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1Introduction 

In this chapter you will learn: 

– what the criteria according to which one distinguishes three branches 
in economic theory are: microeconomics, mesoeconomics and macroe-
conomics 

– what the basic thematic fields of microeconomics in neoclassical eco-
nomic theory are 

– what the scope of topics covered in this textbook is and its learning 
objectives. 

“Common sense is the most fairly distributed thing in the world: because everyone 
thinks he is so well endowed, that even those who are hardest to satisfy in everything 
else, have no habit of desiring more than they have”. 

Discourse on the Method 

René Descartes 
Economics is a discipline concerning rational methods of use of resources by an 

individual or society, with the aim to produce goods and services and to distribute 
them among those individuals or groups constituting a society in a given time 
horizon. 

The term “economics” was first used by Xenophon. According to some, 
it comes from the Greek words: oίκoς (oikos)—house, household and νoμoς 
(nomos)—law, rule, and means the rules of running a household. According to 
others, the word “economics” is a combination of the words oikos—home, house-
hold and nomeus—the person who manages it. Thus, the concepts of oikonomeo 
and oikonomikos should be associated with management of a household.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022 
K. Malaga and K. Sobczak, Microeconomics, Springer Texts in Business and Economics, 
https://doi.org/10.1007/978-3-031-10554-8_1 
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2 1 Introduction

The contemporary understanding of economics has significantly expanded over 
the ages. This results from the fact that, since the times of ancient Greece, 
experience and knowledge about the methods and effects of running a business 
by various actors of economic processes have improved remarkably. Particu-
lar individuals, households, social groups, societies and also civilizations have 
been undergoing various processes of evolution in such fields as technology, 
organization, management, information, communication, institutions or economic 
policy. 

There are many different criteria for classifying areas of economic knowledge. 
One of them is the division of economics according to the type of entity, from the 
point of view of which an analysis of management processes is carried out as well 
as the management processes themselves. 

From this point of view, economics distinguishes between: 

(1) microeconomics that concerns management processes in which the main enti-
ties are specifically defined units taking different roles: consumers, producers, 
rentiers, employees, employers, traders, farmers, households, etc. These are 
called economic agents, business entities or management units, 

(2) mesoeconomics (or mezzoeconomics)1 that deals with management processes 
by entities operating within separate sectors or branches of the economy, 

(3) macroeconomics that concerns the management processes taking place in the 
economy regarded most broadly as a whole. 

Those specializing in microeconomics focus on the activities of individual con-
sumers (households), producers (enterprises, undertakings) and on analysis of 
given markets. 

In microeconomic research—as opposed to macroeconomics—the economy of 
a given country or region is treated as a set of separate entities, not as a sin-
gle organism. In the currently leading trend of neoclassical economics, we often 
encounter mathematical models of the behaviour of sets of economic entities or 
agents: consumers, producers, public and private institutions, etc. 

The main research areas of microeconomics include:

• consumer demand theory (choices made by consumers),
• production theory (choices made by producers),
• theory of exchange (choices made by consumers and producers),
• market structures (monopoly, duopoly, oligopoly, perfect competition),
• forms of economic activities (perfect competition, imperfect competition),
• partial or general equilibrium in the markets of: consumer goods, production 

factors or intermediate and end products,

1 Many Economists, however, do not distinguish such area and in their work refer to either “mi-
croeconomics” or “macroeconomics” only. 
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• the role of public (government, public administration) and non-public insti-
tutions (associations, non-public administration) in rational decision-making 
processes by individual economic agents,

• risk and uncertainty in business activities. 

The main goals of microeconomics include:

• analysis and prediction of the behaviour of economic agents operating in a 
specific economic, technological and social environment,

• analysis and prediction of social interactions between economic agents, result-
ing from their behaviour,

• analysis of the effects of these interactions from the viewpoint of (1) institu-
tions responsible for management of these interactions or (2) outcomes of these 
interactions that have less formal character compared to the exchange itself. 

Microeconomics is a discipline of economics that abounds in textbooks written 
by eminent economists with a recognized scientific and professional position in 
the world.2 At the same time, this is the starting point for all economists to begin 
their economic education at the academic level. 

The list of microeconomics textbooks released worldwide in English after 2010 
is impressively high and proves the constant search for alternative methods of eco-
nomic education at undergraduate, graduate and doctoral levels. On the Internet, 
we can easily find an extensive editorial offer taking the shape of various rankings 
either prepared by experts or based on insights regarding current purchases. 

The most useful rankings of this type include: https:/www.wallstreet. 
orgmojo.com/microeconomics-books Top 10 Microeconomics Books according 
to WallStreetMojo, https:/bookautority.org/books/new-microeconomics-books 10 
Best New Microeconomics Books to Read in 2020 as well as https:/bookautority. 
org/books/best-microeconomics-books 100 Best Microeconomics Books of All 
Time, according to CNN, Forbes and Inc-BookAuthority. 

Among the many valuable items, we would like to highlight the textbook 
(Acemoglu et al., 2017) along with additional didactic materials from MyLab Eco-
nomics that allow you to independently study the problems as well as methods for 
their description and solution, as outlined in the textbook. As a model business 
study, we recommend the textbook (Porter, 2008), in which economic education is 
focused on competences and practical skills based on microeconomic foundations. 

The present textbook is based on a series of lectures and workshops in 
microeconomics conducted by the authors for students of Computer Science and 
Econometrics at the Poznań University of Economics and Business. It is closely

2 A classic textbook on microeconomics is an excellent work by one of the greatest French 
economists, Edmund Malinvaud, Leçons de théorie microéconomique, Dunod, Paris, 1969, which 
was published in numerous, revised and expanded editions. An example of a highly valued text-
book, unfortunately less known in Poland, is D.M. Kreps, A Course in Microeconomic Theory, 
Princeton University Press, 1990. 
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related to the textbooks published in Polish (Malaga, 2010, 2012; Malaga & 
Sobczak, 2020) and a script published in English (Malaga & Sobczak, 2021). 

Due to the fact that this lecture opens the cycle of education in the field of 
economic theory its content is firmly rooted in the traditional, neoclassical trend 
of microeconomics. Its distinguishing feature, compared to most of the available 
academic textbooks, is that it relates, to a slightly greater extent, to the knowledge 
of linear algebra, mathematical analysis, as well as the basics of mathematical 
economics. 

The language of mathematics, like any other type of language, requires knowl-
edge of precisely defined concepts (vocabulary), rules of using them (grammar), 
the ability to communicate in this language (communication) and, finally, creativ-
ity. The ability to use the language of mathematics efficiently should be one of the 
basic features of a well-educated economist. The more so that, even despite certain 
limitations resulting from the use of mathematics in economics, today no one will 
question its usefulness from the perspective of describing economic phenomena 
and processes, as well as formulating and solving economic problems. However, 
in order to acquire this ability, it is necessary to start formulating intuitions and 
economic knowledge in a mathematical language as early as possible. By acting 
in this way, one can properly recognize the limits of knowledge, which are deter-
mined by the quality and type of language that we use to teach and describe the 
economic reality, including the language of mathematics. 

An important supplement to the lecture on microeconomics should be the work 
of René Descartes “The Discourse on the Method of Proper Managing the Reason 
and Seeking Truth in Sciences”. 

Every student of economics and management should have the ability to observe 
and analyze the surrounding socio-economic reality. In the face of universal access 
to information, facilitated by the Internet, attention should be paid to the subjec-
tivity of every person in the process of developing an individual way of properly 
following their head and searching for the truth about the surrounding reality, 
also in science. One of the elements of this process should include equipping the 
student of economics and management with the ability to think abstractly and 
use formal constructions, which, however, should be confronted with the student’s 
knowledge and intuition. 

The textbook attempts to harmoniously combine elementary knowledge of 
traditional microeconomics, linear algebra and mathematical analysis. 

For the sake of simplicity and clarity in the lecture, the textbook is lim-
ited to case studies in which commodity spaces and factor spaces constitute the 
R
2+, metric spaces, whereas the classes of consumers, producers, or markets are 

two-element or less. This type of simplification allows for a relatively simple gen-
eralization of the considerations into metric spaces Rn+, n > 2 and to the collection 
of consumers, producers and markets with any, but limited, number of entities. 

The main goals of this textbook include:



1 Introduction 5

• equipping the reader with the knowledge of fundamental microeconomic cate-
gories and the principles of inference using the basic concepts of linear algebra 
and mathematical analysis,

• preparing and encouraging the reader to study monographs and articles in the 
field of economic theory, using the conceptual apparatus of more advanced 
mathematics than linear algebra or mathematical analysis,

• familiarizing the reader with the principles of deductive analysis based on the 
adopted system of assumptions,

• drawing the reader’s attention to the way in which conclusions derived from 
specific scenarios of behaviour of individual consumers, producers, groups of 
consumers and producers are conditional and limited by the system of adopted 
assumptions,

• presentation of the fundamental theoretical achievements of microeconomics in 
terms of elements of the demand theory, production theory, partial equilibrium 
theory and general competitive equilibrium theory,

• outlining the key features of contemporary microeconomics and indicating the 
likely directions of its further development. 

The textbook consists of seven chapters, Bibliography, Mathematical appendix, 
Glossary and Index of terms. This chapter presents an introduction. Chapter 7 
presents a conclusion. Each of Chaps. 2–6 is concluded with a set of questions 
and exercises that the readers may solve on their own. 

Chapter 2 deals with the problem of describing the rational behaviour of an 
individual consumer. In particular, it concerns: the relation of consumer prefer-
ences, the utility function as a numerical characteristic of the relation of consumer 
preferences, the Marshallian demand function understood as the optimal solution 
for maximizing the utility of consumption, the Hicksian demand function as the 
optimal solution for minimizing consumer spending, relations between the Mar-
shallian and Hicksian demand functions, as well as the substitution and income 
effects of changes in commodity prices, discussed on the basis of the Slutsky 
equation. These considerations are carried out with the assumption that the lim-
ited supply of goods does not restrict the consumer when deciding to choose the 
optimal basket of goods. The said assumption is then rebutted in the exercises at 
the end of the chapter. 

Chapter 3 examines the problem of making rational decisions by a group 
of consumers. Using the example of the simple exchange model and the static 
Arrow-Hurwicz model, it presents the Walras general equilibrium law. Consider-
ations presented in the chapter are complemented with presentation of selected 
issues related to the Arrow-Hurwicz dynamic model in a discrete and continuous 
version, in particular the problem of global asymptotic stability of the Walrasian 
general equilibrium. In the considered models of competitive equilibrium, a lim-
ited supply of goods does restrict consumers (traders) when making choices of 
optimal baskets of goods, equated with the Marshallian demand functions. 

Chapter 4 is devoted to the description of the rational behaviour of a single pro-
ducer. The more detailed considerations include: production space, the production
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function as a set of technologically effective processes, as well as a description of 
rational decisions made by enterprises based on the criterion of profit maximiza-
tion or minimization of the costs of production of a given number of units under 
the conditions of either perfect competition or monopoly, with or without limita-
tions on the resources of production factors at the disposal of each enterprise. In 
the case of enterprises that make rational choices under perfect competition, the 
characteristics of optimal decisions have been extended to include the analysis of 
their sensitivity to changes in the relevant parameters. In the analysed models, the 
demand for product is limited, but it does not restrict enterprises when making 
decisions concerning the optimal supply of products. 

Chapter 5 deals with rational decisions made by individual producers in the 
conditions of perfect competition, monopoly or duopoly with exogenously defined 
demand functions. It considers the following problems: determining the produc-
tion volume by an enterprise operating in perfect competition with an exogenously 
defined function of product demand, setting the product price and production vol-
ume by a monopolistic enterprise with an exogenous demand function for the 
product produced by the monopolist, as well as price discrimination by the monop-
olist which is selling a single product in two different markets. It also addresses 
the issues of quantitative competition in the Cournot and Stackelberg duopoly 
models or price competition in the Bertrand duopoly model. The focus is on the 
problems of partial equilibrium of an enterprise operating in the conditions of per-
fect competition, monopoly or duopoly, sensitivity of optimal variables to changes 
in model parameters and comparative analysis of the analysed market structures. 
Market models discussed in this chapter are characterized by the fact that produc-
ers make decisions about the optimal supply of products when the demand for 
them is limited and described by exogenously defined demand functions specific 
to each market. 

Chapter 6 is devoted to the description and analysis of the rational behaviour 
of the community of consumers and producers. Considerations conducted in this 
chapter are based on two different types of models. The first type includes static 
and dynamic two-commodity market models with exogenously defined product 
demand and supply functions. The second group of models, on the other hand, 
includes static and dynamic models of the market of two goods with endogenously 
defined functions of demand and supply of products, known as Arrow-Debreu-
McKenzie general equilibrium models. Due to the important role of time in the 
theory of economics, the distinguished types of dynamic models are presented 
in two alternative versions: a discrete one (time is a discrete variable) or in a 
continuous one (time is a continuous variable). The notion of Walrasian general 
equilibrium is at the centre of attention. In particular, we consider the problem of 
existence, uniqueness and asymptotically global stability of Walrasian equilibrium. 
This chapter is, in a way, the crowning achievement of the textbook. It discusses 
general equilibrium models in which the demand and supply of goods are lim-
ited, and therefore binding for the community of consumers and producers. At the 
same time, the demand and supply are defined by the exogenous or endogenous 
functions of product demand and supply.
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Chapter 7 presents a conclusion and includes an assessment of the traditional 
approach to microeconomics, as well as the description of characteristics of con-
temporary microeconomics and the likely directions of its further development, 
reaching well beyond the framework of traditional microeconomics. 

The thematic scope of the textbook defined in this way fits into the traditional 
approach to microeconomics, which is a synthesis made within the framework 
of neoclassical mathematical economics of the nineteenth century marginalism 
movement and the theory of general equilibrium by L. Walras and V. Pareto. 
The Nobel laureates in economics, Paul Samuelson (1970) and Hicks (1972), are 
widely believed to be the precursors of the traditional microeconomics. 

While handing over the textbook into the hands of the readers, we would like to 
thank the Springer Publishing House for its publication, in particular to the follow-
ing representatives of Springer: Selveraj Vijay Kumar, Dr. Johannes Glaeser, Judith 
Kripp, Katrin Petermann and Sindhu Sundar. Thank you for your inspiring support 
and professionalism. We would also like to thank Professors Tomasz Tokarski and 
Adam Krawiec from the Jagiellonian University in Kraków and Professor Łukasz 
Lach from the AGH University of Science and Technology in Kraków for reli-
able and insightful reviews, as well as to the students of Computer Science and 
Econometrics at the Poznań University of Economics and Business, who had a 
significant impact on the final form of the textbook.



2Rationality of Choices Made 
by Individual Consumer 

In this chapter you will learn: 

– how to describe preferences of a consumer towards consumption bundles, 
a utility he/she derives from having a consumption bundle and her/his 
demand for consumer goods 

– what substitute goods, perfect substitutes, complementary goods, perfect 
complements are 

– on the basis of what criteria a consumer chooses an optimal consumption 
bundle and how he/she makes this choice 

– how to formulate a consumption utility maximization problem and a 
consumer’s expenditure minimization problem 

– what is a Marshallian demand function and a Hicksian demand function 
– how to classify consumer goods according to reactions of the consumer 

demand for goods to changes in goods’ prices and in a consumer’s income 
– what is stated in Gossen’s first and second laws 
– what the paths of price expansion of demand and the path of income 

expansion of demand are 
– what relationships are described by the Slutsky equation 
– what price, substitution and income effects are. 

The subject of our considerations in the whole textbook is an individual and groups 
of individuals who can play various social roles of workers, producers, employers, 
owners of material and non-material resources, rentiers or consumers. 

The focus on an individual follows the logic of methodological individualism 
which is based on a belief that in order to understand social reality one has to 
concentrate on an individual, not on society as a whole. It is because society is 
an outcome of activities of individuals who undergo various transformations being 
a result of these activities. Methodological individualism is typical for traditional

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022 
K. Malaga and K. Sobczak, Microeconomics, Springer Texts in Business and Economics, 
https://doi.org/10.1007/978-3-031-10554-8_2 
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microeconomics and in general for the neoclassical school. It is opposed to holism 
which focuses on a belief that society is not a simple sum of individuals who form 
it and that characteristic features of a given society have much influence on the 
behaviour and activities of the individuals. 

The elementary character of the analysis we conduct in this book allows us 
not to enter into a discussion on anthropological questions when and why one can 
describe an individual as homo oeconomicus or homo socialis.1 We only assume 
that an individual belongs to the Homo sapiens group. 

Our study is conducted in terms of analysis of activities of a representative 
individual since we do not try to identify various types of behaviour and activities 
of particular individuals. The focus on an individual, as presented in our textbook, 
is not an expression of a view that economic individualism is a more appropri-
ate approach than holism. We believe that they are complementary to each other 
unless treated in a doctrinal manner when one of them is given an exaggerated 
importance. 

We begin our analysis by describing rational choices made by individual con-
sumers.2 The consumer choice is identified with a decision. We call it rational 
when it is made on the basis of a distinct criterion (usually a single one) and when 
a consumer is aware of conditions which constrain making a rational and hence 
an optimal choice.3 

2.1 Preliminary Terms 

For the sake of simplicity we consider rational choices4 made by an individual 
consumer on a market of two consumer goods5 denoted by subscript i = 1, 2. 

Let us introduce basic terms which set the frame of an analysis we conduct in 
this chapter and Chap. 3.

1 A brief explanation of these and other terms is given in the glossary annexed at the end of the 
textbook. 
2 In fact we consider a representative consumer, her/his behaviour and activities. Conclusions about 
them have general sense and can be transferred to conclusions about behaviour of a group of 
consumers. 
3 A rational choice is a decision made on the basis of subjective choice criterion, in conditions 
constraining this choice. 
4 By that we assume that the most rational choice is the same as the optimal decision. But any 
choice that satisfies the constraints, called a feasible decision, does not have to be the most rational 
choice. From further analyses it follows that a set of feasible decisions does not have to be a single 
element set, in some cases it happens to be a set of infinitely many elements. 
5 The analysis conducted for two goods can be easily generalized to a case of a market with any 
large but finite number of consumer goods. 
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Definition 2.1 A bundle of consumer goods (a consumption bundle) is a vector 
x = (x1, x2) ∈ R2+, in which i -th component xi ≥ 0, i = 1, 2 indicates a non-
negative expressed in physical units amount of i-th good in the consumption bundle 
x. 

Definition 2.2 A consumer goods space is a set X = R2+ of all bundles of goods 
available on the market along with a metric specified on it6 : 

dE
(
x1, x2

) = 

⎡|
||

2∑

i=1

(
x1 i − x2 i

)2 =
/(

x1 1 − x2 1
)2 + (

x1 2 − x2 2
)2 

,(2.1) 

or 

d
(
x1, x2

) = max 
i=1,2

{||x1 i − x2 i
||} = max 

i=1,2

{||x1 1 − x2 1
||,

||x1 2 − x2 2
||},(2.2) 

being a measure of distance between two consumption bundles.7 

Definition 2.3 A Cartesian product determined on the goods space X = R2+ is 
such a set: 

X × X = {(x1, x2)|x1 ∈ X , x2 ∈ X},(2.3) 

of all ordered pairs of consumption bundles in which both bundles (the first one and 
the second one in the pair) belong to the goods space. 

Definition 2.4 A relation of consumer (weak) preference is a set: 

P = {(
x1, x2

) ∈ X × X |x1>x2
} ⊂ X × X ,(2.4) 

of all ordered pairs of consumption bundles in which the first bundle is not worse 
(weakly preferred) than the second bundle.

6 A metric is a term defined in Mathematical appendix in Definition A.15.
7 The first metric is the Euclidean metric. It does not apply to measure distance (differentiation) 
of those consumption bundles which presents amounts of goods expressed in different physical 
units. Everyone knows that it is not possible to “add dogs and cats together” and in general to add 
together any quantities expressed in different units of measure. The other metric, which we call for 
simplicity non-Euclidean one, does not create any problems regarding volumes of goods. 
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Definition 2.5 A relation of consumer strong preference is a set: 

Ps = {(x1, x2) ∈ X × X |x1 > x2} ⊂  X × X ,(2.5) 

of all ordered pairs of consumption bundles in which the first bundle is better (strongly 
preferred) than the second bundle. 

Definition 2.6 A relation of consumer indifference is a set: 

I = {(x1, x2) ∈ X × X |x1 ∼ x2} ⊂  X × X ,(2.6) 

of all ordered pairs of consumption bundles in which the first bundle is as good 
(indifferent) as the second bundle. 

Note 2.1 P, Ps , I ⊂ X × X , which means that relations of consumer: weak pref-
erence, strong preference and indifference are subsets of the Cartesian product 
X × X . 

Note 2.2 The weak preference relation is a union of the strong preference relation 
and the indifference relation: 

P = Ps ∪ I .(2.7) 

Definition 2.7 The relation P of consumer (weak) preference is a relation of a total 
preorder,8 which means that it is complete and transitive 

∀x1, x2 ∈ X = R2+ x1>x2 ∨ x2>x1 (completeness),(2.8) 

∀x1, x2, x3 ∈ X = R2+ x1>x2 ∧ x2>x3 ⇒ x1>x3 (transitivity).(2.9) 

The completeness means that a consumer, when asked about her/his preferences 
with regard to two different consumption bundles, is always able to determine that 
the first bundle is not worse than the second one or that the second bundle is 
not worse than the first one. In other words, he/she can also point to the strongly 
preferred bundle or state that both bundles are equally good (indifferent). 

The transitivity means that a consumer is able to order the bundles in terms of 
her/his preferences.

8 In Mathematical appendix we give brief descriptions of basic types of preference relations.
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Fig. 2.1 Budget set 
D(p, I )and budget line 
L(p, I ) in goods space 
X = R2+ 

Assumption 2.1 Let us assume that by given prices p = ( p1, p2) ∈ int R2+ of 
goods and a given consumer’s income9 I ∈ int R+ supply of any good is bounded 
but always bigger than demand reported by a consumer for this good.10 

Definition 2.8 A budget set is a set11 : 

D(p1, p2, I ) =
{
(x1, x2) ∈ R2+|p1x1 + p2x2 ≤ I

} ⊂ X = R2+(2.10) 

of all consumption bundles whose money value, by given prices of consumer goods, 
is not greater than the consumer’s income. 

Note 2.3 The budget set is assumed to be not empty,12 compact (closed and bounded) 
and convex. 

Definition 2.9 A budget line (budget constraint) is a set: 

L( p1, p2, I ) =
{
(x1, x2) ∈ R2+|p1x1 + p2x2 = I

} ⊂ X = R2+(2.11) 

of all consumption bundles whose money value, by given prices of consumer goods, 
is equal to the consumer’s income (Fig. 2.1). 

A consumer’s goal is to choose such a consumption bundle x̄ = (x̄1, x̄2) ∈ 
D(p1, p2, I ) which is the best in the set of all consumption bundles and at the 
same time whose value is not greater than the consumer’s income.

9 Here we do not specify sources of income.
10 Strictly speaking the supply of all goods is sufficiently big (see Note 2.5). 
11 It is a set of all consumption bundles that can be purchased by a consumer with a given income.
12 If the budget set D(p, I ) was empty, then an individual consumer would not be able to make 
a choice of any consumption bundle. As a consequence the only rational decision would be to 
abandon the choice because of not satisfying conditions which make the choice possible. 
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Fig. 2.2a Supply set 

Definition 2.10 An optimal consumption bundle in the budget set D(p, I ) ⊂ X = 
R
2+ is such a consumption bundle x̄ = (x̄1, x̄2) ∈ D(p, I ) that 

∀x = (x1, x2) ∈ D(p, I ) x̄ = (x̄1, x̄2)>(x1, x2) = x.(2.12) 

Note 2.4 The consumption bundle which is optimal,13 regarding the consumer’s 
preferences, in the budget set D(p, I ) ⊂ X = R2+, is therefore not worse than any 
other consumption bundle belonging to this set. 

Assumption 2.2 Let us assume that by given prices p = (p1, p2) ∈ int R2+ of goods 
and a given consumer’s income14 I ∈ int R+ supply of any good is constrained. 
Hence, it can be lower than, equal to or higher than demand reported by the consumer 
for a given good. 

Definition 2.11 A supply set is a set: 

B = {(x1, x2) ∈ R2+|x1 ≤ b1, x2 ≤ b2}(2.13) 

of all consumption bundles in which quantity xi of i-th good is not greater than 
non-negative supply of this good bi ≥ 0, i = 1, 2 (Figs. 2.2a, 2.2b and 2.2c).

From the point of view of a consumer, who in fact needs to take into account 
both supply and budget constraints when choosing the optimal consumption bun-
dle, it is essential what the relationships between the budget and the supply sets 
are.

13 Optimal means the best regarding a given optimality criterion. Thus one should not use a name 
“the most optimal”. 
14 Here we do not specify sources of income.
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Fig. 2.2b Budget set as 
subset of supply set when 
I 
pi 

= bi , i = 1, 2 

Fig. 2.2c Budget set as 
subset of supply set when 
I 
pi 

< bi , i = 1, 2

Let us consider the following cases: 

Case 1 
The budget set is a subset of the supply set: D(p, I ) ⊆ B, which means that the 
supply of each good is sufficiently big in comparison to the consumer’s income. It 
is the case when: 

0 < 
I 

p1 
≤ b1 ∧ 0 < 

I 

P2 
≤ b2. 

Then, the budget constraint is binding and a consumer chooses the optimal 
consumption bundle in the budget set D(p, I ). 

Case 2 
The supply set is a proper subset of the budget set: B ⊂ D(p, I ), which means 
that the supply of each good is sufficiently small in comparison to the consumer’s 
income. It is the case when: 

∀α, β ≥ 0, α  + β = 1 0  < b1 < 
α I 

p1 
∧ 0 < b2 < 

β I 
P2 

.
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Fig. 2.3 Supply set as subset 
of budget set when 

b1 ∈
(
0; α I p1

)
∧ b2 ∈

(
0; β I 

p2

)

Then, the supply constraint is binding and a consumer chooses the optimal 
consumption bundle in the supply set B (Fig. 2.3). 

Case 3 
The budget and the supply set are not disjoint but at the same time none of them is 
the proper subset of the other. It is the case when: 

0 < b1 < 
I 

p1 
∧ 0 < 

I 

P2 
< b2 or 0 < 

I 

p1 
< b1 ∧ 0 < b2 < 

I 

P2 
. 

Then both constraints are binding and a consumer chooses the optimal consump-
tion bundle in a set B ∩ D(p, I ) which is not equal to B nor to D(p, I ) (Figs. 2.4a 
and 2.4b). 

Case 4 
The budget and the supply set are not disjoint but at the same time none of them is 
the proper subset of the other. It is the case when: 

0 < 
I − p2b2 

p1 
< b1 < 

I 

p1 
and 0 < 

I − p1b1 
P2 

< b2 < 
I 

p2 
.

Fig. 2.4a Supply set not 
being subset of budget set 
(and conversely) when 
0 < b1 < I 

p1 
∧ 0 < I 

P2 
< b2
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Fig. 2.4b Supply set not being subset of budget set (and conversely) when 0 < I 
p1 

< b1 ∧ 0 < 
b2 < I 

P2

Then both constraints are binding and a consumer chooses the optimal con-
sumption bundle in a set B ∩ D(p, I ) which is not equal to B nor to D(p, I ) 
(Fig. 2.5). 

Note 2.5 From this moment we further assume in Chap. 1 that a consumer choosing 
the optimal consumption bundle is not bounded by the supply of goods. It is the case

Fig. 2.5 Supply set not being subset of budget set (and conversely) when 0 < I−p2b2 
p1 

< b1 < 
I 
p1 

and 0 < I−p1b1 
p2 

< b2 < I 
p2 
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when the supply of each good is not smaller than the demand reported for this good. 
However, it does not mean that the supply of goods is unbounded. The matter of 
how the binding supply constraint influences the choice of the optimal consumption 
bundle is considered in the exercises given at the end of this chapter. 

2.2 Utility Function 

Definition 2.12 A consumer’s utility function (defined on the goods space X = 
R
2+) is a mapping u:R2+ → R such that 

∀x1, x2 ∈ X = R2+ x1>x2 ⇔ u
(
x1

) ≥ u
(
x2

)
,(2.14) 

∀x1, x2 ∈ X = R2+ x1 > x2 ⇔ u
(
x1

)
> u

(
x2

)
,(2.15) 

∀x1, x2 ∈ X = R2+ x1 ∼ x2 ⇔ u
(
x1

) = u
(
x2

)
.(2.16) 

Some properties of the utility function 

Definition 2.13 A utility function u:R2+ → R is called continuous at point x ∈ R2+ 
if for any sequence

{
xi

}+∞ 
i=1 , where x

i ∈ X = R2+, it is satisfied: 

lim 
i→+∞ 

xi = x ⇒ lim 
i→+∞ 

u
(
xi

)
= u(x).(2.17) 

Definition 2.14 A utility function u:R2+ → R is called continuous on the goods 
space X = R2+ if it is continuous at every point of this space. 

Definition 2.15 A utility function u:R2+ → R is called differentiable on the goods 
space X = R2+ if its partial first-order derivatives: 

∂u(x1, x2) 
∂ x1 

= lim
Δx1→0 

u(x1 + Δx1, x2) − u(x1, x2)
Δx1 

,(2.18) 

∂u(x1, x2) 
∂x2 

= lim
Δx2→0 

u(x1, x2 + Δx2) − u(x1, x2)
Δx2 

(2.19) 

are continuous on this space. 

Definition 2.16 A marginal utility of i-th good in a consumption bundle x = 
(x1, x2) ∈ R2+ is a partial first-order derivative of the utility function: 

∂u(x1, x2) 
∂xi 

i = 1, 2,(2.20)



2.2 Utility Function 19

which describes by approximately how many units the utility of a consumption 
bundle x ∈ R2+ changes when quanity of i-th good increases by one (notional) unit 
and quantity of the other good in the bundle does not change. 

Definition 2.17 A utility function u:R2+ → R is called twice differentiable on the 
goods space X = R2+ if its partial second-order derivatives: 

∂2u(x1, x2) 
∂ x2 i 

, 
∂2u(x1, x2) 

∂xi ∂x j 
= 

∂2u(x1, x2) 
∂x j ∂ xi 

i, j = 1, 2, i /= j ,(2.21) 

are continuous on this space. 

Note 2.6 If a utility function u:R2+ → R is twice differentiable and: 

∀x ∈ X = R2+ 
∂2u(x1, x2) 

∂ x2 i 
< 0 i = 1, 2,(2.22) 

then it means that the marginal utility of the i-th good decreases with an increase of 
quantity of this good in a consumption bundle x ∈ R2+. This property is called first 
Gossen’s law (law of decreasing marginal utility). 

Example 2.1 Justify by geometric and analytical means that for a logarithmic utility 
function: 

(a) u(x) = a ln x, a > 0, x ∈ R+, 
(b) u(x1, x2) = a1 ln x1 + a2 ln x2, ai > 0, xi ∈ R+, i = 1, 2, 

the first Gossen’s law is satisfied. 

Ad (a) The logarithmic one-variable utility function is increasing since du(x) 
dx = a x > 

0 (Figs. 2.6a and 2.6b). 

The first-order derivative of this utility function is decreasing since d
2u(x) 
dx2 

= 
− a 

x2 
< 0 (Figs. 2.6b and 2.6c). This means that the marginal utility of a good 

decreases with an increase of its quantity. 
Graphs and forms of the first- and second-order derivatives show that the first 

Gossen’s law is satisfied for a logarithmic function u: int R+ → R.

Ad (b) The logarithmic two-variable utility function is increasing in each variable 
since ∂u(x) 

∂ xi = a xi > 0, i = 1, 2 (Figs. 2.7a and 2.7b).
The first-order partial derivative of this utility function is decreasing in the quantity 

of i-th good since ∂
2u(x) 
∂x2 i 

= −  a 
x2 i 

< 0, i = 1, 2 (Figs. 2.7b and 2.7c). This means 

that the marginal utility of i-th good decreases with an increase of its quantity in a 
consumption bundle x ∈ R2+.
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Fig. 2.6a Graph of utility function u(x) = a ln x, a > 0, x ∈ R+ 

Fig. 2.6b Graph of marginal utility function with respect to the quantity of goods 

Fig. 2.6c Graph of 
second-order derivative of 
utility function
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Fig. 2.7a Graph of a 
projection of logarithmic 
utility function on plane 

Fig. 2.7b Graph of a 
projection of marginal utility 
function on plane 

Fig. 2.7c Graph of 
second-order partial 
derivative of utility function 
with respect to the quantity of 
i-th good
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Graphs and forms of the first- and second-order partial derivatives show that the 
first Gossen’s law is satisfied for a two-variable logarithmic function u: int R2+ → R. 

Definition 2.18 A utility function u: R2+ → R is called: 

(a) concave in R2+ if: 

∀x1, x2 ∈ R2+ ∀α, β ≥ 0, α  + β = 1 u
(
αx1 + βx2

) ≥ αu
(
x1

) + βu
(
x2

)
, 

(b) convex in R2+ if: 

∀x1, x2 ∈ R2+ ∀α, β ≥ 0, α  + β = 1 u
(
αx1 + βx2

) ≤ αu
(
x1

) + βu
(
x2

)
, 

(c) strictly concave in R2+ if: 

∀x1, x2 ∈ R2+, x1 /= x2 ∀α, β > 0, α  + β = 1 
u
(
αx1 + βx2

)
> αu

(
x1

) + βu
(
x2

)
, 

(d) strictly convex in R2+ if: 

∀x1, x2 ∈ R2+, x1 /= x2 ∀α, β > 0, α  + β = 1 
u
(
αx1 + βx2

)
< αu

(
x1

) + βu
(
x2

)
. 

Definition 2.19 A utility function u: R2+ → R is called: 

(a) increasing in R2+ if
15 ∀x1, x2 ∈ R2+ x1≧x2 ⇒ u

(
x1

)
> u

(
x2

)
, 

(b) decreasing in R2+ if ∀x1, x2 ∈ R2+ x1≧x2 ⇒ u
(
x1

)
< u

(
x2

)
, 

(c) weakly increasing in R2+ if ∀x1, x2 ∈ R2+ x1≧x2 ⇒ u
(
x1

) ≥ u
(
x2

)
, 

(d) weakly decreasing in R2+ if ∀x1, x2 ∈ R2+ x1≧x2 ⇒ u
(
x1

) ≤ u
(
x2

)
. 

Note 2.7 If a utility function u: R2+ → R is differentiable on its domain, then it 
is (Table 2.1): 

(a) increasing, when ∂u(x) 
∂ xi > 0, i = 1, 2, 

(b) decreasing, when ∂u(x) 
∂xi 

< 0, i = 1, 2, 
(c) weakly increasing, when ∂u(x) 

∂ xi ≥ 0, i = 1, 2, 
(d) weakly decreasing, when ∂u(x) 

∂xi 
≤ 0, i = 1, 2.

15 An inequality ∀x1, x2 ∈ R
n+ x1≧x2 means that at least one component x1 i of a vector x

1 is 
bigger than the corresponding component x2 i of a vector x

2 while the other components x1 j ( j = 
1, 2, . . . ,  n, j /= i, here n = 2) are bigger or equal to corresponding components x2 j . 
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Table 2.1 Examples of utility functions* 

Type of a utility function u: R+ → R u: R2+ → R 

Linear u(x) = ax + b 
a, b > 0 

u(x1, x2) = a1x1 + a2x2 
ai > 0, i = 1, 2 

Power function u(x) = axα 

a, α  >  0 
u(x1, x2) = axα1 

1 x
α2 
2 

a, αi > 0, i = 1, 2 
Logarithmic u(x) = ax + b 

a > 0, x > 0 
u(x1, x2) = a1 ln x1 + a2 ln x2 
ai > 0, xi > 0, i = 1, 2 

Subadditive – u(x1, x2) = a1xα 
1 + a2xα 

2 

ai , α  >  0, i = 1, 2 
Koopmans-Leontief function u(x) = min ax = ax 

a > 0 
u(x1, x2) = min{a1x1, a2x2} 
ai > 0, i = 1, 2 

CES (constant elasticity of substitution) 
function 

u(x) = axθ 

a, θ  >  0 
u(x1, x2) =

(
a1x

γ 
1 + a2xγ 

2

) θ 
γ 

θ,  ai > 0, i = 1, 2 
γ ∈ (−∞; 0) ∪ (0; 1) 

* In case of two-variable functions it is assumed that the free term b = 0 

Note 2.8 The utility function is just a numerical characteristic of consumer’s prefer-
ences. It means that for every consumption bundle there is some real (not necessarily 
positive) number assigned. A utility of a consumption bundle determined in this 
way is useful if it allows to determine whether utilities of two different consumption 
bundles are the same or different. Absolute values of utilities of two bundles are 
not important, just a comparison of these values is, because a consumer compares 
bundles according to her/his preferences, not determining numerical relationships 
amongst bundles. 

One can notice then, as a conclusion, that if there exists some utility function 
describing a relation of consumer preference then any function, derived as a com-
position of this utility function and any increasing function, is also a utility function 
describing the same relation of consumer preference. In other words, there exist 
infinitely many utility functions describing the same relation of consumer prefer-
ence and each of these functions assigns a different number to a given consumption 
bundle. 

Let us assume that a power function u: R2+ → R, of a form u(x) = axα1 
1 x

α2 
2 , 

describes a preference relation of a consumer. From the definition of a utility function 
it follows that: 

∀x1, x2 ∈ X = R2+ x1>x2 ⇔ u
(
x1

) ≥ u
(
x2

)
.(2.23) 

Let us consider a logarithmic function g: int R+ → R, of a form g(x) = ln x , 
which, as we know, is increasing. Then, a function ν: R2+ → R, derived as a compo-
sition g ◦ u of the power utility function u and the increasing logarithmic function 
g, is also a utility function and describes the same relation of consumer preference 
as the function u. It has a form:
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ν(x) =(g ◦ u)(x) = g(u(x)) = ln(u(x)) = ln
(
axα1 

1 x
α2 
2

)

= ln a + α1 ln x1 + α2 ln x2 

and is a logarithmic utility function describing the same relation of consumer 
preference as the function u, because: 

∀x1, x2 ∈ X = R2+ x1>x2 ⇔ u
(
x1

) ≥ u
(
x2

) ⇔ ν
(
x1

) ≥ ν
(
x2

)
.(2.24) 

Let us notice that there is a constant ln a > 0 in the formula of a function ν and 
that it matters for value of the utility function but it does not matter for determining 
which of two consumption bundles x1, x2 ∈ R2+ is not worse than the other. Hence, 
it is more convenient to handle a logarithmic utility function of a form16 : 

ω(x) = ν(x) − ln a = ln 
u(x) 
a 

= ln
(
xα1 
1 x

α2 
2

) = α1 ln x1 + α2 ln x2.(2.25) 

Definition 2.20 An indifference curve for the reference utility u0 by a utility 
function u: R2+ → R is a set: 

G(u0) =
{
(x1, x2) ∈ X = R2+|u(x1, x2) = u0 = const.

}
,(2.26) 

of all these consumption bundles whose utility is the same and equal to u0 = const. 

Example 2.2 Sketch graphs of a two-variable utility function which is: linear, power, 
logarithmic, subadditive, Koopmans-Leontief, in space R3+ and graphs of indiffer-
ence curves G(u) = {

(x1, x2) ∈ X = R2+|u(x1, x2) = u = const.
}
in the goods 

space X = R2+ (Figs. 2.8a, 2.8b, 2.8c, 2.8d, 2.8e, 2.8f, 2.8g and 2.8h). 
Let us present these selected characteristics of the utility function which are 

important in the consumer theory. Definitions of absolute and relative increments of 
values of one-variable or two-variable utility functions are given in Table 2.2. 

We are given a utility function u: R2+ → R about which we know that it is 
differentiable.

Definition 2.21 A marginal utility of i-th good in a consumption bundle x ∈ R2+ 
is a partial first-order derivative of the utility function: 

Ti (x) = lim
Δxi→0 

u
(
xi + Δxi , x j

) − u(xi , j )
Δxi 

= 
∂u(x) 
∂xi 

i , j = 1, 2, i /= j(2.27)

16 We have shown that in the formula of the logarithmic utility function, derived as a composition 
of the power utility function and the increasing logarithmic function, there are parameters equal 
to exponents of the power utility function. However, when using a general form of a logarithmic 
utility function, we denote its parameters as ai instead of αi (ai , αi > 0, i = 1, 2). 
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Fig. 2.8a Graph of linear utility function and its indifference curve for u(x) = u > 0 

Fig. 2.8b Graph of a power utility function and its indifference curve for u(x) = u > 0, α1+α2 = 
1
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Fig. 2.8c Graph of power utility function and its indifference curve for u(x) = u > 0, α1+α2 < 1 

Fig. 2.8d Graph of power utility function and its indifference curve for u(x) = u > 0, α1+α2 > 1
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Fig. 2.8e Graph of logarithmic utility function and its indifference curve for u(x) = u 

Fig. 2.8f Graph of subadditive utility function17 and its indifference curve for u(x) = u, α >  1

which describes by approximately how many units the utility of a consumption 
bundle x ∈ R2+ changes (increases, decreases, or remains unchanged) when quantity

17 When α = 1 then the subadditive utility function is linear. 
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Fig. 2.8g Graph of subadditive utility function and its indifference curve for u(x) = u, α <  1 

Fig. 2.8h Graph of Koopmans-Leontief utility function and its indifference curve for u(x) = u > 
0
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Table 2.2 Absolute and relative increments of values of utility functions 

u: R+ → R u: R2+ → R 

Absolute increment Δu = u(x + Δx) − u(x)
Δx ∈ R

Δ1u = u(x1 + Δx1, x2) − u(x1, x2)
Δ2u = u(x1, x2 + Δx2) − u(x1, x2) 

Relative increment Δu
Δx = u(x+Δx)−u(x)

Δx
Δ1u
Δx1 

= u(x1+Δx1,x2)−u(x1,x2)
Δx1

Δ2u
Δx2 

= u(x1,x2+Δx2)−u(x1,x2)
Δx2

of i-th good increases by one (notional) unit and quantity of the other good in the 
bundle does not change. 

Definition 2.22 A growth rate18 of consumption bundle utility with respect to 
quantity of i-th good in a bundle x ∈ R2+ is an expression: 

Si (x) = lim
Δxi→0 

u
(
xi + Δxi , x j

) − u
(
xi , x j

)

Δxi 
· 1 

u(x) 

= 
∂u(x) 
∂ xi 

· 1 

u(x) 
= 

Ti (x) 
u(x) 

i , j = 1, 2, i /= j(2.28) 

which describes by approximately what % the utility of a consumption bundle x ∈ R2+ 
changes (increases, decreases, or remains unchanged) when quantity of i-th good 
increases by one (notional) unit and quantity of the other good in the bundle does 
not change. 

Definition 2.23 An elasticity of consumption bundle utility with respect to 
quantity of i-th good in a bundle x ∈ R2+ is an expression: 

Ei (x) = lim
Δxi→0 

u
(
xi + Δxi , x j

) − u
(
xi , x j

)

Δxi 
· xi 
u(x) 

=∂u(x) 
∂ xi 

· xi 
u(x) 

= Si (x) · xi i , j = 1, 2, i /= j(2.29) 

which describes by approximately what % the utility of a consumption bundle x ∈ R2+ 
changes (increases, decreases, or remains unchanged) when quantity of i-th good 
increases by 1% and quantity of the other good in the bundle does not change.

18 The growth rate of a utility function is a term used very rarely in the consumer theory.
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Note 2.9 The growth rate and the elasticity of consumption bundle utility with 
respect to quantity of i-th good in a bundle x ∈ R

2+ are measures of a relative 
increment of utility function value. The increment is caused, respectively, by one-
unit or by 1% increase in quantity of i-th good in the consumption bundle x (Table 
2.3).

Note 2.10 The Koopmans-Leontief utility function is not differentiable, thus is not 
possible to determine the marginal utility, the growth rate, and the elasticity of utility 
using Definitions 2.21–2.23 

2.3 Substitute, Independent and Complementary Goods 

The substitutability concerns only these consumption bundles x = (x1, x2) ∈ R2+ 
whose utility is the same. 

Any two goods are called substitute goods (substitutes) if in order to keep 
some given level of utility of a consumption bundle x ∈ R

2+ when quantity of 
one of the goods is reduced (raised) one needs to compensate this change by 
appropriate increase (decrease) in quantity of the other good in a consumption 
bundle x. 

If in order to keep some given level of utility of a consumption bundle x ∈ R2+ 
when quantity of one of the goods is reduced (raised) one does need to compen-
sate for this change by any increase (decrease) in quantity of the other good in 
a consumption bundle x, then such two consumer goods are called independent 
goods. 

Any two goods are called complementary goods (complements) if in order 
to change the utility of a given consumption bundle x ∈ R

2+ one needs to 
simultaneously raise or reduce quantities of both goods in the bundle. 

Note 2.11 When classifying consumption bundles in substitutes or independent 
goods one takes into account only these goods which are considered in bundles 
with the same utility level (bundles indifferent to each other). 

Note 2.12 To state if any two goods in a consumption bundle x = (x1, x2) ∈ R2+ are 
complements to each other one needs to determine whether an increase (decrease) 
in the utility of this bundle requires a simultaneous raise (reduction) in quantities of 
both goods. If there is no such need then the goods are called not complementary. 

Let us define measures of the substitutability of consumer goods. For this 
purpose let us assume that we are given:

(1) a differentiable utility function u: R2+ → R,
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(2) an indifference curve - a set 

G(u) = {
x ∈ R2+|u(x) = u = const. >  0

}
.(2.30) 

of all bundles with the same reference utility u = const. >  0. 

Theorem 2.1 An indifference curve G(u) = {
x ∈ R2+|u(x) = u = const. >  0

}
is 

given. Then there exists a function g: R+ → R+ of a form x2 = g(x1) which 
describes the relationship between quantities of the second and of the first good in 
any consumption bundle with the same reference utility u = const. >  0. 

Example 2.3 Sketch graphs of a function g: R+ → R+ when a utility function 
is (Figs. 2.9a, 2.9b, 2.9c, 2.9d, 2.9e, 2.9f and 2.9g): 

1. linear: u(x) = a1x1 + a2x2 = u ⇔ x2 = g(x1) = u−a1x1 
a2 

, 

2. power function: u(x) = axα1 
1 x

α2 
2 = u ⇔ x2 = g(x1) =

( u 
a

) 1 
α2 x

− α1 
α2 

1 , 

3. logarithmic: u(x) = a1 ln x1 + a2 ln x2 = u ⇔ x2 = g(x1) = e 
u 
a2 x

− a1 
a2 

1 , 

4. subadditive: u(x) = a1xα 
1 + a2xα 

2 = u ⇔ x2 = g(x1) =
(
u−a1xα 

1 
a2

) 1 
α 
, 

5. Koopmans-Leontief function: u(x) = min{a1x1, a2x2} = u ⇔ x2 = g(x1) =
u 
a2 
, 

6. CES function: u(x) = (
a1x

γ 
1 + a2xγ 

2

) θ 
γ = u ⇔ x2 = g(x1) =

(
u 

γ 
θ −a1x

γ 
1 

a2

) 1 
γ 
.

Definition 2.24 A marginal rate of substitution of the first good by the second 
good in a consumption bundle x = (x1, x2) ∈ R

2+ with a utility level u(x) = 
const. >  0 is an expression: 

s12(x1, x2) = − lim
Δx1 → 0
Δx1 < 0

Δx2
Δx1 

∼= − 
dx2 
dx1 

,(2.31) 

which describes by approximately how many units one should raise the quantity of 
the second good in a consumption bundle x = (x1, x2) ∈ R2+ when the quantity of the 
first good has been reduced by one (notional) unit, in order to keep the consumption 
bundle utility unchanged (Table 2.4). 

Note 2.13 The sign “–” in Definition 2.24 results from the fact that the first good 
quantity has been reduced.



2.3 Substitute, Independent and Complementary Goods 33

Fig. 2.9a Graph of function g: R+ → R+ related to linear utility function 

Fig. 2.9b Graph of function g: R+ → R+ related to power utility function

Note 2.14 If a utility function u(x1, x2) and a reference utility u = const. >  0 are 
given, then a total differential of a given value of the utility function is of a form: 

du = 
∂u(x1, x2) 

∂ x1 
dx1 + 

∂u(x1, x2) 
∂x2 

dx2.(2.32)
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Fig. 2.9c Graph of function g: R+ → R+ related to logarithmic utility function 

Fig. 2.9d Graph of function g: R+ → R+ related to subadditive utility function

Since we are interested in consumption bundles with unchanged utility level, 
then: 

du = 0 ⇔ 
∂u(x1, x2) 

∂x1 
dx1 + 

∂u(x1, x2) 
∂x2 

dx2 = 0(2.33)
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Fig. 2.9e Graph of function g: R+ → R+ related to Koopmans-Leontief utility function 

Fig. 2.9f Graph of function g: R+ → R+ related to CES utility function when γ ∈ (0; +∞)

and hence we get 

s12(x1, x2) = − dx2 
dx1 

= 
∂u(x1,x2) 

∂x1 
∂u(x1,x2) 

∂x2 

or 

s21(x1, x2) = − dx1 
dx2 

= 
∂u(x1,x2) 

∂x2 
∂u(x1,x2) 

∂x1 

. 

(2.34)
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Fig. 2.9g Graph of function g: R+ → R+ related to CES utility function when γ ∈ (−1; 0)

Example 2.4 In view of Example 2.2 sketch a graph of the marginal rate of substi-
tution of the first good by the second good in a consumption bundle x0 ∈ R2+, for 
a utility function which is: linear, power, subadditive, or logarithmic (Figs. 2.10a, 
2.10b, 2.10c and 2.10d). 

