4.3 Channel Reuse Analysis: Hexagonal Cell Layout
It is evidently not practical to use the cell configuration shown in Figure 4.3, as
this leaves large portions of the service area uncovered. Hence, as explained in
Section 4.1, the service area is tessellated with cells. The set of FDM carriers is
partitioned into disjoint sets, which are assigned to subsets of the cells, in such a
way that cochannel cells respect the D

R ratio. In order to analyze such a system, it
is convenient to take the cells to be hexagons of equal size. This permits an easy
visualization of the tessellation in the two-dimensional plane. It is then useful to
recall the simple geometrical concepts shown in Figure 4.5.
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C 5  3 R

R
C

Area 5  3 C2
5 3  3 R2

2 2

Figure 4.5 Hexagon geometry: relations between the cell width, C, the cell radius, R,
and the area of the hexagon.

4.3.1 Cochannel Cell Groups
In Figure 4.6 we show a tessellation of the plane with hexagonal cells. The FDM
channels are partitioned into reuse groups. One of these groups is assigned to
Cell 0, shown at the center of the cell layout. This will be our reference cell
in the following discussion. We next wish to determine which other cells in the
layout should use the same group of carriers. For this purpose it is convenient to
work with a coordinate system with axes inclined at 60◦ to each other, as shown
by the axes u and v in the figure. For simplicity in our description, we draw a
third “axis,” w. The axes pass through the center of the reference cell. There is
an angular separation of 60◦ between u and v, and the same between v and w.
Notice that moving a cell width, C, along any of the axes takes us to the center
of a neighboring cell. Thus, let C be unit length along the axes. Now, starting
from the origin of this system (the center of Cell 0), move i units along the u axis
and then j units along the v axis. Observe that for i = 3 and j = 2 this brings us
to the cell labeled 1. Let the Euclidean distance between the centers of Cell 0 and
Cell 1 be D(i, j), the distance between two cells whose relative positions depend on
(i, j) in the manner just explained. The following calculation follows from simple
geometry.

D(i, j) =
√√√√(

j

√
3

2

)2

+
(

i + j
1
2

)2

=
√

j2
3
4

+ i2 + ij + j2
1
4

=
√

i2 + ij + j2

In a similar manner, fixing i = 3 and j = 2, we can identify Cells 2, 3, 4, 5, and 6,
as shown in Figure 4.6. These will be the cochannel cells in relation to Cell 0.
Observe that if we carry out the same procedure, for i = 3 and j = 2, for Cell 1 in
the figure, then we will obtain Cells 2, 0, and 6, and three other cells, above and to
the right of Cell 1; these cells are not shown in the figure. Thus, this process yields
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i

j

1
2

3

4
5

60

Cells 0,1,2,3,4,5, and 6 are cochannel cells 
to locate a cochannel cell w.r.t. to a cell:

move i cells along an axis, then turn clockwise and move j cells

u

v

w

D

Figure 4.6 Tessellation of the coverage area by hexagonal cells. Cells 0, 1, 2, 3, 4, 5, 6
are cochannel cells for (i, j) = (3, 2).

a subset of the hexagons that tessellate the plane. Applying the procedure starting
from any element of this subset yields the same set of cells. Notice, however,
that if we start from one of the cells adjacent to Cell 0, and use the same (i, j),
then we will get a subset of cells that is disjoint from the previous one. In fact,
looking at Figure 4.7, for each cell in the large dashed hexagon with Cell 0 at
its center, we will obtain a different subset of hexagons, and all these subsets
(19 for (i, j) = (3, 2)) are mutually disjoint and together they form a partition of
the tessellation. We can call each of these subsets of cells a cochannel group.

4.3.2 Calculating Nreuse

The number of cochannel groups (which we had denoted earlier by Nreuse) thus
depends on the choice of (i, j). For example, with (i, j) = (1, 0) there is only one
cochannel group. What is the general relation between (i, j) and the number of
cochannel groups? This can be worked out as follows. In Figure 4.7 the area of
the large dashed hexagon is

√
3

2 D2 (where we recall that the unit of length is the
cell width, C). There are as many cochannel groups as the number of cells in this
large hexagon. Exactly one cell from any of the cochannel groups lies in this large
hexagon. Hence, given a large coverage area A, the number of cells in a cochannel
group is A

(
√

3/2)D2 (see Figure 4.5). The total number of cells is A√
3/2

. Thus, the
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The large dashed hexagons are centred at cochannel cells
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D

Figure 4.7 Tessellation of the plane by hexagonal cells. There is one cell from each
cochannel group in each of the large dashed hexagonal areas. Notice that Cells A0, A1,
A2, A3, A4, A5, and A6 belong to a different cochannel group than Cells 0, 1, 2, 3, 4, 5,
and 6.

number of cochannel groups is D2. Obviously, the number of cochannel groups
has to be the same as the number of groups into which we partition the set of
FDM carriers (i.e., Nreuse (as defined earlier)). Thus

Nreuse = D2 = i2 + ij + j2

We also observe that for a given (i, j), following this procedure for fixing the
cochannel cells, we have also fixed the D

R ratio to the value (see Figure 4.5):

D(i, j)
R

=
√

3(i2 + ij + j2)

=
√

3Nreuse

Table 4.3 shows the values of Nreuse and D(i,j)
R that are obtained for various values

of (i, j).
Recall that the SIR analysis in Section 4.2 yielded a constraint on the D

R
ratio. For example, (4.3) provided a constraint on the D

R ratio when a reference
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i j Nreuse
D(i,j)

R

1 0 1 1.73
1 1 3 3.00
2 0 4 3.46
2 1 7 4.58
3 0 9 5.20
2 2 12 6.00
3 1 13 6.24
4 0 16 6.93
3 2 19 7.55
4 1 21 7.94
4 2 28 9.17

Table 4.3 Nreuse, and D(i,j)
R ratio, for relative locations of cochannel cells, (i, j ).

cell is surrounded by NI cochannel cells whose centers are all at distance D from
the center of the reference cell. We say that the analysis considered only the
first tier interferers, the nearest cochannel cells. In general, in large cellular
networks, there will be second and third tier interferers and even more beyond. Of
course, the interference from second, third, and higher tiers is substantially lower
than that from the first tier, especially when the path loss exponent, η, is large.
In any case, the SIR analysis yields a D

R ratio, and then Table 4.3 can be used to
determine the value of Nreuse that provides this D

R ratio, and the corresponding
(i, j) to be used to lay out the cells. For example, if the required D

R ratio is 7, then
we must take Nreuse = 19, which is achieved with (i, j) = (3, 2).

4.3.3 D
R Ratio: Simple Analysis, Cell Sectorization

It is instructive to compare various cases of first tier cochannel interference while
ignoring shadowing, and accounting only for path loss. Such analysis provides
quick insight into the comparisons between the various cases. Thus, accounting
only for path loss, and taking the transmitter powers, in the worst-case transmitter-
receiver configurations, to be equal (see the discussion in Section 4.2), the following
is the general expression for the SIR

Ψ = R−η∑NI
i=1 D−η

i

= 1∑NI
i=1

(
Di
R

)−η

where R is the cell radius, NI is the number of first tier interferers, and Di, 1 ≤ i
≤ NI, is the distance of the i-th interferer from the receiver in the reference cell.
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Figure 4.8 shows the forward channel (downlink) worst-case situation, where
approximations have been made for the various distances between the interferers
and the receiver. We see that

Ψ = 1

2
((

D
R − 1

)−η +
(

D
R

)−η +
(

D
R + 1

)−η
)

Suppose we take Nreuse = 9; then Table 4.3 provides D
R = 5.20, from which we

find that, for η = 4, Ψ = 95.09 = 19.78 dB.
In Figure 4.9 we show the reverse channel (uplink) worst case situation. Here

we see that

Ψ = 1

6
(

D
R − 1

)−η

D1R

D2R

D2R

D1R

D

D

R

Figure 4.8 Seven cochannel cells, showing the worst-case configuration of first tier
downlink interferers. The arrows point at the receiver, and show the direction of the
desired signal and the interference.The distances are approximations, and, in general,
the cochannel cells may have a different relative orientation from the one shown.
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D2R

D2R

D2R

D2R

D2R

D2R

R

Figure 4.9 Seven cochannel cells, showing the worst case configuration of first tier
uplink interferers. The arrows point at the receiver, and show the direction of the
desired signal and the interference. The value D – R is an approximation, and, in
general, the cochannel cells may have a different relative orientation from the one
shown.

For Nreuse = 9 (i.e., D
R = 5.20) we have, for η = 4, Ψ = 51.86 = 17.14 dB. Thus we

see that the uplink provides a more than 2.5 dB worse performance for the same
D
R ratio.

In each of these cases, there are six first tier interferers at a receiver. If
directional antennas are used in the BSs then the number of interferers can be
reduced. This is achieved by a technique called sectorization, which is depicted
in Figure 4.10. Each cell is shown divided into three 120◦ sectors, each with
a directional antenna whose angular coverage is designed to coincide with the
angular spread of the sector. Thus, an MS in a given sector of a cell is served by the
antenna in that sector. Further, the channels are reused only in the corresponding
sectors of the cell reuse groups. This is shown in Figure 4.10, where the carrier f is
shown being reused in a particular sector of all the cells in a reuse group of seven
cells.

To see the advantage of doing sectorization, consider the downlink worst-
case situation depicted in the left panel of Figure 4.10. Notice that the MS in Cell 0
sees only two first tier interferers, the two BSs in Cells 2 and 3. The corresponding
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Figure 4.10 Seven cochannel cells, with 120◦ sectorization, showing the worst case
configuration of first tier downlink interferers (left) and uplink interferers (right). The
distances shown are approximations.

sectors in Cells 4, 5, and 6 could be using the same channel, but their antenna
main lobe is not “visible” to the MS in Cell 0. Making suitable approximations for
the distances, the following is the forward channel SIR, ignoring the shadowing.

Ψ = 1(
D
R + 1

)−η +
(

D
R

)−η

Taking η = 4, Nreuse = 9 (i.e., D
R = 5.20) we find that Ψ = 489.13 = 26.89 dB,

a 7.1 dB improvement over the case without sectorization. The right side of
Figure 4.10 shows the worst-case uplink interferers with sectorization. The SIR is
given by

Ψ = 1

2
(

D
R

)−η

With Nreuse = 9 (i.e., D
R = 5.20), taking η = 4, we find that Ψ = 365.58 = 25.63 dB,

which is 8.5 dB better than without sectorization. Note, however, that sectoriza-
tion implies smaller sets of channels in each sector, thus reducing the trunking
efficiency.

4.4 Spectrum Efficiency
Let us recall the following system parameters. The RF spectrum allocated to the
system is Wsystem, the number of FDM carriers the system bandwidth is partitioned
into is C, the number of TDM slots per carrier is s. Assuming equal cell sizes, let
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a denote the area of each cell. Further, let K denote the number of sectors in each
cell (e.g., K = 3 for 120◦ sectors). Recall the definition of Nreuse, and the function
gε(n) (see Section 4.1).

Let us consider the simplest approach of partitioning the C carriers into
Nreuse subsets. Each subset of carriers is then further partitioned into K sets, each
of which is allocated to the same sector in all the cells in a reuse group of cells.
Each slot in each carrier in a sector can carry one call. For the present we assume
that a call that is initiated in a sector stays in the same sector for its entire duration;
that is, there are no handovers in the system. Thus, the sC

NreuseK slots in a sector,
along with the call arrivals to or from MSs in that sector, constitute an Erlang
blocking model. It follows that, for a target blocking probability of ε, the number
of Erlangs that can be offered to a cell is given by

gε

(
sC

NreuseK

)
× sC

NreuseK
× K

where the first term is the number of Erlangs per slot in a sector. Let A denote the
coverage area of the system. Then the Erlang capacity of the system, denoted by
Λ, is given by

Λ = A
a

× gε

(
sC

NreuseK

)
× sC

Nreuse

Let us define the spectrum efficiency of the system as the Erlang capacity per unit
area per Hz of system bandwidth, and denote this by ν. We then have

ν := Λ

A Wsystem

= 1
a

× sC
Wsystem

× gε

(
sC

Wsystem

Wsystem

NreuseK

)
1

Nreuse
(4.5)

Notice that sC
Wsystem

is fixed for a given system bandwidth, and depends on the
FDM-TDM modulation scheme being used. For example, in the GSM system,
the FDM carrier spacing is 200 Khz, and there are eight TDM slots per FDM
carrier. Thus, given Wsystem, and allowing for some guard bandwidth on either
side, the value of C is determined. In Section 4.3 we saw how Nreuse and K can
be chosen to achieve the required SIR. Notice that the term gε

(
sC

Wsystem

Wsystem
NreuseK

)
1

Nreuse

decreases with increasing Nreuse or K, but we need to set Nreuse and K so that the
SIR requirements are met while keeping this trunking efficiency term as large as
possible. Note that gε

(
sC

Wsystem

Wsystem
NreuseK

)
1

Nreuse
also increases with Wsystem, but having

leased a certain amount of the spectrum, the operator will want to work within
this leased amount. Finally, the Erlang capacity of the system can be increased by
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decreasing a; that is, by reducing the cell size. Of course, there are limits to this
scaling. As the cell size decreases, there are three issues:

a. As the cell size decreases, we need to consider handovers, and the handover
rate increases with decreasing cell size. This will impact the Erlang capacity,
as resources need to be reserved for handovers.

b. The signaling load increases due to the increased handover rate. This means
that higher capacity call handling systems need to be installed.

c. Reducing cell size requires the installation of more base stations, which can
be expensive.

Finally, the design of any given system will have to balance these trade-offs.

4.5 Channel Allocation and Multicell Erlang Models
From the expression for spectrum efficiency in (4.5), we can infer that, apart
from reducing the cell size, another way to increase the efficiency is to improve
the channel utilization. The earlier analysis assumed a uniform fixed assignment
of the FDM carriers to the cells and their sectors. In such an assignment, it is
possible that channels are idle in one cell, whereas another cell is overloaded.
The trunking efficiency can be improved if the channels are viewed as being in
various common pools, from which allocations are made as needed. Of course,
such dynamic channel allocation must respect the cochannel SIR constraints as
the channels are allocated, released, and reallocated to various cells.

4.5.1 Reuse Constraint Graph
A simple model that can be used for designing and analyzing dynamic channel
allocation strategies is to specify pairwise reuse constraints. Given an array of
cells, pairwise reuse constraints specify which pairs of cells cannot use the same
FDM carrier at the same time. For example, Figure 4.11 shows a linear array of
rectangular cells, such as might be deployed along a highway. The diagrams in
the middle and bottom of the figure depict pairwise reuse constraints as constraint
graphs. In a constraint graph, each cell is represented by a vertex. There is an edge
between two vertices if an FDM carrier cannot be simultaneously used in both of
the corresponding cells. Thus, the constraint graph in the middle of Figure 4.11
only constrains neighboring cells from reusing the same channel; channels can
be simultaneously used in alternate cells. The constraint graph at the bottom,
however, permits a channel to be reused only in cells that are separated by at least
two other cells.

We note that, in general, representation of reuse constraints by pairwise
constraints is conservative. It is possible that among three cells, any two cells can
reuse the same channel, but, if the third cell also uses that channel, then, due to
the increased interference, the SIR in all the cells may be at an unacceptable level.
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3 4 5 6 7 8 9 1021

Figure 4.11 A linear array of 10 cells (top), and two sets of pairwise reuse constraints
(middle and bottom), shown as constraint graphs.

The modeling of such, more general, constraints requires hypergraphs, a general-
ization of graphs in which edges are subsets of nodes with cardinality greater than
two. Such models have been studied in the literature, but we will consider only
pairwise constraints in this book.

Formalizing this discussion, let B = {1, 2, . . . , N} denote the set of cells (or,
equivalently, base stations). Let (B, C) denote the constraint graph with C being the
edge set; that is, for i ∈ B and j ∈ B, (i, j) ∈ C if the same carrier cannot be used in
Cell i and Cell j simultaneously. We note that the constraint graph is undirected;
that is, (i, j) ∈ C if and only if (j, i) ∈ C.

Let F = {f1, f2, . . . , fM} be the set of FDM carriers that need to be assigned to
the cells. Suppose that a certain number of calls need to exist in each of the cells.
This will require a certain number of carriers xj in each of the cells j, 1 ≤ j ≤ N, in
order to be able to carry those calls. For example, if each carrier has eight TDM
slots, then in order to carry 9 to 16 calls in a cell, two carriers are needed. Let
xj denote the number of carriers required in Cell j, 1 ≤ j ≤ N. We say that the
vector x = (x1, x2, . . . , xN) is feasible if there exists an allocation of xk carriers
to Cell k such that the reuse constraints are respected. As a simple illustration, if
F = {f1, f2}, and we have the reuse constraints shown in the middle of Figure 4.11,
then x = (2, 1, . . . , 1) is not feasible. Define

X = {x : x feasible}

Recalling some standard concepts from graph theory, we say that a clique of (B, C)
is a fully connected subgraph. Thus, a carrier can only be used in exactly one
of the cells that form a clique. A maximal clique is one that is not contained
in any other clique. We will simply refer to maximal cliques also as cliques.
Thus, in the bottom diagram of Figure 4.11, the cliques are {1, 2, 3}, {2, 3, 4}, and
so on.
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4.5.2 Feasible Carrier Requirements
Let Q be the number of cliques (i.e., maximal cliques) in (B, C). Consider the Q×N
matrix A with

aij =
{

1 if cell j is in clique i
0 otherwise

We see that a necessary condition for x ∈ X is

A · x ≤ M 1

where we recall that M is the number of carriers, and 1 is the Q × 1 vector of 1s.
Note that this inequality simply says that, for each i, 1 ≤ i ≤ Q,

∑N
j=1 aij xj ≤ M,

where the expression on the left of this inequality is the number of carriers needed
in Clique i in order to achieve the carrier allocation given by x. Let us denote

XCPA = {x : A · x ≤ M 1}
where the suffix CPA expands to clique packing allocation. It may appear that
XCPA is a convenient characterization of X . Since every carrier allocation must
satisfy the clique constraints, we see that X ⊂ XCPA. In general, however, X is
a strict subset XCPA; that is, in general, it can be that x ∈ XCPA, but x �∈ X . An
example is shown in Figure 4.12. We can also observe that, if the constraint graph
shown in Figure 4.12 is a subgraph of a constraint graph, then X �= XCPA.

Exercise 4.2
Consider a linear array of cells (1, 2, . . . , N) (as shown in Figure 4.11) with
a constraint graph that has the property that if cells i and j, i ≤ j, are in a
clique, then all k such that i < k < j are also in the same clique. Argue that
for this situation X = XCPA. Show that if x ∈ XCPA then a feasible carrier
assignment is obtained via a greedy algorithm that starts by assigning the
required carriers to the clique to which the left-most cell belongs, and then
moves across the cells from left to right, reassigning carriers as need arises.

4.5.3 Carrier Allocation Strategies
Based on the preceding discussion, we can identify various carrier allocation
strategies. We recall that, for a system with N cells, x = (x1, x2, . . . , xN) denotes a
vector of carrier requirements. Given a set of reuse constraints, a given x may or
may not be feasible. We have defined X as the set of all feasible carrier requirement
vectors: X = {x : x is feasible}.

a. Fixed Carrier Allocation (FCA). The carriers are allocated statically to the
cells in such a way that the reuse constraints are satisfied. For example,
if F = {f1, f2}, and we have the reuse constraints shown in the middle of
Figure 4.11, then (f1, f2, f1, f2, . . .) is a valid allocation. With this allocation,
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Figure 4.12 A pentagon reuse constraint graph for five nodes is shown on the left. With
M = 2, the vector x = (1,1,1,1,1) satisfies the clique constraints, but there is no feasible
allocation of carriers to cells, as seen in the diagram on the right.

x = (1, 1, 1, . . .) is feasible, and x = (2, 1, 1, . . .) is not. For a given fixed
allocation of carriers, let XFCA denote the set of feasible carrier requirements
x. Clearly, XFCA ⊂ X .

b. Maximum Packing Allocation (MPA). By definition, for every x ∈ X there
is a carrier assignment that achieves x. When a call arrives to a cell and is
accepted, then this will result in a carrier requirement vector y. Under MPA,
if y ∈ X , then the call is accepted, even if this requires a rearrangement of
the carriers. This is not a practical approach as the rearrangement requires
a lot of signaling, and the forced handovers of calls as carriers are being
swapped. Writing the set of feasible carrier requirements under MPA by
XMPA, we have XMPA = X .

c. Clique Packing Assignment (CPA). Since the characterization of XCPA
is simple, for theoretical purposes we may assume that each x ∈ XCPA is
acceptable.

In general, we have

XFCA ⊂ X = XMPA ⊂ XCPA

where, as we have seen, the last containment can be strict. Another channel
allocation strategy, which can be viewed as a hybrid of FCA and MPA, is that of
channel borrowing. Some channels are statically assigned to cells, whereas others
are permitted to be borrowed between cells, in order to accommodate local load
variations.

4.5.4 Call Blocking Analysis
If a carrier allocation respects the SIR constraints, or if it satisfies certain reuse
constraints that, in turn, assure the SIR constraints, then, with a high probability,
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the accepted calls will experience an acceptable voice quality. This was the purpose
of the analysis that we discussed in Section 4.2. Once a particular carrier allocation
strategy (denoted CA, generically) is chosen, then the carrier requirement vector x
will remain in XCA. Calls will need to be blocked for this to happen; if acceptance
of a new call results in a carrier requirement vector x �∈ XCA, then the arriving call is
blocked. In addition to a good voice quality during a call, users also are concerned
about the probability of their requests being blocked, or accepted requests being
dropped because of handover blocking. In this section we show how blocking
probabilities can be obtained for carrier allocation strategies.

Consider any carrier assignment strategy, and let XCA denote the set of
feasible carrier requirements, x, as discussed earlier. We will assume, for simplicity,
that each carrier can carry just one call (rather than, for example, eight in the GSM
system). In this section, we also assume that calls stay in the cells into which they
arrive, that is, that there are no handovers between cells. Let the arrival rate of
calls into Cell j be λj, 1 ≤ j ≤ N. The arrival processes are assumed to be Poisson
processes that are independent from cell to cell. We assume that the time duration
for which a call holds a carrier has mean 1

μ
, and that the holding times from call

to call are i.i.d. We also assume that the carrier holding times are exponentially
distributed; this assumption can be relaxed, but we will not dwell on that aspect
in this discussion (see, however, Appendix D, Section D.5.1).

In this setting, let Xj(t), 1 ≤ j ≤ N, denote the number of carriers utilized
in Cell j (equivalently, the number of calls in Cell j) at time t. Then consider
the vector random process X(t) = (X1(t), X2(t), . . . , XN(t)). If the chosen carrier
assignment strategy is used then, for all t, X(t) ∈ XCA. With the assumptions we
have made on the arrival processes and carrier holding time distributions, it can
easily be seen that the process X(t) is a continuous time Markov chain (CTMC; see
Appendix D, Section D.2). For finite and positive arrival rates and mean holding
times, this CTMC is positive recurrent, since it has a finite number of states.
In order to obtain the blocking probabilities we need the stationary distribution
π(x), x ∈ XCA. Then the blocking probability of calls arriving into Cell j, denoted
by Pb, j is given by

Pb,j =
∑

{x∈XCA: x+ej �∈XCA}
π(x) (4.6)

where ej is the unit vector with a 1 in the j-th position. Note that Pb,j is the fraction
of time during which an arrival into Cell j will be blocked. The fact that this is
the same as the fraction of calls arriving into Cell j that are blocked (the quantity
on the right-hand side of (4.6)) is a consequence of the Poisson Arrivals See Time
Averages theorem (PASTA) (see Appendix D, Section D.4.2). The average blocking
over all the cells is then given by

Pb =
N∑

j=1

λj∑N
i=1 λi

Pb, j
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which can be understood by observing that the probability that a call arrival is for
Cell j is λj∑N

i=1 λi
.

It remains to determine the stationary distribution π(x), x ∈ XCA. Notice that
only the following state transitions are possible in the CTMC X(t). For x ∈ XCA,
we can have x → x + ej for some j, 1 ≤ j ≤ N (due to an arrival into Cell j), or
x → x − ej (due to a call completion in Cell j; here we require xj > 0 in x). Let
ρj = λj

μ
, 1 ≤ j ≤ N, the Erlang load on Cell j. Define

π̂(x) = ΠN
j=1

ρ
xj

j

xj!

Now consider the transition x → x + ej, and notice that

π̂(x) × λj = π̂(x + ej) × (xj + 1)μj

Also, for the transition x → x − ej, where xj > 0, we have

π̂(x) × xjμj = π̂(x − ej) × λj

With these observations, and defining

GCA =
∑

{x:x∈XCA}
π̂(x) (4.7)

it can be shown that (see Exercise 4.3) the stationary distribution is given by

π(x) = 1
GCA

ΠN
j=1

ρ
xj

j

xj!
(4.8)

Exercise 4.3
Use Theorem D.8 in Appendix D to prove that what is being claimed in (4.8)
is correct.

4.5.5 Comparison of FCA and MPA
Consider the three-cell example, and the corresponding pair-wise constraint graph
shown in Figure 4.13. There are M carriers, each of which can handle one call. If
we partition the set of carriers into two equal parts, and assign one set to Cells
1 and 3, and the other set to Cell 2, then the reuse constraints are met, and we get
the XFCA shown by the dashed box in Figure 4.13. On the other hand, in MPA,
any carrier not used in Cell 2 can be used in both Cells 1 and 3; XMPA is also shown
in the figure. Suppose that the arrival rate of calls is the same in all the cells.

Let us first numerically investigate the blocking probabilities for M = 2.
Figure 4.14 shows the set of states in XMPA. The set of states in which calls to



4.5 Channel Allocation and Multicell Erlang Models 107

x3

x1

x2

XFCA

XMPA

M

M

M

MM/2

M/2

M/2

1 32

Figure 4.13 On the top right is shown a 3-cell example and the corresponding reuse
constraint graph. There are M carriers. The sets XFCA and XMPA are the points with
integer coordinates inside the regions shown.
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011 020 200110101 002

Figure 4.14 The set of states for the three-cell network using maximum packing
channel allocation with two channels. The downward transitions occur at rate λ and
the upward transitions are at rates that are multiples of μ.
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Cell j are blocked are as follows.
For Cell 1: (020), (110), (200), (111), (201), and (202);
For Cell 2: (002), (011), (020), (110), (200), (102), (111), (201), and (202);
For Cell 3: (020), (011), (002), (111), (102), and (202).
Let λj = λ for j = 1, 2, 3. The following blocking probabilities are easy to obtain.

GMPA = 1
4

ρ4 + 2ρ3 + 9
2

ρ2 + 3ρ + 1

Pb,1 = Pb,3 =
1
4ρ4 + 3

2ρ3 + 2ρ2

GMPA

Pb,2 =
1
4ρ4 + 2ρ3 + 3

2ρ2

GMPA

Pb = 2
3

Pb,1 + 1
3

Pb,2

Figure 4.15 shows a plot of blocking probability in each of the cells and
the overall blocking probability. For comparison, the blocking probability from a
fixed channel allocation is also shown; one channel is allocated to Cell 2, and the
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Figure 4.15 Plot of the blocking probability for the 3-cell network shown in
Figure 4.14, with M = 2, under MPA, in Cell 1 (P1), Cell 2 (P2), and the overall blocking
probability (P). Pf is the blocking probability for FCA, with 1 channel allocated to Cell 2,
and the other to both Cells 1 and 3.
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other to both Cells 1 and 3. Note that in the middle cell, the blocking probability
is worse with MPA than with FCA for large ρ. As can be seen from the set of states
that block a call to Cell 2, and also the expression for Pb,2, there are many more
states that affect the blocking in the middle cell.

Let us now consider a linear array of N > 3 cells, again with the constraint
that neighboring cells cannot reuse the same channel. Extending the two-cell
analysis via enumeration for N > 3 is clearly tedious. We therefore do an
asymptotic analysis as N → ∞. Before describing the result, let us see what to
expect. With increasing N, the number of middle cells increases as N → ∞, and
the blocking probability behavior that we saw for Cell 2 in the numerical example
earlier should become typical. We will see that this indeed is what happens.

Let us consider the blocking probability in an interior Cell i. For the same
reuse constraints, we see that the set of states XMPA, is defined by (see Exercise 4.2)

XMP = {x : xi + xi+1 ≤ M for i = 1, . . . , N − 1}
and the blocking states for Cell i are defined by

{x : xi−1 + xi = M or xi + xi+1 = M}
or, equivalently, the set of blocking states for Cell i are

{x : xi = M, or, (xi−1 + xi = M, 0 ≤ xi < M), or (xi + xi+1 = M, 0 ≤ xi < M)}
Thus, using the union bound, the blocking probability at Cell i with MPA is
bounded as follows

PMPA
b,i ≤ 1

GMPA

⎛
⎝G1

ρM

M!
+

M−1∑
k=0

G2,i(k)
ρk

k!
ρM−k

(M − k)!
+

M−1∑
k=0

G3,i(k)
ρk

k!
ρM−k

(M − k)!

⎞
⎠

Here G1, G2,i(k) and G3,i(k) are given by

G1 :=
∑

x∈X1

N∏
n=1
n �=i

ρxj

xj!

G2,i(k) :=
∑

x∈X2, i(k)

N∏
n=1

n �=i−1,i

ρxj

xj!

G3,i(k) :=
∑

x∈X3,i(k)

N∏
n=1

n �=i,i+1

ρxj

xj!

where X1 is the set of states in which Cell i has M calls, X2,i(k) is the set of states
in which Cell i has k calls and Cell (i − 1) has (M − k) calls, and X3,i(k) is the set
of states in which Cell i has k calls and Cell (i + 1) has (M − k) calls.
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First, let us see what happens for low values of ρ. For low values of ρ, the
higher powers of ρ will be insignificant and we can argue that G1

GMPA
, G2,i(k)

GMPA
, and

G3,i(k)
GMPA

all approach 1 as ρ → 0. Then, as ρ → 0, we can write

PMPA
b,i ≤ ρM

M!
+ 2

M−1∑
k=0

ρk

k!
ρM−k

(M − k)!

= ρM

M!
+ 2

ρM

M!

⎛
⎝ M∑

k=0

M!
k! (M − k)!

− 1

⎞
⎠

= ρM

M!
+ 2

ρM

M!
(2M − 1) = 2M+1 − 1

M!
ρM

For fixed channel allocation, each cell would be allocated M
2 channels and the

blocking probability would be (as before, see Appendix D, Section D.5.1)

PFCA
b,i =

ρM/2

(M/2)!∑M/2
k=0

ρk

k!

≈ ρM/2

(M/2)!

where, since ρ is small, in the denominator we just retain the unit term. We can now
see that, for large M, and small ρ, PFCA

b,i decreases as ρM/2, whereas PMPA
b,i decreases

faster than ρM (for a precise calculation we can use Stirling’s approximation for
the factorials). Hence, MPA would perform better at low loads.

Let us now see what happens when ρ is large. The stationary probability of
there being x active calls in Cell i can be written as

πi(x) = 1
GMPA

∑
x∈X3(x)

ρx

x!

M∏
j=1
j �=i

ρxj

xj!
= 1

GMPA

ρx

x!
φ(i, x)

where X3(x) is the subset of XMPA in which there are x calls active in Cell i and

φ(i, x) :=
∑

x∈X3(x)

M∏
j=1
j �=i

ρx
j

xj!

We can see that the carried load in Cell i is the average number of active calls in
Cell i and is given by

∑M
x=1 xπi(x). Subtracting the carried load from the offered

load (ρ to each cell) and expressing it as a fraction of the offered load, the loss
probability, PMPA

b,i , is

PMPA
b,i = ρ − 1

GMPA

∑M
x=1 xρx

x! φ(i, x)

ρ
= 1 − 1

GMPA

M−1∑
x=0

ρx

x!
φ(i, x + 1)
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Obtaining φ(i, x) is involved and we will omit that here. For M = 2, and
N → ∞, PMPA

b,i can be shown to be given by

PMPA
b,i = p2(14 − 10p − 5p2 + 3p3)

2(2 + p2 − 2p3)

where p is the solution in (0, 1) to the cubic equation ρ(1 − p)(2 − p2) = 2p.
Figure 4.16 shows PMPA

b,i and PFCA
b,i as a function of the offered load ρ. Notice

at about ρ = 2.6 the fixed channel assignment outperforms the maximum packing
dynamic channel assignment! What is more interesting is that it can be shown that
as M increases, the crossover happens at lower values of ρ and the crossover point is
asymptotically 0! This indicates that for high capacity cellular networks, the fixed
channel allocation scheme will outperform the dynamic channel scheme when the
load is time and space homogeneous. This result is definitely counterintuitive; we
expect dynamic schemes to be better than static schemes. A heuristic explanation
for the effect just described is that the MPA allocation scheme can upset the tight
packing of the channels and calls at high loads and spends more time in the many
Bad states that are possible with dynamic allocation.

A conclusion that we may draw from this analysis is that it might be better to
reject some calls, especially at high loads, to be able to improve the overall system
performance. The MPA scheme will accept a call if the channels can be rearranged

Pb,i
FCA

PMPA
b,i

offered load1.0 2.0 2.6

Lo
ss

 p
ro

ba
bi

lit
y

Crossover probability

Figure 4.16 PMPA
b,i and PFCA

b,i as a function of ρ for M = 2, and N →∞. Adapted
from [73].
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to accommodate it while the FCA will reject a call if all the channels allocated
to the cell are busy; that is, it will not borrow channels from other cells to fulfill
a request. Thus, it is not automatic that a dynamic channel allocation performs
better than a fixed allocation scheme. However, we cannot conclude that dynamic
channels do not have advantages. Rather that the advantages are realized if the
offered load is nonhomogeneous in space and is time varying, in which case the
dynamic schemes adapt to the changing load.

4.6 Handovers:Techniques, Models, Analysis
In our discussions thus far, we have essentially assumed that mobiles are confined
to the cells in which they initiate their calls. Since typically, neighboring cells do
not reuse a carrier, when a mobile moves to a neighboring cell, it must switch over
to a different carrier in that cell. This is called a handover. Naturally, for cellular
mobile telephony to be a useful service, a handover should be transparent to the
user. This imposes two requirements:

a. An ongoing call should not experience degradation in service when it is at
the fringes of the cell that is handling it.

b. A handover should rarely fail due to a channel not being available in the
cell into which a mobile call moves. Such a handover failure leads to call
dropping, the constraints on which are more stringent than on call blocking.

Handovers are performed by the MS making signal strength measurements
to neighboring BSs, and conveying this information to the handover management
system, which then decides on the need for a handover and the channel to
be assigned to the new cell. The transfer of such measurements from the MS
to the call handling system became possible in the second generation cellular
systems. Note that the handover strategy basically defines what is meant by a cell’s
coverage area.

4.6.1 Analysis of Signal Strength Based Handovers
We consider an MS located on the line joining two BSs, BS 0 and BS 1, as shown
in Figure 4.17. Let Si(x) = Received signal power from BS i, i ∈ {0, 1}, when the
MS is at the distance x from BS 0. Then, recalling the path loss and shadowing
model from Section 2.1.4, we have

[S0(x)]dB = [
S0(d0)

]
dB − 10η log

x
d0

− ξ0

where η is the path loss exponent, and the shadow fading, ξi, i ∈ {0, 1}, is normally
distributed with mean 0, and variance σ2. Also,

[S1(x)]dB = [
S1(d0)

]
dB − 10η log

(
2R − x

d0

)
− ξ1
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d0 2R�d0

2R�xx

0 2RR

MS

BS 0 BS 1

Figure 4.17 Handover: An MS located on the line joining two neighboring BSs that are
at the distance 2R. The MS is located at distance x from BS 0. The MS provides signal
strength measurements from each of the BSs.

Let us assume that S0(d0) = S1(d0). Then, for d0 ≤ x ≤ 2R − d0,

[S0(x) − S1(x)]dB = 10η log
(

2R − x
x

)
+ (ξ1 − ξ0)

where ξ1−ξ0 is normally distributed with 0 mean and variance 2σ2. In Figure 4.18,
we show the variation of [S0(x) − S1(x)]dB as the MS moves from BS 0 to BS 1.
The solid curve shows the mean 10η log

(
2R−x

x

)
. The two dashed curves above

and below the solid curve represent the variability due to shadowing, and can be
viewed as the bounds within which [S0(x) − S1(x)]dB stays, with a high probability.
The half-width of the curved strip defined by the two dashed curves is proportional
to

√
2σ.
Suppose the MS is being served by BS 0. A simple handover approach is

to hand over the MS to BS 1 when [S0(x) − S1(x)]dB <−H, where H is a design
parameter; that is, handover occurs when the signal strength from BS 0 is
sufficiently lower than the signal strength from BS 1. For the H shown in
Figure 4.18, and with the preceding interpretation of the dashed curves, we
can see that that handover will occur with a positive probability when the MS
is at a distance greater than R from BS 0 (notice that the lower dashed curve
falls below the horizontal line for −H, when x > R). There are two issues
here:

a. If the coverage of either cell extends only up to a distance R, then once the
MS is beyond R, the handover should occur with a high probability.

b. With this design, if the MS is moving about in the region around the middle
of the line joining the two BSs, then it will be repeatedly handed over between
the two BSs, thus increasing the chance of the call being dropped, and also
increasing the load on the call management processors.
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d0 2R2d00
2H

+H
2R

R

h

Figure 4.18 Handover: The difference in signal strengths, S0(x) − S1( x) (in dB) at an
MS that is at position x on the line joining BS 0 and BS 1. For an explanation of h, see
the text.

These two issues can be addressed by extending the coverage of each BS beyond
R, to an additional distance, say, h. Suppose h is chosen so that

10η log
2R − (R + h)

R + h
+ a

√
2σ < −H

or

10η log
R − h
R + h

+ a
√

2σ < −H

where a
√

2σ is the half width of the dashed strip, and a is chosen from the standard
normal tables so that the tail probability of the random variable ξ1 − ξ0 beyond
a
√

2σ is small. This choice of h is shown in Figure 4.18, since at x = R + h the
upper dashed curve falls below −H. Now, when deciding to hand over from BS 0
to BS 1, we check if both of the following tests are true:

[S0(x)]dB < Sthreshold

[S0(x) − S1(x)]dB <−H

for a suitably chosen Sthreshold. Both these tests will succeed beyond R + h with a
high probability, and, thus, the handover will take place with a high probability.
Further, the reverse handover will take place with a very small probability. Thus,
this handover strategy has a hysteresis built into it.

Although this design solves the problem of repeated handovers from one cell
to the other, the extension of the cell coverage into the neighboring cell impacts
the earlier SIR analysis. Let

h
R

= b
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so that

R + h = (1 + b)R

Thus, in the cochannel interference calculations, we now need to use

D
(1 + b)R

It follows that a larger D
R value will need to be used for a given SIR constraint, thus

requiring a larger value of Nreuse, and lowering the spectrum efficiency. It is thus
important to design handover schemes that can reduce the cell expansion factor b.

4.6.2 Handover Blocking, Call Dropping: Channel Reservation
Let us consider a cell in an FDM-TDMA cellular system with new call arrival rate
λ0, and handover call arrival rate (from neighboring cells) λh. Define

Pb = new call blocking probability

Ph = handover blocking probability

Pd = call dropping probability

Note that a call may undergo several handovers, and the call gets dropped at the
first of its handovers that is blocked. The preceding definitions can be formally
expressed as

Ph = lim
t→∞

number of handovers lost in [0, t]
number of handovers in [0, t]

and

Pd = lim
t→∞

number of accepted calls dropped in [0, t]
number of calls accepted in [0, t]

Note that Pb and Pd are user perceived performance measures, whereas Ph is
a measure internal to the system. We need Pd to be very small (e.g., 0.1%),
whereas Pb is typically 1 to 2 percent. Let us assume that the time that a call
spends in a cell is exponentially distributed with mean 1

ν
. The duration of a call

is exponentially distributed with mean 1
μ

. Then, assuming that whether or not a
handover is blocked is independent from handover to handover, we can write

Pd = ν

ν + μ
(Ph + (1 − Ph) · Pd)

This can be understood as follows. ν
ν+μ

is the probability that a call leaves the cell
it is in before it finishes conversation. If it does leave the cell, then the handover
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attempt is blocked with probability Ph, or if the handover is not blocked (with
probability 1 − Ph), then we have a renewal point (see Appendix D) and the
remaining call experiences dropping with probability Pd. This expression yields

Pd =
ν

ν+μ
Ph

μ
ν+μ

+ νPh
ν+μ

=
ν
μ

Ph

1 + ν
μ

Ph

The second expression on the right may be approximated by ν
μ

Ph when ν
μ

Ph

is much smaller than 1. Where the approximation works, its interpretation is
the mean number of handovers per call multiplied by the handover blocking
probability. This calculation yields a target value of Ph, given a target for Pd.

We had defined λh as the rate of arrival of handovers into a cell, and we
observe that this is not a given. But with the exponential distribution assumptions
we have made, we can write the following:

λh =
(

(λ0(1 − Pb) + λh(1 − Ph))
ν

μ + ν

)
· 1

6
· 6 (4.9)

This is obtained as follows. λ0(1−Pb)+λh(1−Ph) is the rate of accepted calls into
a cell. Each accepted call causes a handover to a neighboring cell with probability

ν
μ+ν

. Each cell is surrounded by six cells, and one-sixth of the handovers of each
of its neighbors enters the cell. However, Ph and Pb depend on λh. The approach
is to iterate, starting with λ

(0)
h . This will yield P(0)

b and P(0)
h . Given P(k−1)

b and P(k−1)
h

we can obtain λ
(k)
h by using (4.9), and thus the iterations can continue. How P(k−1)

b

and P(k−1)
h are obtained from λ

(k)
h depends on the way channels are assigned to new

calls and handover calls in a cell, and is the next topic of discussion.
The remaining question is whether there is a need to discriminate between

new calls and handover calls when assigning channels. If they are handled in the
same way, then they will get the same blocking probability (i.e., Pb = Ph). Since
the target value of Ph is much smaller than that of Pb, we will be forced to operate
with much too small a value of new call blocking, which will result in a very
low Erlang capacity. Hence channel reservation is done for handover calls. The
common approach is dynamic channel reservation, which means the following. If
there are m carriers in a cell, then a number mh < m is chosen; typically, mh is
just 1 or 2. When a call arrives, if the number of busy carriers is less than m − mh,
then every call is accepted. However, if the number of busy carriers is ≥ m − mh
then only handover calls are accepted. If we assume that the arrival process of
new calls and handover calls into a cell are independent Poisson processes, then
the number of busy carriers becomes a positive recurrent CTMC. Returning to the
iterative calculation, earlier, the analysis of this CTMC will provide P(k)

b and P(k)
h ,
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given λ0 and λ
(k)
h . At the k-th iteration, let π(k)(i), 0 ≤ i ≤ m, denote the stationary

probability distribution of the CTMC. Then

P(k)
b =

m∑
i = m−mh

π(k)(i)

P(k)
h = π(k)(m)

where, again, the PASTA theorem is used (see Appendix D, Section D.4.2).

Exercise 4.4
a. Show the transition rate diagram of the CTMC with dynamic channel

reservation for handovers, and obtain the stationary distribution π(k)(·).
b. Write a computer program to carry out the proposed iteration and

obtain the new call arrival rate, λ0, that can be offered when m = 16,
and mh = 1, for a target Pd = 0.01. Take the mean call duration to be
100 seconds, and the mean time a call stays in a cell to be 50 seconds.
Obtain the new call blocking probability, Pb, that is obtained with this
value of λ0.

c. What is the new call arrival rate that can be handled if no special
treatment is provided to handovers, but we still require that Pd = 0.01?

4.7 The GSM System for MobileTelephony
After about 15 years of deployment, the FDM-TDMA-based GSM system (Global
System for Mobile communications) is the most popular cellular system for mobile
telephony and related services. Figure 4.19 shows the components of a GSM
cellular network. The wireless links are only between the mobile stations (MSs;
shown as cellular phone handsets in Figure 4.19) and the Base Transceiver Stations
(BTSs). An MS can be in the vicinity of several BTSs, but at any point in time, an
active MS is associated with one BTS, the one with which it is determined that
it has the highest probability of reliable communication. Several BTSs are linked
to Base Station Controllers (BSCs) by wired links. Together, the BTSs and the
associated BSC is called a BSS (Base Station Subsystem). The BTSs provide the
fixed ends of the radio links to the MSs; it is the BSC that has the intelligence to
participate in the signaling involved in connection handovers. In turn, the BSCs
are connected to the Mobile Switching Center (MSC), which connects to the fixed
network infrastructure.

Worldwide, several bands have been used for the operation of GSM
networks. The 900 MHz or 1800 MHz bands are the ones commonly used in
most countries. In the 900 MHz band the uplink carriers are in the 890–915 MHz
frequency band, and the downlink carriers are in the 935–960 MHz frequency
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Figure 4.19 The components of a GSM cellular network.

band. As explained earlier in this chapter, if an operator obtains W MHz of
spectrum, actually W MHz is provided from the uplink band and another W MHz
is provided from the downlink band. This is for the purpose of frequency division
duplexing of bidirectional calls. The bandwidth of a GSM operator, in each
direction, is then divided into FDM carriers with a spacing of 200 kHz. These
FDM carriers are digitally modulated to create a hierarchical TDM carrier. The
basic frame time in this TDM carrier is 4.615 ms, which contains eight slots,
each of which can be assigned to a different voice call. Each TDM slot can carry
114 bits of payload. Notice that the coded payload bit rate on each carrier is
about 200 Kbps. For one standard GSM voice codec, after channel coding, blocks
of 456 bits are emitted, which are accommodated in four TDM slots.

Since the resources (i.e., the spectrum) of a cellular wireless network are
limited, an MS cannot have permanent access to the network, but has to make
a request for a connection. Thus, since an MS is not always connected to the
network, there are two problems that need to be addressed:

a. Between the time that an MS last accessed the network and the time that it
next needs to access, the MS may have moved; hence, it is first necessary to
locate the MS and associate it with one of the cells of the network.

b. Since the MS initially does not have any access bandwidth assigned to it,
some mechanism is needed for it to initiate a call or to respond to an
incoming call.
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Location management and call set up are the major activities that need to
be overlaid on the basic cellular wireless infrastructure in order to address
the first problem. In Figure 4.19 we show the additional components that
are needed. Together these are called the Network and Switching Subsystem
(NSS), and comprise the MSC, the GMSC (Gateway MSC), the HLR (Home
Location Register), the VLR (Visitor Location Register), and the signaling network
(standardized as Signaling System 7 (SS7), by the ITU). The SS7 signaling network
already exists where there is a modern circuit switched phone network. As their
names suggest, the HLR carries the registration of an MS at its home location, and
a VLR in an area enters the picture when the MS is roaming in that area. Each
operator has a GMSC at which all calls to MSs that are handled by the operator
must first arrive. The GMSC, HLR, and VLR exchange signaling messages over
the SS7 network, and together help in setting up a call to a roaming user.

Location management is done as follows. An MS will be registered with an
operator in its home area. A roaming mobile that is turned on briefly associates
itself with a nearby BTS and provides the network the information that it is now
in the area. If this happens to be an area other than where the MS normally is
registered, then the MS’s identity is used to determine its home location, and the
HLR at this location is informed of the whereabouts of the MS. The VLR at the
location that the MS is visiting then receives confirmation from the MS’s HLR that
this MS is a valid user. Suppose now that someone somewhere in the world calls
this MS. The MS’s number is used to determine the GMSC of its home operator.
A signaling message is sent over the SS7 network to this GMSC, which determines
the HLR where the MS is registered, and sends a message to this HLR. The HLR
then, knowing that the MS is roaming, queries the VLR in the area where the MS
is roaming. The VLR knows which local MSC the MS is in the control of, and
provides this information to the HLR. The HLR forwards this information to the
GMSC, which then directly establishes the call to the MS.

Let us now turn to the second of the two problems enumerated. In the GSM
system there are several permanent channels defined in each cell. Whenever an
MS enters a cell it locks into these channels. One of these channels is called the
paging and access grant channel (PAGCH). If a call arrives for an MS, and it is
determined that the MS may be in a cell, or in a group of cells, then the MS is
paged in all these cells. Another such common channel is basically a slotted Aloha
random access channel (RACH) (see Chapter 7), and is shared by all the MSs in
the cell. When an MS has to respond to an incoming call (i.e., it is paged on the
PAGCH) or has to initiate a call, it contends on the RACH in the cell, and conveys
a short message to the network. Subsequently, the network allocates a channel to
the MS and call set up signaling starts.

4.8 Notes on the Literature
In this chapter we have discussed concepts and techniques that were researched in
the 1970s and 1980s, at a time when the first analog cellular telephony systems
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were being experimented with. Bell System’s Advanced Mobile Phone Service
(AMPS) and the cellular concept are described in a seminal article by MacDonald
in Bell Systems Technical Journal [96]. There are several textbooks devoted to
extensive treatments of cellular telephony, including the classic by Lee, and the
more recent book by Garg and Wilkes [39]. The widely adopted text by Rappaport
[116] discusses cellular mobile systems in conjunction with a detailed coverage
of propagation phenomena in cellular mobile communication systems, physical
layer techniques, and speech coding. A rigorous derivation of the formula relating
the cochannel cell distance D(i, j) and Nreuse was carried out by Gamst [38]
using group and ring theory. The Fenton-Wilkinson approximation, and other
similar techniques have been derived in the text on mobile communications by
Stuber [123]. The comparison of fixed channel allocation and maximum packing
allocation has been adapted from Kelly [73], which also provides some very useful
insights into several problems in networking. A very accessible and extensive
coverage of the GSM standard has been provided by Mouly and Pautet [104].

Problems
4.1. The coverage of a cell is first obtained by ignoring shadow fading

(Rayleigh fading can be assumed to be averaged over). If the shadow
fading standard deviation is 8 dB, roughly how much additional power
is required so that the outage probability for the same coverage is less
than 2%?

4.2. A fade margin of 20 dB is required to combat shadowing and achieve
adequate coverage in a cell.

a. If the shadowing standard deviation is 8 dB, what was the target
outage probability?

b. If the path loss exponent is 4, how much additional coverage would
be obtained if there is no shadowing?

4.3. A GSM operator leases 7 MHz of spectrum (i.e., 7 MHz each in the
uplink and the downlink), and estimates that a D

R of at least 4 is
required. If the cell radius, R, is 2 km (assume hexagonal cells),
determine the Erlangs per square kilometer for the network, for a target
blocking probability of 1%.

4.4. A GSM operator leases 7 MHz of spectrum. Assuming that the uplink
constrains performance, a path loss exponent of 4, and ignoring
shadowing and additive noise, and given that an SIR of 14 dB
is required, determine the Erlang capacity per cell for a blocking
probability of 1%. Do not consider sectorization. Assume a hexagonal
cell geometry.

4.5. Consider a highway cellular system. Assume that the highway is exactly
linear, the cells are of length 2R, and the cell width (i.e., the width of
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the highway) can be ignored. Frequencies can be reused in cells whose
centers are D units apart. The base station in each cell is at its center,
and has two directional antennas, one covering each half of the cell
(i.e., the cells are “sectorized” into two sectors).

a. Relate D, R, and the number of reuse groups N.

b. Accounting only for first tier interferers, assuming that Rayleigh
fading is averaged out, assuming independent log-normal shadow-
ing for all the received signals, determine the minimum D

R value
so that the SIR falls below 12 dB with a probability of 1%. You
must analyze both the forward and reverse channels. The standard
deviation of log-normal shadowing is 8 dB. Take the power law path
loss exponent to be 4.

c. Explain why the SIR analysis is greatly simplified in this problem
by assuming directional antennas; that is, by sectorization.

d. Given that there are 200 traffic channels available (assume single
channel per carrier) determine the maximum number of Erlangs
that each cell can be offered.

4.6. Consider a channelized cellular system with a total of 320 traffic
channels. Denote the cell radius (center to apex) by R, and the
minimum distance between cochannel cells by D. Assume that we can
average over Rayleigh fading. Take the lognormal shadowing to have
a standard deviation of σ = 8 dB, and the path loss component to be
4. Considering only the uplink channel answer the following.

a. Obtain the channel reuse ratio for an uplink channel target SIR of
6 dB and an outage probability of 10%. Use the Fenton-Wilkinson
method, and a table of the normal distribution. You may assume
that the worst case interferer distance is D − R.

b. List two assumptions that this analysis makes. In your solution in
(a), where is Rayleigh fading being accounted for (even though it is
being averaged over)?

c. For this reuse ratio and the given number of channels, obtain the
Erlang capacity per cell assuming a fixed channel allocation, and a
call blocking probability of 2%. Use an Erlang blocking table.

4.7. Consider a TDM/TDMA cellular system in which each carrier handles
eight calls. Voice activity detection (VAD) is used to reduce cochannel
interference; an MS does not transmit when there is no speech activity.
The probability of an MS being active is p. Consider a hexagonal
cell layout; ignore shadowing and Rayleigh fading; take the path loss
exponent to be η. In the following, use the standard approximations for
the hexagonal geometry. Use tables of the standard normal distribution
and Erlang blocking tables.
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a. Considering only the uplink, and accounting for voice activity,
determine the minimum D/R ratio required for a SIR γ, if the
probability of SIR falling below γ is allowed to be 2.3%. (Hint:
consider the total power at the reference BS, and individual powers
from each of the interfering MSs.)

b. For γ = 20 dB, η = 4 and p = 0.4 determine the reuse ratio without
and with VAD. Show that the effect of VAD is equivalent roughly
to reducing the value of γ by 3 dB.

4.8. In the figure are shown five cochannel cells each with four 90◦ sectors,
oriented as shown.

D

cell radius 5 R

5 cochannel cells, showing the 90 degree vectors

a. Copy the diagram and mark the cochannel sectors with g1, g2, g3,
and g4.

b. Ignoring Rayleigh fading and log-normal shadowing, obtain the
value of D/R for a reverse channel worst-case S/I of 20 dB. Take
the path loss exponent to be 4.

4.9. a. The figure shows seven cells and pairwise reuse constraints between
them. Show that for these constraints, and two channels, XCPA is
strictly larger than XMPA.

1 7

2

3

4

5

6
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b. Consider three cells with a triangular pairwise reuse constraint
graph. There are N channels and calls arrive to each cell at rate
λ. The calls have a mean channel holding time of b.

i. Sketch the set of possible vectors of the numbers of calls that
can be present in each of the cells (i.e., X ).

ii. Find the probability that a call is blocked.

4.10. Consider a linear array of K cells, with reuse constraint graph given.
Let the J × K clique incidence matrix be denoted by A. Assume
that the maximum number of frequency channels that can be used
simultaneously in the j−th maximum clique is given to be nj, 1 ≤ j ≤ J
(nj ≤ M, where M is the total number of frequency channels in the
cellular system). Let N = (n1, n2, . . . , nJ).

a. Find the set S(N) of feasible cell occupancy vectors x =
(x1, x2, . . . , xK).

b. Ignoring mobility, assume Poisson call arrivals with traffic intensity
ρk in cell k, 1 ≤ k ≤ K, and assume that the cell occupancy vector
has the steady-state distribution

π(x) = G(N)ΠK
k=1

ρ
xk
k

xk!
, x ∈ S(N),

where

G(N) =
⎛
⎝ ∑

x∈S(N)

ΠK
k=1

ρ
xk
k

xk!

⎞
⎠

−1

.

Show that the steady-state probability that a call arrival in cell k is
blocked is

Bk = 1 − G(N)

G
(
N − AeT

k

)
where ek is the length-K vector (0, . . . , 0, 1, 0, . . . , 0) with the only
non-zero element 1 appearing at the k-th position.

4.11. Consider two neighboring base stations BS 1 and BS 2, a distance 2R
apart (where R = 10d0), and an MS on the line joining them. Assuming
that Rayleigh fading is averaged over, the minimum SINR required for
acceptable communication is 10 dB. Let Ψ0 denote the average SNR at
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a distance d0 from a transmitter. Assume that the power law path loss
exponent is 4; the shadowing standard deviation is σ = 8 dB.

a. With hand-off (at the cell boundary) obtain the (Ψ0)dB required for
an outage probability of 10%.

b. With hand-off at 10% beyond the half-way point between the BSs
(i.e., 1.1R), repeat part (a).



CHAPTER 5

Cellular CDMA

We discussed the CDMA concept in Chapter 2, Section 2.4.1. One of the
two major technologies for second-generation cellular systems is based
on CDMA. Third-generation (3G) cellular access systems that provide

high speed data and multimedia access are also based on CDMA. In this chapter we
will study various resource allocation problems in cellular CDMA systems, basing
our discussion mainly on SINR (signal-to-interference plus noise ratio) analysis.

Overview
Unlike the FDM-TDMA cellular systems discussed in Chapter 4, CDMA cellular
systems are based on the principle of universal frequency reuse; that is, the same
portion of the spectrum is reused at every BS. These systems employ frequency
division duplexing; each system is assigned a pair of bands, one for the uplink
and the other for the downlink. These two bands then are used at every BS.
Thus, every uplink transmission interferes, in principle, with every other uplink
transmission in the system; the same holds for the downlink. As discussed in
Chapter 2, Section 2.4.1, the performance of an instance of communication
between an MS and a BS depends on the SINR achieved at the receiver (see (2.24)).
Second-generation CDMA systems were designed mainly for carrying telephone
quality voice. CDMA systems have been evolving so as to be able to efficiently
carry other guaranteed QoS services, such as interactive video, and also elastic
services, such as file transfer and web access. We consider resource allocation for
both these types of services.

Each guaranteed QoS connection needs to achieve an SINR target. In
Section 5.1, we write down general inequalities that need to be satisfied by the
transmission powers used at all the uplink transmitters in the system. An important
question that we then ask is about the existence of a set of transmit power levels
at all the MSs so that the inequalities are satisfied. This leads to the concept of
admission control; arbitrary collections of MSs, each with its SINR target cannot
be handled by the system. Hence, some call requests need to be blocked.

Focusing on the uplink problem, we begin by assuming a spatially homoge-
neous system in which the interference at a BS, from MSs associated with other
BSs, can be taken to be just a multiple of the total received power at a BS. We
develop the case of a single call class (say, voice) in Section 5.2. We find that
each call can be characterized by a resource requirement expressed in terms of the
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target SINR. We find that the resource requirements of the calls just add up, and
the admission control ensures that a certain measure of total system resource is not
exceeded. This measure of system resource depends on the other-cell interference.
We show how this is calculated, for hard handover and soft handover of calls
between BSs. In Section 5.3, we expand our discussion to multiclass calls. The
Chernoff bound is used to develop an admission control that again treats each call
as having a resource requirement, and the requirement due to a set of calls is the
sum of the individual resource requirements.

In Section 5.4 we abandon the spatial homogeneity assumption and consider
a general configuration of MSs scattered among several BSs. For a given association
of MSs and BSs, we develop a necessary and sufficient condition for there to exist
a feasible transmit power allocation. The condition is in terms of the Perron-
Frobenius eigenvalue of a matrix derived from the channel gains. This also leads
to an iterative power control algorithm.

Finally, in Section 5.5, we consider the scheduling of downlink elastic
transfers. Depending on the channel power gains between the BSs and the MSs,
there is a convex set of transfer rates that can be achieved to the MSs. There is a
trade-off between maximizing the total transfer rate over all the MSs (which leads
to maximization of operator revenue), and fairness between the rates assigned to
the MSs. We use the sum-utility maximization formulation to compare various
approaches. One such formulation leads to the idea of proportional fairness, for
which we then show how the file transfer delay can be analyzed in terms of the
M/G/1 processor sharing model.

A brief overview of 2G and 3G CDMA cellular standards is then provided
in Section 5.6.

5.1 The Uplink SINR Inequalities
In CDMA cellular systems, each active mobile station (MS) is associated with one
of the base stations (BSs) in its vicinity. When an MS is involved in a conversation,
then it is assigned a power level with which it should transmit. As explained in
Section 2.4.1, in CDMA access networks the link performance obtained by each
mobile station (MS) is governed by the strength of its signal and the interference
experienced by the MS’s signal at the intended receiver. For each radio link between
an MS and a BS, a SINR target needs to be met. Hence it is important to associate
MSs with BSs, and to assign them transmit powers in such a way that signal
strengths of intended signals are high and interference from unintended signals is
low. It is evident that increasing the transmit power to help one MS may not solve
the overall problem, as this increase may cause unacceptably high interference at
the intended receiver (i.e., a BS) of another MS. We will say that an association of
MSs with BSs, and an allocation of transmit powers, is feasible if all SINR targets
are achieved. In some situations there may be no feasible power allocation. The
analysis of CDMA systems is performed via certain SINR inequalities. We will
begin our discussion by setting up these inequalities in general.
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Consider a CDMA system with multiple interfering cells (see Figure 5.1). The
system bandwidth is W (e.g., 1.25 MHz in the IS-95 standard), and the chip rate
is Rc ≤ W (e.g., 1.2288 Mcps (Mega chips per second)) in IS-95. There are M MSs
and N BSs, with B = {1, 2, 3, . . . , N} denoting the set of BSs. Let hi, j, 1 ≤ i ≤ M,
1 ≤ j ≤ N, denote the power “gains” (i.e., attenuations) from MS i to BS j. Let
A = (a1, a2, . . . , aM), ai ∈ B, denote an association of MSs with the BSs; thus, in the
association A, MS i is associated with BS ai. Let pi be the transmit signal power
used by MS i, 1 ≤ i ≤ M. For the most part of the following discussion, we will
assume that the power gains and the association are fixed. With these definitions
we can write the uplink received signal power to interference plus noise ratio for
MS k as

(SINR)k = hk, ak
pk∑

{i : 1≤i≤M, i �=k} hi, akpi + N0W

hk,j

hi,j

MS i

MS k

BS j

BS 1 BSN

Figure 5.1 A depiction of the power allocation problem for several MSs in the vicinity
of some BSs. The solid lines indicate signals from MSs to the BSs with which they
are associated. MS k is associated with BS j, and its signal (solid line labeled hk,j) is
interfered with by all the other MSs associated with the other BSs (dashed lines), and
also by the other MSs associated with BS j.The signal from MS k has a channel “gain”
of hk,j to BS j.
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where N0 is the power spectral density of the additive noise, and W is the radio
spectrum bandwidth. Assume that the interference plus noise is well modeled by
a white Gaussian noise process.

Various types of calls may be carried on the system; for example, there could
be different types of voice telephony calls that use various codecs. Suppose that a
call requires a bit rate Rk. In order to ensure a target bit-error-rate (BER) (which is
governed by the required QoS for the application being carried; see the discussion
to follow later in Section 5.2.2), we need to lower bound the product of the SINRk

and the processing gain Lk := Rc
Rk

(see (2.24)). For example, with Rk = 9.6 Kbps
and Rc = 1.2288 Mcps, we obtain L = 128. If the desired lower bound is γk, then,
defining Γk := γk

Rk
Rc

, we obtain (see (2.24)), for MS k,

hk, ak
pk∑{

i : 1 ≤ i ≤ M, i �= k
}hi, akpi + N0W

≥ Γk (5.1)

For a given association and given channel gains, we thus obtain M linear
inequalities in the M uplink powers of the M MSs. Suppose ak = j; then if we define

Ij :=
∑

{i : 1 ≤ i ≤ M, ai=j}
hi, jpi

the total power received at BS j from MSs associated with it, and define

Io, j :=
∑

{i : 1 ≤ i ≤ M, ai �=j}
hi, jpi

the total interference power at BS j from MSs associated with other BSs, then we
can write the SINR inequalities as

hk, ak
pk

(Iak − hk, ak
pk) + Io, ak + N0W

≥ Γk (5.2)

for each k, 1 ≤ k ≤ M.
Let us understand this derivation by looking at the geometry of the two-

user case. Both users are associated with the same BS and there is no interference
from any other cell. In Figure 5.2 we depict the analysis for two users. The SINR
inequalities are (since there is only one BS we write hi,1 as hi):

h1p1 − Γ1h2p2 ≥ Γ1N0W

−Γ2h1p1 + h2p2 ≥ Γ2N0W
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p2 p2

p1 p1

p*

1

21

2

feasible
power controls

Figure 5.2 Power control feasibility for two users. The left panel shows the situation
in which there are feasible power controls; then there is a power control that achieves
the SINR targets with equality. The right panel shows a situation in which there is no
feasible power control.

with p1 ≥ 0, p2 ≥ 0. These inequalities are depicted in Figure 5.2 by the lines
labeled 1 and 2, for MS 1 and MS 2, respectively. The region to the right of,
and below, the line labeled 1 is feasible for MS 1, and the region to the left of,
and above, the line labeled 2 is feasible for MS 2. It is easy to see that there is a
nonempty feasible region if

h1

Γ1h2
>

Γ2h1

h2

equivalently, if Γ1Γ2 < 1. It can easily be checked that this is equivalent to

Γ1

1 + Γ1
+ Γ2

1 + Γ2
< 1

A situation in which this holds is depicted in the left panel of Figure 5.2, and an
infeasible case is depicted on the right. In the left panel of Figure 5.2 we also show
a power vector p∗, which is feasible, and uses the least power in order to satisfy
the SINR constraints.

An important step in analyzing cellular CDMA systems is to determine the
conditions under which a set of MSs, with given locations and given demands,
is admissible in the sense that an association of MSs and BSs, and corresponding
power allocations, can be found so that the SINR constraints shown earlier are met.
Further, given that a set of users is admissible, distributed algorithms are needed
in order to determine which BSs they should associate with, and the transmission
powers that should be used. A considerable part of our discussions in this chapter
will be devoted to this issue.
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5.2 A Simple Case: One Call Class
5.2.1 Example:Two BSs and Collocated MSs
To illustrate several issues, we now limit ourselves to one call class, for example
telephony voice, which, in any case, is the single service with which cellular systems
are first established. The SINR target for this class is denoted by Γ. Let us further
simplify to just N = 2; that is, there are just two BSs, as shown in Figure 5.3. Each
BS has associated with it M MSs that are situated close together in a group (we
say that the MSs are collocated) so that the channel power gain from each group
of MSs to its associated BS is h, and to the other BS is h′.1 All the MSs use the
same transmit power p, thus yielding the following simplification of (5.1):

hp
(M − 1)hp + Mh′p + N0W

≥ Γ (5.3)

Writing the total received power at a BS from the MSs associated with it as
Q = Mhp, and ν = h′

h , we can rewrite the inequality as

hp
(1 + ν)Q − hp + N0W

≥ Γ

which, on rearranging, yields

hp ≥ Γ

1 + Γ
((1 + ν)Q + N0W) (5.4)

We need to assign a transmit power p to each MS so that this inequality is satisfied.
Summing the inequalities for all the M MSs associated with a BS, we obtain the
following necessary condition for there to exist a feasible power p > 0:

h9h9
h h

BS 1 BS 2

Figure 5.3 The uplink power control problem for two cells with each of which there
are M MSs associated. The MSs associated with each BS are collocated, and h and h′
are the channel power gains, as shown.

1Note that, for simplicity, we are only considering path loss, and not shadowing, so that, for the geometry
shown in the picture, it is plausible that the two groups of MSs have the same gains to the BSs.
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Q ≥ M
Γ

1 + Γ
((1 + ν)Q + N0W)

> M
Γ

1 + Γ
(1 + ν)Q

where the strict inequality arises because N0W > 0. Thus, we find that a necessary
condition is

M
Γ

1 + Γ
<

1
1 + ν

(5.5)

or, in other words, the number of admitted calls M should satisfy

M <

(
1

1 + ν

)(
1 + Γ

Γ

)

Notice that ν is a spatial property of system, whereas Γ is a property of the calls
being carried. We could interpret

(
1

1+ν

)
as a quantity of resource, and

(
Γ

1+Γ

)
as

the resource requirement per call.
Assuming the necessary condition in (5.5) to hold, take (5.4) to be an equality,

substitute for Q, and then solve for p to obtain

p = N0W
h

Γ
1+Γ

1 − M(1 + ν) Γ
1+Γ

Thus, if the condition (5.5) holds, then we have positive powers that satisfy the
power constraints with equality. It follows that the condition in (5.5) is both
necessary and sufficient for there to exist p > 0. For the power allocation obtained,
the value of Q is given by

Q = M Γ
1+Γ

(N0W)

1 − M(1 + ν) Γ
1+Γ

and the interference at a BS from MSs associated with the other BS is given by
Io = νQ.

5.2.2 Multiple BSs and Uniformly Distributed MSs
We now assume that the MSs are uniformly distributed, and the radio propagation
is spatially homogeneous, and, thus, that the BSs are uniformly loaded; that is,
each BS receives the same total power Q from the MSs associated with it. Then
we can continue to assume that at each BS the interference received from MSs not
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associated with it is some factor ν times Q; that is, Io = νQ for every BS. The SINR
inequalities become

hkpk ≥ Γ

(1 + Γ)
((1 + ν)Q + N0W) (5.6)

for each k, 1 ≤ k ≤ M, where hk is the channel gain of MS k to the BS with which it
is associated. As before, we sum these inequalities over the MSs associated with a
BS to obtain the following necessary condition for a set of powers pk, 1 ≤ k ≤ M,
to exist:

Q ≥M
(

Γ

1 + Γ

)
((1 + ν)Q + N0W)

But then, noting that all the terms on the right are positive, and hence lower
bounding this expression, we see that it is necessary that

Q >M
(

Γ

1 + Γ

)
(1 + ν)Q

It follows that a necessary condition for the existence of a set of powers pk,
1 ≤ k ≤ M, that satisfy the SINR inequalities (5.6) is

M
(

Γ

1 + Γ

)
<

1
1 + ν

(5.7)

Now suppose that this condition holds, by associating new calls with a BS in such
a way as to ensure that the condition is not violated. Taking equalities in (5.6) and
summing, we obtain the following power allocation. For each k, 1 ≤ k ≤ M,

pk =
(

N0W
hk

)⎛
⎝ Γ

1+Γ

1 − M(1 + ν)
(

Γ
1+Γ

)
⎞
⎠ (5.8)

These powers are all positive when (5.7) holds, and, hence, we have a feasible
power allocation (which meets the SINR constraints with equality). For this power
allocation, by setting Q = ∑M

k=1 hkpk, we see that

Q =
M

(
Γ

1+Γ

)
(N0W)(

1 − M (1 + ν) Γ
1+Γ

)
Thus, the condition expressed by (5.7) is found to be necessary and sufficient for
the existence of a feasible power control, in the present setting (i.e., at a BS, the
uplink interference from MSs associated with other BSs can be modeled as a factor
ν times the total power received at the BS from the MSs associated with it).
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Discussion
a. From the previous derivation, we conclude that, in the single class case (with

the spatial homogeneity assumptions we made), the following admission
control will permit a feasible power allocation. A connection request is char-
acterized by its “effective” resource requirement Γ

1 + Γ
. The connection is

added to the existing calls at a BS if and only if the following inequality is
satisfied:

Number of existing connections × Γ

1 + Γ
+ Γ

1 + Γ
<

1
1 + ν

(5.9)

where ν is a spatial parameter that captures other cell interference. We will
discuss how ν can be derived later in this chapter.

b. We notice that a large value of Γ reduces the number of calls we can carry.
How is the value of Γ determined? Suppose we wish to carry a new enhanced
quality voice call, streaming audio call, or streaming video call using the
CDMA access system just described. The source coding scheme that is
used will determine the aggregate bit rate R that needs to carried. Also,
sophisticated source coders will encode the source into bit streams of varying
degrees of importance (called Class A, B, and C bits in some speech coders).
When bit errors occur, a radio link layer protocol can recover the CDMA
bursts containing the errored bits, but this recovery takes time, which adds
to the end-to-end delay for the connection. After some number of attempts,
bits may need to be discarded, in the hope that the decoder can reconstruct
the speech or audio with some desirable quality using the received bits. It
is thus clear that, for each coder, there will be a threshold bit error rate
above which the speech (or audio or video) quality will not be acceptable.
Finally, the physical layer (PHY) techniques employed (e.g., exploitation of
multipath diversity (via a Rake receiver), interference cancellation, multiuser
detection) will determine the Eb

N0
, γ, required to provide the desired bit error

rate to the connection (see the discussions in Chapter 2). More sophisticated
PHY techniques will result in a lower value of γ, hence a lower value of
Γ = γ R

Rc
, and thus a lower resource requirement

(
Γ

1 + Γ

)
for the connection.

c. To get a feel for the numbers, let us consider telephone quality voice over
the IS 95 CDMA system. A commonly used speech coder has R = 9.6 Kbps.
The system bandwidth is 1.25 MHz, and the chip rate is 1.2288 Mcps. Thus
the processing gain is 1.2288×106

9.6×103 = 128 ≈ 21 dB (i.e., 10 log 1.2288×106

9.6×103 ≈ 21).
It turns out that, for the PHY techniques employed in the IS 95 standard,
the target Eb

N0
for this speech coder is 6 dB. It follows that the target SINR,

Γ

(
= γ

Rc
R

)
, is 6 − 21 = −15 dB (in fact, Γ = 1

32 ). The target SINR of −15 dB

should be contrasted with narrowband systems such as FDM-TDMA (see
Chapter 4) where the target SINR could be as high as 8 to 10 dB.
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d. We can see that the interference Io = νQ can be reduced by exploiting
voice activity detection; the voice call transmits only when carrying actual
speech, and turns off during silence periods, thereby reducing the other cell
interference for a given number of accepted calls. Note that, roughly, this
will result in the factor 1 + ν getting multiplied by the voice activity factor
(note that even the intracell interference reduces by the voice activity factor,
hence we multiply 1 + ν by this factor). The voice activity factor is typically
0.4 to 0.5, and thus this technique results in the capacity being increased by
a multiplicative factor of 2 to 2.5.

5.2.3 Other Cell Interference: Hard and Soft Handover
Let us examine the form of the power allocation proposed in (5.8). We will now
refer to a BS and the region in which MSs will normally associate with this BS as a
cell. Notice that, in the one class case, with homogeneous interference at each cell,
the received powers hkpk are all equal at every BS. Thus, when the entire system
carries just one type of call (as is the case in the early deployment of all cellular
telephony systems), then the powers of all MSs, in any cell, need to be controlled
in such a way that the received powers at their respective BSs are all equal.

If the power to be received at each BS from any MS has to be the same, then,
in order that an MS uses the least transmit power it should associate with the
geographically nearest BS (assuming only deterministic path loss proportional to
an inverse power of the distance). For a location with coordinates (x, y) let rj(x, y)
denote the distance of BS j from the location (x, y). We can say that the default
coverage area of BS j is all (x, y) such that rj(x, y) < rk(x, y) for every other BS k.
If this is done, then the coverage areas are actually so-called Voronoi cells, which
are uniquely determined by the BS locations.

We obtained the power allocation shown in (5.8), assuming that the other
cell interference factor ν was somehow given. The power allocation actions in one
cell, however, affect the other-cell interference seen by other cells. For example,
if MS k is at the fringe of the coverage area of the BS with which it is associated
then the value of hk will be small, thus requiring a large value of pk (see (5.8)).
But this large value of pk will result in a higher level of other-cell interference at
neighboring BSs. In fact, it is possible that the MS may have a better channel to
a neighboring BS than to the one with which it is associated. If on the basis of
this better channel to the neighboring BS the MS is handed over to that BS, then
we say that we are performing soft handovers. On the other hand if the region is
demarcated into coverage areas on the basis of path loss measurements, and MSs
are associated with a BS so long as they are in its coverage area, then we say that
we are performing hard handovers.