Let us notice that for all utility functions considered above, except the linear one, 
we have dx1 = Δx1 and dx2 ∼= Δx2. Hence, s12(x) ∼= − dx2 

dx1 
= tgα. It means that 

the measure of substitution of the first good by the second good, in a consumption 
bundle x0 ∈ R2+ with a given utility level u

(
x0

) = u > 0, is approximately equal to 
a tangent of an angle α between the tangent line at point x0 and the horizontal axis.20 

Theorem 2.2 If a utility function u: R2+ → R is differentiable in int R2+, then: 

s12(x) = 
∂u(x) 
∂ x1 

∂u(x) 
∂ x2 

=
(

∂u(x) 
∂ x2 

∂u(x) 
∂x1

)−1 

= 
1 

s21(x) 
.(2.35) 

Note 2.15 The marginal rate of substitution of the first good by the second good is 
equal to the ratio of the marginal utility of the first good and the marginal utility of 
the second good in a consumption bundle x ∈ G ⊂ R2+.

20 In the case of the linear utility function the marginal rate of substitution s12(x) of the 1st good 
by the 2nd good is exactly equal to − dx2 

dx1 
= tgα. In the case of other utility functions, for which 

the substitutability can also be regarded, this equality is just an approximation.
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Fig. 2.10a Marginal rate of substitution of first good by second good in consumption bundle x0 ∈ 
R
2+ for linear utility function 

Fig. 2.10b Marginal rate of substitution of first good by second good in consumption bundle x0 ∈ 
R
2+ for power utility function

Note 2.16 The marginal rate of substitution of the second good by the first good is 
equal to a ratio of the marginal utility of the second good and the marginal utility of 
the first good in a consumption bundle x ∈ G ⊂ R2+. 

Note 2.17 The marginal rate of substitution of the second good by the first good is 
equal to an inverse of the marginal rate of substitution of the first good by the second 
good in a consumption bundle x ∈ G ⊂ R2+.
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Fig. 2.10c Marginal rate of substitution of first good by second good in consumption bundle x0 ∈ 
R
2+ for logarithmic utility function 

Fig. 2.10d Marginal rate of substitution of first good by second good in consumption bundle x0 ∈ 
R
2+ for subadditive utility function
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Table 2.4 Formulas of the marginal rate of substitution and elasticity of substitution of consumer 

goods in consumption bundle x ∈ G ⊂ R2+, for selected utility functions 

Type of a utility function 

u: R2+ → R 
Marginal rate of substitution of 
goods 

Elasticity of substitution of 
goods 

Linear 
u(x) = a1x1 + a2x2 
ai > 0, i = 1, 2 

s12(x) = a1 a2 

s21(x) = a2 a1 

ε12(x) = a1x1 a2x2 

ε21(x) = a2x2 a1x1 

Power function 
u(x) = axα1 

1 x
α2 
2 

a, αi > 0, i = 1, 2 

s12(x) = α1x2 
α2x1 

s21(x) = α2x1 
α1x2 

ε12(x) = α1 
α2 

ε21(x) = α2 
α1 

Logarithmic 
u(x) = a1 ln x1 + a2 ln x2 
ai > 0, xi ∈ int R+, 
i = 1, 2 

s12(x) = a1x2 a2x1 

s21(x) = a2x1 a1x2 

ε12(x) = a1 a2 

ε21(x) = a2 a1 

Subadditive 
u(x) = a1xα 

1 + a2xα 
2 

ai , α  >  0, i = 1, 2 

s12(x) = a1 a2

(
x1 
x2

)α−1 

s21(x) = a2 a1

(
x2 
x1

)α−1 

ε12(x) = a1 a2

(
x1 
x2

)α 

ε21(x) = a2 a1

(
x2 
x1

)α 

CES 

u(x) = (
a1x

γ 
1 + a2xγ 

2

) θ 
γ 

θ,  ai > 0, i = 1, 2 
γ ∈ (−1; 0) ∩ (0; +∞) 

s12(x) = a1x
γ −1 
1 

a2x
γ −1 
2 

s21(x) = a2x
γ −1 
2 

a1x
γ −1 
1 

ε12(x) = a1x
γ 
1 

a2x
γ 
2 

ε21(x) = a2x
γ 
2 

a1x
γ 
1 

Definition 2.25 An elasticity of substitution of the first good by the second good 
in a consumption bundle x = (x1, x2) ∈ R2+ with a utility level u(x) = const. >  0 
is an expression: 

ε12(x1, x2) = −  lim
Δx1 → 0
Δx1 < 0

Δx2 
x2

Δx1 
x1 

= − lim
Δx1 → 0
Δx1 < 0

Δx2
Δx1 

· x1 
x2 

∼= − 
dx2 
dx1 

· x1 
x2 

,(2.36) 

which describes by approximately what % one should raise the quantity of the second 
good in a consumption bundle x = (x1, x2) ∈ R2+ when the quantity of the first good 
has been reduced by 1%, in order to keep the consumption bundle utility unchanged21 

(Table 2.4).

21 The marginal rate of substitution and the elasticity of substitution are functions of quantities 
of consumer goods. Their economic interpretation concerns values of these functions for a given 
consumption bundle. 
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Note 2.18 The Koopmans-Leontief utility function is not differentiable, thus it is 
not possible to determine the marginal rate of substitution and the elasticity of 
substitution using Definitions 2.24 and 2.25. 

Example 2.5 We are given: 

1. a utility function u: R2+ → R, 
2. an indifference curvea set G(u) = {

x ∈ R2+|u(x) = u = const. >  0
}
of all 

bundles with the same reference utility u = const. >  0. 

Justify by geometric and analytical means that: 

(a) a linear utility function u(x1, x2) = a1x1 + a2x2, ai > 0, i = 1, 2 describes 
consumer goods which are “perfect” substitutes and not complementary to 
each other, 

(b) a Koopmans-Leontief utility function u(x1, x2) = min{a1x1, a2x2}, ai > 
0, i = 1, 2 describes consumer goods which are “perfect” complements and 
not substitute for each other. 

Ad (a) Let us notice that dx1 = Δx1 and dx2 = Δx2. Since s12(x) = − dx2 
dx1 

= 
tgα = const. we see that the marginal rate of substitution of the first (second) good 
by the second (first) in a consumption bundle x0 ∈ R2+, whose utility is described 
by the linear utility function, is constant. Thus, it does not depend on quantities of 
goods in the bundle. In this case the goods are called perfect substitutes. At the same 
time, we can notice that in order to rise (reduce) the utility level of any consumption 
bundle x = (x1, x2) ∈ R2+ it is enough to increase (decrease) the quantity of just 
one of the goods, not necessarily of both goods. This shows that the linear utility 
function describes goods that are not complementary to each other (Fig. 2.11a). 

Fig. 2.11a Marginal rate of 
substitution of first good by 
second good in consumption 
bundle x0 ∈ G ⊂ R2+ for 
linear utility function
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Ad (b) Let us notice that dx1 = Δx1 and dx2 = Δx2 = 0. Since s12(x) ∼= −dx2 
dx1 

we see that the marginal rate of substitution of the first good by the second in a 
consumption bundle x0 ∈ R

2+ is equal to s12
(
x0

) = 0, while that the marginal 
rate of substitution of the second good by the first good is undefined (its value is 
infinite). This shows that the Koopmans-Leontief utility function describes goods 
which are not substitute for each other. At the same time, we can notice that in order 
to rise (reduce) the utility level of any consumption bundle x = (x1, x2) ∈ R2+ it is 
necessary to increase (decrease) quantities of both goods in some fixed proportion, 
not just one of the goods. In this case the goods are called perfect complements 
(Fig. 2.11b). 

Note 2.19 The substitutability of consumer goods takes place when the utility of 
a consumption bundle x = (x1, x2) ∈ R

2+ is described by an increasing or by a 
decreasing utility function. 

Note 2.20 The complementarity of consumer goods takes place when the utility of 
a consumption bundle x = (x1, x2) ∈ R2+ is described by a weakly increasing or by 
a weakly decreasing utility function.

Fig. 2.11b Marginal rate of substitution of first good by second good in consumption bundle x0 ∈ 
G ⊂ R2+ for Koopmans-Leontief utility function 
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2.4 Marshallian Demand Function 

2.4.1 Static Approach 

Let us consider a market for two consumer goods where: 

i = 1, 2—consumer goods (products and services), 
X = R2+—a goods space, 
p = (p1, p2) ∈ R2+—a vector of prices of consumer goods, 
x = (x1, x2) ∈ B ⊂ R

2+—a bundle of goods that the consumer wants to 
purchase (a consumption bundle), 
B = {x = (x1, x2) ∈ R2+|x1 ≤ b1, x2 ≤ b2}—a supply set, 
bi , i = 1, 2—supply of i-th consumer good,22 

I ∈ int R+—a consumer’s income,23 

u:R2+ → R—a utility function describing the preferences of a consumer 
(describing a relation of consumer preference). 
D(p, I ) = {

x ∈ R2+|p1x1 + p2x2 ≤ I
} ⊂ X = R2+—a set of all consumption 

bundles whose value is not greater than the consumer’s income (a budget set), 

Definition 2.26 A bundle x is called a limit of a sequence
{
xi

}+∞ 
i=1 if a limit of 

sequence of metric values lim 
i→+∞ 

d(xi , x) = 0, which can be written as 

lim 
i→+∞ 

xi = x or xi →i→+∞ x.(2.37) 

Definition 2.27 The budget set D(p, I ) ⊂ X = R2+ is a closed set because: 

∀ xi ∈ D(p, I ) lim 
i→+∞ 

xi = x ⇒ x ∈ D(p, I ).(2.38) 

Definition 2.28 The budget set D(p, I ) ⊂ X = R2+ is a bounded set because: 

∀x1, x2 ∈ D(p, I ) ∃N > 0 d
(
x1, x2

)
< N .(2.39) 

Definition 2.29 The budget set D(p, I ) ⊂ X = R2+ is a compact set because is 
closed and bounded. 

Definition 2.30 The budget set D(p, I ) ⊂ X = R2+ is a convex set because: 

∀x1, x2 ∈ D(p, I ) ∀α, β ≥ 0, α  + β = 1 αx1 + βx2 ∈ D(p, I ).(2.40)

22 Later in this chapter we assume that the supply of each good is bounded but sufficiently big so 
that it is not a constraint for a consumer when he/she chooses his/her optimal consumption bundle. 
23 Here we do not focus on what the source of this income is.
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Definition 2.31 A consumption bundle x̄ ∈ D(p, I ) is called an optimal consump-
tion bundle in the budget set D(p, I ) ⊂ X = R2+ if: 

∀x ∈ D(p, I ) x̄>x ⇔ u(x̄) ≥ u(x),(2.41) 

which means that it is not worse than any other consumption bundle in a set D(p, I ) ⊂ 
B ⊂ X . 

A consumer wants to choose an optimal consumption bundle in a set D( p, I ) ⊂ 
B ⊂ X . In view of a selected optimality criterion, which means the utility, 
this problem of choice of the optimal consumption bundle can be written as a 
consumption utility maximization problem of a form: 

(P1) u(x) → max(2.42) 

x ∈ D(p, I )(2.43) 

or 

(P2) u(x1, x2) → max(2.44) 

p1x1 + p2x2 ≤ I(2.45) 

x1, x2 ≥ 0.(2.46) 

Note 2.21 The problems (P1) and (P2) are equivalent problems of mathematical 
programming. If the utility function u: R2+ → R is a linear (concave) function 
then (P2) is the problem of linear programming. Whereas when the utility function 
u: R2+ → R is a nonlinear function (usually strictly concave, as we are interested in 
the utility maximization), then (P2) is a nonlinear programming problem. Conditions 
(2.45)–(2.46) define a set of feasible solutions in this problem. 

Example 2.6 Use the geometric method to find the optimal solution to the problem 
(P2) when the utility function u: R2+ → R is24 : 

(a) linear u(x1, x2) = a1x1 + a2x2, ai > 0, i = 1, 2 
(increasing, differentiable, concave), 

(b) power function u(x1, x2) = axα1 
1 x

α2 
2 , a, αi > 0, i = 1, 2, α1 + α2 < 1, 

(increasing, differentiable, strictly concave),

24 Apply conclusions resulting from Example 2.4. 
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(c) logarithmic u(x1, x2) = a1 ln x1 + a2 ln x2, ai > 0, xi ∈ int R+, i = 1, 2 
(increasing, differentiable, strictly concave), 

(d) subadditive u(x1, x2) = a1xα 
1 + a2xα 

2 , a1, a2 > 0, α  ∈ (0, 1) 
(increasing, differentiable, strictly concave), 

(e) Koopmans-Leontief function u(x1, x2) = min{a1x1, a2x2}, ai > 0, i = 1, 2 
(non-decreasing, non-differentiable, continuous, concave). 

Justify that: 

– for a linear utility function: 
– if ∃λ >  0 a = (a1, a2) = λ(p1, p2) = λp, the problem (P2) has an infinite 

number of optimal solutions (Fig. 2.12a) belonging to a segment x̄ = αx1 + 
βx2, ∀α, β ≥ 0, α  + β = 1, where 

x1 =
(

I 

p1 
, 0

)
, x2 =

(
0, 

I 

p2

)
, thus 

x̄ =
(

α 
I 

p1 
, β  

I 

p2

)
, ∀α, β ≥ 0, α  + β = 1, 

– if a = (a1, a2) /= λ( p1, p2) = λp, then problem (P2) has exactly one optimal 
solution (Figs. 2.12b and 2.12c): 

x̄ =
(

I 

p1 
, 0

)
or x̄ =

(
0, 

I 

p2

)
, 

– for the remaining utility functions the problem (P2) has exactly one optimal 
solution (Figs. 2.12d, 2.12e, 2.12f): 

∃1 α, β >0, α  + β = 1 x̄ = αx1 + βx2, where 

x1 =
(

I 

p1 
, 0

)
, x2 =

(
0, 

I 

p2

)
, thus: 

∃1 α, β > 0, α  + β = 1 x̄ =
(

α 
I 

p1 
, β  

I 

p2

)
.

Ad (e) Let us present a geometric illustration of a solution to the problem of the 
consumption utility maximization: 

u(x1, x2) = min{a1x1, a2x2} → max(2.47) 

p1x1 + p2x2 ≤ I ,(2.48) 

x1, x2 ≥ 0,(2.49) 

in the goods space X = R2+.
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Fig. 2.12a Solution to consumption utility maximization problem with linear utility function 
when ai = λpi , i = 1, 2 

Fig. 2.12b Solution to consumption utility maximization problem with linear utility function 
when ai /= λpi , i = 1, 2 and a1 > a2
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Fig. 2.12c Solution to consumption utility maximization problem with linear utility function 
when ai /= λpi , i = 1, 2 and a1 < a2 

Fig. 2.12d Solution to consumption utility maximization problem with power utility function
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Fig. 2.12e Solution to consumption utility maximization problem with logarithmic utility func-
tion 

Fig. 2.12f Solution to consumption utility maximization problem with subadditive utility function
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Fig. 2.12g Solution to consumption utility maximization problem with Koopmans-Leontief func-
tion 

On the basis of Fig. 2.12g we can state that the optimal solution satisfies 
conditions: 

p1 x̄1 + p2 x̄2 = I ,(2.50) 

a1 x̄1 = a2 x̄2.(2.51) 

To find the optimal solution one needs to solve the equation system (2.50)– 
(2.51). The solution has a form: 

x̄ =
(

a2 I 

a2 p1 + a1 p2 
, 

a1 I 

a2 p1 + a1 p2

)

=
(

p1a2 
(p1a2 + p2a1) 

I 

p1 
, 

p2a1 
(p1a2 + p2a1) 

I 

p2

)
=

(
α 

I 

p1 
, β  

I 

p2

)
,(2.52) 

where α = p1a2 
( p1a2+p2a1) > 0, β  = p2a1 

( p1a2+p2a1) > 0, such that α + β = 1. 

Conclusions 
C. 2.1 A set of feasible solutions D(p, I ) ⊂ B ⊂ R2+ is a compact (closed and 
bounded) and convex set. 

C. 2.2 The utility function (being the objective function of the optimization 
problem) is increasing or weakly increasing and concave or strictly concave.
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C. 2.3 If the set of feasible solutions is compact and convex, and the objective 
function is strictly concave and increasing, then the problem (P2) has exactly one 
optimal solution. 

C. 2.4 If the set of feasible solutions is compact and convex, and the objective 
function is concave and increasing or weakly increasing, then the problem (P2) 
has at least one optimal solution. If there are more than one, they form a compact 
and convex set. 

Let us present analytical methods for finding the optimal solution to the 
consumption utility maximization problem (P2). 

Method 2.1 If the set of feasible solutions D(p, I ) ⊂ X = R
2+ is compact and 

convex, and the utility function is increasing, concave or strictly concave, then the 
optimal solution x̄ = (x̄1, x̄2) to the problem (P2) belongs to the budget line L(p, I ). 

It means that: 

p1x1 + p2x2 = I(2.53) 

and hence: 

x2 = 
I − p1x1 

p2 
.(2.54) 

Substituting (2.54) into the objective function in problem (P2), we get its 
equivalent form: 

(P3) h(x1) = u
(
x1, 

I − p1x1 
p2

)
→ max(2.55) 

0 ≤ x1 ≤ 
I 

p1 
.(2.56) 

Case 1 
If the objective function in problem (P3) is strictly concave in the set of feasible 

solutions, then problem (P3)condition has exactly one optimal solution x̄1 ∈
(
0; I 

P1

)

such that 

dh(x1) 
dx1

|
|
|
| x1 = x̄1 

= 0 necessary condition,(2.57) 

d2h(x1) 
dx2 1

|
|
|
| x1 = x̄1 

< 0 sufficient condition,(2.58)
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for which the objective function has the maximum valuecondition. 
In that case the optimal solution to problem (P2) is a consumption bundle: 

x̄ =
(
x̄1, 

I − p1 x̄1 
p2

)
> (0, 0).(2.59) 

Moreover: 

u(x̄) = u
(
x̄1, 

I − p1 x̄1 
p2

)
= h(x̄1),(2.60) 

which means that maximum values of objectives functions in problems (P2) and (P3) 
are the same. 

Case 2 
If the objective function in problem (P3) is concave but not strictly in the set of 

feasible solutions, then there exists at least one quantity x̄1 ∈
⎡
0; I 

p1

⎤
for which the 

objective function has the maximum value. 
If the objective function in problem (P3) has the maximum value for x̄1 = I 

p1 
then the optimal solution to the maximization problem (P2) is a consumption bundle: 

x̄ =
(

I 
p1 

, 0
)
. 

If the objective function in problem (P3) has the maximum value for x̄1 = 0 then 
the optimal solution to the maximization problem (P2) is a consumption bundle: 

x̄ =
(
0, I 

p2

)
. 

If the objective function in problem (P3) has the maximum value for both x̄1 = 
0 and x̄1 = I 

p1 
then the maximization problem (P2) has infinitely many optimal 

solutions which form a compact and convex set of optimal consumption bundles: 

x̄ = αx1 + βx2, ∀α, β ≥ 0, α  + β = 1,(2.61) 

which is the same as the budget line L(p, I ). 

Conclusions 
C. 2.5 If a utility function u:R2+ → R in problem (P2) is increasing or weakly 
increasing then the optimal solution belongs to the budget line L(p, I ). 

C. 2.6 If a utility function u:R2+ → R in problem (P2) is increasing and strictly 
concave in a set D(p, I ) ⊂ B ⊂ R2+ then problem (P2) has exactly one optimal 
solution. This optimal solution belongs to the budget line L(p, I ) and is of a form: 

∃1 α, β >0, α  + β = 1 

x̄ = α
(

I 

p1 
, 0

)
+ β

(
0, 

I 

p2

)
=

(
α 

I 

p1 
, β  

I 

p2

)
> (0, 0)(2.62)
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C. 2.7 If a utility function u: R2+ → R in problem (P2) is increasing and concave 
but not strictly in a set D(p, I ) ⊂ B ⊂ R2+ then three cases are possible: 

(a) problem (P2) has exactly one optimal solution. It belongs to the budget line 
and is of a form: 

x̄ =
(

I 

p1 
, 0

)
,(2.63) 

(b) problem (P2) has exactly one optimal solution. It belongs to the budget line 
and is of a form: 

x̄ =
(
0, 

I 

p2

)
,(2.64) 

(c) problem (P2) has infinitely many optimal solutions forming the budget line: 

∀ α, β > 0, α  + β = 1 

x̄ = α
(

I 

p1 
, 0

)
+ β

(
0, 

I 

p2

)
=

(
α 

I 

p1 
, β  

I 

p2

)
.(2.65) 

Method 2.2 We know that if a utility function u: R2+ → R is increasing and strictly 
concave, then problem (P2) has exactly one optimal solution. It belongs to the budget 
line and is of a form: 

∃1 α, β > 0, α  + β = 1 

x̄ = α
(

I 

p1 
, 0

)
+ β

(
0, 

I 

p2

)
=

(
α 

I 

p1 
, β  

I 

p2

)
> (0, 0). 

(2.66) 

At a point indicating the optimal consumption bundle x̄ = (x̄1, x̄2) it is satisfied 
that the budget line is tangent to an indifference curve. Hence we get 

s12(x̄1, x̄2) = −  
dx2 
dx1

|
||
|x = x̄ 

= 

∂u(x1,x2) 
∂ x1

|
|
|
|x = x̄ 

∂u(x1,x2) 
∂ x2

|
|
|
|x = x̄ 

= 
p1 
p2 

,(2.67) 

which means that if a consumption bundle is optimal then a marginal rate of sub-
stitution of the first good by the second good in this bundle is constant and equal 
to ratio of prices of these two goods. This property, related to a linear budget
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constraint and to an increasing, differentiable, strictly concave utility function, is 
called second Gossen’s law.25 

We see that to find the optimal solution to problem (P2) one needs to solve a 
system of two equations with two unknowns: 

s12(x̄1, x̄2) = 

∂u(x1,x2) 
∂ x1

|
|
|
|x = x̄ 

∂u(x1,x2) 
∂ x2

|
|
|
|x = x̄ 

= 
p1 
p2 

,(2.68) 

p1 x̄1 + p2 x̄2 = I .(2.69) 

Method 2.3 Let us write problem (P2) in a form of a Lagrange function: 

F(x1, x2, λ) = u(x1, x2) + λ(I − p1x1 − p2x2),(2.70) 

where λ ≥ 0 denotes a Lagrange multiplier. 
If a utility function u: R2+ → R is increasing and strictly concave then problem 

(P2) has exactly one optimal solution. It belongs to the budget line and has a form: 

∃1 α, β >0, α  + β = 1 

x̄ = α
(

I 

p1 
, 0

)
+ β

(
0, 

I 

p2

)
=

(
α 

I 

p1 
, β  

I 

p2

)
> (0, 0),(2.71) 

and is a solution to a system of 3 equations with 3 unknowns: 

∂ F
(
x1, x2, λ̄

)

∂x1

|
|
|
|x = x̄ 

= 
∂u(x1, x2) 

∂x1

|
|
|
| x = x̄ 

− λ̄p1 = 0,(2.72) 

∂ F
(
x1, x2, λ̄

)

∂ x2

|
|
|
| x = x̄ 

= 
∂u(x1, x2) 

∂ x2

|
|
|
| x = x̄ 

− λ̄ p2 = 0,(2.73) 

∂ F(x̄1, x̄2, λ) 
∂λ

|
||
|λ = λ̄ 

= I − p1 x̄1 − p2 x̄2 = 0,(2.74) 

or to an equivalent equation system of a form: 

∂u(x1, x2) 
∂x1

|
|
|
|x = x̄ 

= λ̄ p1,(2.75)

25 First Gossen’s law is presented in Sect. 2.2, Note  2.6. 



2.4 Marshallian Demand Function 53

∂u(x1, x2) 
∂ x2

|
|
|
|x = x̄ 

= λ̄p2,(2.76) 

p1 x̄1 + p2 x̄2 = I ,(2.77) 

where: 

λ̄ = ∂u(x1,x2) 
∂ I

|
|
|
|x = x̄ 

> 0 denotes an optimal Lagrange multiplier, which deter-

mines approximately how much a utility of the optimal consumption bundle changes 
(generally increases), when a consumer’s income increases by one notional unit. 

The equation system (2.75)–(2.77) has an interesting economic interpretation. If 
a bundle x̄ ∈ D(p, I ) is the optimal solution to problem (P2), then: 

(a) the marginal utility of i-th good is proportional to the price of this good, 
(b) money value of the optimal consumption bundle is equal to the consumer’s 

income, 
(c) a marginal utility of a money unit for the purchase of each of both goods 1 

p1 
· 

∂u(x) 
∂ x1

|
||
|x = x̄ 

= 1 
p2 

· ∂u(x) 
∂ x2

|
||
|x = x̄ 

= λ̄ >  0 is constant and equal to the optimal 

value of a Lagrange multiplier. 

Let us notice that by solving the Eqs. (2.75)–(2.77), for example by dividing Eq. 
(2.75) into both sides by Eq. (2.76), we get a system: 

∂u(x1,x2) 
∂ x1

|
||
| x = x̄ 

∂u(x1,x2) 
∂x2

|
||
| x = x̄ 

= 
p1 
p2 

,(2.78) 

p1 x̄1 + p2 x̄2 = I ,(2.79) 

which is equivalent to system (2.68)–(2.69). 
Equation (2.78) has an interesting economic interpretation too, since it shows that 

when a consumption bundle is optimal then a marginal rate of substitution of the first 
(second) good by the second (first) good in this bundle is constant and equal to the 
ratio of prices of these two goods.26 

Example 2.7 Using methods 2.1–2.3 find the optimal solution to the consumption 
utility maximization problem: 

u(x1, x2) → max(2.80)

26 This is the case when the second Gossen’s law is satisfied.
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(P2) p1x1 + p2x2 ≤ I(2.81) 

x1, x2 ≥ 0,(2.82) 

when: 

(a) u(x1, x2) = axα1 
1 x

α2 
2 a, αi > 0, i = 1, 2 α1 + α2 < 1, 

(b) u(x1, x2) = a1 ln x1 + a2 ln x2 ai > 0, xi ∈ int R+, i = 1, 2. 

Check that for: 

(a) the power utility function: 

x̄ =
(

α1 

α1 + α2 

I 

p1 
, 

α2 

α1 + α2 

I 

p2

)
> (0, 0),(2.83) 

notice that if α = α1 
α1+α2 

and β = α2 
α1+α2 

, then α, β > 0, α  + β = 1 and hence: 

x̄ =
(

α 
I 

p1 
, β  

I 

p2

)
> (0, 0), 

while 

u(x̄) = a
(

I 

α1 + α2

)α1+α2
(

α1 

p1

)α1
(

α2 

p2

)α2 

> 0.(2.84) 

(b) the logarithmic utility function: 

x̄ =
(

a1 
a1 + a2 

I 

p1 
, 

a2 
a1 + a2 

I 

p2

)
> (0, 0),(2.85) 

notice that if α = a1 
a1+a2 

and β = a2 
a1+a2 

, then α, β > 0, α  + β = 1 and hence: 

x̄ =
(

α 
I 

p1 
, β  

I 

p2

)
> (0, 0), 

while 

u(x̄) = ln

⎡(
I 

a1 + a2

)a1+a2( a1 
p1

)a1( a2 
p2

)a2
⎤

> 0.(2.86)
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Definition 2.32 A mapping ϕ: int R3+ → R2+ which assigns the optimal solution 
of the maximization problem (P2) of consumption utility to any price vector p = 
(p1, p2) ∈ int R2+ and any consumer’s income I > 0 is called a consumer demand 
function and is of a form: 

ϕ(p, I ) = (ϕ1(p1, p2, I ), ϕ2( p1, p2, I )) = (x̄1, x̄2) = x̄.(2.87) 

Note 2.22 Since the function of consumer demand is a vector function then notation 
means: 

x̄1 = ϕ1( p1, p2, I )—the demand for the first consumer good expressed in 
physical units, 
x̄2 = ϕ2( p1, p2, I )—the demand for the second consumer good expressed in 
physical units. 

Note 2.23 The vector function of consumer demand ϕ(p, I ) = 
(ϕ1( p1, p2, I ), ϕ2( p1, p2, I )) is called a Marshallian demand function. 

Definition 2.33 A mapping ν: int R3+ → int R which assigns the maximum utility 
of the consumption bundle x̄ = (x̄1, x̄2) to any price vector p = ( p1, p2) ∈ int R2+ 
and any consumer’s income I > 0 is called an indirect function of consumption 
utility and is of a form: 

ν(p, I ) = u(x̄) = u(x̄1, x̄2) = u(ϕ1( p1, p2, I ), ϕ2( p1, p2, I )).(2.88) 

Let us analyse important properties of the Marshallian demand function and the 
indirect utility function. 

Definition 2.34 A consumer demand function is homogeneous of degree 0 when: 

∀λ >  0 ϕ(λ p1, λp2, λI ) = λ0ϕ(p1, p2, I ) = ϕ(p1, p2, I ),(2.89) 

which means that: 

(a) a proportionate change in prices of consumer goods and in a consumer’s income 
does not change the demand for consumer goods, 

(b) the demand for consumer goods’ does not depend on absolute levels of goods 
prices and a consumer’s income, but on relationships amongst them. 

Definition 2.35 An indirect utility function is homogeneous of degree 0 when: 

∀λ >  0 ν(λp1, λp2, λI ) = λ0ν(p1, p2, I ) = ν(p1, p2, I ),(2.90) 

which means that:
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(a) a proportionate change in prices of consumer goods and in a consumer’s income 
does not change a utility of the optimal consumption bundle, 

(b) a utility of the optimal consumption bundle does not depend on absolute levels of 
goods’ prices nor on a consumer’s income, but on relationships amongst them. 

Example 2.8 (continuation of Example 2.7 (a) We are given a consumer demand 
function: 

x̄ =(x̄1, x̄2) =
(

α1 

α1 + α2 

I 

p1 
, 

α2 

α1 + α2 

I 

p2

)

=(ϕ1(p1, p2, I ), ϕ12( p1, p2, I )) = ϕ(p, I ).(2.91) 

Let us notice that if α = α1 
α1+α2 

and β = α2 
α1+α2 

, then α, β > 0, α  + β = 1 and 
hence: 

x̄ =
(
α I p1 , β  I p2

)
> (0, 0). The corresponding indirect utility function is of a 

form: 

u(x̄) = ν(p1, p2, I ) = a
(

I 

α1 + α2

)α1+α2
(

α1 

p1

)α1
(

α2 

p2

)α2 

> 0.(2.92) 

1. Based on Definitions 2.34 and 2.35, justify that the consumer demand function 
and the indirect utility function are homogeneous of degree 0. 

2. Justify this property for both functions by geometric means. 

Ad 1 Homogeneity of degree 0 of the consumer demand function: 

∀λ >  0 (ϕ1(λp1, λp2, λI ), ϕ2(λp1, λp2, λI )) =
(

α1 

α1 + α2 

λI 

λ p1 
, 

α2 

α1 + α2 

λI 

λ p2

)

= (ϕ1( p1, p2, I ), ϕ2(p1, p2, I ))(2.93) 

Homogeneity of degree 0 of the indirect utility function: 

∀λ >  0 ν(λp1, λp2, λI ) = a
(

λI 

α1 + α2

)α1+α2
(

α1 

λp1

)α1
(

α2 

λp2

)α2 

= 
λα1+α2 

λα1 λα2 
a

(
I 

α1 + α2

)α1+α2
(

α1 

p1

)α1
(

α2 

p2

)α2 

= ν(p1, p2, I ).(2.94) 

Ad 2 Figure 2.13 shows that simultaneous and proportionate change in a consumer’s 
income and consumer goods’ prices does not change the demand for both goods, and 
thus a value of the intermediate utility function is unchanged too. We can interpret 
these dependencies in terms of a consumer’s nominal and real income. If we consider 
a nominal income as I > 0, then we should consider a real income as: I 

pi 
> 

0, i = 1, 2. When the prices of goods and the consumer’s nominal income change
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Fig. 2.13 Homogeneity of 
degree 0 of consumer 
demand function and of 
indirect utility function 

proportionally (they increase when λ >  1 or decrease when λ ∈ (0; 1)) then the real 
income does not change. Thus, the value of the demand function for both goods and 
the value of the indirect utility function do not change as well. 

Definition 2.36 A derivative of the indirect utility function with respect to a 
consumer’s income is called a marginal utility of income and given as: 

∂ν( p1, p2, I ) 
∂ I

= lim
ΔI →0 

ν(p1, p2, I + ΔI ) − ν( p1, p2, I )
ΔI 

,(2.95) 

determining approximately by how much a utility of the optimal consumption bundle 
changes (usually increases) when a consumer’s income increases by a (notional) unit. 

Theorem 2.3 If a utility function u: R2+ → R is increasing, twice differentiable and 
strictly concave, then ∀p1, p2, I > 0: 

1. a consumer demand function ϕ: int R3+ → R2+ is differentiable in its domain, 
2. an indirect utility function ν: int R3+ → R is differentiable in its domain, 

3. ∂ν( p1, p2,I ) 
∂ I /= 0 ⇒ ϕi (p1, p2, I ) = −  

∂ν(p1,p2,I ) 
∂ pi 

∂ν(p1,p2,I ) 
∂ I 

, i = 1, 2, 

(it is the so-called Roy’s identity, which allows to determine a consumer’s 
demand function. for i-th product using analytical form of an indirect utility 
function), 

4. an increase in a consumer’s income results in an increase of the demand for at 
least one good: 

∃i ∂ϕi (p1, p2, I ) 
∂ I 

> 0, i = 1, 2,
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5. an increase in the price of any good results in a decrease of the demand for at 
least one of the goods: 

∀i ∃ j 
∂ϕ j ( p1, p2, I ) 

∂ pi 
< 0, i, j = 1, 2, 

6. ∂ν(p1, p2,I ) 
∂ I = 1 

pi 
∂u(x1,x2) 

∂ xi

|
|
||x = x̄ 

= λ̄ >  0, i = 1, 2, 

which means that the marginal utility of a consumer’s income is equal to the 
marginal utility of a money unit for the purchase of i-th good (which we know 
to be equal to the optimal Lagrange multiplier and therefore is the same for any 
consumer good). 

Example 2.9 For a consumer demand function and the corresponding indirect utility 
function: 

(a) ϕ(p1, p2, I ) =
(

α1 
α1+α2 

I 
p1 

, α2 
α1+α2 

I 
p2

)
, 

ν(p1, p2, I ) = a
(

I 

α1 + α2

)α1+α2
(

α1 

p1

)α1
(

α2 

p2

)α2 

> 0 

(in case of a power utility function in problem (P2)) 

(b) ϕ(p1, p2, I ) =
(

a1 
a1+a2 

I 
p1 

, a2 
a1+a2 

I 
p2

)
, 

ν( p1, p2, I ) = ln

⎡(
I 

a1 + a2

)a1+a2( a1 
p1

)a1( a2 
p2

)a2
⎤

> 0 

(in case of a logarithmic utility function in problem (P2)), 

justify the properties that appear in statements 3–6 of Theorem 2.3. 

Ad 3a Let us calculate partial derivatives of an indirect utility function with respect 
to the goods’ prices and with respect to a consumer’s income, having the power 
utility function: 

∂ν(p1, p2, I ) 
∂ p1 

= −α1a

(
I 

α1 + α2

)α1+α2 

α α1 1 α α2 2 p
−α1−1 
1 p−α2 

2 < 0,(2.96) 

∂ν( p1, p2, I ) 
∂ p2 

= −α2a

(
I 

α1 + α2

)α1+α2 

α α1 1 α α2 2 p
−α1 
1 p−α2−1 

2 < 0,(2.97) 

∂ν(p1, p2, I ) 
∂ I

= a
(

I 

α1 + α2

)α1+α2−1 

α α1 1 α α2 2 p
−α1 
1 p−α2 

2 > 0,(2.98)
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which means that when a utility function is a power function then the indirect utility 
function is increasing in the consumer’s income and decreasing in consumer goods’ 
prices. Hence Roy’s identities are satisfied: 

∂ν( p1, p2, I ) 
∂ I

/= 0 ⇒ ϕ1(p1, p2, I ) = −  
∂ν( p1, p2,I ) 

∂ p1 
∂ν( p1, p2,I ) 

∂ I 
= α1 

α1 + α2 

I 

p1 
, 

⇒ ϕ2(p1, p2, I ) = −  
∂ν( p1, p2,I ) 

∂ p2 
∂ν( p1, p2,I ) 

∂ I 
= α2 

α1 + α2 

I 

p2 
.(2.99) 

Ad 3b Let us calculate partial derivatives of the indirect utility function with respect 
to the goods’ prices and with respect to a consumer’s income, having the logarithmic 
utility function: 

∂ν(p1, p2, I ) 
∂ p1 

= −α1 p
−1 
1 < 0,(2.100) 

∂ν( p1, p2, I ) 
∂ p2 

= −α2 p
−1 
2 < 0,(2.101) 

∂ν(p1, p2, I ) 
∂ I

=
(

I 

α1 + α2

)−1 

> 0,(2.102) 

which means that when a utility function is logarithmic then the indirect utility 
function is increasing in a consumer’ income and decreasing in consumer goods’ 
prices. Hence Roy’s identities are satisfied: 

∂ν(p1, p2, I ) 
∂ I

/= 0 ⇒ ϕ1( p1, p2, I ) = −  
∂ν( p1, p2,I ) 

∂ p1 
∂ν( p1, p2,I ) 

∂ I 
= a1 

a1 + a2 
I 

p1 
, 

∧ ϕ2( p1, p2, I ) = −  
∂ν( p1, p2,I ) 

∂ p2 
∂ν( p1, p2,I ) 

∂ I 
= 

a2 
a1 + a2 

I 

p2 
.(2.103) 

Ad 4a Let us determine partial derivatives of the demand function for the i-th good 
with respect to the consumer’s income, having the power utility function: 

∂ϕ1(p1, p2, I ) 
∂ I

= α1 

(α1 + α2)p1 
> 0,(2.104) 

∂ϕ2(p1, p2, I ) 
∂ I

= α2 

(α1 + α2)p2 
> 0,(2.105) 

which means that in the case of the power utility function the demand function for 
the i-th good is increasing in a consumer’s income.
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Ad 4b Let us determine partial derivatives of the demand function for the i-th good 
with respect to the consumer’s income, having the logarithmic utility function: 

∂ϕ1( p1, p2, I ) 
∂ I

= a1 
(a1 + a2) p1 

> 0,(2.106) 

∂ϕ2( p1, p2, I ) 
∂ I

= a2 
(a1 + a2) p2 

> 0,(2.107) 

which means that in the case of the logarithmic utility function the demand function 
for the i-th good is increasing in a consumer’s income. 

Ad 5a Let us calculate partial derivatives of the demand function for the i-th good 
with respect to prices of both goods, having the power utility function: 

∂ϕ1(p1, p2, I ) 
∂ p1 

= − α1 I 

(α1 + α2) p2 1 
< 0,(2.108) 

∂ϕ2( p1, p2, I ) 
∂ p2 

= − α2 I 

(α1 + α2)p2 2 
< 0,(2.109) 

∂ϕ1( p1, p2, I ) 
∂ p2 

= 
∂ϕ2( p1, p2, I ) 

∂ p1 
= 0,(2.110) 

which means that an increase in the price of i-th commodity results in a demand 
decrease for i-th good. On the other hand, an increase in the price of j-th good has 
no effect on the demand for i-th good, where i /= j , i, j = 1, 2. 

Ad 5b Let us calculate partial derivatives of the demand function for i-th good with 
respect to the prices of both goods, having the logarithmic utility function: 

∂ϕ1( p1, p2, I ) 
∂ p1 

= − a1 I 

(a1 + a2) p2 1 
< 0,(2.111) 

∂ϕ1( p1, p2, I ) 
∂ p2 

= − a2 I 

(a1 + a2) p2 2 
< 0,(2.112) 

∂ϕ1(p1, p2, I ) 
∂ p2 

= −∂ϕ2( p1, p2, I ) 
∂ p1 

= 0,(2.113) 

which means that an increase in the price of i -th commodity results in a demand 
decrease for i -th good. On the other hand, an increase in the price of j -th good has 
no effect on the demand for i -th good, where i /= j, i, j = 1, 2.
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Ad 6a ∂ν(p1, p2, I ) 
∂ I

= 
1 

p1 

∂u(x1, x2) 
∂x1

|
|
|
|x = x̄ 

= 
1 

p2 

∂u(x1, x2) 
∂ x2

|
|
|
|x = x̄ 

= a
(

I 

α1 + α2

)α1+α1−1 

α α1 1 α α2 2 p
−α1 
1 p−α2 

2 = λ̄ >  0.(2.114) 

Ad 6b 

∂ν(p1, p2, I ) 
∂ I

= 
1 

p1 

∂u(x1, x2) 
∂ x1

|
|
|
| x = x̄ 

= 
1 

p2 

∂u(x1, x2) 
∂ x2

|
|
|
|x = x̄ 

=
(

I 

α1 + α2

)−1 

= λ̄ >  0.(2.115) 

It follows from conditions (2.114) and (2.115) that in the case of power and 
logarithmic utility functions, the marginal utility of the consumer’s income, the 
marginal utility of a money unit for the purchase of i-th good and the opti-
mal Lagrange multiplier are equal to each other when the consumption bundle 
is optimal. 

Let us define the criteria to classify consumption goods according to reactions 
of the consumer demand for goods to changes in goods’ prices and in a consumer’s 
income. 

Definition 2.37 A derivative of a demand function ϕi with respect to the price p j is 
called a marginal demand for i-th good with respect to price of j -th good and 
given as an expression: 

Pi j  (p1, p2, I ) = 
∂ϕi (p1, p2, I ) 

∂ p j 
, i, j = 1, 2,(2.116) 

which determines approximately by how many units the demand for i-th commodity 
changes when the price of j-th commodity increases by a (notional) unit, ceteris 
paribus. 

Definition 2.38 A derivative of a demand function ϕi with respect to a consumer’s 
income is called a marginal demand for i-th good with respect to a consumer’s 
income and given as an expression: 

Pi ( p1, p2, I ) = 
∂ϕi ( p1, p2, I ) 

∂ I 
, i, j = 1, 2,(2.117) 

which determines approximately by how many units the demand for i-th good 
changes when a consumer’s income increases by a (notional) unit, ceteris paribus.
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Definition 2.39 An elasticity of demand for i-th good with respect to the price 
of j -th good is given as an expression: 

Ei j  (p1, p2, I ) = 
∂ϕi (p1, p2, I ) 

∂ p j 
p j 

ϕi ( p1, p2, I ) 
, i, j = 1, 2,(2.118) 

which determines approximately by what % the demand for i-th good changes when 
the price of j-th good increases by 1%, ceteris paribus. 

Note 2.24 If i = j , then an expression: 

Eii  (p1, p2, I ) = 
∂ϕi (p1, p2, I ) 

∂ pi 
pi 

ϕi ( p1, p2, I ) 
, i = 1, 2,(2.119) 

is called a simple price elasticity of demand for i-th good with respect to the 
price of i-th good. 

If i /= j , i , j = 1, 2 then an expression: 

Ei j  ( p1, p2, I ) = 
∂ϕi (p1, p2, I ) 

∂ p j 
p j 

ϕi (p1, p2, I ) 
,(2.120) 

is called a cross elasticity27 of demand for i-th good with respect to the price of 
j -th good. 

Definition 2.40 An elasticity of demand for i-th good with respect to a 
consumer’s income is given as an expression: 

Ei ( p1, p2, I ) = 
∂ϕi ( p1, p2, I ) 

∂ I 
I 

ϕi ( p1, p2, I ) 
, i = 1, 2,(2.121) 

which determines approximately by what % the demand for i-th good changes when 
a consumer’s income increases by 1%, ceteris paribus. 

Note 2.25 Since i, j = 1, 2, then for the demand function: ϕ( p1, p2, I ) = 
(ϕ1( p1, p2, I ), ϕ2( p1, p2, I )) we can determine four elasticities of demand with 
respect to commodity prices (two simple price elasticities of demand and two cross 
elasticities of demand) and two elasticities of demand with respect to a consumer’s 
income.

27 In the economic literature the cross elasticity is called also a mixed elasticity.
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Criteria for classification of consumer goods 

• simple demand price elasticities: 
Eii  (p1, p2, I ) > 0, i = 1, 2—Giffen goods or Veblen goods,28 (an 
increase in the price of a given good results in an increase in the demand for 
this good). 
Eii  (p1, p2, I ) < 0, i = 1, 2—ordinary goods, (an increase in the price of 
a given good results in a decrease in the demand for this good). 

• cross price elasticities of demand: 
Ei j  (p1, p2, I ) > 0, i , j = 1, 2, i /= j—substitute goods, (an increase in 
the price of j-th commodity results in an increase in the demand for i-th 
good), 
Ei j  (p1, p2, I ) = 0, i , j = 1, 2, i /= j—independent goods, (an increase 
in the price of j-th good does not affect the demand for i-th good), 
Ei j  (p1, p2, I ) < 0, i , j = 1, 2, i /= j—complementary goods, (an 
increase in the price of j-th good results in a decrease in the demand for 
i-th good). 

• income elasticity of demand 
Ei (p1, p2, I ) > 0, i = 1, 2—normal goods, (an increase in a consumer’s 
income results in an increase in the demand for i-th good). 
Ei (p1, p2, I ) < 0, i = 1, 2—inferior goods, (an increase in a consumer’s 
income results in a decrease in the demand for i-th good).29 

Note 2.26 If an increase in the price of an inferior good results in an increase in the 
demand for this good, then it is called a Giffen good. On the other hand, when an 
increase in the price of a normal good results in an increase in the demand for this 
good, then it is called a Veblen good. 

Note 2.27 Let us notice that: 

Ei j  (p1, p2, I ) = Pi j  ( p1, p2, I ) 
p j 

ϕi ( p1, p2, I ) 
, i, j = 1, 2,(2.122) 

Ei ( p1, p2, I ) = Pi (p1, p2, I ) 
I 

ϕi ( p1, p2, I ) 
, i = 1, 2.(2.123) 

The price and income elasticities of demand have the same sign as the marginal 
demand for i-th good with respect to prices of goods or with respect to a consumer’s 
income because prices and the demand for consumer goods are positive. Thus, to

28 Whether a given good is so-called a Giffen good or a Veblen good is additionally determined 
by a reaction of the demand for this good to an increase in the consumer’s income, along with an 
increase in the price of this good. See Note 2.26. 
29 Thus, for the demand functions corresponding to the power or logarithmic utility function, from 
Example 2.8 it follows that each of the consumer goods is ordinary and normal, and both are 
independent of each other. 
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determine the type of a consumer good, it is enough to determine the marginal demand 
for a given good (with respect to prices of goods or with respect to a consumer’s 
income). 

Example 2.10 A vector function ϕ(p1, p2, I ) =
(
α I p1 , β  I p2

)
of consumer demand 

is given, which is the optimal solution of problem (P2) and can be written as a vector 
power function: 

ϕ( p1, p2, I ) =(ϕ1(p1, p2, I ), ϕ2( p1, p2, I )) 

=
(
α p−1 

1 p0 2 I 
1, β  p0 1 p

−1 
2 I 1

)
,(2.124) 

where α, β > 0, α  + β = 1 are numbers. 

Determine whether the first and the second goods are ordinary, normal and 
independent of each other. 

In the case of a power function, an exponent of an independent variable is equal 
to the elasticity of the function with respect to this argument. On this basis, without 
making any calculations, we can conclude that: 

E11(p1, p2, I ) = −1, therefore the first good is ordinary, which means that an 
increase in the price of the first commodity by 1% will reduce the demand for 
this good by 1%, 
E22(p1, p2, I ) = −1, therefore the second good is ordinary, which means that 
an increase in the price of the second commodity by 1% will cause a decrease 
in the demand for this good by 1%, 
E12(p1, p2, I ) = E21(p1, p2, I ) = 0, therefore the first and second goods are 
independent of each other, which means that 1% increase in the price of the 
first (second) good will not change the demand for the second (first) good, 
E1( p1, p2, I ) = 1, therefore the first commodity is normal, which means that 
1% increase in a consumer income will increase the demand for the first good 
by 1%, 
E2(p1, p2, I ) = 1, therefore the second good is normal, which means that 1% 
increase in a consumer income will increase the demand for the second good 
by 1%. 

Definition 2.41 A path of price expansion of demand is a sequence of optimal 
solutions to consumption utility maximization problems (P2), each of which cor-
responds to a change in the price of the first (second) good, as compared to the 
initial level of this price, with the price of the second (first) good unchanged and a 
consumer’s income unchanged.
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Definition 2.42 A path of income expansion of demand is a sequence of optimal 
solutions to consumption utility maximization problems (P2), each of which corre-
sponds to a change in a consumer’s income as compared to the initial level of income, 
with the prices of both goods unchanged. 

Example 2.11 A vector function x̄ = ϕ(p, I ) =
(
α I p1 , β  I p2

)
of consumer demand 

is given, being the optimal solution to the problem (P2), where α, β > 0, α  + β = 1 
are numbers. 

Sketch graphs of hypothetical paths of price expansion and income expansion 
of demand for the given consumer demand function. Let us first consider the case 
where the price of the first good changes while a consumer’s income and the price 
of the second good remain unchanged. 

Figure 2.14a shows that the first good is ordinary and the second good is inde-
pendent of the first good. Let us now consider the case where the price of the second 
good changes while a consumer’s income and the price of the first good remain 
unchanged. Figure 2.14b shows that the second good is ordinary and the first good 
is independent of the second good. 

Finally, let us consider the case where a consumer’s income changes and the prices 
of both goods remain unchanged. It is illustrated in Fig. 2.14c, which clearly shows 
that the first and the second goods are normal.

It is worth emphasizing that the paths of income or price expansion depend on 
the goods prices, a consumer’s income, and parameters of a utility function, by 
which a consumer chooses the optimal consumption bundles. Utility functions are, in

Fig. 2.14a Price expansion path of demand, when p1 1 < p1 < p2 1, p2, I = const. >  0.
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Fig. 2.14b Price expansion path of demand, when p1 2 < p2 < p2 2, p1, I = const. >  0
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particular, assumed to be increasing and strictly concave. Satisfying these conditions 
ensures an existence of exactly one optimal solution x̄ > 0 to the consumption utility 
maximization problem, which by given fixed prices of goods, a consumer’s income 
and parameters of the utility function, lies on the budget line. 

2.4.2 Dynamic Approach 

Let us introduce a notation t of the time. In a discrete version of a dynamic con-
sumers problem the time changes in jumps, that is we consider the values of the 
analysed functions in subsequent periods t = 0, 1, 2, . . . ,  T , where T means a 
time horizon. For example, assuming we treat periods as months, when T=30, this 
means the time horizon of 2.5 years. In a continuous version of a dynamic con-
sumer’s problem the time t ∈ [0; T ] changes continuously, that is we consider the 
values of the analysed functions at any moment of the considered time horizon. 
As in the static approach, we assume that we are interested in bundles composed 
of two consumer goods30 : 

p(t) = (p1(t), p2(t)) ≥ 0—a vector of time-varying prices of goods, 
I (t) ≥ 0—a consumer’s income changing over time, 
x(t) = (x1(t), x2(t)) ≥ 0—a bundle of goods that a consumer is willing to 
purchase at period/moment t at prices p(t). 

When choosing a bundle x(t) the consumer takes into account her/his preferences 
towards bundles of goods, described by a utility function u(x(t)). Over time, it is 
not the consumer’s preferences that change, but only the bundle of goods that the 
consumer is willing to buy. This change occurs due to changes over time in the 
prices of goods and in the consumer’s income. 

The consumption utility maximization problem has a form: 

u(x(t)) |→ max(2.125) 

p1(t)x1(t) + p2(t)x2(t) ≤ I (t)(2.126) 

x(t) ≥ 0.(2.127)

30 For the discrete and continuous versions, we use the same denotation of dependence of a 
function value on time, for example income depending on time: I (t). Whether the discrete or 
continuous version is used in a given formula will result from the context of the issue under 
consideration. 
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If we assume that an insatiability phenomenon occurs (utility functions are 
increasing in quantities of goods in a consumption bundle), then as a budget con-
straint, instead of the inequality of the budget set, we can use the budget line 
equation: 

p1(t)x1(t) + p2(t)x2(t) = I (t).(2.128) 

If a utility function u(x(t)) is increasing and strongly concave, then in each 
period/moment t the budget line (2.128) is tangent to the optimal bundle indiffer-
ence curve, because a consumer wants to achieve the highest possible utility level 
of the consumption bundle whose value does not exceed a consumer’s income. 
This results in an optimality condition of the consumption bundle: 

s12(x̄(t)) = 
p1(t) 
p2(t)

∀t,(2.129) 

where t = 0, 1, 2, . . . ,  T or t ∈ [0; T ]. This property is called Gossen’s second 
law. The optimal bundle is a solution of the system of Eqs. (2.128) and (2.129). 

From the consumption utility maximization problem we obtain the optimal 
bundle x̄(t), a time-dependent consumer demand function: 

ϕ(p(t), I (t)) = x̄(t)(2.130) 

and a corresponding indirect utility function of consumption: 

ν(p(t), I (t)) = u(x̄(t)).(2.131) 

The demand function, as well as the indirect utility function, in all peri-
ods/moments t has the same form, but at different periods/moments it may 
take different values depending on the prices of goods and income vary over 
time. Depending on a utility function describing consumer’s preferences towards 
consumption bundles, the demand function ϕ(p(t), I (t)) and the indirect utility 
function of consumption v(p(t), I (t)) take the form accordingly: 

(a) in case of a power utility function u(x(t)) = ax1(t)α1 x2(t)α2 , a > 0, α1, α2 > 
0, α1 + α2 < 1 

ϕ(p(t), I (t)) =
(

α1 I (t) 
(α1 + α2)p1(t) 

, 
α2 I (t) 

(α1 + α2) p2(t)

)
(2.132) 

ν(p(t), I (t)) = a
(

I (t) 
α1 + α2

)α1+α2
(

α1 

p1(t)

)α1
(

α2 

p2(t)

)α2 

(2.133)



2.4 Marshallian Demand Function 69

(b) in case of a logarithmic utility function u(x(t)) = a1 ln x1(t) + a2 ln x2(t), 
a1, a2 > 0, x1, x2 > 0 

ϕ(p(t), I (t)) =
(

a1 I (t) 
(a1 + a2) p1(t) 

, 
a2 I (t) 

(a1 + a2)p2(t)

)
(2.134) 

ν(p(t), I (t)) = ln

⎡(
I (t) 

a1 + a2

)a1+a2( a1 
p1(t)

)a1( a2 
p2(t)

)a2
⎤

(2.135) 

(c) in case of a Koopmans-Leontief utility function u(x(t)) = 
min{a1x1(t), a2x2(t)}, a1, a2 > 0 

ϕ(p(t), I (t)) =
(

a2 I (t) 
a2 p1(t) + a1 p2(t) 

, 
a1 I (t) 

a2 p1(t) + a1 p2(t)

)
(2.136) 

ν(p(t), I (t)) = a1a2 I (t) 
a2 p1(t) + a1 p2(t) 

.(2.137) 

Example 2.12 Let us assume that in every period a consumer’s income and the 
prices of the first and of the second goods change according to equations: 

I (t) = 10 · 1.05t , 

p1(t) = 4 · 0.98t , 

p2(t) = 0.006t2 − 0.1t + 3, 

t = 0, 1, 2, . . . ,  30, 

which means that the income is initially 10 and increases by 5% in each subsequent 
period; the price of the first good is initially 4 and decreases by 2% in each period; 
the price of the second good is initially 3, decreases to around 2.6 in period 8 and 
then continues to rise. Price trajectories are shown in Fig. 2.15. Initially the first 
commodity is more expensive than the second one. From the 16th period it is the 
second one which is more expensive.

Consumer’s preferences towards consumption bundles are described by a power 
utility function of a form u(x(t)) = x1(t)0,5x2(t)0,5, for which a corresponding 
demand function is 

ϕ(p(t), I (t)) =
(

I (t) 
2 p1(t) 

, 
I (t) 

2 p2(t)

)
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Fig. 2.15 Price trajectories

and an indirect utility function is 

ν(p(t), I (t)) = I (t) 
2 p1(t)0.5 p2(t)0.5 

. 

In each period t , the budget line is tangent to the optimal bundle indifference 
curve. Figure 2.16 shows this relationship for periods: 0, 15, and 30. For each 
period t = 0, 1, 2, . . . ,  30 an analogous relationship can be presented. We can see 
from the figure that the budget set is getting bigger. This is due to the increase in 
the consumer’s income over time. The slope of the budget line changes due to the 
relationship between the prices of both goods changing over time.

Trajectories of the demand for the first and the second goods are shown in 
Fig. 2.17. The demand for the first good increases from the level of 1.25 to the 
level of approximately 10 at the end of the considered time horizon. The demand 
for the second commodity grows from the level of 1.67, around the 20th period 
it reaches the level of 4 and remains at a similar level until the end of the time 
horizon. Initially, the consumer wants to have more of the second good in the 
consumption bundles he/she chooses due to the fact that this good is relatively 
cheaper. From period 16 onwards the consumer chooses the optimal bundle in 
which the quantity of the first good is greater, again because its price is relatively 
lower.
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Fig. 2.16 Consumption utility maximization problem 
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Fig. 2.17 Demand trajectories for first and second good

A trajectory of the indirect utility of consumption is shown in Fig. 2.18. 
The utility of the optimal bundle is constantly growing, because the relationship 
between the prices of goods and the consumer’s income assumed in the example 
means the consumer can afford and consume more and more of both goods.

In each period Gossen’s second law is obeyed, as shown in Fig. 2.19. This 
means that the trajectory of the marginal rate of substitution of the first good 
by the second good in the optimal bundle matches up with the trajectory of the 
quotient of the price of the first good by the price of the second good. This is one 
of the dependencies on the basis of which we have determined the optimal bundle.

In each period a consumer spends all of her/his income, as shown in Fig. 2.20. It  
results from the insatiability phenomenon, which manifests itself in the fact that the 
utility function increases in quantities of goods. As a consequence, the trajectory
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Fig. 2.18 Indirect utility trajectory
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Fig. 2.19 Trajectory of marginal rate of substitution in optimal bundle

of the value of the purchased optimal bundle matches up with the trajectory of a 
consumer’s income. This relationship, along with Gossen’s second law, allows us 
to determine the optimal bundle. Figures 2.19 and 2.20 illustrate the fact that in 
each period of the considered time horizon, the demand function indicates optimal
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Fig. 2.20 Trajectory of purchased optimal bundles value 

bundles, which results from the consumption utility maximization problem and 
form a definition of the demand function. 

Let us now consider the trajectories of the marginal demand with respect to 
prices and to a consumer’s income. The simple marginal demand trajectories 
shown in Fig. 2.21 illustrate the fact that both goods are ordinary. In each period 
the simple marginal demand for the first good and the one for the second good 
have a negative value, which results from the demand function form and from the 
definition of the simple marginal demand with respect to the price of a good: 

P11(p(t), I (t)) = −  
I (t) 

2 p1(t)2 
, 

P22(p(t), I (t)) = −  
I (t) 

2 p2(t)2 
.

In Fig. 2.21 we can see that initially the demand for the second good responds 
more strongly to an increase in the price of the second good than the demand for 
the first good to an increase in the price of the first good. From period 16 on, 
this relationship is opposite the response of the demand for the first commodity 
becomes stronger. In both cases the strength of the demand response, to a change 
in the price of a given good by one money unit, results from relationships between 
the price of a good and a consumer’s income ongoing in time. The cross marginal
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Fig. 2.21 Trajectories of simple marginal demand

demand for both goods is equal to 0 because a change in the price of a given good, 
ceteris paribus, does not affect the demand for the other good. 

The marginal demand trajectories with respect to a consumer’s income, as 
shown in Fig. 2.22, illustrate the fact that both goods are normal. In each period, 
the marginal demand for the first good and the one for the second good with 
respect to an income is positive, which results from the demand function form and 
from the definition of the marginal demand with respect to an income: 

P1(p(t), I (t)) = 
1 

2 p1(t) 
, 

P2(p(t), I (t)) = 1 

2 p2(t) 
.

In Fig. 2.22 we can see that initially the demand for the second good responds 
more strongly to the increase in a consumer’s income than the demand for the first 
good. From period 16 on, this relationship is opposite the response of the demand 
for the first commodity becomes stronger. In both cases the strength of the demand 
response to a change in the income results from the price levels of goods in each 
period.
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Fig. 2.22 Trajectories of marginal demand with respect to income

2.5 Hicksian Demand Function 

2.5.1 Static Approach 

Let us consider a market of two consumer goods where: 

i = 1, 2—consumer goods (products and services), 
X = R2+—a goods space, 
p = (p1, p2) ∈ R2+—a vector of prices of consumer goods, 
u: R2+ → R—a utility function describing preferences of a consumer (describ-
ing a relation of consumer preferences). 

Considering different consumption bundles with a fixed utility level u(x1, x2) = u, 
a consumer wants to choose such a bundle x̃ = ( ̃x1, x̃2) (the optimal one) for 
which the cost of purchase is minimal by prices determined by the market. In 
view of a selected optimality criterion, that is of the cost, this problem of choice 
of the optimal consumption bundle, can be written as a consumer’s expenditure 
minimization problem of a form: 

(P4) w(x1, x2) = {p1x1 + p2x2} → min(2.138) 

u(x1, x2) = u = const.,(2.139)
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x1, x2 ≥ 0.(2.140) 

Note 2.28 We assume in most cases that a utility function is increasing, strictly 
concave and differentiable. 

Example 2.13 Use the geometric method to find the optimal solution to the 
expenditure minimization problem (P4) when the utility function u: R2+ → R is: 

(a) linear: u(x) = a1x1 + a2x2 = u ⇔ x2 = u−a1x1 
a2 

, ai > 0, i = 1, 2, 
(b) power function: 

u(x) = axα1 
1 x

α2 
2 = u ⇔ x2 =

(
u 

a2

) 1 
α2 
x

− α1 
α2 

1 , 

a, αi > 0, i = 1, 2, α1 + α2 < 1 

(c) logarithmic: 

u(x) = a1 ln x1 + a2 ln x2 = u ⇔ x2 = e 
u 
α2 x

− α1 
α2 

1 , ai > 0, xi > 0 i = 1, 2 

(d) subadditive: 

u(x) = a1xα 
1 + a2xα 

2 = u ⇔ x2 =
(
u − a1xα 

1 

a2

) 1 
α 
, 

ai > 0, i = 1, 2, α  ∈ (0; 1) 

(e) Koopmans-Leontief function: 

u(x) = min{a1x1, a2x2} = u ⇔ x1 = 
u 

a1 
, x2 = 

u 

a2 
, ai > 0, i = 1, 2 

(f) CES function: u(x) = (
a1x

γ 
1 + a2xγ 

2

) θ 
γ = u ⇔ x2 =

(
u 

γ 
θ −a1x

γ 
1 

a2

) 1 
γ 
, 

θ,  ai > 0, i = 1, 2, γ  ∈ (−1; 0) ∪ (0;+∞). 

Justify that: 

– for a linear utility function:
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– if ∃λ >  0 a = (a1, a2) = λ(p1, p2) = λp then problem (P4) has an infinite 
number of optimal solutions belonging to a segment x̃ = αx1 + βx2, ∀α, β ≥ 
0, α  + β = 1, where 

x1 =
(
W 

p1 
, 0

)
, x2 =

(
0, 

W 

p2

)
, thus 

x̃ =
(

α 
W 

p1 
, β  

W 

p2

)
, ∃1 W > 0, ∀α, β ≥ 0, α  + β = 1, 

– if a = (a1, a2) /= λ( p1, p2) = λp then problem (P4) has exactly one optimal 
solution: 

x̃ =
(
W 

p1 
, 0

)
or x̃ =

(
0, 

W 

p2

)
, 

where W > 0 means the minimal expenditure that a consumer needs to incur to 
purchase a consumption bundle with the utility u > 0. 

– for the remaining utility functions problem (P4) has exactly one optimal solution: 

∃1 W > 0, α,  β  >  0, α  + β = 1 x̃ = αx1 + βx2, 

where 

x1 =
(
W 

p1 
, 0

)
, x2 =

(
0, 

W 

p2

)
, thus: 

∃1 W > 0, α,  β  >  0, α  + β = 1 x̃ =
(

α 
W 

p1 
, β  

W 

p2

)
. 

Ad (a) See Figs. 2.23a, 2.23b and 2.23c.

Ad (b) See Fig. 2.23d.

Ad (c) See Fig. 2.23e.

Ad (d) See Fig. 2.23f.

Ad (e) See Fig. 2.23g.

Ad (f) See Figs. 2.23h and 2.23i.

Let us present analytical methods of finding the optimal solution to the con-
sumer’s expenditure minimization problem (P4) in case of a strictly concave, 
differentiable, and increasing utility function.
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Example 2.14 We are given a utility function u: R2+ → R: 

1. power function u(x) = axα1 
1 x

α2 
2 , a, αi > 0, i = 1, 2, α1 + α2 < 1, for 

which an indifference curve with a fixed utility level u > 0 has a form: 

x2 =
(u 
a

) 1 
α2 x

− α1 
α2 

1 ,(2.141) 

2. logarithmic u(x) = a1 ln x1 + a2 ln x2, ai > 0, xi > 0 i = 1, 2, for which 
an indifference curve with a fixed utility level u > 0 has a form: 

x2 = e 
u 
a2 x

− a a2 
1 .(2.142) 

Solve the consumer’s expenditure minimization problem in case of the power 
and in case of the logarithmic utility function. 

Method 2.4 Ad 1 The optimal solution to problem (P4) belongs to an indifference 
curve u(x) = u > 0. Hence we can substitute (2.141) into the objective function in 
problem (P4). We get then an equivalent problem of a form: 

(P5) g(x1) = p1x1 + p2
(u 
a

) 1 
α2 x

− α1 
α2 

1 → min(2.143)

Fig. 2.23a Solution to consumer’s expenditure minimization problem with linear utility function 
when ai /= λpi , i = 1, 2 and a1 > a2
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Fig. 2.23b Solution to consumer’s expenditure minimization problem with linear utility function 
when ai = λ pi , i = 1, 2 

Fig. 2.23c Solution to consumer’s expenditure minimization problem with linear utility function 
when ai /= λ pi , i = 1, 2 and a1 < a2
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Fig. 2.23d Solution to consumer’s expenditure minimization problem with power utility function

Fig. 2.23e Solution to consumer’s expenditure minimization problem with logarithmic utility 
function

x1 ≥ 0.(2.144) 

To find a solution to problem (P5) one needs to determine a stationary point in 
which the objective function has the minimal value. For this purpose one needs to 
use the necessary and the sufficient conditions of minimum existence for a function
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Fig. 2.23f Solution to consumer’s expenditure minimization problem with subadditive utility 
function

Fig. 2.23g Solution to consumer’s expenditure minimization problem with Koopmans-Leontief 
utility function
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Fig. 2.23h Solution to consumer’s expenditure minimization problem with CES utility function 
when γ ∈ (0; +∞) 

Fig. 2.23i Solution to consumer’s expenditure minimization problem with CES utility function 
when γ ∈ (−1; 0)
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g: R+ → R+: 

dg(x1) 
dx1

|
|
|| x1 = x̃1 

= 0 necessary condition,(2.145) 

d2g(x1) 
dx2 1

|
||
| x1 = x̃1 

> 0 sufficient condition.(2.146) 

Let us make calculations: 

dg(x1) 
dx1

|
|
|| x1 = x̃1 

= p1 − 
α1 

α2 
p2

(u 
a

) 1 
α2 x̃

− α1 
α2 

−1 

1 = 0 ,(2.147) 

and hence: 

x̃1 =
(u 
a

) 1 
α1+α2

(
α1 p2 
α2 p1

) α2 
α1+α2 

> 0.(2.148) 

We can notice that 

d2g(x1) 
dx2 1

|
|
|| x1 = x̃1 

=
(

− 
α1 

α2 
− 1

)(
− 

α1 

α2

)
p2

(u 
a

) 1 
α2 x̃

− α1 
α2 

−2 

1 > 0,(2.149) 

thus for x̃1 =
( u 
a

) 1 
α1+α2

(
α1 p2 
α2 p1

) α2 
α1+α2 > 0 the objective function in problem (P5) 

has the minimum value: 

W = g( ̃x1) = α1 + α2 

α 
α1 

α1+α2 
1 α 

α2 
α1+α2 
2

(u 
a

) 1 
α1+α2 p 

α1 
α1+α2 
1 p 

α2 
α1+α2 
2 .(2.150) 

Substituting (2.148) into (2.141) we get 

x̃2 =
(u 
a

) 1 
α1+α2

(
α2 p1 
α1 p2

) α1 
α1+α2 

> 0,(2.151) 

hence:

~x = ( ̃x1, x̃2) =
(

(u 
a

) 1 
α1+α2

(
α1 p2 
α2 p1

) α2 
α1+α2 

,
(u 
a

) 1 
α1+α2

(
α2 p1 
α1 p2

) α1 
α1+α2

)

(2.152)
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and 

W ( ̃x1, x̃2) = p1 x̃1 + p2 x̃2 = α1 + α2 

α 
α1 

α1+α2 
1 α 

α2 
α1+α2 
2

(u 
a

) 1 
α1+α2 p 

α1 
α1+α2 
1 p 

α2 
α1+α2 
2 .(2.153) 

Ad 2 The optimal solution to problem (P4) belongs to an indifference curve u(x) = 
u > 0. Hence we can substitute (2.142) into the objective function in problem (P4). 
We get then an equivalent problem of a form: 

(P6) g(x1) = p1x1 + p2e 
u 
a2 x

− a1 
a2 

1 → min(2.154) 

x1 ≥ 0.(2.155) 

To find a solution to problem (P6) one needs to determine a stationary point in 
which the objective function has the minimal value. For this purpose one needs to 
use the necessary and the sufficient conditions of minimum existence for a function 
g: R+ → R+: 

dg(x1) 
dx1

|
||
| x1 = x̃1 

= 0 necessary condition,(2.156) 

d2g(x1) 
dx2 1

|
||
| x1 = x̃1 

> 0 sufficient condition.(2.157) 

Let us make calculations: 

dg(x1) 
dx1

||
|
| x1 = x̃1 

= p1 − 
a1 
a2 

p2e 
u 
a2 x

− a1 
a2 

−1 

1 = 0,(2.158) 

and hence: 

x̃1 = e 
u 

a1+a2

(
a1 p2 
a2 p1

) a2 
a1+a2 

> 0,(2.159) 

We can notice that 

d2g(x1) 
dx2 1

|
||
| x1 = x̃1 

=
(

− 
a1 
a2 

− 1
)(

− 
a1 
a2

)
p2e 

u 
a2 x̃

− a1 
a2 

−2 

1 > 0,(2.160)
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thus for x̃1 = e 
u 

a1+a2

(
a1 p2 
a2 p1

) a2 
a1+a2 > 0 the objective function in problem (P6) has 

the minimum value: 

W = g( ̃x1) = a1 + a2 

a 
a1 

a1+a2 
1 a 

a2 
a1+a2 
2 

e 
u 

a1+a2 p 
a1 

a1+a2 
1 p 

a2 
a1+a2 
2 .(2.161) 

Substituting (2.159) into (2.142) we get 

x̃2 = e 
u 

a1+a2

(
a2 p1 
a1 p2

) a1 
a1+a2 

> 0,(2.162) 

hence:

~x = ( ̃x1, x̃2) =
(

e 
u 

a1+a2

(
a1 p2 
a2 p1

) a2 
a1+a2 

, e 
u 

a1+a2

(
a2 p1 
a1 p2

) a1 
a1+a2

)

(2.163) 

and 

W ( ̃x1, x̃2) = p1 x̃1 + p2 x̃2 = 
a1 + a2 

a 
a1 

a1+a2 
1 a 

a2 
a1+a2 
2 

e 
u 

a1+a2 p 
a1 

a1+a2 
1 p 

a2 
a1+a2 
2 .(2.164) 

Method 2.5 We know that if a utility function u: R2+ → R is increasing and 
strictly concave, then problem (P4) has exactly one optimal solution. It belongs 
to an indifference curve u( ̃x1, x̃2) = u and is of a form: 

∃1 W >0, α,  β  >  0, α  + β = 1

~x = α
(
W 

p1 
, 0

)
+β

(
0, 

W 

p2

)
=

(
α 
W 

p1 
, β  

W 

p2

)
> (0, 0). 

At a point indicating the optimal consumption bundle x̃ = ( ̃x1, x̃2) it is satisfied 
that an expenditure line W is tangent to the indifference curve. Hence we get 

s12( ̃x1, x̃2) = −dx2 
dx1

|
|
|
|x =~x 

= 

∂u(x1,x2) 
∂ x1

|
||
|x =~x 

∂u(x1,x2) 
∂ x2

||
|
|x =~x 

= 
p1 
p2 

.(2.165)
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We see that to find the optimal solution to problem (P4), when a utility function 
is increasing and strictly concave, one needs to solve a system of two equations with 
two unknowns: 

s12( ̃x1, x̃2) = 

∂u(x1,x2) 
∂x1

|
|
|
|x =~x 

∂u(x1,x2) 
∂ x2

|
|
|
|x =~x 

= 
p1 
p2 

,(2.166) 

u( ̃x1, x̃2) = u.(2.167) 

Method 2.6 Let us write problem (P4) in a form of a Lagrange function: 

F(x1, x2, λ) = p1x1 + p2x2 + λ(u − u(x1, x2)),(2.168) 

where λ ≥ 0 denotes a Lagrange multiplier. 
If a utility function u: R2+ → R is increasing and strictly concave then problem 

(P4) has exactly one optimal solution. It belongs to an expenditure line W , and has 
a form: 

∃1 W >0, α,  β  > 0, α  + β = 1

~x = α
(
W 

p1 
, 0

)
+β

(
0, 

W 

p2

)
=

(
α 
W 

p1 
, β  

W 

p2

)
> (0, 0), 

and is a solution to a system of 3 equations with 3 unknowns: 

∂ F
(
x1, x2, λ̃

)

∂ x1

|
|
||x = x̃ 

= p1 − λ̃ 
∂u(x1, x2) 

∂ x1

|
|
||x = x̃ 

= 0,(2.169) 

∂ F
(
x1, x2, λ̃

)

∂x2

|
|
|
|x = x̃ 

= p2 − λ̃ 
∂u(x1, x2) 

∂x2

|
|
|
|x = x̃ 

= 0,(2.170) 

∂ F( ̃x1, x̃2, λ) 
∂λ

|
|
|
|λ = λ̃ 

= u − u( ̃x1, x̃2) = 0,(2.171) 

or to an equivalent equation system of a form:

~λ 
∂u(x1, x2) 

∂ x1

||
|
|x = x̃ 

= p1,(2.172) 

λ̃ 
∂u(x1, x2) 

∂x2

|
|
||x = x̃ 

= p2,(2.173)
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u( ̃x1, x̃2) = u,(2.174) 

where~λ >  0 denotes an optimal Lagrange multiplier. 
Let us notice that solving the Eqs. (2.172)–(2.174), for example by dividing Eq. 

(2.172) on both sides by Eq. (2.173), we get a system: 

∂u(x1,x2) 
∂ x1

||
|
| x = x̃ 

∂u(x1,x2) 
∂x2

|
|
|
| x = x̃ 

= 
p1 
p2 

,(2.175) 

u( ̃x1, x̃2) = u,(2.176) 

which is equivalent to system (2.166)–(2.167). 

Definition 2.43 A Hicksian demand function or compensated demand func-
tion is a mapping f : int R2+ × R → int R2+ which assigns the optimal solution 
of the minimization problem (P4) of consumer’s expenditure to any price vector 
p = ( p1, p2) ∈ int R2+ and any utility level u ∈ R of a consumption bundle. It is 
given as 

f (p, u) = ( f1(p1, p2, u), f2( p1, p2, I )) = ( ̃x1, x̃2) = x̃.(2.177) 

Definition 2.44 A consumer’s expenditure function is a mapping e: int R2+×R → 
int R+ which assigns a minimal expenditure that a consumer incurs to purchase a 
consumption bundle with a utility level u ∈ R to any price vector p = (p1, p2) ∈ 
int R2+ and the utility level u. It is given  as  

e(p, u) =w( ̃x1, x̃2) = p1 x̃1 + p2 x̃2 
=p1 f1(p1, p2, u) + p2 f2( p1, p2, I ).(2.178) 

Theorem 2.4 If a utility function u: R2+ → R is increasing, twice differentiable and 
strictly concave, then ∀ p1, p2 > 0, u > u(0): 

1. the compensated demand function f : int R2+ × R → int R2+ is differentiable in 
its domain, 

2. the consumer’s expenditure function e: int R2+ × R → int R+ is differentiable in 
its domain, 

3. ∀λ >  0 e(λp1, λp2, u) = λe(p1, p2, u), 
which means that a consumer’s expenditure function is homogeneous of degree 
1 with respect to prices of commodities (a proportionate change in prices of 
commodities results in a proportionate change in a consumer’s expenditure),
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4. ∀λ >  0 f (λ p1, λ  p2, u) = f (p1, p2, u), 
which means that a compensated demand function is homogeneous of degree 
0 with respect to prices of commodities (a proportionate change in prices of 
commodities income does not change the compensated demand for consumer 
goods), 

5. 
∂e(p, u) 

∂ pi 
= fi (p, u), i = 1, 2, 

which means that knowing an analytical form of a consumer’s expenditure func-
tion one is able to determine an analytical form of a compensated demand 
function, 

6. an increase in the price of i-th good results (always) in a decrease of the 
compensated demand for i-th good: 

∂ fi (p, u) 
∂ pi 

< 0, i = 1, 2, 

7. ∂ f1(p,u) 
∂ p2 = ∂ f2(p,u) 

∂ p1 , 

which means that an effect of an increase in the second good price on the com-
pensated demand for the first good is the same as an effect of an increase in the 
first good price on the compensated demand for the second good. 

Example 2.15 For a compensated demand function and the corresponding con-
sumer’s expenditure function: 

(a) in case of a power utility function in problem (P4): 

f (p, u) =
(

(u 
a

) 1 
α1+α2

(
α1 p2 
α2 p1

) α2 
α1+α2 

,
(u 
a

) 1 
α1+α2

(
α2 p1 
α1 p2

) α1 
α1+α2

)

(2.179) 

e(p, u) = α1 + α2 

α 
α1 

α1+α2 
1 α 

α2 
α1+α2 
2

(u 
a

) 1 
α1+α2 p 

α1 
α1+α2 
1 p 

α2 
α1+α2 
2(2.180) 

(b) in case of a logarithmic utility function in problem (P4): 

f (p, u) =
(

e 
u 

a1+a2

(
a1 p2 
a2 p1

) a2 
a1+a2 

, e 
u 

a1+a2

(
a2 p1 
a1 p2

) a1 
a1+a2

)

(2.181) 

e(p, u) = a1 + a2 

a 
a1 

a1+a2 
1 a 

a2 
a1+a2 
2 

e 
u 

a1+a2 p 
a1 

a1+a2 
1 p 

a2 
a1+a2 
2(2.182) 

justify the properties that appear in statements 3–7 of Theorem 2.4.
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Let us first show that the given consumer’s expenditure functions are homoge-
nous of order 1 with respect to prices of commodities. 

Ad 3a 

∀λ >  0 e(λp, u) = 
α1 + α2 

α 
α1 

α1+α2 
1 α 

α2 
α1+α2 
2

(u 
a

) 1 
α1+α2 (λp1) 

α1 
α1+α2 (λ p2) 

α1 
α1+α2 = λe(p, u) 

Ad 3b 

∀λ >  0 e(λp, u) = 
a1 + a2 

a 
a1 

a1+a2 
1 a 

a2 
a1+a2 
2 

e 
u 

a1+a2 (λp1) 
a1 

a1+a2 (λp2) 
a1 

a1+a2 = λe(p, u) 

Ad 4a Let us now present that the given Hicksian demand functions are homogenous 
of order 0 with respect to prices of commodities. 

∀λ >  0 f (λp, u) =
(

(u 
a

) 1 
α1+α2

(
α1 p2 
α2 p1

) α2 
α1+α2 

,
(u 
a

) 1 
α1+α2

(
α2 p1 
α1 p2

) α1 
α1+α2

)

= f (p, u) 

Ad 4b 

∀λ >  0 f (λp, u) =
(

e 
u 

a1+a2

(
a1λp2 
a2λ p1

) a2 
a1+a2 

, e 
u 

a1+a2

(
a2λ p1 
a1λp2

) a1 
a1+a2

)

= f (p, u) 

Ad 5a Let us justify that partial derivatives of each of the given consumer’s expen-
diture functions with respect to price of i-th good are equal to the corresponding 
compensated demand functions. 

∂e(p, u) 
∂ p1 

= α1 + α2 

α 
α1 

α1+α2 
1 α 

α2 
α1+α2 
2 

α1 

α1 + α2

(u 
a

) 1 
α1+α2 p 

α1 
α1+α2 

−1 

1 p 
α2 

α1+α2 
2 = f1(p, u) 

∂e(p, u) 
∂ p2 

= 
α1 + α2 

α 
α1 

α1+α2 
1 α 

α2 
α1+α2 
2 

α2 

α1 + α2

(u 
a

) 1 
α1+α2 p 

α1 
α1+α2 
1 p 

α2 
α1+α2 

−1 

2 = f2(p, u) 

Ad 5b 

∂e(p, u) 
∂ p1 

= 
a1 + a2 

a 
a1 

a1+a2 
1 a 

a2 
a1+a2 
2 

a1 
a1 + a2 

e 
u 

a1+a2 p 
a1 

a1+a2 
−1 

1 p 
a2 

a1+a2 
2 = f1(p, u) 

∂e(p, u) 
∂ p2 

= a1 + a2 

a 
a1 

a1+a2 
1 a 

a2 
a1+a2 
2 

a2 
a1 + a2 

e 
u 

a1+a2 p 
a1 

a1+a2 
1 p 

a2 
a1+a2 

−1 

2 = f2(p, u)
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Ad 6a Let us verify if an increase in the price of i-th good results in a decrease of 
the compensated demand for i-th good. 

∂ f (p, u) 
∂ p1 

= − α2 

α1 + α2

(u 
a

) 1 
α1+α2

(
α1 p2 
α2

) α2 
α1+α2 

p
− α2 

α1+α2 
−1 

1 < 0 

∂ f (p, u) 
∂ p2 

= −  
α2 

α1 + α2

(u 
a

) 1 
α1+α2

(
α1 p1 
α2

) α2 
α1+α2 

p
− α1 

α1+α2 
−1 

2 < 0 

Ad 6b 

∂ f (p, u) 
∂ p1 

= − a2 
a1 + a2 

e 
u 

a1+a2

(
a1 p2 
a2

) a2 
a1+a2 

p
− a2 

a1+a2 
−1 

1 < 0 

∂ f (p, u) 
∂ p2 

= − a1 
a1 + a2 

e 
u 

a1+a2

(
a1 p1 
a2

) a2 
a1+a2 

p
− a1 

a1+a2 
−1 

2 < 0 

Ad 7a Let us verify if an effect of an increase in the second good price on the 
compensated demand for the first good is the same as an effect of an increase in the 
first good price on the compensated demand for the second good.

(u 
a

) 1 
α1+α2

(
α1 p2 
α2 p1

) α2 
α1+α2 

,
(u 
a

) 1 
α1+α2

(
α2 p1 
α1 p2

) α1 
α1+α2 

∂ f1(p, u) 
∂ p2 

= 1 

α1 + α2

(u 
a

) 1 
α1+α2 α 

α2 
α1+α2 
1 α 

α1 
α1+α2 
2 p 

−α2 
α1+α2 
1 p 

−α1 
α1+α2 
2 = 

∂ f2(p, u) 
∂ p1 

Ad 7b 

∂ f1(p, u) 
∂ p2 

= 1 

a1 + a2 
e 

u 
a1+a2 a 

a2 
a1+a2 
1 a 

a1 
a1+a2 
2 p 

−a2 
a1+a2 
1 p 

−a1 
a1+a2 
2 = 

∂ f2(p, u) 
∂ p1 

2.5.2 Dynamic Approach 

A variable t means the discrete time: t = 0, 1, 2, . . . ,  T or the continuous time: 
t ∈ [0; T ]. T means a time horizon. In the consumer’s expenditure minimization 
problem we use the following notation: 

p(t) = (p1(t), p2(t)) ≥ 0—a vector of time-varying prices of goods, 
u(t) ∈ R—a utility level that a consumer wants to achieve by purchasing a 
consumption bundle, 
x(t) = (x1(t), x2(t)) ≥ 0—a bundle of goods that a consumer is willing to 
purchase at any period/moment t at prices p(t).
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The consumer’s expenditure minimization problem has a form: 

{p1(t)x1(t) + p2(t)x2(t)} |→ min(2.183) 

u(x(t)) = u(t)(2.184) 

x(t) ≥ 0.(2.185) 

If a utility function u(x(t)) is increasing and strongly concave, then in each 
period/moment t a line indicating the minimal expenditure incurred for the opti-
mal consumption bundle is tangent to an indifference curve resulting from Eq. 
(2.184), because a consumer wants to achieve a given utility level u by the minimal 
expenditure on purchasing the consumption bundle. This results in an optimality 
condition of the consumption bundle: 

s12(x̃(t)) = 
p1(t) 
p2(t)

∀t,(2.186) 

where t = 0, 1, 2, . . . ,  T or t ∈ [0; T ]. This property is called Gossen’s second 
law. The optimal bundle is a solution of the system of Eqs. (2.184) and (2.186). 

From the problem of the consumer’s expenditure minimization, we obtain the 
optimal bundle~x(t), a time-dependent compensated (Hicksian) demand function: 

f (p(t), u(t)) =~x(t)(2.187) 

and a corresponding consumer’s expenditure function: 

e(p(t), u(t)) = p1(t) ̃x1(t) + p2(t) ̃x2(t).(2.188) 

The compensated demand function, as well as the consumer’s expenditure func-
tion, in all periods/moments t has the same form, but at different periods/moments 
it may take different values depending on the prices of goods and on a util-
ity level u(t), which vary over time. Depending on a utility function describing 
consumer’s preferences towards consumption bundles, the compensated demand 
function f (p(t), u(t)) and the consumer’s expenditure function e(p(t), u(t)) take 
the form accordingly: 

(a) in case of a power utility function u(x(t)) = ax1(t)α1 x2(t)α2 , a > 0, 
α1 + α2 < 1 

f (p(t), u(t)) =
((

u(t) 
a

) 1 
α1+α2

(
α1 p2(t) 
α2 p1(t)

) α2 
α1+α2 

,

(
u(t) 
a

) 1 
α1+α2

(
α2 p1(t) 
α1 p2(t)

) α1 
α1+α2

)(2.189)
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e(p(t), u(t)) =
(
u(t) 
a

) 1 
α1+α2

⎡

p1(t)

(
α1 p2(t) 
α2 p1(t)

) α2 
α1+α2 + p2(t)

(
α2 p1(t) 
α1 p2(t)

) α1 
α1+α2

⎤

(2.190) 

(b) in case of a logarithmic utility function u(x(t)) = a1 ln x1(t) + a2 ln x2(t), 
a1, a2 > 0, x1, x2 > 0 

f (p(t), u(t)) =
(

e 
u(t) 

α1+α2

(
α1 p2(t) 
α2 p1(t)

) α2 
α1+α2 

, e 
u(t) 

α1+α2

(
α2 p1(t) 
α1 p2(t)

) α1 
α1+α2

)

(2.191) 

e(p(t), u(t)) = e 
u(t) 

α1+α2

⎡

p1(t)

(
α1 p2(t) 
α2 p1(t)

) α2 
α1+α2 + p2(t)

(
α2 p1(t) 
α1 p2(t)

) α1 
α1+α2

⎤(2.192) 

(c) in case of a Koopmans-Leontief utility function u(x(t)) = 
min{a1x1(t), a2x2(t)}, a1, a2 > 0 

f (p(t), u(t)) =
(
u(t) 
a1 

, 
u(t) 
a2

)
(2.193) 

e(p(t), u(t)) = u(t)

⎡
p1(t) 
a1 

+ 
p2(t) 
a2

⎤
(2.194) 

Example 2.16 Let us assume that at every moment a utility level that a consumer 
wants to achieve and the prices of the first and of the second goods change according 
to equations: 

u(t) = 1 + 0.1 ln(t + 1), 

p1(t) = 4 · 0.98t , 

p2(t) = 0.006t2 − 0.1t + 3, 

t ∈ [0; 30], 

which means that initially a consumer wants to have a utility level equal to 1 and 
after a gradual logarithmic increase the utility level equal to about 1.34 at the end 
of a time horizon. With time a consumer wants to have bigger and bigger utility of 
a consumption bundle he/she purchases. At the beginning this increase of utility 
is faster and from about moment t = 10 it is approximately a linear increase. In 
Fig. 2.24 we present a trajectory of the utility level a consumer wants to achieve 
by purchasing a consumption bundle at any given moment of the time horizon.
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Price trajectories, shown in Fig. 2.25, are analogous to those presented in Exam-
ple 2.12, with a difference that now they are considered in a continuous-time 
version.

Consumer’s preferences towards consumption bundles are described by a power 
utility function of a form u(x(t)) = x1(t)0,5x2(t)0,5, for which a corresponding 
compensated demand function is 

f (p(t), u(t)) =
(

u(t)

(
p2(t) 
p1(t)

) 1 
2 

, u(t)

(
p1(t) 
p2(t)

) 1 
2
)

and a consumer’s expenditure function is 

e(p(t), u(t)) = 2u(t) p1(t)0.5 p2(t)0.5. 

At each moment t , a line indicating the minimal expenditure incurred for the 
optimal consumption bundle is tangent to an indifference curve resulting from the 
consumer’s preferences described by the given utility function and from the utility
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1.4 

u(t) 

Fig. 2.24 Trajectory of utility level that consumer wants to achieve 
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Fig. 2.25 Price trajectories

level he/she wants to achieve at a given moment. Figure 2.26 shows this rela-
tionship for moments: 0, 15 and 30. For each moment t ∈ [0; 30] an analogous 
relationship can be presented. We can see from the figure that the line indicating 
the minimal expenditure changes its location and slope. This is due to the rela-
tionship between the prices of both goods changing over time and the utility level 
a consumer wants to achieve which also changes over time. 

Trajectories of the compensated demand for the first and the second goods are 
shown in Fig. 2.27. The compensated demand for the first good increases in the 
whole considered time horizon, while the compensated demand for the second 
commodity initially grows, reaches its maximum equal to 4 at around moment 
t = 8 and then decreases until the end of the time horizon.

Fig. 2.26 Consumer’s expenditure minimization problem 
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Fig. 2.27 Compensated demand trajectories for first and second good 

A trajectory of the consumer’s expenditure is shown in Fig. 2.28. The expen-
diture on purchasing a consumption bundle is growing, except time interval 
(3.1; 9.3). But the decrease in expenditure is slight. Then, the expenditure is 
constantly growing until the end of the time horizon. The presented expenditure 
trajectory results from the evolution of prices of both goods and the evolution of 
the utility level a consumer wants to achieve, all of which change over time.

In each period Gossen’s second law is obeyed, as shown in Fig. 2.29. This 
means that the trajectory of the marginal rate of substitution of the first good 
by the second good in the optimal bundle matches up with the trajectory of the 
quotient of the price of the first good by the price of the second good. On the basis 
of this dependency, together with the equation of the indifference curve with the 
utility level a consumer wants to achieve, we have determined the optimal bundle.

In Fig. 2.30 we see that at each moment a consumer achieves a given util-
ity level he/she wants to have from purchasing the optimal consumption bundle. 
Hence a consumer achieves the given utility level and at the same time when pur-
chasing the consumption bundle which gives this utility level he/she incurs the 
minimal expenditure. Figures 2.29 and 2.30 illustrate the fact that at each moment 
of the considered time horizon, the compensated demand function indicates opti-
mal bundles, which results from the consumer’s expenditure minimization problem 
and from a definition of the Hicksian demand function.
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Fig. 2.28 Consumer’s expenditure trajectory
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Fig. 2.29 Trajectory of marginal rate of substitution in optimal bundle
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Fig. 2.30 Trajectory of purchased optimal bundle’s utility 

2.6 Substitution and Income Effects of Changes in Prices 
of Goods 

2.6.1 Static Approach 

Let us define links between the utility maximization problem (P2) and the con-
sumer’s expenditure minimization problem (P4). The question is when the optimal 
solutions to these problems are identical that means when values of Marshallian 
and Hicksian demand functions are the same: 

ϕ(p, I ) = x̄ =~x = f (p, u).(2.195) 

Theorem 2.5 If a utility function u: R2+ → R is increasing, twice differentiable and 
strictly concave, then ∀ p1, p2 > 0, u > u(0): 

1. ϕ(p, I ) = f (p, ν(p, I )), 
2. f (p, u) = ϕ(p, e(p, u)), 
3. ν(p, e(p, u)) = u, 
4. e(p, ν(p, I )) = I . 

From Theorem 2.5 it results that values of Marshallian and Hicksian demand 
functions are identical when a utility level u > u(0) that a consumer wants to 
achieve from purchasing a consumption bundle is equal to the value of an indirect 
utility function ν(p, I ) by given market prices and a given consumer’s income. 
At the same time for the equivalence of these two functions to be satisfied the 
consumer income I > 0 should be equal to minimal expenditure e(p, u) incurred 
by a consumer for purchasing a consumption bundle with the utility level u > u(0).
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Theorem 2.6 (the Slutsky equation) If a utility function u: R2+ → R is increasing, 
twice differentiable and strictly concave, then ∀ p1, p2 > 0, u = ν(p, I ): 

∂ϕi (p, I ) 
∂ p j 

= 
∂ fi (p, u) 

∂ p j 
− 

∂ϕi (p, I ) 
∂ I 

ϕ j (p, I ) i, j = 1, 2, i /= j(2.196) 

or 

∂ϕi (p, I ) 
∂ pi 

= 
∂ fi (p, u) 

∂ pi 
− 

∂ϕi (p, I ) 
∂ I 

ϕi (p, I ) i = 1, 2.(2.197) 

Interpretation of the Slutsky equation in form (2.197): 

∂ϕi (p,I ) 
∂ pi —a price effect - how a change in the price of i-th good affects the demand 

for this good (ceteris paribus—the price of the other good and a consumer’s 
income remain unchanged), 
∂ fi (p,u) 

∂ pi < 0—a substitution effect - how a change in the price of i-th good 
affects the compensated demand for this good. An increase in the price of i-
th good results in a decrease in utility of the optimal consumption bundle. But 
this utility’s decrease is compensated by a hypothetical increase in a consumer’s 
income such that a new optimal consumption bundle has the same utility level as 
the bundle before the increase in the price of i-th good, 
− ∂ϕi (p,I ) 

∂ I ϕi (p, I )—an income effect - how the demand for i-th good is affected 
because of relatively smaller purchasing power of a consumer caused by an 
uncompensated increase in the price of i-th good purchased in quantity ϕi (p, I ). 

Note 2.29 The price effect is a result (a sum) of the substitution affect and the income 
effect. 

There are three possible cases to consider: 

Case 1 ∂ϕi (p, I ) 
∂ I 

>0 ⇔ −∂ϕi (p, I ) 
∂ I 

ϕi (p, I ) < 0 

∧ 
∂ fi (p, u) 

∂ pi 
<0 ⇔ 

∂ϕi (p, I ) 
∂ pi 

< 0(2.198) 

which means that if i-th good is normal then it is also an ordinary good. 

Case 2 

∂ϕi (p, I ) 
∂ I 

< 0 ⇔ −  
∂ϕi (p, I ) 

∂ I 
ϕi (p, I ) > 0 ∧ 

∂ fi (p, u) 
∂ pi 

< 0(2.199)
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Fig. 2.31a First commodity as normal and ordinary good 

If additionally the positive income effect is stronger than the negative substitution 
effect, then ∂ϕi (p,I ) 

∂ pi > 0. It means that if i-th good is inferior then it is possible that 
it is also a Giffen good. 

Case 3 

∂ϕi (p, I ) 
∂ I 

< 0 ⇔ −  
∂ϕi (p, I ) 

∂ I 
ϕi (p, I ) > 0 ∧ 

∂ fi (p, u) 
∂ pi 

< 0(2.200) 

If additionally the positive income effect is weaker than the negative substitution 
effect, then ∂ϕi (p,I ) 

∂ pi < 0. It means that if i-th good is inferior then it is possible that 
it is also an ordinary good. 

Example 2.17 Present geometric illustrations together with a corresponding inter-
pretation of three possible cases for the Slutsky (2.197) equation. 

On the basis of Fig. 2.31a we can state that the income and substitution effects 
of an increase in the price of the first good are negative. The price effect, being a 
sum of the income and substitution effects, is negative as well. Thus, the first good is 
ordinary. Moreover, an increase of income results in the higher demand for the first 
good. Hence it is a normal good. 

Let us also notice that an increase in the price of the first good results in the 
higher demand for the second good. It means that the first and the second goods are 
substitutes for each other. The second good is also normal, because an increase of 
income results in the higher demand for the second good. 

On the basis of Fig. 2.31b we can state that the income effect is positive. At 
the same time it is weaker than the substitution effect. Both effects result from an 
increase in the price of the first good. The price effect, being a sum of the income and
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Fig. 2.31b First commodity as inferior and ordinary good 

substitution effects, is negative then. Thus, the first good is ordinary. An increase of 
income results in the lower demand for the first good. Hence it is an inferior good. 

Let us also notice that an increase in the price of the first good results in the 
lower demand for the second good. It means that the first and the second goods 
are complementary to each other. The second good is normal, because an increase 
of income results in the higher demand for the second good. 

On the basis of Fig. 2.31c we can state that the income effect is positive. At 
the same time it is stronger than the substitution effect. Both effects result from 
an increase in the price of the first good. The price effect, being a sum of the 
income and substitution effects, is positive then. Thus, the first commodity is a 
Giffen good. An increase of income results in the lower demand for the first good. 
Hence it is an inferior good.

Let us also notice that an increase in the price of the first good results in the 
lower demand for the second good. It means that the first and the second goods 
are complementary to each other. The second good is normal, because an increase 
of income results in the higher demand for the second good. 

Note 2.30 The substitution effect in the Slutsky equation shows an increment of 
the compensated demand for i-th good due to an increase in the price of i-th good. 
From Theorem 2.4 (statement 6) we know that this increment is always negative, 
regardless of the type of a good. Hence, it is not possible to consider Veblen goods 
in the Slutsky equation.
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Fig. 2.31c First commodity as inferior and Giffen good

2.6.2 Dynamic Approach 

From Sect. 2.6.1 we know that if by any prices and by any income a utility level 
that a consumer wants to achieve is equal to the value of an indirect utility function 
then Marshallian and Hicksian demand functions have the same values, thus the 
consumption utility maximization problem and the consumer’s expenditure mini-
mization problem are equivalent. In a dynamic approach we want to show that this 
dependency occurs also in time that is when prices change form period to period 
(discrete time version) or at any moment (continuous-time version). 