We will carry out an interference analysis, assuming that all calls are of the
same type, and hence (for a spatially homogeneous system, as assumed in our
simple analysis earlier) the target received power from an MS is the same at every
BS. This analysis will yield the value of ν for hard hand-off and for soft hand-off.
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With this we will have all the ingredients to perform a quantitative evaluation of
the system capacity as given by (5.7).

Let us first consider hard hand-off. Let Sr denote the target uplink received
power at a BS from any MS associated with it. In Figure 5.4 we show an MS at
the location (x, y) in the coverage area of BS 1. The distance of the MS (located at
(x, y)) to BS 1 is r1(x, y), and to BS 0 is r0(x, y). Modeling the power law path loss
and shadowing, it can be seen that the interference power, say, S0, at BS 0 due to
the MS at location (x, y) is given by

S0 = Sr

(
r1(x, y)
r0(x, y)

)η 10(ξ1(x, y)+ζ(x, y))/10

10(ξ0(x, y)+ζ(x, y))/10

where η is the path loss exponent, ξ1(x, y), ξ0(x, y), and ζ(x, y) are i.i.d. normally
distributed random variables with mean 0, and variance σ2

2 . Here, (ξ1(x, y)+ζ(x, y))
correspond to the log-normal shadowing on the path to BS 1, and (ξ0(x, y)+ζ(x, y))
to the log-normal shadowing on the path to BS 2. The shadowing is modeled as
being composed of local shadowing around the MS, ζ(x, y), and the shadowing on
the two different paths, ξ1(x, y), ξ2(x, y). The total shadowing standard deviation
over each path is σ.

r1(x, y )

r0(x, y )

0

2
(x, y )

1

6

5

4

3

Figure 5.4 Other-cell interference with hard hand-off. An MS at the location (x, y) is
power controlled by BS 1, and the power it radiates causes uplink interference at BS 0.
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The previous expression can be understood as follows. Starting with the
target power Sr at BS 1, we trace back to the MS to obtain its transmission power.
This gives the numerator of the expression multiplying Sr. Then we obtain the
interference power seen at BS 0. This is obtained by dividing by the channel
attenuation along the path from (x, y) to BS 0. Note that the local shadowing
terms cancel out, and, further, we assume that the distributions of ξ1(x, y) and
ξ0(x, y) do not depend on the MS location (x, y). Then denoting these generic
random variables by ξ1 and ξ0, we get

S0 = Sr

(
r1(x, y)
r0(x, y)

)η 10ξ1/10

10ξ0/10

Then the total expected other-cell interference at BS 0 is obtained by adding up
the interference from all the other cell MSs and taking the expectation of this sum.
This computation is done by assuming a uniform distribution of MSs over the
coverage area, with density d MSs per unit area, and then integrating over the
area outside of the cell covered by BS 0. This yields

Io = Sr E
(
10

ξ1−ξ0
10

) ∫
{(x, y)/∈Cell 0}

(
rBS(x, y)
r0(x, y)

)η

d dxdy (5.10)

where rBS(x, y) denotes the distance of the location (x, y) from the BS in whose cell
(x, y) lies. Clearly, the total power received at BS 0 from MSs associated with it is
Q = SrdA, where A is the area covered by a BS. It follows that

ν = I0

Q
= E

(
10

ξ1−ξ0
10

) ∫
{(x, y)/∈Cell 0}

(
rBS(x, y)
r0(x, y)

)η 1
A

dxdy

It can be seen that the integral in the right-hand side of this expression does not vary
with the cell radius, R. This integral can be numerically evaluated to approximately
0.44 for η = 4. Further, we observe that

E
(
10

ξ1−ξ0
10

)
= E

(
e

ln 10
10 (ξ1−ξ0)

)

= e

(
σ2
2

(
ln 10
10

)2
)

where we use the fact that ξ1 −ξ0 is normally distributed with mean 0 and variance

σ2. For σ = 8 dB and η = 4, we then find that ν = e( σ2
2 ( ln 10

10 )2) × 0.44 = 2.38. Thus,
with an 8 dB standard deviation for the shadowing, and a path loss exponent of 4,
the other-cell interference is 2.38 times the power received from MSs within the
cell. We notice that with σ = 0 we have ν = 0.44, for η = 4.
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Let us now turn to the same analysis with soft handovers. Figure 5.5 depicts
the concept. An MS at location (x, y) is power controlled by either BS 1 or BS 0.
What this means is that the MS will use a transmit power that is the smaller of the
two values required to achieve a received signal power of Sr at either of the two
BSs. In the situation of random shadowing, this will result in the MS causing less
interference than if it was dedicated to the more proximate of the two BSs. Thus,
with random shadowing, an MS may get power controlled by a geographically
farther away BS.

For two neighboring BSs i and j (e.g., BS 1 and BS 0), and for a location (x, y)
in the region where an MS chooses between either of them (e.g., (x, y) in Figure 5.5
is power controlled by BS 1 or BS 0), define

αi, j(x, y) = (ri(x, y))η 10ξi(x, y)/10

(rj(x, y))η 10ξj(x, y)/10

r1(x, y)

r0(x, y)

0

2

4

5

6

31
(x, y)

Figure 5.5 In soft hand-off, an MS is power controlled by the best of two or more BSs.
This diagram shows an MS located at position (x, y) being power controlled by the best
of BS 1 or BS 0. Each diamond shaped area, with a BS at each end of its long diagonal,
shows the area in which an MS would be power controlled by either of those two BSs.
By ♦i,j we will mean the diamond between BS i and BS j; as an illustration, ♦0,3 is
shown shaded.
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where ri(x, y) and rj(x, y) are the distances of (x, y) from BS i and BS j, respectively,
and ξi(x, y) (resp. ξj(x, y)) corresponds to log-normal shadowing near BS i (resp.
BS j). As before, the distributions of these shadowing random variables will be
taken to be independent of the location (x, y). Also ξi(x, y) and ξj(x, y) are assumed
statistically independent in the following analysis. We can see that αi,j(x, y) is the
relative attenuation from (x, y) to the BSs i and j; αi,j(x, y) > 1 implies that the
power attenuation from the location (x, y) to BS i is larger (than that to BS j) and
hence an MS located at the position (x, y) should be power controlled by j, since
this will require the MS to use less transmission power. As before, let d be the
density of mobiles per unit of the system coverage area. It can then be seen that
the total power received at BS 0 (i.e., intracell power and other-cell interference)
is given by

6
∫ ∫

♦0, 1

(
Sr1{α0, 1(x,y)≤1} + Sr α1, 0(x, y) 1{α1, 0(x, y)<1}

)
d dA(x, y)

+
∑

{{i, j}: i �=0, j �=0, i, j are neighbors}

×
∫ ∫

♦i, j

(
Sr αi, 0(x, y) 1{αi, j(x, y)≤1} + Sr αj, 0(x, y) 1{αj, i(x, y)<1}

)
d dA(x, y)

where 1{·} denotes an indicator function. This expression can be understood as
follows. There are six first tier “diamonds” that include BS 0, the one between
BS 1 and BS 0 being denoted by ♦0,1. Each of these yields a term given by the first
integral in the expression. Considering BS 1, if α0,1(x, y) ≤ 1 then an MS at (x, y) is
power controlled by BS 0, and hence BS 0 receives power Sr from such an MS. On
the other hand, if {α1, 0(x, y) < 1} then an MS at (x, y) is power controlled by BS 1,
and then BS 0 receives interference power Sr α1,0(x, y). This integral is over ♦0, 1,
and dA(x, y) denotes the infinitesimal area around (x, y). Then there are terms for
every other pair of neighboring BSs, not involving BS 0. Each such neighboring
BS pair gives an integral of the form shown in the second term.

Using the fact that ξi(x, y) − ξj(x, y) is normally distributed with 0 mean and
variance σ2, where σ is the shadowing standard deviation, the expectation of
the preceding expression can be numerically evaluated to yield Q + Io at BS 0.
On doing this, for σ = 0 and η = 4 we find that ν = 0.44, which is the same
as obtained for hard handover, earlier, because, without shadowing, the most
proximate BS always power controls an MS. With σ = 8 dB, we find that ν = 0.77
with soft hand-off, in contrast with the value of 2.38 with hard hand-off. It follows
that there is a substantial reduction in intercell interference if soft handovers are
employed.

Finally, we note that in this discussion we have assumed that an MS is power
controlled by either of two BSs. This idea can be generalized. For example, with
reference to Figure 5.5, an MS in the triangle formed by BSs 0, 1, and 2 can be
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power controlled by the best among the three. Even more general soft hand-off
strategies can be considered.

5.2.4 System Capacity for Voice Calls
In the discussion at the end of Section 5.2.2, we calculated the value of Γ for a
standard voice coder that is used in the IS 95 cellular CDMA system. We are now
in a position to provide an estimate of the call carrying capacity of the system. If
power control can be accurately performed, and voice activity is not exploited,
then we see that the number of calls, M, that can be admitted into a cell is bounded
as follows

M ≤
⌊

1
1 + ν

1 + Γ

Γ

⌋

With Γ = 1
32 (a value we motivated earlier), σ = 8 dB, and η = 4, we use the values

of ν calculated earlier. For hard handover, we find that M is bounded by nine calls;
with soft handover we see that M is bounded by 18 calls. Thus, for the parameters
assumed, soft handover doubles the number of calls that can be admitted. In
practice, power control is performed in a feedback loop between the MSs and the
BSs. Thus, there are inaccuracies due to feedback delay and coarse control. This
results in the bound on M being reduced by a power control inaccuracy factor,
whose calculation is shown in [132]. Let us denote by K the resulting bound on
the number of calls that can be admitted.

This analysis ensures that when a call is admitted it obtains the desired bit
rate and BER; the in-call performance is assured. But we are also interested in the
probability of blocking new calls. The Erlang capacity is defined as the Erlang
load up to which the blocking probability is less than some target, say 0.01.

Now there are two alternatives. We can admit arrivals into the cell until
the number of calls is K and then block any additional arrivals. Alternatively, if
we want to exploit the fact that voice calls alternate between speech and silence,
we can model the activity of the ith admitted call by a 0-1 random variable, Vi,
where Vi = 1 with probability a (the fraction of time that a voice call is active)
and Vi = 0, otherwise. When M calls are admitted, we take the random variables
V1, V2, . . . , VM, to be i.i.d. with the same Bernoulli distribution. Then, since calls
generate power only when they are active, we can admit Mε calls so long as the
following criterion is satisfied:

Pr

⎛
⎝ Mε∑

i=1

Vi > K

⎞
⎠ < ε

where ε > 0 is a suitably chosen outage probability. This means that if we admit
Mε calls then, over the times during which Mε calls have been admitted, during less
than a fraction ε of the time the SINR constraints would be violated. If ε is small
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enough then the infrequent outages may be imperceptible to users. Evidently,
Mε > K and hence, the Erlang capacity for a given call blocking probability
increases by taking the second approach. The value Mε is called soft capacity,
as opposed to K being called the hard capacity. If only K calls are admitted, the
in-call performance has a “hard” assurance, but if Mε calls are admitted then the
in-call performance has a “soft” assurance, as the performance can be violated
with a small probability.

The SINR analysis assures the QoS within a call (in terms of the voice bit
rate, and the quality deterioration due to bit errors). In addition, call blocking
probability is also a QoS requirement (e.g., a typical call blocking objective could
be 1%), and must be assured by making a good assessment of the expected Erlang
load on the system, once it is deployed. Given the admission control limit Mε and
the offered Erlang load, if the blocking probability is higher than the objective,
then the operator has the following alternatives:

• Deploy more BSs, thus reducing the coverage of each BS and thereby
reducing the Erlang load on the cells. There is a limit to how much the
cells can be shrunk in this way, while retaining the advantages of CDMA.

• As in the case of FDM-TDMA cellular systems (see Section 4.3.3), cell
sectorization and directional antennas can substantially reduce intercell
interference, and thereby improve system capacity.

• Better CDMA receiver techniques can be employed, thus reducing the
value of Γ, and hence the resource requirement per call.

5.3 Admission Control of Multiclass Calls
We return now to the general SINR inequalities shown in (5.2). Consider BS j,
and assume that other-cell interference at BS j is Io, j = νQ. Then, proceeding
in the same way as we did to obtain (5.7) and (5.8), we obtain the following
admission control condition for multiclass calls. Calls with SINR requirements
Γ1, Γ2, . . . , Γk, . . . , ΓM can be associated with BS j, provided

M∑
k=1

Γk

1 + Γk
<

1
1 + ν

(5.11)

Then the following is a feasible power allocation:

pk =
(

N0W
hk, j

)⎛
⎝ Γk

1+Γk

1 − (1 + ν)
∑M

i=1

(
Γk

1+Γk

)
⎞
⎠ (5.12)

These powers are all positive when the condition in (5.11) holds.
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5.3.1 Hard and Soft Admission Control
Equation (5.11) shows hard admission control. Thus, suppose there are two classes
of calls (Class 1 and Class 2) that are being handled by the system. Denote their
resource requirements by g1 = Γ1

1 + Γ1
and g2 = Γ2

1 + Γ2
. Then the admission control

in (5.11) becomes the following. If there are already n1 calls of Class 1 and n2 calls
of Class 2 associated with a BS, then admit a call of Class i ∈ {1, 2}, if and only if

n1g1 + n2g2 + gi <
1

1 + ν
(5.13)

Define S = {(n1, n2) : n1g1+n2g2 < 1
1+ν

}. If calls of each class arrive in independent
Poisson processes of rates λ1 and λ2, and the times for which calls stay in the
system are exponentially distributed, with rates μ1 and μ2, and independent from
connection to connection, then (X1(t), X2(t)), t ≥ 0, is a Markov chain on S. As
shown at length in [89], analysis of this Markov chain yields the probability that
a connection of each class is blocked. If the resulting blocking probability is not
acceptable to the customers of the system then the arrival rates will need to be
reduced. This can be achieved, to some extent, by reducing the area covered by
each cell.

Another approach for capacity enhancement (already discussed for the single
class voice case) is to employ soft admission control; that is, when a connection
is not active (as, for example, when a party is listening in a speech telephony
connection) then the term corresponding to that flow is set to 0 in the left-hand
side of (5.11). Define, for a connection of type k, the random process Zk(t) = gk
when the call is active at instant t, and Zk(t) = 0 when the call is inactive. Assume
that this is a stationary random process, and let Zk denote a random variable
with the marginal distribution of Zk(t). With pk denoting the fraction of time
Connection k is active, we have Zk = 1 with probability pk, and Zk = 0 otherwise.
We may then say that a set of connections (1, 2, 3, . . . , n) is admissible if

Pr

⎛
⎝ n∑

k=1

Zk ≥ 1
1 + ν

⎞
⎠ ≤ ε (5.14)

where ε is the probability of outage, the fraction of time that the system violates
the connection QoS requirements. During such times the SINR targets of calls will
not be met and users will experience poor in-call QoS.

5.3.2 Soft Admission Control Using Chernoff’s Bound
Let us limit our discussion now to the situation in which there are K classes of
calls, with resource requirements gk, 1 ≤ k ≤ K. For example, two of the classes
could be speech telephony with two different types of coders, one class could be
streaming audio, and the other could be streaming video. If nk calls of Class k are
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to be admitted, (5.14) is equivalent to

Pr

⎛
⎝ K∑

k=1

nk∑
i=1

Zk,i ≥ a

⎞
⎠ ≤ ε

where (1) Zk,i is the resource requirement random variable of Connection i of
Class k, and (2) we have defined a := 1

1 + ν
, for notational convenience. Although

it is possible to implement such an admission control by storing a look-up table
in the admission controller, such a table needs to be updated each time that a new
call type is included. The following approximate calculation yields an additive call
admission rule, which has been found to be quite efficient.

We assume that, for each k, 1 ≤ k ≤ K, Zk,i, 1 ≤ i ≤ nk, are independent
and identically distributed, and all the Zk,i are mutually independent. Now, for
any θ ≥ 0, let us define Mk(θ) = ln E(eθZk,1 ), and then use Chernoff’s Bound (see
Appendix B) to obtain

Pr

⎛
⎝ K∑

k=1

nk∑
i=1

Zk,i(t) ≥ a

⎞
⎠ ≤ e−θae

∑K
k=1 nkMk(θ)

= e−(θa−∑K
k=1 nkMk(θ))

Because this is true for each θ ≥ 0, and ex is increasing in x, we can further write

Pr

⎛
⎝ K∑

k=1

nk∑
i=1

Zk,i(t) ≥ a

⎞
⎠ ≤ einfθ≥0(−(θa−∑K

k=1 nkMk(θ)))

= e− supθ≥0(θa−∑K
k=1 nkMk(θ))

Exercise 5.1
For the two valued Zk random variables shown earlier, show that

K∑
k=1

nkMk(θ) =
K∑

k=1

nk ln
(
1 − pk

(
1 − eθgk

))

Hence observe the following (see Figure 5.6 for a graphical depiction)

(1)
∑K

k=1 nkMk(θ) ∼θ→∞
∑K

k=1(nkgkθ + nk ln pk); that is, as θ → ∞,∑K
k=1 nkMk(θ) is an affine function of θ with slope

∑K
k=1 nkgk.

(2) limθ→−∞
∑K

k=1 nkMk(θ) = ∑K
k=1 nk ln(1 − pk).

(3) The derivative of
∑K

k=1 nkMk(θ) with respect to θ at θ = 0 is given by∑K
k=1 nkpkgk the mean resource requirement from the sources.
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Let us assume that
∑K

k=1 nkE
(
Zk,1

)
< a, which implies that the mean resource

requirement is less than a, or, in other words, the system in not overloaded. We
can then observe that

θa −
K∑

k=1

nkMk(θ) = θa −
K∑

k=1

nklnE
(
eθZk, 1

)

≤ θa −
K∑

k=1

nklneθE
(
Zk, 1

)

= θ

⎛
⎝a −

K∑
k=1

nkE
(
Zk, 1

)⎞⎠
where we have used Jensen’s Inequality (see Appendix B) in the second step (the

exponential being a convex function). Under the “not overloaded” assumption,
the right-hand side of the last equality is ≤ 0 whenever θ ≤ 0. It follows that
supθ∈R(θa − ∑K

k=1 nkMk(θ)) = supθ≥0(θa − ∑K
k=1 nkMk(θ)), and we can write

Pr

⎛
⎝ K∑

k=1

nk∑
i=1

Zk, i(t) ≥ a

⎞
⎠ ≤ e

− supθ∈R

(
θa−∑K

k=1 nkMk(θ)
)

Let us write the outage probability as ε = e−δ, for a suitably chosen δ. Then the
outage probability will be met provided we ensure that the vector of the numbers
admitted calls, n = (n1, n2, . . . , nK), is in the region defined by⎧⎨

⎩n : nk ≥ 0, 0 ≤ k ≤ K, sup
θ∈R

⎛
⎝θa −

K∑
k=1

nkMk(θ)

⎞
⎠ ≥ δ

⎫⎬
⎭ (5.15)

As shown in Figure 5.6 this admission control basically means that the vector n
should be such that the maximum vertical gap between the line θa and the curve∑K

k=1 nkMk(θ) should be greater than δ. Notice that if this is done with δ > 0 then
the “not overloaded” condition assumed earlier is also met.

Exercise 5.2
Show that the function f (x) = supθ∈R

(
θa − ∑K

k=1 xkMk(θ)
)

is convex, and,

hence, that the boundary

⎧⎨
⎩x : xk ≥ 0, 0 ≤ k ≤ K, sup

θ∈R

⎛
⎝θa −

K∑
k=1

xkMk(θ)

⎞
⎠ = δ

⎫⎬
⎭

is convex.
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slope 5 mean load

slope 5 peak load

slope 5 a

Figure 5.6 Depiction of the Chernoff’s bound based admission control.The thick curve
is a sketch of

∑K
k=1nk Mk(θ), which depends on the vector n of calls admitted.The slope

of this curve at θ = 0 is the mean resource requirement, the asymptotic slope as θ → ∞
is the peak resource requirement, and the line with slope a corresponds to the resource.

Consider a point n∗ on the boundary of the set {n : nk ≥ 0, 1 ≤ k ≤ K,
supθ∈R(θa − ∑K

k=1 nkMk(θ)) ≥ δ}, and let θ∗
n∗ be the value of θ that achieves the sup.

Thus (θ∗
n∗a − ∑K

k=1 n∗
kMk(θ∗

n∗ )) = δ. Now consider the admission control region

⎧⎨
⎩n :

(
a − δ

θ∗
n∗

)
≥

K∑
k=1

nk
Mk(θ∗

n∗ )
θ∗

n∗

⎫⎬
⎭ (5.16)

Exercise 5.3
Show that if admission control is done according to (5.16) then the QoS
requirements of all the admitted calls are satisfied. (Hint: Show that an n in
the set defined by (5.16) is also in the set defined by (5.15).)

Observe that the complex admission control region defined by (5.15) has
been simplified to a linear region defined by (5.16). The admission control defined
by (5.16) has the following interpretation. Each call of Class k requires an amount
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of resource
Mk(θ∗

n∗ )
θ∗

n∗ , and the total resource available is (a − δ
θ∗

n∗ ). The reason why

this construction works is that the boundary of the region defined by (5.15)
is convex, and hence any hyperplane at a point on the boundary is below the
boundary. It follows that the polytope below this hyperplane (and in the positive
orthant) lies inside the set defined by (5.15). It has been found that the boundary
of the admission region is almost a straight line, hence, the approximation is quite
accurate.

5.4 Association and Power Control for Guaranteed
QoS Calls

In the previous analysis we made the simplification of assuming spatial homogene-
ity so that we could model the interference received at a BS as a scaled total intracell
received power. In this section we dispense with this assumption and consider the
joint problem of power allocation and MS to BS association in a multicell system.
We start with the SINR constraints in (5.1). Before we proceed, let us write these
inequalities in matrix form as follows:

p ≥ Fp + g

where p is the (column) vector of powers, F is an m × m matrix with a zero

diagonal, Fk,i = Γkhi,ak
hk,ak

, and gk = N0WΓk
hk,ak

, 1 ≤ k, i ≤ m. Notice that gk is the uplink

power required at MS k if there was no interference from other users. For fixed
F and g, we need to know if the power allocation problem is feasible; that is, if
the set

{p : p ≥ Fp + g}

is nonempty. The answer to this question has been shown to depend on the matrix
F and hence on the association and on the channel gains. First, we need some
definitions and results from the Perron-Frobenius theory of nonnegative matrices
(see this chapter’s appendix). Applying these to the problem at hand, we can first
establish the following property of the matrix F.

Exercise 5.4
Show that the matrix F is primitive for m ≥ 3.

Then, let ρ be the eigenvalue provided by the Perron-Frobenius Theorem 5.1.
Suppose also that ρ < 1. Consider the matrix I − F, where I denotes, as usual,
the m × m identity matrix. Suppose this matrix is singular, or, equivalently, its
columns are linearly dependent. Then there will exist a column vector x (which
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could have positive, negative, or even zero elements, but at least one element will be
nonzero) such that (I−F)x=0. But then 1 becomes an eigenvalue of F, contradicting
the third conclusion of Theorem 5.1 that ρ (< 1) is the largest eigenvalue. It
follows that ρ < 1 implies that I − F is invertible, and, thus, there exists p∗ such
that

p∗ = (I − F)−1g

Thus, p∗ ∈ {p : p ≥ Fp + g}, and the power allocation problem for the given
association and channel gains is feasible.

Our aim should be to obtain feasible power allocations that require the MSs
to use as little power as possible. A power allocation p is called Pareto if there does
not exist another power allocation p′ with p′ ≤ p with p′

j < pj for some j. Thus,
a feasible power allocation is Pareto if there is no other feasible power allocation
in which the power of some MS is strictly smaller, without increasing the power
of some other MS. In other words, a Pareto power allocation is on the “lower left
boundary” of the set of feasible power vectors.

Lemma 5.1
The power control p∗ is Pareto.

Proof: Suppose that p∗ is not Pareto. Then there exists a feasible power vector p

such p ≤ p∗, with pj < p∗
j for some j, 1 ≤ j ≤ m. Let k = arg max1≤j≤m

p∗
j

pj
, and let

α := p∗
k

pk
. By the choice of p, we have α > 1. Then, αpk = p∗

k and αp ≥ p∗. Now, we
can see that

p∗ = Fp∗ + g

≤ αFp + g

< α(Fp + g)

≤ αp

where the first inequality follows from αp ≥ p∗ and the fact that F is nonnegative,
the strict inequality follows since α > 1 and g > 0, and the last inequality follows
because p is feasible. We find that p∗ < αp (i.e., p∗

j < αpj, for all j, 1 ≤ j ≤ m),
which is a contradiction, since αpk = p∗

k. Thus, p∗ is Pareto. �

At this point, we have learned that (1) if the Perron-Frobenius eigenvalue of
F is less than 1, then there exists a feasible power allocation p∗ such that p∗ =
Fp∗ + g, and (2) that such a power allocation (i.e., p∗ for which p∗ = Fp∗ + g) is
Pareto.
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Exercise 5.5
Show that, if the Perron-Frobenius eigenvalue of F is less than 1, then there
is a unique solution of p = Fp + g.

We need to answer one more question. Can there be a feasible Pareto power
allocation that does not satisfy p ≥ Fp + g with an equality? Let p be such that
p ≥ Fp + g, with strict inequality for some j, 1 ≤ j ≤ m. Consider, p′ = Fp + g.
Now, p′ ≤ p, with strict inequality for j. Further, p′ = Fp + g ≥ Fp′ + g, since
p ≥ p′. Hence, even p′ is feasible. It follows that p is not Pareto, since it can be
improved. Hence, every Pareto power allocation must satisfy p = Fp + g.

We conclude that when the Perron-Frobenius eigenvalue of F is less than 1,
then (1) there is a unique solution p∗ of p = Fp + g, and (2) p∗ is the unique Pareto
power allocation.

In order to minimize their battery drain, the MSs should operate with the
power vector p∗. The following is an iterative algorithm that converges to p∗
starting from an initial feasible power allocation p(0). Since p(0) is feasible, we have

p(0) ≥ Fp(0) + g

Define, for i ≥ 1,

p(i) = Fp(i−1) + g (5.17)

Note that this iteration is exactly the “improvement” step that was done earlier
when we were showing that p∗ was uniquely Pareto. Hence, if p(i−1) is feasible, it
follows that

p(i) ≤ p(i−1)

that is, p(i) is a nonnegative and nonincreasing sequence, and hence converges.
Since (by nonnegativity of terms) Fp(i−1) + g ≥ Fp(i) + g, it follows that p(i) is also
feasible. Further, taking limits as i → ∞ in both sides of (5.17) it follows that the
iterations converge to p∗. There remains the question of how the computation on
the right side of (5.17) is carried out without knowledge of F and g. It is easily
seen from the derivation that led to this matrix expression that this computation
can be done if, with the power vector set at p(i−1), the total interference plus noise
experienced by the signal from each MS can be measured, as also the channel
attenuation hk,ak

for each k. Note that this yields the following iterative power
control algorithm:

p(i)
k = Γk

hk, ak∑
{i:1≤j≤M, j �=k}hj, akp(i−1)

j + N0W

(5.18)
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Thus, if the channel gain hk, ak
and the total interference power for MS k at BS

ak can be measured at each iteration then we obtain a distributed power control
update. Observe that the iteration in (5.18) can also be written in the following
form

p(i)
k = Γk

SINR(i−1)
k

p(i−1)
k (5.19)

where SINR(i−1)
k is the uplink SINR for MS k in the (i − 1)-th iteration. Thus, each

MS increases or decreases its transmit power accordingly as its measured SINR is
below or above target in the previous iteration.

We note that these algorithms are synchronous and distributed; synchronous
because it is assumed that all MSs update their powers at the same instants. An
asynchronous version would be more practical; indeed asynchronous distributed
power control algorithms have also been studied in the literature.

Discussion

a. In the previous development we have seen that, for a given association of MSs
to BSs, there is a feasible power vector (for which the SINR constraints in
(5.1) are met) if the matrix F has its Perron-Frobenius eigenvalue less than 1.
On the other hand, if there is a feasible power allocation p then the iteration
p(0) = p, p(i) = Fp(i−1) + g yields a sequence of feasible power controls that
converges to a p∗ that satisfies the SINR constraints with equality. Thus,
the existence of a feasible power allocation implies the existence of one that
achieves the SINR constraints with equality. It can be shown that such a
power control is also unique (see the proof of Lemma 5.1, and Problem 5.4).
This further implies that I − F is nonsingular. For if not, then there exists a
nonzero vector x such that (I − F)x = 0, and x can be taken to be arbitrarily
small by scaling it. It follows that, if p is a positive solution of (I − F)p = g,
then so is p + x for a suitably chosen x, leading to a contradiction of the
uniqueness of the equalizing power control. Further, it can be shown that,
for I−F to be nonsingular, the Perron-Frobenius eigenvalue of F must be less
than 1 (see this chapter’s appendix). Thus, this is a necessary and sufficient
condition for feasibility of the SINR constraints in (5.1).

b. From the previous point we conclude that, given an association of MSs with
BSs, admission control should be exercised so that the desired property of the
matrix F is obtained. Thus, in general, the admission control should depend
on the channel power gains between the MSs and the BSs. In Problem 5.6, we
show that in the simple case of a single cell, the admission control criterion
does not depend on the channel gains, and indeed reduces to the form shown
in (5.9).
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c. Note that the power control update (e.g., the one in (5.19)) requires the
knowledge of the target SINR, Γ. We recall from our discussion in Chapter 2,
Section 2.1.4, that, for a given bit error rate, the target SINR depends on the
channel statistics (e.g., AWGN, or Rayleigh, etc.). The channel statistics in
turn depend on the propagation characteristics of the environment, which
cannot be accurately predicted. Hence, in practice, Γ (or, γ) is really not
known in advance. The approach is to use a nominal value of target SINR,
and at the BS determine if the target BER is being violated. This is then used
to increase or decrease the target SINR, at a slow time scale (e.g., a couple
of times a second). Thus, this slow outer loop provides the SINR target for
the fast iterative power control discussed earlier. �

This discussion showed how the optimal power allocation can be achieved
for a given association. However, there are several alternative associations and
the complete problem is to find the association that yields the smallest power
allocation vector. Let A denote the set of all feasible associations—those for which
the set of feasible power allocations is nonempty. Let p∗(A) denote the optimal
power allocation for the association A. It can be shown that among all the feasible
associations A ∈ A, there is an association A∗ such that p∗(A∗) ≤ p∗(A). There is
an iterative distributed algorithm for achieving this optimal association and the
corresponding optimal power allocation.

We have discussed uplink power allocation. Let us now turn to a discussion
of some issues in downlink power allocation. The approach is to allocate to each
BS a certain amount of average power budget, which the BS then allocates to the
MSs that associate with it. Since transmissions from a BS to all of its MSs are
chip synchronous, intracell interference is less of a problem. However, multipath
propagation does result in some intracell interference. This is because, even though
the BS transmits the user symbols synchronously, multipath propagation causes
multiple phase shifted copies of the transmitted signal to arrive at the receiver.
Thus, since cross-correlations of the spreading sequences are not perfectly zero,
some residual intracell interference is obtained at the correlation receiver. Turning
to intercell interference, since there is universal spectrum reuse, the power radiated
by all other BSs potentially interferes with the transmission from a BS to one of
its MSs. However, now there are a few large interferers rather than several small
ones, and hence the interference levels can be more variable than in the uplink,
and also the white Gaussian interference assumption is less valid. Yet, the analysis
of downlink power allocation usually is done using the same modeling approach
as discussed earlier for the uplink.

5.5 Scheduling ElasticTransfers
In the previous section we discussed the optimal association and power control
problem for calls that require a guaranteed bit rate and bit error rate, such as a
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voice call. Cellular networks originally were designed for mobile telephony, and
have been used primarily for this since their inception over two decades ago. With
the rapid developments in digital communication over fading wireless channels, the
most eagerly awaited service is ubiquitous wireless access to the Internet. Hence,
considerable attention is being paid to high speed wireless Internet access in the
next generation cellular systems. In this section we will briefly consider the problem
of power control and scheduling in high speed downlink elastic data transfers in
a CDMA system. Such techniques have been adopted in third-generation CDMA
cellular systems. See Chapter 3 for a discussion of the concept of elastic traffic,
and of the TCP protocol, which controls the elastic traffic in the Internet.

The downlink power allocation problem was discussed briefly at the end
of Section 5.4. Each BS is assigned a certain total average power, Pd, which it
allocates among the ongoing downlink transmissions. We use the notation defined
in Section 5.4. Further, define S to be the set of all MSs, and, for 1 ≤ j ≤ n, let
Sj denote the set of MSs associated with BS j. The sets Sj, 1 ≤ j ≤ n, constitute
a partition of S, and such a partition is equivalent to an association A. Let mj =
|Sj|, 1 ≤ j ≤ n. For i ∈ Sj, let pi be the power assigned by BS j to MS i. Thus

∑
i∈Sj

pi ≤ Pd

Now, ignoring the intracell interference (see the discussion on downlink power
allocation at the end of the previous section), the downlink received signal power
to interference plus noise power ratio is given by

(SINR)i = hi, ai pi∑
j:1≤j≤n, j �=ai

hi, jPd + N0W

where the first term in the denominator is the total interference power received at
MS i from the other BSs, assuming that they are all transmitting at their maximum
downlink power Pd. Note that hi, j now denotes the power gain from BS j to MS i.
For a given association, define, for 1 ≤ i ≤ m,

ηi :=
∑

j:1≤j≤n, j �=ai
hi, jPd + N0W

hi, ai

If MS i has to be provided the rate Ri, then, as explained in the previous sections
of this chapter, the SINR target Γi = γi

Ri
Rc

, for User i. The power allocation needs
to satisfy the following inequality:

Γiηi ≤ pi (5.20)

We will assume that the CDMA access link is the bottleneck on the path of
the elastic transfer connection from an MS (see Section 3.4.3 for a discussion
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of this assumption). This permits us to assume that the queue of packets at the
BS (that serves the MS) is backlogged. Thus, when the system allocates a rate
Ri to MS i, the data actually get transferred at rate Ri. Further, since γi and the
chip rate Rc are fixed, Γi is proportional to Ri, and, hence, we can think of Γi
as equivalent to the rate performance provided to MS i. Note that the value of
γi (i.e., the target Eb

N0
) relates to the BER. The BER in turn relates to packet error

probability, which in turn affects the performance of TCP controlled transfers (see
Section 3.4.3).

Note that, in (5.20), the term ηi captures the downlink interference from the
other BSs. If ηi is larger, then more power will be required to obtain the same
connection throughput. Under our assumptions, the value of ηi is constant, as
long as the channel power gains are constant.

For a given association, we now need to obtain the power allocation that is
optimal in some sense. Allocating all the downlink power from a BS to the best
MS (i.e., in BS j, to the MS with index arg min{i∈Sj} ηi) in that cell will maximize
the overall throughput carried by the network but will provide zero throughput
to several MSs. One approach is to evaluate the utility obtained by an MS when
a certain rate is allocated to it, and then optimize the total network utility. The
utility function can be chosen to capture the desired trade-off between network
throughput and fairness between users.

Let U(·) be the utility function, so that the utility to user i is evaluated as
U(Γi). Let us fix an association and ask for a power allocation in each cell so
that the constraints Γiηi ≤ pi are met for the users, and the network utility is
maximized. This leads to the following optimization problem.

max
∑
i∈Sj

U(Γi) (5.21)

subject to

∑
i∈Sj

Γiηi ≤ Pd

Γi ≥ 0 for i ∈ Sj (5.22)

Let us consider the specific utility U(Γi) = ln(Γi). We then have a problem of
maximizing a concave function over a set of linear constraints. The KKT Theorem
(see Appendix C) can be applied to obtain the following solution

Γi = Pd

mjηi
(5.23)
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where we recall that mj = |Sj|.2 We see that this formulation yields a proportionally
fair solution. Each MS obtains a throughput proportional to the best it can
obtain, Pd

ηi
.

Note that in the problem defined by (5.21) and (5.22), in each cell, some
power may be allocated to every user. In order to avoid the problem of intracell
interference (which we have ignored in the previous formulation) an alternative is
to allocate the entire power in each cell (i.e., Pd) to a user at a time, and obtain
a power allocation over the users by time sharing. Let φi be the fraction of time
power is allocated to MS i, by the BS ai; then, of course,

∑
i∈Sj

φi = 1, and we
obtain the following optimization problem.

max
∑
i∈Sj

U
(

φi
Pd

ηi

)
(5.24)

subject to ∑
i∈Sj

φi = 1

0 ≤ φi ≤ 1 for i ∈ Sj (5.25)

For the utility function U(·) = ln(·), it can be shown that this problem, too, yields
the same proportionally fair solution, Γi = Pd

mjηi
. This solution is implemented in

the framework of (5.21) and (5.22) by always allocating to an MS i ∈ Sj the power
pi = Pd

mj
, and, in the framework of (5.24) and (5.25), by allocating power Pd to

each station associated with BS j a fraction 1
mj

of the time. The latter solution also
avoids intracell interference and is the one that is preferred in practice.

One might expect that the rate allocation provided by the log-utility function
yields a smaller total rate, while providing some fairness between users. On
the other hand, serving the best user in each cell provides the maximum total
throughput, but is very unfair. This issue is explored in Problem 5.8. For additional
discussion on utility functions and fairness, see [89].

Let us now examine this time sharing solution and obtain the mean file
transfer delay under a certain traffic model. Assume that the same value of γi = γ

2To see this, first note that we are maximizing a concave function subject to linear constraints. Hence, the
KKT conditions are necessary and sufficient. Then consider the function L(λ, Γi , i ∈ Sj) := ∑

i∈Sj
ln(Γi) −

λ
∑

i∈Sj
Γiηi , obtained by relaxing the constraint

∑
i∈Sj

Γiηi ≤ Pd . Now optimize this function subject to

the remaining constraints Γi ≥ 0, i ∈ Sj . Take partial derivatives with respect to each Γi , i ∈ Sj , and set

these derivatives equal to zero. These equations will yield λ = 1
Γiηi

, i ∈ Sj . Then taking an equality in the

constraint
∑

i∈Sj
Γiηi ≤ Pd , obtain λ = Pd

mj
. Finally, verify that this value of λ, along with Γi = λ

ηi
, i ∈ Sj ,

satisfy the KKT conditions.
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is required for all users. When a user is being served (and is therefore allocated the
full downlink power Pd in its cell), the user receives a downlink physical bit rate
of Ri = RcPd

γηi
. If the γ is appropriately chosen, then the TCP packet loss probability

will be small and the TCP throughput will be close to Ri (see Section 3.4.3); let us
assume this to be the case. Thus if a file of size V bits has to be downloaded by
MS i, and if the MS receives the transfer rate Ri (bps), then it will take V

Ri
seconds

to download the file. Here again we are assuming that the transfer is backlogged
at the BS.

In order to obtain a simple analytical model, we assume that there is a large
population of MSs associated with BS j. These MSs can be partitioned into sets,
with each set containing a large number of MSs, such that all MSs in a set obtain
the same downlink rate Rk, for each k, 1 ≤ k ≤ K. For example, such sets could
be obtained by partitioning the coverage area of BS j into K concentric rings, such
that all MSs in a ring obtain the same value of Rk (this would be true if they
all have the same path loss hi,j, and the interference from the other BSs is the
same for all MSs). Let the aggregate arrivals of transfer requests from all the MSs
in the k-th set constitute a Poisson process of rate λk, 1 ≤ k ≤ K. The transfer
requests are of random sizes (in bits), denoted by the random variable V, which
has the cumulative distribution function F(v). Let, Fk(x) := F(Rkx), x ≥ 0, and
Fk(x) = 0, x < 0. Notice that Fk(x) is the distribution of time taken to transfer a
file requested by an MS in the k-th set, if the BS power is dedicated to this MS. Let
Tk denote the expectation of the distribution Fk(x), 1 ≤ k ≤ K; Tk is the mean time
taken to complete a transfer to an MS in the k-th set if the BS power is dedicated
to it, where the mean is taken over successive file transfers.

Let λ = ∑K
k=1 λk. Then transfer requests arrive at rate λ, and a request is

from an MS in the k-th set with probability λk
λ

. Let

T =
K∑

k=1

λk

λ
Tk

T is the average time to transfer a file if the BS power is dedicated to this transfer,
where the average is over MSs and over transfers.

Now the file transfer requests from the MSs in the k-th set can be viewed
as bringing an amount of time distributed as Fk(t) to be served by the downlink
CDMA “server.” This is depicted in Figure 5.7, where the horizontal bars represent
the amount of time remaining for each transfer. The CDMA server then serves
these time requirements in a round-robin fashion (as suggested by the solution
to the optimization problem defined by (5.24) and (5.25)). Since the number of
MSs is large, we assume that from each MS there is never more than one ongoing
transfer. With this assumption, each ongoing transfer is served in a round-robin
manner for an equal fraction of the time (if the MSs are served for equal fractions
of the time). As the service quantum goes to 0, we obtain the standard M/G/1
Processor Sharing (PS) model (see Appendix D, Section D.5.2). If N(t), t ≥ 0, is
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arrival rate �

transfer request
arrivals

round robin
service

1
2

N (t )

residual time for completing these transfers

Figure 5.7 The model for downlink file transfers.The bars depict the remaining transfer
times of the N (t) files that are currently in transfer. The transfer times are served in
a round-robin manner. As the round-robin quantum goes to 0 we obtain a processor
sharing model.

the number of ongoing transfers at time t, then it can be shown that this process
is stable when λT < 1; the average amount of transfer time brought in per second
by the users is less than 1 second. Then the mean transfer delay can be seen to be

T
1 − λT

(5.26)

where we have used Little’s Theorem (see, Appendix D, Theorem D.10), and the
fact that the stationary distribution of the number of customers in an M/G/1 PS
queue is the same as that of the M/M/1 PS queue, which in turn is the same as that
of the M/M/1 queue (see Appendix D, Section D.5.2).

Notice, from (5.26), that the mean transfer delay becomes very large as
λT becomes close to 1 (though less than 1). Thus, from the point of view of
traffic engineering, we will need to limit how close λT is to 1 in order to provide
some mean transfer delay guarantee to the users. This can be done by improved
physical layer techniques that result in a reduction of γ, for then, for a given
power Pd, the MSs get larger download rates. For a given system, the physical
layer techniques are fixed, and load control, or reduction of cell coverage, remain
the only alternatives for managing large transfer delays.

5.6 CDMA-Based 2G and 3G Cellular Systems
The first generation of cellular networks were based on analog FDM. The second-
generation systems used digital modulation, and there have been two competing
physical layer technologies: FDM-TDMA (e.g., GSM systems) and CDMA (e.g.,
the IS-95 standard, now also called cdmaOne). The IS-95 standard was adopted in
1993, and was deployed commercially from 1994. We have already seen examples
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based on IS-95 parameters in the course of this chapter. The signals are spread
over a bandwidth of 1.25 MHz, and the chip rate is 1.2288 Mcps (mega chips
per second). The uplink and downlink are frequency division duplexed, with two
1.25 MHz allocations that are 45 MHz apart. The uplink band is 824–849 MHz,
and the downlink band is 869–894 MHz. We notice that 1.2288 × 106 = 128 ×
9600. Indeed, 9600 bps is the maximum data rate that is provided, and this yields a
processing gain of 128. Other data rates that can be provided are 1200, 2400, and
4800 at processing gains of 1024, 512, and 256. Higher data rates were defined
later so as to accommodate higher quality voice coders.

Although, there were both FDM-TDMA and CDMA systems in the second
generation, much of the standardization activity in third-generation systems has
been in CDMA systems. The rate flexibility provided by the CDMA physical
layer is useful when carrying a variety of multirate services. WCDMA (wideband
CDMA) has emerged as the most widely adopted third generation air interface.
The first full standard was released in 1999, and services began in some countries
in 2001. Europe and many countries in East Asia have standardized on a common
band for WCDMA deployment: 1920–1980 MHz for the uplink and 2110–
2170 MHz for the downlink, for frequency division duplex operation. In the
standardized WCDMA system, the user signals are spread over 5 MHz (i.e.,
4 times that of IS-95). The chip rate is 3.84 Mcps. Because of the higher chip rate,
the time resolution becomes finer, and hence Rake receivers can resolve multiple
paths even in small cells. A variety of speech coders have been defined to be carried
over WCDMA systems, with source rates ranging from 4.75 Kbps to 12.2 Kbps.
A variety of other services are defined, and bit rates up to 2 Mbps can be assigned
to a connection. Thus WCDMA systems bring cellular networks closer to being
able to provide shared mobile broadband services.

5.7 Notes on the Literature
The other-cell interference analysis in this chapter has been taken from [132],
where Viterbi has used various mathematical models to analyze several technical
issues in cellular CDMA, such as Erlang capacity, hard and soft handovers, other-
cell interference, and imperfect power control. Holma and Toskala [58] have
provided an updated account of the emergence of CDMA cellular standards from
the second generation to the third generation.

The analytical approach to soft admission control of multiclass calls, based
on Chernoff’s bound, was developed by Kelly [74]. Earlier it was reported by
Hui [60] that the admission region has an almost straight line boundary; hence,
Kelly’s approach would work well. Evans and Everitt [32] have also reported
various analytical approximations for call admission control.

The iterative power control for multiple MSs and BSs was proposed by
Foschini and Miljanic [35]. A review of the theory and the algorithm were provided
by Holliday et al. [57], who also develop a power control algorithm for the realistic
situation in which the channel gains vary over time. The joint problem of BS
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selection and power control was studied by Hanly [52]. Yates [138] has developed
a generalized framework for power control algorithms. Other power controls were
proposed by Zander [142] and Mitra and Morrison [101]. A survey of the area
was provided by Bambos [4].

In [8], Bender et al. have explained the ideas behind high data rate downlink
Internet access in cellular CDMA systems (called CDMA/HDR technology). The
processor-sharing queue based model for downlink high-speed TCP transfers over
systems such as CDMA/HDR was studied by Bonald and Proutiere [15].

5.8 Appendix: Perron-FrobeniusTheory
The standard source for the following material is Seneta’s book [120]. A square
(m×m) nonnegative matrix M is primitive if there exists a k ≥ 1 such that Mk > 0,
where 0 is the m × m matrix of zeros, i.e., [Mk]i, j > 0 for every i, j.

Obviously, M =
[

1 0
0 1

]
is not primitive. Check that even M =

[
0 1
1 0

]
is

not primitive. One way to think about this concept is to view the positive elements
of M as defining a directed graph on the nodes (1, 2, . . . , m). There is a directed
edge (i, j) if Mi, j > 0. Observe that [Mk]i, j > 0 if and only if there is a k hop
directed path from i to j. So M is primitive if and only if, for some k ≥ 1, there is
a k hop directed walk from each node i to each node j (including from each node

i to itself). Consider now M =
⎡
⎣ 0 1 1

1 0 1
1 1 0

⎤
⎦ . We see that there is a directed walk

1 → 2 → 3 → 1, and 1 → 2 → 1 → 2, both of which take three hops. We can
conclude that M3 > 0; thus, M is primitive.

Theorem 5.1
Suppose M is a square nonnegative matrix that is also primitive. Then M has
an eigenvalue ρ such that

a. ρ is real, simple, and ρ > 0,

b. ρ has strictly positive right and left eigenvectors, that are unique up to
constant multiples (i.e., the vector spaces of the right and left eigenvectors
are each of rank 1), and

c. for all eigenvalues λ �= ρ, ρ > |λ|.

Often, ρ is called the Perron-Frobenius eigenvalue of M, and, by virtue of the last
conclusion of this theorem, ρ is also called the spectral radius of M. This term
becomes clear if we think of all the eigenvalues as being plotted on the complex
plane, and a circle of radius ρ encircling them all. Let the eigenvalues be indexed
from 1 to m so that λ1 = ρ > |λ2| ≥ |λ3| ≥ · · · ≥ |λm|.
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Theorem 5.2
M is an m × m primitive nonnegative matrix, and ρ is the Perron-Frobenius
eigenvalue of M. Corresponding to the eigenvalue ρ, let w be a right eigenvector
(column vector) and v be a left eigenvector (column vector) such that vTw = 1.
Then

a. If λ2 �= 0, for k → ∞,

Mk = ρkwvT + O
(
km2−1|λ2|k

)

where m2 is the multiplicity of the eigenvalue λ2.

b. If λ2 = 0, then for k ≥ n − 1,

Mk = ρkwvT �

An important consequence of Theorem 5.1 and Theorem 5.2 is that, if M is
primitive, then

∑∞
k=0 Mk is finite if and only if ρ < 1, where ρ is the spectral

radius of M. Consider the matrix I − M, where I is the identity matrix. Suppose
I − M has the inverse A. It follows that

(I − M)A = I

that is,

A = MA + I

= M2A + M + I

= · · ·

= MkA +
k−1∑
i=0

Mi

Evidently, if M is primitive, then I − M is invertible if and only if ρ < 1, and in
that case the inverse is

∑∞
i=0 Mi.

Problems
5.1 M MSs communicate with a BS using CDMA. The processing gain is

L = 200. We consider only the uplink.

a. (M−1) MSs are at distance d from the BS and one MS is at distance d
2

from the BS. All MSs are transmitting at power P. Considering only
path loss (η = 4) determine the maximum value of M so that the uplink
Eb
N0

between any MS and the BS is at least 5.
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b. The M MSs are now power controlled to a target BS received power
Pr, but there is power control inaccuracy, which can be modeled as
(Sr)dB + φ where φ is N(0, σ2). The power control inaccuracies for the
M MSs are i.i.d. The performance target is to achieve Eb

N0
= Γ dB with

outage probability Pout. Show how you will go about determining the
maximum value of M. No numerical computation required.

5.2 The following figure depicts a linear array of cells, say on a highway.

BS 23 BS 22 BS 21 BS 0 BS 1 BS 2 BS 3

11

Mobiles are confined to lie on the doubly infinite line shown. Each BS
covers a cell of width 2 units, 1 unit on either side. Cellular CDMA is
used for spectrum sharing. Assuming an MS density of δ, and log-normal
shadowing with MS and BS components both having a variance of σ2/2,
obtain an expression for reverse channel other cell interference at BS 0
due to BS −2, BS −1, BS 1, BS 2, and so on. You may leave your answer
in integral form.

5.3 There are two MSs being served by a cellular system with two BSs. The
following is the uplink channel gain matrix

BS1 BS2

MS1 h11 = 1 h12 = 0.5

MS2 h21 = 0.5 h22 = 1

The uplink SIR target is −20dB. Consider two associations (MS1 −→ BS1,
MS2 −→ BS2), and (MS1 −→ BS2, MS2 −→ BS1).

a. In each case sketch the feasible power vector region, and show the
Pareto optimal power assignment. Leave your answers in terms of the
receiver noise power N0W .

b. Which is the better association of the two? Illustrate your answer with
a diagram of the feasible power vectors.

5.4 In a CDMA cellular network there are n BSs and m MSs. The uplink
channel gain from MS i to BS j is denoted by Hi,j. The target SINR for
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MS i is Γi. The system bandwidth is W and the one-sided noise spectral
density is No. The uplink transmit power of MS i is Pi. Let P denote the
vector of transmit powers. Fix an association of MSs to BSs so that MS
i is assigned to BS ai.

a. Show that the set of feasible power vectors can be expressed in the
form

P = {p : (I − F) p ≥ g}
for appropriate matrices I, F and g.

b. Show that if there exists p(0) ∈ P then there is a p∗ ∈ P that satisfies
(I − F) p∗ = g and such a p∗ is the unique Pareto power vector.

5.5 Consider the uplink of a single CDMA cell (i.e., no other cell interference)
carrying several multimedia calls. User i, 1 ≤ i ≤ m, has SIR target Γi. Let
hi be the uplink channel gain for user i, and let pi be the power allocated
to i, 1 ≤ i ≤ m. Show that the power allocation problem is feasible if and
only if

∑m
k=1

Γk
1+Γk

< 1. (Hint: Use the iterative power control idea.)

5.6 Consider the uplink power control problem in a single cell CDMA system
with system bandwidth W and m MSs. The power gain from MS i to the
BS is hi and the target SINR Γi. Let p = (p1, . . . , pm) denote vector of
transmit powers at the MSs. Show that the criterion that the Perron-
Frobenius eigenvalue, ρ, of F is < 1 does not depend on the channel
gains, but only the SINR requirements Γi, 1 ≤ i ≤ m.

5.7 Consider downlink Internet access over the WDCMA–HSDPA system
with proportional fairness. Focus on users in a single cell, which is
surrounded by several other cells. Assume that the downlink interference
power from the other cells does not depend on user location within this
cell. There are two sets of users; those who are close to the BS and
can obtain a download rate (at full dedicated power) of 512 Kbps. The
other set of users have a 9 dB lower receive power from this BS. The
mean file transfer size is 100 KB. Half the transfers are due to each class
of users.

a. Obtain the maximum transfer arrival rate below which the system is
stable.

b. Obtain the mean file transfer delay at 90% of this rate, using the
processor sharing (PS) model.

c. Do you need the PS model for (a)?

5.8 For downlink elastic traffic in a CDMA cellular system, consider the
framework developed in Section 5.5 and focus on BSj. Suppose the
average rate Γi is allocated to user i. The set of MSs associated with
BSj is Sj, with mj :=| Sj |. We have three allocation objectives:
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(i) max
∑

i∈Sj
Γi (max sum rate)

(ii) max
∑

i∈Sj
ln(Γi) (proportional fair rates)

(iii) max mini∈Sj Γi (max − min fair rates)

a. Obtain the optimum power control and optimum fair rates in each
case.

b. Obtain the sum average rate (over all users) in each case and obtain
an ordering between them.

c. Discuss the results in (a) and (b).



CHAPTER 6

Cellular OFDMA-TDMA

We discussed the basic concept of OFDM in Chapter 2, Section 2.4.2.
This has become the PHY layer in the latest commercial systems based
on the IEEE 802.16 series of standards for broadband wireless access

networks. Since, in general, each OFDM carrier can be allocated to different users
over time, these systems can be said to employ OFDMA-TDMA. In this chapter
we study resource allocation problems in OFDMA-TDMA cellular systems by
formulating various constrained optimization problems, the decision variables
being the carriers assigned to the various users, the powers used on each carrier
by each user, how much data each user sends in a slot, and so on. The constraint
could be on the average total power.

Overview
We focus on the case of a single isolated cell. The basic model is of a sequence of
OFDMA-TDMA frames, each with a certain number of symbols. Given the user
requirements, the problem in each frame is to determine how much of the frame
to allocate to the uplink and downlink data, and how much data of each user to
carry in each direction. Since the subcarriers have time varying fading there is also
the problem of determining the transmission powers. We begin with the simplest
problem of one user transmitting over a single carrier with time varying channel
gains that stay constant over frames. We consider the problem of maximizing the
time average capacity, subject to a time average power constraint, and derive
the water pouring power allocation. We perform the analysis by Lagrangian
relaxation and provide insights about the Lagrange multiplier, or the power price.
We then show that the water pouring power allocation stabilizes any arrival rate
smaller than the water pouring capacity, and no arrival rate larger than the water
pouring capacity can be stabilized. We then study the trade-off between power
and delay. Next we show how a delay optimal, power constrained scheduler
can be derived. We then turn to the multicarrier case. The single user case is
considered, first with constant channel gains on all the carriers, and then with a
stationary and ergodic channel gain process on each carrier. Finally, for multiple
users over multiple carriers, the sum rate maximizing power control is derived. A
brief overview of the WiMAX standard is also provided.
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6.1 The General Model
Figure 6.1 shows a schematic of an OFDMA-TDMA system. The unit of time
over which the OFDMA-TDMA scheduling takes place is the frame, whose
duration is denoted by τ. Each frame has K OFDMA symbols. In the time division
duplex version, each frame is partitioned into a downlink subframe and an uplink
subframe. We denote the number of MSs by M and the number of carriers by N.
The downlink part of each frame is used to send data to the MSs; such data would
be queued in per MS queues at the BS. The uplink part of the frame is used to send
data from the MSs to the destinations, via the BS. The uplink-downlink boundary
can be adapted over time, depending on the ratio of the uplink-downlink load on
the system. If Internet access is a major application in a system, then the downlink
part of the frame would be substantially larger than the uplink part, due to the
asymmetry of Internet access traffic.

Resource allocation decisions are made only at frame boundaries, as the
information required for resource allocation (i.e., the channel gains, and the
backlogs of the various MSs) is updated only at this slow time scale. The nth
frame is the interval ((n − 1)τ, nτ), n ∈ 1, 2,3, . . . (see Figure 6.2). Let us consider
one direction of transmission; say, the downlink. The power gain for MS i on
the j-th carrier is H(i)

j, n−1 during the nth frame, n ≥ 1. Thus, we are assuming
that the channel coherence time Tc > τ in order that the channel gains can be
assumed to be constant over a frame. The data buffer occupancy at the downlink
queue for MS i, 1 ≤ i ≤ M, at the beginning of frame n, n ≥ 1, is denoted by Q(i)

n−1.

Uplink
subframe

Downlink
subframe

MS 1

MS 2

MS M

N
 O

F
D

M
A

 C
ar

rie
rs

K symbols per frame

MS 2

uplink queues at the MSsdownlink queues at the BS

MS M

MS 1

Figure 6.1 A conceptual model of uplink and downlink queues corresponding to M
MSs associated with an OFDMA-TDMA system. The downlink queues are at the base
station subsystem, while the uplink queues are in the MSs, which could be located
anywhere in the coverage area of the base station.
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QnBnQn2 Bn11 Qn11 Bn12

Hn
transmit Sn

Hn11
transmit Sn11

Figure 6.2 The processes in the model of joint buffer and power control at one MS.
The superscript (i) indicating the MS index, and the subscript (j) indicating the carrier
index are not shown.

If MS i is downloading (or uploading) a file under the control of TCP then,
as explained in Chapter 3, Section 3.4.3, we assume that the wireless network is
the bottleneck, and hence all the packets in the TCP window are backlogged either
in MS i’s buffer at the BS, or in the buffer at MS i. On the other hand, if MS i is
using an application such as packet voice telephony then open-loop arrivals will
occur for MS i, at either end of the wireless access link. In this case, we assume
that new data arrive at the end of each frame (see Figure 6.2). For the i-th MS, we
define the following downlink processes. The initial queue length just before time
0 is denoted by Q(i)

0−, taken to be 1. The arrivals, if any, at 0 are denoted by B(i)
0 ,

and the arrivals in the nth frame, n ≥ 1 are denoted by B(i)
n , which are assumed to

arrive at the frame boundary between Frame n and Frame n + 1 (see Figure 6.2).
Q(i)

n− denotes the amount of data queued in the downlink for MS i at the end of
Frame n, before any arrivals in the frame are taken into account. The amount of
data that is transmitted in the downlink to MS i in Frame n is denoted by S(i)

n−1,

with S(i)
n−1 ≤ Q(i)

n−1. Thus, the evolution equation for the downlink buffer of MS i
is (for n = 0, 1, 2, . . .),

Q(i)
n+1 = Q(i)

n − S(i)
n + B(i)

n+1 (6.1)

with Q(i)
0 = B(i)

0 .

6.2 Resource Allocation over a Single Carrier
In this section, we consider the situation in which a single channel is being used
to transport data for a single MS; this could model the uplink or the downlink.
Consider again the model shown in (2.8). We retain the multiplicative fading
term, but remove the interference term. The removal of the interference term is
an idealization that ignores issues such as the interference between carriers due to
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inaccuracies in timing, and due to carrier frequency offsets. We obtain the symbol
level model

Yk = GkXk + Zk (6.2)

where k indexes the symbol, and, as before, we will denote by Hk(= |Gk|2) the
sequence of power gains. Given the power constraint in (2.14), the question natu-
rally arises as to how to choose the energy to use in the k-th symbol, for each k, so
as to stabilize the process Qn,n ≥ 0. Although there are several notions of stability
of a random process, here by “stabilize” we mean formally that this random
process should converge to a random variable that is finite with probability 1,
as n → ∞.

In order to address this question, we first seek to maximize the bit carrying
capacity of the channel subject to the power constraint on the transmitted symbols.
Such an objective can arise in various situations. Suppose the MS is performing
a TCP controlled file download (i.e., a closed loop controlled transfer), and the
MS’s packets are backlogged at the MS’s queue at the BS; then maximizing the
bit carrying capacity will maximize the file transfer throughput. This assumes,
of course, that TCP can adapt the window so as to utilize the entire capacity
of the channel. This may not be possible in a situation in which the packet loss
rate on the link is high, as was shown in Section 3.4.3. On the other hand, if
the MS’s application is generating open-loop traffic (such as streaming packet
video) then maximizing the bit carrying capacity will maximize the streaming
rate that can be handled. The latter observation will be formally proved after
we derive the capacity maximizing power control (see Section 6.2.2, later in this
chapter).

As assumed earlier, the channel power gain remains constant over all the
symbols in a frame time, and Hn, n ≥ 0, is the sequence of channel power gains
(over the successive frames) in this single-channel–single-MS setting. Suppose that
the transmitter knows the channel attenuation at the beginning of each frame.
This is practically possible (by using pilots) if the channel is varying slowly. If the
channel happens to be highly attenuating in a frame, we can try to combat the
attenuation by boosting the power, or, alternatively, we can wait out the fade
and use the power only when the channel is good again. If the random process
Hn, n ≥ 0, is ergodic (see Appendix B) then the fraction of frames in which this
process will be in each state will be the same as the probability of that state. Hence,
if the distribution of Hn, n ≥ 0, gives positive mass to good states, then eventually
we will get a good period to transmit in. Of course, this argument ignores the
fact that there could be urgent information waiting to be sent out, but we will
come back to this issue later in this chapter (in Section 6.2.2). For the moment,
we seek a power control that will maximize the rate at which the channel can
send bits.

Now consider those frames in which Hn = h, for some nonnegative
number h. Suppose, in these frames we use the transmit power P(h)
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(i.e., over the symbols in such frames, E
(|X|2) = P(h), or, more precisely,

limt→∞
∑t−1

n=0 I{Hn=h}
∑

{symbol k∈frame n} |Xk|2∑t−1
n=0 I{Hn=h}K

= P(h), where we recall that there are K

symbols in each frame). Then, over such frames, using the model in (6.2), the
channel capacity achievable is

C = K
ln 2

ln
(

1 + hP(h)
σ2

)

bits per frame, where we write σ2 for the noise power, N0B, B being the subcarrier
bandwidth.1 In this expression, the division by ln 2 converts nats into bits, and
the multiplication by K (symbols per frame) converts bits per symbol, into bits per
frame. For notational simplicity, let us denote K

ln 2 by κ, thus yielding

C = κ ln
(

1 + hP(h)
σ2

)
(6.3)

6.2.1 Power Control for Optimal Service Rate
Let the channel power gain process Hk, k ≥ 1, be stationary and ergodic, taking
values in the finite set H = {h1, h2, . . . , hJ}, where J := |H|. Note that, although
we introduced a continuous model for channel power gains in Chapter 2, for
simplicity, here we will assume that the channel power gain is discretized into
a few levels. Let us denote by Pj = P(hj), the power used when the channel
power gain is hj, and write the power control as the J vector P. Then, for this
power control, the average channel capacity over the first t frames (for large t) is
given by

Ct(P) =
∑

hj∈H

(
1
t

t−1∑
n=0

I{Hn=hj}

)
κ ln

(
1 + hjP(hj)

σ2

)

bits per frame. This is because 1
t

∑t−1
n=0 I{Hn=hj} is the fraction of frames in which

the channel power gain is hj, and over these frames the capacity κ ln
(
1 + hjP(hj)

σ2

)
bits per frame is achieved. But this is exactly the same as writing

Ct(P) = 1
t

t−1∑
n=0

κ ln
(

1 + HnP(Hn)
σ2

)
(6.4)

Now, taking t to ∞, using the Ergodic Theorem (see Theorem B.5), and defining
the resulting limit as C(P), we find that Ct(P) converges with probability 1 to

1We note that to achieve this rate, we will need to code across symbols with the same power gains h, thus
adding even more delay.
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C(P) := κ E
(

ln
(

1 + HP(H)
σ2

))
(6.5)

where H denotes the marginal random variable of the process Hn, n ≥ 0. It can
be shown that this capacity is achievable by a coding scheme, albeit with large
coding delays.

We wish to ask the question: “What is the best power control?” First, as
explained earlier we impose a power constraint on the input symbols,

lim
k′→∞

1
k′

k′∑
k=1

|Xk|2 ≤ P

To calculate the left-hand side of this expression, we consider the average symbol
power over the first t frames, and let t → ∞.

lim
t→∞

1
Kt

t−1∑
n=0

∑
{symbol k∈frame n}

|Xk|2

= lim
t→∞

1
Kt

∑
hj∈H

t−1∑
n=0

I{Hn=hj}
∑

{symbol k∈frame n}
|Xk|2

= lim
t→∞

∑
hj∈H

(∑t−1
n=0 I{Hn=hj}

∑
{symbol k∈frame n} |Xk|2

K
∑t−1

n=0 I{Hn=hj}

)
1
t

t−1∑
n=0

I{Hn=hj}

=
∑

hj∈H
Pjgj

where gj is the fraction of symbols that find the channel in the power attenuation
hj, i.e., limt→∞ 1

t

∑t−1
n=0 I{Hn=hj} = gj. We also have used the fact, discussed earlier,

that in those symbols in which the power gain is hj, the average transmitter power
used is Pj. Notice that, in terms of gj we can now write (6.5) as follows:

C(P) = κ
∑

hj∈H
gj ln

(
1 + hjPj

σ2

)

Since κ is a constant it plays no role in the optimization of C(P); hence it can be
suppressed. Equivalently, we work with capacity in units of nats per symbol. This
leads to the following optimization problem.

max
∑

hj∈H
gj ln

(
1 + hjPj

σ2

)
(6.6)
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subject to

∑
hj∈H

Pjgj ≤ P

Pj ≥ 0 for every hj ∈ H (6.7)

This is a nonlinear optimization problem with a concave objective function and
linear constraints (see Appendix C). We will solve it from first principles. For each
power control P, and a number λ ≥ 0, consider the function defined as follows:

L(P, λ) :=
∑

hj∈H
gj ln

(
1 + hjPj

σ2

)
− λ

∑
hj∈H

gjPj

It is as if we are penalizing ourselves for the use of power, and λ is the price per unit
power.2 The function L(P,λ) can be viewed as a net payoff, which is the difference
between the throughput “reward” and power cost.

Exercise 6.1
Show that, for fixed λ, L(P, λ) is a strictly concave function of the vector
argument P.

Let us maximize the function L(P, λ), for a given λ, over the power controls
P, while requiring only the nonnegativity of these powers.3 The strict concavity
of L(P, λ) in P implies that a locally maximizing power vector will also provide a
global maximum over R

+ (see Appendix C). Rewriting,

L(P, λ) :=
∑

hj∈H
gj

(
ln

(
1 + hjPj

σ2

)
− λPj

)

we make the simple observation that, since the power constraint is no longer
imposed, we can maximize this expression term by term for each channel gain hj.

Exercise 6.2
Consider the maximization of ln(1 + αp) − λp over p ≥ 0, given that α > 0.

Show that the unique optimizer is p =
(

1
λ

− 1
α

)+
.

2The dimension of the function L(·) could be monetary, in which case we should multiply the capacity term
by a monetary value per unit capacity. But on dividing across by this value we again get the same form as
displayed.
3We say that the power constraint has been relaxed, leaving only the nonnegativity constraint.
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It then follows that the power vector Pλ that maximizes L(P, λ) has the form

Pλ,j =
(

1
λ

− σ2

hj

)+
(6.8)

Thus, for the chosen λ, if we maximize the function L(P, λ) the capacity with the
maximizing power control, Pλ,j, is given by

C(Pλ) = κ
∑

hj∈H
gj ln

(
1 + hjPλ,j

σ2

)
(6.9)

bits per frame, and the average power is given by

Pλ :=
∑

hj∈H
Pλ,jgj (6.10)

Let us understand the structure of Pλ, j and of the resulting capacity and
power cost. Given the set of values taken by the channel power gain process (i.e.,
H), let h(1), h(2), . . . , h(J), be these values in descending order. Thus h(1) is the best

�2/h(1) �2/h(2) �2/h(jl) �2/h(J)
�2/h

Power allocated to
the best channel state

1/�

Figure 6.3 The “water pouring” structure of the optimal power allocation for a given
power price λ.
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channel gain and h(J) the worst. In Figure 6.3 the horizontal axis represents σ2

h ,
and the various channel states also are shown along this axis. The slant line is
at 45◦. A horizontal line is drawn at the level 1

λ
. Now observe the form of the

power control Pλ, j shown in (6.8). Positive power is allocated to those states for
which 1

λ
> σ2

hj
. These power allocations are shown as solid vertical lines drawn

from the slant line to the horizontal line at the level 1
λ
. Thus, the best channel state

is allotted the most power, and the power allocation successively decreases, until,
for channel state indices larger than jλ, no power is allotted.

If we imagine vertical glass tubes standing on the slant line at the positions
corresponding to each of the channel states, then the power allocation is as if water
is poured into these glass tubes until the level corresponding to the inverse of the
power price is reached. There is no water in any tube whose bottom is above this
level.

For a given λ, the total average power allocated is the power allocated to
each channel state, averaged over the state probabilities; this is what (6.10) says.
Further, the optimal capacity is the capacity achievable with the allocated power
at each channel state, averaged over the channel states; this is what (6.9) says.

Now let us observe what happens if we vary the power price, λ. Reducing
the price to λ′ < λ causes the horizontal line to be raised, thus permitting more
power to be poured into the tubes, and perhaps making channel states worse than
jλ worthy of assigning positive power. This additional power permits a larger
capacity. Thus, at each power price, this solution provides the power that should
be used, and how it should be allocated over the channel states so that the overall
payoff is the best possible.

We return to the problem of obtaining the optimal power control for a given
average power constraint, P. Having solved the problem for a given λ, consider
another vector P, with ∑

hj∈H
Pjgj ≤ Pλ

We are asking for power controls whose average power is no more than that of
the power control that maximizes L(P, λ), for a given power price λ. Since Pλ

maximizes L(P, λ) for the given λ, over all nonnegative power controls, we have,
for the particular P just chosen,

C(Pλ) − λPλ ≥ C(P) − λ
∑

hj∈H
Pjgj

which implies that

C(Pλ) ≥ C(P) + λ

⎛
⎝Pλ −

∑
hj∈H

Pjgj

⎞
⎠

≥ C(P)
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since P was chosen to make the second term on the right nonnegative. We conclude
that Pλ is optimal for the optimization problem (6.6, 6.7) among all power controls
that satisfy the power constraint Pλ. It follows that if we can choose a λ such that
Pλ = P, then the resulting power control will be optimal with the power constraint
P. That is, we need λ so that

∑
hj∈H

(
1
λ

− σ2

hj

)+
gj = P (6.11)

We notice that the expression on the left is 0 for λ ≥ h(1)

σ2 , and increases continuously

and strictly monotonically to ∞ with decreasing λ, for λ < h(1)

σ2 . Hence, for each
P > 0, there exists a unique λ that solves (6.11). Let us denote the resulting power
price by λ(P). Then the optimal power control becomes Pλ(P), with

Pλ(P),j =
(

1

λ(P)
− σ2

hj

)+
(6.12)

Looking again at Figure 6.3, we see that, for a given power constraint P, the
optimal power control can be thought of in the following way. Start with a large
value of λ and decrease it (i.e., raise the horizontal line) until the average power is
equal to the available power P.

Let us write the optimal capacity with power constraint P as Copt(P).
Substitution of the optimal power control Pλ(P) into (6.9) and simplification shows
that

Copt(P) = κ
∑

{hj∈H,hj>σ2λ(P)}
gj ln

(
hj

σ2λ(P)

)
(6.13)

Exercise 6.3
Show that

∂Copt(P)

∂P
= λ(P)

(Hint: First use (6.11) to obtain
∂ 1

λ(P)

∂P
, and then differentiate the right-hand

side of (6.13) and substitute.)

This exercise demonstrates the useful result that the rate at which optimal
capacity increases with additional power is just the power price. We have solved
the optimization problem from first principles, but it is instructive to apply the
KKT Theorem to the problem and obtain the same results.
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Exercise 6.4
Solve the optimization problem (6.6, 6.7) using the KKT Theorem
(Theorem C.3 in Appendix C) and obtain all the preceding results.

6.2.2 Power Control for Optimal Power Constrained Delay
In the previous power control problem the concern was just with optimizing the
physical channel capacity subject to an average power constraint. The optimal
policy assigned no power to certain channel states, and low power (hence a low
rate) to some other channel states. Although this might optimize the channel
capacity, it might not be completely satisfactory from the point of view of the
application that is sending data on the channel. This application may have a delay
constraint for its data. Deferring transmission during a poor channel state would
make the data wait longer for transmission. Thus, there would be a trade-off
between data delay and satisfying the power constraint. Before we consider the
question of delays, we should consider the question of stability of the MS’s buffers
under open-loop traffic.

Stability of the Buffer Process

Consider the single MS version of the buffer evolution shown in (6.1); for n ≥ 0,

Qn+1 = Qn − Sn + Bn+1 (6.14)

where Q0 = B0, and Sn(≤ Qn) is the number of bits served from the buffer in
frame n. Later we will see how Sn may be chosen depending on the history of the
queue length process and the channel state process. For now, let us take it to be
an arbitrary number of bits served in the nth frame, with Sn ≤ Qn, and such that
the power constraint P is respected.

Let At, t ≥ 0, be defined by

At =
t∑

n=0

Bn

At is the cumulative arrivals until the end of the t-th frame. We will assume that
there is a well-defined arrival rate of a bits per frame. Thus, with probability one,

lim
t→∞

At

t
= a

Given an average power constraint P, we wish to show that the buffer process Qn

converges in distribution to a random variable that is finite with probability 1 (and,
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hence, is stable in this sense) if a < Copt(P), and will “blow up” if a > Copt(P).4

We can show this as follows. Consider first a service policy that, when Hn = hj,
uses the power control Pλ(P), j shown in (6.12). Let Cn denote the corresponding
number of bits that can be served, which we assume is given by the Shannon
capacity formula, even though the frame is of finite length. The evolution of the
buffer process, Qn, n ≥ 0, is seen to be

Qn+1 = (Qn − Cn)+ + Bn+1

Exercise 6.5
Show, by unraveling the preceding recursion that we can write Qn in terms
of the sequences Bn, n ≥ 0, and Cn, n ≥ 0, as follows.

Qn = Bn + max
0≤k≤n

n−1∑
j=k

(Bj − Cj)

Using this equation, it can be argued [89] that Qn converges in distribution
to a proper random variable if a < limt→∞ 1

t

∑t
n=1 Cn = Copt(P). This is also quite

intuitive, as it just says that the arrival rate is less than the service rate that can be
applied. We have thus demonstrated a service policy that stabilizes the buffer.