The Slutsky equation presented in a static approach (Theorem 2.6) has its 
counterpart in a dynamic approach. A variable t means the discrete time: t = 
0, 1, 2, . . . ,  T or the continuous time: t ∈ [0; T ]. T means a time horizon. A util-
ity function u: R2+ → R is assumed to be increasing, differentiable and strictly 
concave in each period/moment. We assume also that in every period/moment a 
utility level that a consumer wants to achieve is equal to value of an indirect utility 
function. Then for any positive prices and any positive income of a consumer it is 
satisfied: 

∂ϕi (p(t), I (t)) 
∂ p j (t)

=∂ fi (p(t), u(t)) 
∂ p j (t)

− 
∂ϕi (p(t), I (t)) 

∂ I (t)
· ϕ j (p(t), I (t)) 

i , j =1, 2 ∀ t 
,(2.201) 

where t = 0, 1, 2, . . . ,  T or t ∈ [0; T ]. Equation (2.201) is called a Slutsky 
dynamic equation. One can consider its special case when changes in prices, in 
the Marshallian demand and in the compensated demand refer only to one of two
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goods in a consumption bundle: 

∂ϕi (p(t), I (t)) 
∂ pi (t)

= 
∂ fi (p(t), u(t)) 

∂ pi (t)
− 

∂ϕi ( p(t), I (t)) 
∂ I (t)

· ϕi ( p(t), I (t)) 
i = 1, 2 ∀t .(2.202) 

The left-hand side of Eq. (2.202), which means an impact of a change in the 
price of i-th good, ceteris paribus, on the demand for this good, is called a price 
effect. The first component of the right-hand side of the equation, which means an 
impact of a change in the price of i-th good, ceteris paribus, on the compensated 
demand for this good, is called a substitution effect. While the second component 
of the sum is called an income effect and presents how the demand for i-th good 
is affected when there is a relative decrease in purchasing power of a consumer 
caused by the increase in the price of a good purchased in quantity ϕi (p(t), I (t)). 

Example 2.18 In order to present the dynamic approach (discrete-time version) to 
the substitution and income effects of a change in good’s prices we show that in every 
period of a considered time horizon the Slutsky equation is satisfied for each of two 
goods. That means we show that in every period the price effect can be presented as 
a sum of the substitution and income effects. 

Let us exploit data given and obtained in Examples 2.12 and 2.16. Preferences of a 
consumer towards consumption bundles are described by a power utility function of a 
form u(x(t)) = x1(t)0.5x2(t)0.5. We already know that a corresponding Marshallian 
demand function has a form: 

ϕ(p(t), I (t)) =
(

I (t) 
2 p1(t) 

, 
I (t) 

2 p2(t)

)
, 

an indirect utility function: 

ν(p(t), I (t)) = I (t) 
2 p1(t)0.5 p2(t)0.5 

, 

a compensated demand function: 

f (p(t), u(t)) =
(

u(t)

(
p2(t) 
p1(t)

) 1 
2 

, u(t)

(
p1(t) 
p2(t)

) 1 
2
)

and a consumer’s expenditure function: 

e(p(t), u(t)) = 2u(t)p1(t)
0.5 p2(t)

0.5.
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Let us assume, the same as in Example 2.12, that in periods t = 0, 1, 2, . . . ,  30 a 
consumer’s income and prices of the first and of the second goods change according 
to equations: 

I (t) = 10 · 1.05t , 

p1(t) = 4 · 0.98t , 

p2(t) = 0.006t2 − 0.1t + 3, 

while a utility level a consumer want to achieve from purchasing a consumption 
bundle evolves according to a formula of an indirect utility function: 

u(t) = ν(p(t), I (t)) = I (t) 
2 p1(t)0.5 p2(t)0.5 

. 

For the first commodity the price effect is negative which means it is a normal good. 
In Fig. 2.32 we can notice moreover that this effect becomes stronger and stronger in 
subsequent periods. This results from a relationship between a consumer’s income 
and the price of the first good that evolve over time. 
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Fig. 2.32 Trajectory of price effect for first good
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Fig. 2.33 Trajectories of income and substitution effects for the first good 

In Fig. 2.33 we present trajectories of the income and substitution effects for the 
first good. In a given example these two effects have exactly the same strength in every 
period and this strength becomes bigger and bigger over time. The definition of the 
compensated demand shows that the substitution effect is always negative regardless 
of the type of a consumption bundle. The income effect can have positive or negative 
sign. In this example it is negative which means that the first commodity is a normal 
good. Comparing Figs. 2.32 and 2.33 we can notice that if we add trajectories of the 
income and substitution effect then we obtain exactly the same trajectory as of the 
price effect. 

For the second commodity the price effect is also negative, as for the first com-
modity, which means the second good is normal. In Fig. 2.34 we can notice moreover 
that this effect becomes stronger and stronger in subsequent periods until period 14 
and then it weakens until the end of time horizon. Let us recall that the price of the 
second good decreases in a first few periods, reaches its minimum in about period 
8 and then increases until the end of time horizon.31 This evolution of the price of 
the second good affects the trajectory of the price effect for this good. However, 
the exact course of the trajectory results from a relationship between a consumer’s 
income and the price of the second good that evolve over time.

31 This evolution of the price is presented in Fig. 2.15 in Sect. 2.4.2. 
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Fig. 2.34 Trajectory of price effect for the second good 

In Fig. 2.35 we present trajectories of the income and substitution effects for 
the second good. Again, as for the first good, in a given example these two effects 
have exactly the same strength in every period. First this strength becomes bigger 
and bigger over time, reaching its maximum in period 14. Then, the strength of both 
these effects weakens until the end of time horizon. The definition of the compensated 
demand shows that the substitution effect is always negative regardless of the type 
of a consumption bundle. The income effect can have positive or negative sign. In 
this example it is negative which means that the second commodity is a normal 
good. Comparing Figs. 2.34 and 2.35 we can notice that if we add trajectories of the 
income and substitution effect then we obtain exactly the same trajectory as of the 
price effect.

2.7 Questions

1. What does it mean that a utility function is a numerical characteristics of a 
relation of consumer’s preference? 

2. What are first and second Gossen’s laws? What properties are required for a 
utility function to have any of these laws satisfied? 

3. Why does a linear utility function describe goods that are perfect substitutes 
and not complementary to each other? Why does a Koopmans-Leontief utility
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Fig. 2.35 Trajectories of income and substitution effects for the second good

function describe goods that are perfect complements and not substitute for 
each other?

4. What is a difference between a Giffen good and a Veblen good? 
5. What are criteria to classify consumer goods and what is economic interpre-

tation of these criteria? 
6. What are basic properties of a Marshallian demand function and of an indirect 

utility function? 
7. What are basic properties of a Hicksian demand function and of a consumer’s 

expenditure function? 
8. Why a Hicksian demand function is also called a compensated demand 

function? 
9. Regarding a consumption utility maximization problem what assumptions are 

needed to have a marginal utility of a money unit for the purchase of i-th 
good equal to a marginal utility of a consumer’s income and to an optimal 
Lagrange multiplier? How to interpret these economic terms? 

10. What is Roy’s identity in a consumption utility maximization problem? What 
is the counterpart of this identity in a consumer’s expenditure minimization 
problem? 

11. What conditions need to be satisfied to have a Hicksian demand function and 
a Marshallian demand function having the same values? 

12. What assumptions should be satisfied to derive a Slutsky equation? 
13. What conclusions can be drawn from a Slutsky equation?
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14. Is it possible to consider Veblen goods in a Slutsky equation? 
15. Regarding a Slutsky equation what is the economic interpretation of substitu-

tive and income effects of changes in prices of goods? 

2.8 Exercises 

E1. There is given an increasing and twice differentiable utility function u: R2+ → R 
of a form: 

(a) u(x) = a1ex1 + a2ex2 + a3, ai > 0, i = 1, 2, 3, 
(b) u(x) = a1e 

1 
x1 + a2e 

1 
x2 + a3, ai > 0, i = 1, 2, 3, 

(c) u(x) = x1x2 
a1x1+a2x2 

, ai > 0, i = 1, 2, 
(d) u(x) = a1x1 + a2x2 + axα1 

1 x
α2 
2 , a, ai , αi > 0, α1 + α2 < 1, i = 1, 2, 

(e) u(x) = a1(x1 + ln x1) + a2(x2 + ln x2), ai , xi > 0, i = 1, 2, 
(f) u(x) = a1x1

(
1 + xα−1 

1

)
+ a2x2

(
1 + xα−1 

2

)
, α  ∈ (0; 1), ai > 0, i = 1, 2. 

1. Calculate a value and give economic interpretation of: 
(a) a marginal utility of i-th good, 
(b) a growth rate of consumption bundle utility with respect to quantity of i-th 

good, 
(c) an elasticity of consumption bundle utility with respect to quantity of i-th 

good, 
(d) a marginal rate of substitution of the first (second) good by the second (first) 

good, 
(e) an elasticity of substitution of the first (second) good by the second (first) 

good, 
for consumption bundles: x1 = (1, 1), x2 = (1, 2). 

2. Check if the given function satisfies first Gossen’s law. 

E2. There are given utility functions u: R2+ → R: 

(a) u1(x) = a1x1 + a2x2, ai > 0, i = 1, 2, 
(b) u2(x) = Aa1x1+a2x2 , A ∈ (0; 1), ai > 0, i = 1, 2, 
(c) u3(x) = Aa1x1+a2x2 , A > 1, ai > 0, i = 1, 2, 
(d) u4(x) = 1 

ln(a1x1+a2x2) , ai > 0, i = 1, 2, 
(e) u5(x) = ln(a1x1 + a2x2), ai > 0, i = 1, 2, 
(f) u6(x) = axα 

1 x
β 
2 , a > 0, α, β  ∈ (0; 1), 

(g) u7(x) = α ln x1 + β ln x2, α,  β  ∈ (0; 1), 
(h) u8(x) = Aaxα 

1 x
β 
2 , a > 0, A, α, β  ∈ (0; 1), 

(i) u9(x) = Aaxα 
1 x

β 
2 , a > 0, A > 1, α, β  ∈ (0; 1), 

(j) u10(x) = min{a1x1, a2x2}, ai > 0, i = 1, 2, 
(k) u11(x) = a1xγ 

1 + a2xγ 
2 , ai > 0, i = 1, 2, γ  ∈ (0; 1),
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(l) u12(x) =
(
a1x

γ 
1 + a2xγ 

2

) θ 
γ , θ,  ai > 0, i = 1, 2, γ  ∈ (0; 1). 

1. Which of these functions describes the same relation of consumer preference? 
2. Which of them are positively homogeneous of degree θ >  0? 
3. Which of them have the same degree of homogeneity? 
4. Which of them are (weakly) increasing, which are (weakly) decreasing? 

E3. Determine if a given utility function u: R2+ → R of a form: 

u(x) = a1x1 − a2x2 + a3, ai > 0, i = 1, 2, 

u(x) = a1 ln x1 − a2 ln x2 + a3, ai > 0, i = 1, 2, 

u(x) = −a1x 
1 
2 
1 + a2x 

1 
2 
2 + a3, ai > 0, i = 1, 2, 

is (weakly) increasing or (weakly) decreasing. 

E4. There are given: 

• a budget set D(p, I ) = {
x ∈ R2+|p1x1 + p2x2 ≤ I

} ⊂ X = R2+, 
• a supply set B = {(x1, x2) ∈ R2+|x1 ≤ b1, x2 ≤ b2} ⊂  X = R2+, 

such that: 

(a) ∀α, β ≥ 0, α  + β = 1 0  < b1 < α I 
p1 

∧ 0 < b2 < β I 
P2 
, 

(b) 0 < I 
p1 

≤ b1 ∧ 0 < b2 < I 
P2 
, 

(c) 0 < b1 < I 
p1 

∧ 0 ≤ I 
P2 

< b2, 
(d) 0 < I−p2b2 

p1 
< b1 < I 

p1 
and 0 < I −p1b1 

P2 
< b2 < I 

p2 
. 

1. Using a geometric method find a solution to a consumption utility Maximization 
Problem with a given utility function: 
A. linear: u(x) = a1x1 + a2x2, ai > 0, i = 1, 2, 
B. a power function: u(x) = axα1 

1 x
α2 
2 , a, αi > 0, α1 + α2 < 1, i = 1, 2, 

C. logarithmic: u(x) = a1 ln x1 + a2 ln x2, ai > 0, xi > 0, i = 1, 2, 
D. subadditive: u(x) = a1xα 

1 + a2xα 
2 , ai > 0, i = 1, 2, α  ∈ (0; 1) 

E. a Koopmans-Leontief function: u(x) = min{a1x1, a2x2}, ai > 0, i = 1, 2 
F. a CES function: u(x) = (

a1x
γ 
1 + a2xγ 

2

) θ 
γ , θ,  ai > 0, i = 1, 2, γ ∈ 

(−1; 0) ∩ (0;+∞), 

knowing that a consumer chooses an optimal consumption bundle in a set 
B ∩ D(p, I ) 

2. For each of considered sets B ∩ D(p, I ) of feasible solutions by each of utility 
functions determine relationships between properties of the set (convex, bounded, 
closed, compact) and properties of the utility function (monotonicity, convexity
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or strict convexity). Write conclusions about the number of optimal consumption 
bundles. 

E5. Justify by geometric means that a linear utility function: 

u(x) = a1x1 + a2x2 + a3, ai > 0, i = 1, 2, 3 

describes consumer goods which are perfect substitutes and not complementary for 
each other, and that a Koopmans-Leontief utility function: 

u(x) = min{a1x1, a2x2} + a3, ai > 0, i = 1, 2, 3 

describes consumer goods which are perfect complements and not substitute for each 
other. 

E6. There are given a power utility function u(x) = axα1 
1 x

α2 
2 , a, αi > 0, α1 + 

α2 < 1, i = 1, 2 and a utility function u2(x) = α1 ln x1 + α2 ln x2 + ln a, xi > 
0, i = 1, 2, which is a composition of the function u with an increasing logarithmic 
function. We know that u and u2 describe the same relation of consumer preference. 
Solving consumption utility maximization problems with each of these functions 
check if they correspond to the same Marshallian demand function. 

E7. Using the Kuhn-Tucker theorem32 find an optimal solution to a consumption 
utility maximization problem with an additional constraint on the supply of both 
goods: 0 ≤ xi ≤ bi , i = 1, 2, when a utility function is: 

(a) a power function: u(x) = axα1 
1 x

α2 
2 , a, αi > 0, α1 + α2 < 1, i = 1, 2, 

(b) logarithmic: u(x) = a1 ln x1 + a2 ln x2, ai > 0, xi > 0, i = 1, 2, 
(c) subadditive: u(x) = a1xα 

1 + a2xα 
2 , ai > 0, i = 1, 2, α  ∈ (0; 1). 

E8. There is given a market of two consumer goods, where: 
x = (x1, x2) ∈ R2+—a consumption bundle, p = ( p1, p2) ∈ int R2+—a vector 

of prices of goods, I > 0—a consumer’s income and a utility function describing a 
relation of consumer preference of a form: 

(a) u(x) = min{a1x1, a2x2}, ai > 0, i = 1, 2, 
(b) u(x) = a1 ln x1 + a2 ln x2, ai > 0, xi > 0, i = 1, 2, 
(c) u(x) = axα 

1 x
β 
2 , a > 0, α,  β  ∈ (0; 1), 

1. Write a form of a consumption utility maximization problem. 
2. Determine a Marshallian demand function and an indirect utility function. 
3. Write a form of a consumer expenditure minimization problem.

32 See a Mathematical appendix.
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4. Determine a Hicksian demand function and a consumer expenditure function. 
5. Knowing that I = e(p, u) and that u = ν(p, I ) check if the following 

Slutsky equations are true: 
A. ∂ϕ1(p,I ) 

∂ p1 = ∂ f1(p,u) 
∂ p1 − ∂ϕ1(p,I ) 

∂ I ϕ1(p, I ), 
B. ∂ϕ1(p,I ) 

∂ p2 = ∂ f1(p,u) 
∂ p2 − ∂ϕ1(p,I ) 

∂ I ϕ2(p, I ), 
C. ∂ϕ2(p,I ) 

∂ p2 = ∂ f2(p,u) 
∂ p2 − ∂ϕ2(p,I ) 

∂ I ϕ2(p, I ), 
D. ∂ϕ2(p,I ) 

∂ p1 = ∂ f2(p,u) 
∂ p1 − ∂ϕ2(p,I ) 

∂ I ϕ1(p, I ), 
6. Present graphic illustrations of the Slutsky equations of point 5. 

E9. Check properties of Marshallian demand functions which are optimal solutions 
to consumption utility maximization problems of Exercise 6. Check properties of 
the corresponding indirect utility functions. 

E10. Using the Kuhn-Tucker theorem33 find an optimal solution to a consumer 
expenditure minimization problem with an additional constraint on the supply of 
both goods: 0 ≤ xi ≤ bi , i = 1, 2, when a utility function is: 

(a) a power function: u(x) = axα1 
1 x

α2 
2 , a, αi > 0, α1 + α2 < 1, i = 1, 2, 

(b) logarithmic: u(x) = a1 ln x1 + a2 ln x2, ai > 0, xi > 0, i = 1, 2, 
(c) subadditive: u(x) = a1xα 

1 + a2xα 
2 , ai > 0, i = 1, 2, α  ∈ (0; 1). 

E11. Check properties of Hicksian demand functions which are optimal solutions 
to consumer expenditure minimization problems of Exercise 8. Check properties of 
the corresponding consumer’s expenditure functions. 

E12. Knowing Hicksian and Marshallian demand functions which are optimal 
solutions to consumption utility maximization problems (E6) and to consumer 
expenditure minimization problems (E8), analyse income and substitutive effects 
of changes in prices of goods. For this purpose use a Slutsky equation for i-th good, 
i = 1, 2. 

E13. At each moment t ∈ [0, 20] a consumer’s income, the price of the first good 
and the price of the second good change according to equations: 

I (t) = 10 · 1.05−t , 

p1(t) = 4 · 0.98−t , 

p2(t) = −0.006t2 + 0.1t + 3.

33 See a Mathematical appendix.
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Consumers’ preferences towards consumption bundles are described by a 
Koopmans-Leontief function of a form: u(x(t)) = min{2x1(t), x2(t)}. Solve a con-
sumption utility maximization problem in the dynamic approach. Present trajectories 
of the demand for the first and the second goods and a trajectory of indirect utility. 

E14. In periods t = 0, 1, 2, . . . ,  20 a utility level a consumer wants to achieve, the 
price of the first good and the price of the second good change according to equations: 

u(t) = 1 − 0.1 ln(t + 1), 

p1(t) = 4 · 0.98−t , 

p2(t) = −0.006t2 + 0.1t + 3. 

Consumers’ preferences towards consumption bundles are described by a 
Koopmans-Leontief function of a form: u(x(t)) = min{2x1(t), x2(t)}. Solve a  
consumer expenditure minimization problem in the dynamic approach. Present 
trajectories of the compensated demand for the first and the second goods and a 
trajectory of consumer’s expenditure. 

E15. At each moment t ∈ [0, 20] a consumer’s income, the price of the first good 
and the price 

I (t) = 10 · 1.05−t , 

p1(t) = 4 · 0.98−t , 

p2(t) = −0.006t2 + 0.1t + 3. 

Consumers’ preferences towards consumption bundles are described by a 
Koopmans-Leontief function of a form: u(x(t)) = min{2x1(t), x2(t)}. A utility 
level a consumer wants to achieve evolves at each moment according to an indirect 
utility function resulting from a consumption utility maximization problem. Present 
trajectories of price, income and substitutive effects for the first and the second goods.



3Rationality of Choices Made
by Group of Consumers

In this chapter you will learn:

– how to describe a direct exchange of consumer goods between traders
– how to present graphically a simple model of exchange and an Arrow-

Hurwicz model
– what initial, feasible, accepted, blocked, Pareto optimal and Walrasian

equilibrium allocations are
– what the equilibrium state in an Arrow-Hurwicz model is, how it is

described and what the conditions necessary for its existence are
– what global supply, global demand and excess demand functions are
– what is stated in Walras’s law
– what it means that a Walrasian equilibrium state is determined by a price

structure
– what is described in an Arrow-Hurwicz model in a static approach and

what in a dynamic approach
– what is the difference between discrete-time and continuous-time dynamic

in Arrow-Hurwicz models
– what it means that a Walrasian equilibrium state is asymptotically globally

stable.

In this chapter, we focus on rational behaviour of groups of consumers1 and their
choices and actions that can lead to a conflict of interests.

For the sake of simplicity, we consider two models of a competitive market
with two commodities and two consumers, called traders, where the supply of

1 In fact it is about rational and competitive behaviour of single consumers transferred to groups
of consumers.
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goods is constant and exogenously determined. In contrast to Chap. 2, we assume
now that the supply of consumer goods is a binding constraint for the demand
reported by consumers for two commodities. The first of considered competitive
equilibrium models of two goods market is called a simple model of exchange.
In this model, we determine rational behaviour of consumers that allows a market
to achieve an equilibrium identified with a Pareto optimal allocation of the supply
of each commodity.

The second competitive equilibrium model, commonly known in literature
as the Arrow-Hurwicz model, is presented in a static and in a dynamic version.
The static version serves defining a concept of a general equilibrium in a Walras
sense. The Walrasian equilibrium state is determined by a Walrasian equilibrium
price vector p̄ = (

p̄1, p̄2
)

> (0, 0) for which the global demand expressed in
physical units and the global supply of each good are equal to each other. In
the same time, each consumer achieves her/his goal to the maximum extent. This
goal for any trader is to purchase an optimal consumption bundle whose utility
is maximum and not less than the utility of a bundle he/she comes to the mar-
ket with and whose value does not exceed the income of the trader. As a result
of reaching the Walrasian equilibrium it is possible to determine an optimum of
the competitive market. It is identified with the Walrasian equilibrium allocation
which by equilibrium price is a Pareto optimal allocation.

The dynamic Arrow-Hurwicz model, presented in a discrete and in a dynamic
version, serves considering a mechanism of reaching the Walrasian equilibrium
state in infinite time horizon. This state is described by the Walrasian equilibrium
price vector and the Walrasian equilibrium allocation. We analyze also the issues of
existence, uniqueness and asymptotical global stability of competitive equilibrium
state in this model of consumer goods’ market.

3.1 Simple Model of Exchange

Let us consider a market of two consumer goods and two traders where:

i = 1, 2—an index of consumer goods,
k = 1, 2—an index of consumers (traders),
X = R

2+—a goods space (a set of all bundles of goods available on the market),
d:R4+ → R+—a metric specified on the goods space (see Definition 2.2),
uk :R2+ → R—a utility function of k-th consumer describing his/her preferences
(a relation of preference of k-th consumer),
ak = (ak1, ak2) ∈ R

2+—an initial consumption bundle the k-th consumer comes
to the market with (k-th consumer’s endowment),
xk = (xk1, xk2) ∈ R

2+—a consution bundle the k-th consumer wants to
purchase.
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The k-th consumer aims to purchase such a bundle of goods x̄k = (x̄ k1, x̄ k2).
whose utility would be maximum and at the same time not less than of the initial
bundle ak = (ak1, ak2).

Definition 3.1 A vector a = (
a1, a2

) = (a11, a12, a21, a22) ∈ R
4+, consisting of

initial bundles ak = (ak1, ak2) that traders come to the market with, is called an
initial allocation (also endowment).

Definition 3.2 A vector x = (
x1, x2

) = (x11, x12, x21, x22) ∈ R
4+ is called an

allocation feasible with regard to an initial allocation awhen it meets the condition:

∑2

k=1
xk =

∑2

k=1
ak ⇔

(
x11 + x21
x12 + x22

)
=

(
a11 + a21
a12 + a22

)
,(3.1)

where:

a11 + a21—total quantity of the first good available on the market,
a12 + a22—total quantity of the second good available on the market,
x11 + x21—total demand for the first good.
x12 + x22—total dema for the second good.

Definition 3.3 A set of allocations feasible with regard to an initial allocation a is
the set:

F(a) =
{
x ∈ R

4+|
∑2

k=1
xk =

∑2

k=1
ak

}
⊂ R

4+.(3.2)

Note 3.1 A geometric illustration of the set of allocations feasible with regard to the
initial allocation a is called an Edgeworth box. (Fig. 3.1).

The Edgeworth box is created by overlapping two coordinate systems, each
of which is associated with the first or the second trader. Each point inside
the Edgeworth box is a vector with four non-negative coordinates: vector x =(
x1, x2

) = (x11, x12, x21, x22) ∈ R
4+ where the coordinate xki ≥ 0 describes the

k-th trader’s demand for the i-th consumer good. It is easy to notice that the vec-
tor defined in this way is an allocation feasible with regard to the initial allocation
a = (

a1, a2
) = (a11, a12, a21, a22) ∈ intR4+ (Fig. 3.1).

Definition 3.4 An allocation x ∈ F(a) ⊂ R
4+ is called an allocation accepted by

traders when it satisfies:

uk
(
xk

)
≥ uk

(
ak

)
∀ k = 1, 2.(3.3)
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Fig. 3.1 Edgeworth box

Definition 3.5 A set of all allocations feasible with regard to an initial allocation a,
in which the utility of a consumption bundle xk ∈ R

2+ is not less than the utility of
an initial bundle ak ∈ R

2+, that is the set:

S(a) =
{
x ∈ F(a)| uk

(
xk

)
≥ uk

(
ak

)
,∀ k = 1, 2

}
(3.4)

is called a set of allocations accepted by traders.

Definition 3.6 An allocation x ∈ S(a) ⊂ R
4+ accepted by traders is called an

allocation blocked by traders if there is another allocation y ∈ S(a) ⊂ R
4+ they

accept such that:

∀ k = 1, 2 uk
(
yk

)
≥ uk

(
xk

)
,(3.5)

∃ k ∈ {1, 2} uk
(
yk

)
> uk

(
xk

)
.(3.6)

Definition 3.7 An allocation x ∈ S(a) ⊂ R
4+ accepted by traders is called a Pareto

opt. (efficient) allocation2 if there is no other allocation accepted y ∈ S(a) ⊂ R
4+

such that:

∀ k = 1, 2 uk
(
yk

)
≥ uk

(
xk

)
,(3.7)

∃ k ∈ {1, 2} uk
(
yk

)
> uk

(
xk

)
.(3.8)

The set of Pareto-optimal allocations is denoted by a symbol P(a) and called a
Pareto frontier (also a contract curve when the Edgeworth box is used).

2 Which means that any accepted and to optimal allocation is not a blocked allocation.
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Definition 3.8 A set consisting of all allocations accepted by both traders and Pareto
optimal at the same time, that is the set:

C(a) = S(a) ∩ P(a) ⊂ R
4+(3.9)

is called an exchange core.

From Definitions 3.1–3.8 it follows that:

C(a) ⊆ S(a) ⊆ F(a) ⊂ R
4+,(3.10)

which means that each Pareto optimal allocation belonging to the exchange core
is an allocation accepted and feasible with regard to an initial allocation. On the
other hand, not every feasible allocation is an allocation accepted by traders, not
every allocation accepted by traders is a Pareto optimal allocation and not every
Pareto optimal allocation is an allocation accepted by both traders.3

Example 3.1 There is amarket of two consumer goods and two traders given, where:

i = 1, 2—an index of consumer goods,
k = 1, 2—an index of consumers (traders),
X = R

2+—a goods space (a set of all bundles of goods available on the market),
d:R4+ → R+—a metric specified on the goods space (see Definition 2.2),
uk :R2+ → R—a utility function of k-th consumer describing his/her preferences
(a relation of preference of k-th consumer),
ak = (ak1, ak2) ∈ R

2+—an initial consumption bundle the k-th consumer comes
to the market with (k-th consumer’s endowment),
xk = (xk1, xk2) ∈ R

2+—a consumption bundle the k-th consumer wants to
purchase.

The k-th consumer aims to purchase such a bundle of goods x̄k = (x̄ k1, x̄ k2)
whose utility would be maximum and at the same time not less than of the initial
bundleak = (ak1, ak2).

Let us consider a situation where the following utility functions are given:

(a) power functions: uk
(
xk

) = akx
αk1
k1 xαk2

k2 → max,
(b) Koopmans-Leontief functions: uk

(
xk

) = min{ak1xk1, ak2xk2} → max,

3 There are infinitely many Pareto-optimal allocations in a set of allocations that are feasible with
regard to an initial allocation. All Pareto optimal allocations create a so-called contract curve that
consists of all tangency points of both traders’ indifference curves. Only part of the Pareto optimal
allocations that are accepted by both traders form the exchange core.
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Using the Edgeworth box:

1. present geometric illustrations of allocation sets: feasible, accepted by traders
and optimal in the Pareto sense,

2. indicate allocations blocked by traders,
3. justify that C(a) ⊆ S(a) ⊆ F(a) ⊂ R

4+.

For the sake of simplicity, let us assume we are given:

– bundles of goods the traders come to the market with: a1 = (10, 20), a2 =
(20, 10), which means the initial allocation is a = (10, 20, 20, 10),

– parameters of power utility functions: ak = 1, αk1 = αk2 = 1
4 ,

– parameters of Koopmans-Leontief utility functions: ak1 = ak2 = 1.

Ad (a) Figure 3.2a shows the initial allocation a = (10, 20, 20, 10), consisting of
bundles of goods owned by both traders. Since the total amount of the first and
second good brought to the market by both traders is the same and amounts to 30
units, the Edgeworth box in the considered example is a square. It is created by
putting together two coordinate systems: of each of two traders (from her/his point
of view). It is not hard to notice that any vector x = (x11, x12, x21, x22) ∈ R

4+,
belonging to the Edgeworth box is an allocation feasible with regard to the initial
allocation because ∀ x ∈ F(a) x11 + x21 = 30, x12 + x22 = 30.

Since both traders use power utility functions when choosing the optimal bun-
dles of goods, the corresponding indifference curves are strictly convex in the
respective coordinate system of a given trader.

Fig. 3.2a Edgeworth box
with power utility functions
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Lens-shaped area S(a) within the indifference curves of both traders containing
the initial allocation consists of all the allocations accepted by both traders because
the utility of the consumption bundles belonging to this area is not less than of the
bundles of goods the traders entered the market with.

According to Definition 3.7, the allocations that are at the tangency points of
the indifference curves of both traders are Pareto optimal allocations. There are
infinitely many of them and they create a so-called contract curve, depicted in
Fig. 3.2a as a dashed line connecting the origins of the coordinate systems of both
traders. This part of the Pareto optimal allocations, which belongs also to the set
of allocations accepted by traders, forms the exchange core denoted by a symbol
C(a).

From Fig. 3.2a, it follows thatC(a) ⊂ S(a) ⊂ F(a) ⊂ R
4+, which means

that any Pareto optimal allocation accepted by traders is the feasible allocation
with regard to the initial allocation. At the same time, not every Pareto opti-
mal allocation is accepted by traders. Not every allocation accepted by traders
is Pareto-optimal and not every feasible allocation is an allocation accepted by
traders or Pareto-optimal.

Figure 3.2b shows the set of allocations accepted by both traders S(a) and the
exchange core C(a). Using Fig. 3.2b one can explain the mechanism according to
which both traders choose one of the accepted allocations, which is at the same
time the Pareto optimal allocation.

Let us suppose the first trader proposes an allocation b that is better for him/her
than the initial allocation a because it belongs to an indifference curve that is
higher up than the indifference curve of the first trader containing the initial
allocation.

For the second trader, the allocation b is just as good as the initial allocation
a because both of these allocations belong to the same indifference curve. The

Fig. 3.2b Set of allocations
accepted by both traders—the
case of power utility
functions
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second trader, however, should block this allocation and propose a different allo-
cation to the first trader, not worse for the first trader than the allocation b and at
the same time better than the initial allocation a for the second trader. An exam-
ple of such an allocation is an allocation c that is a Pareto optimal allocation too.
The allocation c lies at the point where the indifference curves of both traders are
tangent to each other. Neither of the traders can block it and propose a different
allocation which, being better than the allocation c for one of them, would also
not be worse than the allocation c for the other trader.

A reasonable question arises: since every allocation belonging to the exchange
core is Pareto optimal, accepted by both traders and as such cannot be blocked by
any trader, which one of them should eventually be chosen by traders?

In order to answer this question, it is necessary to define an additional criterion
for choice of the optimal allocation in the set of Pareto optimal allocations. This
would be the optimum of optima. There seems to be a need to define such an
additional criterion since not all allocations Pareto optimal and accepted by traders
are equally beneficial to them. For example, such an allocation optimal in the
Pareto sense that belongs to the indifference curve of the first (second) trader
bounding the set of allocations accepted by both traders from the bottom (top)
is the most advantageous allocation among the Pareto optimal allocations for the
second (first) trader and the least favourable for the first (second) trader.

The fairest choice would be a Pareto optimal allocation lying in the middle of
a segment identified with the exchange core. A Pareto optimal allocation defined
in such a way would guarantee an identical increase in the utility of the basket of
goods purchased by each trader with regard to the bundle each of them entered
the market with in order to exchange for another basket whose utility would be
maximum and at the same time not less than the utility of the initial bundle.

Ad (b) Figures 3.3a and 3.3b show the Edgeworth box and the set of alloca-
tions accepted by both traders S(a) when their preferences while choosing optimal
consumption bundles are described by the Koopmans-Leontief utility function.

From Fig. 3.3a, it follows thatC(a) ⊂ S(a) ⊂ F(a) ⊂ R
4+, which means that any

Pareto optimal allocation accepted by traders is the feasible allocation with regard
to the initial allocation. At the same time, not every Pareto optimal allocation is
accepted by traders. Not every allocation accepted by traders is Pareto-optimal and
not every feasible allocation is an allocation accepted by traders or Pareto-optimal.

Figure 3.3b presents the set of allocations accepted by both traders S(a) and the
exchange core C(a).

The mechanism according to which both traders choose the optimal allocation is
the same as in the case (a) discussed above. As its result, both traders will agree to
an allocation accepted and Pareto optimal at the same time.

If the first trader would propose an allocation b that is better for him/her than the
initial allocation a then the second trader should block the allocation b because for
her/him it is as good as the initial allocation a while he can propose for example an
allocation c which is better for her/him than b. At the same time, the allocation c is
not worse than b for the first trader.
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Fig. 3.3a Edgeworth box
with Koopmans-Leontief
utility functions

Fig. 3.3b Set of allocations
accepted by both
traders—case of
Koopmans-Leontief utility
functions

The allocation c cannot be blocked by any of traders because is optimal in the
Pareto sense. This means that there exists no such allocation which would be better
than c for one of the traders and at the same time not worse than c for the other trader.

The fairest choice would be a Pareto optimal allocation lying in the middle of a
segment identified with the exchange core C(a) ⊂ S(a) ⊂ F(a) ⊂ R

4+. A Pareto
optimal allocation defined in such a way would guarantee an identical increase in
the utility of the basket of goods purchased by each trader with regard to the bundle
each of them entered the market with in order to exchange for another basket whose
utility would be maximum and at the same time not less than the utility of the initial
bundle.

But to have this fairest choice made by the traders, there would have to be an
additional criterion how to choose an optimal allocation among allocations belonging
to the exchange core. It would have the following form: among allocations of the
exchange core choose such that guarantees the same greatest increase of consumption
bundle utility for each trader in comparison to her/his initial bundle he/she came to the
market with. The optimum of optima formulated in that way is not present explicitly
in the simple model of exchange. The need to define it results from an observation
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that not every allocation accepted by both traders and optimal in the Pareto sense is
equally beneficial for both of them.

3.2 Static Arrow-Hurwicz Model

It is a generalization of the simple model of exchange, in which one additionally
takes into account the prices of consumer goods and the income of consumers.

There is a market of two consumer goods and two traders given, where:

i = 1, 2—an index of consumer goods,
k = 1, 2—an index of consumers (traders),
X = R

2+—a goods space (a set of all bundles of goods available on the market),
d:R4+ → R+—a metric specified on the goods space (see Definition 2.2),
uk :R2+ → R—a utility function of k-th consumer describing his/her preferences
(a relation of preference of k-th consumer),
ak = (ak1, ak2) ∈ R

2+—an initial consumption bundle the k-th consumer comes
to the market with (k-th consumer’s endowment),
xk = (xk1, xk2) ∈ R

2+—a consumption bundle the k-th consumer wants to
purchase.
(p1, p2) ∈ intR2+—a vector of prices of consumer goods,
I k(p1, p2) = p1ak1 + p2ak2 > 0—an income of k -th consumer equal to a
value of consumption bundle he/she came to the market with if only a purchase
and sale transaction is made,
Bk = {

xk ∈ R
2+|xki ≤ a1i + a2i = bi , i = 1, 2

}
—a supply set of k-th trader,

Dk
(
p, I k(p)

) = {
(xk1, xk2) ∈ R

2+
|
|p1xk1 + p2xk2 ≤ I k(p1, p2)

} ⊂ Bk ⊂
R
2+—a budget set of k-th consumer (a set of all consumption bundles of a

value not exceeding her/his income).

The k-th (k = 1, 2) consumer aims to purchase such a bundle of goods x̄k =
(x̄ k1, x̄ k2), whose utility would be maximum and at the same time not less than of
the initial bundle of goods ak = (ak1, ak2).

The problem of choosing the optimal bundle of goods by k-th consumer can
be written as the consumption utility maximization problem, because:

(P1) uk(xk1, xk2) → max(3.11)

p1xk1 + p2xk2 ≤ p1ak1 + p2ak2,(3.12)

xk1, xk2 ≥ 0.(3.13)



3.2 Static Arrow-Hurwicz Model 123

If the utility function u:R2+ → R is increasing, differentiable and strictly con-
cave, then problem (P1) has exactly one optimal solution which lies on the budget
line and is of the form:

x̄k(p) = ϕk
(
p, I k(p)

)

=
(

αk I
k(p)

p1
, βk I

k(p)

p2

)
> 0, ∀αk, βk ≥ 0, αk + βk = 1,(3.14)

where k = 1, 2 indicates the k-th consumer.

Definition 3.9 A demand function of k -th consumer is a mapping ϕk : intR2+ →
intR2+ that assigns the optimal solution of the consumption utility maximization
problem (P1) to any price vector p = (p1, p2) ∈ intR2+ and is of the form:

ϕk(p) = ϕk
(
p, I k(p)

)
=

(
ϕk1

(
p, I k(p)

)
, ϕk2

(
p, I k(p)

))
=

= (x̄ k1(p), x̄ k2(p)) = x̄k(p), k = 1, 2.
(3.15)

Definition 3.10 A function of global demand is an expression:

x̄(p) = x̄1(p) + x̄2(p) =
(
x̄11(p) + x̄21(p)

x̄12(p) + x̄22(p)

)
,(3.16)

describing the total demand of both traders for each good.

Definition 3.11 A total supply of each good provided by both traders is given with
an expression:

ā = a1 + a2 =
(
a11 + a21
a12 + a22

)
∈ R

2+(3.17)

and called a function (vector) of global supply. It is denoted by a symbol ā to
distinguish it from the initial allocation a ∈ intR2+.

Definition 3.12 A mapping z: intR2+ → R
2+ given as:

z(p) = x̄(p) − ā,(3.18)

or

∀ i = 1, 2 zi (p) = x̄ i (p) − āi(3.19)

is called a function of excess demand.



124 3 Rationality of Choices Made by Group of Consumers

Definition 3.13 A partial equilibrium on the market of i-th consumer good is a
state in which:

∃ i ∃ p > 0 zi (p) = x̄ i (p) − āi = 0 ⇔ x̄ i (p) = āi ,(3.20)

meaning there exists a positive price vector such that the global demand for i-th
good, expressed in physical units, is equal to its global supply, expressed in the
same physical units as the demand for the i-th consumer good.

We then say that there is a partial equilibrium on the market of i-th consumer
good: the global demand for i-th good (expressed in physical units) is equal to
global supply of i-th (expressed in physical units).

Definition 3.14 A general equilibrium (in the Walras sense) in the market of
consumer goods is a state in which:

∀ i = 1, 2 ∃ p̄ > 0 zi (p̄) = x̄ i (p̄) − āi = 0 ⇔ x̄ i
(
p̄1, p̄2

) = āi ,(3.21)

meaning there exists a positive price vector, called an equilibrium (Walrasian)
price vector, such that the global demand for any i-th good is equal to its global
supply.

We then say that there is a general equilibrium on the consumer goods market:
the global demand for each good (expressed in physical units) is equal to its global
supply (expressed in physical units).

Theorem 3.1 If the utility function uk :R2+ → R, k = 1, 2. is increasing, differ-
entiable and strictly concave, then the excess demand function has the following
properties:

1. is differentiable in int R2+,
2. is homogeneous of degree 0:

∀ i = 1, 2 ∀λ > 0 ∀ p > 0

zi (λp) = x̄ i (λp) − āi = x̄ i (p) − āi = zi (p),(3.22)

which means that a proportional in the prices of both consumer goods does not
change the excess demand for any consumer good,

3. satisfies Walras’s law:

∀ p > 0
∑2

i=1
pi zi (p) =

∑2

i=1
pi (x̄ i (p) − āi ) = 0

⇔
∑2

i=1
pi x̄ i (p) =

∑2

i=1
pi āi ,(3.23)

which means that for any price vector p = (p1, p2) > (0, 0) the value of the
global demand for all goods is equal to the value of their global supply.
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Note 3.2 The concept of the Walrasian equilibrium should be distinguished from
Walras’s law.

Note 3.3 The Walrasian equilibrium state described by the Walrasian equilibrium
price vector may not exist, there may be exactly one such state or there may be more
than one.

Note 3.4 The price vector of the Walrasian equilibrium (if it exists) is determined
with an accuracy of a structure.

Let us suppose that p̄ = (
p̄1, p̄2

)
> 0 is the Walrasian equilibrium price vector.

Then we can present it in a form:

p̄ = (
p̄1, p̄2

) = p̄1

(
1,

p̄2
p̄1

)
= λ

(
1,

p̄2
p̄1

)
, where λ = p̄1 > 0,(3.24)

or

p̄ = (
p̄1, p̄2

) = p̄2

(
p̄1
p̄1

, 1

)
= λ

(
p̄1
p̄1

, 1

)
, where λ = p̄2 > 0.(3.25)

In other words, if p̄ = (
p̄1, p̄2

) = p̄1
(
1, p̄2

p̄1

)
the equilibrium price vector then

the vector p̄ = λ
(
1, p̄2

p̄1

)
, λ > 0 is the equilibrium vector too. This means that to

one Walrasian equilibrium price vector, determined with an accuracy of a structure
(accuracy of a multiplication by a positive number), infinitely many price vectors
are related, each of them having the same structure the Walrasian equilibrium price
vector, differing only in the absolute levels of consumer goods’ prices.

Theorem 3.2 If the utility function u:R2+ → R, k = 1, 2 is increasing, differen-
tiable and strictly concave, then in the Arrow-Hurwicz model there exists at least
one price vector of the Walrasian equilibrium, determined with an accuracy of a
structure.4

Note 3.5 The conditions, ensuring that in the Arrow-Hurwicz model exists exactly
one Walrasian equilibrium price vector determined with an accuracy of a structure,
are in the form of more complex assumptions. Therefore, we will not provide them
as part of the basic lecture here.

Definition 3.15 A vector a = (a11, a12, a21, a22) ∈ int R
4+, consisting of initial

bundles ak = (ak1, ak2) that traders come to the market with is called an initial
allocation (also endowment).

4 The conditions of existence and uniqueness of the Walrasian equilibrium price vector in the static
Arrow-Hurwicz model have been discussed in more detail, inter alia, in work (Panek, 2003).
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Definition 3.16 A vector x̄(p) = (x̄11(p), x̄12(p), x̄21(p), x̄22(p)) ∈ R
4+. is called

an allocation feasiblewith regard to an initial allocationawhen itmeets a condition:

∑2

k=1
x̄k(p) =

∑2

k=1
ak ⇔

(
x̄11(p) + x̄21(p)

x̄21(p) + x̄22(p)

)
=

(
a11 + a12
a21 + a22

)
,(3.26)

where:

a11 + a21 total quantity of the first good available on a market,
a12 + a22 total quantity of the second good available on a market.

Definition 3.17 A set of allocations feasible with regard to an initial allocation a
is a s.t:

F(a) =
{
x̄(p) ∈ R

4+|
∑2

k=1
x̄k(p) =

∑2

k=1
ak

}
.(3.27)

Note 3.6 A geometric illustration of the set of allocations feasible with regard to an
initial allocation a is called an Edgeworth box.

Definition 3.18 An allocation x̄(p) ∈ F(a) ⊂ R
4+ is called an allocation accepted

by traders when it satisfies a condition:

uk
(
x̄k(p)

)
≥ uk

(
ak

)
∀ k = 1, 2.(3.28)

Definition 3.19 A set of allocations accepted by traders is a set:

S(a) =
{
x̄(p) ∈ F(a)| uk

(
x̄k(p)

)
≥ uk

(
ak

)
, k = 1, 2

}
.(3.29)

Definition 3.20 An allocation x̄(p) ∈ S(a) ⊂ R
4+. accepted by traders is called an

allocation blocked by them if there is another allocation they accept ȳ(p) ∈ S(a) ⊂
R
4+. such that:

∀ k = 1, 2 uk
(
ȳk(p)

)
≥ uk

(
x̄k(p)

)
,(3.30)

∃ k uk
(
ȳk(p)

)
≥ uk

(
x̄k(p)

)
.(3.31)

Definition 3.21 An allocation x̄(p) ∈ S(a) ⊂ R
4+ accepted by traders is called a

Pareto optimal (efficient) allation if there is no other allocation accepted ȳ(p) ∈
S(a) ⊂ R

4+ such that:

∀ k = 1, 2 uk
(
ȳk(p)

)
≥ uk

(
x̄k(p)

)
,(3.32)
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∃ k uk
(
ȳk(p)

)
> uk

(
x̄k(p)

)
.(3.33)

The set of Pareto-optimal allocations is denoted by the symbol P(a). and called a
Pareto frontier (also a contract curve when the Edgeworth box is used).

Definition 3.22 A set consisting of all allocations accepted by both traders and
Pareto optimal at the same time, that is a set:

C(a) = S(a) ∩ P(a) ⊂ R
4+(3.34)

is called an exchange core.

Definition 3.23 A Pareto optimal allocation x̄(p̄) ∈ C(a) ⊂ R
4+ is called a Wal-

rasian equilibrium allocationwhen the price vector p̄ = λ
(
1, p̄2

p̄1

)
> (0, 0), λ > 0.

is the Walrasian equilibrium price vector.

Definition 3.24 A set consisting of all Walrasian equilibrium allocations, that is a
set:

W (a) = {x̄(p̄) ∈ C(a)|x̄(p̄) = ā } ⊂ R
4+,(3.35)

is called a set of Walrasian equilibrium allocations.

Note 3.7 From Definitions 3.15–3.24, it follows that:

W (a) ⊆ C(a) ⊆ S(a) ⊆ F(a) ⊂ R
4+(3.36)

which means that each Walrasian equilibrium allocation is an allocation: Pareto-
optimal, accepted by traders and feasible with regard to an initial allocation.

Note 3.8 The reverse inclusion is not true, which means that not every feasi-
ble allocation is an accepted by traders, Pareto-optimal or Walrasian equilibrium
allocation.

Example 3.2 There is amarket of two consumer goods and two traders given, where:

i = 1, 2—an index of consumer goods,
k = 1, 2—an index of consumers (traders),
X = R

2+—a goods space,
a1 = (10, 20), a2 = (20, 10)—consumption bundles the consumer come to the
market with,
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xk = (xk1, xk2) ∈ R
2+—aconsumion bundle the k-th consumerwants to purchase,

p = (p1, p2) ∈ intR2+—a vectorf prices of consumer goods,
I 1(p1, p2) = 10p1 + 20p2, I 2(p1, p2) = 20p1 + 10p2—incomes of traders.

Utility functions of traders:

(a) u1(x11, x12) = x
1
4
11x

1
4
12, u2(x21, x22) = x

1
4
21x

1
4
22—power functions,

(b) u1(x11, x12) = min{x11, x12}, u2(x21, x22) = min{x21, x22}—Koopmans-
Leontief functions.
1. Find optimal solutions to consumption utility maximization problems of

both traders (demand functions of both traders).
2. Determine functions of global supply and global demand.
3. Determine an excess demand function and check if it is homogeneous of

degree 0 and if it meets Walras’s law.
4. Determine the Walrasian equilibrium price vector.
5. Explain what it means that the Walrasian equilibrium price vector is deter-

mined with an accuracy of a structure (accuracy of a multiplication by a
positive number).

6. Determine the Walrasian equilibrium allocation.
7. Provide a geometric illustration of:

– a set of allocations feasible with regard to an initial allocation,
– a set of allocations accepted by traders,
– a set of Pareto optimal allocations,
– a set of Walrasian equilibrium allocations.

8. Justify by Geometric Means that: W (a) ⊆ C(a) ⊆ S(a) ⊆ F(a) ⊂ R
4+.

Ad (a) The consumption utility maximization problems for two traders are given:

u1(x11, x12) = x
1
4
11x

1
4
12 → max(3.37)

p1x11 + p2x12 ≤ 10p1 + 20p2,(3.38)

x11, x12 ≥ 0,(3.39)

and

u2(x21, x22) = x
1
4
21x

1
4
22 → max(3.40)

p1x21 + p2x22 ≤ 20p1 + 10p2,(3.41)

x21, x22 ≥ 0.(3.42)
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We know that the optimal solution to the consumption utility maximization

problem in case of the power utility function uk(xk1, xk2) = x
αk
1

k1 x
αk
2

k2 has a form:

x̄k(p) =
(

αk
1(

αk
1 + αk

2

)
I k(p)

p1

αk
2(

αk
1 + αk

2

)
I k(p)

p2

)

.(3.43)

Substituting the parameters of the utility function of both traders into (2.243),
we get the demand function of the first trader:

x̄1(p) = (10p1 + 20p2
2p1

,
10p1 + 20p2)

2p2
,(3.44)

and of the second trader:

x̄2(p) =
(
20p1 + 10p2

2p1
,
20p1 + 10p2

2p2

)
.(3.45)

Adding the demand functions of both traders, we get the global demand
function for both consumer goods:

x̄(p̄) = x̄1(p) + x̄2(p) =
(
30p1 + 30p2

2p1
,
30p1 + 30p2

2p2

)
.(3.46)

The global supply function (vector) has a form:

ā = a1 + a2 = (30; 30).(3.47)

The excess demand function then has a form:

z(p) = x̄(p) − ā =
(
30p1 + 30p2

2p1
,
30p1 + 30p2

2p2

)
− (30, 30)

=
(−30p1 + 30p2

2p1
,
30p1 − 30p2

2p2

)
.(3.48)

Let us notice that the excess demand function is homogeneous of degree 0
because:

∀λ > 0 z(λp) =
(−30λp1 + 30λp2

2λp1
,
30λp1 − 30λp2

2λp2

)
= z(p),(3.49)

which means that the excess demand for any commodity does not depend on the
absolute price level of both goods, but on the rationship between the prices of
goods.
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Moreover, the function of excess demand satisfies Walras’ law, because:

∀p > 0 <p, z(p)> =
(
p1

−30p1 + 30p2
2p1

,+p2
30p1 − 30p2

2p2

)
(3.50)

which means that for any positive vector of consumer goods’ prices, the value of
global demand is equal to the value of global supply of both goods.

Let us determine the Walrasian equilibrium price vector p̄ > 0 as a solution
of the following system of equations:

z(p) =
(−30 p̄1 + 30 p̄2

2 p̄1
,
30 p̄1 − 30 p̄2

2 p̄2

)
= (0, 0)(3.51)

which can be written in an equivalent form:

−30 p̄1 + 30 p̄2 = 0
30 p̄1 − 30 p̄2 = 0

(3.52)

resulting in:

p̄1 = p̄2 = λ > 0,(3.53)

therefore the Walrasian equilibrium price vector, determined with an accuracy of
a structure, has the following form:

p̄ = λ(1, 1).(3.54)

Having this, after substituting (3.54) to (3.44) and (3.45), we can determine
the values of the demand functions of both traders when prices are given by the
Walrasian equilibrium price vector:

x̄1(p̄) = (15, 15)(3.55)

x̄2(p̄) = (15, 15)(3.56)

and the Walrasian equilibrium allocation:

x̄(p̄) = (
x̄1(p̄), x̄2(p̄)

) = (15, 15, 15, 15),(3.57)

while the initial allocation is:

a = (
a1, a2

) = (10, 20, 20, 10).(3.58)
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Let us notice that in the Walrasian equilibrium state the relation between equi-
librium prices is 1:1. This means that traders exchange goods in the relation 1 unit
of the first good for 1 unit of the second good.

Since the utility functions of both traders are the same, their preferences to own
each of the goods are also the same. Thus, in the Walrasian equilibrium state, as a
result of the exchange made by the Walrasian equilibrium prices, both traders will
have identical bundles of goods. It is also worth noticing that in the only state of
the Walrasian equilibrium, an increase in the utility of bundles of goods purchased
by traders with respect to utility of the initial consumption bundles will be the
same for both traders.

Figure 3.4 presents geometrical illustrations of sets of allocations: of the Wal-
rasian equilibrium W (a), optimal in the Pareto sense and accepted in the same
time C(a), as well as the ones feasible with regard to the initial allocation:
a = (10, 20, 20, 10).

Since the optimal solutions to both consumption utility maximization problems
must lie on the budget lines respective to each of the traders, having the Walrasian
equilibrium price vector we get:

p̄1 x̄11 + p̄2 x̄12 = 10 p̄1 + 20 p̄2 ⇔ x̄11 + x̄12 = 30,(3.59)

and

p̄1 x̄21 + p̄2 x̄22 = 10 p̄1 + 20 p̄2 ⇔ x̄21 + x̄2 = 30.(3.60)

This means that the budget lines of traders are not only parallel but also coincide
because each of them includes the initial bundle of goods each of the traders came

Fig. 3.4 Edgeworth box in
case of power utility
functions
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to the market with. It is not difficult to notice that an angle of incline of both
budget lines with respect to the horizontal axes is 45° in the coordinate system of
each of the traders.

It is also easy to notice that: W (a) ⊂ C(a) ⊂ S(a) ⊂ F(a) ⊂ R
4+. This means

that the only Walrasian equilibrium allocation corresponding to the only Walrasian
equilibrium price vector, determined with an accuracy of a structure, is a Pareto
optimal allocation, accepted and feasible with regard to an initial allocation.

Ad (b) The consumption utility maximization problems for two traders are given:

u1(x11, x12) = min{x11, x12} → max(3.61)

p1x11 + p2x12 ≤ 10p1 + p2,(3.62)

x11, x12 ≥ 0,(3.63)

and

u2(x21, x22) = min{x21, x22} → max(3.64)

p1x21 + p2x22 ≤ 20p1 + 10p2,(3.65)

x21, x22 ≥ 0.(3.66)

We know that the optimal solution to the consumption utility maximization
problem in case of the power utility function uk(xk1, xk2) = min{ak1xk1, ak2xk2}
has a form:

x̄k(p) =
(

ak2 p1
ak1 p2 + ak2 p1

I k(p)

p1
,

ak1 p2
ak1 p2 + ak2 p1

I k(p)

p2

)
.(3.67)

Substituting the parameters of the utility function of both traders into (3.67),
we get the demand function of the first trader:

x̄1(p) =
(
10p1 + 20p2

p1 + p2
,
10p1 + 20p2

p1 + p2

)
,(3.68)

of the second trader:

x̄2(p) =
(
20p1 + 10p2

p1 + p2
,
20p1 + 10p2

p1 + p2

)
.(3.69)
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Adding the demand functions of both traders, we get the global demand
function for both consumer goods:

x̄(p) = x̄1(p) + x̄2(p) =
(
30p1 + 30p2

p1 + p2
,
30p1 + 30p2

p1 + p2

)
= (30, 30).(3.70)

The global supply function tor) has the form:

ā = a1 + a2 = (30, 30).(3.71)

The excess demand function then has the form:

z(p) = x̄(p) − ā =
(
30p1 + 30p2

p1 + p2
,
30p1 + 30p2

p1 + p2

)
− (30, 30) = (0, 0).(3.72)

Let us notice that the excess demand function is homogeneous of degree 0
because:

∀λ > 0 z(λp) = z(p) = (0, 0),(3.73)

which means that the excess demand for any commodity does not depend on an
absolute price level of both goods, but on the relationship between the prices of
goods.

Moreover, the function of excess demand satisfies Walras’s law, because:

∀p > 0 <p, z(p)> = p1 · 0 + p2 · 0 = 0,(3.74)

which means that for any positive vector of consumer goods prices, the value of
global demand is equal to the value of global supply of both goods.

From condition (3.72), it llows that any positive vector of goods’ prices is the
Walrasian equilibrium price vector. Hence there exist infinitely many equilibrium
price vectors, each of them determined with an accuracy of a structure:

p̄ = (
p̄1, p̄2

) = p̄1

(
1,

p̄2
p̄1

)
= p̄2

(
p̄1
p̄2

, 1

)
∀ p̄1, p̄2 > 0.(3.75)

Having this, after substituting (3.75) into (3.68) and (3.69), we can determine
values of the demand functions of both traders when prices are given by any
Walrasian equilibrium price vector. However, one should remember that no trader
will accept a consumption bundle in which quantities of both goods would be
smaller than quantities in the bundle he/she came to the market with.

We can notice that since:

x̄1(p̄) =
⎛

⎝
10 + 20 p̄2

p̄1

1 + p̄2
p̄1

,
10 + 20 p̄2

p̄1

1 + p̄2
p̄1

⎞

⎠ =
⎛

⎝
10 p̄1

p̄2
+ 20

p̄1
p̄2

+ 1
,
10 p̄1

p̄2
+ 20

p̄1
p̄2

+ 1

⎞

⎠,(3.76)
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and

x̄2(p̄) =
⎛

⎝
20 + 10 p̄2

p̄1

1 + p̄2
p̄1

,
20 + 10 p̄2

p̄1

1 + p̄2
p̄1

⎞

⎠ =
⎛

⎝
20 p̄1

p̄2
+ 10

p̄1
p̄2

+ 1
,
20 p̄1

p̄2
+ 10

p̄1
p̄2

+ 1

⎞

⎠,(3.77)

hence if:

1. p̄2
p̄1

→ 0 ⇒ x̄1(p̄) → (10, 10) ∧ x̄2(p̄) → (20, 20) and x̄(p̄) →
(10, 10, 20, 20),
which means that if the first good price is infinitely high in comparison to
the second good price, then such a price set is the most beneficial for the
second trader and the least favourable for the first trader. As a result of the
exchange by such equilibrium prices, the second trader will keep 20 units of the
first good and will obtain additional 10 units of the second good from the
first trader, while the first trader will keep 10 units of the first good but will
lose 10 units of the second good. Consequently, the utility of a consumption
bundle purchased by the second trader will increase nearly two times, while the
utility of a consumption bundle purchased by the first trader will remain almost
unchanged.

2. p̄2
p̄1

→ 1 ⇒ x̄1(p̄) → (15, 15) ∧ x̄2(p̄) → (15, 15) and x̄(p̄) →
(10, 10, 15, 15),
which means that if the prices of goods are close to each other, then such a price
set is equally beneficial for both traders. As a result of the exchange by such
equilibrium prices, both tradwill purchase identical consumption bundles. In
terms of utility both will benefit the same since the utility of their consumption
bundles will increase after the exchange to 15 in comparison to 10 before the
exchange.

3. p̄2
p̄1

→ +∞ ⇒ x̄1(p̄) → (20, 20) ∧ x̄2(p̄) → (10, 10) and x̄(p̄) →
(20, 20, 10, 10),
which means that if the first good price is infinitely small in comparison to the
second good price, then such a price set is the most beneficial for the first trader
and the least favourable for the second trader. As a result of the exchange by
such equilibrium prices the first trader will keep 20 units of the second good
and will obtain additional 10 units of the first good from the second trader,
while the second trader will keep 10 units of the second good but will lose
10 units of the first good. Consequently, the utility of a consumption bundle
purchased by the first trader will increase nearly two times, while the utility
of a consumption bundle purchased by the second trader will remain almost
unchanged.

Figure 3.5 presents geometrical illustrations of sets of allocations: of the Wal-
rasian equilibrium W (a), optimal in the Pareto sense and accepted at the same
time C(a), as well as the ones feasible with regard to the initial allocation:
a = (10, 20, 20, 10).
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Fig. 3.5 Edgeworth box in
case of Koopmans-Leontief
functions

Since the optimal solutions to both consumption utility maximization problems
must lie on the budget lines respective to each of the traders, we get:

p1 x̄11 + p2 x̄12 = 10p1 + 20p2 ⇔ x̄11 = − p2
p1

x̄12 + 10 + 20p2
p1

,(3.78)

and

p1 x̄21 + p2 x̄22 = 10p1 + 20p2 ⇔ x̄21 = − p2
p1

x̄22 + 20 + 10p2
p1

.(3.79)

The budget lines of both traders are parallel because they have the same slope.
Moreover, each of them contains the initial consumption bundle that each trader
came to the market with and hence independently of the price set the budget lines
coincide.

It is not difficult to notice that:

1. If p̄2
p̄1

→ 0 then the budget lines of both traders are nearly perpendicular to the
horizontal axes in the coordinate systems of both traders,

2. if p̄2
p̄1

→ +∞ then the budget lines of both traders are nearly perpendicular to
the vertical axes in the coordinate systems of both traders,

3. if p̄2
p̄1

→ 1 then the angle of incline with respect to the horizontal lines is 45°
in the coordinate systems of both traders.
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Let us also notice that: W (a) ⊂ C(a) ⊂ S(a) ⊂ F(a) ⊂ R
4+. This means that any

of infinitely many Walrasian equilibrium allocations is optimal in the Pareto sense,
accepted by traders and feasible with respect to the initial allocation. In fact a set
W (a) of Walrasian equilibrium allocations and a set C(a) of allocations accepted
and Pareto optimal (the exchange core) are almost identical. Actually, they dif-
fer only by two allocations, which means that a set C(a)\W (a), of allocations
accepted and Pareto optimal that in the same time are not Walrasian equilibrium
allocations, has only two elements:

C(a)\W (a) = {(10, 10, 20, 20), (20, 20, 10, 10)}.

3.3 Dynamic Arrow-Hurwicz Model

There is a market for two consumer goods, where:

i = 1, 2—an index of consumer goods,
k = 1, 2—an index of consumers (traders),
M—an index of a broker, that is a person responsible for price fixing in the
consumer goods market, also called a Walrasian auctioneer,
t = 1, 2, . . . , T—time as a discrete variable,
t ∈ [0; T ]—time as a continuous variable,
T—time horizon, which can be finite or infinite,
X(t) = R

2+—a goods space in period/at moment t ,
ak = (ak1, ak2) ∈ R

2+—an initial consumption basket k-th consumer comes to
the market with (an endowment),
p(t) = (p1(t), p2(t)) ∈ intR2+—a vector of consumer goods prices in period/at
moment t ,
xk(t) = (xk1(t), xk2(t)) ∈ R

2+—a consumption bundle the k-th consumer wants
to purchase in period/at moment t ,
I k(p(t)) = p1(t)ak1 + p2(t)ak2 > 0—consumer’s income in period/at moment
t ,
uk :R2+ → R—a utility function of k-th consumer, describing his/her relation
of preference,
Dk(p(t), I k(p(t)) = {

xk(p(t)) ∈ R
2+
|
|p1(t)xk1(t) + p2(t)xk2(t) ≤ I k(p(t))

} ⊂
X(t) = R

2+—a budget set of k-th consumer, that is the set of all consumption
bundles at time t of a value not exceeding the income of k-th consumer at time t .

The k-th consumer aims to purchase a bundle of goods x̄k(t) = (x̄ k1(t), x̄ k2(t))
such that its value at time t does not exceed an income of k-th consumer and
at the same time its utility is maximum and not less than of the initial bundle
ak = (ak1, ak2).
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The problem of choosing the optimal bundle of goods by k-th consumer at time
t can be written as the consumption utility maximization problem:

(P1) uk(xk1(t), xk2(t)) → max(3.80)

p1(t)xk1(t) + p2(t)xk2(t) ≤ p1(t)ak1 + p2(t)ak2,(3.81)

xk1(t), xk2(t) ≥ 0,(3.82)

t = 1, 2, ..., T or t ∈ [0; T ].(3.83)

If the utility function u:R2+ → R is increasing, differentiable and strictly con-
cave, then at time t problem (p1) has exactly one optimal solution which lies on
the budget line and is of a form:

x̄k(p(t)) = ϕk
(
p(t), I k(p(t))

)

=
(

αk(t)
I k(p(t))

p1(t)
, βk(t)

I k(p(t))

p2(t)

)
> (0, 0),(3.84)

∀αk(t), βk(t) ≥ 0, αk(t) + βk(t) = 1, k = 1, 2, t = 1, 2, ..., T ∨ t ∈ [0; T ].

where k denotes the k-th consumer.

Definition 3.25 A demand function of k-th consumer at time t is a mapping
ϕk : intR2+ → intR2+ that assigns an optimal solution of the consumption utilitymax-
imization problem (P1) of k-th consumer to any price vector p(t) = (p1(t), p2(t)) ∈
int R2+ and is of the form:

ϕk
(
p(t), I k(p(t))

)
= ϕk(p(t))

=
(
ϕk1

(
p(t), I k(p(t))

)
, ϕk2

(
p(t), I k(p(t))

))

= (x̄ k1(p(t)), x̄ k2(p(t))) = x̄k(p(t)), k = 1, 2.(3.85)

Definition 3.26 A function of global demand at time t is an expression:

x̄(p(t)) = x̄1(p(t)) + x̄2(p(t)) =
(
x̄11(p(t)) + x̄21(p(t))
x̄12(p(t)) + x̄22(p(t))

)
,(3.86)

describing the total demand of both traders for each good.
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Definition 3.27 A function (vector) of global supply at time t is an expression:

ā = a1 + a2 =
(
a11 + a21
a12 + a22

)
,(3.87)

which describes the total supply of each good provided by both traders.

Definition 3.28 A mapping z: intR2+ → R
2 given as:

z(p(t))) = x̄(p(t)) − ā(3.88)

or

∀ i = 1, 2 zi (p(t)) = x̄ i (p(t)) − āi(3.89)

is called a function of excess demand at time t .

Definition 3.29 A partial equilibrium a market of i-th consumer good at time t . is
a state in which:

∃ i = 1, 2 ∃ p(t) > 0 zi (p(t)) = x̄ i (p(t)) − āi = 0 ⇔ x̄ i (p(t)) = āi ,(3.90)

meaning that at time t there exists a positive price vector such that the global demand
for i-th good is equal to its global supply.

We say then that at time t on the market of i-th consumer good there is a partial
equilibrium: the global demand for i-th good (expressed in physical units) is equal
to the global supply of i-th good (expressed in physical units).

Definition 3.30 A general equilibrium (in the Walras sense) on a market of
consumer goods at time t is a state in which:

∀ i = 1, 2 ∃ p̄(t) > 0 zi (p̄(t)) = x̄ i (p̄(t)) − āi = 0 ⇔ x̄ i (p̄(t)) = āi ,(3.91)

meaning that at time t there exists a positive price vector, called the equilibrium
(Walrasian) price vector such that the global demand for any good is equal to its
global supply.

We then say that at time t there is a general equilibrium on the consumer goods
market: the global demand for each good (expressed in physical units) is equal to its
global supply (expressed in physical units).

Theorem 3.3 If the utility functions uk :R2+ → R, k = 1, 2 are increasing, differ-
entiable and strictly concave, then at time t the excess demand function z(p(t))) has
the following properties:
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1. is differentiable in intR2+,
2. is homogeneous of degree 0:

∀ i = 1, 2 ∀λ > 0 ∀ p(t) > 0

zi (λp(t)) = x̄ i (λp(t)) − āi = x̄ i (p(t)) − āi = zi (p(t)),(3.92)

which means that a proportional change in the prices of all consumer goods at
time t does not change the excess demand for any consumer good,

3. satisfies Walras’s law:

∀ p(t) > 0
∑2

i=1
pi zi (p(t)) =

∑2

i=1
pi (x̄ i (p(t)) − āi ) = 0 ⇔

⇔
∑2

i=1
pi (x̄ i (p(t))) =

∑2

i=1
pi āi ,

(3.93)

which means that for any price vector p(t) = (p1(t), p2(t)) > (0, 0) at time t the
value of global demand for all goods is equal to the value of their global supply.

Note 3.9 The concept of Walrasian equilibrium should be distinguished from
Walras’ law.

Note 3.10 The Walrasian equilibrium state described by the Walrasian equilibrium
price vector may not exist, there may be exactly one such state or there may be more
than one.

Note 3.11 The price vector of the Walrasian equilibrium (if it exists) is determined
with an accuracy of a structure.

Let us assume that p̄(t) = (
p̄1(t), p̄2(t)

)
> 0 is a price vector of the Walrasian

equilibrium. Then we can present it in a form:

p̄(t) =(
p̄1(t), p̄2(t)

)

= p̄1(t)

(
1,

p̄2(t)

p̄1(t)

)
= λ

(
1,

p̄2(t)

p̄1(t)

)
, where λ = p̄1(t) > 0,(3.94)

or

p̄(t) =(
p̄1(t), p̄2(t)

)

= p̄2(t)

(
p̄1(t)

p̄2(t)
, 1

)
= λ

(
p̄1(t)

p̄2(t)
, 1

)
, where λ = p̄2(t) > 0.(3.95)

This shows that if p̄(t) = p̄1(t)
(
1, p̄2(t)

p̄1(t)

)
is an equilibrium price vector then

p̄(t) = λ
(
1, p̄2(t)

p̄1(t)

)
, λ > 0 is an equilibrium price vector too. This means that to
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one Walrasian equilibrium price vector, determined with an accuracy of a struc-
ture, infinitely many price vectors are related differing only in the absolute levels
of consumer goods’ prices but having an identical structure.

Theorem 3.4 If the utility function uk :R2+ → R, k = 1, 2 is increasing, differen-
tiable and strictly concave, then in the Arrow-Hurwicz model there exists at least
one price vector of the Walrasian equilibrium, determined with an accuracy of a
structure.

Note 3.12 The conditions, ensuring that in the Arrow-Hurwicz model exists exactly
one Walrasian equilibrium price vector determined with an accuracy of a structure,
are in the form of more complex assumptions. Therefore, we will not provide them
as part of the basic lecture5 here.

In the description of the dynamic Arrow-Hurwicz model presented so far we
have used a time variable to denote moments in which particular events happen on
a market of consumer goods. We have not distinguished discrete and continuous
time yet.

Before we define discrete-time and continuous-time versions of the dynamic
Arrow-Hurwicz model let use present in a descriptive way the rules according to
which a market of consumer goods acts in this model. Let us consider a market
with two traders and with two goods, where a distinct economic agent operates—
a broker6 who each time determines prices of all goods. The aim of every trader
is to exchange a bundle of goods he/she entered the market with for a bundle of
goods of a value not exceeding an income of a given trader and whose utility is
maximum and at the same time not less than the utility of the initial consumption
bundle. The value of a bundle of goods the k-th trader entered the market with,
equal to an income of this trader, and the value of a bundle that the k-th trader
wants to purchase depend on the prices of consumer goods set by the broker.

Rules according to which the market operates are as follows. Each trader com-
ing to the market lets the broker know about quantities of goods he/she brings to
the market. On this basis, the broker obtains information about the global supply of
each commodity. The broker’s task is to provide such a system of prices of goods,
by which each trader will decide to purchase a bundle of goods whose value by
prices proposed by the broker will not exceed the income of a given trader and
whose utility will be maximum and at the same time no less than the utility of the
bundle of goods a given trader came to the market with. An exchange transaction

5 More complete knowledge on this issue is presented, among others, in work (Panek, 2003).
6 In microeconomic literature such a person, or in general entity, is also often called a Walrasian
auctioneer. However, it should be emphasized that in the Arrow-Hurwicz model a market of con-
sumer goods is not an auction market and that an auctioneer (broker) in this context does not aim
to set the highest prices.
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between traders will take place only when the broker proposes such a price vec-
tor by which the global supply and the global demand for all goods, expressed in
physical units, are identical. In other words, the goal of the broker is to determine
a price vector of the Walrasian equilibrium. This task is not easy. To make decision
about prices the broker can use intuition, experience or some strict rules.

The process of reaching equilibrium prices can be written as the following iter-
ative procedure. At an initial moment t = 0, the broker knows the global supply
of each commodity and proposes some initial price system p(0) = p0 > 0. He/she
anticipates the global demand for each commodity and proposes such a price sys-
tem p(t) > 0, which will equalize the global supply and the global demand for
goods and at the same time will allow each trader to undertake the transaction
that he/she judges as the best. Having the knowledge about the prices of consumer
goods, each trader determines his/her demand function for each commodity, which
is the solution to the consumption utility maximization problem of the k-th trader
(k = 1, 2). Knowing values of the demand functions of all traders, the broker can
determine the value of the global demand function for each good by a given set of
prices. Comparing it with the global supply of a given good he/she determines the
value of an excess demand function. If the initial prices proposed by the broker
were the Walrasian equilibrium price vector, then all traders would exchange their
bundles among themselves. Otherwise, the broker should propose new prices of
all goods that would establish the equilibrium. Knowing the value of the excess
demand for each commodity at any time t and goods’ prices at any timet , in order
to set the prices the broker should proceed in the following way:

• if ∀ i zi (p(t) = x̄ i (p(t)) − āi > 0, then x̄ i (p(t)) > āi ⇔ pi (t + 1) > pi (t),
which means that if the global demand for i-th good is greater than the global
supply of this good when its price at time t is pi (t) > 0, then in order to adjust
the demand for this good to its supply, the price of i-th good at time t + 1
should be higher than at time t .

• if ∀ i zi (p(t) = x̄ i (p(t)) − āi < 0, then x̄ i (p(t)) < āi ⇔ pi (t + 1) < pi (t),
which means that if the global demand rh good is smaller than the global supply
of this good when its price at tim t is pi (t) > 0, then in order to adjust the
demand for this good to its supply, the price of i-th good at time t + 1 should
be lower than at time t .

• if ∀ i zi (p(t) = x̄ i (p(t)) − āi = 0, then x̄ i (p(t)) = āi ⇔ pi (t + 1) = pi (t),
which means that if on a market of i-th good at time t the global supply and
the global demand are equal, then the price of this good should not be changed
at time t + 1. In this case, when the price of i-th good is an equilibrium price
for this good, we say that on a markeof all commodities there is a partial
equilibrium with respect to i-th good.

If by a price system proposed by a broker, there is an equilibrium of global supply
and global demand for all goods, we say then that a global equilibrium has been
reached on the consumer goods market—the equilibrium defined by the Walrasian
equilibrium price vector p̄ > 0.
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The main questions regarding a market described by the dynamic Arrow-
Hurwicz model are:

• does a state of the Walrasian equilibrium exist on a consumer goods market?
• is there exactly one or at least one state of the Walrasian equilibrium?
• whether and in what time horizon is it possible to reach the state of the

Walrasian equilibrium?

To answer these questions, one needs to determine in what way a broker sets prices
of consumer goods.

Definition 3.31 A dynamic discrete-time Arrow-Hurwicz model is a system of
difference equations of a form:

∀ i pi (t + 1) = pi (t) + σi zi (p(t)),(3.96)

with an initial condition:

∀ i pi (0) = p0i > 0,(3.97)

t = 0, 1, 2, . . .(3.98)

whereσi > 0 denotes ameasure of broker ’s sensitivity to an imbalance on i-th good’s
market, which for the sake of simplicity is assumed to be the same for markets of all
goods: ∀ i σi = σ > 0.

Condition (3.96) can be written in an equivalent form:

∀ i pi (t + 1) − pi (t) = σi zi (p(t)).(3.99)

On the basis of conditions (3.96) and (3.99) it can be concluded that ∀ t =
0, 1, 2, . . . and ∀ i = 1, 2:

zi (p(t)) > 0 ⇒ pi (t + 1) − pi (t) > 0 ⇒ pi (t + 1) > pi (t),

zi (p(t)) < 0 ⇒ pi (t + 1) − pi (t) < 0 ⇒ pi (t + 1) < pi (t),

zi (p(t)) = 0 ⇒ pi (t + 1) − pi (t) = 0 ⇒ pi (t + 1) = pi (t).

Equivalent conditions (3.96) and (3.99) lead to a simple recursive rule for deter-
mining prices of all goods in subsequent periods of time. However, this rule does
not ensure that the resulting price systems will make economic sense. We are not
interested in situations where a price of any good is negative. Therefore, our atten-
tion should be focused only on such solutions to systems of difference equations
(3.96) or (3.99), in which the vectors of consumer goods’ prices determined on
the basis of these solutions are positive: ∀ i pi (t + 1) > 0.
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Definition 3.32 A feasible price trajectory in the dynamic discrete-time Arrow-
Hurwiczmodel is an infinite sequence of solutions to the difference equations’ system
(3.99) with an initial condition p(0) = p0 > 0 such that ∀ t = 0, 1, 2, . . . p(t + 1) >

0.
Assuming there exists a feasible price trajectory in the dynamic discrete-time

Arrow-Hurwicz model, one is interested in the conditions of existence, uniqueness
and stability of the Walrasian equilibrium state.

Definition 3.33 A Walrasian equilibrium state p̄ > 0 is called asymptotically
globally stable when a feasible trajectory of goods’ prices satisfies a condition:

lim
t→+∞p(t + 1) = p̄.(3.100)

Global stability means that any feasible trajectory of goods’ prices, starting
from any initial price system p(0) = p0 > 0, after reaching a state of the Walrasian
equilibrium will remain in this state. The stability is also asymptotic one, because
the state of the Walrasian equilibrium is a target state which, if exists, can be
achieved in an infinite time horizon.

Definition 3.34 A dynamic continuous-time Arrow-Hurwicz model is a system
of differential equations of a form:

∀ i
dpi (t)

dt
= σi zi (p(t)),(3.101)

with an initial condition:

∀ i pi (0) = p0i > 0,(3.102)

t ∈ [0;+∞).(3.103)

where:

whereσi > 0 denotes ameasure of broker ’s sensitivity to an imbalance on i-th good’s
market, which for the sake of simplicity is assumed to be the same for markets of all
goods: ∀ i σi = σ > 0.

On the basis of condition (3.101), it can be concluded that ∀ t ∈ [0;+∞) and
∀ i = 1, 2:

zi (p(t)) > 0 ⇒ dpi (t)

dt
> 0 ⇒ pi (t + 1) > pi (t),

zi (p(t)) < 0 ⇒ dpi (t)

dt
< 0 ⇒ pi (t + 1) < pi (t),

zi (p(t)) = 0 ⇒ dpi (t)

dt
= 0 ⇒ pi (t + 1) = pi (t).
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This simple recursive rule, described by conditions (3.101)–(3.102), shows how
to determine prices of all goods in subsequent moments. However, it does not
ensure that the resulting price systems will make economic sense. Therefore, our
attention should be focused only on such solutions, to systems of differential equa-
tions (3.101), in which the vectors of consumer goods’ prices determined on the
basis of these solutions are positive: ∀ i pi (t + ∆t) > 0, ∆t → 0.

Definition 3.35 A feasible price trajectory in the dynamic continuous-timeArrow-
Hurwicz model is an infinite sequence of solutions to the differential equations
system (3.101) with an initial condition p(0) = p0 > 0 such that ∀ t ∈
[0;+∞) p(t + ∆t) > 0.

Assuming that there exists a feasible price trajectory in the dynamic continuous-
time Arrow-Hurwicz model, one is interested in conditions of existence, uniqueness
and stability of theV Walrasian equilibrium state.

Definition 3.36 A Walrasian equilibrium state p̄ > 0 is called asymptotically
globally stable when a feasible trajectory of goods’ prices satisfies a condition:

lim
t → +∞
∆t → 0

p(t + ∆t) = p̄.(3.104)

Global stability means that any feasible trajectory of goods’ prices, starting
from any initial price system p(0) = p0 > 0, after reaching a state of the Walrasian
equilibrium will remain in this state. The stability is also asymptotic one, because
the state of the Walrasian equilibrium is a target state which, if exists, can be
achieved in an infinite time horizon.

In Figs. 3.6 and 3.7, a graph of a feasible price trajectory in a dynamic discrete-
time Arrow-Hurwicz model is presented. A state space is R2+, while a phase state
is R3+. The phase state can be seen as an extension of the state space by adding
time as the third dimension. Let us notice that the graph of the feasible trajectory
of prices of both goods presented in the state space is obtained from the feasible
trajectory in the phase space projected to a plane.

Both figures have purely hypothetic character. They do not relate to the dynamic
discrete-time Arrow-Hurwicz model in a particular form which would indicate
undoubtedly that in this model there exists exactly one Walrasian equilibrium price
vector determined with an accuracy of a structure.

Nevertheless, both figures illustrate that if there exists exactly one Walrasian
equilibrium price vector, determined with an accuracy of a structure then this vec-
tor is a limit for a feasible price trajectory. A process of reaching the Walrasian
equilibrium price vector does not need to be done in a finite number of peri-
ods. This means that it has an asymptotic character. If, however, a feasible price
trajectory reaches the Walrasian equilibrium state, described by the Walrasian equi-
librium price vector, then it will remain in this state. In this sense, the Walrasian
equilibrium state is globally asymptotically stable.
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Fig. 3.6 Feasible price trajectory in state space in dynamic Arrow-Hurwicz model

Fig. 3.7 Feasible price trajectory in phase space in dynamic Arrow-Hurwicz model
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Example 3.3 Two traders come to a market with bundles of goods: a1 =
(10, 20), a2 = (20, 10). Utility functions of traders are: u1(x11, x12) = x1/411 x1/412 ,

u2(x21, x22) = x1/421 x1/322 . We know from Example 3.2 that in the static Arrow-
Hurwicz model for a given initial allocation and given utility functions, the excess
demand function takes the form:

z(p) =
(
15

p2
p1

− 15, 15
p1
p2

− 15

)
,

and the Walrasian equilibrium price vector has a structure:

p̄ = λ(1, 1), λ > 0.

Let us first consider a discrete-time version of the dynamicArrow-Hurwiczmodel.
A broker announces initial prices:

p(0) = (2, 4).

1. Determine trajectories of a price vector satisfying a system of equations of
the dynamic discrete-time Arrow-Hurwicz taking a proportionality coefficient
σ equal to 0.25, 0.35 and 1.25. Calculate price ratios p2(t)

p1(t)
and compare them

with the equilibrium price ratio p̄2
p̄1
.

2. State which trajectories determined in point 1 are feasible.
3. State if and when (in which period) a structure of prices stabilizes around the

equilibrium price structure and whether it reaches this structure in time horizon
T = 15.

4. Present graphs of the price trajectories in the state space.
5. Present graphs of the price trajectories as functions of time.

Ad 1 The price trajectories of the first and of the second good are determined,
respectively, from formulas:

p1(t + 1) − p1(t) = σ

(
15

p2(t)

p1(t)
− 15

)
,

p2(t + 1) − p2(t) = σ

(
15

p1(t)

p2(t)
− 15

)
.

Ad 2 The data in Table 3.3 show that the price trajectories are not feasible when the
measure σ of the broker’s sensitivity to the imbalance on the markets of both goods
is equal to 1.25. The price of the second commodity has a negative value just right
in period 2.
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Table 3.1 Price trajectories when σ = 0.25

t p1 p2
p2(t)
p1(t)

|
|| p̄2p̄1 − p2(t)

p1(t)

|
||

0 2 4 2 1

1 2.75 3.625 1.318182 0.318181818

2 2.988636 3.443966 1.152353 0.152353481

3 3.102901 3.344807 1.077961 0.077961226

4 3.161372 3.290565 1.040866 0.040866096

5 3.192022 3.261119 1.021647 0.02164683

6 3.208257 3.245228 1.011524 0.011523673

7 3.2169 3.236684 1.00615 0.006149976

8 3.221512 3.232099 1.003286 0.003286371

9 3.223977 3.229643 1.001757 0.001757333

10 3.225295 3.228327 1.00094 0.000940043

11 3.226 3.227623 1.000503 0.000502949

12 3.226377 3.227246 1.000269 0.000269119

13 3.226579 3.227044 1.000144 0/000144009

14 3.226687 3.226936 1.000077 7.70629E-05

15 3.226745 3.226878 1.000041 4.12391E-05

16 3.226776 3.226847 1.000022 2.20687E-05

17 3.226792 3.226831 1.000012 1.18099E-05

18 3.226801 3.226822 1.000006 6.31997E-06

19 3.226806 3.226817 1.000003 3.3821E-06

20 3.226809 3.226814 1.000002 1.80991E-06

Ad 3 The data in Tables 3.1, 3.2 and 3.3 show that the price structure stabilizes
around the equilibrium structure when σ = 0.25 or σ = 0.35. In the first case, it
reaches this structure in period around t = 14, in the second case in period around
t = 25.

Ad 4 Figures 3.8, 3.9 and 3.10 presenting the graphs of price trajectories in the state
space show also the equilibrium price vector, which in this example is p̄ = λ(1, 1).

Ad 5 Graphs of price trajectories as functions of time,7 presented in Figs. 3.11, 3.12
and 3.13, allow for easy observation whether for given price trajectories the price

7 Time is considered here as discrete, which means we are interested in values of functions only at
points t = 0, 1, 2, . . . which denote subsequent periods. However, to make the figures clear and
easier to observe changes of prices over time we present linear plots instead of scatter ones.
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Table 3.2 Price trajectories when σ = 0.35

t p1 p2
p2(t)
p1(t)

|
|| p̄2p̄1 − p2(t)

p1(t)

|
||

0 2 4 2 1

1 7.25 1.375 0.189655 0.810344828

2 299,569 23.80682 7.947024 6.947024199

3 39.46757 19.21744 0.486917 0.513082654

4 36.77388 24.74956 0.67302 0.326979955

5 35.05724 27.30022 0.778733 0.221267248

6 33.89558 28.79194 0.84943 0.150569556

7 33.10509 29.72255 0.897824 0.102175844

8 32.56867 30.32002 0.930957 0.069043271

9 32.20619 30.70938 0.953524 0.04647586

10 31.9622 30.96527 0.968809 0.031190638

11 31.79845 31.1343 0.979114 0.020886168

12 31.68879 31.24629 0.986036 0.013964048

13 31.61548 31.32064 0.990674 0.009325909

14 31.56652 31.37006 0.993776 0.006223687

15 31.53385 31.40294 0.995849 0.004151311

16 31.51205 31.42482 0.997232 0.002768058

17 31.49752 31.4394 0.998155 0.001845296

18 31.48783 31.4491 0.99877 0.001229958

19 31.48137 31.45557 0.99918 0.000819729

20 31.47707 31.45988 0.999454 0.000546287

21 31.4742 31.46274 0.999636 0.000364042

22 31.47229 31.46466 0.999757 0.000242588

23 31.47102 31.46593 0.999838 0.000161651

24 31.47017 31.46678 0.999892 0.000107716

25 31.4696 31.46735 0.999928 7.17761E-05

structure converges in time to the equilibrium price structure, thus reaching the state
of Walrasian equilibrium, and whether it remains in this state.

Example 3.4 Let us now consider a continuous-time version of the Arrow-Hurwicz
dynamic model for the same data as in Example 3.3.

1. Determine trajectories of a price vector satisfying a system of equations of the
dynamic continuous-time Arrow-Hurwicz model taking a proportionality coef-
ficient σ equal to 0.25, 0.35, 1.25 and determine whether these trajectories are
feasible.
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Table 3.3 Price trajectories when σ = 1.25

t p1 p2
p2(t)
p1(t)

||| p̄2p̄1 − p2(t)
p1(t)

|||

0 2 4 2 1

1 20.75 −5.375 −0.259036 1.259036145

2 −2.85693 −96.5087 33.780596 32.78059605

3 611.7792 −114.704 −0.187492 1.187491924

4 589.5138 −233.458 −0.396018 1.396017847

5 563.3384 −299.554 −0.531748 1.531748422

6 534.6182 −353.565 −0.661342 1.661341852

7 503.468 −400.667 −0.795814 1.795813863

8 469.7965 −442.978 −0.942914 1.942913813

9 433.3669 −481.613 −1.111328 2.11132811

10 393.7795 −517.234 −1.313513 2.313513108
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Fig. 3.8 Price trajectories in state space when σ = 0.25
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Fig. 3.13 Price trajectories as functions of time when σ = 1.25

2. Determine if and when (at what moment) a structure of prices stabilizes around
the equilibrium price structure.

3. Present graphs of price trajectories as functions of time.

Ad 1 The price trajectories of the first and of the second good are determined,
respectively, from formulas:

dp1(t)

dt
= σ

(
15

p2(t)

p1(t)
− 15

)
,

dp2(t)

dt
= σ

(
15

p1(t)

p2(t)
− 15

)
.

To determine approximate price trajectories, we can use the Euler method
in which one approximates differential equations with difference equations. For
example, for the price of the first good, its trajectory can be determined from a
formula:

p1(t + 1) − p1(t) = σ

(
15

p2(t)

p1(t)
− 15

)
· ∆t,
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Fig. 3.14 Price trajectories as functions of time when σ = 0.25

where ∆t denotes a time increment.8 Let us assume that ∆t = 0.5. Then, we
obtain trajectories that are not feasible when the propoionality coefficient σ is
equal to 1.25, as shown in Fig. 3.16.

Ad 2 With the proportionaly coefficient σ = 0.25, the price structure stabilizes
around the equilibrium structure at time t = 2. With σ = 0.35, the convergence
is achieved at time t = 4.5. When σ = 1.35, the price of the second good has a
negative value just right at t = 0.5.

Ad 3 In order to determine trajectories of prices satisfying a given system of dif-
ferential equations with an initial condition, we used the Euler method to obtain an
approximate solution this way. Graphs, presented in Figs. 3.14, 3.15 and 3.16, show
price trajectories for each moment by every 0.5 time unit, where the fortieth step
(t/∆t) of the calculation means the twentieth period (t = 20).

8 Depending on the value of parameter ∆t meaning the time increment we observe a lack of
convergence, faster or slower convergence to the equilibrium state determined as a structure of
prices.
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Fig. 3.15 Price trajectories as functions of time when σ = 0.35
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3.4 Questions

1. Why the simple model of exchange is a special case of the static Arrow-
Hurwicz model?

2. What is the Edgeworth box used for in the simple model of exchange and in
the static Arrow-Hurwicz model?

3. What kind of allocation accepted by traders and feasible with regard to an
initial allocation is called Pareto optimal (efficient) in the simple model of
exchange?

4. Why in the simple model of exchange every allocation which is Pareto optimal
and accepted by traders is feasible with regard to an initial allocation? Use the
Edgeworth box to explain this.

5. Is it possible in the simple model of exchange or in the static Arrow-Hurwicz
model that an allocation not accepted by traders is Pareto optimal?

6. Until when is it worth for a trader to block allocations accepted by other
traders?

7. Why are budget lines of the first and of the second traders in static Arrow-
Hurwicz model identical (coincide)?

8. What is the difference between Walras’s law and the Walrasian equilibrium
state in the static Arrow-Hurwicz model?

9. How an excess demand function in the static Arrow-Hurwicz model is defined
and what are its properties?

10. What does it mean that the Walrasian equilibrium price vector is determined
to accuracy of a structure (multiplication by a positive number)? What does it
result from? What does it result in?

11. Why, in the static Arrow-Hurwicz model, is every allocation which is Pareto
optimal and accepted by traders feasible with regard to an initial allocation?
Use the Edgeworth box to explain this.

12. Why, in the static Arrow-Hurwicz model, is every Walrasian equilibrium allo-
cation: Pareto optimal, accepted by traders and feasible with regard to an
initial allocation? Use the Edgeworth box to explain this.

13. In what way is the dynamic Arrow-Hurwicz model defined in its discrete-time
and continuous-time versions?

14. What is the role of a broker (Walrasian auctioneer) in the dynamic Arrow-
Hurwicz model?

15. Why are only feasible price trajectories taken into consideration? How are
they defined in both versions of the dynamic Arrow-Hurwicz model?

16. What does it mean that the Walrasian equilibrium price vector in the dynamic
Arrow-Hurwicz model is asymptotically globally stable?

17. What is the difference between the state space and the phase space in the
dynamic Arrow-Hurwicz model?
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3.5 Exercises

E1. There is given a market of two traders and two goods described by the simple
model of exchange, in which:

i = 1, 2—an index of consumer goods,
k = 1, 2—an index of traders (consumers),
Xk = R

2+—a goods space of k-th trader,
uk : R2+ → R—a utility function of k-th trader describing her/his preferences
(relation of k-th consumer’s preference),
ak = (ak1, ak2) ∈ R

2+—an initial bundle the k-th consumer comes to the market
with,
xk = (xk1, xk2) ∈ R

2+—a consumption bundle the k-th consumer wants to
purchase.

The k-th (k = 1, 2) consumer aims to purchase such a bundle of goods x̄k =
(x̄ k1, x̄ k2), whose utility would be maximum and at the same time not less than
of the initial bundle of goods ak = (ak1, ak2).

Let us consider cases when:

(a) uk(xk) = ak1 ln xk1 + ak2 ln xk2 → max,
(b) uk(xk) = ak1xα

k1 + ak2xα
k2 → max.

Using the Edgeworth box:

1. present geometric illustration of sets of allocations: feasible with regard to an
initial allocation, accepted by traders, Pareto optimal,

2. determine which allocations are blocked by traders,
3. justify that C(a) ⊆ S(a) ⊆ F(a) ⊂ R

4+.

Let us assume that there are given:

– initial bundles both consumers come to the market with: a1 = (10, 20), a2 =
(20, 10), whichmeans that the initial allocation has a form: a = (10, 20, 20, 10),

– values of parameters in the logarithmic and in the subadditive utility functions:
ak1 = ak2 = 1,

– values of parameters in the subadditive utility function: α = 1
4 .

E2. There is given a market of two traders and two goods described by the static
Arrow-Hurwicz model, in which:

i = 1, 2—an index of consumer goods,
k = 1, 2—an index of traders (consumers),
X = R

2+—a goods space,
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a1 = (10, 20), a2 = (20, 10)—initial bundles the consumers come to the market
with,
p = (p1, p2) ∈ intR2+—a vector of goods’ prices,
xk = (xk1, xk2) ∈ R

2+—a consumption bundle the k-th consumer wants to
purchase,
I 1(p1, p2) = 10p1 + 20p2, I 2(p1, p2) = 20p1 + 10p2—incomes of traders.

Utility functions of traders have forms:

(a) u1(x11, x12) = ln x11 + ln x12, u2(x21, x22) = ln x21 + ln x22—logarithmic,

(b) u1(x11, x12) = x
1
4
11 + x

1
4
11, u2(x21, x22) = x

1
4
21 + x

1
4
21—subadditive.

1. Find solution of the utility maximization problem of each trader—a demand
function of each trader.

2. Determine functions of global supply and global demand.
3. Determine an excess demand function and justify that it is homogenous of

degree 0 and that it satisfies Walras’s law.
4. Determine a Walrasian equilibrium price vector.
5. Explain what it means that the Walrasian equilibrium price vector is

determined with an accuracy of a structure (multiplication by a positive
number).

6. Determine a Walrasian equilibrium allocation.
7. Present geometric illustrations of:

– a set of allocations feasible with regard to the initial allocation,
– a set of Pareto optimal allocations,
– a set of Walrasian equilibrium allocations.

8. Justify by geometric means that: W (a) ⊆ C(a) ⊆ S(a) ⊆ F(a) ⊂ R
4+.

E3. Using the Edgeworth box for the static Arrow-Hurwicz model of a market with
two traders and two goods present a geometric illustration of a case when there exists
no Walrasian equilibrium price vector in this model.

E4. Define the dynamic Arrow-Hurwicz model in a discrete-time and in a
continuous-time versions, taking as the basis the static Arrow-Hurwicz model from
Exercise 2 with logarithmic and subadditive utility functions of traders.

E5. For the dynamic Arrow-Hurwicz model in a discrete-time version from Exer-
cise 4 with logarithmic utility functions of traders and the Walrasian equilibrium
price vector known from Exercise 2 determine a feasible price trajectory for a few
subsequent periods taking some value of parameter σi = σ > 0. Present a geometric
illustration of this trajectory in the state space and in the phase space.

E6. For the dynamic Arrow-Hurwicz model in a discrete-time version from Exer-
cise 4 with subadditive utility functions of traders and the Walrasian equilibrium
price vector known from Exercise 2 determine a feasible price trajectory for a few



158 3 Rationality of Choices Made by Group of Consumers

subsequent periods taking some value of parameter σi = σ > 0. Present a geometric
illustration of this trajectory in the state space and in the phase space.

E7. Two traders come to a market with bundles of goods: a1 = (10, 20), a2 =
(20, 10). Their utility functions are following:

(a) u1(x11, x12) = ln x11 + ln x12, u2(x21, x22) = ln x21 + ln x22,
(b) u1(x11, x12) = x1/411 + x1/412 , u2(x21, x22) = x1/421 + x1/422 ,.

Consider a discrete-time version of dynamic discrete-time Arrow-Hurwicz model.
A broker announces initial prices:

p(0) = (2, 4).

Using a form of the excess demand function and a structure of the Walrasian
equilibrium price vector found in Exercise 2 for the static Arrow-Hurwicz model:

1. Determine trajectories of a price vector satisfying a system of equations of the
dynamic discrete-timeArrow-Hurwiczmodel, taking a proportionality coefficient
σ equal to 0.25, 0.35 and 1.25. Calculate price ratios p2(t)

p1(t)
and compare themwith

the equilibrium price ratio p̄2
p̄1
.

2. State which trajectories determined in point 1 are feasible.
3. State if and when (in which period) a structure of prices stabilizes around the

equilibrium price structure and whether it reaches this structure in time horizon
T = 15.

4. Present graphs of the price trajectories in the state space.
5. Present graphs of the price trajectories as functions of time.

E8. Consider a continuous-time version of the dynamic Arrow-Hurwicz model for
the same data given as in Exercise 7.

1. Determine trajectories of a price vector satisfying a system of equations of the
dynamic continuous-time Arrow-Hurwicz model taking a proportionality coef-
ficient σ equal to 0.25, 0.35, 1.25 and determine whether these trajectories are
feasible.

2. Determine if and when (at what moment) a structure of prices stabilizes around
the equilibrium price structure.

3. Present graphs of price trajectories as functions of time.



4Rationality of Choices Made
by Individual Producers

In this chapter you will learn the following points:

– what the production processes are, when they are called technologically
effective and how to describe them

– what the standard properties of a production function are
– what relationships between inputs of production factors and the output

are described by characteristics of a production function
– what it means that a production function is positively homogenous of

degree θ > 0 and what characteristics of a production function are related
to this property

– what is a set of assumptions to describe a firm acting in perfect
competition and to describe a monopoly

– what the price of a product used by a firm acting in perfect competition
is and what the price set by a monopoly is

– what it means that a firm decides on a long-term strategy or a short-term
strategy of its activity

– on the basis of what criteria a producer chooses optimal inputs of
production factors or the optimal supply and how he/she makes this choice

– how to formulate a profit maximization problem and a production cost
minimization problem

– what the conditions guaranteeing a firm that it chooses optimal inputs or
the optimal supply are

– how to justify that problems of maximization with regard to inputs of
production factors and with regard to the output are equivalent

– how to define functions of demand for prediction factors, conditional
demand for production factors and of product supply
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– what the differences between problems of a given type in a long-term
strategy and in a short-term strategy are and what the importance of con-
straints on resources of production factors is when optimal inputs or the
optimal output are chosen.

In this chapter, we focus on production processes. Our attention is paid particu-
larly to the description of technological and financial characteristics of production
processes.