On the other hand, suppose a > Copt(P), and consider any service sequence
Sn, n ≥ 0, in (6.14). It is clear that (assuming that the limit on the left exists)

lim
t→∞

1
t

t−1∑
n=0

Sn ≤ Copt(P)

since Copt(P) is the optimal time average rate we can get with the power constraint
P. Recursing (6.14), it is easily seen that, for t ≥ 0,

Qt =
t∑

j=0

Bj −
t−1∑
j=0

Sj

Now, if a > Copt(P), we have

a = lim
t→∞

1
t

t∑
n=0

Bn > Copt(P) ≥ lim
t→∞

1
t

t−1∑
n=0

Sn

4The case a = Copt(P) is more complicated, in general, and is beyond the scope of this text. Recall that in
a D/D/1 queue in which customers arrive periodically at intervals of T, and each customer requires exactly
the time T to serve, the queue never exceeds 1, although the arrival rate and the service rate are equal. On
the other hand, in the M/M/1 queue the arrival rate being equal to service rate leads to instability.
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(where the left-hand inequality actually holds with probability 1). The previous
equation implies that (with probability 1)

lim
t→∞

1
t

(
t∑

n=0

Bn −
t−1∑
n=0

Sn

)
> 0

from which it follows that, as t → ∞,
(∑t

n=0 Bn − ∑t−1
n=0 Sn

)
→ ∞, that is, Qn

goes to ∞.

Discussion
We have seen that, with a given power constraint P, for a fading channel the
capacity Copt(P) (obtained by water filling over the channel states) can be viewed
as an average service rate. If the arrival rate of an open-loop traffic source (such as
voice or streaming video) is less than this average service rate then the link buffer is
stable. The service rate, Copt(P), increases with the power constraint P. It follows
that, for a given arrival rate a, there is a minimum power (Pa = inf{P : Copt(P) > a})
that is needed to ensure stability of the link buffers. However, if P is greater than
but very close to Pa then the delays will be large (see Figure 6.4). Hence, more

P

mean
delay

d

Pa Pa,maxP(d )

Figure 6.4 A sketch of mean delay in the queue vs. the average power P, for an arrival
rate a. Pa is the minimum power required to stabilize the queue, and Pa,max is the power
required so that the arrivals are completely served in the next frame. If the desired mean
delay is d, then an average power P (d ) is required.
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power than just Pa will be needed in order to achieve reasonable delays. In fact,
if it is required that all data are transmitted in the next frame after which they
arrive, the rate required in the n-th frame will be Sn = Bn, n ≥ 0. Then the power,
Pn, required in the n-th frame will be obtained by solving

Bn = κ ln
(

1 + HnPn

σ2

)

from which we see that

Pn = σ2

Hn

(
e

Bn
κ − 1

)
It follows that the average power required if all data need to be sent in the frame
after the one in which they arrive is given by

Pa,max := lim
n→∞

1
n

n−1∑
j=0

σ2

Hj

(
e

Bj
κ − 1

)
(6.15)

= E

(
σ2

H

(
e

B
κ − 1

))
(6.16)

where H and B denote random variables that have the ergodic distributions of the
fading process and the arrival process.

Exercise 6.6
Show that with Rayleigh fading, for which H is exponentially distributed,
we get Pa,max = ∞.

We notice that the solution to the optimization problem (6.6, 6.7) depended
only on the stationary probability distribution gj, hj ∈ H, and not on the corre-
lations, if any, in the power gain process Hk, k ≥ 0. Consider an Hk process
that takes two states h0 << h1, where h0 corresponds to a very poor channel.
Suppose that Hk is a Markov chain with transition probabilities p0, 0 and p1, 1.
Consider two cases (1) p0, 0 = 0.9 = p1, 1, and (2) p0, 0 = 0. 5 = p1, 1. In both cases,
the stationary probability distribution gives equal probabilities to the two states.
This then determines the value of Copt(P), and hence the stability condition. But,
in the first case the server spends an average of 10 frames in the “bad” state before
returning to the “good” state, where it then spends an average of 10 frames.
In the second case, the server spends an average of two frames in each state,
thus providing “smoother” service. Thus, for each P and gj, hj ∈ H, for which
a < Copt(P), the correlations in the Hk process determine the queue build up in
the buffer and hence the delays. It follows that, in Figure 6.4, although Pa and
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Pa,max depend only on the stationary distribution of the Hk process, the curve itself
depends on the correlations in the Hk process.

The question then arises that if we are given a finite power constraint P, with
Pa,max > P > Pa, how should this power be allocated to frames over time in order
to get the best possible delay performance. This is our next topic.

But before we address that topic it is opportune to point out that although
we have considered only mean delay as the performance objective, applications
such as interactive voice or streaming video would require delay or packet loss
bounds. Such requirements would be expressed as a stochastic QoS objective such
as Pr

(
Q > x

)
< ε, where Q is the stationary queue length random variable. For a

given arrival process of rate a, and a given fading process, it would be possible to
determine an average power Pa such that this stochastic QoS requirement is met.
Some approaches for carrying out such calculations are discussed in [89].

Delay Minimizing Power Control

For the queue evolution

Qn+1 = Qn − Sn + Bn+1

and given a power constraint, P, we wish to determine a sequence of power
allocations, Pn, n ≥ 0, so that the mean buffer delay is minimized in some sense
(to be elaborated later). We will assume that the number of bits transmitted,
Sn (≤ Qn), and the power required, Pn, are related by Shannon’s capacity formula,

Sn = κ ln
(

1 + HnPn

σ2

)

If Sn (≤ Qn) bits need to be transmitted in a frame in which the channel gain is Hn

then the power required in that frame is

Pn = σ2

Hn

(
e

Sn
κ − 1

)
We will also assume that the channel gain in each frame is known at the transmitter
at the beginning of the frame. Also, the sequence of arrivals, Bi, 0 ≤ i ≤ n, until
the beginning of Frame n + 1 is, of course, known to the transmitter. A control
policy, π, prescribes for each n, and each possible history up to the beginning of
Frame n + 1 (i.e., ((Q0, B0, H0, P0), (Q1, B1, H1, P1), . . . , (Qn, Bn, Hn))) the power
control Pn to be used during Frame n + 1. Thus, each control π produces
a controlled stochastic process ((Q0, B0, H0, P0), (Q1, B1, H1, P1), . . . , ). Let Eπ (·)
denote the expectations when the policy π is used.
Define5

Q̂(π) = lim sup
n→∞

1
n

Eπ

⎛
⎝n−1∑

k=0

Qk

⎞
⎠

5We use lim sup since, in general, a control policy need not guarantee the existence of the limit.
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and

P̂(π) = lim sup
n→∞

1
n

Eπ

⎛
⎝n−1∑

k=0

Pk

⎞
⎠

The problem is

min
{π:P̂(π)≤P}

Q̂(π) (6.17)

Proceeding in a manner similar to how we handled such problems before in this
chapter, let us define, with a power price β ≥ 0,

L(π, β) = lim sup
n→∞

1
n

Eπ

⎛
⎝n−1∑

k=0

(Qk + βPk)

⎞
⎠ (6.18)

and consider the minimization of L(π, β) over all policies π. We notice (from the
basic definition of lim sup; see Appendix B) that, for each policy π,

L(π, β) ≤ Q̂(π) + βP̂(π)

with equality if each lim sup in the right-hand side is actually a limit.
Suppose now that π∗ minimizes L(π, β), for a given β, and further L(π∗, β),

Q̂(π∗), and P̂(π∗) are achieved as limits, then the following calculation follows:

L(π∗, β) = Q̂(π∗) + βP̂(π∗)

≤ L(π, β) (by the optimality of π∗)

≤ Q̂(π) + βP̂(π)

Suppose further that P̂(π∗) = P, then using the inequality just derived

Q̂(π∗) ≤ Q̂(π) − β(P − P̂(π))

≤ Q̂(π)

whenever P̂(π) ≤ P. It follows that π∗ is optimal for the optimization problem
(6.17). Hence, this approach says that we should look for a policy π∗ that
minimizes the right-hand side of (6.18), and has the stated properties (i.e.,
L(π∗, β), Q̂(π∗), and P̂(π∗) are achieved as limits, and P̂(π∗) = P). When the arrival
process and the channel power gain process are Markov then this is an average
cost Markov decision problem. The solution of such problems is beyond the scope
of this text. But suppose the minimization of the function defined by (6.18) was
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Figure 6.5 A sketch of optimum mean delay and time average power vs. the “power
price” β for the problem of optimum dynamic control of the buffer subject to a power
constraint.

to be done, and suppose the optimal policy yielded the time average queue length
(or, equivalently the mean delay) and the time average power as limits. If the
optimum mean delay and time average power were to be plotted against β, we
would obtain the trade-off sketched in Figure 6.5. As the “power price” β increases,
power becomes more expensive, we use less of it, and mean delay increases. There
is a βmax beyond which there is insufficient power (less than Pa), and the buffer
is unstable. When β = 0, power is free, and there is zero delay, which requires
the power Pa,max. For a given P, the optimal policy is the one that is obtained
by finding the policy that minimizes the objective in (6.18) using β(P), which is
obtained as shown in Figure 6.5.

In the special case in which Bn and Hn are independent, and each is an i.i.d.
process, we can obtain some characterization of the structure of the optimal policy.
The form of the optimum policy is depicted in Figure 6.6. The decision in each
frame is based on the buffer state q, and the channel gain h at the beginning of
the frame. We see, as expected, that when the channel is good (1

h is small) and
the buffer is not very large, the entire contents of the buffer are served. Even for
a good channel, if the buffer is large not all of it is served. This happens because
the power required increases exponentially with the amount to be transmitted.
Because of the average power constraint, it is better to serve large amounts of data
in two or more transmissions rather than all at once. When the channel gain is
small ( 1

h is large), nothing is served until the buffer crosses a threshold (the upper
curve in the figure). Beyond this threshold some of the data are served. It can be
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Figure 6.6 The form of the optimum policy for the joint buffer and power control
problem.

shown that for any value of h the amount of data served increases monotonically
with the buffer occupancy s.

6.3 Multicarrier Resource Allocation: Downlink
6.3.1 Single MS Case
We consider first the situation in which all the channels are being used to transmit
data for a single MS. Recall the parallel channel model that we introduced in
Section 2.4.2. This could be in the uplink or in the downlink. We work with the
model in (2.25); for 1 ≤ j ≤ N (the carriers), and k ≥ 1 (the OFDM symbols),

Yj,k = Gj,kXj,k + Zj,k

where Zj,k are Gaussian random variables that are i.i.d. in j and in k, with variance
σ2. As before, define Hj,k = |Gj,k|2, the power gain on the j-th carrier during the
k-th OFDM block. There is a total average power constraint

lim
�→∞

1
�

�∑
k=1

N∑
j=1

|Xj,k|2 ≤ P (6.19)

meaning that the average power transmitted over all the carriers over time is no
more than P. We wish to maximize the total bit rate achieved by the MS, subject
to this power constraint.

Let us assume that Hj,k = hj, 1 ≤ j ≤ N, so that the power gain on each carrier
is constant over time. This might be a good approximation to use when the fading
is very slow compared to an OFDMA frame size. The problem is now to split
the power P over the N carriers. Let P = (P1, P2, . . . , PN) be the vector of powers
assigned to the carriers, such that

∑n
j=1 Pj ≤ P. The total capacity achievable with

this power allocation is
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C(P) = κ

N∑
j=1

ln
(

1 + hjPj

σ2

)
(6.20)

bits per frame. The optimal power splitting problem becomes

max
N∑

j=1

ln
(

1 + hjPj

σ2

)
(6.21)

subject to

N∑
j=1

Pj ≤ P

Pj ≥ 0 for every j, 1 ≤ j ≤ N (6.22)

It is easy to see that the approach for solving this problem, and the solution that
is obtained, are the same as for the optimization problem (6.6, 6.7). There is a
power price λ(P) defined by

N∑
j=1

(
1

λ(P)
− σ2

hj

)+
= P (6.23)

Then the optimal power allocation becomes Pλ(P), with

Pλ(P),j =
(

1

λ(P)
− σ2

hj

)+

This is of the “water pouring” form across the carriers (rather than over time, as
was the case in problems 6.6, 6.7). If we write Copt(P) as the optimal total capacity
over the carriers then, as before, it also follows that

∂Copt(P)

∂P
= λ(P) (6.24)

Suppose that now we include a time varying fading process, Hj,k, in the
model, this process taking values in the finite set H, as before. The stationary and
ergodic process Hj,k, k ≥ 1, has marginal probabilities gj(h), h ∈ H, 1 ≤ j ≤ N.
Let us take the approach of first splitting the average power P over the carriers,
and allocating power to each carrier over time, irrespective of the actions on
the other carriers. Let P = (P1, P2, . . . , PN), with

∑N
j=1 Pj ≤ P. If the power Pj

is utilized optimally on Carrier j, we have the optimization problem defined by
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(6.6, 6.7). Let the optimal rate on Carrier j, for the chosen power split be denoted
by Copt,j(Pj), 1 ≤ j ≤ N. The problem then becomes

max
N∑

j=1

Copt,j(Pj) (6.25)

subject to

N∑
j=1

Pj ≤ P, Pj ≥ 0, 1 ≤ j ≤ N (6.26)

Again, defining

L(P, λ) =
N∑

j=1

Copt,j(Pj) − λ

N∑
j=1

Pj

differentiating with respect to Pj, and setting these derivatives to 0, we obtain, for
j, 1 ≤ j ≤ N,

∂Copt,j(Pj)

∂Pj
= λ

Denoting the optimal power “price” for the problem on Carrier j by λj(Pj), and
using the result of Exercise 6.3, we see that, for each j, 1 ≤ j ≤ n,

λj(Pj) = λ

Thus the solution is to use the same power price on each carrier, and vary this
common price until all the power is utilized; this is depicted in Figure 6.7.

Discussion
a. At this point the following question can arise with respect to the previous

derivation. We have chosen to split the power across the carriers and then

�2/h �2/h �2/h �2/h

Carrier 1 Carrier 2 Carrier NCarrier j

�(P )

Figure 6.7 The structure of “water pouring” across carriers obtained for the problem
of serving a single MS by several fading carriers, under a total power constraint.
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use a carrier-by-carrier power control, that looks only at the state of each
carrier separately. Suppose that, instead, we use a power vector P(h) =
(P1(h), P2(h), . . . , PN(h)), where h is the joint state of the N carriers in the
next frame; the power Pj(h) is used in the next frame on Carrier j. Let
g(h) denote the joint distribution across carriers of the vector fading process
Hk = (H1,k, H2,k, . . . , HN,k) ∈ HN . Then, the time average rate provided to
the buffer becomes

∑
h∈HN

g(h)
N∑

j=1

κ ln
(

1 + hjPj(h)

σ2

)

with the power constraint

∑
h∈HN

g(h)
N∑

j=1

Pj(h) ≤ P

It turns out that the problem of maximizing the rate under this setup yields
the same power splitting solution that we have derived (see Problem 6.6).

b. The problem of dynamic power control so as to minimize the time average
queue length subject to a time average power constraint can also be
formulated in the multicarrier context. See Problem 6.5.

6.3.2 Multiple MSs
Let us now turn to the problem of resource allocation for multiple MSs in the
downlink of an OFDMA system. There are now m MSs, indexed 1 ≤ i ≤ M, and
N carriers, indexed 1 ≤ j ≤ N. Time is divided into OFDMA frames, with several
OFDM symbols in each frame. The MSs share the carriers in a TDMA fashion
over time. Since the channel to each MS can be different, the model between the
downlink OFDM transmitter and the i-th MS, over the j-th carrier becomes

Yi,j,k = Gi,j,kXj,k + Zi,j,k

This is the model for the signal received at the i-th MS on the j-th carrier, if
the symbol Xj,k is sent on the j-th carrier, in the k-th OFDM symbol. Suppose a
fraction αi,j of the OFDM blocks carry data for the i-th MS on the j-th carrier. For
simplicity, let us assume that the channel power gain for MS i on Carrier j (i.e.,
Hi,j,k), does not vary with k, and can thus be written as hi,j. Then it suffices to
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assume that the transmissions to the i-th MS on Carrier j are done at the constant
power Pi,j. Thus, we have, for each Carrier j, 1 ≤ j ≤ N,

M∑
i=1

αi,j = 1

and the power constraint becomes

N∑
j=1

M∑
i=1

αi,jPi,j ≤ P

The power constraint is of this form since the average power utilized for the i-th
MS on Carrier j is just αi,jPi,j. Subject to these constraints, suppose we wish to
maximize the total capacity of the system,

N∑
j=1

M∑
i=1

αi,j ln
(

1 + hi,jPi,j

σ2

)

To understand this expression, note that, on Carrier j, during times when MS i is
being served, this MS obtains the rate ln

(
1 + hi,jPi,j

σ2

)
. Thus, the sum over i yields

the total rate obtained by all the MSs over Carrier j. First, let us use Jensen’s
inequality to observe that

M∑
i=1

αi,j ln
(

1 + hi,jPi,j

σ2

)
≤ ln

(
1 +

M∑
i=1

αi,j
hi,jPi,j

σ2

)

≤ ln

(
1 + hij ,jPj

σ2

)

where ij := arg max1≤i≤M hi,j, and where we have defined Pj = ∑M
i=1 αi,jPi,j, the

average power utilized on Carrier j. Thus, to maximize the total capacity, the
approach should be to split the power P over the N carriers and then use all
the power allocated to each channel to serve the MS with the best power gain
on that channel. Then we may as well think of a single “MS” with power gains
hj = hij ,j, and allocate the power P so as to maximize this “MS’s” capacity. We
are back to the single MS problem discussed earlier in this section.

These arguments have yielded the best partition of the carriers over the MSs,
and the optimal power split over the carriers, so as to maximize the sum capacity.
Note that, at this point, this approach completely ignores the characteristics of
the actual applications that the MSs wish to carry. For example, if a particular
MS has poor channel conditions, but has delay sensitive data to be delivered, then
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we may wish break this optimal rule and serve this MS. Also, in the context of
elastic traffic we will wish to impose some sort of a fairness requirement when
formulating the earlier resource allocation problems. Recent literature on such
topics has been listed in the “Notes on the Literature” section.

6.4 WiMAX:The IEEE 802.16 Broadband Wireless
Access Standard

OFDMA has been adopted by the IEEE 802.16 series of standards for broad-
band wireless access. The much talked about WiMAX system, which is being
commercially deployed in several countries, is a subset of the IEEE 802.16
standard. This system provides broadband wireless access to fixed stations. On
the other hand, Mobile WiMAX is a subset of the IEEE 802.16e standard that
is designed to support broadband access for mobile stations. Mobile WiMAX
systems can occupy system bandwidths (i.e., W) from 1.25 MHz to 20 MHz,
in the 2.3 GHz, 2.5 GHz, 3.3 GHz, and 3.5 GHz bands. In the initial releases of
WiMAX, the downlink traffic and uplink traffic will share the same bandwidth
in a time-division-duplex (TDD) fashion. In Figure 6.8 we provide a rough sketch
of the WiMAX frame structure in the TDD mode. As an example, one of the
WiMAX profiles is W = 5 MHz, number of carriers N = 512, number of symbols
per frame K = 48 symbols, with a frame time of 5 ms. Various modulation and
coding schemes (such as QPSK, 16QAM, and 64QAM, along with various rate
convolutional codes) are available for putting the MSs’ bits onto the OFDM
symbols.

Note that our discussions earlier in this chapter can easily be adapted to
model the fact that a part of the channel time is used for the downlink and
the remaining time is used for the uplink. As discussed earlier in this chapter,
the scheduling decisions for each frame rely on channel power gain estimates.
These are provided by means of the mobile stations making measurements on
downlink pilots and then feeding the measurements back in the channel state
feedback overhead channel in the uplink part of the frame (see Figure 6.8). The
scheduling decisions in each frame are made known to the MSs in the “MAP”
overhead part of the downlink part of the frame.

6.5 Notes on the Literature
The antecedents of the present wireless OFDM systems lie in the so-called
multicarrier modulation schemes that were developed for digital communication
over telephone channels; see Kalet [65] and Bingham [13] where some history of
this technique also is provided. In our discussions we have focused on multiple
access packet communication over FDMA-TDMA systems. The single user case
that we began with is essentially the same as reported in the seminal work
of Goldsmith and Varaiya [44]. In this paper, the authors have derived the
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Figure 6.8 A rough sketch of the WiMAX system’sTDD frame structure. A guard time
is allowed for turn around of the link direction.

ergodic capacity of the fading channel with complete channel information at
the transmitter and the corresponding water-pouring-in-time form of the power
control, and have proved the related channel coding theorem. The optimal power
control problem for a single-user, single-carrier buffered system and the related
power-delay trade-off were studied by Berry and Gallager [9]. The approach that
we have presented and the form of the optimal control for i.i.d. fading and arrivals
were obtained by Goyal et al. [45]. For the multiuser and multicarrier case, we
have discussed only some simple problem formulations. Resource allocation in
OFDMA-TDMA cellular networks remains an active area of research. Some recent
results are reported in the following sampling of articles: Agrawal et al. [2], Huang
et al. [59], Kittipiyakul and Javidi [76] (where the authors study optimal downlink
scheduling for multiple users, based on queue occupancies), Ergen et al. [31], and
Yoon et al. [140], [141].
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Problems
6.1 For the single-user, single-carrier problem, described in the text, consider

the problem

min
∑

hj∈H
Pj gj

subject to

∑
hj∈H

γ ln
(

1 + hjPj

σ2

)
gj ≥ a

where a > 0.

a. Characterize the optimal solution of this problem.

b. Let the optimum value of this problem be denoted by P̃a. Show
that P̃a = Pa (defined in the text).

6.2 Consider the optimal power control problem over a single carrier (in
the OFDMA context) and recall the notation Copt(P) for the optimal
capacity with power constraint P. Show that Copt(P) has the following
properties: (1) Copt(0) = 0, (2) Copt(P) is monotonically increasing with P,
(3) Copt(P) is concave in P.

6.3 Consider the problem of m users sharing n OFDMA carriers in the
downlink. Given a particular (C1, C2, . . . , Cm) of the set of carriers C =
{1, 2, . . . , n}, and total power constraint P, characterize the solution of the
problem of weighted sum throughput maximization subject to a power
constraint:

max
m∑

i=1

wi Copt(Pi)

subject to
m∑

i=1

Pi ≤ P

where P = (P1, P2, . . . Pm) is the power allocation to user i.

6.4 Repeat Problem 6.3 for sum log rate maximization subject to a power
constraint.

6.5 Formulate the delay minimizing dynamic power control problem for the
case of one user being served by n block fading carriers.
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6.6 Consider the power constrained sum rate optimizing power allocation
problem for a single user and n OFDMA carriers. The carriers have a joint
block fading process {Hk, k ≥ 0} taking values in Hn (where H is a finite
set of channel power gain values) with joint probabilities g(h), h ∈ Hn.
Show that optimizing over joint power allocations across the carriers is
equivalent to first splitting the power across the carriers and then optimal
water pouring over time on each carrier.



CHAPTER 7

Random Access and Wireless LANs

I n Chapter 4 we considered stream traffic over circuit multiplexed cellular
networks. A centrally coordinated mechanism for sharing the channels
provides capacity on demand to a call. The call is blocked if the requisite

resource is not available. In Chapter 5 we first considered allocating resources
to stream traffic to satisfy in-call QoS requirements like BER. Here, an arriving
call is blocked if the in-call QoS cannot be met. We also considered resource
allocation for packet multiplexed elastic traffic. In Chapter 6 we considered packet
multiplexing with a centralized resource allocation of the OFDMA system. The
carrier and timeslots for packet transmissions are the resources and, if a packet
cannot be transmitted on arrival, it is queued and not dropped or blocked. In
this chapter, we continue to consider packet multiplexed wireless networks with
queueing of packets, but with distributed resource sharing mechanisms. Several
nodes share a wireless medium with possibly no central coordination. We will
discuss distributed multiplexing using random access techniques.

Overview
We consider networks in which all the nodes use the same part of the spectrum.
Our interest is in the use of random access based medium access control (MAC)
protocols for distributed access control. Such networks originated in the Aloha
experiments in the early 1970s. Transport of “bursty” packetized data was the
primary objective of these networks. After discussing basic issues and some
terminologies in Section 7.1, the Aloha MAC protocol is described and analyzed
in Section 7.2. The analysis is based on elementary probability theory and Markov
chains. Some current applications of the Aloha protocol (e.g., signaling and control
channels in cellular networks and in VSAT networks) will also be described.
In Section 7.3 we consider MAC protocols for wireless local area networks
(WLANs). We describe the hidden and exposed nodes in multihop WLANs and
the handshake mechanism for collision avoidance. We then describe the popular
carrier sense multiple access with collision avoidance (CSMA/CA) protocol of the
IEEE 802.11 WLAN MAC standard. A brief overview of the ETSI HIPERLAN
is also provided. In Section 7.4 we develop a simplified version of a popular
saturation throughput analysis of the IEEE 802.11 MAC protocol. Here saturation
implies that all the nodes always have a packet to transmit. This analysis will
use the renewal reward theorem and a fixed point theorem. In Section 7.6,
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service differentiation mechanisms in IEEE 802.11 networks are described and
an overview of the extension of the fixed point analysis of Section 7.4 is also
provided. The performance of TCP-based data and voice traffic over WLANs is
discussed in Section 7.6. Optimal association of an 802.11 node to an access point
is discussed in Section 7.7.

7.1 Preliminaries
We consider two aspects of the channel usage model and then describe some
commonly used terms.

Recall from Chapter 2 that a minimum SINR of, say, θ is required by a
receiver to decode a packet that is being received. Like in CDMA networks,
in WLANs also all nodes use the entire allocated spectrum when they are
transmitting. However, it is difficult to work with the general approach of
calculating the SINRs as in Chapter 5 and we use the following simplified model
of channel usage. Whenever two or more transmissions in the same frequency
band and of sufficient strength arrive simultaneously at a receiver, neither can be
detected; this event is called a collision. A collision can occur even after a receiver
has successfully decoded a part of a transmission. This can happen if the receiver
is “hit” by one or more interfering signals from other nodes in the network. In
practice, it can happen that if a receiver is simultaneously receiving signals from
one or more transmitters, one of them is strong enough for the resulting SINR to
be above the threshold. If this happens, we say that a capture has occurred. See
Problem 2.2 for an illustration of capture. The throughput and capacity results
obtained by not accounting for capture essentially provide a lower bound on what
is achievable.

Another aspect of the channel usage model is the following. Around a
receiver, we define an interference region (also called the carrier sense region) and
a subset of it called the decode region. Consider a transmitter and its receiver in
the network. If the transmitter is in the interference region of the receiver, the
received power at the receiver is significant and causes a collision at the receiver if
another transmission is being received at the same time. If the transmitter is also
in the decode region, then the SNR at the receiver is greater than the prescribed
threshold, say θ, and the receiver can decode the transmission. The received power
from transmitters outside of the interference region is assumed insignificant. The
interference and decode regions for a receiver at A are shown in Figure 7.1.
The solid line is the boundary of the decode region and the dashed line is that
of the interference region. When no other node is transmitting, A can decode
transmissions from B (or C). Transmissions from D or E (or both) when receiving
from B (or C) can cause a collision at A. However, the transmissions from D and E
cannot be decoded at A. Transmissions from G or H do not cause a collision at A.

In general, the decode and interference regions depend on the locations
of the other nodes that are transmitting. In this description we have ignored
this dependency. We can also define the interference and decode regions for a
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Figure 7.1 Decode and interference regions for a receiver at A. These regions depend
on the topography around the transmitter and the receiver and may not have any regular
shape.

transmitter. In general, the interference regions for transmission and reception
may not be equal because the topography around the transmitter and the receiver
may not be the same. Likewise for decode regions.

In single hop networks, every node is within the decode region of every other
node; that is, all nodes are one hop away from each other. Such networks are also
called broadcast networks because a transmission from a node can be decoded by
every other node in the network. They are also known as colocated networks. In
this chapter we will consider only single hop networks.

The channel is also called the medium and a medium access control (MAC)
protocol regulates use of the medium by prescribing the rules to initiate a
transmission and continue with it. In random access networks, collisions may
occur and the MAC protocol has to resolve collisions; it has to arbitrate among
the nodes contending to use the medium. The arbitration is a distributed algorithm
that typically prescribes forced silences on the nodes. Thus some amount of
transmission time is lost to collisions and arbitration. The fraction of time so
lost is a measure of the efficiency of the protocol. Simple protocols, even if of
low efficiency, are useful if the per node throughput that the protocol obtains is
significant compared to the throughput required by the nodes in the network.
In this chapter we will study two key wireless MAC protocols—Aloha and
CSMA/CA.

7.2 Random Access: From Aloha to CSMA
Random access protocols can be motivated by the following simple example.
Consider a 100-node multiple access network using a 10 Mbps channel. Each
node requires an average throughput of 1 Kbps, but in bursts. As an example, a
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node may have to transmit 1000-bit packets, on an average once every second.
In a TDM scheme, each node would be statically allocated every 100-th slot. If
each slot corresponds to a packet transmission time, the waiting time before the
packet transmission is completed could be as high as 10.1 ms and the expected
delay would be 5.1 ms. This is assuming that the queue is empty when this packet
arrives at the node. In a polling scheme, there would be polling overheads and a
corresponding delay. In a random access scheme, the transmission would be at
10 Mbps and the transmission time is just 100 μs. Also since the offered load to
the network is low (1% of the maximum possible throughput), the access delay,
the delay between the packet being ready and the beginning of transmission, will
also be low.

An additional issue in TDM and polling schemes is that the exact number
of nodes in the network needs to be known. In most wireless networks, at any
time, this is typically a random number. Thus, in such networks, random access
is possibly the only option. And, as we have seen in the simple example earlier, it
is not a bad option.

In this section we analyze the simplest of the random access protocols—Aloha
and slotted Aloha. We will also briefly discuss the carrier sensing CSMA protocol
as a precursor to the discussion of CSMA/CA in the next section.

7.2.1 Protocols without Carrier Sensing: Aloha and
Slotted Aloha

The Aloha, also called the pure Aloha, is the earliest random access MAC protocol.
The idea is as simple as it can be: If a node has a packet to transmit, it just transmits!
To see why this is not such a bad idea, consider the example of a satellite network
in which every node transmits to a satellite, which then reflects the transmission
back for every node to receive it. Let the data rate on the network be 1 Mbps
and the packets be 1000 bits long so that the packet transmission time is 1 ms.
Now consider the propagation delay in the network. Every packet has to travel
approximately 75,000 Kms to reach the receivers resulting in a propagation delay
of approximately 250 ms. Thus, what a node that wants to transmit is hearing on
the channel at time t is actually a transmission from (t−250) ms. Hence, there is no
use deferring to a carrier and it is best just to transmit the packet and hope that no
other node is transmitting at the same time. Of course, if there indeed was another
transmission at the same time, there would be a collision and neither packet can
be decoded correctly by the corresponding receivers. The nodes will have to use
additional mechanisms to determine if the packet was successfully received. If the
packet is not correctly received, the packets will have to be retransmitted using
a suitable retransmission algorithm. Figure 7.2 shows a space-time diagram of a
transmission and reception in a network with large propagation delays and the
futility of deferring to a carrier.

We now analyze the performance of the Aloha protocol. To keep the analysis
simple, we consider the following simple model. We will assume fixed length
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Figure 7.2 Space-time schematic of a transmission and reception in Aloha. Nodes are
arranged on a line. Node a is transmitting during [t1, t2], which is being received by
Node b during [r1, r2], after a delay of η. If Node b is not the receiver, it need not defer
transmission during [r1,r2] and cannot defer when Node a is transmitting (during [t1,t2])
because it does not know that a is transmitting at that time.

packets and time will be measured in terms of the packet transmission time; the
packet transmission times are of unit duration. The nodes are located along a
straight line of length η. We will measure distances in terms of the propagation
delay; the signal travels a unit length in unit time. Thus the maximum propagation
delay in the network is also η.

The packet transmission attempts in the network are assumed to form a
Poisson process of rate G attempts per second. The location of the transmitting
node is chosen uniformly in [0, η] and independently of the other transmissions.
Thus, each packet transmission attempt is characterized by an ordered pair (t, y),
where t ≥ 0 is the time at which the transmission started, and 0 ≤ y ≤ η is the
location of the transmitting node. A sample realization of this space-time attempt
process in the region ([0, ∞) × [0, η]) is shown in Figure 7.3. Now consider two
nonoverlapping areas in this region, say A and B in Figure 7.3. It is easy to see
that the number of attempts in A and B are independent. Further, the number of
attempts in A has a Poisson distribution with mean

(
(G/η) × (

Area of A
))

. Thus
the space-time attempt process in the region ([0, ∞) × [0, η]) is a two-dimensional
Poisson point process of rate G

η
attempts per meter-second.

This model means that there is an infinite number of nodes in the network
and that at any instant, each node has at most one packet to transmit. This is a
good model for a network with a large number of nodes and a low packet arrival
rate per node.

Consider a node at location T transmitting a packet to a node at location R.
For this transmission, we can define a collision window in time at each location
in [0, η]. If a transmission is begun at that location in the collision window, then it
will arrive at R when it is receiving the packet from T, thus causing a collision. The
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Figure 7.3 A sample realization of packet attempt instants in space and time. The
points indicate the times and locations of packet arrivals; for example, a node at
location y attempted a packet at time t.

union of the collision window at all points in the network gives us a collision cone.
Any transmission attempt in this collision cone will cause a collision at the intended
receiver, R in the example. See Figure 7.4 for an illustration. A transmission is
begun at space-time point A (corresponding to the transmitter at T) whose receiver
is at space-time point a (corresponding to receiver R). Transmissions initiated in
the interval (b, c) at η and in the interval (f , e) at 0 will cause a collision at a. Note
that these intervals are of length 2 time units. The space-time area covered by the
collision cone is clearly 2η.

Since G
η

is the space-time arrival rate, multiplying it by 2η gives the mean of
the Poisson distribution of the number of arrivals in the collision cone. Thus, the
probability that a reception is successful, Ps, is given by

Ps = Pr
(
No transmission attempt in collision cone

) = e−( G
η

×2η) = e−2G

Defining the throughput, S, as the mean number of successful attempts per
unit time, we get S = GPs = Ge−2G. The maximum value of S is achieved for
G = 0.5 and Smax = 1/(2e) ≈ 0.18.

Exercise 7.1
To simplify the analysis of random access protocols it is sometimes assumed
that all nodes are at the same distance from one another. In this case, we
do not need the space-time model just described. An example of a network
where this is valid is a satellite network. Show that the maximum throughput
is still 1

2e under this simplifying assumption.

There is a simple way to make pure Aloha more efficient. Instead of allowing a
node to begin transmission at any time, let time be slotted and the nodes be allowed
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Figure 7.4 Space-time diagram showing a packet transmission and its collision cone
in Aloha. A packet of unit duration starts transmission at space-time point A and
propagates along ABCFDEA. For successful reception at space-time point a then no
other transmission should be initiated in the “collision cone” bcdefgb. This collision
cone has area 2η, line segment ga has unit length, and the horizontal distance from
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Figure 7.5 Time slotting in slotted Aloha. In slot 1, there are two transmissions, from a
and b, and they collide everywhere. In slot 2 the one transmission from c is successfully
received everywhere.There is no transmission in slot 3.

to begin transmission only at the beginning of a slot. The slot length is made equal
to the sum of the packet transmission time (unity) and the maximum propagation
delay in the network. This is the slotted Aloha (S-Aloha) MAC protocol and it has
found wide applications in practice.

As before, assume that nodes are arranged on a line of length η. Nodes
begin transmission only at slot boundaries and the transmission and reception of
a packet is completed in one slot. Packets that arrive in a slot are transmitted at
the beginning of the next slot. Thus, for a collision at a receiver, a second packet
should begin transmission in the same slot; that is, another packet should have
arrived in the previous slot. This means that the collision cone is now a rectangle
of sides (1 + η) and η. Figure 7.5 illustrates this.

Let us now analyze this slotted Aloha protocol. Assume as before that
transmission attempts arrive according to a Poisson process of rate G and the
source node is uniformly distributed in [0, η]. The Poisson rate of packet arrivals
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that can cause a collision is thus the expected number of Poisson arrivals in a
slot, G(1 + η). The probability that a transmission is successfully received is Ps =
e−G(1+η). We can obtain the throughput as before and it is S = GPs = Ge−G(1+η).
The maximum achievable throughput, Smax, is Smax = 1/(e(1 + η)).

The slot length was made equal to (1 + η), rather than 1, to absorb the
variations in the propagation delays between the nodes. This is not always
necessary. In fact it is rarely necessary. In a satellite network the propagation
delays between any pair of nodes is very nearly the same, approximately 250 ms,
and we can use a slot length of one unit. In terrestrial networks, like in the cellular
and the cable networks, the nodes usually transmit to a central node. The nodes
use ranging to determine the propagation delay to the central node and advance
or delay their transmission times to approximate a time slotted link and absorb
the differences in the propagation delays.

Example Applications of Slotted Aloha

An example use of the slotted Aloha protocol is in the GSM cellular networks
that we discussed in Chapter 4 in Section 4.7. Recall from Chapter 4 that in
the GSM network the TDM channels are either traffic channels carrying voice or
are control channels carrying control and signaling information to or from the
mobile stations. A control channel on the reverse link from the mobile node to
the base station, called the Random Access Channel (RACH), is used by the GSM
mobile stations to send messages to the network. The types of messages include
those to initiate new calls, register locations of the mobile stations, and reply
to paging queries. The messages are small and are generated at a very low rate
compared to the capacity of the RACH channel. The number of mobile nodes in a
cell is not fixed and also quite large and signaling bandwidth cannot be allocated
statically to these nodes. Hence, slotted Aloha is used on this channel. After trans-
mitting on the RACH using the slotted Aloha protocol, the mobile station waits for
a fixed duration to know if the transmission was successful. If an acknowledgment
is not received before this duration, a retransmission is attempted.

Another application of slotted Aloha is in very small aperture terminal
(VSAT) networks. A VSAT network is a satellite network in which there are several
geographically widespread, small terminals. Figure 7.6 illustrates such a network.
These terminals are attached to individual computers or to the local area networks
of small organizations through the digital interface unit (DIU). The terminals share
a satellite link to a large hub. The nodes can communicate only with the hub and
all internode communications are over two hops via the hub. Hence the inbound
channel from the terminals to the hub needs to be shared. The terminals request
for reservations of time on the inbound channel. When a remote node wants to
transmit, it first requests for a reservation on the slots in the inbound channel to
the hub. This reservation request is made using the slotted Aloha protocol on the
uplink from the remote station to the hub. This reservation scheme can be very
efficient if the bandwidth allocated for the reservation requests is small and the
amount of reserved bandwidth is large.
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Figure 7.6 A VSAT satellite network. Data packets from A are first sent to the Hub,
which then transmits them to B. A first requests slots to be reserved on the “inbound
channel” to the hub using S-Aloha.

Slotted Aloha is also used in wireline networks. The DOCSIS (Data Over
Cable Service Interface Specifications) standard for digital data transmission
over cable TV networks is similar to the VSAT network. All communication is
controlled by the head-end of the cable TV network. Separate parts of the spectrum
over the cable are reserved for upstream (node to head-end) and downstream
(head-end to node) traffic and the control of the channels in both directions is
with the head-end. The upstream spectrum, in which the nodes transmit data to
the head-end, is available only by reservation and is obtained as follows. This
spectrum is divided into contention slots, in which the nodes request bandwidth
on the upstream channel, and transmission slots, during which the nodes transmit
actual data. A node with data to transmit requests the head-end to reserve some
of the upstream transmission slots for it. The requests are made using a slotted
Aloha protocol.

Instability of Aloha

In the discussion on the throughput of Aloha and S-Aloha, we had implicitly
assumed that packets involved in collisions are lost. We now analyze the S-Aloha
protocol under the more realistic assumption that a packet that has suffered
a collision stays in the network and makes retransmission attempts until it is
successful. The number of such packets is called the backlog.

Let Ak be the number of new packet arrivals into the network and Dk ∈ {0, 1}
the number of successful transmissions (departures from the network) in slot k.
We assume that all fresh arrivals during a slot will attempt a transmission at the
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beginning of the next slot. Let Bk denote the backlog at the beginning of slot k. It
is easy to see that Bk evolves as

Bk+1 = Bk + Ak − Dk

We assume that new packet arrivals form a Poisson process of rate λ independent
of everything else in the network. Ak will then be i.i.d. Poisson random variables.
We also assume that the backlogged nodes attempt retransmission independently
in each slot with probability r. Under these assumptions, {Bk} is a discrete time
Markov chain. Our interest is in the stability of this Markov chain.

For stability analysis of {Bk}, consider d(n) defined by

d(n) := E
(
Bk+1 − Bk|Bk = n

) = E((Ak − Dk)|Bk = n)

d(n) is the expected change in the backlog in one slot when the backlog is n
and is called the drift from state n. If the number of new arrivals is more than
one, the backlog increases by that amount because all of them will transmit in
the slot causing a collision irrespective of the backlogged packets attempting a
transmission. The backlog increases by one if there is exactly one arrival in the slot
and at least one of the backlogs attempts a retransmission causing a collision. The
backlog decreases by one if no new arrivals occur and only one of the backlogged
nodes attempts a transmission in the slot resulting in a successful transmission.
For other combinations of retransmission attempts and new arrivals, the backlog
does not change. Thus we can write

Pr(Ak − Dk = +m|Bk = n) = λm

m!
e−λ for m ≥ 2

Pr(Ak − Dk = +1|Bk = n) = λe−λ
(
1 − (1 − r)n)

Pr(Ak − Dk = −1|Bk = n) = e−λnr(1 − r)n−1

Using this and simplifying, we get

d(n) =
(
−e−λnr(1 − r)n−1

)
+ (

λe−λ
(
1 − (1 − r)n)) +

( ∞∑
m=2

m
λm

m!
e−λ

)

=
∞∑

m=0

m
λm

m!
e−λ − λe−λ(1 − r)n − e−λnr(1 − r)n−1

= λ − e−λ(1 − r)n
(

λ + nr
1 − r

)

For any λ, r > 0, for large n, the second term becomes very small and d(n) will be
positive; we can find an n∗

λ,r such that d(n) > 0 for all n > n∗(λ, r). Since at most
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one packet can depart from the system in each slot, we can apply Theorem D.4 to
conclude that the Markov chain {Bk} is not positive recurrent for any λ, r > 0. What
this means is that when the backlog becomes large, the network has a tendency to
increase the backlog rather than decrease it. This in turn implies that the S-Aloha
protocol can eventually develop a large backlog that will never be cleared.

The assumption of an infinite number of nodes is for analytical convenience.
It is also a worst-case analysis because with finite nodes, packets from the same
node do not compete with one another and in that case the performance can only
improve. However, it can be shown that even when the number of nodes in the
network is finite, the behavior is qualitatively similar to the infinite node case. In
this case, if the backlog becomes large, the network has a tendency to operate with
a large backlog for very long times.

Stabilizing Aloha

An obvious issue now is to design mechanisms to make the network stable for
some λ > 0 so that the network can support new packet arrivals at that rate. This
is done by making the retransmission probabilities adaptive. To see how this can
be done, assume that all the nodes know the size of the backlog at the beginning
of every slot and also the stationary packet arrival rate. A packet is successfully
transmitted in a slot if either of the two conditions is satisfied: (1) Exactly one
new packet arrives and none of the backlogs attempts a retransmission or (2) no
new packet arrives and exactly one of the backlogs attempts a retransmission.
Thus, the probability of a successful transmission when the backlog is n, Ps(n), is
given by

Ps(n) = λe−λ(1 − r)n + e−λnr (1 − r)n−1 (7.1)

The retransmission probability that will maximize Ps(n), say r(n), is obtained by
differentiating the RHS of (7.1) with respect to r, equating it to 0 and solving for
r. We obtain r(n) to be

r(n) = 1 − λ

n − λ
(7.2)

With adaptive retransmission probability using r(n) obtained in (7.2), the drift will
become

d(n) = λ − e−λ

(
n − 1
n − λ

)n−1

Note that now d(n) → λ − e−1 as n → ∞. Hence, using Theorem D.3 with
f (i) = i, we conclude that for λ< 1

e , the Markov chain {Bk} is positive recurrent; the
S-Aloha network with adaptive retransmission of (7.2) is stable for packet arrival
rates less than 1

e .
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It is not practical for the nodes to know Bk, and a node should learn the
network state from the events that it can observe. Let Zk be the event observed in
slot k. Zk takes the following values:

Zk =

⎧⎪⎨
⎪⎩

0 idle slot; no transmission is attempted

1 successful transmission; exactly one transmission is attempted

e error (collision); more than one transmission is attempted

To learn the state, a learning variable, Sk, is used. Sk is updated based on Zk.
A node transmits with probability 1

Sk
in slot k if it has either a fresh packet or a

backlogged packet.
Typically, two kinds of updates are used. Sk could be updated by an additive

constant depending on the event in slot k as follows:

Sk+1 = max{1, Sk + aI{Zk=0)} + bI{Zk=1} + cI{Zk=e}}

Here a, b, and c are fixed constants. a = −1, b = 0, and c = 1 is a common choice
for these constants. An idle slot indicates a possible overestimate of the backlog
and Sk is decremented in this case. Similarly, a collision in a slot indicates a possible
underestimate and Sk is incremented in this case. An alternative adaptation is to
update Sk multiplicatively. For example, we could have constants a(Zk) and adapt
Sk as follows:

Sk+1 = max{1, a(Zk) · Sk}
It has been shown that there exist a(Zk) that achieve the maximum possible
throughput of 1

e .
Using the feedback from the network—adapting the retransmission times

based on Zk—requires that all nodes be active all the time. The Zk observed
by all of them should also be the same for all k. This is clearly a very strong
requirement and avoidable. To make the protocol more robust, in many random
access protocol standards, a node uses its own transmission attempt history to
adapt the retransmission times. Usually, the history is reset after every successful
transmission. A node will make the m-th transmission attempt after a backoff
period of xm units of time. Here xm is a uniformly distributed random integer in
the interval [0, Bm − 1]. Bm is updated by the node at every event (collision or a
success). A typical update equation has the form

Bm =
{

min(a × Bm−1, Bmax) if (m − 1)-th transmission collides
max(Bm−1 − b, Bmin) if (m − 1)-th transmission is successful

(7.3)

where a, b, Bmin, and Bmax are predefined.
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MaximumThroughput in S-Aloha

In this discussion, S-Aloha was stabilized to provide a maximum throughput of
1
e . Clearly this maximum throughput is a bit too low and leads to the natural
question, how much more throughput can be achieved? Toward answering that
question, observe that the randomized retransmission strategy is a mechanism to
resolve collisions; that is, to assign transmission times to the nodes when there
are multiple contenders for the multiaccess channel. The key to improving the
throughput is to resolve collisions quickly. A large number of collision resolution
algorithms have been proposed, their stability proved, and the corresponding
maximum throughput calculated. An algorithm that leads to the best known stable
throughput is described next.

The basic idea of this collision resolution algorithm is to define a time interval,
Ik := (Tk, Tk + αk) for slot k, and prescribe that all the packets that have arrived
during this enabled interval transmit in the slot. Here Tk is the left boundary of
the enabled interval and αk is its length. If slot k has a successful transmission or
is idle, then it implies that all the arrivals in Ik have been transmitted successfully
by the end of the slot k. If there is a collision in the slot, then there are more than
one arrivals in Ik and the enabled interval for slot (k + 1) will be half of Ik. The
left half of Ik is chosen for slot (k+1), so, if there is a collision in slot k, arrivals in
(Tk, Tk + αk/2) are enabled to transmit in slot (k + 1). After resolving the left half,
the right half of the interval is resolved. A variable called σ keeps track of the half
that is being resolved. Some optimizations are possible. The following is a formal
description of the algorithm.

For each time slot k, we define the following three parameters: Tk is the
left boundary of the interval, αk is the duration of the interval, and σk is used to
indicate the part of the starting enabled interval (left or right) that needs to be
resolved. These parameters are updated as follows.

If Zk−1 = e then Tk = Tk−1 αk = αk−1
2 σk = L

If Zk−1 = 1 & σk−1 = L then Tk = Tk−1 + αk−1 αk = αk−1 σk = R

If Zk−1 = 0 & σk−1 = L then Tk = Tk−1 + αk−1 αk = αk−1
2 σk = L

If Zk−1 = 0/1 & σk−1 = R then Tk = Tk−1 + αk−1 αk = min(α0, k − Tk) σk = L

(7.4)

Observe that the enabled intervals in successive slots are such that the packets are
made to depart in the order in which they arrived. Hence this is also called the
first-come-first-served (FCFS) collision resolution algorithm. A numerical example
is considered in Problem 7.5. By appropriately choosing α0 and with minor
modifications to the basic idea of (7.4), a maximum throughput of 0.487760 is
known to be achievable.

7.2.2 Carrier Sensing Protocols
In networks in which the propagation delay is small compared to the packet
transmission time, it is possible to infer channel state (busy or idle) through carrier
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(a) A collision and a successful transmission in a CSMA network.
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Figure 7.7 Collisions in CSMA and CSMA/CD networks. A starts transmission at t1 and
B at t2.The transmission from A reaches B at t3 and that from B reaches A at t4. Node
A stops transmitting at t5 and B stops at t6. Collision ends when there is no carrier on
the network. During a collision in a CSMA network, t5 = t1 + 1 and t6 = t2 + 1 while in
CSMA/CD t5 = t4 and t6 = t3.

sensing and thereby obtain a random access protocol that is more efficient than
the pure random access strategy of Aloha. In such networks, if a node senses the
channel to be busy and yet transmits, it can cause a collision at the receiver of the
ongoing transmission. Further, it is likely that the ongoing transmission is being
heard at the receiver of the new transmission and a collision will occur there as
well. Thus both transmissions are lost. Hence, a node should listen to the channel
before beginning to transmit and defer to an ongoing transmission. This is the
principle of the carrier sense multiple access (CSMA) protocol. In this protocol,
once a node begins transmitting, it transmits the complete packet.

The collision window for the CSMA is as follows. It is the time since
the beginning of a transmission during which another node (not having heard
the ongoing transmission) can begin its own transmission, and hence collide
with the first transmission. The maximum collision window is equal to the
maximum propagation delay in the network. This is because, after this interval,
the carrier would have reached every node in the network and all nodes will defer
a transmission attempt until the end of the packet transmission that is in progress.
Two or more nodes can begin transmission within a short time of each other (less
than the collision window) and collide. In this case, all the colliding transmissions
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will be lost. Note that during a collision in CSMA, the entire packet is transmitted
by all the colliding nodes. The duration of a collision in the network is the time
from the beginning of the first transmission in the collision until the earliest time
at which a fresh transmission can begin. Clearly, the maximum duration of a
collision will be

(
ttrans + 2tpropgn

)
, where ttrans is the packet transmission time

and tpropgn is the maximum propagation delay. Figure 7.7(a) shows a time-space
representation of a collision and a successful transmission.

A further improvement over CSMA is possible by the node continuing to
monitor the channel after beginning transmission. If it senses a collision on the
channel, then the node can immediately stop transmission and minimize the loss
of channel capacity. This is called CSMA with collision detect or CSMA/CD. The
maximum collision duration in the network is reduced to 3tpropgn, which is also
the maximum collision duration seen at a node. Figure 7.7(b) illustrates this. The
CSMA/CD protocol is used in the popular Ethernet local area network.

7.3 CSMA/CA and WLAN Protocols
Recall from our discussions in Chapters 2, 4, and 5 that in wireless networks,
spatial reuse allows the spectrum to be simultaneously used in different parts of
the network and significantly increases the traffic carrying capacity. Spatial reuse
requires that the interference region of the transmitters be much smaller than
the geographical spread of the network. This allows different transmitter-receiver
pairs to be active in geographically different parts of the network. We will see
that using a carrier sensing protocol in such networks can be inefficient because
of hidden and exposed nodes. Further, in wireless networks, the received signal
energies are very low compared to the transmitted signal energy, and it is very
difficult to design reliable collision detection hardware. Hence in wireless LANs,
the emphasis is on avoiding collisions, rather than detecting them. In this section,
we first discuss the development of the collision avoidance mechanisms and then
describe a carrier sense multiple access with collision avoidance (CSMA/CA)
protocol.

Our goal in this book has been to primarily discuss wireless networking
independent of technology. However, certain technologies are so widely accepted
and deployed that it is imperative to understand their detailed mechanisms,
performance, and other related issues. Such is the case with the CSMA/CA based
wireless LAN technologies standardized by IEEE under the IEEE 802.11 series of
standards, and by ETSI as the HIPERLAN 1 and HIPERLAN 2 standards. Here,
we will limit ourselves to a detailed description of the IEEE 802.11 standard, by
far the most widely used and ubiquitous of WLANs. We will also provide a short
overview of the HIPERLAN protocol.

7.3.1 Principles of Collision Avoidance
Consider the arrangement of nodes shown in Figure 7.8. A and B are the
interference regions of transmitters a and b, respectively, and X is the intersection
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Figure 7.8 Hidden and exposed nodes in a wireless network. Propagation delays are
assumed to be zero. Interference regions of nodes a, b, and d are regions A, B, and D
respectively.The decode regions of a and d are shown using solid lines.

of A and B. Consider an ongoing transmission from a to c. Since b is outside the
interference region of a, it cannot sense the carrier from this transmission and can
decide to transmit. If b transmits at the same time as a, there will be a collision
at the receivers in the region X including at c. However, a will not know of the
collision at c and will continue to transmit. In this scenario, we say that b is hidden
from a with reference to a transmission to c.

Now consider the transmitter d whose interference region is shown as D. d
has to send a packet to e when a is transmitting to c. Node d is in the interference
region of a, and can therefore sense the carrier from a. The two transmissions,
d-e and a-c, can coexist because c is outside the interference region of d, and e is
outside the interference region of a. Yet, on sensing the carrier from a, d will be
forced to defer transmission. Here we say that node d is exposed to a transmission
from a.
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The bottom part of Figure 7.8 illustrates a collision due to a hidden node and
an unnecessary deferral by an exposed node. In summary, in a wireless network,
hidden nodes reduce the capacity by causing collisions at receivers without the
transmitter knowing about it, and exposed nodes force a node to unnecessarily
defer in its transmission attempts, thus reducing spatial reuse.

Collision avoidance (CA) mechanisms prevent collisions due to transmissions
by hidden node. These mechanisms assume that the interference regions, and also
the decode regions, for transmission and reception are identical. A simple CA
mechanism is to have a narrowband auxiliary signaling channel in addition to
the data channel. A node actively receiving data on the data channel transmits a
busy tone on the signaling channel to enable the hidden nodes to defer to receiving
nodes in their interference regions.

Dividing the available spectrum into two parts with sufficient spectral gap
between them to enable the busy tone signaling mechanism to work properly
is both cumbersome and inefficient. The effect of the busy tone is achieved by
preceding the actual data transfer by a handshake between the transmitter and
the receiver. This handshake is used to convey an imminent reception to the
hidden nodes. Before transmitting a data packet, a source node transmits a (short)
request to send (RTS) packet to the destination. If the destination receives the RTS
correctly, it means that it is not receiving any other packet and it acknowledges
the RTS with a clear to send (CTS) packet. CTS informs the neighborhood of
a receiver about an impending packet reception. The source then begins the
packet transmission. If CTS is not received within a specified timeout period,
the source assumes that the RTS had a collision at the receiver (most likely with
another RTS packet) and a retransmission is attempted after a random backoff
period.

The RTS serves to inform nodes in the decode region of the transmitter about
the imminent transmission of a packet, and the CTS serves the same purpose
for nodes in the decode region of the receiver. Thus nodes that are not in the
interference region of the transmitter, but are in the decode region of the receiver
(i.e., the hidden nodes), are informed of the imminent packet transmission. If
the transmission duration information is included in the RTS and CTS packets,
then the nodes in the decode region of both the transmitter and the receiver can
maintain a network allocation vector (NAV) that indicates the remaining time in
the current transmission and schedule their own transmissions to avoid collision.
Thus this handshake is a collision avoidance scheme and the protocol is the carrier
sense, multiple access with collision avoidance (CSMA/CA).

Observe that after completion of the RTS/CTS exchange, the medium is
reserved in the region that is the union of the decode regions of the transmitter and
the receiver. Hence this basic channel access mechanism was called multiple access
with channel acquisition (MACA) when it was first proposed. It is an adaptation
of the handshake protocols used in RS-232-C (between terminal equipment like
personal computers and peripheral equipment like modems and printers) and
Appletalk (between communicating terminal equipment).
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Collision avoidance as just described helps to reduce the inefficiency that is
introduced by not being able to do collision detection in wireless networks. In
principle, only RTS packets collide; these are short packets, and hence the time
lost to collisions is small.

The RTS/CTS scheme helps ameliorate the hidden terminal problem but does
not eliminate it. Note that only the nodes in the decode region of the receiver
have been alerted by the CTS. Those in the interference region but not in the
decode region of the receiver have just sensed a carrier but they do not know of
an impending packet transmission. During the packet transmission, they do not
sense the carrier and can still cause a collision.

Note that we have not yet addressed the exposed node problem. In fact, in
the CSMA/CA scheme, it seems difficult to be able to allow an exposed node to
transmit. Any node in the interference region of the transmitter of the ongoing
packet is exposed. Even if such a node were allowed to transmit a RTS to a node
(outside the interference region of the transmitter of the ongoing packet), it will
itself not be able to receive the subsequent CTS and hence it will not know if it
can transmit.

The CSMA/CA protocol has been adopted for wireless LANs in the
IEEE 802.11 series of standards, which we discuss in detail later in this section.

Exercise 7.2
If all receivers transmit a busy tone, can a combination of the busy tone and
carrier sensing solve the exposed node problem? Explain.

Many improvements to this basic protocol have been suggested with the most
popular being called MACAW or MACA for Wireless (MACAW). An additional
feature in MACAW is the use of an acknowledgment from the receiver after the
successful reception of a packet.

MACAW also specifies the transmission of a short Data Sending (DS) packet
preceding the actual data transfer. This is because it is possible that an exposed
node has heard the RTS and not the CTS. If such a node is not sensing the channel,
it will not know if the RTS-CTS handshake was successful and may attempt to
transmit an RTS. This in turn could collide with the ACK at the transmitter of
the packet. To avoid this situation, the DS packet provides information to the
exposed nodes about the beginning and end of transmission times. This is also
useful in networks where the nodes do not have carrier sensing capability. It has
since been decided that DS is not necessary and the IEEE 802.11 standard does
not include this message in its handshake protocol. The handshake and the data
exchange sequence of the MACAW protocol are shown in Figure 7.9.

7.3.2 The IEEE 802.11 WLAN Standards
As was mentioned earlier, the basic ideas of the CSMA/CA protocol of MACA and
MACAW have been formalized in IEEE 802.11 (Wi-Fi) wireless LAN standards.
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Figure 7.9 Handshake and data exchange sequence in MACAW. A and B are in each
other’s decode range; B and C are in each other’s decode range, and C and D are in
each other’s decode range. B wants to transmit data to C. RTS from B is heard by A
and it defers transmission till CTS may be received at B. CTS from C is heard by D and
it defers transmission till data exchange is complete. DS is heard by A and it knows
that the RTS/CTS handshake was successful and data exchange is in progress. It also
knows the duration of the data exchange. The ACK from C is heard by D and it can
then infer that data exchange between C and B is complete and D can now enable its
transmitter.

According to this standard, the network configuration could be either of the
following two modes.

• Independent or ad hoc network mode. In this mode, the nodes form an
independent multihop wireless network and they communicate directly
with one another. A routing protocol and a corresponding routing
algorithm will need to be used so that the packets find paths to the
destinations. Figure 7.10 shows an example of such a network.

• Infrastructure mode. Here data communication is always between a
mobile station (MS) and an access point (AP). The AP is connected to
the wired network and provides a service similar to the base station of
a cellular network. In this mode, the MSs need to associate with an AP
using an association protocol. An AP and the MSs associated with it
form a basic service set (BSS), and a set of BSSs is called an extended
service set (ESS). The association, and dissociation, allows the MSs to
be mobile within the ESS. Figure 7.11 shows an example deployment
of an ESS.
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Figure 7.10 An IEEE 802.11 ad hoc network. An arrow between two nodes indicate that
they are both in the decode region of each other.

to the
Internetserver

LAN
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router

AP AP AP AP

BSS BSS BSS BSS

Figure 7.11 A typical IEEE 802.11 ESS architecture.

We first discuss some physical layer (PHY) issues and then describe the
medium access control layer (MAC) for these networks. There are many PHY
standards corresponding to different frequency bands in which the network
operates and also the data rates that can be used by the nodes of the network.
The initial 802.11 standard had three PHY standards—(1) infrared, (2) 1 and
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2 Mbps over frequency hopping spread spectrum (FHSS) in the 2.4 GHz band,
and (3) 1 and 2 Mbps over direct sequence spread spectrum (DSSS) in the 2.4 GHz
band. The transmitter and the receiver can choose the data rate to suit the channel
conditions.

A second version of the IEEE 802.11 standard defined the following physical
layer standards:

• 802.11a in the 5.0 GHz band using OFDM. Each BSS uses a bandwidth
of 20 MHz, which is further divided into 52 OFDM carriers of which 48
are for data. Depending on the channel conditions, the data rates could
be any of 6, 9, 12, 18, 24, 36, 48, or 54 Mbps.

• 802.11b in the 2.4 GHz band using DSSS. Depending on the channel
conditions, the data rates could be any of 1, 2, 5.5, or 11 Mbps.

• 802.11g is an extension of the 802.11b and uses DSSS, OFDM, or both
to support data rates in the range of 5.5 to 54 Mbps.

In addition to the data rates that can be changed according to the path
loss characteristics, many channels also are defined for the 802.11b and 802.11g.
The center frequencies of the channels are separated by 5 MHz and the 30 dB-
bandwidth is mandated to be 22 MHz (i.e., the ratio of the peak energy
to the energy 22 MHz away from the center frequency is to be more than
30 dB), whereas the 50 dB bandwidth is to be 44 MHz. This means that
channels are overlapping but some are functionally nonoverlapping; that is,
nodes communicating on these channels can coexist in the same geographical
area without causing significant interference to each other. It can be seen that a
maximum of three nonoverlapping channels are available—channels 1, 6, and 11.
In 802.11a, 12 nonoverlapping channels are defined. Of course, overlapping BSSs
need to use nonoverlapping channels. Since they use different frequency bands
and different modulation techniques, 802.11a and 802.11b are not interoperable;
the latter is more popular and more widely deployed. Table 7.1 summarizes this
discussion.

Standard Band Data rates Num of
channels

IEEE 802.11 (dated) 2.4 GHz 2 and 1 Mbps 1
IEEE 802.11b 2.4 GHz 11, 5.5, 2 and 1 Mbps 14
IEEE 802.11a 5.0 GHz 54, 48, 36, 24, 18, 12, 9 and 6 Mbps 12
IEEE 802.11g 2.4 GHz 1–54 Mbps 14
IEEE 802.11n work in progress, data rate up to 540 Mbps

Table 7.1 Summary of the 802.11 PHY Standards.
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Figure 7.12 Beacon frame, PCF, and DCF periods in an IEEE 802.11 network. The
maximum duration for which the contention-free period will last is called the
CFP_Max_Duration. RTS is transmitted by sender and CTS by the intended receiver
of the packet.

We now describe the MAC protocol of an IEEE 802.11 network. Two basic
protocols are defined—a polling-based protocol called the point coordination
function (PCF) and a random-access protocol called the distributed coordination
function (DCF). PCF and DCF can coexist in the same BSS, and we first describe
the two protocols assuming that the two coexist.

The BSS has a point coordinator that is typically the AP of the BSS. Time is
divided into superframes and each superframe has two parts—(1) the contention
free period (CFP) and (2) the contention period (CP). PCF is used in the CFP and
DCF in the CP.

PCF is initiated by the AP by transmitting a beacon frame. The eligible nodes
in the BSS then are polled and the data that need to be transmitted to them are
transmitted along with the polling message. If the polled node has packets to
transmit, it will also transmit them in response to the polling packet. The PCF ends
when all the nodes are polled by the AP. The end of the PCF mode of medium access
is signaled using the End frame. This also marks the end of the contention-free
period. This is followed by a contention period using the DCF-based MAC, which
continues until the end of the superframe period. Thus we see that in a superframe
period, the CFP and the CP alternate. The AP will begin trying to initiate a new
CFP, after target beacon transmission time (TBTT) has elapsed from the time that
the previous one was initiated. Thus TBTT specifies the period of the superframe.
Figure 7.12 shows this alternating sequence of CFP and CP and also a sample of
the types of packets that are transmitted in the network.

The DCF is derived from the CSMA/CA MACAW protocol that we have
described earlier in the section. In addition to the RTS and CTS based handshake
mechanism before the transmission of the data packet, the standard specifies the
following:

• Minimum silence periods between transmissions; different kinds of
packets have to compulsorily wait for different lengths of time after the
medium is sensed idle to begin transmissions. The minimum idle sensing
time prioritizes different transmissions—shorter minimum waiting time
implies higher priority.
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• Backoff mechanism to resolve collisions. Like in any backoff mechanism,
backoff durations are measured in multiples of a basic slot time, the length
of which depends on the version.

Figure 7.13 shows the events during data transfer between four nodes
exchanging data during the CP using DCF. A single hop network is considered. At
the beginning of the fragment of time shown in the figure, Node 1 is transmitting
a MAC data packet, and all the other nodes have deferred to this transmission. At
the end of the data transmission, there is a short inter-frame space (SIFS), which
allows the receiving node to turn around its radio and send back a MAC level
ACK packet. When this ACK transmission ends, the channel is sensed to be idle
by all the nodes, and each one of them starts a DCF inter-frame space (DIFS)
timer. The DIFS duration is more than SIFS (e.g., in 802.11b, SIFS is 10 μsec and
DIFS is 50 μsec). Thus, even though Nodes 2, 3, and 4 did start their DIFS timers
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Figure 7.13 Events during data transfer in the IEEE 802.11 DCF MAC protocol with the
RTS/CTS mechanism.There are 4 nodes.There is one time line for each node; the time
lines start in the top left side of the figure, proceed to the right, and then continue
from the left in the bottom part of the figure. Different backoff counts are indicated by
a change of the shading.
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when Node 1’s data packet had completed transmission, since SIFS < DIFS the
channel became busy again (with the ACK packet) before the DIFS timers could
expire. Thus, we see that the channel essentially is reserved for the receiver and
transmitter between which a data packet is being transferred. In the light of our
discussions in Section 7.3.1, such reservation is valid only if there are no hidden
nodes that are within the interference range of the receiver that cannot decode
the CTS, and also cannot sense the carrier from the transmitter. Such nodes will
hear the CTS, and hence will defer transmission for a DIFS after the CTS signal
ends. After this, they are free to transmit, and hence could nullify the supposed
reservation.

When the DIFS timers expire, each node enters a backoff phase. Even though
the channel is idle, random backoff is used to try to order the transmissions so that a
collision does not occur. The node that just completed its data transmission samples
a new random backoff value. If a node was already in a backoff when Node 1
started its data transmission, then during Node 1’s data transmission, this node’s
backoff timer is frozen. Upon completion of Node 1’s transmission each node that
had deferred to Node 1 continues the remainder of its backoff. If a node was idle
when Node 1 started its data transmission, and if a packet arrived during Node 1’s
transmission, then the node with the new arrival defers until the completion of
the transmission; it then waits for the DIFS period, and starts a new backoff.
The backoff durations are multiples of the basic slot time. When a new backoff is
sampled, this multiple is sampled uniformly from the integers {0, 1, . . . , CWmin − 1}.

When a backoff period of some node expires (for example, Node 3 in
Figure 7.13), then this node transmits an RTS packet to its destination node.
Upon hearing activity on the medium, all other nodes freeze their backoff timers.
The node to which the RTS was directed then sends back a CTS packet (a SIFS
elapses in between the two). Node 3 then waits for a SIFS and sends its data packet,
after which an ACK is sent by the receiver node. The figure also shows another
successful transmission from Node 4.

A collision occurs if two nodes finish their backoffs within one slot of each
other. It is assumed that the maximum propagation delay in the network is such
that all nodes are able to sense a transmission within one slot time. In this case,
both RTS packets collide. A CTS time-out then follows, after which the colliding
nodes sample a backoff from a doubled collision window; that is, from the
window {0, 1, 2, . . . , 2 · CWmin − 1}. After the collision event, the nodes that were
not involved in the collision continue their backoffs with their residual backoff
timers. A collision event (e.g., between RTS packets of nodes 1 and 2) is shown
in the continued time lines in the bottom of Figure 7.13, where we have taken the
additional time after the RTS transmission to be extended inter-frame space (EIFS),
before the backoff durations are started. Repeated collisions lead to a doubling
of the collision window until it reaches CWmax, after which the collision window
remains fixed. In the standard, CWmin = 32, and CWmax = 1024.
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Version Slot SIFS PIFS DIFS CWmin CWmax

IEEE 802.11a 9 μsec 16 μsec 25 μsec 34 μsec 15 1023
IEEE 802.11b 20 μsec 10 μsec 30 μsec 50 μsec 31 1023
IEEE 802.11g 9 μsec 10 μsec 19 μsec 28 μsec 16 1024

Table 7.2 Interframe spacings and transmission times and the values of the CWmin
and CWmax for the different 802.11a and 802.11b. The handshake packets RTS, CTS
and ACK packets are 20, 14, and 14 octets, respectively, and transmitted at the
lowest transmission rate.The payload in a packet could be up to 2312 bytes.The MAC
header and trailers constitute 34 octets. In addition, there will be PHY headers of
192 bits.

EIFS is longer than DIFS and is used by nodes that cannot decode a
transmission. This could either be because of a collision or because the received
power is such that the SNR is below the decoding threshold. The duration of EIFS
is equal to the sum of the transmission times of SIFS, CTS (and ACK), and DIFS
packets and the PHY headers. This prevents collision during reception of CTS
and ACK.

The slot lengths and the duration of spacings in the different standards
are shown in Table 7.2. Observe that the interframe spacing, the minimum
time after a transmission for which a node has to wait before transmitting, is
a prioritization mechanism. For example, since the SIFS < DIFS, the CTS, data,
and ACK packets have priority over initiation of new transmissions. Also, when
the point coordinator wants to initiate the CFP, it waits for PCF interframe spacing
(PIFS) after the end of an ongoing transmission before transmitting a beacon or
the polling packet. SIFS < PIFS < DIFS implies that the initiation of the CFP has
priority over new transmission initiations. We will see later that multivalued DIFS
can be used to prioritize among different traffic classes.

7.3.3 HIPERLAN
ETSI has defined a standard that is similar to the IEEE 802.11 and is called
the high performance radio LAN (HIPERLAN). HIPERLAN is essentially like
the IEEE 802.11 at the physical layer but has significant differences with it in the
channel access method, which is called the channel access control (CAC). Packets
in HIPERLAN are assigned a priority. A brief description of HIPERLAN CAC
follows.

The CAC of HIPERLAN uses an elimination-yield, nonpreemptive multiple
access (EY-NPMA) mechanism. When a node has a packet to transmit, if
the channel is sensed to be idle for a period called the channel_free_interval,
then the node begins transmission of its packet. If the channel is sensed busy,
then a contention resolution mechanism called the synchronized_channel_access
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starts at the end of the current transmission. This access protocol has three
phases—prioritization, elimination, and yield phases. The prioritization phase
reserves the channel for the highest priority packets that are contending for
the channel. There are H slots in this phase and nodes that need to transmit
packets of priority p transmit a radio pulse in slot p if the preceding prioritization
slots—slots 1, . . . , (p − 1)—are idle. Of course, Priority 1 is the highest priority.
A radio pulse in slot p∗ reserves the channel for packets of priority p∗ and
prevents lower priority packets from competing for access. Let p∗ be the highest
priority packets that are contending for the channel during an instance of
synchronized_channel_access. Only nodes with priority p∗ packets contend in the
next two phases.

The second phase of the synchronized_channel_access is called the elimina-
tion phase, in which nodes transmit for a random duration from the beginning of
the phase and those that do not transmit for the longest duration are eliminated.
Specifically, each node with priority p∗ packets transmits the carrier for a random
number of slots, say Ei by node i, and then senses the channel immediately after
that. If the channel is idle in the subsequent slot then it has survived the elimination
phase and is eligible for the yield phase. The third phase is called the yield phase,
in which the nodes that transmit the earliest win that phase. Specifically, each
eligible node (i.e., those surviving the elimination phase) listens to the channel for
a random number of slots, say Yi by node i, and then transmits the data packet.
Ei and Yi are chosen according to a truncated geometric distribution by each
node. We reiterate that the nodes that choose the largest Ei win in the elimination
phase whereas the node(s) that choose the smallest Yi wins the yield phase. More
than one node may transmit simultaneously in the yield phase causing a collision.
A collision resolution mechanism is then invoked. Figure 7.14 shows a sample of
the channel activities.
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Figure 7.14 The prioritization phase lasts four slots with packets of priority four
surviving this phase. Nodes with priority 4 packets transmit in the elimination phase.
All of these nodes transmit for three or less slots in this phase. Those nodes that
transmitted for three slots in the elimination phase contend in the yield phase and
the minimum yield was two slots. Note that the timing of the events is not to scale.
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7.4 SaturationThroughput of a Colocated
IEEE 802.11-DCF Network

As can be seen from the description of the 802.11-DCF MAC earlier, an
exact analytical model of the DCF protocol can be quite complex and possibly
intractable. However, by making a few reasonable approximations, a tractable
model that can provide insights into the performance of this protocol can be
obtained. We discuss one such model that obtains the saturation throughput.

Saturation throughput analysis is an important development in understand-
ing the performance of the CSMA/CA protocol in 802.11. Here, we assume that all
nodes always have packets to transmit; at a node, a successfully transmitted packet
is replaced immediately by another packet that needs to be transmitted. This is
also called the infinite backlog model. The throughput of the network under this
saturation assumption is called the saturation throughput. Saturation throughput
analysis has been used in systems before, notably in the study of switching systems.
It is important to note that in general, the saturation throughput is not the same as
the capacity. It is, however, a good indicator of the capacity and for some special
systems it has been shown that the queues will be stable if the arrival rate is less
than the saturation throughput.

We consider a colocated network of n saturated nodes. This model is
applicable in the infrastructure mode where all the nodes are associated with the
same access point, or in the ad hoc mode when the geographical spread of the
networks is such that each node is within the decode range of all the other nodes.
We further assume homogeneous nodes; where the parameters of the backoff
process and the state machine that implements it are identical at all the nodes.

To simplify the analysis, we assume that at all the nodes, the backoff times
corresponding to both a fresh transmission and after a collision, are sampled from
an exponential distribution with mean 1

β
. Note that in an implementation of the

protocol, in the saturation condition, as the number of nodes increases, the number
of collisions will increase and hence the average backoff durations will increase;
in a sense, 1

β
captures this average backoff time. We will see a little later how the

average backoff time can itself be analyzed. Let δ denote the slot duration specified
by the protocol. We will assume that if two nodes transmit within δ of each other,
then a collision occurs.