Production technology is identified with technologically feasible processes. We
are interested most in technologically effective processes, described by a produc-
tion function. One of the most important aspects of production processes to be
considered is substitutability of production factors. That is why the subject of our
considerations is CES production function1 which has special cases when it comes
to substitutability of production factors: linear function (perfect substitutability),
power function and Koopmans-Leontief function (lack of substitutability).

Financial aspects of production processes refer to such economic terms as profit,
selling revenue and total costs of production which are a sum of variable costs and
fixed costs. Each of these financial categories is described by a function whose
arguments are the output of production or inputs of production factors.

Our essential aim is to describe rational behaviour of an individual producer
who acts in perfect competition or monopoly conditions and when resources of
production factors owned by the producer are limited or unlimited.

An important distinguishing characteristic of considerations presented in this
chapter is an assumption that a rationally behaving producer (maximizing profit
and/or minimizing production costs) does not encounter any constraints related
to the demand for a product he/she produces. This is a similar situation to the
one described in Chap. 2 in which we took into consideration a supply constraint,
however we conducted the analysis assuming that the supply constraint is not
binding for an individual consumer.

In this chapter, we do not discard the fact that demand constraint is very
important when it comes to the manufacturing activity. However, for the sake of
simplicity and clarity of our analyses we assume explicitly that the demand con-
straint is not binding for a producer. This assumption will be gradually released in
subsequent chapters.

1 CES stands for constant elasticity of substitution. This kind of function was used in Chap. 2 to
describe substitutability of consumer goods regarding the utility of a consumer derived from a
consumption bundle.
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4.1 Production Space and Production Function

If we consider production as a process of transforming a bundle of inputs (of
production factors) into a bundle of outputs (of products) then we can describe any
production process by means of production function as a mapping f : Rn+ → R

m+
that assigns at most one vector y = (y1, . . . , ym) ∈ R

m+ of production outputs
(of final products) to any vector x = (x1, . . . , xn) ∈ R

n+ of inputs of production
factors.

For the sake of simplicity, we assume that n = 2, m = 1. This way we limit
ourselves to production processes in which one product is produced by using two
production factors.

Definition 4.1 A production process is a vector z = (x, y) ∈ R
3+, consisting of a

vector x = (x1, x2) ∈ R
2+ of inputs of production factors and of a variable y ∈ R+

which describes a quantity of a product that can be produced by a given vector of
inputs of production factors.

Note 4.1 When by a given technology it is possible to obtain any (not necessar-
ily maximum) quantity of a product using a given vector x = (x1, x2) ∈ R

2+ of
inputs of production factors then we relate such situations to technologically feasible
productions processes.

Definition 4.2 A production space is a set Z = {
z = (x, y) ∈ R

3+||x ∈ R
2+ , y ∈ R+

} ⊆ R
3+ of all technologically feasible production processes

with a norm2 ||z|| = max{|y|, |x1|, |x2|} = max{y, x1, x2} defined on this set.
When by a given technology it is possible to obtain maximum quantity y ∈ R+

of a product using a given vector x = (x1, x2) ∈ R
2+ of inputs of production factors

then we say that it is a technologically feasible production process.

Definition 4.3 A production function3 is a mapping f : R2+ → R+ which assigns
maximum quantity y ∈ R+ of a product that can be produced when using a vector
x = (x1, x2) ∈ R

2+ of inputs of production factors.

2 In Chap. 2, we use the term of a non-Euclidean metric which is treated there as a measure of
distance (similarity) between two consumption bundles. Here we use the term of a norm as a mea-
sure of length of a vector describing technologically feasible production process. The production
space is assumed to be a metric space with a non-Euclidean metric defined on this space: ∀z1, z2 ∈
R
3+ d

(
z1, z2

) = max
{||z1

||,
||z2

||} = max
{
z1, z2

}
since production processes are described by

non-negative vectors of output and inputs of production factors.
3 It is a scalar production function. A vector production function describes technologically feasible
production processes in which one obtains at most one vector y = (y1, ..., ym) ∈ R

m+ of maximum
production outputs using a vector x = (x1, ..., xn) ∈ R

n+ of inputs of production factors.
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Let us take into account the following standard system of assumptions4 about
a scalar production function f :R2+ → R+ of two variables:

(F1) f : R2+ → R+ is continuous and twice differentiable in its domain.

(F2) f (0, 0) = 0, which means that zero inputs of production factors give zero
production output.

(F3) ∀x1, x2 ∈ R
2+, x1 ≥ x2 ∧x1 /= x2 ⇒ f

(
x1

)
> f

(
x2

)
, which means that the

production function is increasing. From (F1) it is twice differentiable, hence

∀ x ∈ R
2+

∂ f (x1, x2)

∂xi
> 0, i = 1, 2.(4.1)

(F4) f : R2+ → R+ is concave:

∀ x1, x2 ∈ R
2+ ∀ α, β ≥ 0 α + β = 1

f (αx1 + βx2) ≥ α f (x1) + β f (x2),(4.2a)

or strictly concave:

∀ x1, x2 ∈ R
2+ x1 /= x2, ∀ α, β > 0 α + β = 1

f (αx1 + βx2) > α f (x1) + β f (x2).(4.2b)

(F5) f : R2+ → R+ is positively homogeneous of degree θ > 0:

∀λ > 0 ∀x ∈ R
2+ f (λx) = f (λx1, λx2) = λθ f (x1, x2) = λθ f (x),(4.3)

where θ > 0 means a degree of homogeneity of a production function.

Note 4.2 Let us notice that:

(1) Ifλ ∈ (0; 1), thenλxmeans avector of inputs inwhichquantities of all production
factors are decreased to the same extent in comparison to a vector x.

(2) If λ > 1, then λx means a vector of inputs in which quantities of all production
factors are increased to the same extent in comparison to a vector x.

Assumption (F5) refers to terms: constant, decreasing and increasing returns to scale.
Let us consider three cases:

4 The standard assumptions mean that we treat them as basic ones. Which assumptions are seen as
standard depends on which properties of production function we need in further analyses.
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1. If θ = 1, ∀ λ > 0 ∀ x ∈ R
2+ f (λx) = f (λx1, λx2) = λ f (x1, x2) = λ f (x),

then this is a case of constant returns, called also proportional revenues. It
means that when inputs of all production factors are increased/decreased λ times
then the output level increases/decreases proportionally, thus also λ times.

2. If θ ∈ (0; 1),∀ λ > 1 ∀ x ∈ R
2+ f (λx) = λθ f (x) < λ f (x),

then this is a case of decreasing returns to scale, called also decreasing rev-
enues. It means that when inputs of all production factors are increased/decreased
λ times then the output level increases/decreases less than proportionally, thus less
than λ times.

3. If θ > 1, ∀ λ > 1 ∀ x ∈ R
2+ f (λx) = λθ f (x) > λ f (x),

then this is a case of increasing returns to scale, called also increasing revenues.
It means thatwhen inputs of all production factors are increased/decreasedλ times
then the output level increases/decreasesmore than proportionally, thusmore than
λ times.

Note 4.3 Assumptions (F4) and (F5) are not contradictory with each other when
the homogeneity degree of a production function θ ∈ (0; 1], since if θ > 1 then a
production function is neither concave nor strictly concave.

Let us now present some characteristics of a production function f : R2+ → R+
which have an important application in the theory of production.

Definition 4.4 A growth speed of productionwith respect to i-th production factor
is

Ti (x) = ∂ f (x)
∂xi

, i = 1, 2,(4.4)

which describes by approximately how many units the output level x changes
(increases, decreases or remains unchanged) when input of i-th production factor
increases by one (notional) unit and the input of the other factor does not change.

Note 4.4 In the theory of production, the growth speed of production with respect
to i-th production factor is called usually a marginal productivity (or marginal
effectiveness) of i-th production factor.

Definition 4.5 A growth rate of production with respect to i-th production factor
is

Si (x) = ∂ f (x1, x2)

∂xi

1

f (x)
= Ti (x)

f (x)
,(4.5)

which describes by approximately what % the output level f (x) changes (increases,
decreases or remains unchanged) when the input of i-th production factor increases
by one (notional) unit and the input of the other factor does not change.
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Definition 4.6 An elasticity of production with respect to i-th production factor
is

Ei (x) = ∂ f (x)
∂xi

xi
f (x)

= Si (x) · xi ,(4.6)

which describes by approximately what % the output level f (x) changes (increases,
decreases or remains unchanged) when the input of i-th production factor increases
by 1% and the input of the other factor does not change.

Definition 4.7 An elasticity of production with respect to scale of inputs is

Eλ(x1, x2) = lim
Δλ→0

f ((λ+Δλ)x)− f (x)
f (x)
Δλ
λ

= lim
λ→1

lim
Δλ→0

f ((λ+Δλ)x)− f (λx)
f (x)
Δλ
λ

= lim
λ→1

lim
Δλ→0

(
f ((λ + Δλ)x) − f (λx)

Δλ
· λ

f (λx)

)

= lim
λ→1

(
∂ f (λx)

∂λ

λ

f (λx)

)
,(4.7)

which describes by approximately what % the output level f (x) changes (increases,
decreases or remains unchanged) when the input of each production factor increases
by 1%.

Theorem 4.1 If a production function f : R2+ → R+ is positively homogeneous of
degree θ > 0 then:

Eλ(x1, x2) = θ,(4.8)

which means that an elasticity of production with respect to scale of inputs is equal
to a degree of homogeneity of a production function.

Let us notice that if a production function is positively homogenous of degree
θ > 0 then it satisfies a condition:

∀ λ > 0 ∀x ∈ R
2+, f (λx) = λθ f (x)(4.9)

resulting in:

∂ f (λx)
∂λ

= θλθ−1 f (x).(4.10)



4.2 Substitutability and Complementarity of Production Factors 165

Substituting (4.10) into a definition in Eq. (4.7), we get

Eλ(x1, x2) = lim
λ→1

(
∂ f (λx)

∂λ

λ

f (λx)

)

= lim
λ→1

(
θλθ−1 f (x)

λ

λθ f (x)

)
= lim

λ→1
θ = θ.(4.11)

4.2 Substitutability and Complementarity of Production
Factors

Let us use our knowledge of the topic of substitutability of consumer goods to
discuss the substitutability of production factors.5

Definition 4.8 Production isoquant is a set:

G = {
x ∈ R

2+| f (x) = y = const. ≥ 0
} ⊂ R

2+,(4.12)

consisting of all vectors of production factors’ inputs by which the output can be
produced at a fixed level y = const. ≥ 0.

Definition 4.9 A marginal rate of substitution of the first production factor by
the second production factor in a vector x = (x1, x2) ∈ R

2+ of inputs by which the
output can be produced at level y0 = const. > 0 is an expression:

σ12(x1, x2) = − lim
Δx1 → 0
Δx1 < 0

Δx2
Δx1

∼= −dx2
dx1

,(4.13)

which describes by approximately how many units one should raise the quantity of
the second production factor in a vector x = (x1, x2) ∈ R

2+ of inputs when input of
the first production factor has been reduced by one (notional) unit, in order to keep
the output level y0 = const. > 0 unchanged.

Note 4.5 The minus sign in Definition 4.9 results from the fact that the input of the
first production factor has been reduced.

A total differential of the differentiable production function by a fixed output level
f (x1, x2) = y is of a form:

5 The issue of complementarity of production factors is of minor significance in our further con-
siderations. Hence, we focus on substitutability of production factors.
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dy = ∂ f (x1, x2)

∂x1
dx1 + ∂ f (x1, x2)

∂x2
dx2.(4.14)

Sincewe are interested in vectors of inputs bywhich the output level is unchanged,
then:

dy = 0 ⇔ ∂ f (x1, x2)

∂x1
dx1 + ∂ f (x1, x2)

∂x2
dx2 = 0

⇔ −dx2
dx1

=
∂ f (x1,x2)

∂x1
∂ f (x1,x2)

∂x2

= σ12(x1, x2).(4.15)

Note 4.6 Themarginal rate of substitution of the first production factor by the second
production factor is equal to the ratio of marginal productivity of the first production
factor and the marginal productivity of the second production factor.

Note 4.7 The marginal rate of substitution of the second production factor by the
first production factor is equal to an inverse of the marginal rate of substitution of
the first production factor by the second production factor which is given as

−dx1
dx2

=
∂ f (x1,x2)

∂x2
∂ f (x1,x2)

∂x1

= 1

σ12(x1, x2)
= σ21(x1, x2).

Definition 4.10 An elasticity of substitution of the first production factor by the
second production factor in a vector x = (x1, x2) ∈ R

2+ of inputs by which the
output can be produced at level y0 = const. > 0 is an expression:

ε12(x1, x2) = − lim
Δx1 → 0
Δx1 < 0

Δx2
x2

Δx1
x1

= − lim
Δx1 → 0
Δx1 < 0

Δx2
Δx1

· x1
x2

∼= −dx2
dx1

· x1
x2

,(4.16)

which describes by approximatelywhat% one should raise the quantity of the second
production factor in a vector x = (x1, x2) ∈ R

2+ of inputs when input of the first
production factor has been reduced by 1%, in order to keep the output level y0 =
const. > 0 unchanged.

Note 4.8 The Koopmans-Leontief production function (presented in Table 4.1) is
not differentiable. Thus on the basis of Definition 4.4 it is not possible to determine
the value of a marginal productivity. Hence, it is not possible to determine the value
of a marginal rate of substitution6 of i-th production factor by j-th production factor
using Definition 4.9.

6 In the case of the Koopmans-Leontief production function, it can be noticed that substitution of
one production factor by the other is not possible (when reducing input of one production factor
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Table 4.1 Exemplary production functions and their selected characteristics

Type of a production function Marginal productivity
of i-th production factor

Marginal rate of substitution

Linear
f
(
x1, x2

) = a1x1 + a2x2
ai > 0, i = 1, 2

∂ f
(
x1,x2

)

∂x1
= a1

∂ f
(
x1,x2

)

∂x2
= a2

σ12
(
x1, x2

) = a1
a2

σ21
(
x1, x2

) = a2
a1

Power function

f
(
x1, x2

) = ax
α1
1 x

α2
2

a, αi > 0, i = 1, 2

∂ f
(
x1,x2

)

∂x1
= α1ax

α1−1
1 x

α2
2

∂ f
(
x1,x2

)

∂x2
= α2ax

α1
1 x

α2−1
2

σ12
(
x1, x2

) = α1x2
α2x1

σ12
(
x1, x2

) = α1x1
α2x2

Cobb-Douglas function

f
(
x1, x2

) = ax
α1
1 x

α2
2

a, α1, α2 > 0
α1 + α2 = 1

∂ f
(
x1,x2

)

∂x1
= α1ax

α1−1
1 x

α2
2

∂ f
(
x1,x2

)

∂x2
= α2ax

α1
1 x

α2−1
2

σ12
(
x1, x2

) = α1x2
α2x1

σ21
(
x1, x2

) = α2x1
α1x2

Subadditive
f
(
x1, x2

) = a1x
α
1 + a2x

α
2

ai , α > 0, i = 1, 2

∂ f
(
x1,x2

)

∂x1
= αa1x

α−1
1

∂ f
(
x1,x2

)

∂x2
= αa2x

α−1
2

σ12
(
x1, x2

) = a1
a2

( x1
x2

)α−1

σ21
(
x1, x2

) = a2
a1

( x2
x1

)α−1

CES (constant elasticity of substitution) function

f
(
x1, x2

) =
(
a1x

γ
1 + a2x

γ
2

) θ
γ

θ, ai > 0, i = 1, 2

γ ∈ (−∞; 0) ∪ (0; 1)

∂ f
(
x1,x2

)

∂x1
= θ

γ

(
a1x

γ
1 + a2x

γ
2

) θ
γ −1

γ a1x
γ−1
1

∂ f
(
x1,x2

)

∂x2
= θ

γ

(
a1x

γ
1 + a2x

γ
2

) θ
γ −1

γ a2x
γ−1
2

σ12
(
x1, x2

) = a1
a2

( x1
x2

)γ−1

σ21
(
x1, x2

) = a2
a1

( x2
x1

)γ−1

Note 4.9 TheCobb-Douglas production function (presented in Table 4.1) is a special
case of power production function7 with a homogeneity degree θ = α1 + α2 = 1.

Note 4.10 All the characteristics of a production function f : R2+ → R+ are scalar
and two-variable functions of inputs of production factors

Note 4.11 Let us consider three limit cases of marginal rates of substitution of
production factors when a production function is a CES function.

cannot be compensated by increasing input of the other factor) or needless (when reducing input
of one production factor does not change a given initial output level). Here, similar to comple-
mentarity of consumer goods discussed in Chap. 2, we talk about complementarity of production
factors.
7 Identifying the Cobb-Douglas function with a power production function in its special case when
it is positively homogenous of degree 1 matters when we use a concept of a neoclassical production
function. One of the properties of such a function is the positive homogeneity of first degree, which
shows that returns to scale are constant (revenues are proportional). This way the Cobb-Douglas
production function is the only one example of power function being the neoclassical production
function.
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Case 1

lim
γ→1− σ12(x1, x2) = lim

γ→1−

(
a1
a2

(
x1
x2

)γ−1
)

= a1
a2

(4.17)

and

lim
γ→1− σ21(x1, x2) = lim

γ→1−

(
a2
a1

(
x2
x1

)γ−1
)

= a2
a1

,(4.18)

which means that when γ → 1− then the CES production function is convergent to
a linear production function, thus a function which describes perfect substitute and
not complementary production factors.

Case 2

lim
γ→0

σ12(x1, x2) = lim
γ→0

(
a1
a2

(
x1
x2

)γ−1
)

= α1x2
α2x1

(4.19)

and

lim
γ→0

σ21(x1, x2) = lim
γ→0

(
a2
a1

(
x2
x1

)γ−1
)

= α2x1
α1x2

,(4.20)

which means that when γ → 0 then the CES production function is convergent to a
power production function.

Case 3

lim
γ→−∞ σ12(x1, x2) = lim

γ→−∞

(
a1
a2

(
x1
x2

)γ−1
)

=
{
0 if x1 > x2
+∞ if x1 < x2

(4.21)

and

lim
γ→−∞ σ21(x1, x2) = lim

γ→−∞

(
a2
a1

(
x2
x1

)γ−1
)

=
{
0 i f x1 < x2
+∞ i f x1 > x2

(4.22)

whichmeans that when γ → −∞ then the CES production function is convergent to
the Koopmans-Leontief production function, thus a function which describes perfect
complementary and not substitute production factors.
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Note 4.12 Production functions: linear, power (including Cobb-Douglas one),
Koopmans-Leontief one are limit (special) cases of a CES production function with
respect to values of a parameter γ ∈ (−∞; 0) ∪ (0; 1).

Note 4.13 A linear production function describes production factors which are
perfect substitutes and not complements to each other. A power production func-
tion describes production factors which are substitute and complementary. While
the Koopmans-Leontief production function describes production factors which are
perfect complements and not substitutes for each other.

4.3 Financial and Technological Aspects of a Firm’s Activity

So far we have focused on technical issues of production processes. For
economists, the financial aspects are at least as important. Thus, let us define
selected financial characteristics of production processes. As before, we con-
sider technologically effective production processes described by scalar and
two-variable production functions f : R2+ → R+.

Let us denote:

p ∈ int R+—a price of a product manufactured by a firm,
c = (c1, c2) ∈ int R

2+—a vector of prices of production factors,
x = (x1, x2) ∈ R

2+—a vector of inputs of production factors,
y = f (x1, x2)—an output level (quantity of a manufactured product).

Definition 4.11 Revenue (turnover) from sales of a manufactured product as a
function of output level is an expression:

r(y) = py.(4.23)

Definition 4.12 Revenue (turnover) from sales of a manufactured product as a
function of inputs of production factors is an expression:

r(x1, x2) = p f (x1, x2).(4.24)

Definition 4.13 Total cost of production as a function of output level is an
expression:

ctot (y) = cv(y) + c f (y),(4.25)

where:

cv(y)—variable cost of production, dependent on production level,
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c f (y) = d = const. ≥ 0—fixed cost of production, independent on production
level.

According to needs of use, we describe the variable costs of production by
various elementary functions. Mostly we use the following functions:

(1) linear function of cost:

cv(y) = ay, a > 0,(4.26)

(2) polynomial of degree 2:

cv(y) = ay2 + by, a, b > 0,(4.27)

(3) polynomial of degree 3:

cv(y) = ay3 + by2 + cy, a, b, c > 0.(4.28)

If we add a free term d to variable costs, then resultant cost function can be seen as
a function of the total cost of production. General approach when deciding about
an analytical form of the function of total costs of production is to state if we need
it to be convex, strictly convex or at least convex/strictly convex in intervals.

Definition 4.14 Total cost of production as a function of inputs of production
factors is an expression:

ctot (x1, x2) = cv(x1, x2) + c f (x1, x2),(4.29)

where:

cv(x1, x2)—variable cost of production, dependent on production level,
c f (x1, x2) = d = const. ≥ 0—fixed cost of production, independent on
production level.

Let us remember that we are interested in technologically effective production
processes described by production functions of a form y = f (x1, x2). Then, sub-
stituting it into Eq. (4.25), we get Eq. (4.29). Similarly, substituting the production
function into conditions (4.26)–(4.28), we get analytical forms of functions of
variable costs depending on inputs of production factors.
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Definition 4.15 Profit of a producer as a function of output level is an expression:

π(y) = r(y) − ctot (y) = py −
(
cv(y) + c f (y)

)
,(4.30)

which is a difference between revenue from sales of a manufactured product and
total cost of production, both being functions of output level y.

Definition 4.16 Profit of a producer as a function of inputs of production factors
is an expression:

π(x1, x2) = r(x1, x2) − ctot (x1, x2)

= p f (x1, x2) −
(
cv(x1, x2) + c f (x1, x2)

)
,(4.31)

which is a difference between revenue from sales of amanufactured product and total
cost of production, both being functions of inputs (x1, x2) of production factors.

Functions of: production, profit and costs are assumed to be differentiable.
Hence, one can calculate their derivatives and give an economic interpretation
to the values of these derivatives.

Definition 4.17 Marginal revenue (turnover) with respect to output level is an
expression:

dr(y)

dy
,(4.32)

which describes by approximately how many money units the revenue from sales of
a manufactured product changes when the output level increases by one (notional)
unit.

Definition 4.18 Marginal revenue (turnover) with respect to input of i-th
production factor is an expression:

∂r(x1, x2)

∂xi
i = 1, 2,(4.33)

which describes by approximately how many money units the revenue from sales of
a manufactured product changes when the input of i-th production factor increases
by one (notional) unit and the input of the other production factor does not change.
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Definition 4.19 Marginal total cost of production with respect to output level is
an expression:

dctot (y)

dy
= dcv(y)

dy
+ dc f (y)

dy
= dcv(y)

dy
,(4.34)

which describes by approximately how many money units the total cost changes
when the output level increases by one (notional) unit.

Definition 4.20 Marginal total cost of production with respect to input of i-th
production factor is an expression:

∂ctot (x1, x2)

∂xi
= ∂cv(x1, x2)

∂xi
+ ∂c f (x1, x2)

∂xi
= ∂cv(x1, x2)

∂xi
, i = 1, 2,(4.35)

which describes by approximately how many money units the total cost changes
when the input of i-th production factor increases by one (notional) unit and the
input of the other production factor does not change.

Note 4.14 Definitions 4.13, 4.19, 4.20 show that the marginal cost of production is
always equal to marginal variable cost of production, regardless of the fact whether
it is a function with of one variable or two variables.8

Definition 4.21 Marginal profit of a producer with respect to output level is an
expression:

dπ(y)

dy
= dr(y)

dy
− dctot (y)

dy
= dr(y)

dy
− dcv(y)

dy
,(4.36)

which describes by approximately how many money units the profit of a producer
changes when the output level increases by one (notional) unit.

Definition 4.22 Marginal profit of a producer with respect to input of i-th
production factor is an expression:

∂π(x1, x2)

∂xi
=∂r(x1, x2)

∂xi
− ∂ctot (x1, x2)

∂xi

=∂r(x1, x2)

∂xi
− ∂cv(x1, x2)

∂xi
, i = 1, 2,(4.37)

8 Thus, in the whole textbook we use the name “marginal cost of production”, omitting the word
“variable”.
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which describes by approximately how many money units the profit of a producer
changes when the input of i-th production factor increases by one (notional) unit and
the input of the other production factor does not change.

Note 4.15 Definitions 4.21 and 4.22 show that the marginal profit of a producer is
equal to a difference between the marginal revenue and marginal cost of produc-
tion. These functions are functions of output level and then scalar and one-variable
functions. Or they are functions of inputs of production factors and then scalar and
two-variable functions.

Having defined basic terms related to technical and financial aspects of produc-
tion processes we can now proceed to a description of rational behaviour of an
individual producer which we identify with a firm.

Let us take the following set of assumptions determining framework of rational
activity of a firm or rational behaviour of a producer.

(F1) A firm produces one product using two production factors.

(F2) Production processes are described by production functions f : R2+ → R+
that are assumed to be increasing, strictly concave, twice differentiable and having
value 0 for zero inputs of production factors.

(F3) The price of a product of a firm and prices of production factors are
determined by

(a) a market—then the firm has no impact on the prices and treats them as
parameters
or

(b) firms—then the price of a product is described by a decreasing function of its
supply and prices of production factors are described by increasing functions
of demand reported for them:

p(y) > 0,
dp(y)

dy
< 0,(4.38)

dci (xi )

dxi
> 0, i = 1, 2.(4.39)

(F4) Resources of production factors are

(a) unlimited:

0 ≤ xi , i = 1, 2,(4.40)

or
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(b) limited:

0 ≤ xi ≤ bi , i = 1, 2,(4.41)

where bi > 0 means the resource of i-th production factor owned by a given
firm.

(F5) The demand for a product is big enough to sell any quantity of the
manufactured good.9

(F6) A firm in its activity is driven by the criterion of

(a) profit maximization
or

(b) minimization of cost of manufacturing a product in specified quantity.

If we take a set of assumptions: (F1), (F2), (F3a), (F4a)/(F4b), (F5), (F6) it means
that we consider a firm that acts in perfect competition and decides on a long-term
/short-term strategy.

The perfect competition occurs when firms, acting as individuals, have no
impact on the price of a product they manufacture nor on the prices of production
factors they use in their production processes.

Distinction between long-term and short-term strategies of a firm’s activity
relate to resources of production factors they own. It is commonly assumed that
in long term a firm can obtain any quantities of production factors. Hence, lack of
constraints in resources of production factors is identified with the firm activity in
the long term. While in the short-term resources of production factors are assumed
to be constrained.

This way of reasoning (distinction between long term and short term of the
firm’s activity) is not completely correct form methodological point of view. It
would be if time, as continuous or discrete variable, was present explicitly among
variables describing the firm’s activity.

If we take a set of assumptions: (F1), (F2), (F3b), (F4a)/(F4b), (F5), (F6) it
means that we consider a firm that acts as a monopoly and decides on a long-term
/short-term strategy.

Let us now analyse in detail each of these four models describing the activity
of a firm.

9 In further chapters of the textbook, we use a demand function according to which a market has
its capacity and there is some upper limit of demand even if the product is offered for free.
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4.4 Firm Acting in Perfect Competition—Long-Term Strategy

4.4.1 Static Approach

Let us use the following notation:

p > 0—a price of a product manufactured by a firm,
c = (c1, c2) > (0, 0)—a vector of prices of production factors,
x = (x1, x2) ≥ (0, 0)—a vector of inputs of production factors,
y = f (x1, x2)—an output level,
r(y) = py—revenue (turnover) from sales of a manufactured product as a
function of output level,
r(x1, x2) = p f (x1, x2)—revenue (turnover) from sales of a manufactured
product as a function of inputs of production factors,
ctot (x1, x2) = c1x1 + c2x2 + d—total cost of production,
cv(x1, x2) = c1x1 + c2x2—variable cost of production,
c f (x1, x2) = d—fixed cost of production,
c(y)—minimum cost of producing y output units, derived as an objective
function corresponding to an optimal solution to problem (P2c),
π(y) = r(y) − c(y) = py − c(y)—firm’s profit as a function of output level,
π(x1, x2) = r(x1, x2) − ctot (x1, x2)—firm’s profit as a function of inputs of
production factors.

Problem of profit maximization with regard to inputs of production factors
(P1c)

The aim of a firm is to maximize its profit expressed as a function of inputs of
production factors, which can be written as a problem to solve in the following
way:

π(x1, x2) = r(x1, x2) − ctot (x1, x2)

= {p f (x1, x2) − (c1x1 + c2x2 + d)} → max(4.42)

x1, x2 ≥ 0.(4.43)

Since a production function from assumption (F2) is strictly concave while a
production total cost is linear, then a profit function is strictly concave. Moreover,
we are interested in an optimal solution x = (x1, x2) > (0, 0).

Necessary and sufficient conditions for the existence of an optimal solution to
problem (P1c) are given in the following theorem.

Theorem 4.2 If a firm’s profit function is strictly concave and satisfies the following
condition:

lim
xi→0+

∂π(x1, x2)

∂xi
> 0 ∧ lim

xi→+∞
∂π(x1, x2)

∂xi
< 0
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⇔ lim
xi→+∞

∂ f (x1, x2)

∂xi
< ci < lim

xi→0+
∂ f (x1, x2)

∂xi
, i = 1, 2(4.44)

then:

(1) ∃1x > 0 such that ∂π(x1,x2)
∂xi

|||
x=x

= 0 i = 1, 2,

(2) a necessary and sufficient condition for x > 0 being an optimal solution to
problem (P1c) is

∂π(x1, x2)

∂xi

||||
x=x

= 0 ⇔ ∂r(x1, x2)

∂xi

||||
x=x

= ∂cv(x1, x2)

∂xi

||||
x=x

⇔ p
∂ f (x1, x2)

∂xi

||||
x=x

= ci i = 1, 2(4.45)

which means that there exists exactly one solution x > 0 for which:

• marginal profit equals zero,
• marginal revenue is equal to marginal cost of production,
• i-th production factor’s productivity expressed in money units is equal to the price

of this production factor.

Definition 4.23 A function of demand for production factors is a mapping
ψ : int R

3+ → int R
2+ which assigns an optimal solution of problem (P1c) to any

price p of a product and any prices c = (c1, c2) of production factors in the following
way:

ψ(p, c) = (ψ1(p, c), ψ2(p, c)) = x = (x1, x2).(4.46)

Definition 4.24 A firm’s maximal profit function is a mapping ∏: int R
4+ →

int R+ which assigns maximum profit to any price p of a product, any prices c =
(c1, c2) of production factors and any fixed cost d in the following way:

∏(p, c, d) = π(x).(4.47)

Theorem 4.3 If assumptions of Theorem 4.2 are satisfied then:

(1) ∀λ > 0 ψ(λp, λc) = ψ(p, c),
which means that a function of demand for production factors is positively
homogenous of degree 0,

(2) ∀λ > 0 ∏(λp, λc, λd) = λ∏(p, c, d),

which means that a firm’s maximal profit function is positively homogenous of
degree 1 with respect to the price of a product, prices of production factors and
the fixed cost of production.
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Problem of cost minimization when producing the output at a fixed level (P2c)

The aim of a firm is to produce y > 0 units of output at minimum total cost, which
can be written as a problem to solve in the following way:

ctot (x1, x2) = {c1x1 + c2x2 + d} → min(4.48)

f (x1, x2) = y = const. > 0,(4.49)

x1, x2 ≥ 0.(4.50)

One can express problem (P2c) using Lagrange function:

F(x1, x2, λ) = {c1x1 + c2x2 + d + λ(y − f (x1, x2))} → min.(4.51)

Theorem 4.4 If a production function satisfies assumption (F2) then~x > 0 is an
optimal soultion to problem (P2c) if and only if a pair

(
~x,~λ

)
> 0 is a solution to the

following system of equations:

∂F
(
x,~λ

)

∂xi

|||||
x=~x

= 0 ⇔ ~λ
∂ f (x1, x2)

∂xi

||||
x=~x

= ci , i = 1, 2,

∂F(~x, λ)

∂λ

||||
λ=~λ

= 0 ⇔ f (x̃1, x̃2) = y.(4.52)

Necessary condition: if~x > 0 is an optimal solution to problem (P2c) then a pair(
~x,~λ

)
> 0 is a solution to equation system (4.52).

Sufficient condition: if a pair
(
~x,~λ

)
> 0 is a solution to equation system (3.52)

then~x > 0 is an optimal solution to problem (P2c).

Definition 4.25 A function of conditional demand for production factors is a
mapping ξ : int R

3+ → int R
2+ which assigns an optimal solution of problem (P2c) to

any output level y and any prices c = (c1, c2) of production factors in the following
way:

ξ(c, y) = (ξ1(c, y), ξ2(c, y)) =~x = (x̃1, x̃2).(4.53)

Definition 4.26 A firm minimal cost function is a mapping μ: int R
4+ → int R+

which assigns minimum cost of producing y output units to any output level y, any
prices c = (c1, c2) of production factors and any fixed cost d in the following way:

μ(c, d, y) = ctot (~x) = c1 x̃1 + c2 x̃2 + d = c1ξ1(c, y) + c2ξ2(c, y) + d.(4.54)



178 4 Rationality of Choices Made by Individual Producers

If prices of production factors and the fixed cost of production are known then one
can express the firm minimal cost function of producing y output units as a function
of output level:

μ(c, d, y) = c(y).(4.55)

Theorem 4.5 If assumptions of Theorem 4.2 are satisfied then:

(1) ∀λ > 0 ξ(λc, y) = ξ(c, y),
which means that a function of conditional demand for production factors is
positively homogenous of degree 0 with respect to prices of production factors,

(2) ∀λ > 0 μ(λc,λd, y) = λμ(c, d, y),
which means that a firm’s minimal cost function of producing y output units is
positively homogenous of degree 1 with respect to prices of production factors
and the fixed cost of production,

(3) ∀λ > 0 μ(c, d, λy) = λ
1
θ μ(c, d, y),

which means that a firm minimal cost function of producing y output units is
positively homogenous of degree 1

θ
with respect to output level, where θ > 0 is

a degree of homogeneity of a production function.

Problem of profit maximization with regard to output level (P3c)

The aim of a firm is to maximize its profit expressed as a function of output level,
which can be written as a problem to solve in the following way:

π(y) = r(y) − c(y) = {py − c(y)} → max(4.56)

y ≥ 0.(4.57)

Since a revenue function is linear (thus concave) while a firm’s minimal cost
function of producing y output units is strictly convex then a firm’s profit function
is strictly concave. Moreover, we are interested in an optimal solution y > 0.

Necessary and sufficient conditions for the existence of an optimal solution to
problem (P3c) are given in the following theorem.

Theorem4.6 If a firm’s profit function is strictly concave and the following condition
is satisfied:

lim
y→0+

dπ(y)

dy
> 0 ∧ lim

y→+∞
dπ(y)

dy
< 0

⇔ lim
y→0+

dc(y)

dy
< p < lim

y→+∞
dc(y)

dy
(4.58)
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then:

(1) ∃1 y > 0 such that dπ(y)
dy

|||
y=y

= 0.

(2) A necessary and sufficient condition for y > 0 being an optimal solution to
problem (P3c) is

dπ(y)

dy

||||
y=y

= 0 ⇔ dr(y)

dy

||||
y=y

= dc(y)

dy

||||
y=y

⇔ p = dc(y)

dy

||||
y=y

(4.59)

which means that there exists exactly one solution y > 0 for which:

• marginal profit equals zero,
• marginal revenue is equal to marginal minimal cost of producing y output units,
• price of a product is equal to marginal minimal cost of producing y output units.

Definition 4.27 A function of product supply is a mapping η: int R
3+ → int R+

which assigns an optimal solution of problem (P3c) to any price p of a product and
any prices c = (c1, c2) of production factors in the following way:

η(p, c) = y.(4.60)

Definition 4.28 A firm’s maximal profit function is a mapping ∏: int R
4+ →

int R+ which assigns maximum profit to any price p of a product, any prices c =
(c1, c2) of production factors and any fixed cost d in the following way:

∏(p, c, d) = π(y).(4.61)

Theorem 4.7 If assumptions of Theorem 4.6 are satisfied then:

(1) ∀λ > 0 η(λp, λc) = η(p, c,),
which means that a function of product supply is positively homogenous of
degree 0 with respect to prices of production factors and the price of a product,

(2) ∀λ > 0 ∏(λp, λc, λd) = λ∏(p, c, d),

which means that a firm’s maximal profit function is positively homogenous of
degree 1 with respect to the price of a product, prices of production factors and
the fixed cost of production.

Theorem 4.8 If assumptions of Theorem 4.2 are satisfied then problems (P1c) and
(P3c) are equivalent.

This means that:

• knowing an optimal solution to problem (P1c) one can determine an optimal
solution to problem (P3c): y = f (x),
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• knowing an optimal solution to problems (P3c) and (P2c) one can determine an
optimal solution to problem (P1c):~x = ξ(c, y) = ψ(p, c) = x,

• π(x) = ∏(p, c, d) = π(y).

Example 4.1 Let us take the following notation:

p—a price of a product manufactured by a firm,
c1 > 0—a price of a production factor,
x ≥ 0—an input of a production factor,

y = f (x) = ax
1
2—an output level as a nonlinear function of a production factor

input,
r(y) = py—revenue (turnover) from sales of a manufactured product as a linear
function of output level,

r(x) = p f (x) = pax
1
2—revenue (turnover) from sales of a manufactured

product as a nonlinear function of a production factor input,
ctot (x) = c1x + d—total cost of production as a linear function of a production
factor input,
cv(x) = c1x—variable cost of production,10

c f (x) = d—fixed cost of production,
π(y) = r(y) − c(y) = py − c(y)—firm’s profit as a function of output level,

π(x) = r(x)− ctot (x) = p f (x)− (c1x + d) = pax
1
2 − (c1x +d)—firm’s profit

as a function of a production factor input,
c(y)—minimum cost of producing y output units, derived as an objective function
corresponding to an optimal solution to problem (P2c).

Tasks

1. Solve the profit maximization problem (P1c).
2. Present a geometric illustration of the profit maximization problem (P1c).
3. Give an economic interpretation of necessary and sufficient conditions of the

existence of an optimal solution to problem (P1c).
4. Justify that the function of demand for a production factor is homogeneous of

degree 0 with respect to the price of a product and the price of a production
factor. Justify that a firm’s maximal profit function is homogenous of degree
1 with respect to the price of a product, the price of a production factor and
the fixed cost of production.

5. Analyse sensitivity of the demand for a production factor and of the firm’s
maximum profit to changes in the price of a product and changes in values of
parameters of the cost function and of the production function.

6. Solve the cost minimization problem (P2c).
7. Present a geometric illustration of the cost minimization problem (P2c).

10 The price of a production factor is equal to a marginal cost of production.
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8. Give an economic interpretation of necessary and sufficient conditions of the
existence of an optimal solution to problem (P2c).

9. Check if the function of conditional demand for a production factor is homoge-
nous of degree 0. Check if the function of a firm’s minimal cost of producing
y output units is homogenous of degree 1 with respect to the price of a pro-
duction factor. If not, determine the degrees of homogeneity of both functions
with respect to output level.

10. Analyse sensitivity of the conditional demand for a production factor and of
the firm’s minimum cost to changes in the price of a product and changes in
values of parameters of the cost function and of the production function.

11. Solve the profit maximization problem (P3c).
12. Present a geometric illustration of the profit maximization problem (P3c).
13. Give an economic interpretation of necessary and sufficient conditions of the

existence of optimal solution to problem (P3c).
14. Justify that the product supply function is homogeneous of degree 0 with

respect to the price of a product and the price of a production factor. Justify
that a firm’s maximal profit function is homogenous of degree 1 with respect
to the price of a product, the price of a production factor and the fixed cost of
production.

15. Analyse sensitivity of the product supply and of the firm’s maximum profit to
changes in the price of a product and changes in values of parameters of the
cost function and of the production function.

16. Justify that the profit maximizations problems (P1c) and (P3c) are equivalent.

Ad 1 The profit maximization problem (P1c) has a form:

π(x) =
{
pax

1
2 − (c1x + d)

}
→ max(4.62)

x ≥ 0.(4.63)

Since the production function from the assumption is strictly concave while the
total cost of production is a linear (thus concave and convex) function, then the profit
function is strictly concave.

We know that if a profit function is strictly concave then problem (P1c) can
have:

• No optimal solution when revenue from sales of a product is lower than the
total cost of production.

• Exactly one optimal solution x = 0 which, due to the positive fixed cost of
production, corresponds to a loss equal to the fixed cost.

• Exactly one optimal solution x > 0 which, with the sufficiently low fixed cost
of production, corresponds to the positive profit.
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A condition ensuring the existence of a unique and positive optimal solution to
problem (P1c) has a form:

lim
x→0+

dπ(x)

dx
> 0 ∧ lim

x→+∞
dπ(x)

dx
< 0 ⇔ lim

x→+∞ p
d f (x)

dx
< c1 < p lim

x→0+
d f (x)

dx
,(4.64)

which means that from the strict concavity of the firm’s profit function it results
that by a relatively big production factor input the marginal revenue is lower than
the marginal production cost, while by a relatively small production factor input
the marginal revenue is higher than the marginal production cost.11

Let us determine a marginal profit function in problem (P1c) and check if it
satisfies condition (4.64):

dπ(x)

dx
= dr(x)

dx
− dctot (x)

dx
= 1

2
pax− 1

2 − c1 = ap

2x
1
2

− c1.(4.65)

Let us notice that:

lim
x→+∞

dπ(x)

dx
= lim

x→+∞

(
p
d f (x)

dx
− c1

)
= lim

x→+∞

(
ap

2x
1
2

− c1

)
= −c1 < 0

(4.66)

and

lim
x→0+

dπ(x)

dx
= lim

x→0+

(
p
d f (x)

dx
− c1

)
= lim

x→0+

(
ap

2x
1
2

− c1

)
= +∞ > 0.(4.67)

Since condition (4.64) is satisfied then we can determine an optimal solution to
problem (P1c) from the following equation:

∃1 x > 0
dπ(x)

dx

||||
x=x

= 0,(4.68)

which means that there exists a production factor input such that the marginal
revenue is equal to marginal production cost.

Hence:

dπ(x)

dx

||||
x=x

= 1

2
pax− 1

2 − c1 = 0,(4.69)

11 The marginal revenue is equal to the marginal productivity of a production factor expressed in
money units. The marginal production cost is equal to the price of a production factor.
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and after some transformations we get:

x =
(
ap

2c1

)2

> 0.(4.70)

Let us substitute the optimal solution obtained above into the profit function:

π(x) = pax
1
2 − (c1x + d) = pa

(
ap

2c1

)
− c1

(
ap

2c1

)2

− d.(4.71)

After transformations, we get

π(x) = a2 p2

4c1
− d.(4.72)

Whether the maximum profit is positive depends on how high the fixed cost of
production is. If the fixed cost satisfies the following condition:

0 ≤ d <
(ap)2

4c1
,(4.73)

then the maximum profit that a firm can obtain is positive.

Ad 2 See Figs. 4.1a, 4.1b and 4.1c.

Ad 3 Let us determine the value of a second derivative of the profit function using
the optimal solution to problem (P1c) as its argument:

d2π(x)

dx2

||||
x=x

= −1

4
apx− 3

2 < 0, since x =
(
ap

2c1

)2

> 0(4.74)

Fig. 4.1a Graphs of revenue
function and production total
cost function



184 4 Rationality of Choices Made by Individual Producers

Fig. 4.1b Graphs of profit
function

Fig. 4.1c Graphs of
marginal revenue function
and marginal production cost
function

Hence, we can see that using the optimal input x =
(

ap
2c1

)2
of a production factor

a firm obtains the maximum profit. From the analysis we have conducted above
it results that since the profit function is strictly concave then condition (4.68) is
necessary and sufficient for the existence of the optimal solution to problem (P1c).
Condition (4.64) in turn ensures that x > 0.

Ad 4 The optimal solution to problem (P1c) determines a function of demand for a
production factor, about which we know that it is positively homogenous of degree
0, because

∀λ > 0 ψ(λp, λc1) =
(

λap

2λc1

)2

=
(
ap

2c1

)2

= ψ(p, c1),(4.75)

which means that a proportional change in the price of a product and in the price of
a production factor does not impact the demand for a production factor.

The firm’s maximal profit function in turn is positively homogenous of degree 1
because

∀λ > 0 ∏(λp, λc1, λd) = λ2a2 p2

4λc1
− λd = λ∏(p, c1, d),(4.76)
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Table 4.2 Values of reaction measures of demand for production factor and of firm’s maximum
profit to changes in values of parameters

Function of demand
for production factor

x =
(

ap
2c1

)2
> 0

∂x
∂ p = pa2

2c21
> 0 ∂x

∂a = ap2

2c21
> 0 ∂x

∂c1
= −a2 p2

2c31
< 0 ∂x

∂d = 0

Firm’s maximal
profit function

π(x) = a2 p2

4c1
− d

∂π(x)
∂ p = pa2

2c1
> 0 ∂π(x)

∂a = ap2

2c1
> 0 ∂π(x)

∂c1
= −a2 p2

4c21
< 0 ∂π(x)

∂d = −1

which means that a proportional change in the price of product, in the price of a
production factor and in the fixed cost induces proportional change in the firm’s
maximum profit.

Ad 5 In Table 4.2, we present values of reaction measures of the demand for a
production factor and of thefirm’smaximumprofit to changes in the price of a product
and in values of parameters of the production function and of the cost function.

When the production factor productivity a or a price p of a product increases
by one unit then the demand for a production factor and the firm’s maximum profit
increase. When the marginal production cost equal to a price c1 of production factor
increases by one unit then the demand for a production factor and the firm’smaximum
profit decrease. When the fixed cost of production d increases by one unit then it
does not affect the demand for a production factor and induces one unit decrease in
the firm’s maximum profit.

Ad 6 The cost minimization problem (P2c) when producing y output units has a
form:

ctot (x) = (c1x + d) → min(4.77)

ax
1
2 = y,(4.78)

x ≥ 0.(4.79)

Since a set of feasible solutions to this problem has only one element, then a
production factor input resulting from (4.78) is the optimal solution to this problem:

~x =
( y

a

)2
,(4.80)

and is positive by the positive output level.
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A firm’s minimal cost function of producing y output units corresponds to this
solution:

ctot (~x) = μ(c1, d, y) = c1
( y

a

)2 + d = c(y),(4.81)

and is nonlinear and strictly convex function of the output level.

Ad 7 See Figs. 4.2a and 4.2b.

Ad 8 In problem (P2c) exactly one production factor input corresponds to exactly
one fixed output level. This production factor input is at the same time the only one

Fig. 4.2a Illustration of
problem (P2c)

Fig. 4.2b Graphs of the
firm’s minimal cost function
of producing y output units
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solution to problem (P2c). As a consequence, a set of feasible solutions has only one
element. In this case, independently of an optimality criterion, the only one feasible
solution to the problem is at the same time its only one optimal solution.

Ad 9 Let us notice that the function of conditional demand for a production factor
does not depend on a price of a production factor, thus is not homogenous of degree
0 with respect to the price of a production factor.12

Determining a degree of homogeneity of this function with respect to the output
level:

∀λ > 0 ξ(λy) =
(

λy

a

)2

= λ2
( y

a

)2 = λ2ξ(y),(4.82)

we notice that it is

θ = 2 > 0.(4.83)

A function of variable cost of production is positively homogenous of degree 1
with respect to the price of a production factor, since:

∀λ > 0 cv(λc1, y) = λc1
( y

a

)2 = λcv(c1, y).(4.84)

A function of total cost of production is positively homogenous of degree 1 with
respect to the price of a production factor and the fixed production cost, since:

∀λ > 0 ctot (λc1, λd, y) = λc1
( y

a

)2 + λd = λ

(
c1

( y

a

)2 + d

)
= λctot (c1, d, y).

(4.85)

The function of variable cost of production is positively homogenous of degree 2
with respect to the output level, since:

∀λ > 0 cv(c1, λy) = c1

(
λy

a

)2

= λ2c1
( y

a

)2 = λ2cv(c1, y).(4.86)

Ad10 InTable 4.3,wepresent values of reactionmeasures of the conditional demand
for a production factor and of the firm’s minimum production cost to changes in the
output level and in values of parameters of the production function and of the cost
function.

12 This results from the fact that here in the example we consider one-variable production function,
meaning there is one production factor and hence one input. As a consequence, a set of feasible
solutions has only one element not depending on (4.77) nor on the price of a production function.
In case of two production factors, their prices matter for the optimal solution, thus the conditional
demand for production factors depend on these prices and Theorem 3.5 works exactly in the way
it is given.
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Table 4.3 Values of reaction measures of conditional demand for production factor and of firm’s
minimum production cost to changes in values of parameters

Function of conditional
demand for production
factor

~x = ( y
a

)2
> 0

∂~x
∂ y = 2y

a2
> 0 ∂~x

∂a = −y2

a2
< 0 ∂~x

∂c1
= 0 ∂~x

∂d = 0

Function of firm
minimal production
cost

c(~x) = c1
( y
a

)2 + d > 0

∂c(~x)
∂ y = 2yc1

a2
> 0 ∂c(~x)

∂a = −c1 y2

a2
< 0 ∂c(~x)

∂c1
= y2

a2
> 0 ∂c(~x)

∂d = 1

When the output level y increases by one unit then the conditional demand for
a production factor and the firm minimum production cost increase. When the pro-
duction factor productivity a increases by one unit then the conditional demand
for a production factor and the firm minimum production cost decrease. When
the marginal production cost equal to a price c1 of production factor increases
by one unit then it does not affect the conditional demand for a production fac-
tor and induces an increase in the firm’s minimum production cost. When the
fixed cost of production d increases by one unit then it does not affect the condi-
tional demand for a production factor and induces one unit increase in the firm’s
minimum production cost.

Ad 11 The profit maximization problem (P3c) has a form:

π(y) = py − c(y) =
{
py −

(
c1

( y

a

)2 + d

)}
→ max,(4.87)

y ≥ 0.(4.88)

The revenue function is linear and hence convex. The firm’sminimal cost function
of producing y output units is nonlinear and strictly convex. Thus, the profit function
is a strictly concave function of the output level.