Recall that the nodes freeze their backoff counters when they sense activity
in the medium and resume the count after the mandated silence periods. Thus
the backoff process is active only when the medium is idle and it is instructive to
view the backoff process by considering only the idle times on the channel. This
is shown in Figure 7.15 for the transmission sequence of Figure 7.13.

Observe from Figure 7.13 that there are alternating busy and idle periods on
the medium. This is abstracted in Figure 7.16. The busy period could correspond
to either a successful transmission or to a collision in which two or more nodes
transmit an RTS. Now consider the instants of time at which an idle period begins,
either after DIFS following a successful transmission, (as at a in Figure 7.16) or
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Figure 7.15 Backoff process for the transmissions of Figure 7.13 after removing the
channel activity. Interruptions to each countdown by channel activity are shown;
e.g., Node 1 was interrupted twice. Aggregate attempt process is shown at the bottom.
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Figure 7.16 The channel alternates between busy and idle periods. The busy periods
could correspond to collisions or to successful transmissions.

after a collision period ends (as at d in Figure 7.16). At this time, the nodes
involved in the busy period will start a new backoff time (e.g., Node 1 at a and
Nodes 1 and 2 at d) and since all nodes have a packet to transmit, the nodes
not involved in the busy period resume their backoff timer countdown (e.g.,
Nodes 2, 3, and 4 at a). From our assumption that the backoff times are all
exponentially distributed, the residual backoff times of those that are resuming
the backoff and the “fresh” backoff times of those involved in the busy period
(the different blocks in Figure 7.15) are all exponentially distributed. Hence, the
idle period will last until the completion of the first of these backoffs. This period
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is the minimum of n i.i.d. exponential random variables of mean 1
β

and is therefore

exponentially distributed with mean 1
nβ

.
At the end of the idle period, a collision will occur if a second backoff

completes within δ of the first one. Let Tc denote the average duration of the
collision period. If there is no collision, the transmission will be successful. Let Ts

denote the length of the average successful period.

Exercise 7.3
Show that the probability that a transmission attempt suffers a collision is
given by γ = 1 − e−(n−1)βδ. Also, show that, for large n, the probability of a
collision is approximately given by γ ≈ nβδ.

For the model, we can make the following two observations: (1) idle periods
are i.i.d. exponential with mean 1

nβ
and (2) the event that an idle period ends in

a collision or successful transmission is independent of the event at the end of the
previous idle periods.

We will also the assume that the collision durations and the packet lengths
(and hence the durations of the successful transmissions) are independent. We can
then say that the instants at which idle periods begin are renewal points. The mean
time between successive renewal points is the sum of the mean idle period and the
mean busy period. The mean busy period is given by γTc + (1 − γ)Ts. Thus the
mean renewal time is (

1
nβ

)
+ ((1 − γ)Ts + γTc)

From the renewal reward theorem (Theorem D.9), the normalized network
throughput, S(γ, β), defined as the fraction of time that the network is involved in
transmitting successful packets, is

S(γ, β) = (1 − γ)Ts
1

nβ
+ (1 − γ)Ts + γTc

(7.5)

Let the transmission rate of each of the nodes be r bits per second, all packets
have L bits, and let To be the overhead per packet (the duration of the handshake
and the interframe spacings). Then Ts = L/r + To and the throughput, in bits per
second, is

(1 − γ)L
1

nβ
+ (1 − γ)

(
L
r + To

)
+ γTc

(7.6)

From this expression for the normalized throughput, we observe an inter-
esting tradeoff. Notice that the backoff rate parameter, β, appears in two ways:
in the mean time until an attempt (i.e., 1

nβ
), and in the collision probability, γ.
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Using a large value of β (i.e., a high attempt rate) reduces the mean time between
attempts but increases the probability of collision, and vice versa. Also, observe
that as β → 0, the normalized throughput goes to zero, since in the limit, there are
no attempts; further, as β → ∞ the normalized throughput again goes to 0, since
the probability of collision goes to 1. It is therefore interesting to seek the value of
β that maximizes the normalized throughput.

Exercise 7.4
β, the backoff parameter, as we will see later, is the conditional attempt rate
by a node. Show that the normalized throughput is maximized for

β = 1
n

1
2Tc

(√
1 + 4nTc

(n − 1)δ
− 1

)

Recall a similar exercise for Aloha where we optimized the conditional
attempt rate G and also the retransmission probability in (7.1).

This exercise clearly motivates the need for adaptive backoff in the IEEE
802.11 MAC protocol when the number of contending nodes is not known. We
observe from this exercise that the optimal value of β is inversely proportional
to n, the number of transmitting nodes, similar to r(n) of (7.1). Equivalently, the
mean backoff time should be proportional to the number of nodes. According
to the standard, the contention window is dropped to CWmin after a successful
transmission. This is a good approach for the situation when a few nodes are
intermittently active. If several continuously active nodes are sharing the network,
then it may be better for the nodes to adapt to the optimal value of the contention
window and then retain this value.

The analysis when the backoff counter decrements in steps of a slot time, as
prescribed in the standard, can be carried out along the same lines. Here we assume
that in each slot each node attempts a transmission with probability β independent
of the attempts of other nodes. (Note that earlier, β was the reciprocal of the
mean backoff period.) Thus the number of slots in an idle period would follow
a geometric distribution and have a mean of 1

1−(1−β)n . Further, the transmission
attempt of a node in a slot is successful if none of the other nodes in the network
attempt in the same slot. Thus γ = 1 − (1 − β)n−1. The idle period is followed by
a successful transmission if exactly one node attempts a transmission in the slot,
conditioned on one or more nodes attempting a transmission. The probability for
this event, Ps(n), given by

Ps(n) = nβ(1 − β)n−1

1 − (1 − β)n (7.7)
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The normalized throughput is

S(γ, β) =
nβ(1−β)n−1

1−(1−β)n Ts

1
1−(1−β)n + nβ(1−β)n−1

1−(1−β)n Ts +
(
1 − nβ(1−β)n−1

1−(1−β)n

)
Tc

(7.8)

The numerical results that we present later in this section are all obtained using
this time slotted model.

We now turn to the problem of obtaining the average backoff duration, 1
β

, in
the IEEE 802.11 MAC protocol framework. We will first obtain an expression for
β in terms of γ, the collision probability. This expression, along with the equation
for γ in terms of β, obtained in Exercise 7.3, can be solved to obtain both β and γ

and hence to calculate the throughput using (7.5).
Let us now consider a node, called the tagged node, and focus only on those

time periods when its backoff timer is counting down during the idle times on the
channel. Let t represent this idle time, and let G(t) be the number of attempts by
a node up to (idle time) t. Then, β would be the limit

β = lim
t→∞

G(t)
t

From this, we see that β is the unconditional attempt rate. The interpretation of β

is the same even in the slotted time model where β is the mean number of attempts
per slot.

Most random-access MAC protocols specify an upper bound on the number
of transmissions attempts that can be made for each packet. Once this limit is
reached the packet is discarded by the node and a new packet is taken up. Now,
let (K + 1) be the maximum number of collisions that a packet can experience
before it is discarded. Let bk be the mean backoff duration of a node after the
k-th collision, k = 0, 1, 2, . . . , K. As an example, if K = 1, then each packet is
attempted at most twice. In the first attempt the mean backoff period is b0; if a
collision occurs on this attempt, then one more attempt is made after a random
backoff period that has mean b1. Failure of this second attempt leads to the packet
being discarded. In practice, bk is increased with k.

We will now obtain β when the number of transmission attempts is upper
bounded. A sample attempt process, in the idle time t defined earlier, at the tagged
node is illustrated in Figure 7.17. Let Aj be the number of transmission attempts
and Bj be the total backoff duration (in countdown slots) for the j-th packet from
the tagged node. Aj has a truncated (at (K + 1)) geometric distribution; that is, the
probability that the j-th packet makes k transmission attempts is (γk−1(1 − γ)) for
k = 1, . . . , K and γK for k = K + 1. Bj is the sum of Aj random backoff periods.
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Figure 7.17 The attempts process at a node during the idle time. The busy periods
that have been “removed” are also indicated as successes and collisions. Each
attempted packet starts a new backoff cycle indicated as C i

j for the i -th backoff of
the j-th packet. Aj and Bj are also indicated.

Therefore, we see that

E
(
Aj

) = 1 + γ + γ2 + · · · + γK

E
(
Bj

) = b0 + γ(b1 + γ(b2 + γ(· · · (· · · (γbK)))))

= b0 + γb1 + γ2b2 + · · · + γkbk + · · · + γKbK (7.9)

There will always be one attempt and hence one backoff. There will be a collision
on the first attempt with probability γ, resulting in two or more attempts and hence
two more more backoffs. Given that there is a second attempt, there will be three
or more if there is a collision of the second attempt. And so on.

We can say that for packet j, in an interval Bj, Aj attempts were made. From
the assumptions of our model, both {Aj} and {Bj} are sequences of i.i.d. random
variables. Hence we can use the renewal reward theorem (Theorem D.9) again to
say that Aj is the reward in the renewal period Bj and obtain

β = E
(
Aj

)
E
(
Bj

)
As desired, we have expressed β in terms of quantities specified by the standard,
and the (assumed) collision probability γ. Let us define the two functions

G(γ) := β = 1 + γ + γ2 · · · + γK

b0 + γb1 + γ2b2 + · · · + γkbk + · · · + γKbK

Γ(β) := γ = 1 − (1 − β)n−1 (7.10)

In writing the second equation we have essentially made the decoupling approx-
imation—the attempt process of the tagged node is independent of the aggregate
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attempt process of all the other nodes in the network. This means that the success
of each transmission attempt from the tagged node is independent of all other
attempts and the probability of a success is a constant. (Our initial assumption that
the backoff periods are exponential is a further simplification of this decoupling
approximation.)

Solving for γ from the two equations in (7.10) is equivalent to asking for a
solution to the following fixed point equation:

γ = Γ(G(γ)) (7.11)

Since Γ(G(·)) is a continuous function that maps the interval [0, 1] into itself,
Brouwer’s fixed point theorem guarantees that there is a solution to this fixed
point equation (see Appendix B, Section B.1).

Exercise 7.5
Let K = ∞; a packet is attempted until it succeeds and is never discarded.

Further, assume that there is an m ≥ 1 such that bk =
(

2kCWmin−1
2

)
δ, for

0 ≤ k ≤ m − 1, and bk =
(

2mCWmin−1
2

)
δ, for k ≥ m. Show that

G(γ) = 2(1 − 2γ)
(1 − 2γ)(CWmin − 1) + γCWmin(1 − (2γ)m)

1
δ

Show also that G(γ) is a decreasing function of γ.

Obviously, Γ(·) is increasing in its argument. For the case in the preceding
exercise, we have seen that G(·) is decreasing in its argument. It follows that Γ(G(γ))
is decreasing in γ, and hence that there is a unique fixed point. Let this fixed point be
γ0. The attempt rate can then be calculated as G(γ0), and the network throughput
is calculated as S(γ0, G(γ0)).

As must be evident, in the model that we just analyzed, we have made many
simplifying assumptions, some of which may seem a bit far fetched. We would
first like to check the effect of these simplifications. To do that, we first construct
an exact simulation model that captures all the details of the protocol specification
and obtain the performance parameters of interest. We then compare these exact
results with those obtained from the analytical model. We first study γ as a function
of n in Figure 7.18. We have two observations. First, it is heartening to note
the close match between the analytical result and that from the simulation over
a large range of n. More importantly, the collision probability increases fairly
rapidly with n. Our goal, though, was to obtain the saturation throughput. This is
shown in Figure 7.19 as a function of n and for different protocol parameters. An
interesting observation is that the saturation throughput does not vary much with
the number of nodes, thus suggesting that the backoff mechanism correctly adapts
the attempt probabilities to keep the throughput roughly constant. As n increases,
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Figure 7.18 The collision probability γ as a function of n from the fixed point analysis
and from an exact simulation model.

the high throughput is maintained even as the collision probability increases. This
is achieved by decreasing the average idle time.

We find that simple (almost “back-of-the-envelope”) analyses can be highly
effective in capturing the behavior of complex systems. The decoupling assumption
simplifies analysis and can easily be extended to obtain additional insights, some
of which are discussed next.

Discussion
1. Although the decoupling approximation is a strong one, with some simpli-

fications, it can be shown to be asymptotically exact; that is, it has been
shown that as n → ∞, under saturation, the backoff timers of all the nodes
evolve independently.

2. In the slotted time model, under an asymptotic regime, as n → ∞, nβ (β is the
attempt probability of a node in a slot) converges to a positive value. From
the relation between the binomial and Poisson distributions, the number of
nodes (other than the tagged node) attempting transmission in a slot can
be shown to have a Poisson distribution with mean (n − 1)β. Thus in the
asymptotic regime, we can write

Γ(β) = 1 − e−(n−1)β
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Figure 7.19 Saturation throughput as a function of the number of nodes in the
network, for various PHY rates and packet size of 1500 bytes.

3. Note that in the computation of β we did not use the distributions of the
backoff times, but only the averages (i.e., the bk, k = 0, 1, . . . , K); this
suggests that the performance may depend on the backoff distributions only
through their means. Of course, we have not proved this.

4. In general, it is possible that a fixed point equation has a nonunique solution.
If this were the case for (7.11), it could imply that the system has multiple
equilibrium points, each one corresponding to a different solution. This
could affect the throughput of the protocol. However, it can be shown that
(7.11) has a unique fixed point if bk is a nondecreasing sequence for k ≥ 0.

5. An important insight from the analysis is that the success probability of an
attempt does not depend on the PHY parameters like the transmission rate.
It depends only on the backoff parameters. Further, since the backoff process
and the parameters are the same at all the nodes, the probability of success
is the same for each node.

6. As we mentioned earlier, the approach to obtaining the throughput expres-
sion in (7.5) or (7.8) can be used to derive other expressions that yield
valuable insights. Recall that many PHY rates are possible in each version
of the IEEE 802.11 standard; the standard provides a mechanism for
nodes to autonomously vary their rates as they perceive poor or improved
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channel performance. If the nodes are mobile, the channel quality between
transmitters and receivers will vary, and nodes would need to adapt their
transmission rates to suit the channel conditions. Thus, instead of the
common rate r in (7.5), a node dependent rate ri would have to be used.
From the previous remark, this means that the node with the lowest
transmission rate will govern the network throughput. This is explored
further in Problem 7.13.

7. The nodes could also use different backoff parameters. In this case, rather
than assume that all the nodes have the same γ, we look for a fixed point
solution with γi for node i, 1 ≤ i ≤ n. We discuss this in the next section.

8. Most throughput analyses of random access protocols are based on Markov
renewal processes. The key idea is the same as here—channel activity
alternates between busy periods (collisions or successful transmissions) and
idle periods. The channel activity model will identify the following:

• The renewal points, which are typically the beginnings of the busy
periods.

• The expected length of the renewal period. The model is chosen
to make the busy and idle periods i.i.d. and also independent of
each other. Further, the events that a busy period is a collision or
a successful transmission will also be independent. The expected
length of the renewal period is then the sum of the expected lengths
of the busy and idle periods.

Let Ti, Ts, and Tc be the expected durations of an idle, successful trans-
mission, and a collision, respectively. Let Ps be the probability that a busy
period is a successful transmission. The normalized throughput, S, is then

S = PsTs

PsTs + (1 − Ps)Tc + Ti
(7.12)

Ps and Ti depend on the transmission attempt model parameters and Ts and
Tc depend on the network specifications.

7.5 Service Differentiation and IEEE 802.11e WLANs
QoS at the MAC layer can be provided by either of two mechanisms: (1) Per-
flow time reservation with admission control, and (2) Service differentiation by
dividing traffic (or nodes) into different classes and guaranteeing a service quality
to each aggregate. In per-flow reservation methods, MAC-level flows are defined
and each flow is guaranteed a certain fraction of time during which the node can
transmit. The actual rate of transmission will depend on the characteristics of the
medium between the transmitter and the receiver. In service differentiation, traffic
of the same class compete with one another and receive best-effort-within-class
service, and the different classes receive different grades of service in the aggregate.



7.5 Service Differentiation and IEEE 802.11e WLANs 223

Absolute guarantees of QoS parameters like delay and loss are not provided. Thus,
this is also called “better than best effort” service and is suitable for elastic traffic.
In this section, we will consider only service differentiation.

A simple method to provide service differentiation would be to assign
absolute priorities to the classes and provide a nonpreemptive priority service.
(Recall that this is provided by the prioritization phase of HIPERLAN.) If the
packet arrival stream to the higher priorities is a random process, this can cause
starvation of the lower priorities and usually is avoided in LAN environments.

A second method to provide service differentiation is to reserve capacity for
the different classes. Packets of the same class compete among themselves for
channel access. In the IEEE 802.11 WLAN standard, this can be accomplished in
two ways, (1) a polling mechanism and (2) an enhanced version of the DCF. We
describe these here.

Recall that polled access is provided during CFP. This can be used to serve
different classes of traffic in different ratios by varying the polling rate and the
duration for which a node is allowed to transmit each time it is polled. This is the
method used in the HCF (hybrid coordination function) controlled channel access
(HCCA). The AP, which in this case will also be called a hybrid coordination
controller (HCC), starts a CFP during which nodes are polled in a predetermined
manner. For each node, a service interval (SI) is calculated and the node is polled
by the HCF with a period equal to SI. Every time it is polled, a node is allowed
to transmit for a maximum duration specified by the parameter transmission
opportunity (TxOP). Thus, each node is allocated TxOP

SI fraction of time on the
channel. This system can be analyzed like a polling system.

The second method, the enhanced DCF (EDCF), is an extension to the IEEE
802.11 DCF. It classifies and prioritizes medium access among the traffic classes,
which are called access classes (AC). Recall that the duration of the interframe
spacings can be used to provide priority to different types of packets. Different
DIFS durations can be used to give different ACs priorities in transmitting the
RTS. Further, different backoff windows and backoff window growths are defined
for the different classes. This provides service differentiation by changing the
probability of obtaining channel access. The following parameters are defined
for each AC.

• Arbitration interframe space (AIFS) that specifies the minimum number
of slots for which the AC should sense the channel to be free before
attempting a transmission. Higher priority nodes will start backoff
countdown earlier than lower priority nodes and hence, will have a higher
success probability.

• Different minimum and maximum contention windows, CWmin and
CWmax, respectively, are specified for each class. Clearly, having a
lower CWmin will increase the probability of success at the first and
subsequent early attempts. Similarly, a lower CWmax will increase the
success probability if the packet experiences many collisions.
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Figure 7.20 Three ACs (0, 1, and 2) are shown. The AIFS for the three classes
and the countdown period are shown. The collision could be from either two nodes
of the same AC or nodes from different ACs having their backoff counters reach 0 in
the same slot.

• The transmission opportunity (TxOP) limit specifies the maximum time
for which a node can transmit after acquiring the channel. Allowing high
priority nodes a larger TxOP implies that their contention cost per bit (or
packet) can be reduced.

Each node maintains a separate queue for each AC. At each node, an internal
contention mechanism chooses the AC that will be transmitting a packet. The
backoff counter will begin countdown after the channel has been idle for the period
specified by the AIFS of the AC. It will be transmitted when the backoff counter
has counted down to zero. This allows the higher priority nodes to get a chance
to transmit earlier than the lower priority nodes. Figure 7.20 illustrates this.

To analyze the EDCF access mechanism in the same framework as that of the
single class network from the previous section, we can just extend the fixed point
analysis described to multiple classes. Recall that the parameter in the saturation
throughput model is the attempt rate. In the analysis of the EDCF, we assume that
the effect of the different MAC parameters described earlier essentially translates to
an attempt rate, βi for class i and hence a different conditional collision probability
γi. Thus we can generalize (7.9) and (7.10) as follows.

E(Ai) = 1 + γi + γ2
i + · · · + γ

Ki
i

E(Bi) = bi,0 + bi,1γi + bi,2γ2
i + · · · + bKiγ

Ki
i

Gi(γi) := βi = 1 + γi + γ2
i + · · · + γ

Ki
i

bi,0 + bi,1γi + bi,2γ2
i + · · · + bi,Kiγ

Ki
i

γi = Γ (β1, · · · , βn) = 1 −
n∏

j=1, j �=i

(1 − βj)

= Γ (G1(γ1), · · · , Gn(γn))
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Here, bi,j is the average backoff duration for AC i for the (j + 1)-th attempt and
(Ki + 1) is the maximum number of attempts that a packet of AC i will make.
This generalization accounts for the different CWmin, CWmax, and the multiplier
for increasing the value of CW after a collision, but does not take into account
the different AIFS and TxOP for the different traffic classes. Using the decoupling
approximation that we have made in the single class analysis, we get the expression
for γi. The last equation can be written compactly as γ

γ = Γ (G (γ)) (7.13)

This is a vector fixed point equation and it can be shown that the fixed point
exists. Depending on the {bi,j} and {Ki}, there will be many interesting properties for
the fixed point and we enumerate some of these later. First, we make the following
definition. If a solution to (7.13) is such that γi = γj for all 1 ≤ i, j ≤ n, then we say
that such a fixed point is balanced; else we will say that it is unbalanced. A unique
balanced fixed point essentially means that the model indicates that all the classes
receive the same throughput. We make the following remarks on the solution
of (7.13).

• For the homogeneous case (all the nodes have the same backoff parame-
ters) if an unbalanced fixed point exists, then the solution is not unique
because any permutation of a solution is also a solution of (7.13).

• If all backoff and attempt parameters are the same for all the ACs, then by
symmetry we can look for a balanced fixed point with γi = γ for 1 ≤ i ≤ n.
If such a balanced fixed point exists, then it will be the unique balanced
fixed point.

• However, it is possible that even when all the MAC parameters are
the same, there exist unbalanced fixed points. This will correspond to
multistability and short-term unfairness in the system, where some nodes
get to use the channel for extended durations while locking out the other
nodes.

7.6 Data and Voice Sessions over 802.11
Applications on a networked node are typically of one of the following types.
A TCP-based session involving elastic data transfer using a closed loop control,
for example, web browsing using HTTP over TCP. Another class of application
could be a streaming session, for example, a packet voice application, also called
Voice over IP (VoIP). Having analyzed the throughput behavior of the 802.11
protocol, we now use the insights developed from that analysis to understand
what happens to applications when running on 802.11 based WLANs. We will
consider a single hop WLAN in which a number of STAs associate with an AP,
which in turn provides Internet access to the STAs via an uplink. This is by far the
most widely used configuration for 802.11 based access.
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7.6.1 Data over WLAN
A typical data transfer environment will involve a laptop equipped with an 802.11
interface that is downloading files, like the inbox in a mail application, or HTTP
documents in a web browsing session. The laptop, or the STA, will be associated
with an AP. For both these kinds of downloads, the TCP transport protocol will
be used. Of course, there may be many other STAs that may be associated with
the same AP. This situation is typical in an airport or a railway station lounge, a
hotel lobby, or a cafe that provides Wi-Fi connectivity. This is shown in the top
part of Figure 7.21.

For this scenario, we make the following observations. Recall that TCP is an
acknowledgment (ACK) based protocol and every data packet that is received has
to be acknowledged. The TCP-data packets are transmitted from the AP to the
STAs, each of which transmits a TCP-ACK packet for every TCP-data packet that
it receives. Thus, there is asymmetry in the traffic pattern with the AP accounting
for approximately half of the packets transmitted in the network. Furthermore,
the TCP-ACK packets are much smaller than the TCP-data packets. In most
deployments, the AP and the STAs use the same backoff parameters; hence, if
at a random instant, n of the nodes (AP and STAs) are contending for access to the
channel, each of them is likely to succeed with equal probability. However, note

AP

Wired interface to
Internet

Collision IdleTCP–ACK Packet TCP–Data Packet

time

Figure 7.21 The top figure shows five STAs associated with an AP and performing data
downloads. Solid lines indicate direction of TCP-data packets and dashed lines that
of TCP-ACK packets. The bottom figure shows a sample of channel activity. Renewal
instants are marked by vertical bars.
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that an STA can transmit an ACK only if it has received a TCP-data packet. Thus,
the number of STAs competing for channel access is time varying and it depends
on the number of STAs that want to transmit a TCP-ACK packet.

We now make some simplifying assumptions.

• The STA will send a TCP-ACK packet for every TCP-data packet that it
receives. (TCP allows delayed ACKs in which the receiver can send one
ACK for more than one data packet. We will ignore this in our model
here.)

• A TCP-ACK packet is generated at an STA as soon as a TCP-data packet
is received. All TCP-ACK packets are immediately queued at the MAC
for transmission.

• There is no packet loss due to either channel errors or due to buffer
overflows.

• The TCP protocol at the sender does not time out due to late ACKs and
the WLAN hop on the path from the sender to the STA is the bottleneck
and the AP always has a TCP-data packet to transmit.

Let S(t) denote the number of nodes competing to transmit on the channel
at time t. From the model, S(t) depends on the number of outstanding ACKs and
this changes after each successful transmission. Let tk be the instant at which the
k-th successful transmission in the network was completed. We can thus define
the evolution equation of S(tk) as follows.

S(tk) =
{

S(tk−1) + 1 if AP is successful

S(tk−1) − 1 if any STA is successful

When S(tk−1) = 1, the only transition possible is the transition to S(tk) = 2. Further,
because of backoff parameter symmetry between the AP and the STAs, the first
transition will occur with probability 1/S(tk−1), and the second will happen with
probability 1−1/S(tk−1). Also, since the AP always has a packet to transmit, S(t) ≥ 1
for all t. Now, let Tk := tk+1 − tk. We will also assume that when n nodes are active,
the attempt probability is βn and the collision probability is γn. We will assume that
βn andγn are the same as the attempt rate and and collision probability, respectively,
in an n-node saturated network. We can then use the saturation throughput model
developed in Section 7.4 to obtain these parameters. Further, we will assume
that the transmission attempts by the active nodes are independent of all previous
transmission attempts. From these assumptions, we see that S(tk) depends only on
S(tk−1) and, from our assumptions on the backoff process, Tk depends only on S(tk).
Hence, we can embed a Markov chain at {tk} (see Figure 7.22) and {S(tk), Tk} will
be a Markov renewal process. (See Appendix D.3.3.)

Let πn be the stationary probability of there being n contending nodes, that
is, of the event {S(tk) = n} . We make yet another approximation—S(tk) ∈ [1, ∞].
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Figure 7.22 The embedded Markov chain S(tk).

This is not a bad approximation because we see that the probabilities are such
that S(tk) will be near 1 most of the time. We are now ready to solve the Markov
chain

{
Stk

}
. We do this by writing the balance equations πn/n = nπn+1/(n + 1).

From this, we can obtain the recursion

πn+1 = n + 1
n2 πn

Using the normalizing condition
∑∞

i=1 πi = 1 gives us

πn = n
(n − 1)!(2e)

(7.14)

Exercise 7.6
From (7.14), verify that the AP transmits half the time, which is as it
should be.

Now consider the k-th renewal period (tk, tk+1). Let n nodes including the AP,
be contending for use of the channel in this period. Further, let R be the number
of collisions in this period. From the assumptions made about the attempt process
in state n, Tk would be the sum of (R + 1) idle periods each of mean duration

1
1−(1−βn)n , R collision periods each of duration Tc and one successful transmission
period. The packet would have length TDATA if the AP transmitted, which
happens with probability 1/n, or TACK if an STA transmitted, which happens with
probability (n − 1)/n. n takes values 1, 2, . . . and R takes values 0, 1, . . . . Further,
R is geometrically distributed with parameter γn and n is distributed as πn derived
earlier.

Now, let H(t) be the number of times that the AP transmits in the interval
(0, t). Our interest is in the rate at which TCP packets can be downloaded, i.e.,
limt→∞ H(t)

t . As in the saturation throughput analysis we can use the renewal
reward argument to obtain

lim
t→∞

H(t)
t

=
∑∞

i=1 πn
1

n+1

E(Tk)
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From this discussion we can obtain

E
(
Tk

) =
∞∑

n=1

πn

([
1

1 − γn

1
1 − (1 − βn)n

]
+

[
γn

1 − γn
Tc

]
+

[
1
n

TDATA + n − 1
n

TACK

])

Here the term in the first square brackets corresponds to the mean idle period, the
term in the second square brackets corresponds to the mean collision duration,
and the term in the third square brackets corresponds to the mean duration of
a successful transmission in Tk. We have assumed that βn and γn have the same
values as that in an n-node saturated network. We can read βn from the plot of
Figure 7.18.

As with the saturation throughput analysis, there were many simplifying
assumptions and we would like to validate the model. Like before, we take
recourse to comparing results from a simulation model that captures most details
of the protocol specification. The canonical TCP application is a file transfer (FTP)
session. The aggregate TCP throughput through the AP is plotted as a function of
the number of FTP connections in Figure 7.23. Of course, the analysis does not
model the number of connections. Observe that the model is accurate for up to 20
STAs for all three transmission rates. Further, observe the significant reduction in
TCP throughput, as compared to the saturation throughput shown in Figure 7.19.
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Figure 7.23 Aggregate TCP throughput through the AP as a function of the number
of FTP sessions with one session per STA. Results from analysis and simulation are
plotted for different transmission rates.
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This is because of the transmission of the TCP-ACKs and the time lost from their
contentions.

7.6.2 Voice over WLAN
We now consider a VoIP application running over WLAN. An example archi-
tecture is shown in Figure 7.24. The analog voice is digitized and may be
compressed by the voice encoder using any of the standard codecs. Voice codecs
are standardized in the G.7xx series by the ITU with the G.711 (PCM encoding at
64 Kbps), G.721 (ADPCM encoding at 32 Kbps), and G.729 (CS-ACELP encoding
at 8 Kbps) being the more widely used codecs. Most codecs have a frame period;
that is, they output a speech frame every Tf seconds. Typically, Tf is 10 or 20 ms
and can even be 30 ms.

Recall the following from Chapter 3. For packet voice, a packetization
interval, TP, is defined. TP will typically be an integer multiple of Tf . The encoded
speech from every TP seconds forms the payload of one voice packet. Thus, a voice
packet is generated at a constant rate of 1

TP
packets per second. This is constant bit

rate (CBR) speech. The codec may have voice activity detection (VAD) in which
case packets are not generated when there is no speech activity in a packetization
interval. This results in variable bit rate (VBR) speech. An important aspect of

Voice
PayloadRTP Hdr12UDP Hdr8IP Hdr20

packetiser
voice coder
depacketiser
voice decoder

packetiser
voice coder
depacketiser
voice decoder

packetiser
voice coder
depacketiser
voice decoder

AP
Uplink to Wired Network

Voice Packet Format

Figure 7.24 Voice over the WLAN. Arrows indicate the flow of packets between the AP
and the STAs.The voice packet format is shown at the bottom.
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transporting voice is that the mouth-to-ear (M to E) delay be less than a specified
limit, say, D. This limit is usually in the range of 100–200ms. Packetization,
transmission, and propagation delays are three components of this total delay
budget. In addition, depending on the nature of the access in the network, there
could be queueing (or access) delays. If the end-to-end path for the packet is fixed,
the transmission and propagation delays are fixed. Most of the VoIP applications
also fix the packetization delay. Thus the only design parameter is the link access
delay.

If the access delays on the links are variable, the delay constraint is specified
as Pr

(
delay > Dl

)
< LP. For example, Dl = 20 ms and LP = 0.01 imply that

at least 99 percent of the packets should experience an access delay of less than
20 ms. Dl is called the MAC-delay budget. Packets whose access delay exceeds Dl
are assumed lost because they have arrived at the receiver past their playout time.
Receivers can use loss concealment techniques to mitigate the effect of packet loss.
Note that packets that arrive late cannot be played but may be useful in concealing
future packet losses. Of course, a packet that is lost cannot be of help. However,
using the excessively delayed packet requires more intelligent voice decoding and
may not always be available. We will therefore assume that excessively delayed
packets are also lost. LP is determined by the codec—the higher the level of
compression, the lower the allowable packet loss rate. LP also is determined
by the amount of speech data contained in each packet, on the packetization
interval.

A voice service will also define an acceptable quality of speech at the receivers.
The quality of speech is measured in terms of the perceived difference between
the transmitted speech and that reconstructed at the receiver. The mean opinion
score (MOS) metric on a scale of 1–5, with 5 indicating a perfect reconstruction,
is typically used. Table 7.3, obtained from extensive experiments, shows the
allowable packet loss rates for G.711 and G.729 codecs for different TP to achieve
a MOS of 3.6 and 4.0. Notice the significantly lower allowable packet loss rate
for the G.729 (8 Kbps) than for the G.711 (64 Kbps). Also observe the significant
reduction in the allowable packet loss rate when TP is increased.

Codec (TP) Minimum MOS
4.0 3.6

G.711 (10 ms) 1.0 4.9
G.711 (20 ms) 1.0 3.0
G.729 (10 ms) Cannot 0.33
G.729 (20 ms) Cannot 0.19

Table 7.3 Allowable Packet Loss Rates (%) for Different Voice Quality and Packetization
Intervals.
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The voice payload per voice over IP (VoIP) packet is rTP bits where r is the
encoding rate of the codec. In addition, there are other protocols that need to be
used and each will add its overhead to form the VoIP packet that is transmitted
on the 802.11 network. The real time transport protocol (RTP) is used to convey
timing information to the receiver. It introduces a 12 byte overhead. The transport
protocol is usually the user datagram protocol (UDP) and it brings an 8 byte
overhead. The IP protocol at the network layer introduces another 20 bytes of
overhead. This voice-over-RTP-over-UDP-over-IP packet forms the payload for
the MAC protocol. Of course, the MAC and the PHY have their own headers and
trailers. To amortize the overhead, we can use a larger TP and pack more voice
payload into a packet. However, this will reduce Dl . Also, as can be seen from
Table 7.3, this will reduce the acceptable packet loss rate, LP.

Exercise 7.7
For the 802.11b MAC protocol operating at 11Mbps, obtain the packet
transmission times for the G.711 and G.729 codecs with TP = 10 ms. The
MAC overhead is 28 bytes and the PHY overhead is 192 μs. Recall that
corresponding to every transmission, there will be an ACK packet from the
receiver and the SIFS and DIFS between transmissions. Taking all these into
account, obtain the total transmission time for a voice packet. Repeat this
for TP = 20 ms.

Let us now consider dimensioning of an 802.11 network for voice calls. It is
reasonable to assume that the two nodes in conversation are not associated with
the same AP. This means that corresponding to each call, there will be packet
flows in both directions—from the AP to the STA and vice versa.

Since voice requires delay guarantees and 802.11 supports contention free
access, the simplest mechanism to support voice is to use the PCF to transfer
voice. This emulates circuit multiplexing. Here, the important parameters are
the superframe duration, which we will denote by TF, and the duration of the
contention free period within the superframe, CFP_max_duration. The number
of calls that can be supported is essentially the number of voice packets that can
be accommodated in the CFP_max_duration. This calculation and the bounds on
the access delay are obtained as follows.

Recall that when the point coordinator (PC) wants to start the CFP, it has to
wait for the ongoing transmission to finish. Then, since PIFS is smaller than DIFS,
its priority is higher than that of a data packet and a CFP can begin soon after the
current transmission ends. Thus, the start of the CFP can be delayed at most by
PIFS and the maximum transmission time of a packet, say Tpkt. We will assume
that all voice nodes in the network have the same packetization interval. Since a
packet is generated every TP seconds, it is reasonable to have TF = TP. Thus, the
maximum delay for a voice packet is (TP +Tpkt +PIFS). From Figure 7.12 observe
that in the CFP a poll packet from the PC precedes the voice packet. This poll
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packet will contain the voice packet from the AP to the STA. Let Tvoice, Tpoll, and
TACK denote the transmission time of the voice, poll, and the ACK packets. From
Figure 7.12, we can see that the maximum number of simultaneous voice calls
that can be supported is the integer part of

CFP_Max_Duration − Tbeacon − Tend

TPIFS + Tpoll + 2TSIFS + Tvoice + TACK

Here Tbeacon is the transmission time of the beacon frame. The numerator is
the maximum time available in a frame for voice packet transmissions. The
denominator is the time consumed by each node per poll.

Let us now consider carrying VoIP calls in a network with only contention
access. Further, we will assume that the STAs and the APs have the same priority
and use the same backoff parameters. Observe that on an average, half the packets
will be from the AP to the STAs. Our first interest is in finding Nmax, the maximum
number of active calls that can be supported.

A simple calculation can be done as follows. At high loads, when there
are nearly Nmax active calls, like in saturation analysis, the channel activity will
alternate between backoffs of average duration Tbackoff, by the STA and the AP,
and transmission periods consisting of SIFS, voice packet transmission, ACK
transmission, and DIFS. For every call, on an average, there will be two packets
per TP, one in each direction. Therefore, Nmax is given by the integer part of

TP

2(Tvoice + TSIFS + TACK + TDIFS) + Tbackoff
(7.15)

We can assume that the packets experience very few collisions and that the average
duration of the backoff period, Tbackoff, can be approximated by (δ × CWmin),
where δ ≥ 1 is a constant that depends on the network load.

Note that the Nmax obtained here does not take into consideration the delays
experienced by the packets. We could build more sophisticated models to model
the voice packet arrival process. However, numerical results from such models
and empirical results suggest that this expression is a very good approximation to
evaluate Nmax. The results obtained by simulation and from (7.15) are tabulated
in Table 7.4 for the G.711 and G.729 codecs.

TF

Codec 10ms 20ms 30ms 50ms
G.711 6 (6) 12 (12) 17 (18) 25 (26)
G.729 7 (7) 14 (14) 21 (21) 34 (35)

Table 7.4 Voice Capacity with DCF from Simulation and by Using (7.15) (the latter is
shown in parentheses).
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7.7 Association in IEEE 802.11 WLANs
Recall that in the infrastructure mode of the 802.11 network, the wireless nodes
(STAs) need to connect through an Access Point (AP); it should bind to an AP.
As we have mentioned earlier, such services may be located in an airport or a
railway station lounge, a hotel lobby, or a cafe that provides Wi-Fi connectivity.
This is shown in Figure 7.25. For better service, both in terms of the number of
simultaneous users that can be supported and geographic coverage, there may be
more than one AP. There may even be more than one hot-spot-provider servicing
the area. Recall that an 802.11 network can operate over multiple channels, some
of which are nonoverlapping. This means that from the same physical location, an
STA may have a choice of APs to which it can bind. For example, in Figure 7.25,
STAs in the region AB can associate with either AP-A or AP-B. Similarly, those
in the region BC can associate with either AP-B or AP-C. Since the radio path
between the STA and the APs with which it could associate could be different, it
is possible that the transmission rates at which these associations can be made are
also different. For example, in Figure 7.25, STA-5 may be able to associate with
AP-A at 11 Mbps and with AP-B at 5.5 Mbps. Which association is better? To
answer that, we need to be able to define “better” more precisely and then solve
a problem of association of the STAs to APs.

Two kinds of association rules can be used. In the online method, an arriving
STA and the AP makes a local decision based on the network condition at the time
of the arrival of the STA. In the offline method, each STA submits its bandwidth (or
throughput) requirement and also the transmission rate at which it can associate
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Figure 7.25 A, B, and C are the three APs covering a geographic area.
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with each of the APs. An optimization algorithm is solved offline to determine the
association and throughputs that will be allocated to each of the STAs. We will
not consider offline algorithms.

We will discuss two simple rules that can be used by a new STA to select
the AP to which it can bind. A new STA in the service area will be able to receive
the beacons from each of the different APs. Of course, these will be transmitted
by the APs on different channels. The strength of the received signal from an AP
is an indicator of the SINR and hence, an indicator of the data rate at which the
association can be made. Further, this is also an indicator of the proximity of
the AP to the STA. The higher the received signal strength indicator (RSSI), the
higher the data rate of association. Thus, an obvious rule would be for an STA
to associate with the AP whose RSSI is the highest. This is the most commonly
employed method.

Note that this association rule does not take into account the number of
other STAs associated with the AP and their activity profile. It could be that
there are many STAs associated with the AP and, although the transmission
rate of the association is good, the actual throughput obtained is low. We now
describe a simple rule based on the channel activity that can be used to estimate
the throughput available from an AP.

The arriving STA listens to the beacon transmissions from the APs. For each
AP, it knows the target beacon transmission time (TBTT) from the information
contained in the beacon packet. Assume that the beacon frame does not have
priority over other transmissions in the network. Hence, when the AP is ready to
transmit the beacon, there will be an access delay that will be statistically identical
to the access delay that will be experienced by all the other nodes. The arriving
STA can measure the access delays experienced by the beacons over a window
and calculate the average access delay. Let Taccess denote this average access delay.
Taccess will also be the expected access delay (estimate) that will be experienced
by a data packet from the arriving STA. After the access delay, there will be a
successful transmission consisting of the RTS/CTS handshake, the data and the
ACK and also the interframe spacings. Using this, we can calculate the expected
time between successful transmissions of packets on the network, T, to be

T = Taccess + TRTS + (TSIFS + TCTS) + (TSIFS + Tdata) + (TSIFS + TACK)

Here, Tdata is the transmission time of the packet at the rate at which it can associate
with the AP. The potential throughput from the association will be 1/T packets
per second. The arriving STA can calculate the potential throughput for all the
APs and join the one that offers the highest potential throughput.

7.8 Notes on the Literature
The Aloha protocol was first described by Abramson in [1]. The CSMA protocol
was first analyzed by Kleinrock and Tobagi [79] and by Lam [91]. The instability
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of the slotted Aloha with nonadaptive feedback has been shown by many
authors, inlcuding Kleinrock [78], Fayolle et al. [33], and Kelly [73]. Space-
time models for local networks were first presented by Molle, Sohraby, and
Venetsanopoulos [103]. Many collision resolution algorithms for use in random
access networks have been proposed. Bertsekas and Gallager [10] summarize and
analyze many of the well-known ones. Rom and Sidi [117] discuss the performance
analyses of a large class of random access protocols.

The MACAW protocol was proposed by Bhargavan et al. [11], which in
turn was an adaptation of the MACA protocol first described by Karn [68].
The authoritative source for the IEEE 802.11 MAC protocol is the standards
document published by IEEE and downloadable from the site of this working
group. Mangold et al. [97] have provided a concise description of the basic 802.11
MAC protocol and the 802.11e extension for QoS differentiation.

There is a vast literature on analytical performance modeling of the 802.11
protocol family and even more simulation based studies. The detailed performance
analysis that accounts for uniform sampling of the backoff multiplier was provided
by Bianchi [12]. The analysis presented in the text is a simplification and
generalization of this analysis. Numerical results from a Markovian model without
the decoupling assumption have been obtained by Kumar et al. [86]. They also
develop the fixed point analysis which is extended to 802.11 networks with service
differentiation by Ramaiyan, Kumar, and Altman [114]. Chhaya and Gupta [23]
provide an analysis that accounts for the hidden terminals and capture of a signal
by a receiver in the event of a collision. Tay and Chua provide a capacity analysis of
the basic handshake protocol [129]. Cali, Conti, and Gregori [19] and Carvalho
and Garcia-Luna-Aceves [21] develop approximate models for the throughput
of the protocol. The idea of adapting the backoff to optimize the throughput
was studied by Cali et al. [20]. More recently, Sharma, Ganesh, and Key [121]
have developed a Markovian model of the backoff process without the decoupling
assumption. Here the system state at time t is described by X(t) = [Xi(t)] where
Xi(t) is the number of nodes in backoff stage i and

∑
i Xi(t) = N. It is shown that

for a large number of nodes in the network, the system state stays close to a typical
state. Renewal reward arguments are used to obtain the throughput in this typical
state. Analysis of multiclass networks without the decoupling assumption is also
presented.

There is also a considerable amount of literature that goes beyond the
saturation throughput analysis. Tickoo and Sikdar [130] present a delay analysis.
The many parameters in the protocol, such as superframe duration, ratio of CFP
to CP, and backoff intervals, can be adapted to the traffic conditions to improve
the performance of the protocol. An example of such an adaptation is described
by Dong et al. [28], where past throughputs under the CFP and CP access methods
are used as a feedback to adapt the PCF and DCF frame sizes to maximize the
network throughput.

In [93], Li and Battiti analyze a network with service differentiation by a
suitable adaptation of the model of [12]. Adaptive algorithms also have been
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proposed to provide service differentiation. In [118], Romdhani, Ni, and Turletti
describe an adaptive service differentiation scheme in which after a successful
transmission the nodes update their CW adaptively by taking into account the
estimated collision rate.

TCP over the 802.11 network also has been extensively studied. Miorandi,
Kherani, and Altman [100] describe a queueing model. Harsha, Kumar, and
Sharma [53] analyze TCP and VoIP over an IEEE 802.11e networks. The TCP
over WLAN analysis that we presented is adapted from the work of Kuriacose
et al. [90]. VoIP over WLAN is also of significant interest. Medepalli et al. [99]
obtain analytical and simulation results. The analysis that we describe is based on
the work of Hole and Tobagi [56]. Tables 7.3 and 7.4 are obtained from [56].

Online association strategies in the 802.11 network have been described
and analyzed by Kasbekar, Kuri, and Nuggehalli [69], [70]. Offline association
strategies have been described by Tan and Guttag [125], Bejerano, Han, and Li [7],
and by Kumar and Kumar [88]. Mussachio and Walrand [105] describe a game
theoretic analysis of the association problem.

With the 802.11 hardware becoming a commodity item with widespread
availability, there has been a significant interest in using this technology for
innovative applications. The Digital Gangetic Plain (DGP) project in Uttar Pradesh
and the Ashwini project in Andhra Pradesh, both in India, provide Internet
connectivity to large rural areas that do not have any significant communication
infrastructure. A hierarchical architecture is used in which each village has an
access point and the nodes in the village connect to the access point. A mesh of
point-to-point links interconnects the access points. The point-to-point links use
the 802.11 protocol to exploit the cost advantage of its hardware. Of course,
powerful, specially designed antennas are needed to create these point-to-point
links. The design and deployment experience for this project is described by Raman
and Chebrolu [115].

Problems
7.1 For a time-slotted network, where the slots are small compared with the

packet lengths, consider the following variation of slotted Aloha. When
a node has a packet to transmit, it begins transmission at the beginning
of a slot. If there was no collision in the first slot, then it has captured
the next (X − 1) slots, where X is the packet transmission time and all
other stations will defer. If there was a collision in the first slot, then the
node makes a randomized retransmission attempt (as in slotted Aloha)
and continues to do so until it succeeds. All nodes will know of the end
of transmission of this packet when they sense the channel idle again. If
slotted Aloha with an adaptive protocol were to yield a throughput of
η when the packet length is equal to the slot length, what would be the
throughput of this network? Note the similarities with the CSMA/CD
protocol.
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7.2 Consider a slotted Aloha network where the attempt arrival process is
Poisson with rate G. Under the condition of maximum throughput, what
is the fraction of empty, successful, and collision slots? If it is observed
that the network is not operating under maximum throughput condi-
tions and that the fraction of idle slots is 0.1, what is the throughput of
the network? Is this network overloaded or underloaded? Explain.

7.3 Consider the Aloha protocol for multiple access networks. Let X be the
number of nodes that are backlogged at the beginning of a slot. Assume
X has a Poisson distribution with mean x̂. Now assume that each
backlogged node transmits in the slot with probability 1/x̂ independent
of the others.

a. Obtain the joint probability of k nodes being backlogged and r
transmitting. Also obtain the unconditional probability that the slot
is idle.

b. If the slot was observed to be idle, what is the a posteriori probability
that k nodes were backlogged at the beginning of the slot?

c. Similarly, find the a posteriori probability that given that there was
a successful transmission in the slot, there were k backlogged nodes
at the beginning of the slot.

d. Using these results suggests a method to continuously estimate x̂
based on the event in a slot—success collision, or idle. Suggest an
estimation method for x̂ when a collision is observed in a slot.

7.4 Consider a pure Aloha network with an infinite number of nodes on
a straight line of length a. Each packet transmission is of unit length,
and transmissions are attempted according to a Poisson process of rate
G. Assume that in this network there are only broadcasts, and that a
transmission should be received at all the nodes. A transmission is a
success only if it is received correctly at all the nodes.

a. Find the conditional probability that a transmission starting at x,
0 ≤ x ≤ a, is successful.

b. Find the broadcast throughput of the network.

7.5 In an Aloha network, which uses the FCFS collision resolution algo-
rithm a collision occurs in Slot k. Let Tk = 0 and αk = 2.0. Consider
the arrivals at 0.2, 1.2, 1.6, 1.8, and 2.5. Which of these packets are
resolved in the collision resolution period starting in slot k. Apply the
FCFS algorithm and obtain the number of slots required to resolve all
the collisions in Slot k. Count the number of collisions and idle slots.
Repeat for the arrival sequence 0.6, 0.7, 1.5, 1.6, and and 1.8.

7.6 Consider a multiple access channel in which the following situation
arises. Two nodes A and B are ready to send a packet at the same time.
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This typically happens immediately following a successful transmission.
In the k-th round after (k − 1) collisions have occurred, the nodes wait
for a random period of w ∈ [0, 1, · · · , 2k−1 − 1] slots of time, with each
of the 2k−1 choices being equally likely. Let ck be the probability of a
collision in round k given that the previous (k−1) rounds had a collision.

a. Find ck as a function of k for all k.
b. What is the probability that round k lasts n slots? What is its mean?

Assume that a collision has occurred in the round.
c. Find the probability that round k lasts n slots. Do not assume that

collision occurred. Also find the mean number of slots in round k.
d. Find pk, the probability that exactly k rounds are needed to resolve

a collision involving only two nodes and no new nodes transmitting
until the collision is resolved.

e. Assume that the collision is resolved in favor of A in the third round.
In this case A will reset its collision counter. Assume that the packet
being transmitted by A is longer than the backoff time chosen by B.
Because of 1-persistence, B will transmit soon after A’s transmission.
Now if A has another packet to transmit, there will be a collision
immediately following A’s successful transmission and both A and
B will increase their collision counters. What is the probability that
this collision is resolved in favor of A in the second round?

7.7 In IEEE 802.11 CSMA/CA there is also the Basic Access mode in which
after completion of backoff a node just transmits its packet fully and
then waits for a MAC ACK. Assume that all nodes use the same packet
length L bits and bit rate C. Assume the single cell situation with all
nodes saturated.

a. Argue that the analysis of the backoff process proceeds in exactly
the same way (as for the RTS/CTS mode) and the same fixed point
equations arise, yielding the probability β.

b. Using the notation δ (slot time), TSIFS, TACK, TDIFS, and TEIFS (and L
and C defined earlier) write down an expression for the total network
saturation throughput.

7.8 Consider an IEEE 802.11b WLAN with n saturated nodes, all operating
at r bps. Let C(t) denote the number of collisions experienced by a node
and A(t) the number of attempts of the node in [0, t].

a. State the formal mathematical definitions of node collision rate c,
the collision probability γ, and the node attempt rate, a.

b. Given that the attempt probability of each node is β per backoff slot,
and taking the decoupling approximation, write down an expression
for c. Take the slot length to be δ, the success time to be Ts, and the
collision time to be Tc.
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c. Similarly write down an expression for a.

d. Verify the well-known simple expression for γ in terms of β from
parts (b) and (c).

7.9 For small collision probabilities, let us approximate 1 − γ ≈ 1. Obtain
the simplified formula for the normalized throughput and the optimal
β for this approximation. Compare with the optimal β obtained in
Exercise 7.4

7.10 Consider a slotted Aloha system with n nodes. Each packet fits one slot.
The queues are saturated. After a packet is transmitted, the next packet
is immediately attempted. If there is a collision, the next attempt is made
after a number of slots uniformly distributed over 1 to n−1 slots. Packets
are attempted until they succeed. Let β be the average attempt rate of
a node.

a. Using a decoupling approximation, write down a fixed point
equation for the attempt probability β of a node in a slot. (Hint:
Let γ be the collision probability of a node’s attempts.)

b. Argue that this equation has a unique fixed point.

c. Show how the aggregate saturation throughput, Θ(n), can be
obtained from this analysis.

7.11 For the IEEE 802.11 protocol description given in the text, assume that
backoff times are real numbers, and the channel propagation delay is
zero, and hence that no collisions occur. Ignore the fixed time overheads
(such as SIFS and DIFS). Assume that all nodes have the same packet
length. Consider an n node network. Node k has an exponentially
distributed backoff with mean 1

βk
and uses the data rate rk. Under these

simplifications show that the normalized throughput for node k is given
by Θk

rk
= ηkL

1+∑n
j=1 ηjL

, where ηk = βk
rk

. Θk is the throughput in bits per

second. Hence argue that when the transmission rates are different (for
example, because of different distances of the nodes from the AP), to
achieve fair normalized throughputs the mean backoff times of nodes
should be adapted to be inversely proportional to their transmission
rates.

7.12 Repeat the derivation in Problem 7.11 but without assuming that there
are no collisions, and also accounting for the overhead durations To

and Tc.

7.13 Consider an IEEE 802.11 WLAN operating in the infrastructure mode.
n1 nodes are associated at transmission rate r1 and n2 nodes are
associated at rate r2. Assume that all nodes are saturated. Like in our
analysis model, assume that all backoff durations are exponentially



Problems 241

distributed with mean 1/β. Let γ be the probability that a transmission
attempt is successful. Obtain the throughput per node in terms of
β, γ, n1, n2, r1 and r2. Assume all packets are B bits in length.

7.14 In an n node network, under saturation and exponential backoff, notice
that if there is a successful packet it could be from any of the n nodes in
the network. Assume that node i transmits at rate ri, all packets are of L
bits, and that the overhead per packet is To seconds. As before assume
that the collision duration is Tc and that the probability that an attempt
ends in a collision is γ. Show that the mean renewal period is given
by 1

nβ
+ 1−γ

n

∑n
i=1

(
L
ri

+ To

)
+ γTc. We wish to obtain the throughput

of node i. Identify the renewal reward and obtain the throughput of
node i.

7.15 Consider a 20-node WLAN. From Figure 7.18 obtain the collision
probability γ and hence the exponential backoff rate β. Assume that all
the STAs are associated at 11 Mbps. Using the analysis of Section 7.6,
obtain the per node TCP throughput.
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CHAPTER 8

Mesh Networks: Optimal Routing
and Scheduling

I n the previous four chapters we considered access networks. In this and the
next two chapters, we consider wireless mesh networks (WMNs) or wireless
multihop networks. In this chapter we will study the supporting of point-to-

point flows in the mesh networks. We consider the optimal routing of these flows
and scheduling of the transmissions on the wireless links.

Overview
In Section 8.1 we first describe the communication graph of a wireless net-
work deployed in a given geographical area. Constraints on the simultaneous
transmissions based on SINR, protocol-model, and the network graph are then
described. In Section 8.2, for a given set of allowable link activation vectors,
we obtain the network stability region, the set of end-to-end packet arrival rates
for which the queues in all the network nodes will be stable. In Section 8.3,
we consider the joint optimal routing of a set of end-to-end open loop packet
flows and the corresponding link scheduling. A static link schedule using graph
coloring techniques is derived. In Section 8.4 we develop the important dynamic,
queue-length based, backpressure algorithm for joint routing and transmission
scheduling on the links. This algorithm is optimal in the sense that it can stabilize
any stabilizable end-to-end arrival rate vector. The algorithm is a maximum weight
scheduling algorithm and the stability proof makes use of stochastic Lyapunov
functions. In Section 8.5 we consider end-to-end elastic traffic and, for a given
set of users, we obtain the jointly optimal routing of the packet flows and the
transmission schedule on the links. In this case, a utility function on the allocated
rate is defined for each user and the sum of the total utilities of all the users
is maximized. Using convex programming and Lagrangian duality we obtain
optimal joint packet flow rate allocation, routing, and link scheduling policies.
In this section, we also consider optimal scheduling of one-hop packet flows in
a slotted Aloha network. In the optimal algorithm the nodes update their trans-
mission probabilities using local information to maximize the sum of link utility
functions.
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8.1 NetworkTopology and Link Activation Constraints
In the networks that we considered in Chapters 4 through 7, the wireless nodes
(mobile hosts or STAs) had an explicit association with a base station or an
access point. In this chapter we begin considering networks in which there is no
such association between the wireless stations and any fixed infrastructure. Such
networks were introduced as wireless mesh networks (WMNs) in Chapter 1.

In WMNs, information transport services are built over a set of arbitrarily
located nodes, which are possibly mobile. Every node behaves both like a mobile
host and as a wireless router. There are many obvious applications for such
networks, such as providing communication services in emergency situations
like in areas affected by storms, floods, and earthquakes. A WMN can also
provide connectivity to fleets of vehicles operating in areas with no networking
infrastructure. Of course, there are also many military applications. In all these
applications, we can identify a set of point-to-point packet flows between the
nodes in the network with each packet flow having its own QoS requirement, for
example, a minimum throughput requirement and, possibly, an average end-to-
end packet delay requirement. In this chapter, we analyze the ability of a given
network to support a set of throughput requirements and the mechanisms to
support them.

Consider a wireless network of N nodes deployed in a two-dimensional area.
Let xi be the coordinate vector of the location of Node i. A wireless link (i, j),
i, j ∈ {1, 2, . . . , N} exists in the network if, in the absence of any other transmission
in the network, the transmission from Node i can be decoded by the receiver of j;
that is, the SNR for the signal from Node j is above the threshold, say β. From
Chapter 7, this also means that xi is in the decode region of the transmitter at xj.

A wireless network formed by the N nodes can be represented by a directed
graph G = (V, E) with the vertex set V representing the N nodes and the edge set
E representing the set of E wireless links in the network. In general, G is not a
fully connected graph and the network is a multihop wireless network; packets of
end-to-end flows may need to pass through one or more intermediate nodes.

Denote the transmitter and receiver of edge e ∈ E by Te and Re, respectively.
A simple model that often is used in obtaining E is to assume that the decode
region around transmitter i is a circle of radius ri; (i, j) ∈ E if di,j := ‖xi − xj‖ < ri.
Here ri is a function of the transmission power. A further simplification that is
often made is that ri = r for all i.

8.1.1 Link Activation Constraints
A multihop mesh network exploits spatial reuse; transmissions can occur simul-
taneously on links that are sufficiently separated in space. We now examine
the various models that are used in specifying the set of links that can have
simultaneous transmissions. We assume time-slotted networks; all nodes are syn-
chronized in time and time is divided into slots. New transmissions occur at the
beginning of a slot and all transmissions are completed at the end of the slot.
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The transmission rate on the links is assumed to be such that all packets fit into
a slot. All scheduling decisions are taken at the beginning of the slot and, if a
transmission is scheduled on a link in a slot, exactly one packet is transmitted in
the slot.

As we have just mentioned, the edges in G can be grouped into subsets such
that the edges in a subset can be active in the same slot; the receiver of each active
edge can decode the transmission from the transmitter of the edge. When such a
set, say S, is activated, one packet can be sent across each edge in S. These sets
must respect any radio operation constraints and interference constraints. We will
use the term link activation set to refer to such a set. Let us now consider some
models that usually are used to obtain the link activation sets of a network.

Recall from Chapter 2 that the receiver has a minimum SINR requirement to
decode the received signal. Let S⊂E denote a set of links along which transmissions
can occur in the same slot. For e ∈ S, let PTe be the transmit power used by Te.
Let L(x, y) be the path loss function between a transmitter at x and a receiver at
y, N0 the thermal noise spectral density at the receivers, and W the bandwidth
allocated to the network. For all e ∈ S, at the receiver Re, the following minimum
SINR requirement should be satisfied.

PTe L(xTe , xRe )
WN0 + γ

∑
e1∈S
e1 �=e

PTe1
L(xTe1

, xRe )
≥ β (8.1)

γ is called the orthogonality factor and it satisfies 0 ≤ γ ≤ 1. If the signals are all
perfectly orthogonal γ = 0 and there is no interference. γ = 1 corresponds to the
physical model. The simplest model for L(x, y) is the far field attenuation where we
assume that the attenuation is inversely proportional to a power of the distance;
that is, L(x, y) = 1

‖x−y‖α , where α is called the path loss exponent. See Chapter 2
for a more detailed discussion on radio propagation models.

We can also specify the link activation sets using geometric constraints.
A simple criterion is to specify that for each e ∈ S, Re should be further from
all the other transmitters in S than it is from Te. Intuitively, this is to ensure that
the interference is lower than the received signal power. For a given Δ > 0, this
can be specified as follows. For all e, e1 ∈ S and e1 �= e

‖xTe1
− xRe‖ ≥ (1 + Δ)‖xTe − xRe‖

Here Δ specifies a guard region that should not contain another transmitter. This
is called the protocol model and is illustrated in Figure 8.2.

A third type of constraint could be those derived from the graph G. Once
again, there are many possibilities. The simplest constraint is to ensure that for
all e ∈ S, Re should not be receiving from another node and Te should not be
transmitting to another node. This is called the primary conflict constraint. For
example, in Figure 8.1, this means that when A is transmitting to B, A should
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Figure 8.1 Example of a network graph. Vertices represent the nodes in the network.
An undirected edge corresponds to directed edges in both directions. For example,
undirected edge AB implies directed edges AB and BA; edges represent the half duplex
wireless links.

(1+D)r
r

A
D

C

E

B

Figure 8.2 Illustrating the guard zone of the protocol model. When B is transmitting
to A, Nodes C, D and E, should not be transmitting simultaneously. C can decode the
transmission from B but D cannot decode when no other node is transmitting.
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not be transmitting to any other node and B should not be receiving from any
other node; when there is communication along directed edge AB, there should
be no communication along directed edges AD, AC, AH, AI, DB, IB, and FB. An
alternative constraint is as follows. For all e ∈ S, no other neighbor (in-neighbor if
G is a directed graph; if (i, j) is a directed edge, then i is the called in-neighbor of j)
of Re should be transmitting. For example, in Figure 8.1, when A is transmitting
to B, nodes D, I, and F should not be transmitting at the same time. This is also
called the receiver conflict constraint. A third type of constraint is the transmitter-
receiver conflict constraint. Here, in addition to the receiver conflict constraint,
we also add the constraint that the neighbors of Te should not be simultaneously
transmitting. As an example, under this constraint, for the network of Figure 8.1,
when A is transmitting to B, in addition to D, I and F, C and H should also not
transmit. This is useful in IEEE 802.11 like protocols (see Chapter 7) where the
transmitter expects a link layer acknowledgment from the receiver after the packet
has been transmitted.

In general, a link activation set S can be represented by an E-dimensional
vector of nonnegative rates, with re specifying the link layer data rate for the edge
e when the set S is active. The modulation scheme can be adapted to suit the
interference (from the active links) and the noise. In much of this chapter we will
assume only one transmission rate on all the links. This means that for a desired
bit error rate and a given modulation scheme (this fixes the link transmission rate),
the SINR requirement is given by (8.1). In this case, the link activation set only
specifies whether a link is allowed to transmit or not allowed to transmit and it
suffices to describe S using an E-dimensional 0/1 column vector [μ1, μ2, . . . , μE]T .
We will work with this model in the rest this chapter. S will denote the set of all
possible link activation vectors, including the all-zero vector, and will be called
the link activation constraint set of the network.

If the network topology is changing with time, S could also be a function
of time. In this chapter we will consider only static wireless networks; the
geographical location of the nodes is assumed fixed.

8.2 Link Scheduling and Schedulable Region
Let St denote the link activation vector for slot t. Of course, St ∈ S for t =
0, 1, 2, . . . . A sequence {St}t≥0 is called a schedule. The schedule in a network
could be static (predetermined) or it could be dynamic. Static scheduling is usually
a periodic schedule and is analogous to a time division multiplexed (TDM) link.
A set of T slots form a frame and St is defined for 0 ≤ t ≤ (T − 1). The sequence is
repeated in every frame. In dynamic scheduling a schedule is decided for each slot.
The schedule could be computed in a centralized manner in which a central entity
decides the transmission schedule and distributes it to all the nodes in the network.
The schedule could also be computed in a distributed manner in which each node
executes a distributed algorithm that will determine the schedule. A centralized
dynamic scheduling algorithm would typically use the complete network topology
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information and the queue length information at every node at the beginning of
every slot. The scheduling decision for a slot could use the current state of the
network and, possibly, the recent history.

Consider an arbitrary schedule Π. Let φS(Π), S ∈ S, represent the fraction of
time that the link activation set S is used in the schedule Π; that is,

φS(Π) := lim
τ→∞

1
τ

τ−1∑
t=0

I{St=S} (8.2)

where I{X} is the indicator function for the event X. Define 	(Π) to be the
|S|-dimensional vector with elements φS(Π). Schedules for which the limit in (8.2)
exists for all S ∈ S will be called ergodic schedules and we will only consider such
schedules. In this case, 0 ≤ φS(Π) ≤ 1 and

∑
S∈S φS(Π) = 1.

We can also construct a randomized schedule; St could be chosen according
to a probability distribution. In this case, the schedule can be thought of in terms
of the probabilities φS, S ∈S. In fact, given a probability vector 	̃ on S, it is easy
to see that we can obtain a schedule by simply choosing activation set S with
probability φS in a slot independently of the activation set chosen in all the other
slots. This is a static randomized schedule. Note that in this case 	 = 	̃.

The packet-flow capacity of an edge e ∈ E is the maximum rate at which
packets can flow along the edge. For an ergodic schedule, this capacity can be
obtained as follows. Consider a schedule Π and for this schedule define Ce(Π) as
follows.

Ce(Π) :=
∑

{S:e∈S}
φS(Π)

Ce(Π) is the long term fraction of time that transmissions are scheduled on edge e.
Thus Ce(Π) is the maximum rate at which packets can flow along edge e under the
ergodic schedule Π; that is, it is the packet-flow capacity of edge e in the ergodic
schedule Π; C(Π) := [Ce(Π)]{e∈E} is the vector of edge capacities for schedule Π.
This means that to transport packet flows in the network using schedule Π, the flow
rate allocated to edge e can be no more than Ce. Thus, for a given schedule, we
can think of the wireless network as a capacitated network, which we represent by
G(V, E , C(Π)). Thus, unlike wireline networks where the link capacities are fixed
and given, in wireless networks they depend on the schedule. For a given network
graph G(V, E) and the set of possible link activation vectors S, the set of possible
schedules Π defines the set of possible link capacities. The schedule is therefore an
important variable in the optimization of a wireless network.

Let us now characterize the set of edge capacity vectors that can arise from all
possible ergodic schedules. Let C := [Ce]{e∈E} be a vector of link capacities realized
by an ergodic schedule. Consider a two-link network shown in the top part of
Figure 8.3. In a slot only one of the two links can be activated; S1 = [1, 0] and
S2 = [0, 1]. Of course [0, 0] is also possible. Consider a requirement that capacities
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Link
Capacity
Region

(0,1)

(1,0)

Link 1

Link 2

Link 2Link 1

Figure 8.3 Illustrating the link capacity region for the two link network shown in the
top part of the figure.

on the two links must be C1 and C2 packets per slot, respectively. Assume C1
and C2 are rational numbers. We can then express C1 = m1/m and C2 = m2/m
for integers m1, m2, and m, and construct a periodic schedule with a frame of m
slots in which S1 is activated in m1 slots and S2 is activated in m2 slots. Notice
that if (m1 + m2) > m then the link capacity requirement cannot be satisfied.
The requirement that C1 and C2 be rational was for convenience of illustration.
In Problem 8.1 we devise a mechanism to allocate capacity to a link that is an
irrational number.

In the previous example, observe that an ergodic schedule can be constructed
to achieve any link capacity that satisfies

C1 ≥ 0, C2 ≥ 0 and C1 + C2 ≤ 1 (8.3)

This means that any capacity vector that is less than or equal to the convex
combination of [1, 0] and [0, 1] can be achieved by an ergodic schedule. Thus
we can say that the region in R2 specified by (8.3) is the link capacity region for
the network. This is illustrated in Figure 8.3.

Generalizing this notion, for a given S, and a schedule Π,

C(Π) =
∑
S∈S

φSS

Thus C(Π) is a convex combination of the elements of S. If we now consider the
set of all possible ergodic schedules, we get the set of all possible link capacities.
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This in turn is the set of all convex combinations of S∈S. This is the convex hull
of S and is denoted by Co(S). We can thus state the following result.

Lemma 8.1
For a wireless network with link activation constraint S, the set of link capacities
C that can be achieved by an ergodic schedule is the same as Co(S). �

We reiterate that any link-capacity vector that is in Co(S) can be achieved by a
stationary randomized schedule.

We have just described the service capacity of the links in the wireless network
that can be achieved by a schedule. We next describe the arrival rates of packets
that can be stabilized by these service rates.

8.2.1 Stability of Queues
Consider a discrete time packet queueing system. Assume that the server capacity
in each slot is a random sequence. Let A(t) be the number of packets that arrive in
slot t, μ(t) the server capacity (the number of packets that the server could have
served) in slot t, and Q(t) the number of packets in the queue at the beginning of
slot t, just after the arrival instant. The number of departures in slot t would be
less than or equal to μ(t). This queue is unlike that in a traditional queueing system
analysis where μ(t) is assumed constant for all t. In fact, μ(t) could even depend
on arrivals and queue occupancies up to time t. Similarly, A(t) could also depend
on the queue occupancies up to time t. We need to consider this generalization
because, in a wireless mesh network, the arrival and service processes of packets
at the nodes depends on the schedule and would have such dependencies.

Let A(t) ≤ Amax for all t ≥ 0 and limT→∞ 1
T

∑T−1
t=0 E(A(t)) = λ. Similarly, let

μ(t) ≤ μmax for all t ≥ 0 and limT→∞ 1
T

∑T−1
t=0 E(μ(t)) = μ. λ and μ correspond to

the arrival rate and service rate, respectively, for the queue. Let H(t) represent the
history of the queue up to and including time t; that is, the sequence of arrivals
into, and service from, the queue up to time t. Knowing A(t) and μ(t) implies
knowing Q(t). We also impose the following restriction on the arrival and service
processes. For any ε1 > 0, there exists an interval of T slots such that for every t0
the following property is satisfied.

E

⎛
⎝ 1

T

t0+T−1∑
t=t0

A(t) | H(t0)

⎞
⎠ ≤ λ + ε1

E

⎛
⎝ 1

T

t0+T−1∑
t=t0

μ(t) | H(t0)

⎞
⎠ ≥ μ − ε1 (8.4)

This is not a very restrictive property and is satisfied, for example, if A(t) (and
μ(t)) is an i.i.d. sequence. Informally, this means that the conditional time average
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of the arrival and service rates have the same limit as the unconditional rates. We
are imposing a restriction on how this convergence to the limit occurs.

Let us assume that arrivals occur at the beginning of the slot, departures at
the end of the slot, and the queue is observed at the beginning of the slot, just after
the arrival instant. This is shown in Figure 8.4. We can see that Q(t) evolves as
follows.

Q(t + 1) = max(Q(t) − μ(t), 0) + A(t + 1)

For the queue to provide useful service, the queue should be stable. Informally,
stability of Q(t) means that it does not grow to infinity with time. There are
many ways in which the notion of stability can be formalized. For example, if
Q(t) evolves as a Markov chain, then Q(t) is stable if it is positive recurrent (see
Appendix D). In this chapter, we will use the following notion. Q(t) is said to be
strongly stable if

lim sup
T→∞

1
T

T−1∑
t=0

E(Q(t)) < ∞ (8.5)

Let us first obtain a sufficient condition for Q(t) to be strongly stable. Recall our
analysis of the stability of the s-Aloha protocol in Chapter 7 using the drift from
a state. There the drift from a state was defined as the conditional expectation of
the one-step change in the state. We generalize that notion and define a Lyapunov
drift (see Appendix D). Define a nonnegative function L(·) from the integers (the
values that Q(t) can take) to the reals that are increasing in its argument; L(Q(t)) :
Z+ → R+. Z+ is the set of nonnegative integers and R+ is the set of nonnegative
reals. Let 0 < B < ∞ and ε2 > 0 be constants such that

E(L(Q(t + 1)) − L(Q(t)) | Q(t)) ≤ B − ε2Q(t) (8.6)

Possible Departure Instants

t – 1

Q(t +1)Q(t )Q(t – 1)

A(t )A(t – 1) A(t +1)

t – 2 t + 1 t + 2t

Figure 8.4 Observing the queue. Arrivals occur at the beginning of the slot, departures
at the end of the slot, and the queue is observed after the departures at the end of the
slot.
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for all timeslots t. Taking expectations, we obtain the following.

E(L(Q(t + 1))) − E(L(Q(t))) ≤ B − ε2E(Q(t))

Summing over slots t = 0, . . . , T − 1 we get

E(L(Q(T))) − E(L(Q(0))) ≤ BT − ε2

T−1∑
t=0

E(Q(t))

Dividing by T, rearranging the terms, and noting that L(Q(T)) ≥ 0 we get

1
T

T∑
t=0

E(Q(t)) ≤ B
ε2

+ 1
Tε2

E(L(Q(0)))

Taking lim sup as T → ∞ (see Appendix B for definition of lim sup), we get

lim sup
T→∞

1
T

T∑
t=0

E(Q(t)) ≤ B
ε2

< ∞

This means that Q(t) is strongly stable if (8.6) is satisfied; that is, Q(t) is strongly
stable if we can find a scalar function of the state space for which the expected
drift in a slot is strictly negative for all large queue lengths and is finite for the
remaining queue lengths. The negativity requirement essentially means that queue
lengths are being pushed back towards the lower values when it becomes too large.
The finiteness ensures that on the average, the process does not jump to very large
values in one step when the queue lengths are small.

Now consider the queue at timeslot t0. Along the lines of the one-slot
Lyapunov drift defined earlier, we can define a T-slot Lyapunov drift as follows.

E(L(Q(t0 + T)) − L(Q(t0)) | Q(t0))

The arguments leading to (8.6) being a sufficient condition for stability of Q(t)
can be extended to obtain the following T-slot stability condition. If there exists
a T such that E(Q(t)) < ∞ for t = 0, . . . T − 1, and there exist constants B > 0 and
ε3 > 0 such that

E(L(Q(t0 + T)) − L(Q(t0)) | Q(t0)) ≤ B − ε3 Q(t0) (8.7)

then Q(t) is strongly stable. (8.7) is essentially generalizing (8.6) to allow a negative
drift over T slots rather than over one slot.

We will need the following identity in our analyses. Let W , X, Y, and Z be
four nonnegative numbers.



8.2 Link Scheduling and Schedulable Region 253

If W ≤ max{X − Y, 0} + Z (8.8)

then W2 ≤ X2 + Y2 + Z2 − 2X(Y − Z) (8.9)

To show this, we need to consider two cases. First, consider the case of (X−Y) > 0.
For this case,

W2 ≤ (X − Y + Z)2

= X2 + Y2 + Z2 − 2X(Y − Z) − 2YZ

Since Y and Z are nonnegative 2YZ>0 and (8.9) follows. Now consider the second
case of (X − Y) ≤ 0.

W2 ≤ Z2

≤ Z2 + ((X − Y)2 + 2XZ)

= X2 + Y2 + Z2 − 2X(Y − Z)

The second inequality follows because ((X − Y)2 + 2XZ) is the sum of two
nonnegative quantities.