It is known that when a profit function is strictly concave then problem (P3c)
can have:

• no optimal solution when revenue from sales of a product is lower than the
firm’s minimum cost of producing y output units,

• exactly one optimal solution y = 0 which, due to the positive fixed cost of
production, corresponds to a loss equal to the fixed cost,

• exactly one optimal solution y > 0 which, by the sufficiently low fixed cost of
production, corresponds to the positive profit.
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A condition ensuring the existence of a unique and positive optimal solution to
problem (P3c) has a form:

lim
y→0+

dπ(y)

dy
> 0 ∧ lim

y→+∞
dπ(y)

dy
< 0 ⇔ lim

y→0+
dc(y)

dy
< p < lim

y→+∞
dc(y)

dy
,

(4.89)

which means that from the strict concavity of the firm’s profit function it results
that by a relatively small output level the marginal minimal cost of producing y
output units is lower than the price of a product, while by a relatively big output
level the marginal minimal cost of producing y output units is higher than the
price of a product. Since the revenue function from sales of a product is a linear
function of the output level then the marginal revenue from sales of a product is
equal to the price of a product.

Let us determine a marginal profit function in problem (P3c) and check if it
satisfies condition (4.89):

dπ(y)

dy
= dr(y)

dy
− dc(y)

dy
= p − 2

yc1
a2

.(4.90)

Let us notice that:

lim
y→0+

dπ(y)

dy
= lim

y→0+

(
p − 2

yc1
a2

)
= p > 0(4.91)

and

lim
y→+∞

dπ(y)

dy
= lim

y→+∞
(
p − 2

yc1
a2

)
= −∞ < 0.(4.92)

Since condition (4.89) is satisfied then we can determine an optimal solution to
problem (P3c) from the following equation:

∃1 y > 0
dπ(y)

dy

||||
y=y

= 0,(4.93)

which means that there exists an output level such that the marginal revenue from
sales of a product is equal to the marginal minimal cost of producing y output
units.

Hence:

dπ(y)

dy

||||
y=y

= p − 2
c1y

a2
= 0(4.94)
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and after some transformations, we get

y = a2 p

2c1
> 0.(4.95)

Let us substitute the optimal solution to problem (P3c) obtained above into the
profit function:

π(y) = py − c(y) = a2 p2

2c1
− c1

(
ap

2c1

)2

− d.(4.96)

After transformations, we get

π(y) = a2 p2

4c1
− d.(4.97)

Whether the maximum profit is positive depends on how high the fixed cost

of production is. If a condition 0 ≤ d <
a2 p2

4c1
is satisfied then the maximum profit

that a firm can obtain is positive.

Ad 12 See Figs. 4.3a, 4.3b and 4.3c.

Ad 13 Let us determine a value of a second derivative of the profit function using
the optimal solution to problem (P3c) as its argument:

d2π(y)

dy2

||||
y=y

= −2
c1
a2

< 0.(4.3.98)

Fig. 4.3a Graphs of revenue
function and firm’s minimal
cost function of producing y
output units
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Fig. 4.3b Graphs of profit
function

Fig. 4.3c Graphs of
marginal revenue function
and marginal minimal cost
function of producing y
output units

Hence, we can see that having the optimal output level y = pa2

2c1
a firm obtains the

maximum profit. The analysis we have conducted above shows that since the profit
function is strictly concave then condition (4.93) is necessary and sufficient for the
existence of the optimal solution to problem (P3c). Condition (4.89) in turn ensures
that y > 0.

Ad 14 The optimal solution to problem (P3c) determines a product supply function,
about which we know that it is positively homogenous of degree 0, because

∀λ > 0 η(λp, λc1) = a2λp

2λc1
= a2 p

2c1
= η(p, c1),(4.99)

which means that a proportional change in the price of a product and in the price of
a production factor does not impact the supply of a product.

The firm’s maximal profit function in turn is positively homogenous of degree 1
because

∀λ > 0 ∏(λp, λc1, λd) = a2λ2 p2

4λc1
− λd = λ∏(p, c1, d),(4.100)
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Table 4.4 Values of reaction measures of product supply and of firm’s maximum profit to changes
in values of parameters

Product supply
function

y = pa
2c1

2
> 0

∂ y
∂ p = a2

2c1
> 0 ∂ y

∂a = p
c1

> 0 ∂ y
∂c1

= −pa2

2c21
< 0 ∂ y

∂d = 0

Firm’s maximal
profit function

π(y) = p2a2

4c1
− d

∂π(y)
∂ p = pa2

2c1
> 0 ∂π(y)

∂a = ap2

2c1
> 0 ∂π(y)

∂c1
= −a2 p2

4c21
< 0 ∂π(y)

∂d = −1

which means that a proportional change in the price of product, in the price of a
production factor and in the fixed cost induces the proportional change in the firm’s
maximum profit.

Ad 15 In Table 4.4, we present values of reaction measures of the product supply
and of the firm’s maximum profit to changes in the price of a product and in values
of parameters of the production function and of the cost function.

When the production factor productivity a or a price p of a product increases
by one unit then the product supply and the firm’s maximum profit increase. When
the marginal production cost equal to a price c1 of production factor increases by
one unit then the product supply and the firm’s maximum profit decrease. When
the fixed cost of production d increases by one unit then it does not affect the
product supply and induces one unit decrease in the firm’s maximum profit.

Ad 16 To show that problems (P1c) and (P3c) are equivalent let us notice that:

(1) for x =
(

ap
2c1

)2
> 0 and y = a2 p

2c1
> 0 we have

π(x) = ∏(p, c1, d) = a2 p2

4c1
− d = π(y).(4.101)

(2) Knowing the optimal solution to problem (P1c) and substituting it into the
production function, we get the optimal solution to problem (P3c)

y = f (x) = ax
1
2 = a2 p

2c1
.(4.102)

(3) Knowing the optimal solution to problem (P3c) and substituting it into the
optimal solution to problem (P2c) we get the optimal solution to problem (P1c):

~x =
(
y

a

)2

=
(
ap

2c1

)2

= x,(4.103)

which means that profit maximization problems (P1c) and (P3c) are equivalent.
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4.4.2 Dynamic Approach

When we use the dynamic approach to present the profit maximization and the
cost minimization problems we assume that part of quantities and levels taken
into account by a producer changes over time. In the time horizon considered,
the production technology described by a production function is assumed to be
invariant. The price of a product, prices of production factors and the fixed cost of
production (independent of the output level) can change over time due to different
reasons. Still a firm acting in the perfect competition has no impact on the price
of a product and prices of production factors in any period or at any moment of
time. Let us introduce the following notation:

t—time as discrete (t = 0, 1, 2, . . . , T ) or as continuous13 variable (t ∈ [0; T ]),
T—end of the time horizon,
p(t) > 0—a time-variant price of a product manufactured by a firm,
x(t) = (x1(t), x2(t)) ≥ 0—a vector of inputs of production factors that a
producer uses in the production process in period/at moment t ,
c(t) = (c1(t), c2(t)) > 0—a vector of time-variant prices of production factors,
y = f (x(t))—a production function,14

d(t) ≥ 0—time-variant fixed cost of production, that is, the cost not depending
on the output level nor on inputs of production factors.

A producer, who aims to maximize the firm’s profit, in every period/at any moment
t determines what the optimal inputs of production factors are. When deciding
about the vector x(t) of production factors’ inputs he/she relies on the relation
between the revenue from sales of a product and the production total cost by given
time variant: prices of production factors, price of a product and fixed production
cost. The profit maximization problem with regard to inputs of production factors
has a form:

π(x(t)) = r(x(t)) − ctot (x(t))

= {p(t) f (x(t)) − (c1(t)x1(t) + c2(t)x2(t) + d(t))} |→ max(4.104)

x(t) ≥ 0.(4.105)

13 For the discrete and continuous versions, we use the same denotation of the dependence of the
function value on time, for example, the fixed production cost on time: d(t). Whether the discrete
or continuous version is used in a given formula will result from the context of the issue under
consideration.
14 The value of a production function changes over time because inputs of production factors
change over time due to changes in their prices. However, the production process itself does not
change, thus the production function does not change its form.
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The production function is assumed to be strictly concave and increasing with
respect to inputs of production factors. The function of production total cost is lin-
ear and increasing with respect to inputs of production factors. As a consequence,
the profit function π(x(t)) is strictly concave and in every period/at any moment t
Problem (4.104)–(4.105) has a solution x(t) > (0, 0). The necessary condition for
the existence of maximum profit is

∂π(x(t))
∂xi (t)

||||
x(t)=x(t)

= 0 ⇔ ∂r(x(t))
∂xi (t)

||||
x(t)=x(t)

= ∂ctot (x(t))
∂xi (t)

||||
x(t)=x(t)

⇔ p(t)
∂ f (x(t))
∂xi (t)

||||
x(t)=x(t)

= ci (t) i = 1, 2, ∀t,(4.106)

where t = 0, 1, 2, . . . , T or t ∈ [0; T ].
From the profit maximization problem, one gets a vector x(t) of optimal inputs

of production factors, a time-variant function of demand for production factors15:

ψ(p(t), c(t)) = x(t)(4.107)

and a firm’s maximal profit function:

∏(p(t), c(t), d(t)) = π(x(t)).(4.108)

The function of demand for production factors as well as the firm’s maximal
profit function, they have both time-invariant forms but in different periods/at dif-
ferent moments t they can have different values, depending on the time variant:
prices of production factors, the price of a product and the fixed production cost.

A producer, who aims to minimize the cost of production, in every period/at
any moment t determines what the optimal inputs of production factors which
guarantee some fixed output level at minimal cost are. The fixed output level is
time variant. “Fixed” means here that it is not any output level but always a level
that a producer fixes. The production cost minimization problem has a form:

ctot (x(t)) = {c1(t)x1(t) + c2(t)x2(t) + d(t)} |→ min(4.109)

f (x(t)) = y(t)(4.110)

x(t) ≥ 0.(4.111)

15 This function depends on time in the sense that its values depend on time, while its form is time
invariant.
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If the production function f (x(t)) is increasing and strictly concave then in
every period/at any moment t a line indicating minimal cost of producing y(t)
output units is tangent to a production isoquant resulting from Eq. (4.110), since
a producer wants to bear the minimal cost when producing the fixed output level.
As a consequence a vector of optimal inputs of production factors satisfies the
following condition16:

σ12(~x(t)) = ∂ f (x)
∂x1

||||
x(t)=~x(t)

: ∂ f (x)
∂x2

||||
x(t)=~x(t)

= c1(t)

c2(t)
∀t,(4.112)

where t = 0, 1, 2, . . . , T or t ∈ [0; T ] and σ12(~x(t)) means the marginal rate of
substitution of first production factor by the second production factor in a vector
of optimal inputs of production factors. The vector of optimal inputs is a solution
to a system of Eqs. (4.110) and (4.112).

From the problem of production cost minimization one gets a vector ~x(t) of
optimal inputs of production factors, a time-variant function of conditional demand
for production factors:

ξ(c(t), y(t)) =~x(t)(4.113)

and a firm minimal cost function of producing y(t) output units:

μ(c(t), y(t), d(t)) = ctot (~x(t))
= c1(t)x̃1(t) + c2(t)x̃2(t) + d(t) = c(y(t)).(4.114)

The function of conditional demand for production factors as well as the firm’s
minimal production cost function, they have both time-invariant forms but in dif-
ferent periods/at different moments t they can have different values, depending on
the time variant: prices of production factors, the output level fixed by a producer
and the fixed production cost.

If a producer considers the profit maximization problem with regard to the
output level, then in every period/at any moment t he/she determines what the
optimum supply of a product manufactured in her/his firm is. When deciding about
the output level y(t) he/she relies on the relation between the revenue from sales
of a product and the firm’s minimal cost of producing y output units by a given
time-variant price of a product. The profit maximization problem with regard to
the output level has a form:

π(y(t)) = r(y(t)) − c(y(t)) = {p(t)y(t) − c(y(t))} |→ max(4.115)

16 This condition results from a method of solving a conditional minimization problem for the pro-
duction total cost function. Then a necessary condition for the existence of unconditional extremum
has a form of equation system with partial derivatives of a Lagrange function. This method is
presented in Sect. 4.4.1.
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y(t) ≥ 0.(4.116)

The revenue function is linear and increasing with respect to the output level.
The firm’s minimal cost function of producing y(t) output units is strictly con-
vex and increasing with respect to the output level. As a consequence, the profit
function π(y(t)) is strictly concave and in every period/at any moment t Problem
(4.115)–(4.116) has a solution y(t) > 0. The necessary condition for the existence
of maximum profit is

dπ(y(t))

dy(t)

||||
y(t)=y(t)

= 0 ⇔ dr(y(t))

dy(t)

||||
y(t)=y(t)

= dc(y(t))

dy(t)

||||
y(t)=y(t)

⇔ p(t) = dc(y(t))

dy(t)

||||
y(t)=y(t)

∀t,(4.117)

where t = 0, 1, 2, . . . , T or t ∈ [0; T ].
From the profit maximization problem, one gets the optimal output level y(t),

a time-variant function of product supply:

η(p(t), c(t)) = y(t)(4.118)

and a firm’s maximal profit function:

∏(p(t), c(t), d(t)) = π(y(t)).(4.119)

The product supply as well as the firm’s maximal profit function, they have
both time-invariant forms but in different periods/at different moments t they can
have different values, depending on the time variant: prices of production factors,
a price of a product and the fixed production cost.

Example 4.2 A production process in a firm acting in the perfect competition is
described by a one-variable production function of a form:

f (x(t)) = x(t)0.5.

This production function has the same form as the function of Example 4.1, when
taking a = 1, but now the production factor input changes over time.

Let us assume that at any moment t ∈ [0; 30] the price of a product, a price of a
production factor and the fixed production cost change according to equations:

c(t) = 4 · 0.98t ,

p(t) = 0.006t2 − 0.1t + 3,

d(t) =
(
0.006t2 − 0.1t + 3

)2
t

480 · 0.98t − t

30
+ 1.
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Fig. 4.4 Trajectories of prices and fixed cost

Trajectories of prices and the fixed cost are presented in Fig. 4.4. The price of
a production factor constantly decreases. The production factor’s price decreases
at the beginning of the considered time horizon, reaches its minimum and then
increases until the end of the horizon. The fixed cost decreases slightly until
moment t ≈ 13 and then increases until the end of time horizon.

From Example 4.1, we know that for the given form of the production function
as an optimal solution to the profit maximization problem with regard to produc-
tion factor input one obtains a function of demand for a production factor of a
form:

ψ(p(t), c(t)) = x(t) =
(

p(t)

2c(t)

)2

and a firm’s maximal profit function:

∏(p(t), c(t), d(t)) = π(x(t)) = p(t)2

4c(t)
− d(t).

A firm that aims to maximize its profit determines at any moment t a production
factor input such that the marginal revenue equals the marginal production cost
equal to the time-variant price c(t) of a production factor. As a result one obtains
a value of the function of demand for a production factor by prices of a product and
of a production factor given at moment t . A trajectory of the demand is presented
in Fig. 4.5. Looking again at Fig. 4.4 we can notice that about moment t = 16 the
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Fig. 4.5 Trajectory of demand for production factor

product price is higher than the production factor price. In Fig. 4.5, it is reflected by
higher speed of growth of the demand for a production factor since the production
factor price decreases and the product price increases which make the difference
between them bigger.

From Fig. 4.6 presenting a trajectory of the firm’s maximal profit, it results that
until moment t ≈ 19 the maximum profit that a firm can obtain is negative. Then
the maximal profit increases, reaches its maximum equal to around 0.15 and from
a moment t ≈ 26 decreases and equals 0 at the end of the time horizon.

In the production cost minimization problem, a firm fixes at any moment t the
output level y(t) it wants to achieve. Let us assume that at any moment t ∈ [0; 30]
this level is determined by a firm according to an equation:

y(t) = −0.0035(t − 15)2 + 1.25.

A trajectory of the fixed output level is presented in Fig. 4.7. It can be seen
that a firm wants to raise the output from level 0.4625 at the beginning of the time
horizon to level 1.25 in the middle of the horizon and then it wants to reduce the
output again to level 0.4625.

From Example 4.1, we know that for the given form of the production function
as an optimal solution to the cost minimization problem, one obtains a function of
conditional demand for a production factor of a form:

ξ(y(t), c(t)) = ~x(t) = y(t)2
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Fig. 4.6 Trajectory of firm’s maximum profit
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Fig. 4.7 Trajectory of fixed output level
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and the firm minimal cost function of producing y(t) output unit:

μ(y(t), c(t), d(t)) = ctot (~x(t)) = c(t)~x(t) + d(t)

= c(t)y(t)2 + d(t) = k(y(t)).

One can notice, as in Example 4.1, that when a production function is one
variable then the function of conditional demand for a production factor does not
depend on the price of a production factor, but only on the fixed output level. It
results from the fact that when only one production factor is used in a production
process then there is no possibility to substitute this factor by some other factor
which could have a different price. Hence, a firm deciding about the input of a
production factor does condition its choice on a price of this only one production
factor. A trajectory of the conditional demand for a production factor, presented
in Fig. 4.8, has a shape similar to the trajectory of the fixed output level y(t),
presented in Fig. 4.7, in line with a formula of the conditional demand function.
The biggest conditional demand for a production factor occurs in the middle of the
time horizon, which means at the time when a firm wants to produce at the biggest
output level. At the beginning and at the end of the time horizon, the conditional
demand for a production factor is the smallest since then a firm fixes the smallest
output level to produce.

The minimal cost of producing y(t) output units, presented in Fig. 4.9, changes
over time. This cost is the highest at moment t ≈ 13, then it decreases and reaches
its local minimum at moment t ≈ 27. This time-variant value depends not only on
the fixed output level but also on the price of a production factor and on the fixed
production cost.
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Fig. 4.8 Trajectory of conditional demand for a production factor
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Fig. 4.9 Trajectory of minimum production cost

From the profit maximization problem with regard to the output level, one
obtains a product supply function:

η(p(t), c(t)) = y(t) = p(t)

2c(t)

and a firm’s maximal profit function:

∏(p(t), c(t), d(t)) = π(y(t)) = p(t)2

4c(t)
− d(t).

Let us notice that the form of the firm’s maximal profit function is the same
as the form obtained as a solution to the profit maximization problem with regard
to production factor inputs. Thus, the resulting trajectory of the firm’s maximum
profit is the same as in Fig. 4.6.

A firm that aims to maximize its profit determines at any moment t the product
supply such that the marginal production cost equals the marginal revenue equal
to the time-variant price p(t) of a product. As a result, one obtains the value of the
product supply function by prices of a product and of a production factor given at
moment t . A trajectory of the optimal product supply is presented in Fig. 4.10.
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Fig. 4.10 Trajectory of optimal product supply

4.5 Firm Acting in Perfect Competition—Short-Term
Strategy

4.5.1 Static Approach

Let us recall the notation:

p > 0—a price of a product manufactured by a firm,
c = (c1, c2) > (0, 0)—a vector of prices of production factors,
x = (x1, x2) ≥ (0, 0)—a vector of inputs of production factors,
b = (b1, b2) > (0, 0)—a vector of resources of production factors,
B = [0; b1] × [0; b2] ⊂ X = R

2+—a set of constraints on resources of
production factors,
w = f (b1, b2)—an output level constrained due to production factors’
limitation,
W = [0; f (b1, b2)] = [0;w]—a set constraining the output level,
y = f (x1, x2)—an output level,
r(y) = py—revenue (turnover) from sales of a manufactured product as a
function of output level,
r(x1, x2) = p f (x1, x2)—revenue (turnover) from sales of a manufactured
product as a function of inputs of production factors,
ctot (x1, x2) = c1x1 + c2x2 + d—total cost of production,
cv(x1, x2) = c1x1 + c2x2—variable cost of production,
c f (x1, x2) = d—fixed cost of production,
c(y)—minimum cost of producing y output units,
π(y) = r(y) − c(y) = py − c(y)—firm’s profit as a function of output level,
π(x1, x2) = r(x1, x2) − ctot (x1, x2)—firm’s profit as a function of inputs of
production factors.
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Problem of profit maximization with regard to inputs of production factors
whose resources are limited (P1c-s)

The aim of a firm is to maximize its profit expressed as a function of inputs of
production factors whose resources are limited, which can be written as a problem
to solve in the following way:

π(x1, x2) = r(x1, x2) − ctot (x1, x2)

= {p f (x1, x2) − (c1x1 + c2x2 + d)} |→ max(4.120)

xi ≤ bi , i = 1, 2(4.121)

x1, x2 ≥ 0.(4.122)

Since a production function from Assumption (F2) is strictly concave while the
total cost of production is a linear (thus concave) function, then a profit function is
strictly concave. Moreover, we are interested in an optimal solution x = (x1, x2) >

(0, 0).
Necessary and sufficient conditions for the existence of optimal solution to

problem (P1c-s) are given in the following theorem.

Theorem 4.9 If a firm’s profit function is strictly concave, twice differentiable and
satisfies the following condition:

lim
xi→0+

∂π(x1, x2)

∂xi
> 0 ∧ lim

xi→+∞
∂π(x1, x2)

∂xi
< 0

⇔ lim
xi→+∞

∂ f (x1, x2)

∂xi
< ci < lim

xi→0+
∂ f (x1, x2)

∂xi
, i = 1, 2(4.123)

then a vector x > 0 is an optimal solution to problem (P1c-s) if and only if a pair
x > 0, λ ≥ 0 is a solution to the following system of equations:

x1

(
p

∂ f (x)
∂x1

||||
x=x

− c1 − λ1

)
+ x2

(
p

∂ f (x)
∂x2

||||
x=x

− c2 − λ2

)
= 0,(4.124)

λ1(b1 − x1) + λ2(b2 − x2) = 0,(4.125)
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where λi = ∂π(x)
∂bi

|||
x=x

≥ 0, i = 1, 2 means an optimal Lagrange multiplier which

determines by how much the maximum value of the profit function π : R2+ → R

approximately increases when a value of parameter bi increases by one notional
unit.

If λi > 0 then the i-th constraint on resources is binding. When λi = 0 then
the i-th constraint is not binding.

If we are interested only in a positive optimal solution x > 0 to problem (P1c-s)
then condition (4.124) is satisfied if and only if:

p
∂ f (x)
∂xi

||||
x=x

− ci − λi = 0, i = 1, 2.(4.126)

If ∀i = 1, 2 λi = 0 then condition (4.126) takes the form:

p
∂ f (x)
∂xi

||||
x=x

= ci , i = 1, 2,(4.127)

which means that i-th production factor’s marginal productivity expressed in
money units is equal to a price of this production factor. This takes place when
any constraint on resources is not binding, which means that:

x = xG ≤ b.(4.128)

In the case when any constraint on resources is not binding then an optimal
solution x = xG to problem (P1c-s) is identical to a global maximum that a strictly
concave function π :R2+ → R reaches in space X = R

2+. Then a necessary and
sufficient condition for x > 0 being an optimal solution to problem (P1c-) is

∂π(x1, x2)

∂xi

||||
x=x

= 0 i = 1, 2(4.129)

and the conditional maximization problem is the same as the unconditional
maximization problem.

In the case when ∀i λi > 0 then each constraint on resources is binding and
condition (4.124) is satisfied in the initial form. At the same time from condition
(4.125), we get that

xi = bi , i = 1, 2.(4.130)

In this case, an optimal solution to problem (P1c-s) is a vector x = xL = b
such that xG > xL . Then a stationary point x = xL is called a local maximum of
a function π : R2+ → R in a set B ⊂ X = R

2+. It satisfies the following condition:

∂π(x1, x2)

∂bi

||||
x=x

= λi , i = 1, 2.(4.131)
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If λ1 > 0 while λ2 = 0 then from conditions (4.124), (4.125) it results that:

x1 = b1,(4.132)

and a value of x2 can be obtained from a condition:

∂π(b1, x2)

∂x2

||||
x=x

= 0.(4.133)

In this case, an optimal solution to problem (P1c-s) is a vector x = xL < b
such that17 xG > xL . Then a stationary point x = xL is called a local maximum
of a function π : R2+ → R in a set B ⊂ X = R

2+.
If λ1 = 0 while λ2 > 0 then from conditions (3.124), (3.125) it results that:

x2 = b2,(4.134)

and a value of x1 can be obtained from a condition:

∂π(x1, b2)

∂x1

||||
x=x

= 0.(4.135)

In this case, an optimal solution to problem (P1c-s) is a vector x = xL < bsuch
that xG > xL . Then a stationary point x = xL is called a local maximum of a
function π : R2+ → R in a set B ⊂ X = R

2+.

Definition 4.29 A function of demand for production factors is a mapping
ψ : int R

3+ → int R
2+ which assigns an optimal solution of problem (P1c-s) to

any price p of a product and any prices c = (c1, c2) of production factors in the
following way:

ψ(p, c) = (ψ1(p, c), ψ2(p, c)) = x = (x1, x2).(4.136)

Definition 4.30 A firm’s maximal profit function is a mapping ∏: int R
4+ →

int R+ which assigns maximum profit to any price p of a product, any prices c =
(c1, c2) of production factors and any fixed cost d in the following way:

∏(p, c, d) = π(x).(4.137)

Theorem 4.10 If assumptions of Theorem 4.9 are satisfied then:

17 The notation x > y means that at least one of the coordinates of a vector x is bigger than the
corresponding coordinate of a vector y while the other corresponding coordinates are equal to each
other.
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(1) ∀λ > 0 ψ(λp, λc) = ψ(p, c),
which means that a function of demand for production factors is positively
homogenous of degree 0,

(2) ∀λ > 0 ∏(λp, λc, λd) = λ∏(p, c, d),

which means that a firm’s maximal profit function is positively homogenous of
degree 1 with respect to the price of a product, prices of production factors and
the fixed cost of production.

Problem of cost minimization when producing the output at a fixed level with
limited resources of production factors (P2c-s)

The aim of a firm is to produce y ≥ 0 units of output at minimum total cost when
resources of production factors are limited. This problem can be written in the
following way:

ctot (x1, x2) = {c1x1 + c2x2 + d} |→ min(4.138)

f (x1, x2) = y = const. > 0,(4.139)

xi ≤ bi , i = 1, 2,(4.140)

x1, x2 ≥ 0.(4.141)

One can express problem (P2c-s) using a Lagrange function:

F(x1, x2, λ) ={c1x1 + c2x2 + d + λ1(b1 − x1)

+λ2(b2 − x2) + λ(y − f (x1, x2))} |→ min.(4.142)

Theorem 4.11 If a production function satisfies assumption (F2) then~x > 0 is an
optimal soultion to problem (P2c-s) if and only if a pair~x > 0, ~λ ≥ 0 is a solution
to the following system of equations:

x̃1

(
c1 − λ̃1 − λ̃

∂ f (x1, x2)

∂x1

||||
x=x̃

)

+x̃2

(
c2 − λ̃2 − λ̃

∂ f (x1, x2)

∂x2

||||
x=x̃

)
= 0,

(4.143)

~λ1(b1 − x̃1) +~λ2(b2 − x̃2) +~λ(y − f (x̃1, x̃2)) = 0,(4.144)

where ~λi = ∂ctot (x)
∂b j

|||
x=~x

≥ 0, i = 1, 2 and ~λ = ∂ctot (x)
∂ y

|||
x=~x

≥ 0 mean optimal

Lagrange multipliers which determine by how much the minimum value of the
production total cost function ctot : R2+ → R approximately increases when a value
of parameter bi or the fixed output level increases by one notional unit.
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If ~λi > 0 then the i-th constraint on resources is binding. When ~λi = 0 then
the i-th constraint is not binding.

If we are interested only in a positive optimal solution~x > 0 to problem (P2c-s)
then condition (4.143) is satisfied if and only if:

ci −~λi −~λ
∂ f (x1, x2)

∂xi

||||
x=~x

= 0, i = 1, 2.(4.145)

If ∀i = 1, 2 ~λi = 0 and~λ > 0 then condition (4.145) takes the form:

~λ
∂ f (x)
∂xi

||||
x=~x

= ci

λ̃i
, i = 1, 2.(4.146)

This takes place when any constraint on resources is not binding, which means
that:

~x =~xG ≤ b.(4.147)

In the case when any constraint on resources is not binding then an optimal
solution~x =~xG to problem (P2c-s) is identical to a global minimum that a strictly
convex function ctot : R2+ → R reaches in space X = R

2+. Then the conditional
minimization problem is the same as the unconditional minimization problem.
This gives us a useful conclusion. If we want to determine the optimal solution to
problem (P2c-s), we should find a global minimum of a function ctot : R2+ → R

in its domain X = R
2+. If~xG ∈ B then the optimal solution to problem (P2c-s) is

~x =~xG ≤ b.
In the case when ∀i = 1, 2~λi > 0 then each constraint on resources is binding

and condition (4.145) is satisfied. At the same time from condition (3.144), having
~λ > 0, we get that

~xi = bi , i = 1, 2,(4.148)

and

f (x̃1, x̃2) = y.(4.149)

In this case an optimal solution to problem (P2c-s) is a vector ~x = ~xL = b
such that ~xG > ~xL . Then a stationary point ~x = ~xL is called a local minimum of
a function ctot : R2+ → R in a set B ⊂ X = R

2+.
In each of remaining six cases when one or two Lagrange multipliers are posi-

tive one proceeds in a similar way. As a result on the basis of conditions (4.143)
and (4.144) one gets the optimal solution ~x = ~xL such that ~xG < ~xL . Then a
stationary point ~x = ~xL is called a local minimum of a function ctot : R2+ → R in
a set B ⊂ X = R

2+.
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Definition 4.31 A function of conditional demand for production factors is a
mapping ξ : int R

3+ → int R
2+ which assigns an optimal solution of problem (P2c-s)

to any output level y and any price c = (c1, c2) of production factors in the following
way:

ξ(c, y) = (ξ1(c, y), ξ2(c, y)) =~x = (x̃1, x̃2).(4.150)

Definition 4.32 A firm’s minimal cost function is a mapping μ: int R
4+ → int R+

which assigns minimum cost of producing y output units to any output level y, any
price c = (c1, c2) of production factors and any fixed cost d in the following way:

μ(c, d, y) = ctot (~x) = c1 x̃1 + c2 x̃2 + d = c1ξ1(c, y) + c2ξ2(c, y) + d.(4.151)

If prices of production factors and fixed cost of production are known then one
can express the firm minimal cost function of producing y output units as a function
of output level:

μ(c, d, y) = k(y).(4.152)

Theorem 4.12 If assumptions of Theorem 4.9 are satisfied then:

(1) ∀λ > 0 ξ(λc, y) = ξ(c, y),
which means that a function of conditional demand for production factors is
positively homogenous of degree 0 with respect to prices of production factors,

(2) ∀λ > 0 μ(λc,λd, y) = λμ(c, d, y),
which means that a firm’s minimal cost function of producing y output units is
positively homogenous of degree 1 with respect to prices of production factors
and the fixed cost of production,

(3) ∀λ > 0 μ(c, d, λy) = λ
1
θ μ(c, d, y),

which means that a firm’s minimal cost function of producing y output units is
positively homogenous of degree 1

θ
with respect to output level, where θ > 0 is

a degree of homogeneity of a production function.

Problem of profit maximization with regard to output level with limited
resources of production factors (P3c-s)

The aim of a firm is to maximize its profit expressed as a function of output level
when resources of production factors are limited. This problem can be written in
the following way:

π(y) = r(y) − c(y) = {py − c(y)} |→ max(4.153)

y ≤ f (b1, b2),(4.154)
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y ≥ 0,(4.155)

which can be expressed using a Lagrange function:

L(y, λ) = {π(y) + λ( f (b1, b2) − y)} |→ max.(4.156)

Since a revenue function is linear (thus concave) while a firm’s minimal cost
function of producing y output units is strictly convex then a firm’s profit function
is strictly concave. Moreover, we are interested in an optimal solution y > 0.

Necessary and sufficient conditions for the existence of optimal solution to
problem (P3c-s) are given in the following theorem.

Theorem 4.13 If a firm’s profit function is strictly concave and the following
condition is satisfied:

lim
y→0+

dπ(y)

dy
> 0 ∧ lim

y→+∞
dπ(y)

dy
< 0 ⇔

⇔ lim
y→0+

dc(y)

dy
< p < lim

y→+∞
dc(y)

dy
(4.157)

then y > 0 is an optimal solution to problem (P3c-s) if and only if a pair y > 0,
λ ≥ 0 is a solution to the following system of equations:

y

(

p − dc(y)

dy

||||
y=y

− λ

)

= 0,(4.158)

λ( f (b1, b2) − y) = 0,(4.159)

where λ = dπ(y)
d f (b1,b2)

|||
y=y

≥ 0 means an optimal Lagrange multiplier which deter-

mines by how much the maximum value of the profit function π : R+ → R

approximately increases when the constrained output level resulting from constraints
on resources of production factors increases by one notional unit.

If λ > 0 then the constraint on output level is binding. When λ = 0 then the
constraint is not binding.

If we are interested only in a positive optimal solution y > 0 to problem (P3c-s)
then condition (4.158) is satisfied if and only if:

p − dc(y)

dy

||||
y=y

− λ = 0.(4.160)
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If λ = 0 then condition (3.160) takes the form:

dc(y)

dy

||||
y=y

= p(4.161)

which means that the marginal production cost is equal to the price of a product. This
takes place when the constraint on output level is not binding, which means that:

y = yG ≤ f (b1, b2).(4.162)

In the case when the constraint on output level is not binding then an optimal
solution y = yG to problem (P3c-s) is identical to a global maximum that a strictly
concave function π :R+ → R reaches in space R+. Then a necessary and sufficient
condition for y > 0 being an optimal solution to problem (P3c-) is

dπ(y)

dy

||||
y=y

= 0(4.163)

and the conditional maximization problem is the same as the unconditional
maximization problem.

In the case when λ > 0 then the constraint on output level is binding and condition
(4.160) is satisfied in the initial form. At the same time from condition (4.159), we
get that

y = f (b1, b2).(4.164)

In this case, an optimal solution to problem (P3c-s) is the product supply y = yL

such that yG > yL . Then a stationary point yL is called a local maximum of a
function π : R+ → R in a set W = [0; f (b1, b2)] ⊂ R+.

Definition 4.33 A function of product supply is a mapping η:int R
3+ → int R+

which assigns an optimal solution of problem (P3c-s) to any price p of a product
and any price c = (c1, c2) of production factors in the following way:

η(p, c) = y.(4.165)

Definition 4.34 A firm’s maximal profit function is a mapping ∏: int R
4+ →

int R+ which assigns maximum profit to any price p of a product, any price c =
(c1, c2) of production factors and any fixed cost d in the following way:

∏(p, c, d) = π(y).(4.166)

Theorem 4.14 If assumptions of Theorem 4.13 are satisfied then:
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(1) ∀λ > 0 η(λp, λc) = η(p, c,),
which means that a function of product supply is positively homogenous of
degree 0 with respect to prices of production factors and the price of a product,

(2) ∀λ > 0 ∏(λp, λc, λd) = λ∏(p, c, d),

which means that a firm’s maximal profit function is positively homogenous of
degree 1 with respect to a price of a product, prices of production factors and
the fixed cost of production.

Theorem 4.15 If assumptions of Theorem 4.13 are satisfied then problems (P1c-s)
and (P3c-s) are equivalent.

This means that:

• knowing an optimal solution to problem (P1c-s) one can determine an optimal
solution to problem (P3c-s): y = f (x),

• knowing an optimal solution to problems (P3c-s) and (P2c-s) one can determine
an optimal solution to problem (P1c-s):~x = ξ(c, y) = ψ(p, c) = x,

• π(x) = ∏(p, c, d) = π(y).

Example 4.3 The following data is given:

p—a price of a product manufactured by a firm,
c1 > 0—a price of a production factor,
x ≥ 0—an input of a production factor,
b > 0—a resource of a production factor,

y = f (x) = ax
1
2—an output level as a nonlinear function of a production factor

input,

w = f (b) = ab
1
2—an output level constrained due to the production factor

limitation,
r(y) = py—revenue (turnover) from sales of a manufactured product as a linear
function of output level,

r(x) = p f (x) = pax
1
2—revenue (turnover) from sales of a manufactured

product as a nonlinear function of a production factor input,
ctot (x) = c1x + d—total cost of production as a linear function of a production
factor input,
cv(x) = c1x—variable cost of production,18

c f (x) = d—fixed cost of production,
π(y) = r(y) − c(y) = py − c(y)—firm’s profit as a function of output level,

π(x) = r(x)− ctot (x) = p f (x)− (c1x + d) = pax
1
2 − (c1x +d)—firm’s profit

as a function of a production factor input,
c(y)—minimal cost of producing y output units as an optimal solution to problem
(P2c-s).

18 The price of a production factor is equal to a marginal cost of production.
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Tasks

1. Solve the profit maximization problem (P1c-s).
2. Present a geometric illustration of the profit maximization problem (P1c-s).
3. Give an economic interpretation of necessary and sufficient conditions of the

existence of optimal solution to problem (P1c-s).
4. Justify that the function of demand for a production factor is homogeneous of

degree 0 with respect to the price of a product and the price of a production
factor. Justify that a firm’s maximal profit function is homogenous of degree
1 with respect to the price of a product, the price of a production factor and
the fixed cost of production.

5. Solve the cost minimization problem (P2c-s).
6. Present a geometric illustration of the cost minimization problem (P2c-s).
7. Give an economic interpretation of necessary and sufficient conditions of the

existence of optimal solution to problem (P2c-s).
8. Check if the function of conditional demand for a production factor is homoge-

nous of degree 0. Check if the function of firm’s minimal cost of producing
y output units is homogenous of degree 1 with respect to a price of a pro-
duction factor. If not, determine the degrees of homogeneity of both functions
with respect to output level.

9. Solve the profit maximization problem (P3c-s).
10. Present a geometric illustration of the profit maximization problem (P3c-s).
11. Give an economic interpretation of necessary and sufficient conditions of

existence of optimal solution to problem (P3c-s).
12. Justify that the product supply function is homogeneous of degree 0 with

respect to the price of a product and the price of a production factor. Justify
that a firm’s maximal profit function is homogenous of degree 1 with respect
to the price of a product, the price of a production factor and the fixed cost of
production.

13. Justify that the profit maximization problems (P1-sc) and (P3c-s) are equiva-
lent.

Ad 1 The profit maximization problem (P1c-s) when the production factor resource
is limited takes the form:

π(x) =
{
pax

1
2 − (c1x + d)

}
|→ max(4.167)

0 ≤ x ≤ b.(4.168)

Since the production function from the assumption is strictly concave while the
total cost of production is a linear (thus concave and convex) function, then the profit
function is strictly concave.
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A condition ensuring the existence of a unique and positive optimal solution to
problem (P1c-s) has a form:

lim
x→0+

dπ(x)

dx
> 0 ∧ lim

x→+∞
dπ(x)

dx
< 0

⇔ lim
x→+∞ p

d f (x)

dx
< c1 < p lim

x→0+
d f (x)

dx
,

(4.169)

which means that from the strict concavity of the firm’s profit function it results
that by a relatively big production factor input the marginal revenue is lower than
the marginal production cost, while by a relatively small production factor input the
marginal revenue is higher than the marginal production cost.

Let us determine a marginal profit function in problem (P1c-s) and check if it
satisfies condition (4.169):

dπ(x)

dx
= dr(x)

dx
− dctot (x)

dx
= 1

2
pax− 1

2 − c1 = ap

2x
1
2

− c1.(4.170)

Let us notice that:

lim
x→+∞

dπ(x)

dx
= lim

x→+∞

(
p
d f (x)

dx
− c1

)

= lim
x→+∞

(
ap

2x
1
2

− c1

)
= −c1 < 0(4.171)

and

lim
x→0+

dπ(x)

dx
= lim

x→0+ p
d f (x)

dx
− c1 = lim

x→0+

(
ap

2x
1
2

− c1

)
= +∞ > 0.(4.172)

Since condition (4.169) is satisfied then we can determine an optimal solution
to problem (P1c-s) from the Kuhn-Tucker theorem. Let us express the problem
(P1c-s) using a Lagrange function:

L(x, λ) = π(x) + λ(b − x) = p f (x) − (c1x + d) + λ(b − x).(4.173)

One gets the optimal solution to problem (P1c-s) from the following equation
system:

x

(
p
d f (x)

dx

||||
x=x

− c1 − λ

)
= 0,(4.174)

λ(b − x) = 0,(4.175)
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where λ = dπ(x)
db

|||
x=x

≥ 0 means an optimal Lagrange multiplier which determines

by how much the maximum value of the profit function π :R+ → R approximately
increases when a value of parameter b increases by one notional unit.

If λ > 0 then the resource constraint is binding. When λ = 0 then the constraint
is not binding.

If we are interested only in a positive optimal solution x > 0 to problem (P1c-s)
then condition (4.174) is satisfied if and only if:

p
d f (x)

dx

||||
x=x

− c1 − λ = 0.(4.176)

If λ = 0 then condition (3.176) takes the form:

p
d f (x)

dx

||||
x=x

= c1,(4.177)

which means that a production factor’s marginal productivity expressed in money
units is equal to a price of this production factor.

After some transformations, one gets

1

2
pax− 1

2 = c1 ⇔ x =
(
ap

2c1

)2

.(4.178)

This takes place when the resource constraint is not binding, which means that
an optimal solution x = xG to problem (P1c-s) is identical to a global maximum
that a strictly concave function π : R+ → R reaches in space X = R+. Then the
conditional maximization problem is the same as the unconditional maximization
problem.

In the case when λ > 0 then the resource constraint is binding and condition
(4.174) is satisfied in the initial form. At the same time from condition (4.175) we
get that

x = b.(4.179)

In this case an optimal solution to problem (P1c-s) is an input x = x L such that
xG > x L . Then a stationary point x = x L is called a local maximum of a function
π : R+ → R in a set B ⊂ X = R+.

Let us substitute the optimal solutions obtained above into the profit function.
Then the firm’s maximum profit is

π(x) = pax
1
2 − (c1x + d) = pa

(
ap

2c1

)
− c1

(
ap

2c1

)2

− d = a2 p2 − 4c1d

4c1

(4.180)
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or

π(x) = pab
1
2 − c1b − d.(4.181)

Ad 2 See Figs. 4.11a, 4.11b and 4.11c.

Fig. 4.11a Graphs of
revenue function and function
of total cost of production

Fig. 4.11b Graph of profit
function

Fig. 4.11c Graphs of
marginal revenue function
and marginal production cost
function
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Ad 3 Necessary and sufficient conditions for the existence of the optimal solution
to problem (P1c-s) have the following form:

x

(
p
d f (x)

dx

||||
x=x

− c1 − λ

)
= 0,(4.182)

λ(b − x) = 0.(4.183)

If λ > 0 x = x L = b which means that the resource constraint is binding for a
firm. The optimal solution to problem (P1c-s) corresponds then with full exploitation
of the production factor resource but the maximum profit obtained in that case is
lower than the maximum profit a firm would obtain if it owned the production factor
resource b ≥ xG . If the production factor resource is that big then from condition

(4.182), having λ = 0, one gets x = xG =
(

ap
2c1

)2
.

Ad 4 The optimal solution to problem (P1c-s) determines a function of demand for
a production factor. If the solution is x = x L = b then ψ(p, c1) = b is still the
function of demand for a production factor but it depends only on the production
factor resource and is positively homogenous of degree 1with respect to the resource.

If the optimal solution to problem (P1c-s) is x = xG =
(

ap
2c1

)2
then the function

of demand for a production factor is positively homogenous of degree 0 with respect
to the price of a product and the price of a production factor, because:

∀λ > 0 xG = ψ(λp, λc1) =
(

λap

2λc1

)2

=
(
ap

2c1

)2

= ψ(p, c1),(4.184)

which means that a proportional change in the price of a product and in the price of
a production factor does not impact the demand for a production factor.

The firm’s maximal profit function in turn is positively homogenous of degree 1
because

∀λ > 0 π
(
xG

)
= ∏(λp, λc1, λd) = λ2a2 p2

4λc1
− λd = λ∏(p, c1, d),(4.185)

which means that a proportional change in the price of product, in the price of a
production factor and in the fixed cost induces the proportional change in the firm’s
maximum profit.19

19 The price of a production factor equals the marginal production cost.
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Ad 5 The cost minimization problem (P2c-s) when producing y output units and
when the production factor resource is limited takes the form:

ctot (x) = (c1x + d) |→ min(4.186)

ax
1
2 = y = const.,(4.187)

0 ≤ x ≤ b.(4.188)

Since a set of feasible solutions to this problem has only one element, then a
production factor input resulting from (4.187) is the optimal solution to this problem:

~x =
( y

a

)2 ≤ b,(4.189)

and is positive by the positive output level 0 < y ≤ ab
1
2 .

A firm’s minimal cost function of producing y output units corresponds to this
solution:

ctot (~x) = μ(c1, d, y) = c1
( y

a

)2 + d = c(y),(4.190)

for

0 < y ≤ ab
1
2(4.191)

and is nonlinear and strictly convex function of the output level.

Ad 6 See Figs. 4.12a and 4.12b.

Ad 7 In problem (P2c-s) exactly one production factor input corresponds to exactly
one fixed output level. This production factor input is at the same time the only
one solution to problem (P2c-s). As a consequence, a set of feasible solutions has
only one element. In this case, independently of an optimality criterion, the only one
feasible solution to the problem is at the same time its only one optimal solution.

Ad 8 Let us notice that the function of conditional demand for a production factor
does not depend on a price of a production factor, thus is not homogenous of degree
0 with respect to a price of a production factor.

Determining a degree of homogeneity of this function with respect to the output
level:

∀λ > 0 ξ(λy) =
(

λy

a

)2

= λ2
( y

a

)2 = λ2ξ(y),(4.192)
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Fig. 4.12a Illustration of
problem (P2c-s)

Fig. 4.12b Graphs of firm
minimal cost function of
producing y output units

we notice that it is

θ = 2 > 0.(4.193)

A function of variable cost of production is positively homogenous of degree 1
with respect to the price of a production factor, since

∀λ > 0 cv(λc1, y) = λc1
( y

a

)2 = λcv(c1, y).(4.194)
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A function of total cost of production is positively homogenous of degree 1 with
respect to the price of a production factor and the fixed production cost, since

∀λ > 0 ctot (λc1, λd, y) = λc1
( y

a

)2 + λd

= λ

(
c1

( y

a

)2 + d

)
= λctot (c1, d, y).

(4.195)

The function of variable cost of production is positively homogenous of degree 2
with respect to the output level, since

∀λ > 0 cv(c1, λy) = c1

(
λy

a

)2

= λ2c1
( y

a

)2 = λ2cv(c1, y).(4.196)

Ad 9 The profit maximization problem (P3c-s) when the output level is constrained
(due to the production factor resource limitation) takes the form:

π(y) = py − c(y) =
{
py −

(
c1

( y

a

)2 + d

)}
|→ max,(4.197)

0 ≤ y ≤ f (b).(4.198)

The revenue function is linear and hence concave. The firm’s minimal cost func-
tion of producing y output units is nonlinear and strictly convex. Thus, the profit
function is a strictly concave function of the output level.

A condition ensuring the existence of a unique and positive optimal solution to
problem (P3c-s) has a form:

lim
y→0+

dπ(y)

dy
> 0 ∧ lim

y→+∞
dπ(y)

dy
< 0

⇔ lim
y→0+

dc(y)

dy
< p < lim

y→+∞
dc(y)

dy
,

(4.199)

which means that from the strict concavity of the firm’s profit function it results that
by a relatively small output level the marginal minimal cost of producing y output
units is lower than the price of a product, while by a relatively big output level
the marginal minimal cost of producing y output units is higher than the price of a
product. Since the revenue function from sales of a product is a linear function of the
output level then the marginal revenue from sales of a product is equal to the price
of a product.

Let us determine a marginal profit function in problem (P3c-s) and check if it
satisfies condition (4.199):

dπ(y)

dy
= dr(y)

dy
− dc(y)

dy
= p − 2

yc1
a2

.(4.200)
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Let us notice that:

lim
y→0+

dπ(y)

dy
= lim

y→0+

(
p − 2

yc1
a2

)
= p > 0(4.201)

and

lim
y→+∞

dπ(y)

dy
= lim

y→+∞
(
p − 2

yc1
a2

)
= −∞ < 0.(4.202)

Since condition (4.199) is satisfied then we can determine an optimal solution
to problem (P3c-s) from the Kuhn-Tucker theorem. Let us express the problem
(P3c-s) using a Lagrange function:

L(y, λ) = π(y) + λ
(
ab

1
2 − y

)
= py −

(
c1

( y

a

)2 + d

)
+ λ

(
ab

1
2 − y

)
.(4.203)

One gets the optimal solution to problem (P1c-s) from the following equation
system:

y

(
p − 2c1y

a2
− λ

)
= 0,(4.204)

λ
(
ab

1
2 − y

)
= 0,(4.205)

where λ = dπ(y)

dab
1
2

||||
y=y

≥ 0 means an optimal Lagrange multiplier which deter-

mines by how much the maximum value of the profit function π : R+ → R

approximately increases when the constrained output level ab
1
2 resulting from the

production factor resource increases by one notional unit.
If λ > 0 then the constraint on output level is binding. When λ = 0 then the

constraint is not binding.
If we are interested only in a positive optimal solution y > 0 to problem (P3c-s)

then condition (3.204) is satisfied if and only if:

p − 2c1y

a2
− λ = 0.(4.206)

If λ = 0 then condition (4.206) takes the form:

p − 2c1y

a2
= 0(4.207)
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and hence:

y = a2 p

2c1
.(4.208)

This takes place when the constraint on output level is not binding, which means
that an optimal solution y = yG to problem (P3c-s) is identical to a global maxi-
mum that a strictly concave function π : R+ → R reaches in space X = R+.
Then the conditional maximization problem is the same as the unconditional
maximization problem.