Let us now get back to analyzing Q(t). Our objective is to obtain a condition
on A(t) and μ(t) that will make Q(t) stable. Consider the evolution of Q(t) over
T slots. An upper bound on Q(t0 + T) can be obtained as follows. Assume
that in slots t0, . . . , t0 + T − 1, we serve only packets that were present at t0.
In a slot at most μ(t) packets depart. Therefore Q(t0) can decrement by at
most

(∑t0+T−1
t0 μ(t)

)
packets in T slots. All packets that have arrived in slots

t0 + 1, . . . t0 + T will be in the queue at the beginning of timeslot (t0 + T). We thus
have

Q(t0 + T) ≤ max

⎛
⎝Q(t0) −

t0+T−1∑
t=t0

μ(t), 0

⎞
⎠ +

t0+T∑
t=t0+1

A(t)

We will use the Lyapunov function L(Q(t)) = Q2(t). Using (8.8) and (8.9), and
simplifying, we get

Q2(t0 + T) ≤ Q2(t0) + T2μ2
max + T2A2

max

− 2TQ(t0)

⎛
⎝ 1

T

t0+T−1∑
t=t0

μ(t) − 1
T

t0+T∑
t=t0+1

A(t)

⎞
⎠
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Taking conditional expectation on Q(t0) we get

E(Q2(t + T) − Q2(t0) | Q(t0)) ≤ T2μ2
max + T2A2

max

− 2TQ(t0)

⎛
⎝E

⎛
⎝ 1

T

t0+T−1∑
t=t0

μ(t) | Q(t0)

⎞
⎠ − E

⎛
⎝ 1

T

t0+T∑
t=t0+1

A(t) | Q(t0)

⎞
⎠

⎞
⎠

(8.10)

Let λ<μ, (i.e., μ = λ + ε4 where ε4 > 0). For ε3 > 0, if we choose ε1 = ε3
4T in (8.4)

and ε4 = ε3
T we see that there exists a T such that

E

⎛
⎝ 1

T

t0+T−1∑
t=t0

μ(t) | Q(t0)

⎞
⎠ − E

⎛
⎝ 1

T

t0+T∑
t=t0+1

A(t) | Q(t0)

⎞
⎠ ≥ ε3

2T

From this and writing B = T2μ2
max + T2A2

max in (8.10), we see that (8.7) is satisfied.
Thus λ < μ ensures that Q(t) is stable.

It can also be shown that if λ > μ then the queue is unstable. An informal
argument is that the rate at which packets exit the queue is lower than the rate at
which they arrive and eventually the queue will build up.

With this background on the stability of a single queue, we now consider the
stability of the network of queues in the wireless network.

8.2.2 Link Flows and Link Stability Region
Consider a WMN in which there are J users indexed by j, 1 ≤ j ≤ J, each with their
end-to-end packet flows that need to be transported by the network. (In the rest of
this chapter, the terms user, flow, and session will be used synonymously.) User j
has source node sj and destination node dj. We will assume that the packet flows are
open loop flows; that is, they have an intrinsic arrival rate (see Chapter 3). Let Aj(t)
denote the number of new packets of User j arriving at node sj in slot t. We assume
that Aj(t) are i.i.d. for each j, E(Aj(1)) = λj, and E((Aj(1))2) < ∞, for 1 ≤ j ≤ J. λj is
the packet arrival rate of User j in packets per slot. Let λ = [λ1, λ2, . . . , λJ]T be the
column vector of the packet arrival rates of the J users. Let us assume that each
packet can be transported to its destination over any route in the network that
begins at the source and ends at the destination.

A routing policy determines the sequence of links to be traversed by the
packet. We will be interested in ergodic routing policies, which route the packets
such that we can define an arrival rate for the packets that arrive at the transmitting
node of a link. Thus, for a given λ, the routing policy determines the rate at which
packets arrive at the transmitter of a link. Now consider a routing policy R that
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routes the user flows with arrival rates λ such that fe,j(R) is the rate at which
packets of User j are to be transmitted on edge e. Define

f(R, j) := [f1,j(R), f2,j(R), . . . fE,j(R)]T

to be the E-dimensional column vector indicating the rate of User j on link e,
1 ≤ e ≤ E. fe,j(R) also depends on λ but we do not express the dependence expli-
citly. Let

f̂(R) :=
J∑

j=1

f(R, j) = [f̂1(R), f̂2(R), . . . , f̂E(R)]T

be the column vector of total flows on the links; f̂e(R) is the total flow on link e
under routing policy R. Also define

f(R) :=
[
f(R, 1)T , f(R, 2)T , . . . , f(R, JT )

]T

This is simply a column vector whose first E elements specify the link-flow vector
for User 1, the next E elements specify the link-flow vector for User 2, . . . , and
the last E elements specify the link-flow vector for user j. Thus, it is a column
vector of dimension JE × 1. To simplify the notation, many a time, we will drop
the reference to R when referring to the flow vectors; the dependence will be
implicit.

Since we are considering a multihop network, and also since packet arrivals
are random, nodes will need to store packets of different users before forwarding
them on the next hop toward the destination. Let Qi,j(t) denote the number of
packets of User j that are in the queue at node i at the beginning of slot t. Let
Q(t) := [Q1,1(t), . . . , Q1,J(t), . . . , QN,J(t)]T . We say that Q(t) is strongly stable if
Qi,j(t) for 1 ≤ i ≤ N and 1 ≤ j ≤ J are strongly stable.

The arrival rate of packets of User j to be transmitted on link e will be
fe,j(R). The total arrival rate of packets at node Te to be transmitted on link e

is f̂e(R) = ∑J
j=1 fe,j(R). Let Ce,j(Π) be the capacity allocated to packets of User j

on link e. Let Λ1 denote the set of all λ for which there exists a routing R and a
schedule Π such that

fe,j(R) < Ce,j(Π) (8.11)

Similarly, let Λ̄1 denote the set of all λ for which there exists a routing R and a
schedule Π such that

fe,j(R) ≤ Ce,j(Π) (8.12)

It can be shown that Λ̄1 is the closure of the set Λ1.
Since the set of feasible link capacities are in Co(S), a feasible routing policy

will result in link flows that are in Co(S).
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Let P denote a routing and scheduling policy, a set of rules that determines
the routing and scheduling of the packets in each slot for a realization of a random
process of packet arrivals into the network. Let Λ denote the set of all λ for which
there exists a P such that Q(t) is stable; Λ is called the schedulable region for the
network.

It can be shown that if λ /∈Λ̄1, then Q(t) is unstable, i.e., Λ⊂Λ̄1. Informally,
this is because if λ /∈ Λ̄1, then for every P, there will be at least one link,
say e1, for which the arrival rate of User j packets is strictly greater than the
capacity allocated to User j on the link (i.e., fe1,j(P) > Ce1,j(P) for all P). Hence,
at Node Te1 , the queue of User j packets that are to be transmitted on link e1
will build up leading to instability of QTe,j, and hence of Q(t). In Section 8.4 we
will develop the maximum weight routing and scheduling algorithm, for which
the network will be stable if λ ∈ Λ1. This implies Λ1 ⊂ Λ. We can thus say the
following.

Lemma 8.2
If λ ∈ Λ1, then Q(t) is schedulable from the maximum weight schedule and
hence Λ1 ⊂Λ. If λ /∈ Λ̄1, then Q(t) is unstable and hence Λ ⊂ Λ̄1. Thus,

Λ1 ⊂Λ⊂Λ̄1
�

Exercise 8.1
Show that Λ is a convex set, and if λ ∈ Λ then for any λ′ such that λ′

j < λj,
for all j, λ′ ∈Λ.

Given λ and a schedule Π (and hence C(Π)), the problem of determining
the optimal link flows fe,j is well known and is called the multicommodity flow
problem. (The flow from each user is treated as a distinct commodity; hence the
name.) There are many candidates for optimality: maximize the minimum spare
capacity on the links, minimize the maximum flow allocated to a link, minimize
the average delay, and so on. Alternatively, given λ and R for which a schedule
exists, it may be possible to obtain the schedule from graph coloring techniques.
We will discuss one such technique in the next section. The most general case, of
course, is to find both simultaneously. In the rest of this chapter we will consider
three basic kinds of problems in which we need to obtain R and Π simultaneously.

• First, we consider the case of a given λ for which we obtain the routing
and a static scheduling scheme.

• Second, we consider the case when λ is unknown but we assume that
λ ∈ Λ1. For this we devise a dynamic routing and scheduling algorithm
that is guaranteed to stabilize the network.
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• Finally we consider elastic flows in which User j will define a utility
function on λj. We will choose λ∈ Λ̄1 to maximize the sum of the utility
functions of all the users, over all possible R and Π and also derive the
corresponding optimal R and Π.

8.3 Routing and Scheduling a Given Flow Vector
In this section we consider the scheduling and routing of a given flow vector λ

in a network with the primary conflict constraint. The packets of User j arriving
at Node sj are routed over multiple paths toward the destination dj. The routing
problem will determine the fraction of User j packets that will be transported on
each of the edges. The sum of such fractions from all the flows on an edge is
the flow assignment for the edge. Recall that the edge flows should be in Co(S).
The cardinality of S is usually very large and it is hard to check for f̂ ∈ Co(S). We
therefore obtain a sufficient condition that ensures f̂ ∈ Co(S) and use this sufficient
condition as a constraint in a multicommodity routing problem formulation.

Let us first see how to find the elements of S. Since determining S is hard,
we will just obtain a subset of S. Recall that under the primary conflict constraint,
in a slot, a node can be either receiving from one transmitter or transmitting to
one receiver. Edges that have a node in common are called adjacent edges—if two
edges e1 and e2 are adjacent then one or more of the following are satisfied:

Te1 = Te2 Te1 = Re2

Re1 = Re2 Re1 = Te2

Color the edges of G using a minimum number of colors 1, 2, . . . , such that no
two adjacent edges have the same color. Two edges that have the same color
satisfy the primary conflict constraint and can transmit simultaneously. Thus, a
link activation vector can be obtained by doing the following for each color c. If
edge e is colored c, then set μe = 1, otherwise set μe = 0. Each color gives us one
activation vector. Using fewer colors corresponds to higher spatial reuse. Let χ(G)
be the number of colors used. The minimum χ(G) is called the edge-chromatic
number of G. A flow of at least 1

χ(G) is possible on each link.
(
See Problem 8.3 to

see how there could be some links with capacity more than 1
χ(G) .

)
Thus, a total

flow allocation of less than 1
χ(G) on all the links is a sufficient condition for the

schedulability of a flow assignment. We can thus formulate an optimal routing
problem with this capacity constraint. In this scheme no link gets a capacity
more than 1

χ(G) . There will surely be some λ ∈ Λ1 that may require that the
flow on some of the edges be greater than 1

χ(G) . Thus this capacity constraint
on the links will not be able to route and schedule all λ ∈ Λ1. Further, it is
very restrictive in its allocation of link capacity. We therefore look for alternate
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sufficient conditions for achievable link flows. Also note that there is no unique
edge coloring. Thus another coloring of the graph would give us another set of
link activation sets. To obtain S we need to find all possible colorings of G. This
is, in general, a hard problem.

For now assume that we know the edge flows. Let f̂e be the required total
flow on edge e; the vector of link flows will be denoted by f̂. We will first consider
the scheduling of the links into a static schedule to satisfy a specified link flow
vector f̂.

Let Nin(v) and Nout(v), respectively, denote the set of in-neighbors and set of
out-neighbors (if there is an edge (i, j) in G, i is the in-neighbor of j and j is the
out-neighbor of i) of node v, and N (v) the set of neighbors of v:

Nin(v) = {v1 : Te = v1 and Re = v}
Nout(v) = {v1 : Re = v1 and Te = v}

N (v) = Nin(v) ∪ Nout(v)

From the primary conflict assumption, in a slot, a node can be transmitting on at
most one edge or receiving on at most one edge but not both. Hence, it is necessary
that for all e ∈ E , f̂e satisfies the following inequality.

∑
e:Te=v

f̂e +
∑

e:Re=v

f̂e ≤ 1 (8.13)

This is identical to the clique constraint for resource allocation that we discussed
in Chapter 4. The resource here is a timeslot; in every clique of the graph G, in
any timeslot, at most one node can be active in a slot. Note that (8.13) is not a
sufficient condition.

To achieve a specified f̂, we will assume that all f̂e are rational and find an
integer τ such that we can express all f̂e as

f̂e = we

τ

where we is also an integer. This essentially says that we can achieve a link flow
vector f̂ with a periodic schedule using a frame of τ slots, and, in each frame, edge
e is activated at least we times. Let us now see how to construct such a schedule. In
the process we will be able to obtain sufficient conditions for f̂ to be schedulable
that will be easy to use as a constraint in an optimization problem.

We will once again use graph coloring techniques to obtain the schedule. First
convert the network graph G into a scheduling multigraph G1(V1, E1) as follows.
A multigraph is a graph in which there can be multiple edges between two nodes.
The vertex set of G and G1 will be the same; V1 = V. Corresponding to every edge
e ∈ E , E1 will have we edges (Te, Re).
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Let D denote the maximum degree, Dout the maximum out-degree and Din
the maximum in-degree of G1;

D = max
v

∑
e∈N (v)

we

Dout = max
v

∑
e∈Nout(v)

we

Din = max
v

∑
e∈Nin(v)

we

Now color the edges of G1 using a minimum number of colors 1, 2, . . . , using the
adjacency constraint that we used earlier. Let χ(G1) denote the chromatic number
of the multigraph G1.

Let us now interpret the colored graph. Like in the example of the two-link
network of the previous section, consider a frame of χ(G1) slots. For 1 ≤ t ≤
χ(G1), let the edges that are colored t transmit in slot t. Consider any node v in
the network. From the coloring constraint, we see that none of the incoming or
outgoing edges of v have the same color. Hence, in a slot, node v will either be
receiving from a node, or transmitting to a node, or neither. Thus the primary
conflict constraint is satisfied by the schedule. From this we can conclude that a
link flow vector f̂ is schedulable if χ(G1) ≤ τ. This is because the activation of
every color over a frame of length χ(G1) achieves f̂e ≥ we

τ
.

For a given G1, let us now characterize χ(G1). Since the edges that have a
vertex in common cannot have the same color, χ(G1) is lower bounded by the
maximum degree of G1; χ(G1) ≥ D. It can also be shown that χ(G1) is upper
bounded by 3D

2 . We thus have

D ≤ χ(G1) ≤ 3D
2

(8.14)

We can now use this discussion to determine a sufficient condition for f̂ to
be schedulable on G. f̂ is schedulable if τ ≥ χ(G1). This is the same as saying that
the following be satisfied for all v ∈ V.

3
2

⎛
⎝ ∑

e:Te=v

we +
∑

e:Re=v

we

⎞
⎠ ≤ τ

Divide both sides of this inequality by τ and observe that w(e)
τ

is the flow rate on
edge e in packets per slot. We can therefore say that if for all v ∈ V,⎛

⎝ ∑
e:Te=v

f̂e +
∑

e:Re=v

f̂e

⎞
⎠ <

2
3
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then f̂ is schedulable. This condition implies that a flow assignment in which
each node is active (receiving or transmitting) for at most two-thirds of the slots
is achievable. We thus have a sufficient condition for a flow assignment f̂ to be
schedulable and also a mechanism to obtain this schedule.

Comparing with (8.13), we have a gap between the necessary and sufficient
conditions for the schedulability of f̂. In the rest of the discussion we will use the
sufficient condition to determine the link flow allocation. We will comment on
reducing the gap between necessary and sufficient conditions in practice later in
the section.

We are now ready to formulate the optimal route assignment problem.
We assume that the packets from each flow may be split arbitrarily across all
possible paths between the source and the destination. This assumption allows a
simple formulation. An alternative is to define a set of paths for User j and then
split the flow across these paths, but we will not pursue that.

We need some more notation. The network graph G can be summarized
using its node-link incidence matrix A. A is an N × E matrix with a row for each
node and a column for each edge. Let Ai,e represent the (i, e)-th element of A. Let
Ai,· represent the i-th row of A and A·,e represent the e-th column of A. Then, the
column corresponding to edge e has the following entries:

Ai,e =

⎧⎪⎨
⎪⎩

+1 if i = Te

−1 if i = Re

0 otherwise

Consider the product Af(j). The product is a column vector with N elements. The
i-th element of this vector is the product of the row Ai,· and the vector f(j). It can
be seen that Ai,·f(j) is the net outgoing traffic of User j at Node i.

At any node i other than sj and dj, the net outgoing traffic corresponding
to User j will be zero because such a node neither sources nor sinks packets of
User j. The same argument shows that when i = sj, the product Ai,·f(j) should be
λj, and when i = dj, the product Ai,·f(j) should be −λj. These flow conservation
equations are

Ai,·f(j) =
⎧⎨
⎩

λj if i = sj
−λj if i = dj

0 otherwise

If we now consider all the rows of A together, then we have the following compact
equation:

Af(j) = v(j) (8.15)

where v(j) is an N × 1 vector with the following entries:

vi(j) =
⎧⎨
⎩

λj if i = sj
−λj if i = dj

0 otherwise
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From what we just saw, v(j) is a vector specifying the amount of net User j traffic
from each node in the network.

Equation (8.15) holds for all j, 1 ≤ j ≤ J. Thus, there are J equations of
the form of (8.15), one for each j = 1, 2, . . . , J. We can obtain a single compact
equation that expresses the J equalities together. Consider the matrix

A =

⎡
⎢⎢⎢⎣

A 0 0 · · · 0
0 A 0 · · · 0
...

...
...

. . .
...

0 0 · · · 0 A

⎤
⎥⎥⎥⎦

There are J block-elements in each row and J block-elements in each column. A is
the node-link incidence matrix defined earlier and is of dimension N × E. 0 is also
a matrix of dimension N × E. Hence A is a matrix of dimension JN × JE.

With these definitions, consider the equation⎡
⎢⎢⎢⎣

A 0 0 · · · 0
0 A 0 · · · 0
...

...
...

. . .
...

0 0 · · · 0 A

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

f(1)
f(2)

...
f(J)

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

v(1)
v(2)

...
v(J)

⎤
⎥⎥⎥⎦ (8.16)

Since v(j) is a vector of dimension N × 1 for each j ∈ {1, 2, . . . , J}, the vector on the
right-hand side is of dimension JN × 1. This is what we expect when a JN × JE
matrix is multiplied with a JE × 1 vector. Equation (8.16) is the compact flow
conservation equation we were looking for. Clearly, it is nothing but J equations
of the form Af(j) = v(j), with 1 ≤ j ≤ J.

Now consider any node in the network. Recall from our earlier discussion
that for a feasible routing, if the sum of all flows into and out of a node is less than
2/3 packets per slot, then the link-flow assignment is schedulable. Let ρ denote an
N element column vector with every element being equal to 2/3. ρ is analogous to
the capacity vector of a multicommodity flow problem or the capacity vector of
a routing problem of wireline networks. However, note that unlike in traditional
routing problems, the capacity is defined in terms of the nodes and not in terms
of the links. Let

ψ(j) = |A| f(j) = [ψ1(j), ψ2(j), . . . ψN(j)]T

where |A| is obtained by taking the magnitudes of the corresponding elements of
A. Notice that ψ(j) is a N × 1 column vector and ψi(j) denotes the sum of the
incoming and outgoing rates of User j at Node i. Define

	 :=
J∑

j=1

ψ(j) =
J∑

j=1

|A| f(j) = [φ1, φ2, . . . φN]T

We see that φi is the sum of the incoming and outgoing flows at node i.
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The vector of spare node-capacities, denoted by z, is given by

z = ρ − 	

Let z := min1≤i≤N zi be the smallest spare node-capacity corresponding to a given
feasible routing. Then, the following inequality holds:

	 ≤ ρ − z1

where 1 is a column vector of N elements, all of which are 1.
For a given network and a set of end-to-end flow rate vectors of the J users,

there may be many feasible routings. To choose one routing from this set, we need
to define an objective function and then choose the routing that optimizes this
objective function. There are many objective functions possible. Let us define the
objective function as the quantity z earlier; the objective function is the smallest
spare capacity at a node resulting from a routing. Then, an optimal routing would
be that which maximizes the smallest spare capacity. Defining an optimal routing
in this way is reasonable because any node in the network has a spare capacity
of at least z. This increases the chance that a future demand between any pair of
nodes in the network would find sufficient free capacity. In other words, we avoid
routings that lead to a bottleneck node with very little spare capacity. Further, this
objective promotes a balanced utilization of capacity and does not create hot spots.

Putting together all these elements, we have the following optimization
problem:

max z

subject to

⎡
⎢⎢⎢⎣

A 0 0 · · · 0
0 A 0 · · · 0
...

...
...

. . .
...

0 0 · · · 0 A

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

f(1)
f(2)

...
f(J)

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

v(1)
v(2)

...
v(J)

⎤
⎥⎥⎥⎦ (8.17)

J∑
j=1

|A| f(j) + z · 1 ≤ ρ (8.18)

f(j) ≥ 0, 1 ≤ j ≤ J, z ≥ 0

We can see that this is a linear program, with the variables being f(j), 1 ≤ j ≤ J,
and z. The objective is a linear function of the variables, with z being the sole
variable determining its value. This is the final form of the optimization problem
that defines the optimal routing. Since this is a linear program, efficient algorithms
for computing its solution are available and one can actually obtain the optimal
routing. We will not discuss the solution technique.
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Discussion

1. If the linear program results in a solution in which the flow allocation to
some of the nodes is not rational, we will have to round it to the next
rational number. Further, this method will not be able to route and schedule
all λ ∈ Λ1.

2. Recall that there is a significant gap between the sufficient and necessary
conditions for a set of node flows to be feasible. Also, from Problem 8.3
we know that link flows greater than that derived from the sufficient
condition can be supported. Thus it has been advocated that one could use
ρ = [1, . . . , 1] rather than ρ = [2/3, . . . , 2/3]. In this case, it is possible that
the clique constraint is not satisfied. Thus, this is only a heuristic and does
not guarantee a flow allocation for which a schedule can be obtained.

3. The optimal routing problem that we formulated earlier is just one example of
the many alternative formulations possible. One other popular formulation
is based on the cost of the utilization of a link. We describe this briefly.

Let De(x) be a cost function associated with Edge e when the rate of packet
flow on the edge is x. Let Pj be the set of paths on which the User j packets
can be routed. Each path p ∈ Pj is a sequence of connected edges starting
at the source sj and ending at the destination dj of User j. Let P := ⋃ J

j=1 Pj

denote the set of all paths defined in the network. The total flow λj is to be
split among the paths in Pj with xj(p) allocated to path p subject to the link
flow constraints. Let ye be total traffic rate on link e. ye is just the sum of
rates (xj(p)) allocated to the paths that use link e. For a given path allocation
x := {xj(p) : j = 1, . . . , J, p ∈ P}, the sum of the inflow into and outflow
from node v in the network, denoted by φv(x), will be given by

φv(x) =
∑

{e:Te=v}
ye +

∑
{e:Re=v}

ye

The first term is the inflow into the node and the second term is the outflow
from the node. The optimal routing problem is thus,

Minimize
∑
e∈E

De(ye)

subject to
xj(p) ≥ 0 for p ∈ Pj, j = 1, . . . J

∑
p∈Pj

xj(p) = λj for 1 ≤ j ≤ J,

φv(x) ≤ 2
3

for 1 ≤ v ≤ N
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This is a well-known optimal routing problem except for additional linear
constraints on the variables from φv(x). These constraints just restrict the
state-space. We can use well-known methods (e.g., flow deviation method)
to solve obtain the optimal link-flow assignment vector.

8.4 Maximum Weight Scheduling
In the previous section we considered a static routing and scheduling algorithm
for scheduling user flow rates λ ∈ Λ1. We assumed λ was known. In this section
we assume that λ is unknown but is in the open set Λ1. We will derive a dynamic
routing and scheduling algorithm for which the network will be strongly stable.
This provides a constructive proof to show that Λ1 ⊂Λ.

It would seem that if the end-to-end flow vectors are known to be in the
schedulable region, finding the optimal routes for the flows and a corresponding
static link activation schedule would be possible. We saw in the previous section
that even for a simple constraint, this is not easy. Although we could convert the
network constraint into a set of necessary and sufficient conditions for the link
flows, there is still a significant gap between the two.

In this section, we will study a dynamic routing and scheduling algorithm to
route a λ∈Λ1. We will show that an optimal centralized, dynamic scheduling and
routing algorithm exists that will stabilize the network for any λ∈Λ1. Interestingly,
we do not even need to know λ. Before we develop this important algorithm, we
will need some assumptions and notation.

We begin with some notation. Let Ai,j(t) denote the number of packets of User
j arriving into the network at Node i in slot t. Ai,j(t) are bounded i.i.d. random
variables; Ai,j(t) ≤ Amax < ∞ for all t > 0 and 1 ≤ j ≤ J and E(Ai,j(1)) = λi,j. Note
that we are allowing new packets of User j to arrive into more than one node in the
network. This is a generalization from the previous (and the next) section where
each user has only one source node. Packets of User j have destination dj.

Each packet can be transported to its destination over any route in the
network that begins at the source and ends at the destination. In each slot, either
exactly one packet or no packet is transmitted on a link. Further, in a slot, each
node receives at most one packet or transmits at most one packet. In the rest of
the section it is convenient to represent a directed edge from node i to node k
by (i, k) and we will follow this notation. Let μ(i,k),j(t) be the indicator variable
for the transmission of packet of User j on link (i, k) being scheduled in slot t;
μ(i,k),j(t) ∈ {0, 1} and

∑J
j=1 μ(i,k),j(t) = μ(i,k)(t) where μ(i,k)(t) is the indicator variable

for a packet transmission on link (i, k) in slot t. The sum will have at most one
nonzero term because, in a slot, we serve one full packet from at most one queue.
Thus μ(i,k)(t) ∈ {0, 1}. It will be implicit that μ(i,k),j(t) = 0 if (i, k) /∈ E .

The sequence {μ(i,k),j(t)}t≥0 represents the routing and scheduling of packets
of User j on link (i, k) and is governed by the routing and scheduling policy P. If
μ(i,k),j(t) = 1, then one packet of User j is transmitted from Node i and received at
Node k at the end of slot t. If k = dj then the packet is removed from the network.
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Figure 8.5 Illustrating the variables for dynamic scheduling in aWMN with six links and
3 flows of packets.The link number is marked against the links.The queue occupancies
at the beginning of a slot are shown. Some example values for the variables are Q1,1= 4,
Q2,1 = 2, Q1,2 = 3, Q4,3 = 3, w1,1 = 4−2 = 2, w1,2 = 3−4 = −1, w1,3 = 2−2 = 0, w̃1 = 2.

Otherwise, the packet is queued at Node k. In this section, we will develop an
optimum policy to choose μ(i,k),j(t).

Each node maintains a separate queue for packets of User j; that is, there are
NJ queues in the network with Qi,j(t) denoting the number of packets of User j
queued at Node i and at the beginning of slot t. Collect the Qi,j(t) into the vector
Q(t) := [Q1,1(t), . . . , Q1,J(t), . . . , QN,J(t)]. Figure 8.5 illustrates the queues and links
in a network with four nodes and six links.

Multicommodity Flow Criteria

From our discussion in Section 8.3, the packet flow rates on each of the links should
satisfy the following flow conservation equation for 1 ≤ j ≤ J and 1 ≤ i ≤ N, i �= dj.

∑
k∈Nout(i)

f(i,k),j −
∑

k∈Nin(i)

f(k,i),j = λi,j (8.19)

In addition, we will require that

• Flows f(k,i),j are all nonnegative and positive flows are not assigned to
nonexistent links.

• Packets that have reached the destination are not injected back into the
network.

We can show the following lemma.
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Lemma 8.3
If λ ∈ Λ1 then there exists a stationary randomized algorithm to choose μ(i,k),j(t)
independent of the history of the arrivals and departures up to timeslot t,
such that

E

⎛
⎝ ∑

k∈Nout

μ(i,k),j(t) −
∑

k∈Nin

μ(k,i),j(t)

⎞
⎠ > λi,j (8.20)

for all 1 ≤ i ≤ N, and 1 ≤ j ≤ J. �

The following is an informal proof. Recall that any link capacity vector in
Co(S) can be achieved by a stationary randomized schedule that chooses the link
activation vector in each slot independently of all previous selections and the
current state of the network. From the definition, Λ1 is the set of λ for which
the link flow rate vectors are in the interior of Co(S). If there exist flows f(i,k),j that
satisfy (8.19) and the corresponding f̂ is in the interior of Co(S), then there is a link
capacity vector C that is equal to these flows that can be achieved by a stationary
randomized schedule. Since Λ1 is an open set, there exists another capacity vector
C1 in which every edge has capacity strictly larger than the capacity of the same
edge in C. The μ(i,k),j(t) in (8.20) can be thought of as coming from the stationary
randomized schedule for C1.

Lyapunov Stability of Network of Queues

Our interest is in ensuring the stability of the vector of queue lengths, Q(t). We will
use the Lyapunov technique introduced in Section 8.2.1 to derive the conditions
for the strong stability of Q(t). The stability conditions will yield a routing and
scheduling policy.

Like in Section 8.2.1 for single queues, we can define a nonnegative Lyapunov
function on the vector Q(t), L(·) : ZNJ

+ → R+. L(·) defines a scalar value for every
value that {Q(t)} can take. Along the same lines as the derivation of (8.6), we can
make the following claim. If there exist constants B > 0 and ε > 0 such that

E(L(Q(t + 1)) − L(Q(t)) | Q(t)) ≤ B − ε

N∑
i=1

J∑
j=1

Qi,j(t) (8.21)

then, Q(t) is stable.

Exercise 8.2
Show that if (8.21) is satisfied, then the queues Qi,j(t), for 1 ≤ i ≤ N and
1 ≤ j ≤ J, are all stable.
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In our analysis, we will be using the following quadratic Lyapunov function.

L(Q(t)) :=
∑
i,j

(Qi,j(t))2

This is just the sum of the squares of the queue occupancies in a slot.

The Algorithm and Its Analysis

Our goal in this section is to develop a centralized dynamic routing and scheduling
algorithm that will stabilize all λ∈Λ1. The routes for the packets of the users and
the sequence of activation vectors will not be statically determined. The centralized
algorithm will decide both of these—the link activation vector to be used in a slot
(scheduling) and the packets to be transmitted on the activated links (routing)—
dynamically in every slot. We will consider a policy in which the routing and
scheduling decision depends on the queue occupancies at the nodes in the network.
Further, we will only consider stationary policies in which the scheduling algorithm
is the same in every slot.

At nodes i �= dj, in each slot, Qi,j(t) is incremented by the packets of User j
transmitted to i by its neighbors and also by the new User j packets arriving into
the network at Node i. Qi,j(t) is decremented by a transmission of User j packets
by Node i to its neighbors in slot t. We can thus write the evolution equation for
Qi,j(t) as follows.

Qi,j(t + 1) = max

⎧⎨
⎩Qi,j(t) −

∑
k∈Nout(i)

μ(i,k),j(t), 0

⎫⎬
⎭

+
⎛
⎝Ai,j(t + 1) +

∑
k∈Nin(i)

μ(k,i),j(t)

⎞
⎠ (8.22)

There is no queue for User j at dj and the preceding equation applies only for i �= dj.
We will now see what it takes to make {Q(t)}, and hence the network, strongly
stable.

We begin by analyzing the Lyapunov drift for our network. Recognizing the
analogy between the variables of (8.8) and those of the queue evolution equation
of (8.22) and applying (8.9) we can write

(
Qi,j(t + 1)

)2 ≤ (
Qi,j(t)

)2 +
⎛
⎝ ∑

k∈Nout(i)

μ(i,k),j(t)

⎞
⎠

2

+
⎛
⎝Ai,j(t) +

∑
k∈Nin(i)

μ(k,i),j(t)

⎞
⎠

2

− 2 Qi,j(t)

⎛
⎝ ∑

k∈Nout(i)

μ(i,k),j(t) − Ai,j(t) −
∑

k∈Nin(i)

μ(k,i),j(t)

⎞
⎠
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Summing over 1 ≤ j ≤ J and 1 ≤ i ≤ N, we get

N∑
i=1

J∑
j=1

((
Qi,j(t + 1)

)2 − (
Qi,j(t)

)2
)

≤
N∑

i=1

J∑
j=1

⎛
⎝ ∑

k∈Nout(i)

μ(i,k),j(t)

⎞
⎠

2

+
N∑

i=1

J∑
j=1

⎛
⎝Ai,j(t) +

∑
k∈Nin(i)

μ(k,i),j(t)

⎞
⎠

2

−
N∑

i=1

J∑
j=1

2Qi,j(t)

⎛
⎝ ∑

k∈Nout(i)

μ(i,k),j(t) − Ai,j(t) −
∑

k∈Nin(i)

μ(k,i),j(t)

⎞
⎠

Recall the following from our discussion earlier on the properties of μ(i,k).j(t) : In a
slot, at most one packet can be transmitted by a node, at most one packet can be
received by a node, and at most Amax packets of User j will arrive into the network
at Node i. We can therefore say

J∑
j=1

⎛
⎝ ∑

k∈Nout(i)

μ(i,k),j(t)

⎞
⎠

2

≤ 1

J∑
j=1

⎛
⎝Ai,j(t) +

∑
k∈Nin(i)

μ(k,i),j(t)

⎞
⎠

2

≤ J(Amax + 1)2

Writing

B :=
N∑

i=1

(
1 + J(Amax + 1)2

)
= N

(
1 + J(Amax + 1)2

)

and rearranging the terms, we get

N∑
i=1

J∑
j=1

((
Qi,j(t + 1)

)2 − (
Qi,j(t)

)2
)

≤ B + 2
N∑

i=1

J∑
j=1

(
Qi,j(t)Ai,j(t)

)

− 2
N∑

i=1

J∑
j=1

⎛
⎝Qi,j(t)

⎛
⎝ ∑

k∈Nout(i)

μ(i,k),j(t) −
∑

k∈Nin(i)

μ(k,i),j(t)

⎞
⎠

⎞
⎠

(8.23)



8.4 Maximum Weight Scheduling 269

Now consider the last term in this inequality. Since the summation is overall
1 ≤ i, k ≤ N, μ(i,k),j appears twice in the sum—once multiplied by Qi,j(t)
and another time multiplied by (−Qk,j(t)). Further, all the edges appear in the
summation. We can see this more easily by letting k range from 1 to N and changing
the order of the summation. From this observation we can rewrite the last term in
the preceding inequality as

2
N∑

i=1

J∑
j=1

Qi,j(t)

⎛
⎝ N∑

k=1

μ(i,k),j(t) −
N∑

k=1

μ(k,i),j(t)

⎞
⎠

= 2
N∑

i=1

N∑
k=1

J∑
j=1

Qi,j(t)μ(i,k),j(t) −
N∑

i=1

N∑
k=1

J∑
j=1

μ(k,i),j(t)Qi,j(t)

= 2
N∑

i=1

N∑
k=1

J∑
j=1

(
μ(i,k),j(t)

(
Qi,j(t) − Qk,j(t)

))
(8.24)

Using (8.24) and taking conditional expectation in (8.23) we get

E(L
(
Q(t + 1)

) − L
(
Q(t)

) | Q(t))

≤ B + 2E

⎛
⎝ N∑

i=1

J∑
j=1

Qi,j(t)Ai,j(t) | Q(t)

⎞
⎠

− 2E

⎛
⎝ N∑

i=1

N∑
k=1

J∑
j=1

μ(i,k),j(t)
(
Qi,j(t) − Qk,j(t)

) | Q(t)

⎞
⎠

Since Ai,j(t) are independent of Qi,j(t), the second term in the preceding inequality
is simplified as follows.

2E

⎛
⎝ N∑

i=1

J∑
j=1

Qi,j(t)Ai,j(t) | Q(t)

⎞
⎠ = 2

N∑
i=1

J∑
j=1

Qi,j(t)E(Ai,j(t))

= 2
N∑

i=1

J∑
j=1

Qi,j(t)λi,j



270 8 Mesh Networks: Optimal Routing and Scheduling

We thus get,

E(L
(
Q(t + 1)

) − L
(
Q(t)

) | Q(t)) ≤ B + 2
N∑

i=1

J∑
j=1

Qi,j(t)λi,j

− 2E

⎛
⎝ N∑

i=1

N∑
k=1

J∑
j=1

(
μ(i,k),j(t)

(
Qi,j(t) − Qk,j(t)

)) | Q(t)

⎞
⎠ (8.25)

The last term in (8.25) involves the routing and link scheduling algorithm. If we
choose an algorithm that makes

N∑
i=1

N∑
k=1

J∑
j=1

(
μ(i,k),j(t)

(
Qi,j(t) − Qk,j(t)

))

as large as possible in every slot, then the expectation in the last term in (8.25) will
also be large, and hence the right-hand side of (8.25) will be made small. This can
lead to the queues being stable for larger values of λi,j. We now describe a routing
and scheduling algorithm that achieves this.

For slot t, define the weight, w(i,k)(t), of each edge (i, k) ∈ E as follows. First
we define

w(i,k),j(t) :=
{

Qi,j(t) − Qk,j(t) if k �= dj

Qi,j(t) if k = dj

This is illustrated in Figure 8.5. From this, define the weight of link (i, k) as follows.

w(i,k)(t) := max
j

w(i,k),j(t)

Thus the weight of a link is the maximum of the difference in the queue lengths of
User j packets at the transmitter and receiver of the link. For each S ∈ S calculate
WS, the weight of S, and use it to choose the link activation vector for slot t, S∗(t).
This is done as follows.

WS(t) =
∑

(i,k)∈E
w(i,k)(t)μ(i,k)(S)

S∗(t) = arg max
S∈S

WS(t)

Here μ(i,k)(S) is the value of μ(i,k) in the link activation vector S. This decides
the scheduling of the link transmissions in slot t. To decide the routing, we
need to determine which of the J flows are to be transmitted on each of the
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active links. On each active link (i, k) ∈ S∗(t), select the j for which w(i,k),j(t) is
maximum.

The routing and scheduling algorithm that we just described is called the
maximum weight scheduling (MWS) algorithm. Since the weights are chosen based
on the queue lengths in the NJ queues in each slot, this is a queue-length-based
scheduling algorithm. Notice that the packets do not move forward toward the
destination if the queues ahead have a higher occupancy. Thus we can see that a
queue exerts a backpressure toward the source till its backlog is cleared. Hence
this is also called a queue-length-based backpressure (QLB) algorithm.

Let μ∗
(i,k),j(t) denote the scheduling in slot t in the MWS algorithm. Using this

notation in (8.25), we can write

E(L
(
Q(t + 1)

) − L
(
Q(t)

) | Q(t)) ≤ B + 2
N∑

i=1

J∑
j=1

Qi,j(t)λi,j

− 2E

⎛
⎝ N∑

i=1

N∑
k=1

J∑
j=1

μ∗
(i,k),j(t)

(
Qi,j(t) − Qk,j(t)

) | Q(t)

⎞
⎠ (8.26)

Let μ̃(i,k).j(t) be any other routing and scheduling algorithm that selects the
activation vector and the packet to transmit on each link according to our
assumptions made in the beginning of the section. From our choice of μ∗

(i,k),j(t)

we can say the following.

E

⎛
⎝ N∑

i=1

N∑
k=1

J∑
j=1

μ∗
(i,k),j(t)

(
Qi,j(t) − Qk,j(t)

) | Q(t)

⎞
⎠

= E

⎛
⎝ N∑

i=1

N∑
k=1

μ∗
(i,k)(t)w(i,k)(t) | Q(t)

⎞
⎠

≥ E

⎛
⎝ N∑

i=1

N∑
k=1

μ̃(i,k),j(t)w(i,k)(t) | Q(t)

⎞
⎠

The first equality is obtained from the definition of w(i,k)(t), and from our
assumption that μ̃(i,k),j ∈ {0, 1} and

∑J
j=1 μ̃(i,k),j = μ̃(i,k). Using the same reasoning

we also see that the following is true.

w(i,k)(t)μ̃(i,k),j(t) ≥
J∑

j=1

(
Qi,j(t) − Qk,j(t)

)
μ̃(i,k),j(t)
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Using this and continuing with our previous calculations, we get

E

⎛
⎝ N∑

i=1

N∑
k=1

J∑
j=1

μ∗
(i,k),j(t)

(
Qi,j(t) − Qk,j(t)

) | Q(t)

⎞
⎠

≥ E

⎛
⎝ N∑

i=1

N∑
k=1

J∑
j=1

μ̃(i,k),j(t)
(
Qi,j(t) − Qk,j(t)

) | Q(t)

⎞
⎠

= E

⎛
⎝ N∑

i=1

J∑
j=1

Qi,j(t)

⎛
⎝ N∑

k=1

μ̃(i,k),j −
N∑

k=1

μ̃(k,i),j

⎞
⎠ | Q(t)

⎞
⎠

=
N∑

i=1

J∑
j=1

Qi,j(t)

⎛
⎝E

⎛
⎝

⎛
⎝ N∑

k=1

μ̃(i,k),j −
N∑

k=1

μ̃(k,i),j

⎞
⎠ | Q(t)

⎞
⎠

⎞
⎠

The first equality is obtained by switching the order of the summation and
rearranging like we did in (8.24).

From Lemma 8.3, we know that if λ ∈ Λ1, then there exists a stationary
randomized schedule that satisfies (8.20) and is not dependent on Q(t). Let μ̃(i,k),j(t)
in the preceding discussion come from such a schedule. Then, from (8.20), we have

E

⎛
⎝

⎛
⎝ N∑

k=1

μ̃(i,k),j −
N∑

k=1

μ̃(k,i),j

⎞
⎠ | Q(t)

⎞
⎠ = E

⎛
⎝ N∑

k=1

μ̃(i,k),j −
N∑

k=1

μ̃(k,i),j

⎞
⎠ ≥ λi,j + ε

for some ε > 0, 1 ≤ i ≤ N, and 1 ≤ j ≤ J. Resuming our earlier calculations,
we get,

E

⎛
⎝ N∑

i=1

N∑
k=1

J∑
j=1

μ∗
(i,k),j(t)

(
Qi,j(t) − Qk,j(t)

) | Q(t)

⎞
⎠ ≥

N∑
i=1

J∑
j=1

Qi,j(t)
(
λi,j + ε

)

Using this last relation in (8.26), we get

E(L
(
Q(t + 1)

) − L
(
Q(t)

) | Q(t))

≤ B + 2
N∑

i=1

J∑
j=1

Qi,j(t)λi,j − 2
N∑

i=1

J∑
j=1

Qi,j(t)(λi,j + ε)

= B − 2ε

N∑
i=1

J∑
j=1

Qi,j(t)
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Thus we see that (8.21) is satisfied. When
∑N

i=1
∑J

j=1 Qi,j(t) > B
2ε

the right-hand
becomes negative and the drift is negative pushing the queues towards smaller
values. Thus the maximum weight scheduling algorithm stabilizes λ ∈ Λ1.

Discussion

1. In deriving the scheduling algorithm, we could also consider the error
probability on the link. Of course, if the probability of a packet error on
a link is nonzero, then the stability region and also the queue evolution
equation would need to be changed. However, the MWS algorithm is only
slightly different. This is explored in Problem 8.9.

2. With a suitable choice of edge weights, the MWS routing and scheduling
algorithm is applicable in considerably more general scenarios. For example,
we could use the same algorithm when the topology is time varying in a
manner that a time average probability for a link to exist can be defined.

3. The link activation vectors S could be nonnegative reals. Recall that the
transmission bit rate could be a function of the SINR at the receiver. This
in turn depends on the transmission power used by the transmitters in the
link activation vector. Thus corresponding to a transmission rate vector
S, we also need to specify the transmission powers. In such cases, an
obvious optimization criterion could be to minimize the energy or power
consumption.

4. The MWS algorithm is complex to implement. Further, what we have
described is a centralized algorithm that requires complete knowledge of the
network state. Hence this is not quite a practical algorithm. Many distributed
and randomized algorithms have been proposed in the literature.

5. The MWS algorithm is a significantly general algorithm and can be applied
to a large class of problems. The most notable use is in developing maximum
throughput scheduling algorithms in input queued switches.

8.5 Routing and Scheduling for ElasticTraffic
In the discussion in the previous two sections our concern had been to support
a given end-to-end flow rate requirement λ through appropriate routing and
link scheduling. We assumed that a requirement of λ exists due to applications
involving stream traffic like interactive voice and streaming video. Much of the
traffic in networks is due to client-server based data exchanges like those of ftp
and http applications. See Chapter 3 for a discussion of different types of traffic
and their characteristics. Figure 8.6 shows a network with several application
sessions between http or ftp servers and clients. The servers could be directly
connected to the WMN or they could be connected via a node that in turn connects
to a wireline network. We have discussed issues associated with these applications
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web
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web
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Figure 8.6 Elastic transfers between web servers and clients over a multihop wireless
network.

in Chapter 3. These data transfer sessions are elastic sessions and there is no
intrinsic rate that the applications demand.

In this section we assume that a number of elastic sessions are sharing the
network resources and that each session is transferring a single file with infinitely
large volume of data. This is the file transfer abstraction in analyzing a network
with elastic sessions. Of course, in practice, sessions have finite lifetimes, and
sessions arrive and depart. Hence even if the network topology and routing do
not change, the session topology is constantly changing. Thus, in a sense, we are
considering a situation in which the session topology and the network variations
occur over a timescale that is slower than the file transfer time. However, we will
assume that the stabilization of the dynamics of the congestion control scheme is
on a faster timescale than the file transfer time. This simplifying assumption helps
us develop an understanding of some of the basic issues in bandwidth sharing and
congestion control in wireless networks.

Fair bandwidth sharing in a network is a complex issue. The complexity is
compounded in wireless networks because the link capacity is itself a variable.
Further, there are many notions of fairness that can be defined as being desirable,
or achievable by specific resource sharing mechanisms. Of course, the network
will also need to allocate bandwidth efficiently while being fair. Once again many
definitions of efficiency are possible.

Fair sharing and efficiency have been studied extensively in wireline net-
works. As we have mentioned earlier, an important difference between wireline
and wireless networks is that in the latter, link capacity is a variable in the
bandwidth sharing algorithm. To illustrate this difference, consider the two-link
network shown in Figure 8.7. Assume that the physical layer transmission rates
on the links are equal, which we think of as unity. If it were a wireline network,
assigning equal rates to the sessions could lead to a rate of one-third being assigned
to each session, thus having unutilized bandwidth on link 1. However, if it were
a time slotted wireless network, with the primary conflict constraint, each session
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session 1

session 2

session 3

session 4

Figure 8.7 Example of a network and flows in which equal rate allocation to all flows
is possible in wireless networks but not in wireline networks.

session 1

session 3session 2

session 4

link 2 link 3link 1

Figure 8.8 Fair sharing is not equal sharing in a network of links and transfers.

could be scheduled once in every five slots, and hence would be allocated a rate
of 0.2 packets per slot. In doing so, links 1 and 2 have been allocated capacity
0.4 and 0.6, respectively. Since each clique has unit capacity, this implies that the
clique capacity is not wasted.

Allocating equal rates to all the flows will not always be efficient from
the network point of view. To illustrate, consider the network and sessions
shown in Figure 8.8. Assuming the primary conflict scheduling constraint we have
S1 = [1, 0, 1] and S2 = [0, 1, 0] as the link activation vectors. Let φ1 and φ2 be
fractions of time that, respectively, S1 and S2 are activated. Let xi be the rate
allocated to Session i. The xi needs to satisfy the following inequalities:

φ1 + φ2 ≤ 1

x1 + x2 ≤ φ1

x1 + x2 + x4 ≤ φ2

x1 + x3 + x4 ≤ φ1



276 8 Mesh Networks: Optimal Routing and Scheduling

With equal rate allocation to all the sessions (i.e., xi = x for all i), these inequalities
reduce to

x ≤ φ1

2
x ≤ φ2

3
x ≤ φ1

3

and x ≤ 1
3 min(φ1, φ2). Sinceφ1 + φ2 ≤ 1 we get x = 1

6 as the largest possible solution
such that all xi are equal. Clearly, allocating equal rates would be inefficient
because while Session 4 is using link c, link a could be underutilized. Once again
many notions of efficiency are possible. A simple efficiency objective could be
that of Pareto efficiency, which, somewhat informally, is defined as follows: An
allocation of resources in a system is Pareto efficient if there does not exist another
allocation in which some individual is better off while no individual is worse off.

The preceding examples illustrate another point. In the example of Figure 8.7,
notice that with the rate allocation of 0.2 packets per slot, Session 4 requires
resources from both links; hence for each unit of Session 4 traffic carried we take
away a unit of bandwidth from each of the two links. Yet, we need to be fair in
some sense between the various sessions.

As in the previous sections, we will assume J users but each of them now
has an infinite backlog of data to send. The network will have to decide the rate
to be allocated to User j, say xj; x := [x1, . . . , xJ]T . We thus have added a third
dimension to the problem of routing and scheduling—determining the optimal fair
rates for the users that can be routed and scheduled on a network with network
graph G and link activation vector set S. We are, of course, constrained that the
flow allocation be within the feasible region determined by the graph G and the
link activation vector set S. An obvious question that arises now is the definition
of fair sharing of the network capacity by the different users.

Max-min fairness (MMF) is a popular fairness notion. In a network repre-
sented by the network graph G and the constraint S, a stabilizable rate vector x
is max-min fair (MMF) if it is not possible to increase the rate of a user j, while
maintaining the feasibility property, without reducing the rate of some session j1
with xj1 ≤ xj.

An important property of the MMF allocation is the following: Consider a
feasible rate vector and look at the smallest rate in this vector. The MMF rate
vector has the largest value of this minimum rate. Further, among all feasible rate
vectors with this value of the minimum rate, consider the next larger rate. The
MMF rate vector has the largest value of the next larger rate as well, and so on.

Another important and more general approach to achieve fairness is to
assume that each flow j has a utility function Uj(xj), that defines the utility that
User j obtains when it is allocated a flow rate of xj. Then, if the assigned rate
vector is x = [x1, x2, . . . , xJ]T , the total utility of all the users in the network is∑J

j=1 Uj(xj). For simplicity in the discussion, let us assume that all sources have
the same utility function U(·). The following is a popular utility function:

U(x) := log(x)
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An important property of this utility function is that it is a nondecreasing and
concave function of x. Concavity is related to the practical fact that any
incremental value of additional rate decreases with increasing rate that a user
already has—the law of diminishing returns. In this framework, the optimal band-
width sharing is provided by the solution of the following utility maximization
problem:

max
∑J

j=1 U(xj)
subject to

x ∈ Λ

(8.27)

If the flows and capacity allocations are all deterministic, then we can replace Λ

by Λ̄1. In this section we will consider the utility function approach to fair sharing
of wireless network resources by elastic flows. We will first consider single hop
flows in Aloha networks and then consider multihop flows.

8.5.1 Fair Allocation for Single Hop Flows
We begin with a simple network in which all users have end-to-end flows that are
just one hop; that is, we have only single-hop sessions. Consider a network with
all the edges that have flows. We will assume that the network uses the s-Aloha
protocol at the MAC layer.

Recall from Chapter 7 that the s-Aloha is a distributed MAC protocol in
which if a node has a packet to transmit, it just transmits it. If another neighboring
node of the receiver also transmits in the same slot, then there is a collision and
the receiver cannot decode the packet that was transmitted to it. The assumption
is that a node will have a packet to transmit in a slot with some probability. Since
we are considering elastic flows in which all the sources are infinitely backlogged,
a node always has a packet to transmit to all its neighbors. Further, there is a
backlog on all the links and a node can transmit on at most one link in a slot. We
cannot have the nodes transmitting all the time. We therefore assign a transmission
probability to every edge. The probability that the packet was decoded successfully
at the receiver without a collision is the flow rate on the link. Thus the scheduling
decision essentially consists of choosing the transmission probability for each link
in a slot. Since all flows are from single-hop sessions, we do not need to consider
routing. Also, only single-hop sessions mean that the flow rate allocated to a link
is the rate allocated to the session. Thus, this is a simple example of distributed
fair scheduling in wireless networks.

In the following, we will assume that in each slot, every node transmits inde-
pendently of other nodes and also independently of its own previous transmission
attempts. This is similar to the attempt model used in the analysis of s-Aloha
in Chapter 7. Further, given that a node transmits, we will also assume that it
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chooses a receiver from among its neighbors independently. We thus have an
attempt probability along each edge. Let G(i,k) be the attempt probability for edge
(i, k); G is the vector of the edge attempt probabilities. From our assumptions, the
attempt probability for Node i, Ĝi is then given by

Ĝi =
∑

k∈Nout(i)

G(i,k)

Of course, 0 ≤ G(i,k) ≤ 1 and 0 ≤ Ĝi ≤ 1.
Consider the network shown in Figure 8.1. If node A transmits to B, for

B to successfully decode this transmission, neither B nor any of its neighbors B
should be transmitting in the slot. Generalizing, for a transmission on edge (i, k) to
be successfully decoded, k should not be transmitting and none of the neighbors
of k (except i) should be transmitting in the slot. As we have said earlier, the
flow rate on edge (i, k), denoted by xi,k, is equal to the probability of a successful
transmission along edge (i, k). Thus we have

x(i,k) = G(i,k) (1 − Ĝk)
∏

m∈Nin(k)
m�=k

(1 − Ĝm)

If we use the logarithmic utility function introduced earlier for the links, then
the network utility, which is the sum of the edge utilities, is given by

∑
(i,k)∈E

log (x(i,k))

Let G∗
(i,k) be the optimum edge attempt probabilities and let G∗ denote the vector

of G∗
(i,k). G∗ is obtained as

arg max
0<G(i,k)<1

(i,k)∈E

⎛
⎝ ∑

(i,k)∈E
log (x(i,k))

⎞
⎠

Exercise 8.3
Note the strict inequality in the range for G(i,k). What are the implications
of allowing G(i,k) = 0 and G(i,k) = 1?



8.5 Routing and Scheduling for ElasticTraffic 279

Let us now consider the network utility function U(G).

U (G) =
∑

(i,k)∈E
log

⎛
⎜⎜⎝G(i,k) (1 − Ĝk)

∏
m∈Nin(k)

m�=i

(1 − Ĝm)

⎞
⎟⎟⎠

=
∑

(i,k)∈E

⎛
⎜⎜⎝log

(
G(i,k)

) + log
(
1 − Ĝk

)
+

∑
m∈Nin(k)

m�=i,

log
(
1 − Ĝm

)⎞⎟⎟⎠ (8.28)

Exercise 8.4
Show that log (G(i,k)) and log

(
1 − Ĝi

)
= log

(
1 − ∑

k∈Nout(i) G(i,k)

)
are strictly

concave functions in G(i,k).

From Exercise 8.4 we see that U(G) is a sum of concave functions and hence
it also is concave with a unique maximum. Hence, the value of G which maximizes
U(·), G∗, can be obtained by observing that a strict concave function over a compact
set has a unique maximum (see Theorem C.2 in Appendix C). Let us now obtain
G∗

(i,k).

Since 1 − Ĝi = 1 − ∑
k1∈Nout(i) G(i,k1),

∂(log(1 − Ĝi)
∂G(i,k)

= − 1

1 − Ĝi

Let us now see the terms that will have G(i,k) when the summation in (8.28) is
expanded. The second term in (8.28) corresponds to the receiver not transmitting.
Thus (1 − Ĝi) will appear in terms that correspond to any of the in-neighbors of i
transmitting. Hence we will have |Nin(i)| terms of the form −1

1−Ĝi
. The third term

in (8.28) corresponds to the out-neighbors of the receiver not transmitting. Thus
(1 − Ĝi) will appear whenever the neighbors of i have to receive. Hence we have∑

m∈Nout(i)
|Nin(m)|−|Nout(i)| terms of the form −1

1 − Ĝi
. We subtract |Nout(i)| because

i should not be counted. Thus

∂U
∂G(i,k)

= 1
G(i,k)

−
(

G(i,k)

1 − Ĝi

)⎛
⎝|Nin(i)| +

∑
m∈Nout(i)

|Nin(m)| − |Nout(i)|
⎞
⎠

G∗
(i,k) = 1 − Ĝ∗

i

|Nin(i)| + ∑
m∈Nout(i) |Nin(m)| − |Nout(i)|
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Now observe that G∗
(i,k) is independent of k and, for a given i, it is the same for

all k; that is, all outgoing edges are activated with equal probability. Therefore

G∗
(i,k) = Ĝ∗

iNout(i)
. Substituting in the preceding and simplifying we get

G∗
i,k = 1

|Nin(i)| + ∑
m∈Nout(i) |Nin(m)| (8.29)

Exercise 8.5
Verify that G∗

i,j obtained in (8.29) is a valid probability by verifying that

0 ≤ G∗
(i,k) ≤ 1 for (i, k) ∈ E and 0 ≤ Ĝ∗

i ≤ 1 for 1 ≤ i ≤ N.

Observe that the attempt probabilities for each edge can be conveniently
obtained by the transmitter of the edge using local information, the in-degree of
the node and the in-degrees of the neighbors. This means that even when the
topology of the network is changing, the optimum attempt probabilities can be
obtained quickly and the network can quickly settle into its optimum operating
point. This is an important requirement in networking protocols in general and in
wireless networks in particular because of the dynamic nature of the topology. We
will also be seeking such capability in the algorithms that we will explore next.

8.5.2 Fair Allocation for Multihop Flows
Let us now consider multihop flows. Our interest will be in determining a routing
and a schedule to support this fair allocation. As in Section 8.3, we will assume
that the flows can be routed along any possible path in the network and follow the
same notation. The optimization that we consider is similar to that in Section 8.3
except that we are maximizing the network utility and not the “minimum spare
capacity”; that is, we have

max U = ∑J
j=1 U(xj)

subject to
x ∈ Λ

(8.30)

Here xj is the flow rate allocated to User j. Since all users have only elastic traffic
and the flow volume allocated to a user is variable, we will use x rather than λ to
indicate the flow rate.

The constraint is the schedulability constraint for the user rates. Previously,
we have also referred to Λ as the capacity region. Note that this is not a linear
program. The objective function is a sum of concave functions and is hence concave.
The constraints also define a convex region. Thus this is a convex program.
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Recall that the capacity region Λ is the set of user rates x (x = (x1, x2, . . . , xJ)T )
such that for each such vector in the set, there exists a scheduling and routing that
ensures that the vector can feasibly be carried in the network. It is also worth
recalling that if x /∈ Λ, then there is no scheduling and routing such that the rate
vector x can be transported through the network.

What is the capacity region for our problem? This can be defined in terms of a
capacitated network; recall from Section 8.2 that given an ergodic schedule Π, each
link e in the wireless network has an effective capacity Ce(Π) that is determined
by the fraction of slots in which e gets activated in the schedule.

Let Ce,j ≥ 0, e ∈ E , 1 ≤ j ≤ J denote the capacity (as yet unknown) that is
earmarked for User j traffic on link e. Then the capacity region Λ is characterized
by the following: Λ = {x = (x1, x2, . . . , xJ)T ≥ 0} such that there exist capacity
vectors Ce,j ≥ 0, e ∈ E , 1 ≤ j ≤ J satisfying

∑
{e:Re=i}

Ce,j + xjI{i=sj} ≤
∑

{e:Te=i}
Ce,j,

for 1 ≤ j ≤ J and 1 ≤ i ≤ N, i �= dj (8.31)
⎛
⎝ J∑

j=1

Ce,j

⎞
⎠

{e∈E}
∈ Co(S) (8.32)

The first inequality is written for all users (indexed by j) and all nodes (indexed
by i) except the destination node of User j, dj. The first term on the left-hand side
of (8.31) gives the sum of the capacities allocated for User j traffic on all incoming
edges terminating at Node i; similarly, the term on the right gives the sum of User j
capacities allocated on all outgoing edges leaving Node i. Therefore, the inequality
asserts that the total incoming User j capacity at Node i, plus the rate injected into
the network by User j (if Node i is the source node of j, viz., sj) must be less than
the total outgoing User j capacity at Node i.

When i �= sj, there is no User j traffic inserted into the network at Node i,
so the second term on the left in (8.31) disappears. When i = sj, we do not need
to allocate any capacity for j on the incoming edges at Node i, so the first term
on the left in (8.31) may actually be suppressed. However, as Ce,j ≥ 0, allocating
Ce,j = 0 on the incoming links achieves the same effect. Hence we retain the first
term on the left in (8.31) even when i = sj.

We note that in (8.31), we do not insist on strict inequality, as was done
earlier in (8.11). In writing (8.11), we considered open-loop stochastic traffic. For
ensuring stability with open-loop stochastic traffic, it is necessary to allocate, on
each link, strictly higher capacity than the average aggregate traffic on that link,
so that the queues in the network are stable. In this section, however, we consider
elastic traffic that is subject to closed-loop control. Elastic traffic sources react to
feedback signals from the network. As long as the feedback from the network
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remains unchanged, traffic is injected at constant rates. Because the input traffic
is not varying stochastically, it is possible to allocate outgoing capacity that is not
just strictly less than but even equal to the aggregate inflow into a node.

The second constraint of (8.32) says that the aggregate link capacity vector
(with |E | elements), obtained after adding all the allocated User j capacities on
each link, must belong to the convex hull of all the possible link activation vectors
in the set S. This ensures that an ergodic schedule can be found that achieves the
desired aggregate link capacities.

Another point worth noting about the equations characterizing Λ is that for
every j ∈ {1, 2, . . . , J}, (8.31) is written for all nodes i except dj. Why do we omit
the Node dj? First, by omitting Node dj, we are not omitting any links. This is
because every link e has an associated transmitting node and a receiving node (Te

and Re, respectively), and the incoming links at dj have been considered when we
wrote the equations for the corresponding transmitting nodes. Second, we know
that the rate of User j traffic leaving the network at dj cannot be more than the
sum of the j capacities of the incoming links at dj. But this conclusion already
follows from the equations written for the other nodes, and hence presents no
new information.

To solve the optimization problem (8.30), we will follow the method outlined
in Section 6.2. Let p(j) := [p1,j, . . . , pN,j]T , with pdj ,j = 0. As before in Section 6.2
we define p := [pT (1), . . . , pT (J)]T ≥ 0. pi,j, 1 ≤ i ≤ N, 1 ≤ j ≤ J are the Lagrangian
or dual variables. Relaxing the J × (N − 1) constraints in (8.31) that define Λ, we
get the following Lagrangian function:

L(x, p) =
J∑

j=1

U(xj) −
J∑

j=1

N∑
i=1,i �=dj ,i �=sj

pi,j

⎛
⎝ ∑

{e:Re=i}
Ce,j −

∑
{e:Te=i}

Ce,j

⎞
⎠

−
J∑

j=1

psj ,j

⎛
⎝ ∑

{e:Re=sj}
Ce,j + xj −

∑
{e:Te=sj}

Ce,j

⎞
⎠

=
J∑

j=1

(
U(xj) − psj ,jxj

)
−

J∑
j=1

N∑
i=1,i �=dj

pi,j

⎛
⎝ ∑

{e:Re=i}
Ce,j −

∑
{e:Te=i}

Ce,j

⎞
⎠

=
J∑

j=1

(
U(xj) − psj ,jxj

)
+

J∑
j=1

∑
e∈E

(
pTe,j − pRe,j

)
Ce,j

In arriving at the last line, we have computed the sum

N∑
i=1,i �=dj

pi,j

⎛
⎝ ∑

{e:Re=i}
Ce,j −

∑
{e:Te=i}

Ce,j

⎞
⎠
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by collecting together terms referring to the same edge. As each edge e has a
transmitting node Te and a receiving node Re, we get the second term in the
last line.

Thus, the relaxed problem is

max
J∑

j=1

(
U(xj) − psj ,jxj

)
+

J∑
j=1

∑
e∈E

(
pTe,j − pRe,j

)
Ce,j

subject to ⎛
⎝ J∑

j=1

Ce,j

⎞
⎠

{e∈E}
∈ Co(S), x ≥ 0

(8.33)

In this problem, the maximization is carried out over xj, 1 ≤ j ≤ J and Ce,j, e ∈ E , 1 ≤
j ≤ J. The quantity to be maximized in this problem is just the Lagrangian that we
obtained before; let us denote the maximum value by D(p). This notation is justified
because after the maximization, the objective becomes a function of p only. It may
be noted that the constraint has changed from x ∈ Λ to (

∑J
j=1 Ce,j){e∈E} ∈ Co(S)

after the relaxation. Recall also that Co(S) is a convex set.
It is interesting to note that in the relaxed problem, the constraint x ≥ 0 can

affect the first term (the summation) only; the constraint (
∑J

j=1 Ce,j){e∈E} ∈ Co(S)
can affect the second term only. Further, the constraint xj ≥ 0 can affect the j-th
term in the summation only. Thus, there is a nice decomposition of the relaxed
problem into several subproblems. For a given vector of dual variables p, we can
therefore solve the flow control problem for each User j, 1 ≤ j ≤ J, and the
scheduling problem independently.

The relaxed problem suggests a simple interpretation of the dual variables p.
Consider the j-th flow control problem. The term psj ,jxj can be thought of as the
total cost that User j has to pay for sending xj amount of traffic into the network.
It is as if upon entry into the network via node sj, User j pays a price of psj ,j for
every unit of traffic that it sends into the network. Thus, given psj ,j, User j’s flow
control problem is to maximize the net utility, where the latter is defined as the
difference between the utility U(xj) and the total cost psj ,jxj.

Consider now the last subproblem, which is the scheduling subproblem. We
can think of (pTe,j − pRe,j) as the price associated with link e for User j traffic, and
the term (pTe,j − pRe,j)Ce,j becomes the weighted capacity allocated to j on link e,
with the weight being the link price. Thus, given pi,j, 1 ≤ i ≤ N, 1 ≤ j ≤ J, the last
subproblem asks us to find Ce,j, e ∈ E , 1 ≤ j ≤ J, such that (

∑J
j=1 Ce,j)e∈E lies in

Co(S), and the sum of weighted link capacities over all j and over all links in the
network is maximized.

From the preceding discussion, given p, the network needs to solve the
scheduling problem, with the objective being to maximize the sum of weighted link
capacities, while each user needs to solve its individual net utility maximization
problem. We note that according to this simple view, the solution of the scheduling
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problem must be found by a centralized entity that is aware of all prices pi,j and
all possible capacity allocations Ce,j.

Now if we solve the subproblems independently for an arbitrary p ≥ 0, are
we sure to get a feasible solution to the original problem in (8.30)? The answer
is no. What comes to our rescue, however, is the fact that there is at least one
particular value of the price vector p such that a solution of the relaxed problem
in (8.33) is, indeed, feasible for the original problem in (8.30); moreover, that
solution is optimal for the original problem in (8.30). This conclusion is based on
the Strong Duality Theorem (see Appendix C), which is applicable here because

• The objective function in (8.30) is concave, and therefore, the negative of
the objective function is convex.

• The first constraint in (8.31) is linear in the variables xj, 1 ≤ j ≤ J, and
Ce,j, e ∈ E , 1 ≤ j ≤ J, and thus trivially convex.

• The vector of unknowns [xj, Ce,j]{e∈E ,1≤ j ≤ J} lies in a convex set.

Exercise 8.6
Given that [xj]{1≤j≤J} lies in a convex set and [Ce,j]{e∈E ,1≤j≤J} lies in a convex
set, show that the vector [xj, Ce,j]{e∈E ,1≤j≤J} lies in a convex set also.

This motivates us to consider the Dual Problem

min D(p)
subject to

p ≥ 0
(8.34)

The Strong Duality Theorem assures us that there is no duality gap, and therefore,
the objective function values of the primal and dual problems are equal. Moreover,
if we can find an optimal price vector p∗ at which D(p) is minimized, then we just
need to solve the relaxed problem (8.33) for that p∗, and the optimal solution to
the original problem (8.30) will be obtained.

Let us consider the problem in (8.33) again. As we noted before, for a
given p, the problem is decomposed into several subproblems that can be solved
independently. For a given p, the maximizing x, denoted by x∗(p), can be obtained
without difficulty when each User j solves its individual net utility maximization
problem independently. For solving the scheduling problem, let us consider some
aggregate capacity vector (Ce)e∈E ∈ Co(S). For each e ∈ E , the first question is
about how Ce should be split into Ce,j, 1 ≤ j ≤ J. For this, we need to note the
value of j for which (pTe,j − pRe,j) is largest. Letting

j∗(e, p) = arg max
1≤ j ≤ J

(pTe,j − pRe,j)
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the best split is given by

Ce,j = Ce for j = j∗(e, p)

Ce,j = 0 for j �= j∗(e, p)

In other words, the best split is obtained by allocating, on edge e, the entire capacity
Ce to that flow j∗(e, p) that exhibits the largest price differential between the
transmitter and receiver nodes of e. With this observation, the objective function
of the scheduling problem becomes

∑
e∈E

(pTe,j∗(e,p) − pRe,j∗(e,p) )Ce (8.35)

Hence, to maximize the weighted sum of link capacities, it is necessary to select
a vector (Ce)e∈E in Co(S) such that this sum is maximized. We observe that this
problem is actually a linear program because we are maximizing a linear function
of Ce, e ∈ E , over the convex hull of S, the set of all link activation vectors. Hence,
an optimizing vector can always be found at some extreme point of Co(S), that
is, at some vector in S itself. Denoting such a vector by (C∗

e (p))e∈E , the optimal
solution to the scheduling problem is seen to be

C∗
e,j(p) = C∗

e (p) for j = j∗(e, p)

C∗
e,j(p) = 0 for j �= j∗(e, p) (8.36)

As remarked before, if we solve the scheduling and flow control problems for
an arbitrary price vector p, there is no guarantee that the solution so obtained will
even be feasible for the original problem. The question that arises then is how to
get the “right” price vector p∗. Such a price vector p∗ would constitute the optimal
dual variables. What we need is an algorithm that, starting from some initial price
vector p(0) at slot 0, updates the price vector in each slot such that p(t) converges
to p∗. Such an algorithm is:

pi,j(k + 1) =
⎛
⎝pi,j(k) − hk

⎛
⎝ ∑

{e:Te=i}
C∗

e,j(p(k)) −
∑

{e:Re=i}
C∗

e,j(p(k)) − I{i=sj}x∗
j (p(k))

⎞
⎠

⎞
⎠

+
(8.37)

where C∗
e,j(p) are obtained from (8.36) and hk, k = 1, 2, . . . is a sequence of positive

step-sizes. The factor multiplying hk is known as the subgradient of the dual
objective function D(p) at p. It can be shown that if the sequence hk satisfies the
two conditions
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1. hk → 0 as k → ∞
2.

∑
k hk = ∞

then the iteration in (8.37) converges to the optimal price vector p∗. For example,
the sequence hk = 1/k satisfies the two preceding conditions. Finally, solving the
relaxed problem in (8.33) with this p∗ yields the optimal solution to the original
problem in (8.30).

Discussion
We provide an overview here of how the solution to the problem of sum-utility
maximization for elastic flows is obtained. In slot k, we have the price vector
p(k). Using this, the network solves the scheduling problem. For p(k), the optimal
aggregate capacity vector (C∗

e (p(k))e∈E is obtained by solving the linear program
whose objective function is given in (8.35), and the optimal split of this among
the users j is obtained as in (8.36). The price vector p(k) is now fed back to the
users, and each user now solves its own net utility maximization problem, yielding
x∗(p(k)).

Accordingly, in slot k, users j, 1 ≤ j ≤ J inject the appropriate amounts of
traffic into the network. The network activates the links in the vector (C∗

e (p(k))e∈E
and transfers data from the users j∗(e, p(k)) over the duration of slot k. At the end
of slot k, the network evaluates the right side of (8.37) and new price variables for
slot (k + 1) are obtained.

An interesting conclusion follows from (8.37). Consider a Node i and a User
j for which the factor multiplying hk in (8.37) is negative. This means that the total
inflow rate of User j traffic into Node i is more than the corresponding outflow rate;
that is, packets of User j are queueing up at Node i. Under these circumstances,
pi,j(k + 1) is more than pi,j(k). This means that in slot (k + 1), the pair (i, j) is likely
to be part of the vector that maximizes the weighted sum of link capacities. In that
case, the network would schedule this node and user pair in slot (k + 1), thereby
depleting the queue of User j packets that had started to build up in Node i. Thus,
the schedule computed by the network tends to keep queue lengths small.

The observation that queue lengths tend to be small also suggests that the
schedule computed by the network leads implicitly to a routing in which traffic
from the sources does, ultimately, reach the respective destinations. If this were
not true, then somewhere in the network, queues would start building up.

We have an iterative process in which the network computes prices and
informs these to the users, who react by sending traffic into the network. Next,
the network schedules links according to the prevailing prices and users’ traffic
gets transferred across links. At the end of this, the network computes fresh prices,
and the cycle repeats. It can be shown that if this process is allowed to run for
many slots, then, as long as the conditions on hk are satisfied, the price vector p
and the users’ rate vector x both converge to their respective optimal values. After
convergence, we would therefore have a vector of user rates that can be transported
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through the network, and, at the same time, achieve sum-utility maximization,
which was our original objective.

Another conclusion from (8.37) is as follows. Consider (8.37) after conver-
gence, and suppose p∗

i,j(∞) is positive. This implies that on the right side of (8.37),
the factor multiplying hk must be zero. This says that the total rate of traffic from
User j coming into and going out of Node i are equal; the first constraint in (8.31)
of the original problem is satisfied with equality. We note that this is exactly the
same conclusion that follows from the Complementary Slackness conditions (see
Appendix C).

In the case where open-loop traffic was to be transported, the problem for the
network was to determine a schedule and routing such that traffic could be carried
in the network. The input traffic was stochastically characterized and given. In the
case of elastic traffic, we recall that the input traffic to the network was not given.
We just had an objective stating that the sum of users’ utilities was to be maximized,
subject to the constraint that the users’ injected traffic should be supportable by
the network. In contrast to the wired network case where link capacities are given
and fixed, in the wireless network, not even the link capacities are known; in fact,
they depend on the scheduling strategy followed by the network. It is somewhat
remarkable that the method outlined in this section is able to provide a scheduling,
routing, and rate control that manages to actually achieve the original objective
of sum-utility maximization.

8.6 Notes on the Literature
Much of the recent work on optimization in wireless networks has its roots in the
work of Tassiulas and Ephremides [126, 127, 128]. The schedulable region or the
stability region of a wireless mesh network is characterized in [127]. A less general
version of the schedulable is used in [51]. The discussion on the stability of queues
is adapted from [40].

Hajek and Sasaki [51] first addressed the problem of simultaneous routing
and scheduling in wireless networks. The discussion of Section 8.3 is adapted from
[80]. The optimal routing formulation is adapted from Chapter 14 of [89].

The maximum weight scheduling algorithm of Section 8.4 was first described
in [127]. This has been considerably generalized and many new applications
found. The analysis in [127] assumes that the arrival of new packets into the
network are i.i.d. in every slot. Since the routing and scheduling in a slot in the
MWS algorithm depend only on the queue occupancies at the beginning of the
slot, positive recurrence of the resulting Markov chain implies stability of the
queues. This is shown using a technique similar to what is described here. Neely,
Modiano, and Rohrs [107] consider significant generalizations, for example, non
i.i.d. arrivals and stationary time varying network topology. Georgiadis, Neely,
and Tassiulas [40] provide a comprehensive overview of the recent developments
and generalizations. Our discussion of Section 8.2.1 and 8.4 is based on [40].
We have made some simplifying assumptions for pedagogical convenience but
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the results can be generalized using the framework that we have provided. An
important application of the MWS algorithm is in the maximum weight matching
algorithm for input queued switches [98].

Ever since the proportional-fairness paradigm for congestion control in
wireline networks was introduced by Kelly, Maulloo, and Tan [75], there has
been significant interest in extending that to wireless networks. Kar, Sarkar, and
Tassiulas [66] apply this congestion control principle to select the transmission
probabilities to optimize single-hop flows in Aloha networks. This is an interesting
introduction to this problem. This discussion is adapted from there. Extending it
to multihop flows has been the focus of, Lin and Shroff [95] and Lo Presti [112]
among others. The discussion in Section 8.5.2 is based on [95]. Lin, Shroff, and
Srikant [94] provide an excellent tutorial on these techniques.

Since the optimizations involve multiple layers of the network stack, these are
also called cross-layer optimizations. Kawadia and Kumar [72] provide important
insights into the pitfalls that could accompany cross-layer optimisations.

Problems
8.1 Consider a network in which the frames are not equal. Let Tk be the

number of slots in the k-th frame and Bk the number of slots allocated to
a link in the k-th frame. Find the expression for the bandwidth allocated
to the link. Now consider the following sequence the continued fraction
expansion of (1 + √

2) which is given by

2 + 1/(2 + 1/(2 + 1/(2 + · · · )))

Identify suitable Tk and Bk so that the link is allocated a bandwidth of
1

1 + √
2
. Since every irrational number can be expressed as a continued

fraction, this gives you a method to allocate irrational capacities to links.
Explore irrational allocations using this method.

8.2 Given a network graph G, describe a graph coloring algorithm for each
of the three graph-based constraints that determine the schedule. Let
χ(G) be the vertex-chromatic number of G, the minimum number of
colors required to color the vertices such that adjacent vertices have
different colors. Let Δ(G) and ω(G) be the maximum vertex degree and
the clique number, respectively. It can be shown that ω(G) ≤ χ(G) ≤
Δ(G) + 1. Derive the corresponding inequalities for each of the three
graph-based constraints.

8.3 Devise a greedy algorithm for edge-coloring of a graph. For the network
of Figure 8.1, perform a greedy coloring and use the coloring to devise
a scheme to provide all edges a capacity greater than 1

C1
where C1 is

the number of colors used. Observe that the coloring is not unique.
Perform a second distinct coloring of this network. If C2 is the number
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of colors required for the second coloring, number the colors C1+1, . . . ,
C1 + C2. Comment on the change in Co(S).

8.4 Consider a routing and scheduling policy, say P, in a slotted WMN.
Let ΛP denote the set of arrival rate vectors λ that are stabilized by
this policy. Let P0 denote the queue-length-based centralized scheduling
policy discussed in Section 8.4. Argue that ΛP0 = ∪PΛP. This means that
if there exists any policy that stabilizes the queues under the arrival rate
vector λ, then the queues will be stable for this arrival rate vector under
policy P0.

8.5 Construct an example to illustrate that (8.13) is not a sufficient
condition.

8.6 Consider a two-link network. Let S1 = [1, 0], S2 = [0, 1], S3 = [0.25,
0.75], and S4 = [0.75, 0.25] be the four possible schedules in the
network. Draw the link layer capacity region for this network.

8.7 Consider a two-link network. The links operate in a fading environment
and in each slot, link i is either available with probability pi or not
available with probability (1 − pi), independently of the other link and
of its availability in other slots. Characterize the link-capacity region
for this system.

8.8 Consider the network shown in Figure 8.1. Choose ten arbitrary source-
destination pairs and designate them as users 1, . . . 10. Assume Ai,j(t) to
be i.i.d. Bernoulli with probability of arrival λ in every slot. Write a
program to simulate MWS algorithm on this network. Let hj(λ) be the
average hop length for user j. Compare hj(λ) with the minimum hop
distance.

8.9 Consider the MWS algorithm in a network in which there are link errors.
Let p(i,k) be the packet error probability on link (i, k). Find the link
capacity region for this network. Adapt the MWS algorithm for this
case and show that it will stabilize the network for all λ∈Λ1.

8.10 Consider a network in which all flows are single hop flows. All flows are
to be routed over the single-hop path from the source to the destination.
Given a network graph G obtain a schedule that maximizes the total
utility.

8.11 Consider the single-hop s-Aloha network with N nodes that we studied
in Chapter 7. In each slot, all nodes transmit independently with proba-
bility p. Derive the proportionally fair p when all nodes have the same
utility function. Generalize to the case when Node i has utility function
ai log (xi).
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CHAPTER 9

Mesh Networks: Fundamental
Limits

We continue with our analysis of ad hoc internets. In the previous
chapter we were concerned with routing and transmission scheduling
to support point-to-point flows. We had assumed that the network

graph was given and that it was connected. We had also assumed that the set of
allowable link activation vectors was given. Since these can be derived from the
node locations, we essentially assumed that the latter were given. In this chapter
we will explore the limits of two fundamental properties of wireless networks—
connectivity and capacity—without assuming that the node locations are known.
For a random deployment, we will first derive the requirement to make the network
connected. In the connectivity regime (i.e., when the network is connected),
we explore the ability of the random network to transport data; we obtain the
so-called transport capacity of the network. We will also consider the transport
capacity of arbitrary networks. Like in the previous chapter, we will assume that
time on the network is slotted and in each slot, one packet can be transmitted.

Overview
In Section 9.1 we provide an overview of connectivity and capacity issues in
wireless mesh networks. We also provide an overview of node distribution models
and the random graph models—random geometric graphs (RGGs) based on a
Boolean model, and signal-to-interference ratio graphs (STIRGs). In Section 9.2 we
consider the random geometric graph model. We first derive the exact probability
for the connectivity of a one-dimensional network with a finite number of nodes
and then carry out an asymptotic analysis of the connectivity of a network in
two dimensions. In this asymptotic analysis, we first obtain a simple sufficient
condition to make isolated nodes disappear. Ignoring edge effects, necessary and
sufficient conditions for asymptotic connectivity are obtained. The derivation of
the necessary condition is elementary (not simple!), but involved, and is very
instructive of the proof techniques. In contrast, the sufficient condition would seem
fairly simple. In Section 9.3, connectivity in STIRGs is discussed using percolation
models.

The capacity analysis begins with a discussion on the connection between the
different spatial models that were used in Chapter 8. In Section 9.5, we consider
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arbitrary networks where we do not make any assumptions on the node locations.
For the protocol model, the transport capacity of an arbitrary network is obtained
using simple geometric arguments. Section 9.6 first obtains the capacity of a
randomly deployed network under the protocol model. The analysis is based on
a routing problem in parallel computers known as k × k permutation on an n × n
mesh. This is followed by a detailed discussion on the issues with the protocol
model. We then discuss transport capacity in STIRG models using percolation.
Finally, informal arguments are presented that describe the effective exploitation of
mobility.

9.1 Preliminaries
An important feature of wireless networks is that the node locations in a network
are random, because of either mobility or deployment constraints. Further, most
wireless nodes will be battery operated and energy conservation will be an
important objective of network operation. It is known that a battery recovers
some energy when it is not in use. Hence, wireless nodes may frequently turn
off their transceivers to conserve, and also to recover, energy. Even when a
wireless node is switched on, depending upon its communication needs and
battery level, the transmission power may vary with time. Thus, in exploring the
fundamental performance limits of wireless networks, it is reasonable to model
the node locations as random variables; the node locations can be assumed to
be a realization of a point process with the points corresponding to the node
locations. The distribution of the node locations could correspond to the ensemble
of randomly deployed nodes that are static, or to the stationary distribution of
networks with time varying locations.

Two models for the node locations are widely used. In one model a unit area
(usually a square or a circle) is designated as the operational area of the wireless
network and n nodes are distributed uniformly inside this area. This corresponds
to a node density of n nodes per unit area. In a second model, the wireless nodes
are assumed to be distributed in R2 and the node locations form a spatial Poisson
process of intensity λ.

Each wireless network is allocated a frequency band for operation and the
transmission energy from all the nodes should be restricted to this band. We
will assume that all transmissions occupy the entire bandwidth available to the
network.

The network graph captures the communication capabilities among the
nodes in the network. Thus connectivity is an important network graph property.
For a wireless network, the network graph also captures the communication
constraints; for example, it can be used to specify the nodes that can transmit
simultaneously. Thus it determines the rate at which nodes in the network can
exchange information. Since the nodes in the network are randomly located, the
network graph will be a random graph. We will now develop some random graph
models for wireless networks.
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9.1.1 Random Graph Models for Wireless Networks
In most wireless mesh networks, the nodes use omnidirectional antennas and
multiple access protocols to access the channel. Hence, the channel becomes a
broadcast channel. Transmission energy from a node reaches all nodes in the
network. The received power at these other nodes will depend on the distance and
the characteristics of the radio channel between the transmitter and the receiver.
If node i is located at xi and is transmitting with power Pi, then the SINR at a
receiver at location xj is given by

SINRi, j := Pi L(xi, xj)
N0W + γ

∑
k�=i

k transmitting

Pk L(xk, xj)
(9.1)

where L(x, y) is the path loss function when the transmitter is at x and the receiver
is at y, N0 is the thermal noise spectral density at the receiver, W is the channel
bandwidth, and γ, 0 ≤ γ ≤ 1, is the orthogonality factor between the transmis-
sions. If the transmissions are all perfectly orthogonal, or if no other node is trans-
mitting when Node i is transmitting, then γ = 0. Typically, L(x, y) takes the form
L(d) where d is the distance between the points x and y. The standard model
for path loss is the far field model where L(x, y) = L(‖x − y‖)−α, ‖x − y‖ is the
Euclidean distance between x and y, and α > 0 is called the path loss exponent.
See Section 2.1.4 for a more detailed discussion on the signal attenuation and delay
phenomena on the path from the transmitter to the receiver.

To see how to construct the network graph from the path loss model, assume
that all nodes transmit with the same power, say P, and that the minimum SNR
required at a receiver is β. Define

r1 := sup
d>0

{
PL(d)
N0W

> β

}

When no other node in the network is transmitting, all nodes at a distance less than
r1 from the transmitter, say Node 0, can decode the transmission with acceptable
error probability; the decode region is a circle of radius r1 centered at the location
of Node 0. r1 is called the SNR-cutoff.

Exercise 9.1
Obtain the SNR-cutoff for L(d) = d−α.

Now consider the situation when Node 0 is transmitting. When there are
other nodes transmitting in the same slot as Node 0, the extent of the decode
region of Node 0 depends on the location of these other transmitters. This is
because the signal from them will be the interference at the receivers of Node 0,
and this reduces their SINR. This is evident from (9.1). We will first simplify the
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effect of this interference and assume that a transmission from node i, located at
xi, can be decoded at node j, located at xj, if

‖xi − xj‖ < r (9.2)

‖ ·‖ denotes the Euclidean distance. r is called the transmission range or the cutoff,
and essentially captures the effect of interferences. The network graph G = (V , E)
is constructed as follows. The vertex set corresponds to the n nodes in the network.
The edge set in the network graph, representing the links in the network, is
given by

E := {(i, j) : ‖xi − xj‖ < r}
Figure 9.1 illustrates the edges obtained using (9.2) at two sample nodes in a
network. Note that (9.2) only fixes the links in the network. The set of links that
can simultaneously be active can now be derived from graph-based constraints
like those described in Chapter 7.

When the node locations are random, let Xi denote the random location of
node i and let Xn := (Xi, i ∈ {1, . . . , n}) denote the set of node locations in the n-node
network. Since Xn is random, the network graph is a random graph. Let Gn(rn)

i

j

Figure 9.1 A sample realization of a random geometric graph. The cutoff region
around nodes i and j is shown as dashed circles.
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denote a realization of a network graph obtained when there are n nodes in the
network and the cutoff is rn. Gn(rn) is a graph-valued random variable.

Random graphs have been studied for more than 50 years, primarily as Erdös-
Renyi random graphs. In this classical random graph model, in an n-node graph,
edge (i, j), 1 ≤ i < j ≤ n, occurs with probability pn, 0 < pn < 1, independently of
all the other edges. Observe that in the graph Gn(rn), the edges are not independent.
To see this, observe that if (i, j) and (j, k) are edges in G, then we have more
information on the relative locations of node pair (i, k). Therefore, we cannot say
that the existence of edge (i, k) is independent of the existence of edges (i, j) and
(j, k). Random graphs of the type Gn(rn) are called random geometric graphs. From
the method used in determining the edges in the network, this is also called the
Boolean model.

A network graph that captures the effect of interferences in more detail can
also be constructed. Assume that signals transmitted by the different nodes are
orthogonal, albeit with some imperfections, like in CDMA networks. Let each
node randomly choose a color represented by an integer in [1, T]. Divide time into
frames of T slots each. In slot t of each frame, 1 ≤ t ≤ T, nodes that chose color t
will transmit. Let St denote the set of nodes that transmit in slot t. Thus each node
gets a chance to transmit once in every T slot. We will assume that even if a node,
say Node j, is transmitting in a slot, it can decode a signal transmitted by another
node, say Node i, if the SINR threshold is met. We will also assume that there is
sufficient orthogonality between the transmissions so that Node j can decode all
the simultaneous transmissions for which the SINR is above the threshold. Now
consider Node i, transmitting with power Pi and a possible receiver Node j. Let
SINRi, j be the SINR at Node j for the transmission from Node i. To obtain SINRi, j,
observe that the received power from Node i is the signal and the received power
from all other transmitters in the slot is the interference. Thus

SINRi, j = PiL(di, j)
N0W + γ

∑
k∈St
k�=i

PkL(dk, j)

Let Et denote the set of directed edges for slot t, those along which packets could
be exchanged in slot t. Et is obtained as follows:

Et := {(i, j) : SINRi, j > β}
Let E′

T := ∪T
t=1 Et, where E′

T is the set of all directed edges along which
communication could take place in at least one of the T slots of a frame. Let
ET be the set of bidirectional edges in E′

T ,

ET := {(i, j) : (i, j) ∈ E′
T and (j, i) ∈ E′

T }
ET is the set of undirected edges and the network graph, GT = (N, ET ), is
called a signal-to-interference-ratio graph (STIRG). It is easier to study STIRGs
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by assuming that the nodes are distributed according to a Poisson spatial process
in R2. There are many parameters that define the STIRG—the node density λ, the
transmission power P, the receiver noise power WN0, the SINR threshold β, the
orthogonality factor γ, and the path loss function L(·). We will study the properties
of STIRGs as a function of λ and γ.

The properties of random graphs that are of interest to us will essentially be
events in a probability space. Many a time, we will be analyzing the asymptotic
behavior of the properties of the network graph. In this we will be using the order
notation (see Section A.3 in Appendix A) with some modifications.

Consider a sequence of random experiments indexed by n. Let X be an event
of interest and let pn(X) be the probability that X occurs in the n-th experiment of
the sequence. If pn(X) → 1 as n → ∞, we say that X occurs with high probability
(w.h.p.). This means that for any ε > 0, we can find an n∗(ε) such that Pr(Xn) > 1− ε

for all n ≥ n∗(ε). We now apply this notion to the order notation. Let X(n) be a
random sequence. For example, X(n) could be the random variable representing
the execution time of a protocol in a random network; the protocol itself could
be a randomized protocol. If

Pr
(
X(n) ≤ a g(n)

) → 1 as n → ∞

for some positive constant a, then X(n) = O(g(n)) w.h.p. and we write X(n) =
Õ(g(n)). Similarly, we say X(n) = Ω̃(g(n)) if X(n) = Ω(g(n)) w.h.p. And X(n) =
õ(g(n)) implies that X(n) = o(g(n)) w.h.p.

9.1.2 Spatial Reuse, Network Capacity, and Connectivity
We have seen in earlier chapters that using the same part of the spectrum
simultaneously in many parts of the network is an important mechanism to
increase the capacity of a wireless network. The transmission power determines
the spatial reuse, the number of simultaneous transmissions that are possible in
the network. In cellular networks (see Chapters 4 and 5), the effect of spatial reuse
on the capacity is obvious. However, for wireless mesh networks, we first need to
formalize the notion of capacity.

Consider a mesh network of n nodes. Let each node have a flow to an
arbitrary destination giving us a set of n end-to-end flows in the network. Our
first interest is in the per node capacity, the maximum rate at which the n node
pairs can exchange information. Since all flows will reach the destinations over
multiple hops in the network, it is important to capture the spatial distance covered
by the flows in the definition of capacity. We define the transport capacity of the
mesh network as the sum of the distances toward the destination traveled by every
bit per unit time. Thus the unit of transport capacity is bit-meters per second.
For example, let di be the destination for the flow from node i. If bi(τ) bits reach
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from i to di in τ seconds, then
∑n

i=1 bi(τ)‖Xi − Xdi
‖ bit-meters are transported in

τ seconds. The transport capacity of the network, CT , is given by

CT := lim
τ→∞

1
τ

n∑
i=1

bi(τ)‖Xi − Xdi
‖

bit-meters per second. It is important to note that CT is a random variable for each
protocol because the node locations, and hence the network graph, are random.

To maximize spatial reuse, the transmission power, and hence the transmis-
sion range, should be as low as possible. This increases the number of hops for
each flow. One might argue that the multiple hops can actually reduce capacity
because a packet has to be transmitted multiple times. Informally, let D be the
average source-destination distance, R the average distance toward the destination
covered by a hop, and S the number of nodes that are transmitting simultaneously
in a slot. R is proportional to r, the transmission range. If each packet is l bits, then
CT = RlS bit-meters per slot. Now observe that increasing the transmission range
increases R, and hence decreases the average number of hops, D/R, linearly. If the
network graph is a random geometric graph and the receiver conflict constraint
for spatial reuse (see Section 8.1.1) is used, in a circle of radius r around a receiver,
only one node can transmit. Thus increasing r decreases S in proportion to r2. This
means that the transport capacity increases as the transmission range decreases.
Hence, as low a transmission range as possible should be used. However, the
transmission range cannot be made too low because the network will then become
disconnected; that is, there may not be a path between every pair of nodes in the
network. Thus, keeping the network connected becomes an important issue. This
in turn means that capacity and connectivity need to be studied together and we
will do just that in this chapter.

We begin by studying the connectivity of a randomly deployed network using
the random geometric graph or the Boolean Model in the next section.

9.2 Connectivity in the Random Geometric Graph
Model

In this section we will analyze the connectivity property of a wireless network with
nodes randomly deployed in a finite area. We will use the random geometric graph
model for the network graph. For a given cutoff, r, obtaining exact expressions
for the probability that the network is connected is hard except for some simple
cases. We will first develop one such simple case in which the nodes are distributed
on a finite line segment. Numerical analysis of the results points to an interesting
threshold behavior of the connectivity as a function of the cutoff. For a wireless
network in two dimensions, we will analyze this behavior and obtain the cutoff
required for asymptotic connectivity.
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9.2.1 Finite Networks in One Dimension
Consider a two-node, one-dimensional network with the location of each node
uniformly distributed in [0, z] and chosen independently of each other. Let the
transmission range of both nodes be r. We now obtain the probability that the
two nodes are connected. Without loss of generality, let X1 be the location of
the left node and X2 that of the right node; that is, X1 ≤ X2. The two-node
network is connected if X2 − X1 ≤ r. This is graphically shown in Figure 9.2. The
set of values that (X1, X2) can take is denoted by the area OAB. The set of (X1, X2)
that would result in a connected network is given by the shaded area S in the figure.
S is the region satisfying X1 < X2 (by definition of X1 and X2) and X2 −X1 < r (the
connectivity requirement). Since the nodes are distributed uniformly in [0, z], the
probability that the network is connected is the ratio of the area of S to the area
of OAB. The area of S is

(
z2

2 − (z − r)2
2

)
and that of OAB is z2

2 . Thus the probability

that the network is connected is

z2/2 − ((z − r)2)/2
z2/2

= 2zr − r2

z2

Let there be n nodes in the network and let the location of node i be
denoted by Xi. Xi are i.i.d. with uniform distribution in [0, z]. Thus the random
network is represented by a random vector X = [X1, X2, . . . , Xn]. Let pc(n, z, r)

S

x 2

x 1

r

z

z 2r z(0,0)
O

B A

Figure 9.2 The feasible region of a random, connected 2-node, 1-dimensional ad hoc
network.
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be the probability that X represents a connected network when each node has a
transmission range of r. Let X̂ = [X̂1, X̂2, . . . , X̂n] be the node locations ordered
according to their positions on [0, z]; that is, X̂1 < X̂2 < . . . , < X̂n. Define X̂0 = 0.
The condition X̂i+1 − X̂i < r for i = 1, . . . , (n − 1) needs to be satisfied for X to
represent a connected network.

The set of all realizable networks is contained in the n-dimensional polytope
An, defined by 0 = x̂0 ≤ x̂1 ≤ x̂2 ≤ . . . , ≤ x̂n ≤ z. The set of connected
networks is contained in the polytope Ac(n, z, r), defined by x̂i+1 − x̂i < r for
i = 1, . . . , (n − 1). Let V(n, z) and Vc(n, z, r) be the volumes of the polytopes
An and Ac(n, z, r), respectively. Since we have assumed that the node locations
are uniformly distributed in [0, z], the probability that the network is connected,
pc(n, z, r), will be Vc(n, z, r)/V(n, z).

We obtain pc(n, z, r) as follows. Define yi = x̂i+1 − x̂i, i = 0, . . . n − 1. Let Bn

denote the polytope defined by

{
y0, y1, . . . yn−1 : yi ≥ 0 for i ≥ 0,

n−1∑
0

yi ≤ z

}
,

and let U(n, z) be the volume of Bn. Let Bc(n, z, r) be the polytope defined by

{
y0, y1, . . . yn−1 : y0 ≥ 0, 0 ≤ yi ≤ r for i ≥ 1,

n−1∑
0

yi ≤ z

}

and let Uc(n, z, r) be the volume of Bc(n, z, r).
Note that the y are obtained from x̂ using a linear transformation. Further

this transformation is invertible because, given y, the x̂ can be recovered. Since x̂
and y are related by a linear invertible transformation, the polytope Bn is a scaled
version of the polytope An and Bc(n, z, r) is obtained from Ac(n, z, r) using the same
scaling. We thus have U(n, z) = KV(n, z) and Uc(n, z, r) = KVc(n, z, r) for some
constant K > 0. Thus

pc(n, z, r) = Uc(n, z, r)
U(n, z)

It is easy to see that U(1, z) = z. To obtain U(2, z), we need 0 ≤ y0 ≤ z and
y0 + y1 ≤ z, and we have

U(2, z) =
∫ z

0
U(1, z − t)dt

Arguing along the same lines, U(n, z) can be obtained using the recurrence relation

U(n, z) =
∫ z

0
U(n − 1, z − t)dt (9.3)
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Exercise 9.2
Evaluate the recursion in (9.3) to show that U(n, z) = zn

n! .

We obtain a recursion for Uc(n, z, r) as follows. The n-node network is
connected if two conditions are satisfied: (1) the (n − 1)-node network formed
without the leftmost node is connected and (2) the leftmost node is within r of the
node immediately to its right. This is saying that the (n − 1)-node network formed
by removing the segment between the first node and the second node is connected.
Thus this connected network with (n − 1) nodes satisfies

{
y0, y2, . . . yn−1 : y0 ≥ 0, 0 ≤ yi ≤ r for i ≥ 2, y0 +

n−1∑
2

yi ≤ (z − r)

}

Also, this (n − 1)-node connected network will span over at least (z − r). This
is illustrated in Figure 9.3. We can therefore write the recursion for Uc(n, z, r) as
follows.

Uc(n, z, r) =
∫ r

0
Uc(n − 1, z − t, r)dt (9.4)

Network with n (56) nodes in [0, z]

Network with n (55) nodes in [0, z 2 y1]

x 0

z

x3x2x1 x4 x6

y5y4y3y2y1y0

y2 y3 y4 y5y0

x0

0

x2 x3 x4 x5 x6

z 2 y1

z

z

x5

0

Figure 9.3 Illustrating the discussion leading to (9.4). For the n-node network to be
connected, the (n − 1)-node network without the node at x1 should also be connected
and y1 should be at most r. Thus the (n − 1)-node network will be spread over (z − y1)
with y1 taking values in (0, r).
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Defining

h(z) :=
{

1 0 ≤ z ≤ r
0 otherwise

,

we can write the right-hand side of (9.4) as the convolution of Uc(n − 1, z, r) and
h(z). Thus

Uc(n, z, r) = h(z) ∗ Uc(n − 1, z, r) = · · · = h((n−1)∗)(z) ∗ Uc(1, z, r)

where h((n−1)∗)(·) is the (n − 1)-fold convolution of h(·) with itself. Note that
Uc(1, z, r) = zu(z), where u(z) is the unit step function.

Let h̃(s) and Ũ(n, s, r) denote the Laplace transform of h(z) and Uc(n, z, r),
respectively.

h̃(s) = 1 − esr

s

Ũc(n, s, r) =
(

1 − esr

s

)n−1 1
s2

= (1 − esr)n−1

sn+1

=
∑n−1

k=0

(
n−1

k

)
(−1)kesrk

sn+1

Taking the inverse Laplace transform, we get

Uc(n, z, r) =
n−1∑
k=0

(
n − 1

k

)
(−1)k(z − kr)nu(z − kr)

n!
(9.5)

Finally, the probability that the network is connected is

pc(n, z, r) = Uc(n, z, r)
U(n, z)

=
n−1∑
k=0

(
n − 1

k

)
(−1)k

(z − kr)n

zn u(z − kr)

Figure 9.4 plots pc(n, z, r) as a function of r for z = 1 and different values of
n. Observe that, as n becomes large, for small values of r pc(n, 1, r) is close to zero
and for large values of r it is close to one. The range of r over which pc(n, 1, r) takes
intermediate values is very small. This indicates some kind of a threshold behavior
for the connectivity probability: For large n, as r is increased from 0, the network is
disconnected with probability very nearly 1 and at a threshold transmission range,
it becomes connected with probability very nearly 1. There is no “intermediate
value” for the probability of connectivity; either it is close to one or close to zero
and the transition is sharp. We will now investigate this behavior for a network
in two dimensions. The analysis extends easily to higher dimensions.
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Transmission Range
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num of nodes (n) 5 100
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Figure 9.4 The probability of connectivity in a one-dimensional network as a function
of r for different n, the number of nodes in the network.The operational area is [0, 1].

9.2.2 Networks inTwo Dimensions: Asymptotic Results
To make the network connected, it is necessary that the network not have any
isolated nodes (i.e., nodes that are not connected to any other node). Let us
first find a sufficient condition on rn, the transmission range as a function n, to
make the isolated nodes disappear. In the following, we will always assume that
πr2

n < 1.

Making Isolated Nodes Disappear

Let n nodes be distributed uniformly in the unit square. Let rn be the transmission
range of the nodes when there are n nodes in the network. Let Zi be the event that
node i is isolated (i.e., it is not in the transmission range of any other node), and
let Z := ∪n

i Zi be the event that there is at least one isolated node in the network.
A node is isolated if the other (n − 1) nodes are not in the intersection of the circle
of radius rn centered at Xi (the location of node i) and the unit square. The part

of the square that is not in this circle is at most
(
1 − πr2

n
4

)
.

Pr(Zi) ≤
(

1 − 1
4

πr2
n

)n−1

From the union bound (see Appendix B), Pr
(∪n

i=1Zi
) ≤ ∑n

i=1 Pr(Zi) and we
can write
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Pr(Z) ≤ n
(

1 − 1
4

πr2
n

)n−1

= e

(
log n+(n−1) log

(
1− 1

4 πr2
n

))

≤ e

(
log n−(n−1)

(
1
4 πr2

n

))

= e
log n

(
1− (n−1)

log n

(
1
4 πr2

n

))

= e
log n

(
1− π

4

(
rn√

(log n)/(n−1)

)2
)

where, in writing the second inequality, we have used the fact that log(1 + x) ≤ x.
To make Pr(Z) → 0 as n → ∞, from the last equation, it is sufficient to have
r2
n/((log n)/n) → ∞; r2

n is made to decrease strictly slower than (log n)/n with the
ratio going to ∞ as n → ∞. For example, using r2

n = log n
n + cn where cn = o(n) and

cn → ∞ is sufficient to make isolated nodes disappear. The condition cn = o(n) is
necessary to ensure that 1

4πr2
n < 1.

Interestingly, we will show that making rn/
√

(log n)/n → ∞ is necessary and
sufficient to make the network connected.

Exercise 9.3
Using arguments similar to the preceding, show that in a one-dimensional
network, isolated nodes disappear if rn

(log n)/n) → ∞.

Necessary Cutoff for Connectivity

Let us ignore edge-effects. This is not too bad because, as n becomes large, smaller
values of rn would suffice for connectivity and the edge effects become negligible.

Let Pd denote the probability that the network is disconnected. Clearly,

Pd := Pr
(
network is disconnected

) ≥ Pr
(∪n

i=1 Zi
)

≥
n∑

i=1

Pr(Zi) −
∑

1≤i<j≤n

Pr
(
Zi ∩ Zj

)
(9.6)

The last inequality follows from the “inclusion-exclusion” formula for the
probability of the union of events (see Appendix B).

We have discussed Pr(Zi) earlier. Ignoring edge effects, we can assume that
the entire circle of radius rn around node i is inside the unit square. This is
illustrated in Figure 9.5. Hence

Pr(Zi) = (1 − πr2
n)n−1 (9.7)
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Xi
rn

Figure 9.5 For node i to be isolated, the other (n − 1) nodes should not be in the circle
of radius rn around node Xi, the location of node i.

Let us now consider the event {Zi ∩ Zj}; that is, the event that nodes i and j
are both isolated. For this to happen, the (n − 2) nodes other than i and j should
not be in the region determined by the union of circles of radius rn centered at Xi
and Xj. Also, Xj should not be inside the circle at Xi. For the following discussion,
refer to Figure 9.6. If ‖Xi − Xj‖ > 2rn, then the two circles centered at Xi and
Xj are disjoint and the area not available to the (n − 2) nodes is (2πr2

n). This is
shown in the left panel of Figure 9.6. In this case nodes i and j will be isolated with
probability (1 − 2πr2

n)n−2. If rn ≤ ‖Xi − Xj‖ ≤ 2rn, then the area unavailable to the
(n − 2) nodes depends on the location of Xj. This is shown in the right panel of
Figure 9.6. From elementary geometry, we can obtain the unavailable area to be

2πr2
n − r2

n(2φ − sin 2φ) = (2π − 2φ + sin 2φ)r2
n

where a = ‖Xi − Xj‖ and φ = arccos(a/2rn). It is easy to see that π/3 ≤ φ ≤ 0.
Hence the area unavailable to the other (n − 2) nodes when rn ≤ ‖Xi − Xj‖ ≤ 2rn

is given by Bπr2
n where B is a random number satisfying

2 ≥ B ≥ 8π + 3
√

3
6π

> 1

Let b be the conditional expectation of B when rn ≤ ‖Xi − Xj‖ ≤ 2rn. Of course,
1 < b < 2.
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Figure 9.6 For nodes i and j to be isolated there are two cases. The left panel shows
the case when |Xi −Xj| ≥ 2rn. In this case, the area unavailable to the other (n−2) nodes
to keep i and j isolated is the sum of the areas of the two shaded circles centered at
Xi and Xj, 2πr2

n .The right panel shows the case when rn ≤ |Xi − Xj| ≤ 2rn. Here the area
unavailable to the other (n − 2) nodes is less than 2πr 2

n .

The probability that Xj is outside the outer dashed circle is (1−4πr2
n) and the

probability that it is in the annulus between the dashed and solid circle is 3πr2
n.

We therefore have

Pr
(
Zi ∩ Zj

) =
(
1 − 4πr2

n

) (
1 − 2πr2

n

)n−2 +
(
3πr2

n

) (
1 − bπr2

n

)n−2
(9.8)

To proceed with the analysis, we will need the following lemma.

Lemma 9.1

If πr2
n = log n + c

n , c ≥ 0, then, for fixed θ < 1, and for all sufficiently large n,

n
(
1 − πr2

n

)n−1 ≥ θe−c (9.9)

�

This is derived as follows. For x ≥ 0,

e−x ≤ 1 − x + x2

2
(9.10)

Also, since yn is a convex function, for a > 0, and 0 < ε < a, we have

(y − ε)n ≥ yn − εnyn−1 (9.11)
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Let

x = πr2
n = log n + c

n
and ε = x2

2

Then

(
1 − πr2

n

)n = (1 − x)n ≥
(

e−x − x2

2

)n

≥ e−nx − n
x2

2
e−(n−1)x

= e−nx

(
1 − n

x2

2
ex

)

= e−c

n
(1 − o(n))

The first inequality is obtained from (9.10) and the second inequality is obtained
from (9.11). We thus have

n
(
1 − πr2

n

)n ≥ e−c (1 − o(n)) ≥ θe−c

where θ is a constant.
Let us now go back to analyzing Pd. Applying (9.7) and (9.8) in (9.6), for

large n, we get

Pd ≥ n
(
1 − πr2

n

)n−1 − n(n − 1)
2

(
3πr2

n

(
1 − bπr2

n

)n−2 +
(
1 − 4πr2

n

) (
1 − 2πr2

n

)n−2
)

≥ θe−c − n(n − 1)
2

(
3πr2

ne−b(n−2)πr2
n + e−2(n−2)πr2

n

)
(9.12)

In deriving the last inequality we have used the fact that (1−x) ≤ e−x and
(1 − 4πr2

n) ≤ 1. Let us now consider each of the terms separately.

e−b(n−2)πr2
n = e−bnπr2

n e2bπr2
n

= e−bn log n+c
n e2bπr2

n

= e−bc

nb
e2bπr2

n

n(n − 1)
2

(
3πr2

n

)
e−b(n−2)πr2

n = n(n − 1)
2

(
3

log n + c
n

)
e−b(n−2)πr2

n

= 3
2

(
n − 1

nb
(log n + c)

)(
e−bc e2bπr2

n

)
→ 0
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The last assertion is true because b > 1 and hence log n + c
nb/(n − 1)

→ 0 as n → ∞. Let us

now look at the second term in (9.12).

n(n − 1)
2

e−2nπr2
ne4πr2

n = n(n − 1)
2

e−2(log n+c) e4πr2
n

= n(n − 1)
2

1
n2 e−2ce4πr2

n

= e−2c
(

n − 1
2n

e4πr2
n

)
≤ e−2c(1 + ε) (9.13)

for any ε for sufficiently large n. This is true because as n → ∞, the term in the
parenthesis goes to 1/2.

Returning to (9.12), we have

Pd ≥ θe−c − (1 + ε)e−2c (9.14)

for all n sufficiently large, say n ≥ N1(ε, θ, c).
Replace c by a sequence cn. We will characterize Pd in terms of the properties

of cn. Also, since Pd is a function of n, we will make the relation explicit by
denoting it as Pd(n, rn).

Let lim sup cn = c̄. Then, for any ε > 0, cn ≤ c̄ + ε for all n ≥ N2(ε). For any
realization of the node locations, the number of edges can only increase when c is
increased and hence Pd decreases monotonically with increasing c. Let Pd,ε(n, rn)
be the Pd with c = c̄ + ε. Therefore

Pd(n, rn) ≥ Pd,ε(n, rn) ≥ θe−(c̄+ε) − (1 + ε)e−2(c̄+ε)

for n > max (N2(ε), N1(ε, θ, c)). Taking limits

lim inf
n→∞ Pd(n, rn) ≥ θe−(c̄+ε) − (1 + ε)e−2(c̄+ε)

This holds for all ε > 0 and θ < 1. Therefore, we can say that if πr2
n = log n + cn

n ,
then

lim inf
n→∞ Pd(n, rn) ≥ e−c(1 − e−c) (9.15)

where c = limn→∞ cn. This means that if πr2
n = log n + cn

n and lim supn→∞ cn < ∞,
then there is a nonzero probability that the network is disconnected. This in turn
means that it is necessary to have

πr2
n = log n + cn

n
cn → ∞

for the network to be asymptotically almost surely connected.
We next investigate a sufficient condition for connectivity.
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SufficientTransmission Range for Connectivity

To obtain a sufficient transmission range, we make the following construction.
Tessellate the unit square into square “cells” each of side sn, (there are 1

s2
n

cells).

The subscript n is used to indicate that the size of the cell will be a function of n.
Figure 9.7 illustrates this tessellation. We will first find an sn for which all cells
will contain one or more nodes with high probability. We will then choose rn such
that the nodes in a cell are connected to all nodes in the cells that are above and
below it and on the right and left of it. It is easy to see that this can be achieved if
we choose rn = √

5sn.
Now consider an arbitrary cell in the tessellation, which we will call the

tagged cell. When a node is randomly placed in the square, the probability that it
will be in the tagged cell is s2

n. We therefore have

Pr
(
tagged cell is empty

) = (1 − s2
n)n

Since there are 1
s2
n

cells, using the union bound, we see that

αn := Pr
(
one or more cells are empty

) ≤ (1 − s2
n)n

s2
n

≤
(
e−s2

n

)n

s2
n

rn

1 unit

1 
un

it

sn

i

j

k

Figure 9.7 The unit square is tessellated into square cells of side sn. Each node should
have an edge to all the nodes in the neighboring cells as shown for node i. The maximum
distance between two nodes in adjacent cells is when they are located like j and k.Thus
it suffices to have rn = √

5sn for asymptotic connectivity.
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The last inequality is true because (1 − x) ≤ e−x. Now, let sn =
√

K log n
n . We then

have

αn ≤ e− nK log n
n

K log n
n

= ne−K log n

K log n

= 1
nK−1

1
K log n

If we choose K > 1, then αn → 0; if sn =
√

K log n
n , then no cell is empty with high

probability.
Thus we see that rn = (

√
5K log n)/n, K > 1, is sufficient to make the network

connected with high probability. Compare this with the necessary condition:

rn = √
(log n + cn)/(πn) with cn → ∞. Thus

√
log n

n is a threshold function. This

means that if rn decreases faster than
√

log n
n then the probability that the network

is connected goes to zero. On the other hand, if it decreases slower, then the
probability that the network is connected goes to one. For large n and a given
deployment, if we construct random geometric graphs with increasing rn, there is

a phase transition of the connectedness property of the graph around rn =
√

log n
n .

With high probability, it is disconnected below this value and is connected above
this value.

We can also prove a slightly stronger result on connectivity. If we choose
K > 2, we see that

∞∑
n=1

αn < ∞ (9.16)

Now consider the sequence of random vectors {Xn} with Xn denoting an n-node
deployment.

∞∑
n=1

Pr
(
Xn has empty cells

) =
∞∑

n=1

αn < ∞

From the Borel-Cantelli lemma (see Section B.3.3), this means Xn has no empty
cells infinitely often and the network is asymptotically almost surely connected.

9.3 Connectivity in the Interference Model
Let us now consider connectivity in STIRGs. We will assume that the node
locations form a homogeneous Poisson point process in R2 of intensity λ. This
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means that the number of nodes in two nonoverlapping areas is independent.
Further, the number of nodes in an area A has a Poisson distribution with mean λA.
If λ > 0, almost surely, there are an infinite number of nodes in the network. As we
have mentioned earlier, the graph from a realization of the node locations depends
on the orthogonality factor γ, SINR threshold β, the transmission powers Pi, the
receiver noise W N0, and the path loss function L(·). To simplify the analysis, let
us assume that all nodes transmit with the same power P. Also, all nodes transmit
in every slot. We will also choose a path loss model and fix the SINR threshold β.
We will denote the random graph by G(λ, γ) to make the dependence of a random
graph on λ and γ explicit.

For a given realization of the node locations, decreasing γ increases the
number of edges. However, for a given γ, increasing λ will increase the expected
number of nodes near the tagged node and can increase the expected number of
edges in the network. Increasing λ can also contribute to increased interference
because of the increase in the expected number of nodes in the network. Thus the
dependence of connectivity on λ is not straightforward.

Since there are an infinite number of nodes in the network, we usually
investigate a property related to connectivity. For a given λ and γ, we look for
the existence of a giant component, a connected component with an infinite
number of nodes. The giant component is a subgraph that typically extends
to infinity in all directions. When there is a giant component in the graph, we
say that the network percolates. To understand this terminology, it will help to
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Figure 9.8 For both figures, we used P = 100,000, β < 1, and N0W = 1. The node
locations were generated using λ = 104. The same node locations are used in the two
figures. The path loss function L(d) = d−3. For the left figure γ = 0.03 and for the right
figure γ = 0.003. It is easy to see that there is percolation in the right figure and not in
the left.
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visualize the links as representing open pipes. Consider a sufficiently large finite
set in R2, say a square. If there is a giant component in the network, then a
part of the giant component will be inside this square and there will be pathways
connecting the sides of the square. In Figure 9.8, we show two examples, one in
which there is percolation and the other in which there is no percolation. Note
that the existence of a giant component does not imply that there is only one
component.

Let us first examine useful forms of the path loss functions L(·). When
γ > 0, the total interference at a receiver is the sum of an infinite number of
terms and can become arbitrarily large. Further, observe that the interference
is actually a random variable and depends on the node locations. If the node
locations form a Poisson process, all nodes transmit with the same power,
and the path loss function depends only on the transmitter-receiver distance,
then we can show that

∑
k transmitting L(dk,j) almost surely converges if L(·)

satisfies ∫ ∞

y
L(t) dt < ∞,

for sufficiently large y, or, more conservatively, if L(·) ≥ 0 and is absolutely
integrable,

∫ ∞

0
L(t) dt < ∞

The first condition is satisfied for L(d) = d−α, α > 2 and in the rest of the
section we will use this form for the path loss function. Convergence of(∑

k transmitting L(dk,j)
)

implies that the interference at a node is finite. This, in

turn, means that edges can possibly exist in the network.
Consider a tagged node, say Node 0. Let us characterize the degree of

Node 0 in the STIRG. Let ν0 be the number of neighbors of Node 0. Consider a
neighbor of Node 0 from whom the received power at Node 0 is the least among
all the neighbors. Call this neighbor Node 1 and number the other neighbors
2, 3, . . . , ν0. Let the other nodes in the network, those that are not neighbors of
N0, be numbered ν0 + 1, ν0 + 2, . . .. By definition

P L(‖X1 − X0‖) ≤ P L(‖Xk − X0‖)

for k = 2, . . . , ν0. Since Node 1 is a neighbor of Node 0, it satisfies the SINR
constraint, and we can derive the following.

P L(‖X1 − X0‖)
N0W + γ

∑∞
k=2 P L(‖Xk − X0‖)

≥ β
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P L
(‖X1 − X0‖) ≥ βN0W + βγ

∞∑
k=2

P L
(‖Xk − X0‖)

≥ βN0W + βγ
(
ν0 − 1

)
P L

(‖X1 − X0‖)
+ βγ

∞∑
k=ν0+1

P L
(‖Xk − X0‖) ≥ βγ

(
ν0 − 1

)
P L

(‖X1 − X0‖)

ν0 ≤ 1 + 1
βγ

Thus the number of neighbors for any node is upper bounded when γ > 0. Further,
note that when γ > 1

β
then each node has at most one neighbor. We are now ready

to analyze percolation behavior as a function of γ. We remark here that in a
narrowband system γ = 1 and β > 1. Thus the above analysis implies that each
node can decode at most one transmission in a slot.

Observe that for γ = 0, we get the Boolean model of the previous section.
For this case, with sufficiently large λ, say λ ≥ λ∗, we should get a giant connected
component. Since increasing γ can only decrease the number of edges, we can be
sure that there is no percolation for λ<λ∗ for any value of γ. For λ>λ∗, we know
that if γ > 1

β
, then each node has only one neighbor and there is no percolation.

Therefore, we can argue that for every λ ≥ λ∗, there exists 0 < γ < 1
β

at which the
STIRG percolates. This is illustrated in Figure 9.9.

1/�

�

�

�*

� , �*
No percolation

possible
percolation

� . 1/�
No percolation

Figure 9.9 The values of γ and λ for which there may be percolation in STIRG.
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Let γ∗(λ) be the critical (largest) value of γ that achieves percolation for node
density λ,

γ∗(λ) := sup{γ ≥ 0 : G(λ, γ)percolates }
In general, it is not easy to obtain the value of γ∗(λ) and only some structural
results, existence results, and bounds can be obtained. We now show that for the
power law path loss model, the value of γ at which the network percolates is an
increasing function of λ.

Let λ1 < λ2 and a := √
λ1/λ2 < 1. Consider a realization of node locations

with node density λ1. Recall that all nodes transmit in every slot. Let G1(λ1, γ)
represent the STIRG corresponding to this realization. Let (i, j) be an edge in
G1(λ1, γ) between Node i and Node j and let di,j be the distance between them.
The SINR at j is given by

SINRi, j =
Pd−α

i, j

N0W + γ
∑

k�={i, j} Pd−α
k, j

=
Pa−αd−α

i, j

a−αN0W + γ
∑

k�={i, j} Pa−αd−α
k, j

≤ P
(
adi, j

)−α

N0W + γ
∑

k�={i, j} P
(
adk, j

)−α

The last inequality is obtained by observing that α > 1 and a < 1. In this realization
of node locations, scale the node locations by a so that nodes located at x are moved
to ax. This means that the nodes in a unit square are now contained in a square
of side a; the mean density of nodes in the scaled realization is λ1

a2 = λ2. Also, the
distances in the scaled network are scaled by a; the distance between i and j in the
scaled model is adi, j. Let SINR′

i, j be the SINR for the transmission from Node i at
Node j in the scaled network.

SINR′
i, j = P

(
adi, j

)−α

N0W + γ
∑

k�=j P
(
adk,j

)−α
> SINRi, j ≥ β

This means that all the links in G1(λ1, γ) are also present in the STIRG when the
distances are scaled to achieve a density of λ2 > λ1. Thus if there is percolation
in the STIRG with density λ1 there is also a percolation in the network when the
density is λ2 with the same γ. This in turn means that γ∗(λ1) ≤ γ∗(λ2); when the
density of nodes is increased, a higher value of γ can achieve percolation.

Discussion

A closed form expression for γ∗(λ) is not known and we take recourse to estimation
via simulation. Figure 9.10 plots γ∗(λ) as a function of λ as obtained from
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simulation for L(di, j) = d−3
i, j . Observe that γ∗(λ) seems to saturate with increasing

λ. Let us now analyze this behavior and see if we can obtain some insight into the
effect of interference on the connectivity.

When λ is increased, it increases the number of nodes in the neighborhood
of a receiver. This in turn should increase the interference at the receiver. Thus it
seems surprising that with increased λ, the network can tolerate a higher γ; that is,
a higher value of interference from other transmissions. One can quickly see that
this is an artifact of the path loss function. Notice that L(di, j) → ∞ as di, j → 0; the
model assumes that there is amplification of the transmitted signal by the channel
at nodes close to the transmitter! We need to use a more reasonable path loss
function.

The power law path loss function usually is used for the far field, when
the receiver is so far from the transmitter that the antennas do not get electrically
coupled. In the near field, we should upper bound the path loss. One such function
would be to ignore the path loss near the transmitter but use a power law for
locations far from the transmitter; for example,

L(di, j) = min{1, d−α
i, j }
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Figure 9.10 Critical γ for percolation as a function of the node density λ.Transmission
power P = 100,000, β = 1, and the receiver noise N0W = 10,000. The path loss function
is L(di, j) = d−3

i, j . λ∗ is also indicated. Adapted from [30].
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It turns out that for α = 3, this model does behave as expected—tolerates less
interference as λ increases, γ∗(λ) → 0 as λ → ∞. This is shown in Figure 9.10.

9.4 Capacity and Spatial Reuse Models
Recall that the capacity of a wireless network is determined by the spatial reuse
that can be achieved and increases with increasing spatial reuse. Thus, capacity
analysis essentially determines the spatial reuse possible in the network. Hence,
determining transport capacity (in bit-meters per second) boils down to obtaining
the sum of the distances traveled by these simultaneous transmissions. The per-
node capacity can then be obtained from the source-destination distances. In
Chapter 8, we had introduced link activation constraints that determine the
spatial reuse in the network. These were obtained from the protocol model, the
interference model, and network graph-based constraints. We will first develop
some connections between the first two models. Then, for the graph-based
constraints, we will analyze the possible spatial reuse in a random geometric graph
when rn is chosen such that the network is connected.

Consider a network in which each node is transmitting with power P.
Consider a tagged receiver, say Node 0, and a transmitter that is at a distance
rn from it. Let dn = rn(1 + Δ), Δ > 0, be an exclusion zone around the receiver in
which no other transmitter is located. We need to choose dn to satisfy the SINR
requirement at the receiver. Let us calculate the interference at the receiver of
Node 0 with a tight packing of the transmitter-receiver pairs around Node 0 as
shown in Figure 9.11. The dashed circles have radius (2k+1)dn for k = 0, 1, 2, . . . .
In the annulus between the k-th and the (k+1)-th dashed circles, there are at most

π((2k + 3)dn)2 − π((2k + 1)dn)2

πd2
n

= (2k + 3)2 − (2k + 1)2 = 8k + 8

transmitters. The numerator in the first expression is the area of the annulus and
the denominator is the area of an exclusion circle. Each of these transmitters is
at a distance of at least (2k + 1)dn from the receiver. For the power law path
loss function with α > 2, an upper bound on the total interference power at the
receiver is

∞∑
k=0

P((2k + 1)dn)−α8(k + 1) = 8Pd−α
n

∞∑
k=0

k + 1
(2k + 1)α

= a0Pd−α
n

where a0 = 8
∑∞

k=0
k + 1

(2k + 1)α . Since α > 2, the series converges and a0 is a finite
constant. Ignoring the receiver noise, the SIR at the receiver at Node 0 is

SIR ≥ Pr−α
n

N0W + a0Pd−α
n

≈ 1
a0

(1 + Δ)α (9.17)
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dn rn

Rx Rx

Rx

RxRx

Rx 0
Tx

Figure 9.11 Arrangement of tightly packed transmitter-receiver pairs around Node 0
to obtain the interference at the receiver of the transmission from Node 0. The exclu-
sion zone around each receiver is shown using solid lines. The transmitter for each
receiver could be anywhere in the corresponding solid circle.

In making the approximation, we have assumed that the receiver noise is
significantly smaller than the overestimation of the interference. For any SINR
threshold β, we can obtain Δ from (9.17). We have thus obtained the protocol
model from the interference calculations with the power law path loss model.
However, as we have seen in the previous section, the power law path loss
model needs to be used with care. We will discuss this in more detail in the
next section.

Let us now consider the graph-based constraints. Consider a realization of
an n-node random geometric graph with transmission range rn. Consider a tagged
node, say Node 0. Let us investigate the degree of this node, i.e., the number of
neighbors of Node 0. Let D0(n) be the degree of Node 0 when there are n nodes
in the network. Ignoring edge effects, we see that this is the same as the number
of nodes that are in a circle of radius rn around Node 0;

Pr
(
D0(n) = k

) =
(

n − 1
k

)(
πr2

n

)k (
1 − πr2

n

)n−1−k

for 0 ≤ k ≤ n − 1. Let δn be the minimum degree and Dn the maximum degree in
Gn(rn). From Section 9.2.2 we know that if r2

n = 5K log n
n with K>1, then δn ≥ 1

with high probability. To obtain Dn we use the Chernoff bound as follows. First,
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let us evaluate E
(
eθD0(n)).

E
(
eθD0(n)

)
=

(
1 + (eθ − 1)πr2

n

)n−1

≤ e(n−1) (eθ−1)πr2
n

= e(n−1) (eθ−1)π(5K log n
n )

= n
n−1

n (eθ−1)5πK

The inequality on the second line is true because 1 + x ≤ ex. For θ ≥ 0 and for any
b, the Chernoff bound on the degree of Node 0 is

Pr
(
D0(n) > b

) ≤ E
(
eθD0(n))
eθb

≤ n
n−1

n (eθ−1)5πK

eθb

Choosing θ = 1 and b = 28K log n, we get, for large n,

Pr
(
D0(n) > 28K log n

) ≤ n
n−1

n (e−1)5πK

e28K log n

= n
n−1

n (e−1)5πK

n28K

= n
K
((

n−1
n (e−1)5π

)
−28

)

≤ n−K

The last inequality is true because for all n ≥ 1,
((

n − 1
n (e − 1)5π

)
− 28

)
≤ −1.

Our interest is in obtaining the maximum degree, Dn, in the n-node network.
Applying the union bound, and noting that K > 2

Pr
(
Dn > 28K log n

) ≤ n−(K−1)

∞∑
n=1

Pr
(
Dn > 28K log n

) ≤
∞∑

n=1

n−(K−1) < ∞

The last inequality means that from the Borel-Cantelli lemma (like in
Section 9.2.2),

Pr
(
Dn > 28K log n i.o.

) = 0
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This implies that asymptotically almost surely, the maximum degree Dn is less
than 28K log n.

Recall that we had three graph theoretic constraints—primary conflict,
receiver conflict, and transmitter-receiver conflict. As in Chapter 8, consider the
primary conflict constraint. To determine the spatial reuse, we will color the edges
with the minimum number of colors 1, 2, . . . such that adjacent edges do not have
the same color. If χ(Gn(rn)) colors are used then the number of simultaneous
transmitters is at least n

χ(Gn(rn)) . Recall from (8.14)

Dn ≤ χ(Gn(rn)) ≤ 3Dn

2

Thus,

χ(Gn(rn)) ≤ 42K log n

asymptotically almost surely. This means that there is a transmission on every
edge at least once in (42K log n) slots.

In the next two sections we will analyze the transport capacity of wireless
networks. We begin by analyzing the transport capacity of arbitrary networks
for which no assumptions are made on the distribution of the nodes. To obtain
the maximum possible capacity, we are allowed to choose the best position of
the nodes that maximizes the capacity. Since there is an equivalence between the
protocol and the STIRG with γ = 0, we will consider only the protocol model. We
then provide a constructive lower bound on the capacity of randomly deployed
networks. Once again we will primarily use the protocol model in this analysis.

9.5 Transport Capacity of Arbitrary Networks
In this section we will not consider random placement. Rather, we will assume that
the node placements can be chosen arbitrarily. We will obtain upper and lower
bounds on the achievable capacity.

Let n nodes be deployed in the unit square [0, 1]2. Let (i, j) and (k, l) be
two active transmitter-receiver pairs. Recall that the protocol model places the
following constraints on the relative locations of these nodes.

‖Xk − Xj‖ ≥ (1 + Δ)‖Xi − Xj‖ ‖Xi − Xl‖ ≥ (1 + Δ)‖Xk − Xl‖ (9.18)

Using the triangle inequality first, we can derive the following relation
between the locations of the node pairs (i, j) and (k, l).

‖Xj − Xl‖ + ‖Xl − Xk‖ ≥ ‖Xj − Xk‖
‖Xj − Xl‖ ≥ ‖Xj − Xk‖ − ‖Xl − Xk‖

≥ (1 + Δ)‖Xi − Xj‖ − ‖Xl − Xk‖ (9.19)
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The last relation is obtained by applying (9.18) to the second relation. Similarly,

‖Xl − Xj‖ + ‖Xj − Xi‖ ≥ ‖Xl − Xi‖
‖Xl − Xj‖ ≥ ‖Xl − Xi‖ − ‖Xj − Xi‖

≥ (1 + Δ)‖Xk − Xl‖ − ‖Xj − Xi‖ (9.20)

Adding the inequalities in (9.19) and (9.20), we get

‖Xl − Xj‖ ≥ Δ

2

(‖Xk − Xl‖ + ‖Xj − Xi‖
)

(9.21)

Note that j and l are the receivers and we can interpret this inequality to say that for
(i, j) and (k, l) to be simultaneously active, a disk of radius Δ

2

(‖Xi − Xj‖
)

centered
at Xj and a disk of radius Δ

2 (‖Xk − Xl‖) centered at Xl should not overlap. These
disks can be called exclusion disks. This is illustrated in Figure 9.12. Of course,
(9.21) is just a necessary condition on the relative locations and not sufficient to
allow two node pairs to transmit.

Xi

Xj

Xl

Xk

Figure 9.12 Illustrating the exclusion disk. (i,j ) and (k,l ) are transmitter-receiver pairs
that are active in the same slot. The circles centered at Xj and Xl have radii Δ

2
di,j and

Δ
2

dk,l, respectively.
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Exercise 9.4
Show that (9.21) is not sufficient for two node pairs to transmit
simultaneously in a slot by providing a counterexample.

To obtain the transport capacity, consider the set of all transmitter-receiver
pairs (i, j) and designate this set by S. Let di, j := ‖Xi − Xj‖ be the Euclidean
distance between the transmitter at Xi and the receiver at Xj. As usual, assume
that the network operates in a time slotted manner and that the nodes are
synchronized. Without loss of generality, we will also assume that in each slot one
bit is transmitted. Then the transport capacity of the network is CT :=∑

(i, j)∈S di, j

bit-meters in this slot. We will now obtain an upper bound on CT .
Since the exclusion disks are to be nonoverlapping, the sum of the areas of

the exclusion disks corresponding to elements of S should be less than 1, the area
of the unit square. For a given di, j, the minimum area of the exclusion disk inside
the square will be when the receiver is at one of the corners of the square, in which
case a quarter of the exclusion disk is inside the unit square. See Figure 9.13 for
an illustration of this minimum case. The radius of the exclusion disk for (i, j)

Xj

Xi

Figure 9.13 The minimum area of the exclusion disk that is inside the operational area
defined by the unit square.
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is Δ
2 di, j. The total area of the exclusion disks must satisfy

∑
(i,j)∈S

1
4

πΔ2d2
i, j

4
=

∑
(i,j)∈S

πΔ2d2
i, j

16
≤ 1

∑
(i,j)∈S

d2
i, j ≤ 16

πΔ2

Since there are n nodes in the network, |S| ≤ n
2 . By the Cauchy-Schwarz

inequality, we can write

∑
(i,j)∈S

di, j ≤
√ ∑

(i,j)∈S
d2

i, j

∑
(i,j)∈S

1

≤
√

n
2

∑
(i,j)∈S

d2
i, j

≤
√

n
2

16
πΔ2

=
√

8
π

√
n

Δ
(9.22)

Thus we see that under the protocol model, the transport capacity is upper-
bounded by c

√
n

Δ
, where c is a constant. Using the order notation we say that the

transport capacity is O
(√

n
)
.

We now want to know if this capacity is realizable—can we arrange the nodes
in such a manner that this transport capacity is indeed achieved? If we can find
such an arrangement, then we can say that the transport capacity is also Ω(

√
n).

Since we have already showed that the transport capacity is O(
√

n), this implies
that the transport capacity is Θ

(√
n
)
.

Consider the following construction. Let k =
√

n + 1−1
2 . Tessellate the unit

square into cells of side 1
k . Let

r = 1
k(1 + 2Δ)

= 2(√
n + 1 − 1

)
(1 + 2Δ)

Place the n
2 transmitter-receiver pairs as shown in Figure 9.14. For this

construction, the following are easy to verify.

• The exclusion disks of radius Δr/2 centered at the receivers do not overlap.

• The two closest interfering transmitters are at distances (r + 2Δr) and√
(r + Δr)2 + (Δr)2. Both of these distances satisfy the interference con-

straint of the protocol model.
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Δ r
r

Δ r
Δ r

Δ r

Δ r
r

r

r

r

A

B

CD

Figure 9.14 Figure on the left shows the arrangement of the transmitter-receiver pairs.
Distance between every transmitter-receiver pair is r and each pair is placed on the grid
lines at an offset of Δr from the grid point. Figure on the right shows the exclusion
disks for the four receivers around a grid point. The closest interfering transmitters
to receiver A are B and C and D. B is at a distance (r + 2Δr) and C and D are at√

(r + Δr)2 + (Δr)2.

In this arrangement all the n
2 transmitter-receiver pairs can communicate simulta-

neously. Thus the transport capacity achieved in this arrangement is n
2 r bit-meters

per slot or
n(√

n + 1 − 1
)

(1 + 2Δ)
= O

(√
n
)

Thus the transport capacity of an arbitrary network in which the spatial reuse can
be described by the protocol model is Θ(

√
n) bit-meters per second.

9.6 Transport Capacity of Randomly Deployed
Networks

9.6.1 Protocol Model
We have argued before that having a low transmission range (above the threshold
at which the network is connected) increases spatial reuse and can increase capacity
when the nodes are uniformly distributed in the operational area and when the
packets choose their destinations randomly. However, reducing the transmission
radius increases the number of hops for each flow, and the number of times a packet
has to be transmitted increases in inverse proportion to the transmission range.
This offsets some of the gains made by spatial reuse. Also, the transmission range
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for connectivity is
√

log n times that for the arbitrary network. This reduces the
per-node throughput compared to the arbitrary network derived in the previous
section. We will investigate these issues and describe a scaling law for the per-node
capacity of the network.

Informal Arguments: A Bound from Spatial Reuse

Let rn be the transmission range of all the nodes in an n-node network, hn the
average number of hops that a packet has to make before reaching its destination,
and λn the arrival rate of packets per node. Hence, the total required rate of
transmissions in the network will be nλnhn packets per slot. We observe that
decreasing rn increases spatial reuse by a factor proportional to the area covered by
a transmission and hence the spatial reuse is O(1/r2

n). It follows that we must have

nλnhn = O
(

1
r2
n

)

Hence

nλn = 1
hn

O
(

1
r2
n

)

Now the number of hops is directly proportional to the distance between the
source and destination nodes, and a packet can cover a distance proportional to
rn in one hop. Therefore, hn scales inversely with rn. It then follows that

nλn = O
(

1
rn

)

However, we have seen that for the network to remain connected, rn should

decrease slower than
√

log n
n . Thus, we obtain

λn = O

(
1√

n log n

)

This means that as the number of nodes increases, the per-node capacity—the
maximum rate at which a node can generate and transmit data—decreases at least
as fast as 1√

n log n
. Intuitively, this is because as the number of nodes increases,

each node spends more and more time relaying packets from other nodes and the
benefits of reduced transmission range and the consequent increased spatial reuse
are not quite realized.

It should be clear that the “derivation” that we have just provided is
informal. Since we have randomly distributed nodes, and packets choose random
destinations, a precise statement of the result should be a probabilistic statement.
Further, in deriving the result we should carefully model the conditions under
which packet transmissions are successful. We will now do just that.
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Analysis

Before we analyze the capacity of a randomly deployed network, we will discuss
a problem from distributed computation whose solution will be used in the
analysis.

Consider n2 processors connected in an n × n wired mesh network as shown
in Figure 9.15. Let each processor have k packets that it needs to send to another
arbitrary processor in the mesh. Also, each processor is a receiver of exactly k
packets from another arbitrary processor in the network. The packets from the
source to the destination are transported over a multihop path. For example,
a packet from (3, 2) to (1, 4) can take the path (3, 2) → (2, 2) → (2, 3) →
(2, 4) → (1, 4). Many other paths are also possible. We assume that the network of
processors has a time-slotted operation. In each slot, one packet can be transferred
in each direction on each of the links. This means that each processor can receive
up to four packets in a slot and also transmit up to four packets in a slot.
The packets reach the destination in a store-and-forward manner; each packet
is completely stored at a hop before being forwarded on the next hop toward the
destination. This means that a packet that is being received cannot be forwarded
toward the destination in the same slot. For the preceding example, the packet
from Node (3, 2) would require four slots to reach Node (1, 4). Our interest is

(1,4)(1,3)(1,2)(1,1)

(2,1) (2,2) (2,3) (2,4)

(3,1) (3,2) (3,3) (3,4)

(4,1) (4,2) (4,3) (4,4)

Figure 9.15 16 processors are connected in a 4 × 4 wired mesh network.The links are
bidirectional, or full duplex, and are activated in a time slotted manner. In each slot,
each processor can receive and transmit one unit of data on each of the links that is
connected to it. The nodes above and below the dashed line form a bisection of the
graph.
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in designing an efficient routing algorithm that will route these kn2 packets in a
minimum number of slots.

The bisection bound is a lower bound on the minimum number of slots that
is needed to complete the transport of the packets as before. Consider the network
graph shown in Figure 9.15. A bisection of this graph is a partition of the nodes into
disjoint sets with the same number of nodes in each partition. This is illustrated
in Figure 9.15. When the transmitters choose their destinations arbitrarily, the
worst-case choice is one in which every node of one set of a bisection chooses a
destination in the other set of the bisection. Thus in the worst case, the maximum
number of packets will flow across the edges connecting the two sets of nodes in the
bisection. This means that half of kn2 packets have to cross the n edges connecting
the two partitions in one direction and the other half in the other direction. Since
there are n edges connecting the two sets of the partition, at least kn2/2

n = kn
2 slots

would be needed to complete the transport for an arbitrary choice of destinations
by the nodes.

There are many algorithms for routing of the packets that very nearly
match the bisection bound. One such randomized algorithm is described in
Algorithm 9.1.

assign color brown or black with equal probability to each of the kn2 packets
for black-colored packets from (i, j) to (s, t) do

phase 1: choose i′ ∈ [1, . . . , n] randomly; transport packet to (i′, j);
phase 2: transport packet from (i′, j) to (i′, t);
phase 3: transport packet from (i′, t) to (s, t)

end for
for brown-colored packets from (i, j) to (s, t) do

phase 1: choose j′ ∈ [1, . . . , n] randomly; transport packet to (i, j′);
phase 2: transport packet from (i, j′) to (s, j′);
phase 3: transport packet from (s, j′) to (s, t)

end for

Algorithm 9.1 k × k routing on an n × n mesh.

The black-colored packets first move to a random node in the same column,
and then reach the destination by first reaching the destination column. The brown-
colored packets are in phase-quadrature. They first move to a random node in the
same row and then reach the destination by first reaching the destination row.
The randomization in Phase 1 allows the redistribution of the packets to avoid
bad patterns. The random splitting of packets at the beginning of the algorithm
allows the vertical and horizontal movements to be executed simultaneously. This
is illustrated in Figure 9.16.

It can be shown that, when k ≥ 8, Algorithm 9.1 can accomplish the routing
in

(
3
4kn + õ(kn)

)
slots. This means that the routing can be accomplished in 3

4kn +
o(kn) slots with high probability.
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(1,1) (1,2) (1,3) (1,4)

(2,1) (2,3) (2.4)(2,2)

(3,1)

(4,1) (4,2)

(3,2) (3,3)

(4,3)

(3.4)

(4.4)

Figure 9.16 The solid arrows show the path of the black packets and the dashed arrows
that of the brown packets. The packet from (4, 2) randomly chooses (2, 2) for its first
phase. It then goes to (2, 4) and then to its destination (3, 4) in a total of five slots.
The packet from (4, 3) randomly chooses (4, 4) for its first phase and then reaches its
destination (1, 1) via (1, 4) in seven slots.

Let us now see how we can use this k × k routing algorithm to bound
the capacity of the random wireless network under the protocol model. To do
that let us revisit the tessellation of the unit square into square cells of side sn

in Section 9.2.2. Before proceeding with the analysis of the randomly deployed
network, let us consider a deterministic deployment of n nodes in the unit square.
Let the number of nodes in a cell be uniformly bounded by cn. Assume that
Node i, i = 1, . . . , n, has m packets that it needs to transport to a destination
at distance di meters from it. If all the nodes can complete the exchange of
their packets in T slots, then the transport capacity is 1

T

∑n
i=1 mdi packet-meters

per slot.
We will now construct the routing and scheduling scheme to transport these

kn packets. Each cell is analogous to the processors in the mesh network of
processors that we discussed earlier. The routing is performed as in Algorithm 9.1
with the nodes routing their packets via an arbitrary node in a neighboring cell.
Now consider a slot in which Node i in Cell 0 is transmitting to a node in a
neighboring cell as illustrated in Figure 9.17. This receiver could be at a distance
of up to

√
5sn meters from the transmitter. For this transmission to be successfully
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0

Tx

Rx
1 2 3 4 5

6
Tx

Rx

M

M

Figure 9.17 Each cell has side sn. Let Δ = 0.34. Node i in Cell 0 is transmitting to node
j.The closest transmitter, other than to Node j, other than i, is in cell 5 at a distance of
3sn. In any slot, at most one node in each of the dashed squares may be transmitted.
Each dashed square is of size M × M cells.

decoded, no other node in cells in an M×M square located as shown in Figure 9.17
can transmit in the same slot. M is obtained from the protocol model as follows.
The closest transmitter will be at least (M − 2)sn meters from the receiver. We can
thus obtain M as follows.

(M − 2)sn ≥ (1 + Δ)
√

5sn

M = �(1 + Δ)
√

5 + 2�

M is independent of n and is a constant. This is illustrated in Figure 9.17, where
we have used Δ = 0.34, giving us M = 5.

Let us now calculate the time that it would take to implement Algorithm 9.1
in a wireless network. There are up to M2 cells in each square and a node in only one
of these may transmit in a slot. However, in the mesh network using Algorithm 9.1,
each node could receive up to four packets and simultaneously transmit up to
four packets in a slot. Thus the exchanges in one slot of Algorithm 9.1 can be
accomplished in at most 8M2 slots in the wireless network. We have a grid of(

1
sn

)
×

(
1
sn

)
cells with at most mcn packets in each cell. Applying the analysis
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of Algorithm 9.1, we see that the transport of all the packets to their respective
destinations can be accomplished in at most

(
8M2

)(
3
4

mcn
1
sn

)
+ õ

(
mcn

sn

)
= a

(
mcn

sn

)
+ õ

(
mcn

sn

)

slots. Here a = 6
(
�(1 + Δ)

√
5 + 2�

)2
is a constant independent of n.

Now we will move to the capacity analysis of the randomly deployed

network. Recall that for sn =
√

K log n
n , K > 2, every cell almost surely contains

one or more nodes. Let us now obtain an upper bound on the maximum number
of nodes in a cell. To do that, consider a tagged cell, say Cell i. Following the
arguments in the derivation of the maximum degree of a node in Section 9.4, we
can obtain an upper bound on the number of nodes in Cell i as follows. We will
assume s2

n = K log n
n .

Let Ni be the number of nodes in Cell i. From the Chernoff bound,

Pr
(
Ni > b

) ≤ E
(
eNiθ

)
eθb

=
(
1 + (eθ − 1)s2

n
)n

eθb

=
(
1 + (eθ − 1)K log n

n

)n

eθb

≤ e
n
(
(eθ−1) K log n

n

)

eθb

=
(
elog n

)K(eθ−1)

eθb

= nK(eθ−1)

eθb

The second inequality in the preceding follows because (1 + x) ≤ ex. Choosing
θ = 1 and b = Ke log n, we have

Pr
(
Ni > Ke log n

) ≤ nK(e−1)

eKe log n

= nK(e−1)−Ke = n−K
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Now let us obtain the maximum number of nodes in any cell in the network.
We derive this by examining the probability that there exists a cell with more than
(Ke log n) nodes.

Pr
(
Ni > (Ke log n) for some i

) = Pr
(

∪1/s2
n

i=1

(
Ni > (Ke log n)

))

≤
1/s2

n∑
i=1

Pr
(
Ni > (Ke log n)

)

≤
1/s2

n∑
i=1

n−K = n−K

s2
n

= n−K

(K log n)/n
= n−(K−1)

K log n

The second line is from the union bound. For K > 2,

∞∑
n=1

n−(K−1)

K log n
< ∞

and from the Borel-Cantelli lemma, this implies that the probability that there
exists a cell with more than (Ke log n) nodes infinitely often is zero. Thus we can
say that asymptotically almost surely none of the cells has more than (Ke log n)
nodes. This gives us cn = Ke log n when s2

n = K log n
n .

There is just one thing left. Since our interest is in the transport capacity, we
need to now analyze

∑n
i=1 di because that determines the transport capacity. Let us

evaluate an upper bound on this quantity. Assume that all the source destination
locations are identically and independently chosen. Consider a tagged flow from
a source at Xj = (Xj, 1, Xj, 2) to a destination at Xk = (Xk, 1, Xk, 2). If the source and
destination are randomly chosen, Xj, 1, Xj, 2, Xk, 1, Xk, 2 are all uniformly distributed
in (0, 1).

Since di ≤ √
2, we have

∑n
i=1 d2

i ≤ √
2
∑n

i=1 di. Further,
∑n

i=1 d2
i has the

same distribution as the sum of n i.i.d. random variables of the form ((Xj, 1 −
Xk, 1)2 + (Xj, 2 − Xk, 2)2) where Xj, 1, Xk, 1, Xj, 2 and Xk, 2 are i.i.d. uniform in (0, 1).
Thus

E
(
e−θd2

i

)
=

(
E
(
e−θ(V−W)2

))2
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where V and W are i.i.d. uniform in (0, 1). We therefore have

Pr

(
n∑

i=1

di <
n
a

)
≤ Pr

(
n∑

i=1

d2
i <

√
2n
a

)

= Pr

(√
2n
a

−
n∑

i=1

d2
i > 0

)

≤ E
(

e
θ
(√

2n
a −∑n

i=1 d2
i

))

=
(
E
(
e−θ(V−W)2

))2n

e− θ
√

2n
a

The first inequality follows from the preceding discussion because
∑n

i=1 di ≤ α

implies
∑n

i=1 d2
i ≤ √

2α. The second inequality follows from the Chernoff bound.

E
(
e−θ(V−W)2

)
is obtained as follows.

E
(
e−θ(V−W)2

)
=

∫ 1

0

∫ 1

0
e−θ(v−w)2 dw dv

= 2
∫ 1

0

∫ v

0
e−θ(v−w)2 dw dv

= 2
∫ 1

0

∫ v

0
e−θu2

du dv

= 2
∫ 1

0

∫ 1

u
e−θu2

dv du

= 2
∫ 1

0
(1 − u)e−θu2

du

≤ 2
∫ ∞

0
e−θu2

du =
√

π

θ

Choosing a = √
2θ and θ = 2πe, we have

Pr

(
n∑

i=1

di <
n

2
√

2πe

)
<

1
2n
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Since
∑∞

n=1
1
2n < ∞, from the Borel-Cantelli lemma, asymptotically almost surely,

n∑
i=1

di ≥ n

2
√

2πe

This implies that asymptotically almost surely,
∑n

i=1 di = Ω(n). To summarize the
preceding discussion, asymptotically almost surely,

• Each cell contains at most Ke log n nodes. This means that the routing of
the mn packets can be accomplished in

a
(

mcn

sn
+ õ

(
mcn

sn

))
= a

⎛
⎜⎝mKe log n√

K log n
n

+ õ

⎛
⎜⎝mKe log n√

K log n
n

⎞
⎟⎠

⎞
⎟⎠

= a
(
me

√
nK log n + õ

(
me

√
nK log n

))

= O
(
m

√
n log n

)

slots.

• The total distance traveled by the mn packets is m
∑n

i=1 di = Ω(mn) meters.

• Thus the transport capacity is Ω

(
mn

m
√

n log n

)
= Ω

(√
n

log n

)
packet-meters

per slot.

It can also be shown that the transport capacity is indeed Θ

(√
n

log n

)
packet-

meters per slot. We omit that proof here.

9.6.2 Discussion
Effect of Path Loss Model

Recall that for the power law path loss model, we can choose Δ = rn
dn

such that
the SINR at a receiver is greater than a threshold β. This allows us to specify
an exclusion ratio of radius dn around the receiver. This in turn means that
spatial reuse can be O

(
1
r2
n

)
= O

(
n

log n

)
. Like in the STIRGs (see Section 9.3),

when n is increased we expect the interference to increase and hence possibly
reduce the spatial reuse. That spatial reuse continues to increase with n is an
artifact of the path loss model—it permits power amplification in the near field.
However, rn should be very small, or equivalently n should be very large before
the amplification effect of the path loss model begins. Thus there is a limit to the
achievable spatial reuse imposed by the transmission range requirement to keep
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the network connected. This suggests that very dense wireless networks should
not be used for communication between arbitrary pairs of nodes (as is the case in
a general internet); instead such networks may be more useful for nearest neighbor
communication as would be required for distributed instrumentation applications
over ad hoc wireless sensor networks. This is the subject of the next chapter.

The previous discussion, and also our discussion on STIRGs under different
path loss models, suggests that the network behavior is very sensitive to the path
loss model. It can shown that with a slight change in the path loss model, the
spatial reuse can become O(1).

It must also be noted that in much of the analysis under the protocol model,
the interference is ignored. For example, in Figure 9.14, we have ignored the
fact that the interference at A when B, C, and D transmit simultaneously can be
significant.

Penalty of Randomness

It is interesting to compare the effect of randomness on the transport capacity.
With arbitrary placement of the nodes, we get a transport capacity of Θ

(√
n
)

and

for random deployment it is Θ

(√
n

log n

)
. Thus there is the O

(
1√
log n

)
penalty for

random deployment. This comes about because of the transmission range required
to make the network connected. Whereas n nodes can be placed in a

√
n × √

n
grid in the unit square and achieve connectivity with a range of rn = 1√

n − 1
, for

random deployment, we need r 2
n = K log n

n , K > 1 to ensure connectivity with high
probability.

Exploiting Mobility

The transport capacity scales sublinearly with n. This means that the per-node
throughput decreases as n increases. If the source and the destination of the
flows are randomly selected, we have seen that the sum of the source destination
distances is Ω(n). Hence, for an arbitrary network, the throughput per node is

O
(

1√
n

)
and for the random network it is O

(
1√

n log n

)
. The decrease with increasing

n is due to the increasing number of hops, which in turn means that most nodes
essentially spend most of the time relaying traffic from other nodes. We can exploit
mobility of the nodes to increase the per node capacity. An informal introduction
is as follows. In a slot O

(
1
r2
n

)
nodes can transmit simultaneously. We would like

to obtain a throughput of O
(

1
r2
n

)
packets per slot while reducing the average hop

length. Each source transmits its packet to a randomly selected one-hop neighbor
that will be the relay node for the packet. Each node maintains a separate packet
queue for each of the destinations. Since the nodes are mobile, either the relay
nodes or the source will eventually be near the destination. The packet then makes
one more hop to the destination. Thus each packet makes exactly two hops to
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the destination, hn = O(1). Following the informal arguments on the transport
capacity, we have for this model

nλn ≤ 1
hn

O
(

1
r2
n

)

nλn ≤ O
(

1
r2
n

)
= O

(
n

log n

)

λn ≤ 1
n

O
(

1
r2
n

)
= O

(
1

log n

)
,

the per-node throughput is O
(

1
log n

)
. This increased throughput comes at the cost

of delay. The delay will depend on the time that it takes for either the relay node or
the source node to be near the destination and also get the opportunity to transmit.
Thus the delay will depend on the mobility characteristics of the nodes.

9.7 Notes on the Literature
The classic reference for Erdös-Renyi random graphs is the book by Bollobas [14]
and for random geometric graphs it is the book by Penrose [109].

Connectivity analysis of the one-dimensional network is adapted from the
work of Desai and Manjunath [26]. Godehardt and Jaworski [42] obtain more
results on networks in one dimension; for example, the probability of there being
k components in the network is shown to be

n−1∑
k=m−1

(
n − 1

k

)(
k

m − 1

)
(−1)k+m−1(1 − kr)n

One-dimensional networks in which node locations are i.i.d. exponential random
variables have been analyzed by Gupta, Iyer, and Manjunath [48] and by
Karamchandani, Manjunath, and Iyer [67]. A recent survey of Iyer and Manjunath
[63] has some of the newer results on random geometric graphs and also some
new proofs.

The necessary condition for connectivity is adapted from the work of Gupta
and Kumar [49] and the sufficient condition is based on that of Xue and Kumar
[137] and Kulkarni and Viswanath [84]. Onkar Dabeer gave the simpler proof
of Lemma 9.1. The early days of packet radio networks also had inspired many
connectivity results, notably the works of Cheng and Robertazzi [22]; Philips,
Panwar, and Tantawi [110]; and Piret [111]. The discussion on STIRGs is based
on the work of Dousse, Baccelli, and Thiran [29] and Dousse and Thiran [30].
The plot from Figure 9.10 is reconstructed from the plots in [30]. The capacity of
arbitrary networks is based on [137] which in turn is based on the classic paper by
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Gupta and Kumar [50]. This paper has led to a veritable explosion on the study
of capacity under different models or derive the same results again, at least in
the order sense, using different approaches. The randomized algorithm for k × k
routing was based on the work of Kaufmann and Rajasekaran and Sibeyn [71].
Most recently, Franceschetti et al. [36] have showed that the capacity in STIRG
can be O(

√
n) bit-meters per second. Exploiting mobility to increase the capacity

to O(1) is formally derived by Grossglauser and Tse [47]. Recently, Bansal and Liu
[5], El Gamal et al. [37], Sharma and Mazumdar [122], and others have studied
delay capacity tradeoffs for different mobility models. This being an active area
of research, we are able to provide only a sample of the literature.

Problems
9.1 Consider a one-dimensional network in [0, 1] with cutoff r. Let X1=0

and X2 and X3 be randomly located nodes in [0, 1]. Conditioned on
(1, 2) and (2, 3) being edges, find the probability that (1, 3) is an edge.
Repeat the problem for the case when X1 is arbitrarily located.

9.2 Let X1, X2 and X3 be three randomly located nodes in [0, 1]2.
Conditioned on (1, 2) and (2, 3) being edges, find the probability that
(1, 3) is an edge. Ignore edge effects. Let r be the cutoff.

9.3 Consider an n-node network on the positive x-axis with Node i located
at Xi. Xi are i.i.d. exponential with mean 1/λ. For a transmission range
of r, find P(λ, n, r), the probability that the network is connected. Obtain
limn→∞ P(n, λ, r). Show that the limit is strictly less than one for λr < ∞.

9.4 Consider a one-dimensional (n + 1)-node network with Node 0 located
at 0 and the other n nodes uniformly distributed in (0, 1). Find the
probability that the network is connected. This corresponds to a hybrid
network where the node at 0 corresponds to a base station.

9.5 In a network in R2, Node i has a neighbor Node r that is a possible next
hop node for transmissions from i. For all transmissions from i to j we
wish to use the minimum energy path. Thus for all possible receivers
j in the network, there will be a one-hop path from i and a multihop
path through r. Define Ri(r) to be set of the locations of j such that the
two-hop path from i through r is more energy efficient than the one-hop
path from i directly to j. r is located at the origin and i is at −a on the
y-axis. Assume power law path loss (path loss exponent α > 0) and
transmission power that just satisfies the SNR threshold β. Draw the
boundary of Ri(r) for different α.

9.6 Consider a network with nodes distributed according to a spatial
Poisson process of intensity λ. A node at the origin wants to send a
packet to a node on the x-axis through a relay node. It looks for a relay
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node in an sector of angle (−α, α). Assume that the next-hop node is the
k-th nearest node to the origin in this sector. Find the distribution of
the distance to this relay node. Find the expectation of the horizontal
distance (distance along the x-axis) covered by the hop through this
relay node.

9.7 As a model of a wireless ad hoc network consisting of a large number of
randomly strewn devices, consider a Poisson field of points of intensity λ

per m2 on the plane, with each point denoting the location of a wireless
transceiver. All transceivers transmit on a common frequency with unit
power using omnidirectional antennas. For the propagation model,
assume only path loss with exponent η. Time is divided into fixed-
length slots. In each slot, a device decides to transmit with probability
α and decides to receive with probability (1 − α) independent of past
transmissions and other devices. Find the distribution of interference
power received at a randomly selected device in a slot. Show that the
mean interference power is finite only if η > 2. Show also that, when
η > 2, the mean is linear in λ and α.

9.8 Consider a network in R2 with nodes distributed according to a
spatial process of intensity λ. Consider a unit area A. Let N(A) be
the number of nodes in A. For any 0 < ε < 1, show that limλ→∞
Pr(N(A) ≤ (1 − ε)λA) = 0.

9.9 Consider a network in R2. Assume that all nodes transmit in every slot
with power P. Let the path loss function be a decreasing function with
L(0) = M and L(a) ≥ m. Consider a finite square of side a. For a SINR
threshold of β, show that if the number of nodes in the square is greater
than (1 + 2βγ)M

βγm , then none of the nodes in the square has a neighbor.

9.10 Using the k × k permutation on an n × n mesh analogy obtain the
transport capacity of an arbitrary network.

9.11 Consider a 9-node network with nodes arranged on a 3 × 3 grid.
The decode and interference region of every node just covers the four
nodes on the neighboring grid points. The network uses s-Aloha proto-
col with each node transmitting in a slot with probability p. Find
the bit-transport capacity of the network as a function of p. Find the
optimal p.
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CHAPTER 10

Ad Hoc Wireless Sensor
Networks (WSNs)

Advances in microelectronics technology have made it possible to build
inexpensive, low-power, miniature sensing devices. Equipped with a
microprocessor, memory, radio, and battery, such devices can now

combine the functions of sensing, computing, and wireless communication into
miniature smart sensor nodes, also called motes. Since smart sensors need not
be tethered to any infrastructure because of on-board radio and battery, their
main utility lies in being ad hoc, in the sense that they can be rapidly deployed
by randomly strewing them over a region of interest. Several applications of such
wireless sensor networks have been proposed, and there have also been several
experimental deployments. Example applications are:

• Ecological monitoring: wild-life in conservation areas, remote lakes,
forest fires

• Monitoring of large structures: bridges, buildings, ships, and large machi-
nery, such as turbines

• Industrial measurement and control: measurement of various environ-
ment and process parameters in very large factories, such as continuous
process chemical plants

• Assistance in navigation and guidance through the geographical area
where the sensor network is deployed

• Defense applications: monitoring of intrusion into remote border areas;
detection, identification, and tracking of intruding personnel or vehicles

The ad hoc nature of these wireless sensor networks means that the devices and
the wireless links will not be laid out to achieve a planned topology. During the
operation, sensors would be difficult or even impossible to access and hence
their network needs to operate autonomously. Moreover, with time it is possible
that sensors fail (one reason being battery drain) and cannot be replaced. It
is, therefore, essential that sensors learn about each other and organize into a net-
work on their own. Another crucial requirement is that since sensors may often be
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deployed randomly (e.g., simply strewn from an aircraft), in order to be useful, the
devices need to determine their locations. In the absence of a centralized control,
this whole process of self-organization needs to be carried out in a distributed
fashion.

In a sensor network, there is usually a single, global objective to be achieved.
For example, in a surveillance application, a sensor network may be deployed
to detect intruders. The global objective here is intrusion detection. This can be
contrasted with multihop wireless mesh networks, where we have a collection of
source-destination pairs, and each pair is interested in optimizing its individual
performance metric. Another characteristic feature of sensor networks appears in
the packet scheduling algorithms used. Sensor nodes are battery-powered, and the
batteries cannot be replaced. Hence, energy-aware packet scheduling is of crucial
importance.

A smart sensor may have only modest computing power, but the ability
to communicate allows a group of sensors to collaborate to execute tasks more
complex than just sensing and forwarding the information, as in traditional sensor
arrays. Hence, they may be involved in online processing of sensed data in a
distributed fashion so as to yield partial or even complete results to an observer,
thereby facilitating control applications, interactive computing, and querying.
A distributed computing approach will also be energy efficient as compared to mere
data dissemination since it will avoid energy consumption in long haul transport
of the measurements to the observer; this is of particular importance since sensors
could be used in large numbers due to their low cost, yielding very high resolutions
and large volumes of sensed data. Further, by arranging computations among only
the neighboring sensors the number of transmissions is reduced, thereby saving
transmission energy. A simple class of distributed computing algorithms would
require each sensor to periodically exchange the results of local computation with
the neighboring sensors. Thus the design of distributed signal processing and
computation algorithms, and the mapping of these algorithms onto a network,
is an important aspect of sensor network design.

Design and analysis of sensor networks must take into account the native
capabilities of the nodes, as well as architectural features of the network. We
assume that the sensor nodes are not mobile. Further, nodes are not equipped with
position-sensing technology, like the Global Positioning System (GPS). However,
each node can set its transmit power at an appropriate level—each node can
exercise power control. Further, each node has an associated sensing radius; events
occurring within a circle of this radius centered at the sensor can be detected.

In general, a sensor network can have multiple sinks, where the traffic
generated by the sensor sources leaves the network. We consider networks in which
only a single sink is present. Further, we will be concerned with situations in which
sensors are randomly deployed. In many scenarios of practical interest, preplanned
placing of sensors is infeasible, leaving random deployment as the only practical
alternative; for example, consider a large terrain that is to be populated with
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sensors for surveillance purposes. In addition, random deployment is a convenient
assumption for analytical tractability in models. Our study will also assume a
simple path loss model, with no shadowing and no fading in the environment.

Overview
With the sensor node capabilities and sensor network characteristics mentioned
earlier, we will begin by recapitulating some results from Chapter 9. We will
be concerned with the question of how sensor nodes should set their transmit
powers; specifically, how should transmit powers be set so that the randomly
deployed network is connected with high probability? After this brief look at
communication coverage, we will consider the problem of sensing coverage. Each
sensor can sense events within a certain radius of itself. All points within the disk of
this radius are said to be covered by the sensor. If the sensor deployment is random,
it is not clear that every point within the deployment region can be covered by at
least one sensor. We are interested in finding the density of deployment that ensures
complete sensing coverage with high probability.

The next problem we consider is that of localization. A group of sensors
called anchors are aware of their own positions and transmit this information
to others via beacons. The problem is for the nonanchor nodes to estimate their
own locations utilizing the information provided by the anchors. Next, we turn
to the problem of routing in the sensor network. We discuss face routing, where
the estimated node location information is used, and also attribute-based routing,
which does not depend on the knowledge of node locations. Directed Diffusion
is a prominent example of attribute-based routing. Sensor networks are deployed
with specific objectives and usually, some kind of inference about a phenomenon
is desired. The inference is based on measurements and subsequent computation
of some function of the measurements.

We consider the generic problem of function computation next. Our interest
is in understanding the maximum rate at which a particular type of function
computation can be carried out. Lastly, we briefly describe two MAC scheduling
algorithms that have been designed, keeping the resource-constrained nature of
the sensors in mind.

10.1 Communication Coverage
Formally, we will view the network as a graph, with the motes being the vertices
of the graph. If two motes can hear each other in the absence of interference
from other nodes, then there will be an edge between the corresponding vertices.
Essentially, this corresponds to the receiver being within the decode region of the
transmitter, as discussed in Chapter 7.

In this graph model, which is obtained when only the decode regions are
considered, it is desirable that each vertex have a path to the vertex corresponding
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to the sink. This assures us that there is a way for a sensor node i to communicate
its measurements to the sink. This is because one can think of a strategy in which
i is the only node that transmits in a time slot, thereby passing its information to
a neighbor within its decode region. Similarly, in the next slot, the neighbor is
the only node that transmits. This naive strategy, albeit inefficient, will succeed in
transferring information from i to the sink, over several time slots, if there is a
path in the graph model from i to the sink.

Let us enlarge the requirement slightly and ask that there be a path between
any pair of nodes. Thus, we are asking the question: What is the minimum power
at which the nodes should transmit so that the graph obtained is connected?

In passing, we recall from our discussions in Chapter 9 that not all the edges
in a path from a vertex to the sink can be active simultaneously. The question
of the set of links that can be activated simultaneously is discussed extensively
in Chapters 8 and 9; recall the notion of Activation Sets in Chapter 8, as well
as the Protocol model and the Physical model in Chapter 9. However, in this
section, we will consider only the question of connectivity of the graph obtained
by considering just the decode regions.

Now for a random placement of nodes, the right question to ask is: What
is the minimum power at which the nodes should transmit so that the graph is
connected with a given high probability? For a given number of motes N, this
question is hard to answer. Rather, answers have been found in the asymptotic
regime where N tends to ∞.

Suppose that N sensors are deployed in a square region of unit area. Each
sensor is located independently of any other, and the location is chosen by sampling
the uniform distribution. Further, let rc(N) be the range of each of the nodes, that
is, if nodes i and j are separated by a distance less than or equal to rc(N), then they
can decode each other’s transmission. We note that rc(N) is being regarded as a
function of the total number of nodes N; this suggests that the range changes as
N varies. In fact, we would be interested in understanding how to set rc(N), for a
given N, so that the sensor network remains connected.

As N increases, it is expected that the range required to maintain connectivity
decreases; rc(N) is a decreasing function of N. Suppose we consider a range
such that

πr2
c (N) = ln N + c (N)

N

where c (N) is some function of N that we will discuss later. Note that this range
assignment essentially means that a disk of area ln N + c(N)

N is within reach of a node.
Let Pd(N, rc(N)) be the probability that, with this rc (N), the graph G(N, rc(N)) is
disconnected.

The following has been shown:

lim inf
N→∞

Pd(N, rc(N)) ≥ e−c(1 − e−c)
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where c = lim supN→∞ c(N). Also,

lim sup
N→∞

Pd(N, rc(N)) ≤ 2e−c

Discussion
Let us consider the implication of these results. Suppose we set the range rc(N)
such that πr 2

c (N) = ln N + c(N)
N . The first result says: As N → ∞, suppose c =

lim supN→∞ c(N) is finite; then, the probability that the network is disconnected
is positive. The second result says: As N → ∞, suppose c = lim supN→∞ c(N) is
infinite; then, the probability that the network is disconnected goes to zero.

Together, the two results provide a necessary and sufficient condition: As
N → ∞, with the range assignment as shown, the probability that the network
remains connected approaches 1 if and only if lim supN→∞ c(N) = ∞.

The significance of this result is that if we simply set the range such that
πr 2

c (N) = ln N
N , then, with positive probability, we would get a disconnected

network as N increases. This range assignment decreases too rapidly as N
increases. It is necessary to ensure that the decrease is not so rapid; this can be
done, for example, by adding a term c(N) = √

N to the numerator, so that we
have πr 2

c (N)= ln N + √
N

N . Another example is given by c(N) = ε ln N, so that we get
πr 2

c (N) = (1 + ε) ln N
N . Even c(N) = ln(ln N) suffices to ensure connectivity with high

probability as N → ∞. In all cases, it is still true that the range rc(N) decreases
as N increases; but the decrease is slow enough to ensure connectedness with
probability approaching 1.

10.2 Sensing Coverage
Next, let us turn to the question of sensing coverage. We recall that the question here
is essentially this: Given an area to be monitored and given a sensing disk around
eachsensor, howmanysensorsare required? Nowas thenodedeploymentprocess is
random, as a first step, we assume that the nodes are deployed as a two-dimensional
spatial Poisson process, of intensity λ points per unit area. The significance of the
Poisson assumption is that in two nonoverlapping areas, the numbers of sensors
are independent random variables. Further, in an area A, the number of sensors is
Poisson-distributed with parameter λA, where A is the area of A.

This question must be refined as follows: What is the minimum intensity λ

such that the probability that every point in the monitoring region is covered by
at least k nodes is close to 1?

Let rs denote the sensing radius of each disk. Let us choose the unit of area
such that each sensor covers unit area: πr 2

s = 1. Let us define Vk to be the total
area that is not k-covered. This means that each point in the area Vk is at most
(k − 1)-covered. Vk is referred to as the k-vacancy value. Clearly, Vk is a
nonnegative random variable that depends on the particular instance of the Poisson
deployment process.
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First, it can be shown that no finite λ, no matter how large, can ensure that
each point in the monitoring area is covered by at least k nodes. To see this,
let Ik(x) denote the indicator function corresponding to k-vacancy at location x.
That is,

Ik(x) =
{

1 if at most k − 1 nodes cover point x
0 else

If the point x is covered by at most (k − 1) sensors, then it is within the sensing
distance rs from at most that many sensors. Equivalently, if we draw a circle of
radius rs centered at x, then there are at most (k − 1) sensors within it. Recalling
that the deployment process is Poisson with intensity λ and that rs has been chosen
such that the area of a circle with radius rs is unity, we have

Pr(Ik(x) = 1) = e−λ
k−1∑
i=0

λi

i!
(10.1)

Now Vk can be written as

Vk =
∫
A

Ik(x) dx

Then

E(Vk) =
∫
A

E(Ik(x)) dx

= APr(Ik(x) = 1)

= a2e−λ
k−1∑
i=0

λi

i!

>0

where we have assumed that A is a square region with each side of length a.
In arriving at the second line, we have used the fact that Pr(Ik(x) = 1) does not
depend on x. We note that E(Vk) > 0 for any finite λ, no matter how large it is.
But E(Vk) > 0 implies that Pr(Vk = 0) cannot be 1. Thus, for any finite λ no matter
how large, we see that Pr(Vk > 0) > 0; we cannot ensure that each point in the
area is covered by at least k nodes.

Exercise 10.1
Show that as λ → ∞, E(Vk) → 0.

From this exercise, as λ increases, E(Vk) goes to zero. In other words,
Pr(Vk = 0) → 1 as λ → ∞. This agrees with intuition: Given a finite monitoring
area, as the intensity of the Poisson process increases, it is expected that the
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probability of the whole area being k-covered (i.e., covered by at least k or more
sensors) will increase to 1.

However, it turns out that even more can be shown. Consider the square area
A, with sides of length a. Let a → ∞ and along with this, let λ → ∞ in a certain
way to be discussed later. It can then be shown that even when the monitoring
area grows to infinity (i.e., becomes the whole first quadrant), Pr(Vk > 0) → 0 as
λ → ∞ in that particular way.

We will say that a point in A is covered by a sensor if it lies strictly within the
sensing circle of the sensor, which is the circle of radius rs centered at it. Consider
the sensing circles around the Poisson-distributed sensors in A. Let us define a
crossing as an intersection point of the boundaries of two or more sensing circles,
or an intersection of the boundary of a circle with the boundary of A.

Lemma 10.1
If all crossings in A are k-covered, then A is k-covered. �

Figure 10.1 shows a square monitoring region A with the sensing circles of several
sensors. It can be seen that the set of sensing circles partitions A into several
coverage patches. Each patch is bounded by the arcs of sensing circles and/or the
boundary of A. Some patches are 1-covered, some are 2-covered and some are
0-covered. If a patch is k-covered, we will also say that the coverage degree of
the patch is k. It can be seen that all points in a patch have the same coverage
degree.

Now suppose that all crossings are k-covered. Let us recall that each sensing
circle is open. Consider a point x whose coverage degree is the least in A, say m.
If possible, let m < k. Let us now consider the patch S within which x lies. One
can claim that the boundary of S cannot be that of a sensing circle.

Figure 10.1 Sensor nodes are distributed randomly in a square area. The radius of
each circle is rs, the sensing radius. Several crossings can be seen.The circles define a
partition of the area.
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Suppose that the boundary of S, the patch with the least coverage degree,
is a circle. Then no other sensing circle can overlap with any part of S since that
would break up S into smaller patches. So, other sensing circles can, at best, touch
S at some points on its circumference.

Thus, we can at best have S surrounded by some other sensing circles; see
Figure 10.2. The dark circle in the center represents S (if possible). In such a
situation, geometry shows us that there are always points like x, y, in the interstitial
spaces, where the coverage degree is lower than that in S. But this leads to a
contradiction, because the coverage degree cannot be lower than that in S, where
it is lowest. Hence, the boundary of S cannot be that of a sensing circle.

The possibilities that remain are shown in Figure 10.3. It can be seen that
when S is not circular, at least one point on the boundary of S is a crossing point.

x

y

S

Figure 10.2 The dark circle in the center represents S (if possible). Other sensing
circles cannot overlap with any part of S; at best, the other circles can touch S’s
circumference. In such a situation, there are points like x, y where the coverage degree
is lower than that in S.

x

S

xS

Figure 10.3 Different possibilities for the coverage patch S. When S is not circular,
points on its boundary can be crossing points. In these examples, S is 0-covered. The
crossings are 0-covered because they are not strictly inside any sensing circle.
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Let us now go back and show by contradiction that if all crossings are
k-covered, then A is also k-covered. As before, let x be a point in S, the
coverage patch with the least coverage degree m, with m < k. Now, recalling
that sensing circles are open, a crossing on the boundary of S cannot have the
same coverage degree as the sensing circle on whose circumference it lies; in
other words, the crossing is not covered by the circle since it is not strictly inside
the circle. Then the coverage degree of the crossing must be the same as that
of S, viz., m. But m < k, and this means that not all crossings are k-covered—a
contradiction. Therefore, if all crossings are k-covered, it must be true that A is also
k-covered.

Equivalently, Lemma 10.1 states that the event {A is not k-covered} implies
the event {there is at least one disk with two or more less-than-k-covered crossings
on its boundary}. We use this to proceed with the analysis. Let Mk denote the total
number of less-than-k-covered crossings in A. Recalling that Vk is the random
variable representing the total area that is not k-covered, we have

Pr(Vk > 0) ≤ Pr(Mk ≥ 2)

Exercise 10.2
Show that

Pr(Mk ≥ 2) ≤ E(Mk)

2

Using this, we have Pr(Vk > 0) ≤ E(Mk)
2 , and we will now proceed to find an

upper bound on E(Mk) /2.
Let us consider first the crossings created by two disks intersecting. If two

nodes are within a distance of 2rs from each other, their coverage disks intersect.
So, given a particular node, the expected number of crossings due to it is twice the
expected number of nodes within 2rs of this node, and hence, is given by

2λπ(2rs)2

where we have used the fact that sensors are distributed according to a Poisson
process. The factor 2 in the expression arises because two disks intersect at two
points.

Exercise 10.3
Show that if N1 represents the total number of crossings created by two disks
intersecting in the square area of side a and πr2

s = 1 (as assumed before),
then

E(N1) = 4λ2a2
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Next, we consider the crossings created by coverage disks intersecting the
boundary of the deployment area. If a node is within a distance rs from the
boundary, then two crossings are created. Let N2 denote the number of such
crossings in the area.

Exercise 10.4
Show that

E(N2) ≤ 4λars

Let us recall from Equation 10.1 that the probability that a given crossing is
not k-covered is

e−λ
k−1∑
i=0

λi

i!

Here, we recall that a crossing is not covered by any of the circles that intersect at
the crossing. So, as far as k-coverage is concerned, a crossing is just like any other
location x in the area. Then we have

E(Mk) = (
E(N1) + E(N2)

)
e−λ

k−1∑
i=0

λi

i!

≤ (4λ2a2 + 4λars)e−λ
k−1∑
i=0

λi

i!

≤ 4λ2a2(1 + o(1))e−λ
k−1∑
i=0

λi

i!

where, as usual, o(1) indicates a function f (λ) such that limλ→∞ f (λ) = 0 (see
Appendix A).

Exercise 10.5
Show that

E(Mk)

2
≤ 2a2e−λ λk+1

(k − 1)!
(1 + o(1))

Using these results, we arrive at the following inequality:

Pr(Vk > 0) ≤ 2a2e−λ λk+1

(k − 1)!
(1 + o(1))



10.2 Sensing Coverage 347

Now our task is to see how λ should increase with a so that the right-hand side of
the expression goes to zero as a → ∞. To this end, consider

λ = ln a 2 + (k + 1) ln(ln a 2) + c(a) (10.2)

where c(a) = o(ln a2). This means that λ = ln a2 + o(ln a2). Then we have

e−λ = e− ln a 2
e−(k+1) ln

(
ln a 2)

e−c(a)

= 1
a2

1

(ln a2)k+1

1
ec(a)

∴ E(Mk)

2
≤ 2

(k − 1)!

(
λ

ln a2

)k+1 (1 + o(1))
ec(a)

Now λ = ln a2 + o(ln a2) implies that

λ

ln a2 → 1

as a → ∞, and we can write λ
ln a 2 = 1 + o(1). Therefore, we get

E(Mk)

2
≤ 2(1 + o(1))

ec(a)(k − 1)!

From this expression, we can see that if c(a) → ∞ as a → ∞, then the upper bound
on Pr(Vk > 0) goes to zero as the length of the square goes to ∞. If we did not have
the term c(a) in the expression for λ (10.2), then we would not be able to assert
that Pr(Vk > 0) → 0 as a → ∞. Thus, a sufficient condition on λ, to ensure that
Pr(Vk > 0) → 0 as a → ∞, demands that the term c(a) be present, and increase to
infinity. As an example, we could have c(a) = √

ln a.
Actually, it can be shown that c(a) → ∞ as a → ∞ is not only a sufficient

condition for Pr(Vk > 0) → 0 as a → ∞, but also necessary. This means that if
c(a) is bounded above as a → ∞, then Pr(Vk > 0) remains strictly positive.

Discussion
We began this section with the question: How dense should the deployment of
sensors be so that an entire area A is k-covered? To get quantitative answers, we
modelled the distribution process as a spatial Poisson process with rate λ. Our first
observation was that in a finite area, we cannot ensure that each point is k-covered,
no matter how large λ is. However, it is true that as λ increases, the probability of
a nonzero less-than-k-covered area tends to zero; with high probability, the entire
area becomes k-covered.
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Next, we considered A to be a square area of side a, and allowed a to increase
to infinity. The question was: How should λ change so that, as in the finite case,
the entire first quadrant is k-covered with arbitrarily high probability? It is, of
course, expected that λ should increase to infinity; however, the increase has to
satisfy some criterion, as (10.2) shows. Notice the similarity of this result with that
related to the critical range for connectivity, due to Gupta and Kumar, discussed
in Chapter 9.

10.3 Localization
In many situations of practical interest, sensor nodes are strewn randomly over the
deployment area. Consequently, the position of each sensor node is not known a
priori. Position information, however, is crucial in many situations; for example,
to report where an event has occurred. Moreover, knowledge of node positions
can be exploited in routing also, as in geographic routing. Hence, localization is
an important problem in sensor networks.

Let us consider several sensors distributed over an area. A small fraction
of these are anchor devices, that know their own positions. They could be GPS-
enabled, or they could have been placed precisely at particular positions, with the
position information being programmed into them. The problem is to localize the
other sensors with help from these anchors.

A crude idea of the distance from an anchor node can be obtained by noting
the strength of the signal received from the anchor, and the transmit power of
the anchor. The quality of a distance estimate obtained in this way depends
on the accuracy of the model of signal attenuation used. Further, the transmit
power used by an anchor may not be easily available to a sensor. For this reason,
let us consider “range-free” localization, where we do not calculate distances from
anchors based on the received signal strength.

Suppose each anchor sends out messages including its own position, and
including a hop count parameter. The anchor initializes the hop count to 1.
A sensor (i.e., nonanchor node) receiving the message notes down the anchor’s
position and the hop count contained in the packet. Next, it increments the hop
count value and broadcasts the packet again.

In this way, a wave of packets originates from an anchor and spreads
outward. If a sensor receives a packet with a hop count value that is greater
than the one stored locally, it ignores the received packet.

The hop count from the i-th anchor, stored at a sensor, is a crude measure
of its distance from the anchor. As the density of sensor deployment increases, the
distance estimate indicated by the hop count becomes more reliable. As the density
increases, sensors at the same hop count from an anchor tend to form concentric
rings, of annular width approximately rc, where rc is the communication range of
a sensor. Thus, if hi is the hop count from anchor i, then the sensor is at a distance
approximately hirc from anchor i.
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After obtaining several node-anchor distance estimates as before, nodes
follow the multilateration technique. Suppose a node has heard from M anchors,
and the anchors’ positions are, respectively, (xi, yi), 1 ≤ i ≤ M. The sensor node j
is located at position (xj, yj), and this information is not available to it. The actual
distance between node j and anchor i is given by

dj, i =
√

(xj − xi)2 + (yj − yi)2

which, of course, is unknown to j. The estimate of this distance that is available
to j is d̂j,i := hirc. Then, a natural criterion that can be used to determine the
unknown (xj, yj) is the total localization error Ej, defined as

Ej =
M∑

i=1

(dj, i − d̂j, i) 2

=
M∑

i=1

(√
(xj − xi) 2 + (yj − yi) 2 − d̂j,i

)2

Exercise 10.6
Show that the partial derivatives of Ej with respect to xj and yj are given by

∂Ej

∂xj
= 2

M∑
i=1

(xj − xi)

(
1 − d̂j,i

dj,i

)
and

∂Ej

∂yj
= 2

M∑
i=1

(yj − yi)

(
1 − d̂j, i

dj, i

)

Using these expressions, we can get an iterative procedure to obtain xj and
yj. We start with some initial guess of the position of j: (x(0)

j , y(0)
j ). This allows us

to calculate dj,i approximately, and also evaluate ∂Ej
∂xj

and ∂Ej
∂yj

. Then, updates to the
initial guessed position can be obtained as

Δxj = − α
∂Ej

∂xj
and Δyj = − α

∂Ej

∂yj

where α is a small positive fraction. It can be seen that the sign of the update
Δxj is always opposite of that of ∂Ej

∂xj
; a similar conclusion follows for the update

Δyj. The updated position is obtained by taking a small step in the direction of
the negative gradient of error with respect to the current position. Therefore, the
iterative process of updating positions is such that the error tends to decrease.

Essentially, this method estimates distance from an anchor by the hop count
from that anchor. In a dense deployment of sensors, this estimate is reasonable.
Thus, it can be expected that the quality of the localization obtained from this
method is critically dependent on the density of sensor deployment. Further, the
method also assumes that the communication range rc is known.
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Convex Position Estimation
We now discuss an alternative approach to sensor localization in which a convex
position estimation problem is formulated and solved. As before, it is assumed
that the positions of anchors are known. A sensor node wishing to localize itself
notes the identities of the anchors it can hear, and computes its position as follows.

If a sensor node j can hear an anchor i, then j must be within a distance rc

from i. In other words, j can be localized to within a circle of radius rc around i.
Let us assume that the boundary of the circle of radius rc is out of bounds, and
the distance between i and j should be strictly less than rc. Formally, we have

‖i − j‖2 < rc (10.3)

where i = (xi, yi) and j = (xj, yj) are the positions of anchor i and node j, respec-
tively, in the two-dimensional plane, and ‖i − j‖2 represents the Euclidean norm

of (i − j), i.e., ‖i − j‖2 =
√

(xi − xj) 2 + (yi − yj) 2.
This constraint can be represented in terms of a Linear Matrix Inequality

(LMI), as we discuss now. The motivation for formulating the constraint in these
terms comes from the availability of powerful numerical methods for solving such
problems.

Let us recall how a positive definite matrix F is defined. Suppose F is a real and
symmetric N × N matrix. Then F is positive definite if for every nonzero N-vector
u ∈ R

N , uTFu > 0, where uT denotes the transpose of u.
We note the following facts. Let

G =
[

G1 G2
G3 G4

]
(10.4)

be a positive definite N × N matrix, where G1 is an M × M matrix, G4 is an
(N − M) × (N − M) matrix, and the dimensions of G2 and G3 are evident (G2
and G3 are not necessarily square matrices). Then it is known that

• G1 and G4 are both positive definite.

• G4 −G3G−1
1 G2 is also positive definite. (G4 −G3G−1

1 G2) is called the Schur
complement of G1 in G.

To see how this is used, consider the real, symmetric matrix

F =
[

rcI2 i − j
(i − j)T rc

]

where I2 is the 2 × 2 identity matrix. By correspondence with (10.4), N = 3
and M = 2 here. Suppose that F is positive definite. Then, considering the Schur
complement of rcI2 in F, we have
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G4 − G3G−1
1 G2 = rc − (i − j)T 1

rc
I−1
2 (i − j)

= rc − 1
rc

‖i − j‖2
2

As F is positive definite, so is the Schur complement, and therefore we have
(rc − 1

rc
‖i − j‖2

2) > 0, as positive definiteness reduces to simple positivity for a
1 × 1 matrix. Thus, we get

‖i − j‖2 < rc

as in (10.3).
i represents the position of the anchor, which is known. The position of the

node is unknown, which means that j is unknown. The matrix F can be regarded
as a function of the unknowns xj, yj; thus, F = F(xj, yj). What we saw earlier can be
rephrased as follows: If j is such that F(xj, yj) is positive definite, then ‖i − j‖2 < rc.
Thus, if we define the set of feasible positions for node j as the set

{j : F(xj, yj) is positive definite}

then we are assured that the constraint ‖i − j‖2 < rc is respected. It may be noted
that this definition is sufficient for the condition in (10.3) to hold. Hence, by this
definition, we get a smaller feasible set than that indicated by (10.3). The smaller
feasible set is the price we pay when we formulate the problem in terms of a Linear
Matrix Inequality.

Exercise 10.7
Show that the preceding set, viz.,

{j : F(xj, yj) is positive definite}

is convex; that is, the set of feasible positions for node j is a convex set. This
is why this approach is referred to as convex position estimation.

In the previous discussion, we have considered the situation when node j hears
only one anchor, viz., anchor i. What happens when j hears from M anchors? The
LMI approach readily extends to cover this situation. For this, we have to define
a number of matrices F(i)(xj, yj), i = 1, 2, . . . , M, as follows:

F(i)(xj, yj) =
[

rcI2 i − j
(i − j)T rc

]
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For each i = 1, 2, . . . , M, the arguments of F(i) are the same: the unknowns (xj, yj).
One can arrange these matrices in block-diagonal form to get a large block-
diagonal matrix F(xj, yj):

F(xj, yj) =

⎡
⎢⎢⎣

F(1) 0 · · · 0 0
0 F(2) 0 · · · 0

· · ·
0 0 · · · 0 F(M)

⎤
⎥⎥⎦

Exercise 10.8
Show that this block-diagonal matrix F(xj, yj) is positive definite if and only
if each block matrix F(i)(xj, yj), i = 1, 2, . . . , M, is also positive definite.

Suppose we require F(xj, yj) to be positive definite. Then, by virtue of the
preceding exercise, F(i)(xj, yj) is also positive definite for i = 1, 2, . . . , M. This, in
turn, allows us to conclude that if j = (xj, yj) is feasible, then ‖i − j‖ < rc for each
anchor i = 1, 2, . . . , M. Thus, if a feasible point exists, it is guaranteed to be in the
intersection of the circular discs of radius rc around each anchor.

Thus, for each sensor j that needs to be localized, we can pose the problem:
Find {j : F(xj, yj) is positive definite}, where M represents the number of anchors
that j hears from. As we saw, this will give a convex feasible set to which j can be
localized.

Further, the feasible set obtained can be bounded within a rectangle. For this,
consider a two-element vector c, and consider the semidefinite program (SDP)

min cT j

subject to F(xj, yj) � 0

where F(xj, yj) � 0 means F(xj, yj) is positive definite. A semidefinite program is
a generalization of a linear program in which the objective function is linear
in the unknowns, but the constraints are expressed in terms of a positive/negative
definite/semidefinite matrix. As mentioned before, efficient computational meth-
ods for solving SDPs are available.

In this formulation, c represents the cost of the position estimation (xj, yj) that
we are interested in. Suppose we choose c = (1, 0)T . Then, the SDP corresponds to
finding the smallest xj that is consistent with the feasibility constraint. On the other
hand, consider c = (−1, 0)T ; now the SDP corresponds to finding the largest xj
that is consistent with the feasibility constraint. Similarly, by choosing appropriate
values of c, we can obtain bounds on yj, too.

Discussion
This approach leads to the conclusion that it is possible to obtain a rectangular
bounding box within which each sensor j can be localized (see Figure 10.4). In this
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C

A B

Figure 10.4 A sensor node j which hears from three anchor nodes will lie in the
intersection of the three circles. Thus, the closed region ABC is the feasible set. The
dark rectangle around ABC gives the bounding box within which the feasible region
must lie.

way, each sensor can be localized to a rectangular box within which it must lie. As
long as the feasible set is nonempty, the dimensions of the box provide estimates
of locationing errors along the x and y axes.

The convex position estimation approach discussed previously also requires
knowledge of the communication radius rc, just as the first method did. However,
in contrast to the first method, the convex position estimation method does not
demand dense sensor deployment. Further, the first method was iterative, but the
second method discussed is not. On the other hand, the LMI-based approach can
place a significant computational burden on the sensors.

10.4 Routing
Standard table-driven routing approaches are often not attractive in the sensor
network context. Route discovery and route maintenance are periodic and energy-
intensive tasks, and typical sensor nodes are severely constrained in energy,
memory, and computing power. Thus, alternate approaches have been considered
in the literature.

Let us consider routing ideas referred to as geographic or geometric or
position-based routing. Its characteristic features are: (1) every node knows its
own position, and the positions of its neighbors; (2) the source knows the position
of the destination; (3) there are no routing tables stored in the nodes; (4) the
additional information stored in a packet is bounded above by a constant times
the number of nodes in the graph; the additional information is O(|V|), where V is
the vertex set of the graph G(V, E) representing the sensor network. Because of the
memory restrictions, geometric routing is known also as O(1)-memory routing.



354 10 Ad Hoc Wireless Sensor Networks (WSNs)

Evidently, geometric routing is based entirely on local information. We will assume
that nodes have acquired knowledge of their own positions.

The simplest approach is for a source node s to forward data to a neighbor
who is closer to t. Basically, this is a greedy approach—a packet is passed to a
neighbor who is closest to the destination.

As can be expected, however, the greedy approach does not always work:
What if none of the neighbors of a node i is closer to the destination t than i itself?
An example is shown in Figure 10.5.

As mentioned before, we will consider the sensor network as a graph, with
the node positions being the vertices and a link between two nodes being an edge.
For simplicity, we will assume that all nodes transmit at the same power, so that
the communication radius rc is the same for all nodes. This means that any two
nodes at a distance less than or equal to rc can communicate directly with each
other. If rc is defined as the unit of distance, then we have what is called a Unit
Disk Graph (UDG) (see Chapter 9).

In a dense network, it is clear that a UDG will give rise to numerous edges.
Typically, in a graph with a large number of edges, significant computational effort
is required to find routes between pairs of nodes. In a resource-constrained sensor
network, one can ill-afford this energy expenditure.

This suggests that removing some edges from the UDG, while retaining graph
connectivity, is an option worth exploring. However, removing edges also means
that path lengths between pairs of nodes increase; for example, if the direct link
between i and j is removed, then evidently, these nodes are connected through
a multihop path instead of the earlier single-hop one. Now higher bit rates may
be achievable over paths with fewer hops. Clearly, we are trading off bit rate for
computational efficiency here.

A planar graph is one that can be drawn such that no edges intersect on the
plane. When it is drawn in such a way, what we get is a plane graph. Planar graphs
are of interest because they are usually sparse, as we will see later. The energy and

i

t

Figure 10.5 Scenario where greedy routing fails. Neither of the neighbors of i is closer
to the destination t than i itself.
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computation overhead of finding routes can be expected to be significantly less on
a sparse graph.

It is noteworthy that a given graph may appear to have edge intersections,
but it may be possible to distort the given graph, while ensuring that each edge
connects the same pair of nodes as before, so that in the new drawing, there are
no edge crossings on the plane. For example, the graph on the left in Figure 10.6
can be redrawn as shown on the right, keeping all edges between the same pair of
nodes in both cases.

How would one obtain a planar graph from a UDG? One possibility is
to start with the node positions of the original UDG, eliminate all edges in the
UDG, and then reintroduce some edges appropriately. Several standard geometric
constructions are used to get planar graphs in this way. The basic idea is to
introduce an edge between nodes i and j, say i → j, if a suitable region around
i → j (called the witness region) is free of other nodes.

Let d(i, j) be the geometric or Euclidean distance between nodes i and j.
Consider two circles of radius d(i, j) centered around the nodes i and j (see
Figure 10.7). The intersection of the two circles is called the lune. Suppose we
introduce the edge i → j if the lune is free of other nodes. If we do this for every
pair of nodes, we get the Relative Neighborhood Graph (RNG). On the other
hand, suppose we introduce the edge i → j if the circle of diameter d(i, j) within
the lune is free of other nodes. Doing this for every pair of nodes gives us the
Gabriel Graph (GG). For the RNG, the witness region is the lune; for the GG, the
witness region is the circle within the lune.

It is known that both the RNG and the GG are planar graphs. Further, it
is also evident that the RNG is a subgraph of the GG. It turns out that both of
these planar graphs can be computed using local algorithms, involving exchange
of information among a node and its neighbors only.

We observe that a planar graph induces a partitioning of the plane into a
set of regions with disjoint interiors. Each such region is called a face. The outer
unbounded region is also regarded as a face.

BA

DC

FE

G H

A B

C D

E F

G H

Figure 10.6 The graph on the left is planar because it can be redrawn as shown on the
right, keeping all node adjacencies unchanged.
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i j

x

y

Figure 10.7 Obtaining the Relative Neighborhood Graph (RNG) and the Gabriel Graph
(GG) from the node positions. To get the RNG, we introduce edge i → j if the lune ixjy
is free of other nodes.To get the GG, we introduce edge i → j if the circle of diameter
d(i,j) within the lune is free of other nodes.

s t

F3

F2

F1

p1 p2

F4

p3

Figure 10.8 A planar graph with four faces—F 1, F 2, F 3, and F 4—is shown. s and t
are the source and the destination, respectively. p1, p2, and p3 are the points at which
the straight line from s to t intersects the edges between the corresponding faces.
The solid lines with arrows indicate the first circumnavigation around a face, and the
dashed lines indicate the second traversal until the switch point. After the switch point
is reached, the packet retraces its path and starts moving around an adjacent face.

To get around the problem encountered with greedy routing, consider a
strategy that routes along the boundaries of the faces that are crossed by the straight
line between the source and the destination. Figure 10.8 shows an example.

In Figure 10.8, we see four faces: F1, F2, F3, and F4 in the planar graph. The
source s and the destination t are also marked. F1 is the face that contains s and
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the line s, t intersects F1. To begin with, the boundary of F1 is explored, in the
clockwise direction (say). This is indicated by the thin solid arrows in Figure 10.8.
As the boundary is traversed, the algorithm notes all points where the line s, t
intersects the boundary, and the point closest to t is stored for future use. In
Figure 10.8, there is only one such point, viz., p1. After traversing the whole
boundary and reaching s again, a second traversal (along the dashed line) is started.
This time, when p1 is reached, the face F2 is explored in a similar manner. We
may refer to the point p1 as a switch point.

In this way, faces are explored successively, with a new face being taken up
at switch points closest to t. It can be shown that on simple planar graphs, face
routing terminates in O(N) steps, where N is the number of nodes. Essentially, the
idea is to show that in the course of the execution of the face routing algorithm,
each edge is traversed at most a constant number of times. Then, a theorem about
planar graphs is applied; this theorem says that the number of edges |E | in a
connected plane graph with at least three vertices satisfies

|E | ≤ 3|V| − 6

This relation is significant, because it indicates that planar graphs are basi-
cally sparse graphs. In a fully connected graph, the number of edges is O(|V|2),
whereas the relation asserts that in a planar graph, the upper bound is only a linear
function of |V|.

Using this relationship, it follows that face routing terminates in O(N) steps,
as |V| = N. Thus, we are assured that face routing works correctly. Nevertheless,
face routing may select a path that is considerably longer than the shortest path
between a pair of nodes.

This description provides the principle underlying the face routing algorithm.
In practice, nodes will need to deduce the locations of the switch points p1, p2, and
p3. This is possible because each node knows its own position and the positions
of its neighbors, as well as the positions of the source s and destination t, because
the latter are carried in the packet header.

In summary, we note that face routing requires very little memory and
computation, but the price to be paid is the knowledge of nodes’ own positions, as
well as the positions of their neighbors. Not unexpectedly, face routing is sensitive
to the accuracy of position information, and large errors in position may cause
face routing to fail.

Attribute-based Routing
In the previous section, we considered a routing approach that relied upon nodes
knowing their own positions. In this section, we consider a routing strategy that is
oblivious to the nodes’ positions, and even addresses. In fact, the routing scheme
to be discussed here does not even attempt to reach a specific node from another;
it uses a completely different philosophy.
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In a deployed sensor network, a specific type of event may be of interest.
For example, in a sensor network used for environment monitoring, observations
of a particular type of animal may be of interest. The strategy in attribute-based
routing schemes is to launch a query that describes the data of interest. As this
query propagates through the network, it encounters nodes that have observed
the event of interest. Such nodes now provide replies that move back toward the
original node issuing the query. Thus, attribute-based routing provides a way for
information seekers and information gatherers to “meet,” without knowing one
another beforehand.

Data are described by attribute-value pairs that characterize the information
that is of interest. For example, a query can be expressed as a record consisting of
multiple attribute-value pairs:

type = animal
instance = leopard
rectangle = [0, 400, 0, 400]

In the first line, “type” is the attribute and “animal” is the value; similarly,
“instance” is the attribute and “leopard” is the value. The third line specifies
an area (in some coordinate system) within which the observation is sought; a
rectangle of size 400 × 400 is shown here, with the ranges along the x and y axes
specified.

A prominent example of attribute-based routing is provided by a scheme
known as Directed Diffusion (DD). In DD terminology, the node issuing the query
is called a sink, while the nodes providing the observation are called sources. The
query itself is referred to as the interest. In the following paragraphs, we provide
a high-level description of how DD finds paths between sources and sinks.

To begin with, the sink broadcasts the interest. As shown in the previous
example, the interest is a collection of several attribute-value pairs, among which
are the attributes duration, interval, and update. The duration attribute specifies
the period of time for which the interest is valid. The interval attribute specifies
the intervals at which the observation is to be reported. Implicit in this attribute
is the characteristic of DD that repeated observations of the event of interest are
important. Further, the duration attribute indicates that the interest persists for
some time. Both attributes suggest that the sink is not satisfied with just one
observation of the event; rather observations extended over time are important.
This allows DD to amortize the cost of finding paths between sources and sinks
over the duration of the communication. The use of the update attribute is
discussed shortly.

The interest generated originally by the sink passes through nodes in the
network. A node that receives the interest checks if it has any event record that
matches the interest. If it does, then it becomes a source and proceeds to relay the
information back to the sink; we will see this in more detail shortly. If it does not,
then it forwards the received interest to its neighbors.
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Each node maintains an interest cache, where valid interests are stored. Along
with each interest, the node notes down the neighbor from which the interest
was received. It is noteworthy that this is strictly local information; the sink that
generated the interest in the first place is not tracked.

A particular interest may be received at a node from a number of neighbors
because, initially, the interest is flooded through the network and may arrive at
the node via multiple paths. All such neighbors are stored in the interest cache.
How often should each neighbor receive a report of the observed event? This is
determined by the update attribute of the interest received from that neighbor. The
smaller the value of update, the more frequently the neighbor receives a report. In
fact, the update attribute determines what is called a gradient toward a neighbor,
where gradient is defined as the reciprocal of the update value.

In this way, utilizing neighbors and the gradient toward each neighbor, an
observed event record makes its way back toward the sink. As in the forward pass
when the interest was making its way into the network, the requested information
may arrive back at the sink over multiple paths. In the DD scheme, the update
attribute is now used in a clever way to reinforce good quality paths.

To do this, the sink observes the returned reports received from various
neighbors. The neighbor from which the first report was received is likely to lie
on the least-delay path from the source to the sink. The sink now resends the
interest to this particular neighbor, with a smaller update attribute. This leads
to higher gradients being set up all along the backward path from the source to
the sink. In this way, DD provides a way of adaptively selecting preferred paths.
Similarly, the update interval toward a nonpreferred neighbor can be increased,
so that ultimately, that particular path from source to sink is suppressed.

It is worth noting that DD is inherently robust to node failures, because if the
currently preferred path becomes unavailable (due to node failure, say), then an
alternate path (which was currently not preferred) may be picked up and reinforced
by update attribute manipulation.

10.5 Function Computation
Let us imagine a situation where N sensors have been distributed uniformly and
independently in a square area A. These sensors have self-organized to form a
network. In particular, the transmission range of each has been set to a value rc(N)
such that the network G(N, rc(N)) is connected asymptotically; the probability that
G(N, rc(N)) is connected goes to 1 as N goes to infinity. As we have seen before,
this will happen when

rc(N) =
√

ln N + c(N)
πN

(10.5)

with lim supN→∞ c(N) = ∞.
The sensors make periodic measurements. There is a single sink in the

network where some function of the sensors’ measurements is to be computed.
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The function, in general, would depend on the inference problem that the sensor
network has been designed to solve. For example, in an event detection application,
the function could be the conditional probability of the sensor output being in a
certain range, given that there has been no event (the null hypothesis). In statistics,
such a function is referred to as a likelihood function, and it is extensively used in
event detection.

One naive way to compute the function is to forward all the measured data
to the sink, which then computes the function. This is a centralized model of
computation. However, this fails to take advantage of the processing capability of
the sensors. An alternative approach is in-network processing, where the sensors
compute intermediate results and forward these to the sink. This aggregation helps
in reducing the amount of data to be forwarded to the sink, and thus helps in easing
congestion as well as prolonging battery life.

For example, consider a linear network of (N + 1) sensors as shown in
Figure 10.9, with s denoting the sink. Suppose that each sensor measures the
temperature in its neighborhood and the objective is to compute the maximum
temperature. If all measurements are simply forwarded to the sink, then the
communication effort is O(N2); sensor 1 data requires N hops to reach the sink,
sensor 2 data requires (N − 1) hops, and so on. On the other hand, an alternate
strategy is one in which node i compares received data with its own measurement,
and forwards the maximum of the two. In this strategy, in-network processing is
being done, and the communication effort drops to just O(N).

Suppose that the N sensors make periodic measurements. Let each sensor
reading belong to a discrete set X . Let time be slotted. X(t) denotes the vector of
N sensor readings at discrete time-slot t. Let us also assume that readings over a
period t = 1, 2, . . . , T are available with each sensor; here T is the block length
over which measurements have been collected. The N × T matrix X represents
the complete data set, across sensors as well as across the block length, that is
available. Xi, the i-th row of the matrix, represents the readings of the i-th sensor
over the block. Correspondingly, the t-th column X(t) represents the readings
across the sensors at time t. The objective is to compute the function f (X(t)), for
every t ∈ {1, 2, . . . , T}.

Generally, if C is a subset of sensors, then f (X(t)
C ) is the function computed

by taking the readings of sensors in the set C at time t.
We have tacitly assumed that the function to be computed admits distributed

computation in a divide-and-conquer fashion, in which the result of a partial

1 2 3 N s

Figure 10.9 A linear network of (N +1) sensors is shown. Each sensor makes
measurements, and the maximum of all measurements is desired at the sink s.
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computation by some sensors is forwarded to others, which then repeat the
process. To formally state the property that we assumed, we introduce the notion
of divisible functions.

Let C be a subset of {1, 2, . . . , N}, and let π := {C1, C2, . . . , Cs} be a partition
of C. The function f (.) is said to be divisible, if for any C ⊂ {1, 2, . . . , N} and any
partition π = {C1, C2, . . . , Cs} of C, there exists a function g(π)(.) such that

f (X(t)
C ) = g(π)(f (X(t)

C1
), f (X(t)

C2
), . . . , f (X(t)

Cs
))

This says that if we know the values of the function f (.) evaluated over the
sets in any partition π of C, then we can combine these values, using the function
g(π)(.), to obtain f (.) evaluated over C. Thus, it is possible to compute f (X(t)

C ) in a
divide-and-conquer fashion.

Exercise 10.9
Let each sensor reading belong to a discrete set X . Consider the function
τ(X(t)) that gives the frequency histogram or “type vector” corresponding to
the sensor readings X(t) at time t. This function is a vector with |X | elements,
where |X | denotes the size of the set X :

τ : X N → {0, 1, 2, . . . , N}|X |

Show that τ(.) is a divisible function.

Exercise 10.10
Show that the function that provides the second largest value in a set of
sensor measurements is not divisible.

Let R(f ) denote the range of the function; let us recall that the range of a
function f : X → Y is defined as

f (X ) := {y ∈ Y : ∃x ∈ X with f (x) = y}

Exercise 10.11
In the previous exercise, is R(τ) = {0, 1, 2, . . . , N}|X |?

Now the sensors together compute f (X(t)) for t = 1, 2, . . . , T, by passing
messages among one another according to some scheme. Let UN,T denote such a
scheme. Further, let T (UN,T ) denote the maximum time (in slots) taken to complete
the computation of the function for all times in t = 1, 2, . . . , T, where the maximum
is taken over all possible values of X(t), t = 1, 2, . . . , T. This is the time at which
the sink in the network is able to obtain the values f (X(t)), t = 1, 2, . . . , T.
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With the previous notation, the rate of function computation when scheme
UN,T is followed is defined, in computations/slot, as

R(UN,T ) = T
T (UN,T )

Considering the maximum of R(UN,T ) over all possible schemes and all possible
block lengths T, we obtain the maximum rate of function computation for a
given divisible function, written as R(N)

max. The value of R(N)
max is specific to the

N-sensor network; the superscript in R(N)
max is intended to serve as a reminder of

this fact.
How large can R(N)

max be? To compute f (X(t)), t = 1, 2, . . . , T, the sink must
receive the results of the partial computations carried out by outlying sensors
and complete the task using its own data. Considering the protocol model (see
Chapter 9), it is clear that only one link terminating at the sink can be active at
any instant. If the maximum possible bit rate on a link is W bits per slot, then the
sink cannot receive more than W bits in a slot.

On the other hand, to identify the specific function value f (X(t)), we would
need log2 |R(f )| bits, where we have assumed that the discrete set R(f ) has 2m

elements for some m ≥ 1. This leads to the following upper bound on R(N)
max:

R(N)
max ≤ W

log2 |R(f )|

Before proceeding further, we recall the following observations from Chap-
ter 9. Suppose N nodes are placed uniformly and independently in the unit square.
Let us denote by G(N, φN) the graph that results when each node is connected to
its φN nearest neighbors. Then, G(N, φN) is connected with high probability if and
only if φN = Θ(ln N). Specifically, there are two constants 0 < c1 < c2 such that

lim
N→∞

Pr
(
G(N, c1 ln N) is disconnected

) = 1

lim
N→∞

Pr
(
G(N, c2 ln N) is connected

) = 1

Thus, by selecting a transmission range such that a node connects to at least
c2 ln N nearest neighbors, we are assured of getting a connected graph with high
probability. Also, we note that the degree of the resulting graph is O(ln N) with
high probability.

Let us now consider the N-sensor network with the transmission range rc(N)
set appropriately (as before), so that each node has enough number of neighbors
for the graph to be connected with high probability. Consider a tessellation of
the unit square into small squares (called cells) of side rc(N)/

√
2. This implies that

nodes within a cell are always within range of one another.
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Let us now define a cell graph. Each nonempty cell of the tessellation (see
Figure 10.10) is a vertex in the cell graph. Further, two vertices c1 and c2 of
the cell graph are defined to be adjacent (i.e., to have an edge between them), if
we can find a node inside cell c1 and a node inside cell c2 such that the nodes are
neighbors.

Figure 10.10 shows a cell graph corresponding to a number of sensors
deployed randomly in a unit square. The small rectangle inside the cell in the middle
represents the sink of the network. Corresponding to each nonempty cell in this
tessellation, we have a vertex in the cell graph. Further, as shown in Figure 10.10,
we can find a node in cell c1 and a node in cell c2 such that these nodes are neighbors
(indicated by the line joining them); hence, vertices c1 and c2 are adjacent in the
cell graph. The figure also shows relay nodes in a cell and relay parents; we define
these later.

Let us consider a spanning tree on the cell graph, rooted at the cell containing
the sink. It is possible to obtain such a spanning tree because the underlying
network of nodes is connected, and, therefore, so is the cell graph.

Consider a cell c and its parent cell in the spanning tree. A node i in cell c
will be called the relay node in that cell if (1) it has at least one neighbor in cell c,
and (2) it collects data from all neighbors in cell c, runs a partial computation on
the data and forwards the result to a node j in an adjacent cell. This node j will be
called the relay parent of relay i. By definition, a relay node in cell c cannot serve
as a relay parent for any other cell.

c1

c2

c3

c1

c2

c3

c5

c4

Figure 10.10 On the left panel, a random deployment of sensors is shown.The nodes
with a circle around them are the relay nodes. The arrow pointing away from a relay
node identifies the corresponding relay parent, located in a parent cell. Cell c4 has
two relay parents and one relay, and cell c2 has one relay, one relay parent, and also a
node that is neither a relay nor a relay parent.The cell graph for this deployment would
be obtained by considering a vertex for every nonempty cell; two vertices would be
adjacent if each of the corresponding cells has a node within communication range of
the other.The right panel shows a spanning tree on the cell graph.
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This definition implies that a cell has a relay node in it only if there are two
or more nodes in it. If a cell has only one node, then we will not consider that
node to be a relay node. However, it will, of course, make measurements and pass
them to some other node in an adjacent cell. It can also receive measurements from
nodes in adjacent cells and pass them on. Thus, the single node may behave as a
relay parent for relays in adjacent cells. In Figure 10.10, the cell c5 has a single
node in it, and this node behaves as a relay parent; however, it is not considered
a relay node.

In summary, a relay node collects data from other nodes in its own cell only,
whereas a relay parent collects data from relay nodes in other cells only. A node
can be either a relay or a relay parent, but not both. Of course, it is possible that
a node is neither a relay nor a relay parent.

In Figure 10.10, the node with a circle around it is the relay node in that
cell, and the arrow indicates its relay parent. As Figure 10.10 shows, there is one
relay node in each cell and possibly several relay parents. A node that has neither
a circle around it nor an arrow pointing to it is neither a relay node nor a relay
parent.

For computing function values, data need to be collected at the sensors and
sent toward the sink. On the way, partial function computations can be carried
out. In Figure 10.10, the process would start with the sensor nodes in the leaf
cells. Next, we outline an approach that makes distributed function computation
possible.

Suppose a divisible function f (.) is to be computed at T epochs. Let us divide
time into T rounds. For n = 1, 2, . . . , T, round n consists of T1 slots, where T1 will
be specified later.

In round 1, all nonrelay nodes in the leaf cells in Figure 10.10 transmit to
the relay node the result of a partial computation of f (.), where the function
is evaluated at a node’s own sensor measurements. For example, in cell c3
in Figure 10.10, each of the two nonrelay nodes transmits the result of its
computation to the relay node in c3. No other transmission occurs in c3 or in
any other cell.

In round 2, the relay node of cell c3 carries out a partial computation based
on the values it received in the previous round, as well as its own sensor reading.
The result is transmitted to its relay parent in cell c2. Further, in round 2, the
nonrelay nodes in cell c3 again transmit computed function values to their relay
node. No transmissions occur in other cells.

Consider the situation in round 3. Before round 3 begins, the cells that are
one hop closer to the sink than the leaf-cells, like cell c2, have received the results
of some particular partial computations. Specifically, before round 3 begins, a
relay parent in c2 already has the result of a partial computation based on the
measurements made by a subset of sensors below it. Hence, during round 3, the
relay parent is in a position to include its own measurement, carry out the function
evaluation, and transmit the result to the relay in c2; at the end of round 3, we
have the result of a partial computation based on the measurements of sensors
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constituting a subtree rooted at the relay parent in c2. Further, during round 3,
the nonrelay nodes in cell c3 are again occupied in transmitting their results to the
relay node in c3. Similarly, in round 4, it is the relay node in c2 that carries out a
computation and transmits the result to its relay parent in c1.

We can see that intermediate results progress toward the sink along the
spanning tree on the cell graph in a pipeline. Nodes occurring lower in the tree
deposit their computed results with a node that is higher up. In turn, the node that
is higher up in the tree picks up the result, includes its own measurement, carries
out a fresh partial computation, and passes the result upward. Moreover, as we
go up the tree, partial computation and transmission are initiated later, once all
the necessary inputs have arrived.

Our discussion is summarized in Figure 10.11, for an example cell graph of
depth 2. It can be seen that several transmissions need to occur in the same round.
How can we be sure that these transmissions can be arranged in time and space
such that they do not interfere? In other words, how do we know that a feasible
schedule exists?

The following observation is critical in showing the existence of a feasible
schedule:

Each cell has a bounded number of interfering cell-neighbors (say k2), where two
cells c1 and c2 are interfering cell-neighbors if there exist a node in c1 and a node in
c2 separated by a distance less than the bound imposed by the Protocol Model (see
Chapter 9). This means that interfering cell-neighbors cannot support simultaneous
transmissions.

According to the Protocol Model, if node i is transmitting to node j, then
other transmitters that can interfere with successful reception at node j must be
located within a disc of radius (1 + Δ)di,j around node j, where di,j is the distance
between nodes i and j. Here, Δ is a parameter used in the Protocol Model.

1 2

1 2

1 2

1 2

T

T

T

T

Figure 10.11 Sketch showing T rounds of computation and transmission at various
nodes.The two rows at the top correspond to the activities of the nonrelay nodes and
the relay node, respectively, at the leaf-cells of the cell graph. The two rows at the
bottom refer to the actions of the nonrelay nodes and relay node, respectively, in a
cell that is one hop closer to the sink. It may be noted that the rounds are staggered
according the nodes’ positions in the cell graph. Computation and transmission are
pipelined.
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As the number of nodes N increases, the communication range rc(N)
decreases, and so the cells in the tessellation shrink, since the cell side is of length
rc(N)√

2
. Therefore, interferers must be located within discs of smaller radii around

the receivers. This argument leads to the conclusion that the number of interfering
cell neighbors is uniformly bounded; the bound k2 does not depend on N. With
this, a graph coloring argument (see Problem 10.8) is used to show that there
exists a schedule in which each cell receives 1 out of every (1 + k2) slots to
transmit.

Hence, in an interval of T1 slots constituting one round, each cell can be
allotted T1

1+k2
slots. Each relay parent j in the cell requires at most log2 |R(f )| bits to

communicate the result of the partial function computation based on data received
from its children. Further, each cell in the cell graph has a uniformly bounded
number of children, say k3, and therefore, it follows that there are at most k3
relay parents per cell.

Similarly, a relay node also requires at most log2 |R(f )| bits. A node that is
neither a relay parent nor a relay node requires at most log2 |X | bits because it
merely transmits its own readings.

To get an upper bound on the total number of bits that a cell needs to
transmit, we need to bound the number of nodes in a cell. This is where the degree
of the sensor node graph plays a role. Let us assume that the degree of the sensor
node graph d(G(N, rc(N))) is bounded above by

d(G(N, rc(N))) ≤ k1 log2 |R(f )|

for some k1 > 0. Clearly, then, the number of nodes in a single cell cannot be
more than k1 log2 |R(f )|, because, by construction, all nodes in a cell are within
communication range. Hence, the total number of bits that a cell needs to transmit
per computation is bounded above by

k3 log2 |R(f )| + log2 |R(f )| + log2 |X | × k1 log2 |R(f )|
= (k3 + 1 + k1 log2 |X |) log2 |R(f )|

Recalling that in the feasible schedule mentioned earlier, a cell gets T1
1+k2

slots
in an interval of T1 slots, and also that at most W bits can be sent in a slot, we
can see that the transmissions can be feasibly scheduled if

T1

1 + k2
= (k3 + 1 + k1 log2 |X |) log2 |R(f )|

W

We can now get an upper bound on the total time required for the function
computation to be completed. Extending the idea depicted in Figure 10.11, it can
be seen that for the scheme described, by time (T +2δmax)T1, the sink can complete
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T computations (here, δmax is the maximum depth of the spanning tree on the cell
graph). This implies that

R(N)
max ≥ lim

T→∞

(
T

T + 2δmax

)
1

T1

= 1
T1

= W
(1 + k2)(k3 + 1 + k1 log2 |X |) log2 |R(f )|

Thus, we see that the maximum rate of function computation satisfies

W
{(1 + k2)(k3 + 1 + k1 log2 |X |)} log2 |R(f )| ≤ R(N)

max ≤ W
log2 |R(f )|

and hence

R(N)
max = Θ

(
W

log2 |R(f )|
)

Discussion
We started by noting the communication range rc(N) that ensures, with high
probability, that the graph G(N, rc(N)) is connected. Then we considered a divisible
discrete-valued function f (.), with R(f ) denoting its range. What we found is that
if the degree of the graph, d(G(N, rc(N))), satisfies

d(G(N, rc(N))) ≤ k1 log2 |R(f )|

then the maximum rate of function computation R(N)
max satisfies

R(N)
max = Θ

(
W

log2 |R(f )|
)

It is worth noting that the proof of the result is constructive, in that a
scheme for function computation has been obtained. As the supportable bit rate W
increases, it is expected that the rate of function computation will increase, because
the network’s communication capability has increased. Also, if the range of the
function is larger, more bits will be required to specify its value at a particular
argument, and hence the rate of computation would decrease. We see that both
these aspects are captured in the expression R(N)

max = Θ
(

W
log2 |R(f )|

)
.

Consider the simple scenario where all measured data simply are uploaded
to the sink. In this extreme case, there is no in-network processing at all. For this
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case, we can consider f (X (t)) = X (t); f (.) is just the identity function. Since each
sensor measurement takes values in the discrete set X , we have

R(f ) = X N

Thus, log2 |R(f )| = N log2 |X |, i.e., log2 |R(f )| is linear in N. Therefore, to
apply the previous result, we need to check if the degree of the graph is bounded
above by a linear function of N. But this is true for any connected graph. Hence,
applying the result, we then conclude that there is a scheme that allows us to
communicate f (.), the identity function, at rate O( 1

N ). Thus, for large sensor
networks, straightforward data uploading to the sink will lead to very low rates
of extracting information.

10.6 Scheduling
Sensor nodes share the wireless medium. Therefore, they need a Medium Access
Control (MAC) protocol to coordinate access. We discussed the IEEE 802.11
protocol in detail in Chapter 7. However, in a sensor network, energy efficient
MACs are extremely important, and this forces us to look at MAC protocols closely.

Even when a sensor node is not transmitting but merely listening to the
medium, significant energy is spent. This is because the electronic circuitry in
the radio transceiver has to be kept on. Studies have shown that the ratio of
energy spent in transmitting a packet to a receiver at unit distance, to that spent
in receiving a packet and to that spent in listening for the same length of time, is
3:1.05:1. (Of course, when the receiver is far away, a transmitter would use more
power and therefore, the energy spent would be more). The notable point here is
that a sensor spends the same order of energy in simply listening on the medium
as in actually receiving a packet.

Since saving energy is so important, we need to understand how energy can
be wasted. The following causes can be discerned.

• Idle listening: If the medium is idle and yet a sensor node’s radio trans-
ceiver is on, then it is spending energy unnecessarily.

• Collision: If transmissions collide, then all packets involved are garbled,
leading to waste of energy all around.

• Overhearing: Overhearing occurs when a node receives a packet that is
not addressed to it.

• Control packet overhead: From an application’s point of view, energy
spent in carrying information bits is energy usefully spent. It is desirable
that the energy spent on control path activities, like channel reservation,
acknowledgement, and route discovery, be as small as possible.

A good sensor MAC protocol leads to savings on all four of these fronts.
Sensor MAC protocols are significantly different from other wireless MAC

protocols (like IEEE 802.11) because they can put the sensors into the sleep
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state. In this state, the radio transceiver is turned off completely. Nodes wake
up periodically, listen on the medium for a short while, and then go back to sleep.
This reduces idle listening drastically, and is a major reason for energy savings.

However, it is also immediate that as a result of the cycling between sleep and
wakestates, the latency intransferring informationacrossnodescanbeconsiderably
increased. A transmitter has to hold on to the information it must send until it is
certain that the receiver is ready and listening. Nevertheless, in many application
scenarios, the increase in latency does not cause difficulties. For example, in
an intrusion detection application, the speed at which the network transfers
information is orders of magnitude higher than that of an intruder’s movements,
even when additional latency due to sleep-wake duty cycling is considered.

10.6.1 S-MAC
The protocol sensor-MAC (S-MAC) is one of the first to use the notion of sleep-
wake duty cycles heavily. It aims to ensure a low duty cycle operation on the
network. It introduces the notion of coordinated sleeping, in which clusters of
nodes synchronize their sleep-schedules so that all of them sleep together. This
ensures that when a node wakes up and wishes to transmit to a neighbor node in
its cluster, the neighbor node will be awake to receive the transmission.

S-MAC reduces the energy wasted due to collisions by using the same
approach as in IEEE 802.11, viz., distributed channel reservation by RTS-CTS
exchange (see Chapter 7). It is worth recalling that the exchange of RTS and
CTS by the transmitter and receiver results in a silent neighborhood around each,
allowing the transmission to complete successfully. This means that collisions
involving long data packets are avoided at the small additional energy expense
due to the short control packets.

Further, S-MAC utilizes the information available in the RTS and CTS
packets to reduce overhearing by nodes. The RTS/CTS packet structure includes
a duration field, which informs listeners of the interval for which the medium will
be busy with the impending packet transfer. All nodes other than the transmitter
and receiver can now afford to switch off their radios for this interval.

Finally, S-MAC reduces control packet overhead by resurrecting the old
technique of message passing. Link layer frames normally have a maximum frame
size, and a long message needs to be fragmented into pieces of the largest possible
size. Now if each resulting fragment is transmitted as a separate entity, then each
must be preceded by the RTS-CTS exchange. To reduce the control overhead,
S-MAC proposed that the RTS-CTS exchange be carried out only once at the
beginning, and the multiple fragments be sent in a burst, one after the other. The
reservation interval indicated in the RTS-CTS packets corresponds to not just one
fragment but the total time required to transmit all the fragments.

It is apparent that message passing allows one node to hog the channel and
thereby cause unfairness in channel access opportunities among nodes. However,
in a sensor network context, node-level unfairness over a short time interval is not
a matter of concern. As mentioned before, a sensor network is not a collection



370 10 Ad Hoc Wireless Sensor Networks (WSNs)

of nodes that are interested in data transfer in a peer-to-peer fashion. Rather,
the network has a single objective and all nodes collaborate toward achieving the
same. However, over longer time intervals, we do need fairness because otherwise,
distributed computation of functions can get held up.

S-MAC forms a flat, peer-to-peer topology. Thus, unlike clustering protocols,
there is no cluster-head to coordinate channel access. We will see that some
sensor MACs, like the IEEE 802.15.4 MAC, do require the presence of a
coordinator. S-MAC also builds reliability into unicast data transfer by using
explicit acknowledgements. Recall that we have seen the same idea before in the
context of IEEE 802.11.

Because coordinated sleeping is so important in S-MAC, nodes need to
exchange schedules before data transfer can begin. The SYNC packet is used for
this purpose. The transmission time for a SYNC packet is called the synchroni-
zation period. Each node maintains a schedule table that stores the schedules of
all its neighbors.

To choose a schedule, a node first listens for at least the synchronization
period. If no SYNC packet is heard within this time, then the node chooses its own
schedule and starts to follow it. It also broadcasts its schedule by transmitting its
own SYNC packet.

If the node does receive a SYNC packet within the initial listen interval, then
it sets its own schedule to the received one. Thus, synchronization with a neighbor
is achieved. As before, it announces its schedule by transmitting its own SYNC
packet later.

However, the following can also happen: After a node chooses and
announces its own schedule, it receives a new and different schedule. What it
does now depends on how many neighbors it had heard from. If the node had
no neighbors, then it discards its original schedule and switches to the new
schedule just received. If the node had one or more neighbors, it adopts both
schedules, by waking up at the listen times of both. Such behavior typically is
found among nodes that are located at the borders of two virtual clusters and
facilitates communication between the two.

10.6.2 IEEE 802.15.4 (Zigbee)
The other sensor MAC protocol that has received wide attention is the IEEE
802.15.4 MAC. The protocol was introduced first in the context of Low-Rate
Wireless Personal Area Networks (LR-WPANs). The PHY and MAC layers in
LR-WPANs are defined by the IEEE 802.15.4 group, whereas the higher layers
are defined by the Zigbee alliance.

IEEE 802.15.4 defines two types of devices: a Full Function Device (FFD)
and a Reduced Function Device (RFD). The FFDs are capable of playing the role
of a network coordinator, but RFDs are not. FFDs can talk to any other device,
while RFDs can only talk to an FFD. Thus, one mode of operation of the IEEE
802.15.4 MAC is based on a hierarchy of nodes, with one FFD and several RFDs



10.6 Scheduling 371

connected in a star topology (see Figure 10.12). The FFD at the hub, which is
a network coordinator, plays the role of a cluster-head, and all communication
is controlled by it. In the peer-to-peer topology, however, all nodes are equally
capable; all are FFDs.

Figure 10.13 shows the superframe structure defined for IEEE 802.15.4. The
superframe begins with a beacon. Nodes hearing the beacon can set their local

Device

PAN
coordinator

Figure 10.12 IEEE 802.15.4 nodes in a star topology.

Active

GTS GTS

CFPCAP

Beacon Beacon

SD 5
aBaseSuperFrameDuration*2SO symbols

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

BI 5 aBaseSuperframeDuration*2BO symbols

Inactivity period

Figure 10.13 The Zigbee MAC superframe structure. CAP and CFP stand for Contention
Access Period and Contention Free Period, respectively. GTS means Guaranteed Time
Slot.The other parameters in the figure are defined in [61].
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clocks appropriately, so that they go to sleep and wake up at the same time. This
means synchronized operation.

The superframe is divided into an active and an inactive period. During
the inactive period, nodes sleep. The active period consists of at most three
parts—beacon transmission interval, the Contention Access Period (CAP) and
an optional Contention Free Period (CFP). During the CAP, nodes contend using
slotted CSMA/CA, as in IEEE 802.11 (see Chapter 7). In the CFP, a node can be
allotted Guaranteed Time Slots (GTSs) by the network coordinator. Nodes request
for GTS allocation by sending explicit GTS allocation requests. Transmitted
frames are always followed by Inter-Frame Spacings.

10.7 Notes on the Literature
We began our discussion with a question about the transmission range to be used
by sensor nodes such that the network is connected. As the number of nodes
increases to infinity, we discussed a necessary and sufficient condition on the
transmission range such that the probability that the network remains connected
approaches 1. This result is due to Gupta and Kumar [49]. Our discussion of
sensing coverage is based on the work of Zhang and Hou [143]. The notion
of crossings that we used in analyzing the sensing coverage problem appeared in
Wang et al. [134]. Our initial discussion of localization follows Nagpal et al. [106];
the convex position estimation approach follows Doherty et al. [27]. A detailed
discussion of Linear Matrix Inequalities, with many applications, can be found in
Boyd et al. [16].

The first geographic routing algorithms were greedy, as in Takagi and
Kleinrock [124]. West [135] provides a very readable introduction to graph theory
and associated algorithms. The notions of Unit Disk Graph, Gabriel Graph,
Relative Neighborhood Graph, and Delaunay Triangulation are extensively
discussed in books on Computational Geometry, for example, the one by de Berg
et al. [24]. The survey article by Jaromczyk and Toussaint [64] also discusses
these ideas. Face routing was introduced for the first time by Kranakis, Singh, and
Urrutia [82], albeit under a different name. Several refinements are due to Kuhn
et al. [83]. Directed Diffusion was proposed by Intanagonwiwat et al. in [62].
Our treatment of function computation follows Giridhar and Kumar [41]. The
S-MAC protocol, due to Ye et al., appeared in [139]. Our brief discussion of the
IEEE 802.15.4 standard uses [61].

Problems
10.1 Sensors are deployed according to a Poisson process of rate λ. Assume

that each sensor covers a circular area of radius 1 unit. Consider two
points x and y. Let Cx be the indicator variable that x is covered by at
least one sensor. Find E

(
CxCy

)
and E

(
(1 − Cx)(1 − Cy)

)
.
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10.2 Sensors are deployed according to a Poisson process of rate λ. Assume
that each sensor covers a circular area of radius 1 unit. Now consider an
arbitrary straight line path through the sensor field. Find the distribution
of the segment of the line covered by a sensor.

10.3 Consider a one-dimensional sensor field in which the sensors are
deployed according to a Poisson process on a straight line. Each sensor
covers a random segment whose mean is X. What is the probability that
a point is covered by exactly k sensors?

10.4 Consider the sensing coverage problem discussed in Section 10.2.
Suppose that the coverage degree of a patch is k. Is the patch an open
set or a closed set in R

2?

10.5 Consider the first sensor localization method discussed in Section 10.3.
Is it possible that the true distance of sensor j from anchor i, viz., dj,i is
equal to the estimated distance d̂ j,i, for i = 1, 2, . . . , M, but the position
of sensor j, as concluded by the algorithm, is incorrect?

10.6 Consider N nodes connected according to a complete graph; that is, all
nodes can decode every other node’s transmission. All communication
channels are independent binary symmetric channels with error proba-
bility 0 ≤ q ≤ 0.5. Each node has a bit and it is required that all the
nodes know the parity of the N bits. Each node transmits its bit M
times and every receiver uses the majority rule to decode; that is, a bit
is decoded as 1 if more that M/2 transmissions are decoded as 1. Find
Pc(N, M), the probability that all the N nodes have the correct parity.
Investigate the asymptotics of Pc(N, M) when M = log2 N and N → ∞.

10.7 Consider N nodes connected according to a complete graph; that is,
all nodes can decode every other node’s transmission. Assume that the
Aloha MAC protocol is used and each node transmits in a slot with
probability p. Each node has a bit and it is required that all the nodes
know the parity of the N bits. Assume that there is no channel error.
If p is to be fixed, find the expectation and variance of the time at
which all the nodes have transmitted once and all know the parity.
If p can be dynamic, i.e., it can be changed in possibly every slot,
design an algorithm that will minimize the expected time to complete
the computation. Find the corresponding variance.

10.8 Consider the function computation problem discussed in Section 10.5.
For a specific choice of rc(N), consider the cells of the cell graph as
nodes of a new graph. Define two cells to be adjacent—having an edge
between them—if they are interfering neighbors. The degree of such a
graph is clearly ≤ k2, from Section 10.5. Our objective is to color the
vertices of this graph using the minimum number of colors, subject to
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the constraint that no two adjacent vertices have the same color. Show
that the minimum number of colors is ≤ (1 + k2).

Note: After the coloring is done, nodes having the same color corre-
spond to cells that can support simultaneous transmissions. Therefore,
the result above says that within an interval of length (1 + k2) slots,
every cell gets a transmission opportunity.
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APPENDIX A

Notation andTerminology

In this appendix we have collected together, for ready reference, various notation
and mathematical terminology. In some instances, we also briefly explain the
concepts related to the notation.

A.1 Miscellaneous Operators and Mathematical Notation
R The set of real numbers
Z+ The set of nonnegative integers
x+ For a real number x, x+ = max{0, x}
t−, t+ For t a point in time, t− is interpreted as “just before t” and

t+ is interpreted as “just after t”; more formally, for f (t) some function
of time f (t−) = limε↓0 f (t − ε), and f (t+) = limε↓0 f (t + ε)

tk−, tk+ The same interpretation as t−, t+ but for the indexed time instant tk
x ≈ y Is read as x is approximately equal to y
A\B For sets A and B, A\B is the set difference, i.e., A ∩ Bc

|A| For a set A, |A| is the cardinality of, or the number of element in A
IA Is the indicator function of the set A; if A is a subset of elements of

Ω, whose elements are generically labelled by ω, then IA is a function
from Ω to {0, 1}, with IA(ω) = 1 if ω ∈ A, and IA(ω) = 0 otherwise.

A.2 Vectors and Matrices
An element of (or, a vector in) Rn is denoted by a boldface lowercase symbol
(e.g., x). Vectors are viewed as column vectors, unless stated otherwise. Matrices
are denoted by bold upper case symbols (e.g., A). The element in row i and column
j of the matrix A is denoted by ai, j; the ith row of the matrix A is denoted by Ai,·,
and is viewed as a row vector, by default; the jth column of the matrix A is denoted
by A·, j and is viewed as a column vector. The transpose of a vector x is denoted
by xT , and the transpose of the matrix A is denoted by AT.

A.3 Asymptotics:The O, o, and ∼ Notation
We often are interested in expressing compactly the behavior of a function f (x),
x ∈ R, or f (n), n ≥ 1, for large values of the argument, or for the argument going
to zero. Some standard notation has been developed for this. A comprehensive
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reference for this material is the book on asymptotics by De Bruijn [25]; an
extensive discussion on the subtleties of this notation is provided in [46].

The O, Ω, and Θ Notation:
We write

f (x) = O(g(x)) as x → ∞
if there is a positive number a, such that |f (x)| ≤ a|g(x)| for all large enough x.
The same statement holds for f (n) = O(g(n)). We write f (n) = Ω(g(n)) if and only
if g(n) = O(f (n)), and we write f (n) = Θ(g(n)) if and only if f (x) = O(g(x)) and
f (n) = Ω(g(n)).

Thus, for example, if f (x) = x9 + ex then f (x) = ex(x9e−x + 1), and hence
there is an x0 such that for all x > x0, f (x) ≤ 2ex. Thus we can write f (x) = O(ex)
as x → ∞, which is to say that for large x, f (x) grows exponentially. As another
example, f (n) = an2 +bn9 = O(n9) as n → ∞. In this example, if b > 0, it can also
be seen that f (n) = Ω(n9) and, therefore, f (n) = Θ(n9).

Similarly, we write

f (x) = O(g(x)) as x → 0

to mean that |f (x)| ≤ a|g(x)| for all x close enough to zero. Thus, for example,
if f (x) = ln(x + 1) then we can write f (x) = O(x) as x → 0. This follows from
the Taylor’s series expansion of ln(x + 1), and says that close to the origin f (x) is
linear.

The o (“little oh”) Notation:
We write

f (x) = o(g(x)) as x → ∞
to mean limx→∞ f (x)

g(x) = 0, and similarly, we write

f (x) = o(g(x)) as x → 0

to mean limx→0
f (x)
g(x) = 0. For example, f (n) = an3 + bn9 = o(n10) as n → ∞,

and f (x) = ln(x + 1) − x = o(x) as x → 0; the error between ln(x + 1) and its
approximation x, near 0, decreases strictly faster than x does near 0.

Asymptotic Equivalence; ∼ Notation:
We write

f (x) ∼ g(x) as x → ∞
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to mean limx→∞ f (x)
g(x) = 1, and similarly, we write

f (x) ∼ g(x) as x → 0

to mean that limx→0
f (x)
g(x) = 1. For example, f (n) = an3 + bn9 ∼ n9 as n → ∞,

and f (x) = ln(x + 1) ∼ x as x → 0. Note that the latter can be seen by writing
ln(x+1) = x+o(x) as x → 0. Divide the right-hand side by x, and use the definition
of o(x) to obtain the result.

A.4 Probability
i.i.d. A sequence of random variables, Xn, n ∈ {0, 1, 2, . . .}, that are

mutually independent and identically distributed is said to be
independent and identically distributed, abbreviated as i.i.d.

� A binary operator denoting statistical independence. So if A and B
are random variables, then A � B is to be read as A is independent
of B.

dist= If two random vectors X and Y have the same joint distributions we

write X dist= Y.

w.p. 1 or a.s. With probability 1 or almost surely; thus, for example, saying that
a random variable is nonnegative almost surely, or with probability
1, means Pr(X ≥ 0) = 1.

marginal If (X1, X2, . . . , Xn) is a random vector with some joint distribution,
then the distribution of any of the component random variables
Xi, 1 ≤ i ≤ n, is called a marginal distribution. The term also applies
to random processes, and if, for example, the random process is
stationary, then we can refer to the marginal distribution of the
process.
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APPENDIX B

A Review of Some Mathematical
Concepts

B.1 Limits of Real Number Sequences
Limit and Limit Points

A sequence of real numbers xn, n ≥ 1, is said to converge to the limit x ∈ R if for
every ε > 0, there exists an nε such that for all n > nε, |xn − x| < ε; i.e., no matter
how small an ε > 0 we take, there is a point in the sequence (denoted by nε) such
that all elements of the sequence after this point are within ε of x (the proposed
limit). A limit, if it exists, is clearly unique. This is written as

lim
n→∞ xn = x

If xk, k ≥ 1, viewed as a set, is bounded above, and is such that xk ≤ xk+1 (xk is a
nondecreasing sequence), then limn→∞ xn exists and is, in fact, the sup of the set of
numbers xk, k ≥ 1. The corresponding result holds if the sequence is nonincreasing
and bounded below.

If the sequence xk, k ≥ 1, is bounded above and below, then define the
sequence ak, k ≥ 1, as follows:

ak = inf{xn : n ≥ k}

Then each ak exists, and is a bounded nondecreasing sequence (each bound of
xk, k ≥ 1, is also a bound for ak, k ≥ 1), and hence limk→∞ ak exists. This limit,
say a, is called the lim inf of the sequence xk, k ≥ 1, and we write

lim inf
n→∞ xn = a

A corresponding discussion holds for the sequence

bk = sup{xn : n ≥ k}

Here bk, k ≥ 1, is a nonincreasing sequence, bounded below, and hence it
converges. Then b = limk→∞ ak is called the lim sup of the sequence xk, k ≥ 1,
and we write

lim sup
n→∞

xn = b
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We say that x ∈ R is a limit point of the sequence xk, k ≥ 1, if for all ε > 0,
and for every n, there exists an mn,ε > n, such that |xmn,ε − x| < ε. Thus for every
ε > 0 (no matter how small), the sequence comes within ε of x infinitely often; for
if it did not, there would be some n at which xn comes within ε of x for the last
time, and there would be no mn,ε > n, with |xmn,ε −x| < ε. It can be seen that if the
lim sup and the lim inf of a sequence are equal then there is only one limit point,
which we call the limit of xn, n ≥ 1.

B.2 A Fixed Point Theorem
A function mapping a set C (⊂ Rn) into C (i.e., f : C → C) is said to have a fixed
point at x ∈ C if f (x) = x. Given a function f : C → C, the problem of determining
if there exists an x ∈ C such that f (x) = x is called a fixed point problem. When
faced with such a problem we need to ask questions such as: Does a fixed point
exist? If one exists is it unique?

Before we can state an important theorem we need to understand some
elementary concepts from real analysis. We say that a set C ∈ Rn is closed, if
every convergent sequence xn, n ≥ 1, of points in C has its limit point also in C.
Thus for example the set C = (0, 1] is not closed, since the limit of the sequence
1
n , n ≥ 1, (i.e., 0) is not in C. We say that a set C ∈ Rn is bounded if there is an
n-dimensional ball centered at the origin and of radius large enough, but finite,
such that C is entirely inside that ball.

We say that a set C ∈ Rn is convex if whenever x1 ∈ C, and x2 ∈ C, then for
every λ, 0 < λ < 1, λx1 + (1 − λ)x2 ∈ C; the entire line segment joining x1 and x2
is in C. Thus C = [0, 1] ∪ [2, 3] is a closed but nonconvex set.

Theorem B.1 Brouwer’s Fixed PointTheorem
Let C ⊂ Rn be a closed, bounded, and convex set. Then a continuous function
f : C → C has a fixed point in C. �

Figure B.1 illustrates the theorem for n = 1 and C = [0, 1].

B.3 Probability and Random Processes
B.3.1 Useful Inequalities and Bounds
The Union Bound:
Consider the events, Ai, i = 1, . . . , n. The union bound, also called Boole’s in-
equality, on the probability of ∪n

i=1Ai is given by

Pr
(∪n

i=1Ai
) ≤

n∑
i=1

Pr(Ai)
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f(x)

x1

x2

x3

x1 x2 x3

Figure B.1 Illustration of Brouwer’s Fixed Point Theorem in one dimension. x1, x2, and
x3 are the fixed points.

A more general bounding method is as follows. Define

B1 =
n∑

i=1

Pr(Ai)

B2 =
∑

1≤i<j≤n

Pr
(
Ai ∩ Aj

)

Bk =
∑

Pr
(
Ai1 ∩ Ai2 . . . ∩ Aik

)
i1, . . . ik are k distinct indices, 1 ≤ i1, . . . , ik ≤ n, and the summation is over all
combinations of these distinct integers. Then the inclusion-exclusion principle
says that

Pr
(∪n

i=1Ai
) ≤

k∑
i=1

(−1)i+1Bi for odd k

Pr
(∪n

i=1Ai
) ≥

k∑
i=1

(−1)i+1Bi for even k

These are also called the Bonferroni inequalities.

Jensen’s Inequality:
For a convex function f (x), and a random variable X with finite expectation,

E
(
f (X)

) ≥ f (E(X))
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with equality if f (·) is a linear function. Equality will also occur for a general
convex function if X is constant with probability 1.

Chernoff’s Bound:
For a random variable X, if the moment generating function E

(
eθX

)
exists for some

θ ≥ 0, then

Pr(X ≥ 0) ≤ E
(
eθX

)
This is a simple consequence of the fact that I{X≥0} ≤ eθX for every θ ≥ 0. Taking
expectation on both sides yields Chernoff’s bound.

Hölder’s Inequality:
For p > 1 and 1

p + 1
q = 1,

E(|XY |) ≤ (
E(|X |)p) 1

p
(
E(|Y |)q) 1

q

As an example, take p = q = 2, and Hölder’s inequality yields

(
E(|XY |))2 ≤ E

(
|X |2

)
E
(
|Y |2

)
which is called Schwarz’s inequality.

B.3.2 Convergence Concepts
Consider a sequence of real valued random variables Xn, n ≥ 1. For each sample
path ω, we obtain the real number sequence Xn(ω), n ≥ 1, which may or may not
converge. We would like to talk about the convergence behavior of the sequence
of random variables without necessarily requiring convergence for each sample
path. Several useful notions of convergence of a sequence of random variables
have been defined.

Convergence in Probability

The sequence of random variables Xn, n ≥ 1, is said to converge in probability to
a random variable X, if for each ε > 0,

lim
n→∞ Pr(|Xn − X| > ε) = 0

which says that the probability that Xn differs from X by more than ε converges

to 0 as n → ∞. This is written as Xn
p→ X.

Convergence with Probability One

The sequence of random variables Xn, n ≥ 1, is said to converge almost surely or
with probability one to a random variable X, if

Pr
(

lim
n→∞ Xn = X

)
= 1
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or, more explicitly, Pr
({ω : limn→∞ Xn(ω) = X(ω)}) = 1. This says that the set of

sample paths along which Xn(ω), n ≥ 1, converges to X(ω) has probability 1. This

is denoted as Xn
a.s.→ X, or as Xn

w.p.1→ X.

Convergence in Distribution

A sequence of random variables Xn, n ≥ 1, with distributions Fn(·), n ≥ 1, is said
to converge in distribution to the random variable X, with distribution F(·) if

lim
n→∞ Fn(x) = F(x)

whenever x is not a point of discontinuity (i.e., a “jump” point) of F(·). This is

denoted as Xn
dist→ X.

B.3.3 The Borel-Cantelli Lemma
The Borel-Cantelli lemma is a useful tool in proving almost sure convergence. Let
An, n ≥ 1, be a sequence of events. The event ∩∞

m=1 ∪∞
n=m An is called {An} infinitely

often or {An}i.o., because an ω is in this event if and only if it belongs to an infinite
number of events in the sequence {An}. Notice that the complement of the event
{An}i.o. comprises those ωs that belong to the events in the sequence {An} only for
finitely many n.

Lemma B.1 Borel-Cantelli

∞∑
n=1

Pr(An) < ∞ ⇒ Pr({An}i.o.) = 0

�

There is also a complementary result to the Borel-Cantelli Lemma for the
case when {An} is a sequence of independent events. In such a case

∞∑
n=1

Pr(An) = ∞ ⇒ Pr({An}i.o.) = 1

B.3.4 Laws of Large Numbers and Central Limit Theorem
Theorem B.2 Weak Law of Large Numbers

Xn, n ≥ 1, is a sequence of identically distributed uncorrelated random variables
with finite mean μ and finite variance then

lim
n→∞

1
n

n∑
k=1

Xk
p→ μ

�
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Theorem B.3 Kolmogorov’s Strong Law of Large Numbers
Xn, n ≥ 1, is a sequence of i.i.d. random variables with finite mean μ then

lim
n→∞

1
n

n∑
k=1

Xk
a.s.→ μ

�

Theorem B.4 Central LimitTheorem
Xn, n ≥ 1, is a sequence of i.i.d. random variables with finite mean μ and finite
variance σ2, then

1
σ
√

n

⎛
⎝ n∑

k=1

(Xk − μ)

⎞
⎠ dist→ Φ

where Φ is the normal or Gaussian distribution with mean 0 and variance 1
(also called the standard normal distribution). �

B.3.5 Stationarity and Ergodicity
Strict Stationarity

A random process Xn, n ≥ 0, is said to be strictly stationary or just stationary if
for all k ≥ 1, and indices n1, n2, . . . , nk, and m,

(
Xn1 , Xn2 , . . . , Xnk

) dist= (
Xn1+m, Xn2+m, . . . , Xnk+m

)

where dist= denotes equality in (joint) distribution. Thus if we take any subset of
random variables of the process and then shift this subset in time by any amount,
then the joint distribution of the constituent random variables is unchanged.

Stationary Increments

Consider a Poisson process A(t), t ≥ 0, where A(t) is the number of points in
the interval (0, t]. Then obviously, A(t) is nondecreasing, and hence cannot be
stationary. However, consider time points t1, t2, . . . , tn, and look at the increments
of the process A(t), (A(t2)−A(t1), A(t3)−A(t2), . . . , A(tn)−A(tn−1)); this is the random
vector of the number of arrivals over the intervals (t1, t2], (t2, t3], . . . , (tn−1, tn]. Let
us now shift all these intervals by some amount τ, yielding the increments (A(t2 +
τ) − A(t1 + τ), A(t3 + τ) − A(t2 + τ), . . . , A(tn + τ) − A(tn−1 + τ)). If these two random
vectors have the same distribution for any choice of n, t1, t2, . . . , tn, and τ, then we
say that A(t), t ≥ 0, has stationary increments. The Poisson process has stationary
increments. The term can, of course, be applied to discrete time processes as
well. In fact, in addition, nonoverlapping increments of a Poisson process are also
independent; the random variables (A(t2)−A(t1), A(t3)−A(t2), . . . , A(tn)−A(tn−1))
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are mutually independent, for any choice of t1 ≤ t2 ≤ t3 ≤ · · · ≤ tn. Thus a Poisson
process is said to have stationary and independent increments.

Ergodicity and the ErgodicTheorem

Consider a random process Xn, n ≥ 0. Let us ask a question about this process,
whose answer does not depend on whether we ask the question about Xn, n ≥ 0,
or about Xn+k, n ≥ 0, for any k ≥ 1. Each such question yields an event on which
the answer is a “yes” and its complement on which the answer is a “no.” For
example, consider the question, “Does Xn, n ≥ 0, converge?” Then, the event
{ω : Xn(ω) converges} is the same as the event {ω : Xn+k(ω) converges} for any
k ≥ 1, since whether or not a sequence converges does not depend on any finite
shift of the sequence (i.e., does not depend on the time origin from which we
start looking at the sequence). Such events are called invariant events. We say that
Xn, n ≥ 0, is ergodic if each such event has probability 0 or 1.

The following is a generalization of the strong law of large numbers to
stationary and ergodic processes.

Theorem B.5 Birkhoff’s Strong ErgodicTheorem
Xn, n ≥ 0, is a stationary and ergodic process, and f (·) is a function that maps
realizations of the process (i.e., Xn(ω), n ≥ 0) to R, such that E

(|f (Xn, n ≥ 0)|) <

∞. Then, with probability one,

lim
n→∞

1
n

n−1∑
k=0

f (Xn+k, n ≥ 0) = E
(
f (Xn, n ≥ 0)

)
�

Note that the notation f (Xn+k, n ≥ 0) means “f evaluated at Xn+k(ω), n ≥ 0, i.e., a
left shift of Xn(ω), n ≥ 0 by k steps.” Thus, for each n the term 1

n

∑n−1
k=0 f (Xn+k, n ≥

0) is a random variable. The theorem states that this sequence of random variables
converges with probability one to a constant.

B.4 Notes on the Literature
Hoffman’s book on real analysis [55] provides the rigorous theory but also a lot of
intuition is developed in the discussion. The book [108], by Papoulis, is a popular
engineering textbook on probability, random variables, and random processes.
Bremaud’s book [17] is a rigorous but highly accessible book on probability theory.
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APPENDIX C

Convex Optimization

We follow the notation and approach of the text by Bazaraa et al. [6].

C.1 Convexity
Definition C.1

A set X ⊂ Rn is said to be convex if for any x1, x2 ∈ X it holds that λx1 +
(1 − λ)x2 ∈ X , for every λ ∈ [0, 1]. �

Thus a set of real vectors is convex if the entire line segment joining any pair of
elements of the set lies entirely within the set.

Definition C.2
X is a convex set in Rn. A function f : X → R is said to be convex (resp. concave)
if for x1, x2 ∈ X , we have f (λx1 + (1 −λ)x2) ≤ (resp. ≥) λf (x1) + (1 −λ)f (x2), for
every λ ∈ [0, 1]. The function is said to be strictly convex or strictly concave if
the inequality is strict for distinct x1 and x2 and λ ∈ (0, 1). �

If f : X → R is convex over X then −f is concave over X .

Theorem C.1
A function f : R → R is convex, if and only if, for every a < b < c, the following
holds:

f (b) − f (a)
b − a

≤ f (c) − f (a)
c − a

�

C.2 Local and Global Optima
Definition C.3

For the problem of minimizing a function f : X → R, an element x∗ ∈ X is said
to be a global optimal solution, or just a solution, if f (x∗) ≤ f (x), for all x ∈ X .
An element x̂ ∈ X is said to be locally optimal if for some ε > 0, f (x̂) ≤ f (x), for
all x ∈ {x ∈ X : ‖x − x̂‖ < ε}. �
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Observe that a global optimal solution need not be unique, and must be
locally optimal. A corresponding definition, obviously, holds for the maximization
of f over X .

Theorem C.2
Given f : X → R, such that X is a convex set, and f is a convex function over
X , a local minimum of f over X is also a global minimum. If f is strictly convex
over X then a local optimum is the unique global optimum. �

C.3 The Karush-Kuhn-Tucker Conditions
We now turn to an important sufficient condition for the optimality of a point
x∗ ∈ X ⊂ Rn for the following primal problem.

Primal Problem

min f (x)

subject to

gi(x) ≤ 0, 1 ≤ i ≤ m

x ≥ 0 (C.1)

We will limit our presentation here to the special situation in which f : Rn →
R and, for 1 ≤ i ≤ m, gi : Rn → R, are all convex and differentiable functions over
Rn. It can then be shown that this is a problem of minimizing a convex function
over a convex constraint set.

Theorem C.3 Karush-Kuhn-Tucker
Given x∗ ∈ Rn, if there exists λ ∈ Rm, with λ ≥ 0, such that

∇f (x∗) +
m∑

i=1

λi∇gi(x∗) = 0 (C.2)

and
m∑

i=1

λigi(x∗) = 0 (C.3)

then x∗ is a global optimal solution for the Primal Problem. �

The sufficient conditions stated in this theorem are called the Karush-Kuhn-
Tucker (KKT) conditions. If x∗ satisfies the KKT conditions then it is called a
KKT point. The elements of the vector λ are called Lagrange multipliers or dual
variables; the latter term will become clear later in this section when we discuss
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duality. There is one dual variable for every constraint gi(x) ≤ 0. The condition
stated in Equation C.3 is called a complementary slackness condition; notice that
it implies that if the primal constraint gi(x) ≤ 0 is met with a strict inequality at x∗
(i.e., there is a slack in the ith constraint) then (since the vector λ is nonnegative)
the corresponding λi = 0. If at point x∗ a constraint is met with equality then
that constraint is said to be binding or active at that point. Thus, owing to the
complementary slackness condition, we see that in the condition of Equation C.2
only the active constraints will appear.

In general, the KKT conditions are not necessary; a point x ∈ Rn can be
optimal for the Primal Problem C.1, and yet it may not satisfy the KKT conditions.
The following theorem provides two simple conditions under which the KKT
conditions are necessary and sufficient for the Primal Problem C.1. Recall that we
have limited our discussion to convex and differentiable f (x) and gi(x), 1 ≤ i ≤ m.

Theorem C.4 Necessity and Sufficiency of KKT Conditions

a. If x∗ is such that there exists an x ∈ Rn with gi(x) < 0 if i is active at x∗,
then x∗ is optimal if and only if the KKT conditions hold at x∗.

b. Linear Constraints: If the constraints are linear, i.e., there are vectors
ai ∈ Rn such that gi(x) = aT

i x, for 1 ≤ i ≤ n, then x∗ is optimal if and
only if the KKT conditions hold at x∗. �

C.4 Duality
For the general Primal Problem of Equation C.1, define for λ ∈ Rm, λ ≥ 0,

Θ(λ) = inf

{
x ≥ 0 : f (x) +

m∑
i=1

λigi(x)

}
(C.4)

Θ(λ) is called the Lagrangian dual function and is obtained by relaxing the
constraints gi(x) ≤ 0, 1 ≤ i ≤ m. The following can now be shown

a. Θ(λ) is a concave function on λ ∈ Rm, λ ≥ 0.
b. If λ ≥ 0, and x satisfies the constraints of the Primal Problem, then

Θ(λ) ≤ f (x).

Now let us consider the following optimization problem.

Dual Problem

max
λ≥0

Θ(λ) (C.5)

It can be seen, from the observations enumerated above, that the solution to
the Dual Problem will lower bound the solution to the primal problem. Under
convexity, which we have been assuming throughout this section, more is true,
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as is stated by the following theorem. Again, we are stating the special case that
suffices for our purposes.

Theorem C.5 Strong Duality
Let the Primal and Dual Problems be as defined in Equations C.1 and C.5,
respectively. Suppose there exists x ∈ Rn such that gi(x) < 0, 1 ≤ i ≤ m. Then
the primal and dual problems have the same optimum values. If the optimum
value is finite, and if x∗ and λ∗ are solutions to the Primal Problem and Dual
Problem then

∑m
i=1 λ∗

i gi(x∗) = 0. �



APPENDIX D

Discrete Event Random
Processes

D.1 Stability Analysis of DiscreteTime Markov
Chains (DTMCs)

In analyzing queuing models, one of the first questions one asks is whether the
system is “stable.” When a queuing system is modeled by a (time homogeneous)
Markov chain then one of the criteria for stability is that the Markov chain
characterizing the queuing system be positive recurrent. This at least ensures that
there is a steady state distribution of the associated processes. One method for
determining whether an irreducible DTMC (with transition probability matrix P)
is positive recurrent is to look for a positive solution for the system of equations
π = πP,

∑
i∈S πi = 1. Although this can be done in many simple cases, in general

this approach is intractable. Fortunately, there is another approach based on the
technique of drift analysis of a suitable Lyapunov function. The following are the
main theorems that provide sufficient conditions for an irreducible DTMC to be
recurrent, transient, or positive. The state space S is countable and is viewed as
S = {1, 2, 3, . . .}. In the following three theorems the function f (·) often is called a
Lyapunov function.

Theorem D.1
An irreducible DTMC Xn, n ≥ 0, is recurrent if there exists a nonnegative
function f (j), j ∈ S, such that f (j) → ∞ as j → ∞, and a finite set A ⊂ S,
such that, for all i /∈ A, E

(
f (Xn+1)|Xn = i

) − f (i) ≤ 0. �

Theorem D.2
An irreducible DTMC Xn, n ≥ 0, is transient if there exists a nonnegative
function f (j), j ∈ S, and a set A ⊂ S such that, for all i /∈ A, E

(
f (Xn+1)|Xn = i

)−
f (i) ≤ 0, and, there exists a j /∈ A such that, for all i ∈ A, f (j) < f (i). �

Theorem D.3
An irreducible DTMC Xn, n ≥ 0, is positive recurrent if there exists a
nonnegative function f (j), j ∈ S, and a finite set A ⊂ S, such that, for all
i /∈ A, E

(
f (Xn+1)|Xn = i

) − f (i) ≤ −ε, for some ε > 0, and, for all i ∈ A,
E
(
f (Xn+1)|Xn = i

)
< B, for some finite number B. �
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It may appear, intuitively, that if E
(
Xn+1|Xn = i

) − i ≥ 0 for all i larger
than some finite value then the Markov chain should not be positive recurrent.
However, this is not the case and there are counterexamples. Basically, in these
examples, even though the mean drift of the process is positive, the chain can
return to small values of state in a single transition from any state i no matter
how large. The following theorem basically eliminates this possibility in order to
provide a “converse” to Theorem D.3.

Theorem D.4
An irreducible DTMC Xn, n ≥ 0, on i ∈ {0, 1, 2, . . .}, is not positive recurrent if
there exist finite values K > 0 and B > 0, such that, for all i ≥ 0,

E
(
Xn+1 | Xn = i

)
< ∞,

for all i ≥ K,

E
(
Xn+1 | Xn = i

) − i ≥ 0,

and, for all i ≥ K,

E
(
(Xn − Xn+1)+ | Xn = i

) ≤ B

�

In the context of Theorems D.1, D.2, and D.3 this theorem is stated for
f (j) = j. In this theorem, the last requirement states that for large i, the mean
downward drift must be bounded for states i ≥ K (notice that (Xn − Xn+1)+ is
nonzero only if Xn+1 < Xn).

D.2 ContinuousTime Markov Chains
We have a continuous time stochastic process {X(t), t ≥ 0} that takes values in the
discrete state space S.

Definition D.1
{X(t)} is a continuous time Markov chain (CTMC) on S if for all t, s ≥ 0, for all
j ∈ S,

Pr
(
X(t + s) = j|X(u), u ≤ t

) = Pr
(
X(t + s) = j|X(t)

)
�

We will assume time homogeneity and write pi,j(t) := Pr
(
X(t + s) = j|X(s) = i

)
,

which will be the elements of the transition probability matrix over time t, denoted
by P(t). For all t ≥ 0, define W(t) = inf{s > 0 : X(t + s) �= X(t)}; i.e., W(t) is the
time after which the process leaves the state it is in at time t. The Markov property
itself leads to the following important result.
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Theorem D.5
For a CTMC {X(t)}, for all i ∈ S, and all t ≥ 0, and u ≥ 0,

Pr(W(t) > u|X(t) = i) = e−aiu

for some constant ai ≥ 0. �

Thus the time for which the CTMC stays in a state is exponentially distributed
with a parameter that depends only on the state.

A state i ∈ S is called absorbing if ai = 0. We will assume that for all states
ai < ∞. Under this assumption a CTMC is a pure jump process; the process enters
a state, spends a positive amount of time in that state, and then moves on to
another state (unless the state entered is absorbing). With this picture in mind,
define T0 = 0, T1, T2, . . . to be the successive jump instants of a CTMC, and let
Xn = X(Tn). The sequence Tn, n ≥ 0, is called a sequence of embedded instants,
and the state sequence Xn, n ≥ 0, is called the jump chain, or an embedded process.
The following is an important characterization of the jump instants and the jump
process.

Theorem D.6
Given a CTMC {X(t)}, with jump instants Tn, n ≥ 0, and jump chain Xn, n ≥ 0,
for i0, i1, . . . , in−1, i, j ∈ S, t0, t1, . . . , tn, u ≥ 0,

Pr{Xn+1 = j, Tn+1 − Tn > u|X0 = i0, . . . , Xn−1 = in−1,

Xn = i, T0 = t0, . . . , Tn = tn} = pi,je−aiu,

where pi,j ≥ 0,
∑

j∈S pi,j = 1, and if ai > 0, then pi,i = 0. �

This result states that, given the entire state process until the jump Tn

(including the state, i, entered at this jump), the time spent in this state (i.e.,
Tn+1 − Tn) and the state entered at the next jump (i.e., Xn+1) are independent,
with the time spent in the state (i.e., i) being exponential with the same parameter
as that of the unconditional sojourn time in the state.

We can conclude from this result that the embedded process is a DTMC with
transition probabilities pi,j, and further that the time that the process spends in a
state is independent of the past, and is exponentially distributed with a parameter
determined only by the state. Define P to be the transition probability matrix of
the embedded DTMC. Thus a CTMC can be constructed as follows. First generate
the DTMC using the transition probability matrix P, then generate the sequence of
state sojourn times, say W0, W1, W2, . . . using the parameters ai. The jump times
Tn, n ≥ 0, are obtained by concatenating the sojourn times; i.e., T0 = 0, and, for
n ≥ 1, Tn = ∑n

i=0 Wi. Then define X(t) = Xn if t ∈ [Tn, Tn+1), for n ≥ 0. In general,
this construction defines the process for all t only if

∑∞
i=0 Wi = ∞. Such CTMCs

are called regular. We will assume that this is the case, with probability one, for the
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CTMCs with which we are concerned. Hence by this construction we can think of
a (regular) CTMC in terms of the jump DTMC and the sequence of state sojourn
times. The following are two criteria for recognizing that a CTMC is regular.

Theorem D.7
{X(t)} is a CTMC with embedded DTMC {Xn}. The sojourn time parameters
are ai, i ∈ S.

a. If there exists ν such that ai ≤ ν for all i, then the CTMC is regular.

b. If {Xn} is recurrent then {X(t)} is regular.

�

It can easily be seen that a CTMC is irreducible if and only if its DTMC is
irreducible. For a state j ∈ S, let X(0) = j and define τj,j to be the time until the
process returns to state j after once leaving it.

Definition D.2
The state j in a CTMC is said to be recurrent if Pr

(
τj,j < ∞) = 1; otherwise j is

transient. A recurrent state j is positive if E
(
τj,j

)
< ∞; otherwise it is null. �

Just as in the case of DTMCs, it can be shown that the states of an irreducible
CTMC are either all transient or all positive or all null. Correspondingly we say
that an irreducible CTMC is transient, positive, or null.

It can be argued that j is recurrent in the CTMC {X(t)} if and only if it is
recurrent in its DTMC {Xn}, and an irreducible CTMC is recurrent if and only if
its DTMC is recurrent. A similar result does not hold for positivity of states of the
CTMC.

Given the transition probabilities (i.e., pi,j) of the embedded DTMC {Xn},
and the state sojourn time parameters ai, i ∈ S, define the |S| × |S| matrix Q as
follows. For i, j ∈ S, i �= j, qi,j = aipi,j, and for i ∈ S, qi,i = −ai. The off-diagonal
terms in Q can be interpreted as the rate of leaving the state i to enter the state
j conditional on being in the state i. Notice that the sum of each row of Q is 0.
The following theorem provides an important criterion for the positivity of an
irreducible regular CTMC.

Theorem D.8
An irreducible regular CTMC is positive if and only if there exists a positive
probability vector π (i.e., πi, i ∈ S, is a probability distribution on S), such that
πQ = 0. When such a π exists it is unique. �

For an irreducible regular CTMC a probability vector π such that πQ = 0 is
also a stationary probability vector; if Pr(X(0) = i) = πi, then Pr(X(t) = i) = πi for
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all t. It can also be shown that πj =
1
aj

E(τj,j)
, the fraction of time that the process stays

in state j. Further, unlike DTMCs, there is no notion of periodicity in CTMCs and
the following holds for an irreducible positive recurrent CTMC:

lim
t→∞ pi,j(t) = πj

where π is the stationary probability vector.
When π is the stationary probability vector, the set of linear equations πQ = 0

has an important interpretation. The jth equation is

∑
i∈S,i �=j

πiqi,j = πjaj

The right-hand side of this equation is the unconditional rate of leaving the state
j, and each term in the summation on the left-hand side is the unconditional rate
of leaving the state i to enter j (and, hence, the sum is the unconditional rate of
entering the state j).

For many simple Markov chain models, examining the solutions of the system
of linear equations πQ = 0, and

∑
i∈S πi = 1, is the standard way for obtaining

a condition for positive recurrence, and the corresponding stationary probability
distribution.

Example D.1

Customers arrive to a queue with infinite storage space in a Poisson process
with rate λ. The customers’ service requirements are i.i.d. and exponentially
distributed with mean 1

μ
. There is a single server that serves at the rate of

one unit of work per unit time. This is the M/M/1 queuing model. Let X(t)
be the number of customers at time t. Owing to the Poisson arrivals, and the
exponential service requirements, it is easily seen that X(t) is a CTMC. When
X(t) = 0, the next state change occurs on an arrival and hence a0 = λ. When
X(t) ≥ 1, the next state change occurs at the earliest of two instants: the current
service completion whose residual time is exponentially distributed with mean
1
μ

, or the next arrival whose residual arrival time is exponentially distributed
with mean 1

λ
; hence the time until the next event is exponentially distributed

with mean 1
μ+λ

. It follows that ai = μ + λ, for i ≥ 1. Clearly p0,1 = 1. Further,
it can be seen that, for i ≥ 1, pi,(i−1) = μ

μ+λ
, and pi,(i+1) = λ

μ+λ
. Thus we find

that the transition rate matrix Q has the following form: q0,0 = −λ = −q0,1;
for i ≥ 1, qi,(i−1) = μ, qi,(i+1) = λ, and qi,i = −(μ + λ). It can now be checked
that the system of equations πQ = 0 has a positive, summable solution if and
only if λ < μ (the arrival rate is less than the maximum rate at which customers
can be served), and further, defining ρ = λ

μ
, πi = (1 −ρ)ρi, for i ∈ {0, 1, 2, . . .}, is
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the stationary distribution. The fraction of time that the system has i customers
(counting anyone in service) is πi; in particular, the queue is empty during a
fraction (1 − ρ) of the time. If Pr(X(0) = i) = (1 − ρ)ρi, then the CTMC is a
stationary process. �

D.3 Renewal Processes
There is a sequence of mutually independent random variables Xk, k ∈ {1, 2, 3, . . .},
such that Xk, k ≥ 2 are i.i.d., and X1 can have a possibly different distribution from
the rest. Think of the Xk, k ≥ 1, as the life-times of a component that fails and is
repeatedly replaced (e.g., a light bulb in a particular socket in one’s home). The
renewal instants, Zk, k ≥ 1, are defined as

Zk =
k∑

i=1

Xk

The number of renewals in the interval [0, t] is called the renewal process, and will
be denoted by M(t). Note that M(t) jumps at each instant that a renewal occurs
and stays “flat” in between. Since the life-time distributions can have a point mass
at 0, there could be multiple jumps at the same instant (e.g., a new light bulb can
fail the moment it is first switched on).

D.3.1 Renewal Reward Processes
A useful class of models arises when there are renewal instants, and also there is
a reward that accumulates over time. There is a total reward associated with
each renewal interval. Consider a renewal process with life-times Xk, k ≥ 1.
Associated with the life-time Xk is a reward Rk, such that the Rk, k ≥ 1, are
mutually independent. However, Rk can depend on Xk. In this renewal reward
framework, let us define C(t) to be the total reward accrued until time t. Then we
may be interested in the reward rate, i.e., in limt→∞ C(t)

t .

Theorem D.9 Renewal RewardTheorem
For E(|Rk|) < ∞ and E(Xk) < ∞ the following hold:

a.

lim
t→∞

C(t)
t

= E(R2)

E(X2)

where the convergence is in the almost sure sense.

b.

lim
t→∞

E(C(t))
t

= E(R2)

E(X2)
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The reason for the subscript 2 appearing in the limit on the right-hand side is that
Xk, k ≥ 2, and Rk, k ≥ 2, are i.i.d., and the values in the first cycle do not matter in
the limit. The second part of the theorem is just a convergence of a deterministic
sequence of numbers, and does not follow simply by taking expectation in the
first part, since convergence almost surely does not in general imply convergence
of expectations.

D.3.2 The Excess Distribution
Given a nonnegative random variable X with distribution F(x), and with finite
mean EX = ∫ ∞

0 (1 − F(u))du, define a distribution Fe(·) as follows:

Fe(y) := 1
EX

∫ y

0
(1 − F(u))du

Clearly, Fe(·) has the properties of a probability distribution function; in particular,
it is nondecreasing in its argument, and limy→∞ Fe(y) = 1. The term “excess”
distribution, or “excess life” distribution comes from the following fact. Consider
a renewal process with i.i.d. life-times Xk, k ≥ 1, with common distribution F(·),
and with finite mean life-time. Let Y(t) be the residual life or excess life at time t;
i.e., at t, Y(t) is the time until the first renewal in (t, ∞). Consider

lim
t→∞

1
t

∫ t

0
I{Y(u)≤y}du

or

lim
t→∞

1
t

∫ t

0
Pr

(
Y(u) ≤ y

)
du

The first expression is the long run fraction of time that the excess life is less than
or equal to y, and the second expression is the time average probability of the
excess life being less than or equal to y. It can be shown, using Theorem D.9, that
in each case these limits exist and are equal to Fe(y). The first expression converges
to this limit in the almost sure sense; the second converges as an ordinary limit of
real numbers. Thus Fe(·) can be interpreted as the residual life distribution seen by
a random observer of the renewal process.

D.3.3 Markov Renewal Processes
Xn, n ≥ 0, is a random sequence taking values in S, and T0 ≤ T1 ≤ T2 . . . is a
nondecreasing sequence of random times.

Definition D.3
The random sequence (Xn, Tn), n ≥ 0, is a Markov Renewal process (MRP) if
for i0, i1, . . . , in−1, i, j ∈ S, t0 ≤ t1 ≤ . . . ≤ tn, u ≥ 0,
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Pr{Xn+1 = j, Tn+1 − Tn ≤ u|X0 = i0, . . . , Xn−1 = in−1, Xn = i, T0 = t0, . . . , Tn = tn}
= Pr{Xn+1 = j, Tn+1 − Tn ≤ u|Xn = i}

�

Thus given Xn, the random vector (Xn+1, Tn+1 − Tn) is independent of
anything else in the past. Note that this property holds for the EMC and the
jump times of a CTMC (see Theorem D.6). In a CTMC, however, X(n+1) and
(Tn+1 −Tn) are independent given Xn. Hence an MRP is a generalization. Further,
in an MRP the state sojourn times (Tn+1 − Tn), n ≥ 0, need not be exponential.
Define pi,j = limu→∞ Pr{Xn+1 = j, Tn+1 − Tn ≤ u|Xn = i}, assuming that the
limit does not depend on n. Then Xn, n ≥ 0, is a DTMC on S with transition
probabilities pi,j, i, j, ∈ S. Further define, for i, j, ∈ S,

Hi,j(u) = Pr
(
(Tn+1 − Tn) ≤ u|Xn = i, Xn+1 = j

)
Thus Hi,j(u) is the distribution of the sojourn time in a state given this state and
the state entered at the end of this sojourn. The distribution of the sojourn time
in state i is given by

Hi(u) =
∑
j∈S

pi,jHi,j(u)

and the mean sojourn time in state i, denoted by σi, is given by

σi =
∑
j∈S

pi,jσi,j

where σi,j is the mean of the distribution Hi,j(u).
Consider now a reward Rk ≥ 0 associated with the interval (Tk−1, Tk), for

k ≥ 1, such that Rk is independent of anything else given (Xk−1, Xk) and (Tk−Tk−1)
(the states at the endpoints of and the length of the interval (Tk−1, Tk)). Let rj be the
expected reward in an interval that begins in the state j. Let C(t) be the cumulative
reward until time t. Suppose that Xk, k ≥ 0, is a positive recurrent DTMC on S,
with stationary probability πj, j ∈ S. Then, as in the renewal reward theorem
(Theorem D.9), under the condition that

∑
j∈S πjσj < ∞, it can be shown that

lim
t→∞

C(t)
t

=
∑

j∈S πjrj∑
j∈S πjσj

where the convergence is in the almost sure sense.
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D.4 SomeTopics in QueuingTheory

D.4.1 Little’sTheorem
Consider a system into which packets arrive at the instants ak, k ≥ 1. Let A(t)
denote the cumulative number of arrivals in the interval [0, t]. Let dk denote the
instant at which the kth arriving packet leaves the system. Note that packets need
not depart in their arrival order. Let Wk = dk − ak denote the sojourn time of
the k-th packet in the system. Associated with packet k is a function Ik(t), t ≥ 0,
such that

Ik(t) =
{

1 if packet k is present at time t
0 otherwise,

i.e., Ik(t) = 1 for ak ≤ t ≤ ak + Wk, and Ik(t) = 0 otherwise. Packet k is in the
system at time t if and only if Ik(t) = 1. It follows that, for all t ≥ 0, the number
in the system is given by

N(t) =
∞∑

j=1

Ij(t),

since the right hand side of the equation counts all those packets that are in the
system at time t.

Little’s theorem relates the long run averages of N(t), Wk, and A(t).

Theorem D.10 Little

(i) If, for a sample path (i.e., realization of the process) denoted by ω, A(t)
t →

λ(ω), and 1
n

∑n
j=1 Wj → W(ω), then limt→∞ 1

t

∫ t
0 N(u)du = N(ω) exists,

and N(ω) = λ(ω)W(ω).

(ii) If the limits, for the various sample paths ω, are equal to the constants
λ and W with probability 1 then limt→∞ 1

t

∫ t
0 N(u)du = N(ω) = λW with

probability 1; we denote by N the average number in the system, and obtain
N = λW with probability 1. �

Part (i) of Little’s theorem holds for any sample path for which the required
time averages exist. The second part (which is the one that is used most often) states
that if the packet average system time and the packet arrival rate are constant over
a set of sample paths of probability 1, taking the values W and λ on this set,
then, with probability 1, the time average number of packets in the system is
N = λW with probability 1. In applications, we would know of the existence of
N, λ, and W , by some other means, and Little’s theorem would be used to relate
these quantities; for example, to determine one quantity when the other two are
known.
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D.4.2 Poisson Arrivals SeeTime Averages (PASTA)
In a discrete event model, we may need to ask a question about a process X(t), t ≥ 0,
if it is observed only at a sequence of random time points tk, k ≥ 0. How does the
answer of such a question relate to the process observed over all time? For example,
consider a stable D/D/1 queue. In such a system, customers arrive periodically at
intervals of length a, and require a service time of b < a. Let X(t) be the number
of customers in the system at time t. Note that X(t) ∈ {0, 1}. Clearly, the following
holds:

lim
t→∞

1
t

∫ t

0
X(u)du = b

a

The average number of customers over all time is b
a . Let tk = ka, for k ≥ 0, and let

us look at

lim
n→∞

1
n

n−1∑
k=0

X(tk−)

where X(tk−) means X(·) observed just before tk. Thus this is the average number
of customers seen by arrivals. This is clearly 0, since arrivals always find the system
empty (the previous arrival always leaves before the next arrival comes in a stable
D/D/1 queue). However, when the instants at which the process is observed form
a Poisson process, and under an additional independence assumption, the time
averages observed at these Poisson points are the same as the averages over all
time. We now state this formally.

Let X(t), t ≥ 0, be a random process. Let B denote a set in the state space
of X(t). A(t) is a Poisson process of rate λ; A(t) denotes the number of Poisson
arrivals in (0, t], and tk, k ≥ 1, denote the points of the Poisson process. Define

VB(t) = 1
t

∫ t

0
I{X(u)∈B}du

VB(t) is the fraction of time over [0, t] that the process X(·) is in the set B. Also,
define

VB
A(t) = 1

A(t)

A(t)∑
k=1

I{X(tk−)∈B}

VB
A(t) is the fraction of arrivals over (0, t] that see the process in the set B (not

counting the arriving customer). We are interested in relating the limit of VB
A(t),

the fraction of customers that find X(·) in the set B, to the limit of VB(t), i.e.,
the fraction of time that the process X(·) spends in the set B. An independence
assumption is required:

Lack of Anticipation Assumption: For all t ≥ 0, A(t + u) − A(t), u ≥ 0, is
independent of X(s), 0 ≤ s ≤ t; i.e., for all t ≥ 0, the future arrivals (more precisely,
the future increments of the arrival process) are independent of the past of the
process X(·).
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Remark D.1
Where a system receives external arrivals as independent Poisson processes, this
independence assumption clearly holds. This follows since the Poisson process
has independent increments. X(s), 0 ≤ s ≤ t, depends on the arrival process up
to t, which is independent of the increments of the arrival process after t (see
Appendix B, Section B.3.5).

Theorem D.11 PASTA
Under the Lack of Anticipation Assumption, VB(t)

w.p. 1→ V̄B if and only if
VB

A(t)
w.p. 1→ V̄B; i.e., the time average and the arrival average converge with

probability 1, and to the same values. �

As an application, consider the M/G/c/c model (see Section D.5.1) that is used
for modeling telephone calls using a trunk group of c trunks. The arrival rate is λ,
the mean holding time is 1

μ
, and ρ := λμ. If N(t) is the number of trunks occupied

at time t, then Markov chain analysis (see Section D.5.1) yields, for 0 ≤ n ≤ c,

1
t

∫ t

0
I{N(u)=n}du

w.p. 1→
ρn

n!∑c
j=0

ρj

j!

=: πn

Since the arrival process is Poisson and independent of the future evolution of the
N(u) process, we can conclude from PASTA (i.e., Theorem D.11) that

1
A(t)

A(t)∑
k=1

I{N(tk−)=c}
w.p. 1→ πc

The left-hand side is the number of arrivals that find all c trunks occupied, and
hence is the probability of call blocking.

D.5 Some Important Queuing Models

D.5.1 The M/G/c/c Queue
Consider a queuing system in which there are c servers, each of which serves at
unit rate. Customers arrive in a Poisson process of rate λ, 0 < λ < ∞. The service
requirements are i.i.d. and are generally distributed, with distribution F(·), with
finite mean 1

μ
, 0 < μ < ∞. Each arriving customer is assigned to a free server if

one exists, otherwise the arriving customer is denied admission and it goes away
never to be heard from again. Since a customer “holds” a dedicated server for
the entire duration of its service, the service requirements are also called holding
times. Let X(t) denote the number of customers in the queue at time t. Define
ρ = λ

μ
. Observe that ρ is the average number of new arrivals during the holding

time of a customer. This is a measure of load or traffic intensity and is given
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the units of Erlangs. Now, it can be seen that if the holding time distributions are
exponential, then X(t) is a positive recurrent CTMC on the state space {0, 1, . . . , c}.
The stationary distribution is given by

πn =
ρn

n!∑c
j=0

ρj

j!

(D.1)

The performance measure that is commonly of interest in the M/G/c/c model is
the probability of blocking. In Section D.4.2 we have shown how PASTA is used
to establish that the probability of blocking when the load is ρ Erlangs, is given by

B(ρ, c) = πc (D.2)

When the holding times are not exponentially distributed, then X(t) is not a
Markov chain. When X(t) = n, let Yi(t), 1 ≤ i ≤ n, denote the residual service
requirements of the customers in the system. It is then easily seen that the process
(X(t), Y1(t), . . . , YX(t)(t)) is a Markov process. To see this we observe that, given this
state at time t, no past information is required to evolve the process; the arrivals
come in an independent Poisson process, and each of the residual service times
reduces at the rate 1. It can be shown that the stationary joint distribution of the
process is given by

Pr
(
X(t) = n, Y1 ≤ y1, . . . , Yn ≤ yn

) = πn

n∏
i=1

Fe(yi) (D.3)

where πn is as displayed in (D.1), and Fe(·) is the excess distribution of the holding
time distribution (see Section D.3.2).

D.5.2 The Processor Sharing Queue
Consider a queue with an infinite amount of waiting space. Customers arrive in a
Poisson process with rate λ. The service requirements are i.i.d. and are generally
distributed with common distribution F(·), with finite mean. As long as there is
work to be done, the server reduces the total amount of unfinished work at the
rate of 1 unit per second. When there are n customers in the system then the
unfinished work on the ith customer reduces at rate 1

n . This is called the M/G/1
processor sharing (PS) queuing model; the G in the notation refers to the generally
distributed service requirements. Let X(t) denote the number of customers at time
t. If the service requirements are exponentially distributed with mean 1

μ
, then X(t)

is a CTMC, which is positive recurrent if and only if λ
μ

< 1. In that case, defining
ρ := λ

μ
, the stationary distribution of X(t) is given by

πn = (1 − ρ)ρn
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In general, when the service requirements are not exponentially distributed,
X(t) is not a Markov chain. When X(t) = n, let Yi(t), 1 ≤ i ≤ n, denote the residual
service requirements of the customers in the system. It is then easily seen that
the process (X(t), Y1(t), . . . , YX(t)(t)) is a Markov process. To see this observe that,
given this state at time t, no past information is required to evolve the process; the
arrivals come in an independent Poisson process, and each of the residual service
times reduces at the rate 1

n . Further, if ρ < 1, it can be shown that the stationary
joint distribution of the process is given by

Pr
(
X(t) = n, Y1 ≤ y1, . . . , Yn ≤ yn

) = (1 − ρ)ρn
n∏

i=1

Fe(yi) (D.4)

where Fe(·) is the excess distribution of the service time distribution (see
Section D.3.2).

From the form of the stationary distribution displayed, we conclude that the
residual service times are independent conditional on the number of customers
in the system. Further, the stationary residual service time distribution is just the
excess life distribution of the service time distribution. Finally, a very important
conclusion from Equation D.4 is that the stationary distribution of the number
of customers in an M/G/1 PS queue (i.e., the marginal distribution of X(t)) is the
same as that in an M/M/1 queue, and, hence, is insensitive to the distribution of
the service time (except through its mean).

Since the stationary distribution of the number of customers in an M/G/1 PS
queue is πn = (1 − ρ)ρn, the time average number of customers is E(X) = ρ

1−ρ
,

hence by Little’s Theorem (Theorem D.10) the mean sojourn time is

E(W) = E(S)

1 − ρ

where S is the service time random variable. Again, we see that the mean sojourn
time in the M/G/1 PS queue is insensitive to the actual distribution of the service
time (except through its mean). Further, an important result is that the mean
conditional sojourn time of a customer with service requirement s is given by

E(W |S = s) = s
1 − ρ

D.6 Notes on the Literature
In this chapter we have brought together some classical results in Markov chains,
renewal processes, and queuing theory, as a ready reference when reading the
main chapters of the book. There are many excellent books on these topics. Our
treatment of Markov chains and renewal theory is based on the textbook by Wolff
[136]. A first course on probabilistic modeling and queuing theory is provided by
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Mitrani [102]. A more sophisticated treatment is available in the books by Fayolle
et al. [34] and by Bremaud [18]. The Lyapunov drift criteria for the stability
analysis of Markov chains are available in these two books. The two volumes by
Kleinrock ([77] and [78]) provide a compendium of results on a vast variety of
single station queuing models.
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protocol, 189. See also
Aloha protocol; Carrier
sense multiple access with
collision avoidance
(CSMA/CA) protocol

IEEE 802.11 WLAN
standards, 208

saving energy, 368–369

Mesh networks. See Wireless
mesh networks (WMNs)

Message passing, 369

M/G/c/c queue, 403

M/G/1 processor sharing (PS)
model, 153

MIMO. See Multiple-input-
multiple-output

Mobile Internet access, 6, 11

Mobile station (MS), 55, 126

associated with BS, 83, 85,
127–128, 145

CDMA cellular systems, 126

FDM-TDMA systems, 82,
117–119

Mobile switching center
(MSC), 117

Mobile telephony, GSM system
for, 117–119

Mobile wireless networks,
carrier frequencies in, 29

Motes, 337, 339

Mouth-to-ear (M to E) delay,
61, 64–66, 231

MPA. See Maximum packing
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MS. See Mobile station

Multicarrier resource
allocation, 178
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power constraint, 178, 182

single MS case, 178

Multicell Erlang models, 101

Multiclass calls

admission control of, 140

hard admission control, 141

power allocation, 140

soft admission control, 141

Multicommodity flow problem,
256, 261, 265

Multihop flows

capacity region, 280–281

convex program, 280

fair allocation for, 280

relaxed problem, 283

routing, 281

scheduling, 281, 284–285

Multihop mesh network, 244

elastic transfers in, 274
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8–9

Multipath fading, 29

Multipath resolution, 45

Multiple access with channel
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(MACAW), 204
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handshake and data
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Multiple access with channel
acquisition (MACA), 203

Multiple-input-multiple-output
(MIMO) systems, 7, 40f

diversity and parallel
channels, 36–42
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Narrowband modulation, 87

Narrowband systems, 5, 27, 39
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vector

Network allocation vector
(NAV), 203

Network and switching
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link activation constraints,
246f
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260

Noise power, 21, 87

Normal distribution, 90–91t

NSS. See Network and
switching subsystem

Nyquist criterion, 20
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OFDM. See Orthogonal
frequency division
multiplexing

OFDMA. See Orthogonal
frequency division
multiple access

O(1)-memory routing. See
Geometric routing

One-dimensional network,
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302f

On-off VBR source, 62, 62f
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(OSI), 15, 71
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168f, 180f
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delay, 171

Orthogonal frequency division
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7, 45–48, 47f, 67
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multicarrier resource
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allocation. See Single
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Orthogonal frequency division
multiplexing (OFDM), 45
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Outage probability, 89–90,
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Packet delay, 58, 61, 64

Packet error probability, 74, 76

Packetization interval, 230

packet loss rates for, 231t

Packet loss, 66, 72, 231

for packetization interval,
231t

for voice quality, 231t
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Paging and access grant
channel (PAGCH), 119
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PAM. See Pulse amplitude
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Pareto efficiency, 276

Pareto power allocation, 146

PASTA. See Poisson arrivals
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Path loss, 28, 31, 293, 331

PCF. See Point coordination
function
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Perron-Frobenius theory, 145,
156–157
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Playout delay, 58, 64
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402–403

Poisson deployment process,
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Poisson distribution, 191, 310

Poisson process, 141, 191,
196, 296, 341, 345,
386, 403

Polling system, 223

Power allocation, 169, 175
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126–129, 127f
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one call class, 132, 134

uplink and downlink, 149

Power attenuation, 25–26,
28–30
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allocation, 178
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allocation, 166, 169–170,
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algorithm, 147

delay minimizing, 175
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one call class, 130
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Power control (continued)

for optimal power
constrained delay, 171

for optimal service rate,
165–170

single carrier resource
allocation, 165

Power-delay trade off,
171, 177

Power price, 169–170, 176,
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Power splitting problem, 179

Predetection SNR, 21,
38, 45

Price vector, 285–286
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245, 257, 274–275

Processor sharing queue, 404

Propagation delays, 58, 65, 73,
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Aloha network, 190

s-Aloha, 194

PSTN. See Public switched
telephone network

Public switched telephone
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and cellular phone, 55

and Internet, 55

voice calls in, 55

and voice over IP (VoIP)
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Pulse amplitude modulation
(PAM), 21–22

Pulse code modulation (PCM)
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Quadrature amplitude
modulation (QAM), 23,
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QAM. See Quadrature
amplitude modulation

QoS. See Quality of service

QPSK. See Quadrature phase
shift keying

Quadrature phase shift keying
(QPSK), 21–23, 22f

Quality of service (QoS), 6, 175
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of real-time stream traffic, 59

of store-and-forward stream
traffic, 60

Queue-length-based
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algorithm, 271

Queue-length-based scheduling
algorithm, 271

Queue lengths, 252, 266

Queues

Lyapunov stability of, 266

stability of, 250–254, 251f

Queuing delay, 58

Queuing models, 250, 393,
403

M/G/c/c queue, 403

processor sharing queue,
404

Queuing theory, 401–403

R

RACH. See Random access
channel

Radio spectrum, 3, 9, 16–18

Rake receiver, 45, 155

Random access channel
(RACH), 119, 194

Random access protocols, 189,
200. See also Aloha
protocol; Slotted-Aloha

Random access wireless
networks, 7

Random geometric graph,
294f, 295

connectivity in, 297

spatial reuse in, 315

Random graph models

Erdös-Renyi random graphs,
295

properties of, 296

random geometric graph,
294f, 295

signal-to-interference-ratio
graph, 295–296

for wireless mesh networks,
293–296

Randomly deployed networks

capacity of, 326, 328

protocol model, 322

routing algorithm, 326

transport capacity of, 322

Rayleigh fading, 29–30, 38, 40,
76–77, 88–89

Real number sequences, limits
of, 381–382

Real-time stream sessions

delay guarantees, 60

QoS objectives, 65

Real-time stream traffic, 58–59

delay, 58–59

intrinsic temporal behavior,
58

as open loop traffic, 60

QoS requirements of, 59

Real time transport protocol
(RTP), 232

Received signal strength
indicator (RSSI), 235

Receiver conflict constraint,
247

Reduced function device
(RFD), 370

Relative neighborhood graph
(RNG), 355, 356f

Renewal process, 398

excess distribution, 399

Markov renewal process,
399–400

renewal reward processes,
398

renewal reward theorem,
398

Renewal reward process, 398

Renewal reward theorem,
215–218

Request to send (RTS),
203–204, 208, 210, 369

Resource allocation

multicarrier, 178

networking as, 1–3

single carrier, 163

Resource management (RM)
cells, 70
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Reuse constraint graph, 101,
104f, 107f

Reuse groups, 85

calculation of, 94–95

RFD. See Reduced function
device

Ricean distribution, 30

RNG. See Relative
neighborhood graph

Round-trip propagation delay
(RTPD), 72

Routing, 353–357

in ad hoc wireless sensor
networks, 353

attribute-based routing,
357–359

elastic traffic, 273–277

face routing, 357

geometric routing, 353

of link flow vector, 257

and link scheduling
algorithm, 270

mesh network, 325

randomly deployed
networks, 326

RSSI. See Received signal
strength indicator

RTP. See Real time transport
protocol

RTPD. See Round-trip
propagation delay

RTS. See Request to send

S

Saturation throughput, of IEEE
802.11-DCF network,
213, 221f

Scheduling, 247

ad hoc wireless sensor
networks, 368–369

CDMA system, 45

elastic traffic, 273–277

link. See Link scheduling

of link flow vector, 257

Schur complement, 350–351

Schwarz’s inequality, 384

Sectorization, cochannel cells
with, 98, 99f

Semidefinite program (SDP),
352

Sensing circles, 343, 344f

Sensing coverage

ad hoc wireless sensor
networks, 341–348

k-vacancy value, 341

Sensor deployment, 347–349,
363f

Sensor-MAC (S-MAC),
369–370. See also IEEE
802.15.4

Sensor networks, 9, 11, 360,
360f, 362. See also Ad hoc
wireless sensor networks

Sensor nodes, 348, 366

and anchors, 349–350, 353f

in square area, 343f

transmission range, 359, 362

transmit powers, 340

Service differentiation,
222–225

Session initiation protocol
(SIP), 55

Shadow fading, 29, 88, 112

Shadowing, 28, 31, 135, 137

Shannon capacity, 35, 175

Shannon’s noisy channel coding
theorem, 24, 33

Short inter-frame space (SIFS),
209

SIFS. See Short inter-frame
space

Signaling system 7 (SS7), 55,
119

Signal power to noise power
ratio (SNR), 21, 30–31,
293

Signal strength based
handovers, 112–115

Signal-to-interference-plus-
noise-ratio (SINR), 5,
26

cochannel interference
analysis with, 86–87

FDM-TDMA systems, 87–88

inequalities in CDMA
cellular systems, 126–129,
129f, 132

link activation constraints,
245

of MS-BS link, 85

normal probability density
of, 90f

one call class, 130

signal-to-interference-ratio
graph, 313

wireless mesh networks, 293,
295

Signal-to-interference-ratio
graph (STIRG), 295–296

connectivity in, 309–314

giant component, 310

path loss functions, 311, 314

path loss model, 331

percolation in, 310–313,
312f

SINR, 313

Signal-to-interference ratio
(SIR), 81, 96, 99, 315

Signal-to-noise ratio per bit, 35

SIMO. See Single-input-
multiple-output

Single carrier resource
allocation, 163

power constraint, 166,
169–170, 173

power control, 165, 171

Single hop flows

fair allocation for, 277–280

in s-Aloha network, 277

Single hop networks, 189, 209

Single-input-multiple-output
(SIMO) system, 36f

Single transmit and receive
antenna system, 42

SINR. See Signal-to-
interference-plus-noise-
ratio

SIP. See Session initiation
protocol

SIR. See Signal-to-interference
ratio

Sleep-wake duty cycling, 369
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Slotted-Aloha, 193, 277

with adaptive retransmission
probability, 197

applications of, 194–195

backlog, 195–197

collision cone, 193

collision resolution
algorithms, 199

in GSM cellular networks,
194

maximum throughput in,
199

propagation delay, 194

single hop flows in, 277

time slotting in, 193f

transmission and reception
in, 193

in very small aperture
terminal networks, 194

in wireline networks, 195

Smart sensors, 337–338

Soft admission control, 141

using Chernoff’s bound,
141–145, 144f

Soft handovers, 137–138, 137f

Spare node-capacity vector, 262

Spatial reuse, 83f, 85, 201, 323

and capacity, 315–318

graph-based constraints, 316

interference model, 315–316

protocol model, 315–316

in random geometric graph,
315

wireless mesh networks, 296,
315–318

Spectrum efficiency, 99–101

Speech

CBR, 60–61

playout, 63–65

VBR, 61–63

Speech codec, 61

Speech telephony, 141

Spreading factor, 42

Static link schedule, 258

Stationarity, 386

Stationary probability
distribution, 117, 174,
397

STIRG. See Signal-to-
interference-ratio
graph

Store-and-forward stream
traffic, 57, 59–60

QoS requirements of, 60

Streaming audio and video, 59,
141

Strong duality theorem, 284

Symbol-by-symbol channel
model, 19, 33

for CDMA channel, 44

Symbol sets, 17, 21f, 22f

Synchronization period, 370

Synchronized channel access,
211–212

SYNC packet, 370

System bandwidth, 81

T

Target beacon transmission
time (TBTT), 208, 235

TBTT. See Target beacon
transmission time

TCP. See Transmission control
protocol

TDD. See Time division
duplexing

Telecommunication networks,
54f

Time-division-duplexing
(TDD), 7

WiMAX system, 183–184

Time slotted model, 217

Traffic types. See Elastic traffic;
Real-time stream traffic;
Store-and-forward
stream traffic

Transition probability matrix,
395

Transmission control protocol
(TCP), 56, 60, 67, 71, 73,
164

ACK packet, 226–227

congestion and, 71

data packets, 226

implicit feedback control, 70

loss recovery in, 72

NewReno, 72

over fading channel, 75–78

packet error probability for,
74–77, 77f

with packet loss, 72, 74

performance of, 72

Reno, 72, 76, 77f

and SNR, 78

Tahoe, 71, 76, 77f

window based transmission
protocol, 70–71

wireless links, 72

Transmission opportunity
(TxOP), 223–224

Transmitter-receiver conflict
constraint, 247

Transport capacity

of arbitrary networks,
318–322

effect of randomness on,
332

exploiting mobility, 332

of randomly deployed
networks, 322

of wireless mesh networks,
296–297, 318

Transport layer protocol, 71

Trunking efficiency, 85–86,
100

Two-dimensional network

asymptotic connectivity of,
302

isolated nodes, 302, 304f,
305f

Two-link network, link
capacity region for, 249f

U

UDG. See Unit disk graph

UDP. See User datagram
protocol

Union bound, 317, 329, 382

Unit disk graph (UDG), 354

Universal frequency reuse, 125
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Uplink power control problem,
130f

User datagram protocol (UDP),
232

Utility function, 151, 276, 279

V

VAD. See Voice activity
detection

Variable bit rate (VBR), 61–63,
230

VBR. See Variable bit rate

Very small aperture terminal
(VSAT) networks, s-Aloha
in, 194, 195f

Visitor location register (VLR),
119

VLR. See Visitor location
register

Voice activity detection (VAD),
230

Voice calls, 55, 60–61, 65, 82,
232–233

system capacity for, 139–140

Voice codecs, 230

packet loss rates for, 231t

Voice over IP (VoIP), 55, 225,
230

Voice packet, 55, 230, 232–233

delays, 63f, 64, 64f, 66

Voice quality, 66, 105, 133,
231

Voice telephony, 60, 128, 130

VoIP. See Voice over IP

Voronoi cells, 134

VSAT networks. See Very small
aperture terminal
networks

W

Water pouring power
allocation, 168f, 180. See
also Power allocation

WAN. See Wide area network

WCDMA. See Wideband
CDMA

Weak law of large numbers,
385

Weighted capacity, 283, 285

White Gaussian noise process,
49–50, 128

Wide area network (WAN),
64–65

Wideband CDMA (WCDMA),
7, 155

Wideband systems

CDMA, 42–45

OFDMA, 45–48

WiMAX, 7, 56, 183

base station (BS), 56

TDD frame structure, 184f

Wireless access networks, 8, 72

association, topology, and
routing, 10

Wireless local area networks
(WLANs), 8, 54, 59, 67,
73, 201

data over, 226–229

link scheduling, 247–250

schedulable region of,
247–250

voice over, 230–233, 230f

Wireless MAC protocols. See
IEEE 802.11

Wireless mesh networks
(WMNs), 291

applications, 244

capacity of, 296–297,
315–318

connectivity of, 292,
296–297

distributed fair scheduling in,
277

dynamic routing in, 264

dynamic scheduling in, 264,
265f

fair bandwidth sharing in,
274

link activation constraints.
See Link activation
constraints

link scheduling. See Link
scheduling

network graph, 292

node locations, 292, 310f

optimal routing, 262

packets, random splitting of,
325, 326f

performance limits of, 292

point-to-point packet flows
in, 244

processors in, 324f

random graph models for,
293–296

routing algorithm, 254, 325

SINR, 293, 295

spatial reuse, 296, 315–318

stability of queues in,
250–254

transmission power, 296

transmission scheduling on,
245

transport capacity of,
296–297, 318

Wireless metropolitan area
networks (WMANs), 54

Wireless nodes, 292–293

Wireless packet losses, 74

Wireless sensor networks
(WSNs). See Ad hoc
wireless sensor networks

Wireline networks

resource allocation
algorithms, 1–3, 2f

slotted Aloha in, 195

vs. wireless networks,
274–275

WLANs. See Wireless local
area networks

WMANs. See Wireless
metropolitan area
networks

WMNs. See Wireless mesh
networks

Z

Zigbee. See IEEE 802.15.4
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