In the case when λ > 0 then the constraint on output level is binding and
condition (4.204) is satisfied in the initial form. At the same time from condition
(4.205) we get that

y = ab
1
2 .(4.209)

In this case, an optimal solution to problem (P3c-s) is the product supply y =
yL such that yG > yL . Then a stationary point y = yL is called a local maximum
of a function π : R+ → R in a set W ⊂ X = R+.

Let us substitute the optimal solutions obtained above into the profit function.
Then the firm’s maximum profit is

π(y) = py + c(y) = p2a2

2c1
− c1

(
pa

2c1

)2

− d(4.210)

or

π(y) = pab
1
2 − c1b − d.(4.211)

Ad 10 See Figs. 4.13a, 4.13b and 4.13c.

Ad 11, 12 The optimal solution to problem (P3c-s) determines a product supply
function. If the solution is y = yL = w then η(p, c1) = w is still the product
supply function but it depends only on the output level constrained due to the pro-
duction factor limitation. It is positively homogenous of degree 1 with respect to the
constrained output level.

If the optimal solution to problem (P3c-s) is y = yG = a2 p
2c1

then the product
supply function is positively homogenous of degree 0 with respect to the price of a
product and the price of a production factor, because

∀λ > 0 η(λp, λc1) = a2λp

2λc1
= a2 p

2c1
= η(p, c1),(4.212)
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Fig. 4.13a Graphs of revenue function and firm’s minimal cost function of producing y output
units

Fig. 4.13b Graph of profit function

Fig. 4.13c Graphs of marginal revenue function and marginal minimal cost function of producing
y output units
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which means that a proportional change in the price of product and in the price of a
production factor does not impact the supply of a product.

The firm’s maximal profit function in turn is positively homogenous of degree 1
because

∀λ > 0 ∏(λp, λc1, λd) = a2λ2 p2

4λc1
− λd = λ∏(p, c1, d),(4.213)

which means that a proportional change in the price of a product, in the price of a
production factor and in the fixed cost induces the proportional change in the firm’s
maximum profit.

Ad 13 To show that problems (P1c-s) and (P3c-s) are equivalent let us notice that.20

(1) For x =
(

ap
2c1

)2
> 0 and y = a2 p

2c1
> 0 we have

π(x) = ∏(p, c1, d) = a2 p2

4c1
− d = π(y).(4.214)

(2) Knowing the optimal solution to problem (P1c-s) and substituting it into the
production function we get the optimal solution to problem (P3c-w):

y = f (x) = ax
1
2 = a2 p

2c1
.(4.215)

(3) Knowing the optimal solution to problem (P3c-s) and substituting it into the
optimal solution to problem (P2c-s), we get the optimal solution to problem
(P1c-s):

~x =
(
y

a

)2

=
(
ap

2c1

)2

= x,(4.216)

which means that profit maximization problems (P1c) and (P3c) are equivalent.

20 The way of justifying the equivalence of the maximization problems (P1c-s) and (P2c-s) is iden-
tical when optimal solutions to both problems are the local maxima which indicate full exploitation
of the production factor resource.
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4.5.2 Dynamic Approach

The profit maximization problems and the production cost minimization problem
in the short-term firm strategy have similar forms to versions of these problems
presented in long-term strategy. The difference is that considering the short-term
strategy a firm has to take into account additional constraints on resources of pro-
duction factors.21 They can turn out to be binding when an optimal production
factor input resulting from one of the optimization problems considered without
constraints on resources is bigger than the actual resource of this production factor.
Then a firm determining the optimal input has to use this quantity constrained by
the production factor resource. In the case of deciding about the optimal supply,
the constraint results from the constrained output level when using limited inputs
of production factors equal to their resources.

We use the same notation as in Sect. 4.4.2 discussing the dynamic approach in
long-term strategy. Let us also introduce additional notation:

b(t) = (b1(t), b2(t)) > 0—a vector of time-variant resources of production
factors,
w(t) = f (b1(t), b2(t))—a time-variant output level constrained due to the
production factors’ limitation,
xG(t)—an optimal solution to the profit maximization problem with regard to
inputs of production factors whose resources are unlimited,
~xG(t)—an optimal solution to the production cost minimization problem when
resources of production factors are unlimited,
yG(t)—an optimal solution to the profit maximization problem with regard to
output level with unlimited resources of production factors.

In the short-term strategy, the profit maximization problem with regard to inputs
of production factors takes the form:

π(x(t)) = r(x(t)) − ctot (x(t))

= {p(t) f (x(t)) − (c1(t)x1(t) + c2(t)x2(t) + d(t))} |→ max(4.217)

xi (t) ≤ bi (t) i = 1, 2(4.218)

x(t) ≥ 0.(4.219)

Initially, one solves problem (4.217)–(4.219) in the same way as the analogical
problem in the long-term strategy. After determining the optimal solution xG(t),

21 Let us recall that the distinction between the long and short terms of a firm’s activity does not
involve the time dimension but resources of production factors. It is assumed that in the short term
the resources are limited while in the long term they are unlimited.
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we compare it in each period/at any moment t of the considered time horizon with
a vector b(t) of resources of production factors. As the solution to the whole prob-
lem in the short-term strategy, one gets a vector of optimal inputs of production
factors:

x(t) =
(
min

{
xG1 (t), b1(t)

}
,min

{
xG2 (t), b2(t)

})
,(4.220)

a time-variant function of demand for production factors:

ψ(p(t), c(t)) = x(t)(4.221)

and a firm’s maximal profit function:

∏(p(t), c(t), d(t)) = π(x(t)).(4.222)

The production cost minimization problem in the short-term strategy has a sim-
ilar form to the analogical problem in the long-term strategy. The difference is
accounting additionally for the constraints on the resources of production factors:

ctot (x(t)) = {c1(t)x1(t) + c2(t)x2(t) + d(t)} |→ min(4.223)

f (x(t)) = y(t)(4.224)

xi (t) ≤ bi (t) i = 1, 2(4.225)

x(t) ≥ 0.(4.226)

Initially one solves Problem (4.223)–(4.226) in the same way as the analogical
problem in the long-term strategy. After determining the optimal solution ~xG(t),
we compare it in each period/at any moment t of the considered time horizon
with a vector b(t) of resources of production factors. As the solution to the whole
problem in the short-term strategy one gets a vector of optimal inputs of production
factors:

~x(t) =
(
min

{
x̃G1 (t), b1(t)

}
,min

{
x̃G2 (t), b2(t)

})
,(4.227)

a time-variant function of conditional demand for production factors:

ξ(c(t), y(t)) = x̃(t)(4.228)
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and a firm’s minimal cost function of producing y(t) output units:

μ(c(t), y(t), d(t)) =ctot (~x(t))
=c1(t)x̃1(t) + c2(t)x̃2(t) + d(t) = c(y(t)).(4.229)

The profit maximization problem with regard to output level in the short-term
strategy has a similar form to the analogical problem in the long-term strategy.
The difference is accounting additionally for the constraint on the output level due
to the limitations of the resources of production factors. In short-term strategy, the
profit maximization problem with regard to output level takes the form:

π(y(t)) = r(y(t)) − c(y(t)) = {p(t)y(t) − c(y(t))} |→ max(4.230)

y(t) ≤ f (b(t))(4.231)

y(t) ≥ 0.(4.232)

For Problem (4.230)–(4.232), one determines first a solution yG(t), that is, a
solution to the analogical problem in the long-term strategy. Then we compare it
in each period/at any moment t with the constrained output level f (b(t)) resulting
from the limitations of resources of production factors. As the solution to the whole
problem in the short-term strategy, one gets an optimal output level:

y(t) = min
{
yG(t), f (b(t))

}
,(4.233)

a time-variant function of product supply:

η(p(t), c(t)) = y(t)(4.234)

and a firm’s maximal profit function:

∏(p(t), c(t), d(t)) = π(y(t)).(4.235)

Example 4.4 Let us take the same assumptions as in Example 4.2, introducing
additionally a constraint of production factor resource. A firm acts in the prefect com-
petition and considers the short-term strategy. The production process is described
by a one-variable production function of a form:

f (x(t)) = x(t)0.5.



4.5 Firm Acting in Perfect Competition—Short-Term Strategy 227

At any moment22 t ∈ [0; 30] the price of a product, the price of a production
factor and the fixed production cost change according to equations:

c(t) = 4 · 0.98t ,

p(t) = 0.006t2 − 0.1t + 3,

d(t) =
(
0.006t2 − 0.1t + 3

)2
t

480 · 0.98t − t

30
+ 1.

Their trajectories are presented in Sect. 4.4.2, in Example 4.2 in Fig. 4.4.
Additionally, unlike the long-term strategy from Example 4.2, now we assume

that a production factor input is limited by its resource which changes over time
according to an equation:

b(t) = −0.01t + 1.

Figure 4.14 presents a trajectory of the production factor resource and a tra-
jectory of an optimal solution to the monopoly profit maximization problem with
regard to production factor input in the long-term strategy. Up to a moment t ≈ 25
the production factor constraint is not binding because a value xG(t) does not
exceed the resource b(t). From the moment t ≈ 25, the resource constraint is
binding until the end of the time horizon. Thus, a trajectory of an optimal produc-
tion factor input resulting from the profit maximization problem in the short-term
strategy has a form as in Fig. 4.15.

Figure 4.16 presents a comparison of the firm’s maximum profit in the case
when the production factor input is constrained by its resource and in the case
when such limitation does not exist. The difference of the maximum profit in both
cases is visible from a moment t ≈ 25.

Fixing the output level at any given moment t, a firm which uses the short-
term strategy is constrained by the production factor resource. Thus, the optimal
production factor input resulting from the production cost minimization problem
in the long-term strategy has to be compared with the production factor input, as
it is illustrated in Fig. 4.17. The resource constrained turns out to be binding in
the period between moments t ≈ 7 and t ≈ 26. Hence, a trajectory of optimal
production factor input resulting from the cost minimization problem in the short-
term strategy takes the form as presented in Fig. 4.18.

22 The fact that we regard the same length of the time horizon as in Example 4.2 discussing the
long-term strategy does not mean that a firm’s activity is considered in the long term. We can
assume that a time unit is shorter than the one used in Example 4.2, e.g. a week instead of a month.
However, this kind of an assumption is not necessary. It should be noticed that a firm from period
to period (or at any moment t) can be constrained by the production factor resource, thus it needs
to consider the short-term strategy. Hence, the length of the time horizon should not be seen as the
basis when deciding the kind of a strategy: the long term or the short term.
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Fig. 4.14 Trajectories of resource and of optimal production factor input in long-term strategy—
profit maximization problem with regard to production factor input
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Fig. 4.15 Trajectory of demand for production factor in short-term strategy
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Fig. 4.16 Trajectory of firm’s maximum profit in short-term strategy
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Fig. 4.17 Trajectories of resource and of optimal production factor input in long-term strategy—
cost minimization problem
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Fig. 4.18 Trajectory of conditional demand for production factor in short-term strategy
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Fig. 4.19 Trajectory of minimum production cost in short-term strategy

Figure 4.19 presents a comparison of the firm minimum cost of producing y(t)
output units in the case when the production factor input is constrained by its
resource and in the case when such limitation does not exist. Since the resource
constraint is binding in period between moments t ≈ 7 and t ≈ 26 in this time
interval one can observe a difference in the firm’s minimum costs in the short-term
and long-term strategies. Then, that is in this time interval, the resource constraint
involves the usage of smaller production factor input than it results from the long-
term strategy and hence also lower production cost than in the long-term strategy.
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Fig. 4.20 Trajectories of output level constrained by production factor resource and of optimal
output levelin long-term strategy—profit maximization problem with regard to output level
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Fig. 4.21 Trajectory of optimal product supply in short-term strategy

Figure 4.20 presents a trajectory of output level constrained due to the limitation
of the production factor resource and a trajectory of the optimal solution to the
profit maximization problem with regard to output level in the long-term strategy.
Until a moment t ≈ 25 the rsource constraint and the output level constraint are
not binding because output level yG(t) does not exceed the constrained output
level equal to f (b(t)) = b(t)0,5. From the moment t ≈ 25, the resource constraint
is binding up to the end of the considered time horizon. Hence, a trajectory of
the optimal output level resulting from the profit maximization problem in the
short-term strategy takes the form as presented in Fig. 4.21.



232 4 Rationality of Choices Made by Individual Producers

The maximum profits resulting from the profit maximization problems with
regard to output level and with regard to production factor input evolve in the
same way, thus a trajectory of the former is the same as the one presented in
Fig. 4.16.

4.6 Monopoly—Long-Term Strategy

4.6.1 Static Approach

Let us use the following notation:

x = (x1, x2) ≥ (0, 0)—a vector of inputs of production factors,
y = f (x1, x2)—an output level,
p(y) > 0, dp(y)

dy < 0—a price of a product manufactured by a monopoly as a
decreasing function of product supply, set by a monopoly,
c(x) = (c1(x1), c2(x2)) > (0, 0), dci (xi )

dxi
> 0, i = 1, 2—a vector of prices of

production factors, each of whom is an increasing function of demand reported
by a monopoly for a given production factor,
r(y) = p(y)y—revenue (turnover) from sales of a manufactured product as a
function of product supply,
r(x1, x2) = p( f (x1, x2)) f (x1, x2)—revenue (turnover) from sales of a manu-
factured product as a function of inputs of production factors,
ctot (x1, x2) = c1(x1)x1 + c2(x2)x2 + d—total cost of production as a nonlinear
function of inputs of production factors,
cv(x1, x2) = c1(x1)x1 + c2(x2)x2—variable cost of production as a function of
inputs of production factors,
c f (x1, x2) = d—fixed cost of production,
c(y)—minimum cost of producing y output units, derived as an objective
function corresponding to an optimal solution to problem (P2m),
π(y) = r(y)−c(y) = p(y)y−c(y)—firm’s profit as a function of output level,
π(x1, x2) = r(x1, x2) − ctot (x1, x2)—firm’s profit as a function of inputs of
production factors.

Problem of profit maximization with regard to inputs of production factors
(P1m)

The aim of a monopoly is to maximize its profit expressed as a function of inputs
of production factors, which can be written as a problem to solve in the following
way:
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π(x1, x2) = r(x1, x2) − ctot (x1, x2)

= {p( f (x1, x2)) f (x1, x2) − (c1(x1)x1 + c2(x2)x2 + d)} |→ max(4.236)

x1, x2 ≥ 0.(4.237)

Since a production function from assumption (F2) is strictly concave then a
revenue function is strictly concave too. At the same time, a production total cost
function is strictly convex. As a result, a firm’s profit function is strictly concave.
Moreover, we are interested in an optimal solution x = (x1, x2) > (0, 0) for which
the profit π(x1, x2) is the maximum.

Necessary and sufficient conditions for the existence of an optimal solution to
problem (P1m) are given in the following theorem.

Theorem4.16 If a firm’s profit function is strictly concave and satisfies the following
condition:

∀i = 1, 2 lim
xi→0+

∂π(x1, x2)

∂xi
> 0 ∧ lim

xi→+∞
∂π(x1, x2)

∂xi
< 0 ⇔

⇔ lim
xi→0+

∂r(x1, x2)

∂xi
> lim

xi→0+
∂ctot (x1, x2)

∂xi

∧ lim
xi→+∞

∂r(x1, x2)

∂xi
< lim

xi→+∞
∂ctot (x1, x2)

∂xi

(4.238)

then:

(1) ∃1 x > 0 such that ∂π(x)
∂xi

|||
x=x

= 0 i = 1, 2,

(2) a necessary and sufficient condition for x > 0 being an optimal solution to
problem (P1m) is

∂π(x1, x2)

∂xi

||||
x=x

= 0 ⇔ ∂r(x1, x2)

∂xi

||||
x=x

= ∂ctot (x1, x2)

∂xi

||||
x=x

⇔ ∂r(x1, x2)

∂xi

||||
x=x

= ∂cv(x1, x2)

∂xi

||||
x=x

i = 1, 2,(4.239)

which means that there exists exactly one solution x > 0 for which:
• marginal profit equals zero,
• marginal revenue is equal to marginal total cost of production,
• marginal revenue is equal to marginal variable cost of production,
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Definition 4.35 A function of demand for production factors is a mapping ψ :
int R

2+ → int R
2+ which assigns an optimal solution of problem (P1m) to any price

p( f (x1, x2)) of a product and any price c(x1, x2) = (c1(x1), c2(x2)) in the following
way:

ψ(p( f (x)), c(x)) = x = (x1, x2).(4.240)

Definition 4.36 A monopoly maximal profit function is a mapping ∏ : int R
2+ ×

R+ → int R+ which assigns maximum profit23 to any price p( f (x1, x2)) of a
product, any prices c(x1, x2) = (c1(x1), c2(x2)) of production factors and any fixed
cost d in the following way:

∏(p( f (x)), c(x), d) = π(x).(4.241)

Problem of cost minimization when producing the output at a fixed level (P2m)

The aim of a monopoly is to produce y > 0 units of output at minimum total cost,
which can be written as a problem to solve in the following way:

ctot (x1, x2) = {c1(x1)x1 + c2(x2)x2 + d} |→ min(4.242)

f (x1, x2) = y = const. > 0,(4.243)

x1, x2 ≥ 0.(4.244)

One can express problem (P2m) using a Lagrange function:

F(x1, x2, λ) = {c1(x1)x1 + c2(x2)x2 + d + λ(y − f (x1, x2))} |→ min.(4.245)

Theorem 4.17 If a production function satisfies assumption (F2) then~x > 0 is an
optimal solution to problem (P2c) if and only if a pair

(
~x,~λ

)
> 0 is a solution to the

following system of equations:

23 One should remember that if condition (4.238) is satisfied then the profit maximization problem
(P1m) has a positive optimal solution which, depending on value of the fixed production cost d,
corresponds to the positive, zero or negative maximum profit.
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∂F
(
x,~λ

)

∂x1

|||||
x=~x

= 0 ⇔ ~λ
∂ f (x1, x2)

∂x1

||||
x=~x

= dc1(x1)

dx1

||||
x=~x

x̃1 + c1(x̃1),

∂F
(
x,~λ

)

∂x2

|||||
x=~x

= 0 ⇔ ~λ
∂ f (x1, x2)

∂x2

||||
x=~x

= dc2(x2)

dx2

||||
x=~x

x̃2 + c2(x̃2),

∂F(~x, λ)

∂λ

||||
λ=~λ

= 0 ⇔ f (x̃1, x̃2) = y.(4.246)

Necessary condition: if~x > 0 is an optimal solution to problem (P2m) then a pair(
~x,~λ

)
> 0 is a solution to equation system (3.246).

Sufficient condition: if a pair
(
~x,~λ

)
> 0 is a solution to equation system (3.246)

then~x > 0 is an optimal solution to problem (P2m).

Definition 4.37 A function of conditional demand for production factors is a
mapping ξ : int R

3+ → int R
2+ which assigns an optimal solution of problem (P2m)

to any output level y and any prices c(x1, x2) = (c1(x1), c2(x2)) factors in the
following way:

ξ(c(x), y) =~x = (x̃1, x̃2).(4.247)

Definition 4.38 A firm minimal cost function is a mapping μ : int R
4+ → int R+

which assigns minimum cost of producing y output units to any output level y, any
prices c(x1, x2) = (c1(x1), c2(x2)) of production factors and any fixed cost d in the
following way:

μ(c(x), d, y) = ctot (~x) = c1(x̃1)x̃1 + c2(x̃2)x̃2 + d.(4.248)

If prices of production factors are determined and the fixed cost of production is
known then one can express the firm’s minimal cost function of producing y output
units as a function of output level:

μ(c(x), d, y) = c(y).(4.249)

Problem of profit maximization with regard to output level (P3m)

The aim of a monopoly is to maximize its profit expressed as a function of output
level, which can be written as a problem to solve in the following way:

π(y) = r(y) − c(y) = {p(y)y − c(y)} |→ max(4.250)

y ≥ 0.(4.251)
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Since a revenue function is strictly concave while a firm’s minimal cost function
of producing y output units is strictly convex then a firm’s profit function is strictly
concave. Moreover, we are interested in an optimal solution y > 0.

Necessary and sufficient conditions for the existence of an optimal solution to
problem (P3m) are given in the following theorem.

Theorem 4.18 If a firm’s profit function is strictly concave, differentiable and the
following condition is satisfied:

lim
y→0+

dπ(y)

dy
> 0 ∧ lim

y→+∞
dπ(y)

dy
< 0

⇔ lim
y→0+

dr(y)

dy
> lim

y→0+
dc(y)

dy
∧ lim

y→+∞
dr(y)

dy
< lim

y→+∞
dc(y)

dy
(4.252)

then:

(1) ∃1 y > 0 such that dπ(y)
dy

|||
y=y

= 0,

(2) a necessary and sufficient condition for y > 0 being an optimal solution to
problem (P3m) is

dπ(y)

dy

||||
y=y

= 0 ⇔ dr(y)

dy

||||
y=y

= dc(y)

dy

||||
y=y

(4.253)

which means that there exists exactly one solution y > 0 for which:

• marginal profit equals zero,
• marginal revenue is equal to marginal minimal cost of producing y output units,
• price of a product is equal to marginal minimal cost of producing y output units.

Definition 4.39 A function of product supply is a mapping η : int R
2+ → int R+

which assigns an optimal solution of problem (P3m) to any price p( f (x1, x2)) of
a product and any price c(x1, x2) = (c1(x1), c2(x2)) of production factors in a
following way:

η(p( f (x)), c(x)) = y.(4.254)

Definition 4.40 Amonopoly maximal profit function is a mapping∏ : int R
3+ →

int R+ which assigns maximum profit24 to any price p( f (x1, x2) of a product, any

24 As in the problem (P1m) the fact that there exists the optimal positive supply guaranteeing the
monopoly maximum profit does not mean that this profit is positive. This depends on the fixed
production cost d. If the fixed cost is big enough the maximum profit can be negative. Then this
maximum profit can be seen as the minimum loss that a monopoly incurs.
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price c(x1, x2) = (c1(x1), c2(x2)) of production factors and any fixed cost d in the
following way:

∏(p( f (x)), c(x), d) = π(y).(4.255)

Definition 4.41 A monopoly optimal price function is a mapping p : int R
2+ →

int R+ which assigns the price guaranteeing the maximum profit to any production
function f (x) and any price c(x1, x2) = (c1(x1), c2(x2)) of production factors in
the following way:

p( f (x), c(x)) = p(y).(4.256)

Theorem 4.19 If assumptions of Theorem 4.16 are satisfied then problems (P1m)
and (P3m) are equivalent.

This means that:

• knowing an optimal solution to problem (P1m) one can determine an optimal
solution to problem (P3m): y = f (x),

• knowing an optimal solution to problems (P3m) and (P2m) one can determine an
optimal solution to problem (P1m):~x = ξ(c(~x), y) = ψ(p( f (~x)), c(~x)) = x,

• π(x) = ∏(p( f (x)), c(x), d) = π(y).

Example 4.5 The following data is given:

x ≥ 0—an input of a production factor,

y = f (x) = ax
1
2—an output level as a nonlinear function of a production factor

input,

p(y) =
(
a
y

) 1
2
—a price of a product manufactured by a monopoly,

c1(x) = ax—aprice of a production factor as a linear function of demand reported
by a monopoly for this factor,

r(y) = p(y)y = a
1
2 y

1
2—revenue (turnover) from sales of a manufactured

product as a nonlinear function of output level,

r(x) = p( f (x)) f (x) = x− 1
4 ax

1
2 = ax

1
4—revenue (turnover) from sales of a

manufactured product as a nonlinear function of a production factor input,
ctot (x) = c1(x)x+d = ax2+d—total cost of production as a nonlinear function
of a production factor input,
cv(x) = ax2—variable cost of production,
c f (x) = d ≥ 0—fixed cost of production,
c(y)—minimum cost of producing y output units, derived as an objective function
corresponding to an optimal solution to problem (P2m),
π(y) = r(y) − c(y)—firm’s profit as a function of output level,

π(x) = r(x) − ctot (x) = ax
1
4 − ax2 − d—firm’s profit as a function of a

production factor input.
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Tasks

1. Solve the profit maximization problem (P1m).
2. Present a geometric illustration of the profit maximization problem (P1m).
3. Give an economic interpretation of necessary and sufficient conditions of the

existence of an optimal solution to problem (P1m).
4. Solve the cost minimization problem (P2m).
5. Present a geometric illustration of the cost minimization problem (P2m).
6. Give an economic interpretation of necessary and sufficient conditions of the

existence of an optimal solution to problem (P2m).
7. Solve the profit maximization problem (P3m).
8. Present a geometric illustration of the profit maximization problem (P3m).
9. Give an economic interpretation of necessary and sufficient conditions of the

existence of an optimal solution to problem (P3m).
10. Justify that the profit maximizations problems (P1m) and (P3m) are equiva-

lent.
11. Determine the optimal price by which a monopoly obtains the maximum

profit.

Ad 1 The profit maximization problem (P1m) has a form:

π(x) =
{
ax

1
4 − (

ax2 + d
)} |→ max(4.257)

x ≥ 0.(4.258)

Since the production function from assumption (F2) is strictly concave then a
revenue function is strictly concave too. At the same time, a production total cost
function is strictly convex. As a result, a monopoly profit function is strictly concave.

It is known that when a profit function is strictly concave then problem (P1m) can
have:

• no optimal solution when revenue from sales of a product is lower than the total
cost of production,

• exactly one optimal solution x = 0 which, due to the positive fixed cost of
production, corresponds to a loss equal to the fixed cost,

• exactly one optimal solution x > 0 which, with the sufficiently low fixed cost of
production, corresponds to the positive profit.

A condition ensuring the existence of a unique and positive optimal solution to
problem (P1m) has a form:

lim
x→0+

dπ(x)

dx
> 0 ∧ lim

x→+∞
dπ(x)

dx
< 0

⇔ lim
x→0+

dr(x)

dx
> lim

x→0+
dctot (x)

dx
∧ lim

x→+∞
dr(x)

dx
< lim

x→+∞
dctot (x)

dx
,(4.259)
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which means that from the strict concavity of the monopoly profit function it results
that by a relatively big production factor input the marginal revenue is lower than
the marginal production cost, while by a relatively small production factor input the
marginal revenue is higher than the marginal production cost.

Let us determine a marginal profit function in problem (P1m) and check if it
satisfies condition (4.259):

dπ(x)

dx
= dr(x)

dx
− dctot (x)

dx
= 1

4
ax− 3

4 − 2ax .(4.260)

Let us notice that:

lim
x→+∞

dπ(x)

dx
= lim

x→+∞

(
1

4
ax− 3

4 − 2ax

)
= −∞ < 0(4.261)

and

lim
x→0+

dπ(x)

dx
= lim

x→0+

(
1

4
ax− 3

4 − 2ax

)
= +∞ > 0.(4.262)

Since condition (4.259) is satisfied then we can determine an optimal solution to
problem (P1m) from the following equation:

∃1x > 0
dπ(x)

dx

||||
x=x

= 0,(4.263)

whichmeans that there exists a production factor input such that themarginal revenue
is equal to marginal production cost.

Hence:

dπ(x)

dx

||||
x=x

= 1

4
ax− 3

4 − 2ax = 0,(4.264)

and after some transformations, we get

x = 2− 12
7 > 0.(4.265)

Let us substitute the optimal solution obtained above into the profit function:

π(x) = ax
1
4 − (ax + d).(4.266)

After transformations, we get

π(x) = 7a2− 24
7 − d.(4.267)

If the fixed cost satisfies a condition 0 ≤ d < 7a2− 24
7 then the maximum profit

that a monopoly can obtain is positive.
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Ad 2 It is worth noticing that inputs denoted in Fig. 4.22a as x̂ j , j = 1, 2, 3, 4
are break-even points (profitability thresholds) of a monopoly determined by
level of the production total cost, depending especially on the fixed production cost.
They correspond to graphs of the cost functions (1) and (2) when the fixed cost is
sufficiently low to ensure positive profit for some inputs of a production factor. A
condition to obtain the positive profit in both these cases is that the production factor
input passes the first (x̂1 or x̂2) break-even point and does not pass the second (x̂3

or x̂4) break-even point. In cases when graphs of the cost functions are curves (3) or
(4) there is no break-even point and the maximum profit of a monopoly is zero or
negative and equal to minimal loss incurred by a monopoly performing production
activity.

Ad 3 On the basis of Figs. 4.22a, 4.22b and 4.22c, one can state that a necessary
and sufficient condition for the existence of the optimal solution x > 0 to problem
(P1m) is satsifed when for the optimal production factor input the marginal profit

Fig. 4.22a Graphs of
revenue function and
production total cost function

Fig. 4.22b Graphs of profit
function
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Fig. 4.22c Graphs of
marginal revenue function
and marginal production cost
function

equals 0 or equivalently when the marginal revenue from sales of a product equals
the marginal production cost.

Let us also determine the value of a second derivative of the profit function using
the optimal solution to problem (P1m) as its argument:

d2π(x)

dx2

||||
x=x

= − 3

16
ax− 7

4 − 2a < 0, since x = 2− 12
7 > 0.(4.268)

Hence, we can see that using the optimal input x = 2− 12
7 of a production factor

a monopoly obtains the maximum profit. From the analysis which is conducted
above it results that since the profit function is strictly concave then condition
(4.263) is necessary and sufficient for the existence of the optimal solution to
problem (P1m). Condition (4.259) in turn ensures that x > 0.

Ad 4 The cost minimization problem (P2m) when producing y output units has a
form:

ctot (x) = (
ax2 + d

) |→ min(4.269)

ax
1
2 = y = const.,(4.270)

x ≥ 0.(4.271)

Since a set of feasible solutions to this problem has only one element, then a
production factor input resulting from (4.270) is the optimal solution to this problem:

~x =
( y

a

)2
,(4.272)

and is positive by the positive output level.
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A monopoly minimal cost function of producing y output units corresponds to
this solution:

ctot (~x) = a
( y

a

)4 + d = a−3y4 + d = c(y),(4.273)

and is nonlinear and strictly convex function of the output level.

Ad 5 See Figs. 4.23a and 4.23b.

Ad 6 In problem (P2m) exactly one production factor input corresponds to exactly
one fixed output level. This production factor input is at the same time the only one

Fig. 4.23a Illustration of
problem (P2m)

Fig. 4.23b Graphs of firm
minimal cost function of
producing y output units
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solution to problem (P2m). As a consequence, a set of feasible solutions has only one
element. In this case, independently of an optimality criterion, the only one feasible
solution to the problem is at the same time its only one optimal solution.

Ad 7 The profit maximization problem (P3c) has a form:

π(y) = r(y) − c(y) =
{
a

1
2 y

1
2 − (

a−3y4 + d
)} |→ max,(4.274)

y ≥ 0.(4.275)

The revenue function is nonlinear and strictly concave. The monopoly minimal
cost function of producing y output units is nonlinear and strictly convex. Thus, the
profit function is a strictly concave function of the output level.

It is known that when a profit function is strictly concave then problem (P3m)
can have:

• no optimal solution when revenue from sales of a product is lower than the firm
minimum cost of producing y output units,

• exactly one optimal solution y = 0 which, due to the positive fixed cost of
production, corresponds to a loss equal to the fixed cost,

• exactly one optimal solution y > 0 which, by the sufficiently low fixed cost of
production, corresponds to the positive profit.

A condition ensuring the existence of a unique and positive optimal solution to
problem (P3m) has a form:

lim
y→0+

dπ(y)

dy
> 0 ∧ lim

y→+∞
dπ(y)

dy
< 0 ⇔

⇔ lim
y→0+

dr(y)

dy
> lim

y→0+
dc(y)

dy
∧ lim

y→+∞
dr(y)

dy
< lim

y→+∞
dc(y)

dy
,(4.276)

which means that from the strict concavity of the firm’s profit function it results
that by a relatively small output level the marginal revenue is higher than the
marginal production cost, while by a relatively big output level the marginal
revenue is lower than the marginal production cost.

Let us determine a marginal profit function in problem (P3m) and check if it
satisfies condition (4.276):

dπ(y)

dy
= dr(y)

dy
− dc(y)

dy
= 1

2
a

1
2 y− 1

2 − 4a−3y3.(4.277)
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Let us notice that:

lim
y→0+

dπ(y)

dy
= lim

y→0+

(
1

2
a

1
2 y− 1

2 − 4a−3y3
)

= +∞ > 0(4.278)

and

lim
y→+∞

dπ(y)

dy
= lim

y→+∞

(
1

2
a

1
2 y− 1

2 − 4a−3y3
)

= −∞ < 0.(4.279)

Since condition (4.276) is satisfied then we can determine an optimal solution
to problem (P3m) from the following equation:

∃1y > 0
dπ(y)

dy

||||
y=y

= 0,(4.280)

which means that there exists an output level such that the marginal revenue from
sales of a product is equal to the marginal minimal cost of producing y output
units.

Hence:

dπ(y)

dy

||||
y=y

= 1

2
a

1
2 y− 1

2 − 4a−3y3 = 0(4.281)

and after some transformations, we get

y = a2− 6
7 > 0.(4.282)

Let us substitute the optimal solution to problem (P3m) obtained above into the
profit function:

π(y) = p(y)y − c(y) = a
(
2− 3

7 − 2− 24
7

)
− d.(4.283)

After transformations, we get

π(y) = 7a2− 24
7 − d.(4.284)

If the fixed cost satisfies a condition 0 ≤ d < 7a2− 24
7 then the maximum profit

that a firm can obtain is positive.

Ad 8 See Figs. 4.24a, 4.24b and 4.24c.
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Fig. 4.24a Graphs of
revenue function and firm
minimal cost function of
producing y output units

Fig. 4.24b Graphs of profit
function

Fig. 4.24c Graphs of
marginal revenue function
and marginal minimal cost
function of producing y
output units
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Ad 9 On the basis of Figs. 4.24a, 4.24b and 4.24c one can state that a necessary
and sufficient condition for the existence of the optimal solution y > 0 to problem
(P3m) is satisfied when for the optimal output level the marginal profit equals 0 or
equivalently when the marginal revenue from sales of a product equals the marginal
minimal production cost of producing y output units.

Let us also determine a value of a second derivative of the profit function using

the optimal solution to problem (P3m) as its argument: 12a
1
2 y− 1

2 − 4a−3y3

d2π(y)

dy2

||||
y=y

= −1

4
a

1
2 y− 3

2 − 12a−3y2 < 0, since y = a2− 6
7 > 0.(4.285)

Hence we can see that having the optimal output level y = a2− 6
7 a monopoly

obtains the maximum profit. From the analysis we have conducted above, it results
that since the profit function is strictly concave then condition (4.280) is necessary
and sufficient for existence of the optimal solution to problem (P3m). Condition
(4.276) in turn ensures that y > 0.

Ad 10 To show that problems (P1m) and (P3m) are equivalent let us notice that:

(1) For x = 2− 12
7 > 0 and y = a2− 6

7 > 0, we have

π(x) = 7a2− 24
7 − d = π(y).(4.286)

(2) Knowing the optimal solution to problem (P1m) and substituting it into the
production function, we get the optimal solution to problem (P3m):

y = f (x) = ax
1
2 = a2− 6

7 .(4.287)

(3) Knowing the optimal solution to problem (P3m) and substituting it into the
optimal solution to problem (P2m), we get the optimal solution to problem
(P1m):

~x =
(
y

a

)2

=
(
2− 6

7

)2 = 2− 12
7 = x,(4.288)

whichmeans that profitmaximization problems (P1m) and (P3m) are equivalent.

Ad 11 The price of a product manufactured by a monopoly is assumed to have a

form: p(y) =
(
a
y

) 1
2
. Thus, the optimal price by which a monopoly can obtain the

maximum profit is

p(y) =
(
a

y

) 1
2 = 2

3
7 > 0.(4.289)
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4.6.2 Dynamic Approach

A monopoly, as the only one company manufacturing a given product, sets its price
itself. Hence the product price depends on the monopoly supply of a product.
Since a monopoly reports big demand for production factors it influences also
their prices set by suppliers of production factors. In the static approach presented
in Sect. 4.5.2, we assume that a price of a product is a decreasing function of
product supply (output level) and a price of each production factor is an increasing
function of production factor input. But these functions are time invariant in the
static approach. Now, in the dynamic approach, we assume that forms of these
functions can change over time which reflects the fact that a monopoly takes into
account changes in demand for its product and suppliers of production factors can
change a way they set prices of their products. Let us use the following notation:

t—time as discrete (t = 0, 1, 2, . . . , T ) or as continuous25 variable (t ∈ [0; T ]),
T—end of the time horizon,
p(y(t)) > 0—a time-variant price of a product manufactured by a firm as a
decreasing function of product supply,
x(t) = (x1(t), x2(t)) ≥ 0—a vector of inputs of production factors that a
monopolist uses in the production process in period/at moment t ,
c((x(t)) = (c1(x1(t)), c2(x2(t))) > 0—a vector of time-variant prices of pro-
duction factors, each of whom is an increasing function of production factor
input,
y = f (x(t)) —a production function,
d(t) ≥ 0—time-variant fixed cost of production, that is, the cost not depending
on the output level nor on inputs of production factors.

The monopoly profit maximization problem with regard to inputs of production
factors has a form:

π(x(t)) = r(x(t)) − ctot (x(t))

= {p( f (x(t))) · f (x(t)) − (c1(x1(t)) · x1(t) + c2(x2(t)) · x2(t) + d(t))}
|→ max

(4.290)

x(t) ≥ 0.(4.291)

The production function is assumed to be strictly concave and increasing with
respect to inputs of production factors. The function of production total cost is
strictly convex and increasing with respect to inputs of production factors. As a
consequence, the profit function π(x(t)) is strictly concave and in every period/at

25 For the discrete and continuous versions, we use the same denotation of the dependence of the
function value on time, for example, the fixed production cost on time: d(t). Whether the discrete
or continuous version is used in a given formula will result from the context of the issue under
consideration.
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any moment t Problem (4.290)–(4.291) has a solution x(t) > (0, 0). The necessary
condition for the existence of maximum profit is

∂π(x(t))
∂xi (t)

||||
x(t)=x(t)

= 0 ⇔ ∂r(x(t))
∂xi (t)

||||
x(t)=x(t)

= ∂ctot (x(t))
∂xi (t)

||||
x(t)=x(t)

i = 1, 2, ∀t,(4.292)

where t = 0, 1, 2, . . . , T or t ∈ [0; T ].
From the profit maximization problem, one gets a vector x(t) optimal inputs

of production factors which change over time due to the fact that a form of price
product function and a vector of prices of production factors change over time.

In the dynamic approach, the output level fixed by a monopoly as desired to
produce is also time variant. Hence the production cost minimization problem for
a monopoly has a form:

ctot (x(t)) = {c1(x1(t)) · x1(t) + c2(x2(t)) · x2(t) + d(t)} |→ min(4.293)

f (x(t)) = y(t)(4.294)

x(t) ≥ 0.(4.295)

In the case of a monopoly, the optimality condition for a vector of inputs of
production factors takes the form26:

σ12(~x(t)) = ∂ f (x)
∂x1

||||
x(t)=~x(t)

: ∂ f (x)
∂x2

||||
x(t)=~x(t)

=
x̃1(t) · dc1(x1(t))

dx1(t)

|||
x(t)=x̃(t)

+ c1(x̃1(t))

x̃2(t) · dc2(x2(t))
dx2(t)

|||
x(t)=x̃(t)

+ c2(x̃2(t))
∀ t,(4.296)

where t = 0, 1, 2, . . . , T or t ∈ [0; T ] and σ12(x̃(t)) means the marginal rate of
substitution of first production factor by the second production factor in a vector
of optimal inputs of production factors. The vector of optimal inputs is a solution
to a system of Eqs. (4.294) and (4.296).

From the problem of production cost minimization, one gets a vector ~x(t) of
optimal inputs of production factors which change over time due to the fact that a
vector of prices of production factors, the fixed cost and the fixed output level y(t)
change over time. The optimal solution depends on value of y(t) which is time

26 This condition results from the method of solving the problem of conditional minimization
problem for a production total cost function. In the method, the necessary condition of minimum
existence takes the form of a system of equations presenting partial derivatives of a Lagrange
function. The method is presented in Sect. 4.6.1.
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variant in the dynamic approach. Substituting this solution into the production total
cost function, we get a monopoly minimal cost function of producing y(t) output
units, depending on value of y(t):

min ctot (x(t)) = ctot (~x(t))
= c1(x̃1(t)) · x̃1(t) + c2(x̃2(t)) · x̃2(t) + d(t) = c(y(t)).(4.297)

The profit maximization problem with regard to the output level for a monopoly
has a form:

π(y(t)) = r(y(t)) − c(y(t)) = {p(y(t)) · y(t) − c(y(t))} |→ max(4.298)

y(t) ≥ 0.(4.299)

The revenue function is strictly concave and increasing with respect to the out-
put level. The firm minimal cost function of producing y(t) output units is strictly
convex and increasing with respect to the output level. As a consequence, the profit
function π(y(t)) is strictly concave and in every period/at any moment t Problem
(4.298)–(4.299) has a solution y(t) > 0. The necessary condition for the existence
of maximum profit is

dπ(y(t))

dy(t)

||||
y(t)=y(t)

= 0 ⇔ dr(y(t))

dy(t)

||||
y(t)=y(t)

= dc(y(t))

dy(t)

||||
y(t)=y(t)

∀t,
(4.300)

where t = 0, 1, 2, . . . , T or t ∈ [0; T ].
From the profit maximization problem, one gets the optimal output level y(t)

which changes over time due to the fact that a form of price product function and
a vector of prices of production factors change over time. The optimal price of a
product manufactured by a monopoly is p(y(t)) and is time variant in the dynamic
approach.

Example 4.6 A production process in a firm acting as a monopoly is described by
a one-variable production function of a form27:

f (x(t)) = x(t)0.5.

27 One can find analogies of this example to Example 4.5 with a monopoly in the static approach
and to Example 4.2 with the dynamic approach and a firm acting in perfect competition.
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A price of a product manufactured by this monopoly changes according to a
function of a form:

p(y(t)) =
(
a(t)

y(t)

)0.5

, where a(t) > 0 ∀t,

and a production factor price changes in the following way:

c(x(t)) = C(t)x(t), where C(t) > 0 ∀t .

One can notice that a product price decreases when the product supply
increases. How fast it decreases depends on a value of a(t). Hence, this value
reflects changes that occur in the demand reported by consumers for a product
manufactured by a monopoly. At the same time, the price of a production factor
set by its supplier increases when the demand reported by a monopoly for this pro-
duction factor increases. How fast it increases depends on a value of C(t). Hence,
this value reflects changes that occur in the way the supplier of a production factor
reacts to the demand reported by a monopoly.

Let us assume that at any moment t ∈ [0; 30], a value of a(t), a value of C(t)
and the fixed production cost change according to equations:

a(t) = 20.1t + 5,

C(t) = 2−0.1t ,

d(t) =
(
0.006t2 − 0.1t + 3

)2
t

480 · 0.98t − t

30
+ 1.

Trajectories of these values are presented in Fig. 4.25. The way the values of
a(t) and C(t) change influences the results of optimization problems, that is, the
production factor optimal input, the product optimal supply as well as the product
optimal price.

For the data given in this example, the monopoly profit maximization problem
with regard to production factor input takes the form:

π(x(t)) = r(x(t)) − ctot (x(t)) =
{
a(t)0,5x(t)0,25 − C(t)x(t)2 − d(t)

}
|→ max

x(t) ≥ 0.

The solution of the profit maximization problem is the optimal input of a
production factor:

x(t) = 2− 12
7 a(t)

2
7C(t)−

4
7 ,
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Fig. 4.25 Trajectories of a(t), C(t) and fixed cost

and from its form it can be noticed that the production factor optimal input is the
bigger the higher the value of a(t) is and the lower the value of C(t) is. Eventually
the input depends on the interrelation of these two values. This is reflected in
Fig. 4.26.

A trajectory of the monopoly maximal profit is presented in Fig. 4.27. The
bigger production factor input involves not only the bigger output and hence the
higher revenue from sales of a product but also the higher production cost related
to a higher price of a production factor due to the bigger demand for this factor
reported by a monopoly. The revenue depends on a(t), while the production cost
on C(t). The profit level, besides depending on a(t) and C(t), is influenced also
by a level of the fixed production cost d(t).

In the production cost minimization problem, a monopoly fixes at any moment t
what the output level y(t) it wants to achieve is. Let us assume that at any moment
t ∈ [0; 30] this level is determined by a monopoly according to an equation28:

y(t) = −0.0035(t − 15)2 + 1.25.

For the data given in this example, the production cost minimization problem
for a monopoly takes the form:

ctot (x(t)) = C(t)x(t)2 + d(t) |→ min

28 The same equation for the output level fixed by a firm is assumed in examples related to the per-
fect competition, that is, Examples 4.2 and 4.4. A trajectory of this fixed output level is presented
in Fig. 4.7 in Example 4.2.
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Fig. 4.26 Trajectory of demand for production factor—case of monopoly
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Fig. 4.27 Trajectory of monopoly maximum profit

x(t)0.5 = y(t)

x(t) ≥ 0,

and its solution is the production factor optimal:

~x(t) = y(t)2,
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Fig. 4.28 Trajectory of conditional demand for a production factor—case of monopoly

whose trajectory, presented in Fig. 4.28, is exactly the same as the trajectory of
the conditional demand for a production factor in Example 4.2 when a firm is
considered to be acting in the prefect competition.

The fact that the production cost minimization problem actually differs from
the analogical problem in the case of a firm acting in the perfect competition is
revealed in a form of the minimal cost of producing y(t) output units which for
the data given in this example takes the form:

c(y(t)) = C(t)y(t)4 + d(t),

and its trajectory is presented in Fig. 4.29. In the case of the perfect competition
firm, we get a result29:

c(y(t)) = c(t)y(t)2 + d(t).

For the data given in the example, the monopoly profit maximization problem
with regard to output level takes the form:

π(y(t)) = r(y(t)) − c(y(t)) =
{
a(t)0,5 · y(t)0,5 − C(t)y(t)4 − d(t)

}
|→ max

y(t) ≥ 0.

29 See Example 4.2 in Sect. 4.4.2.
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Fig. 4.29 Trajectory of minimum production cost—case of monopoly

The solution of the profit maximization problem is the optimal supply of a
product:

y(t) = 2− 6
7 a(t)

1
7C(t)−

2
7 ,

and from its form it can be noticed that the product optimal supply is the bigger the
higher the value of a(t) is and the lower the value of C(t) is. Eventually the supply
depends on the interrelation of these two values. This is reflected in Fig. 4.30.

The monopoly maximum profit resulting from the profit maximization prob-
lem with regard to output level has the same form as the monopoly maximum
profit in the profit maximization problem with regard to production factor input.
Its trajectory is presented in Fig. 4.27.

The product optimal price as a value of the product price function by the
optimal product supply takes the form:

p(y(t)) =
(
a(t)

y(t)

)0.5

= 2
3
7 a(t)

3
7C(t)

1
7 .

From the form of this function, it can be noticed that the product optimal price
is the higher the higher the value of a(t) is and the lower the value of C(t) is.
Hence the price of a monopoly product depends on changes that occur in the
demand reported by consumers for this product and on changes that a supplier
of a production factor introduces when setting a price of this factor. A trajectory
of the optimal price is presented in Fig. 4.31. In the considered time horizon, it
reaches its minimum at moment t ≈ 13.
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Fig. 4.30 Trajectory of optimal product supply—case of monopoly
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Fig. 4.31 Trajectory of optimal product supply—case of monopoly

4.7 Monopoly—Short-Term Strategy

4.7.1 Static Approach

Let us use the following notation:

p(y) > 0, dp(y)
dy < 0—a price of a product manufactured by a monopoly as a

decreasing function of product supply, set by a monopoly,
c = (c1(x1), c2(x2)) > (0, 0), dci (xi )

dxi
> 0, i = 1, 2—a vector of prices of

production factors, each of whom is an increasing function of demand reported
by a monopoly for a given production factor,
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x = (x1, x2) ≥ (0, 0)—a vector of inputs of production factors,
b = (b1, b2) > (0, 0)—a vector of resources of production factors,
B = [0; b1] × [0; b2] ⊂ X = R

2+—a set of constraints on resources of
production factors,
w = f (b1, b2)—an output level constrained due to production factors’
limitation,
W = [0; f (b1, b2)] = [0;w]—a set constraining the output level,
y = f (x1, x2)—an output level,
r(y) = p(y)y—revenue (turnover) from sales of a manufactured product as a
function of product supply,
r(x1, x2) = p( f (x1, x2)) f (x1, x2)—revenue (turnover) from sales of a manu-
factured product as a function of inputs of production factors,
ctot (x1, x2) = c1(x1)x1 + c2(x2)x2 + d—total cost of production as a nonlinear
function of inputs of production factors,
cv(x1, x2) = c1(x1)x1 + c2(x2)x2—variable cost of production as a function of
inputs of production factors,
c f (x1, x2) = d—fixed cost of production,
c(y)—minimum cost of producing y output units,
π(y) = r(y)−c(y) = p(y)y−c(y)—firm’s profit as a function of output level,
π(x1, x2) = r(x1, x2) − ctot (x1, x2)—firm’s profit as a function of inputs of
production factors.

Problem of profit maximization with regard to inputs of production factors
whose resources are limited (P1m-s)

The aim of a monopoly is to maximize its profit expressed as a function of inputs
of production factors whose resources are limited, which can be written as a
problem to solve in the following way:

π(x1, x2) = r(x1, x2) − ctot (x1, x2)

= {p( f (x1, x2)) f (x1, x2) − (c1(x1)x1 + c2(x2)x2 + d)} |→ max(4.301)

xi ≤ bi , i = 1, 2,(4.302)

x1, x2 ≥ 0.(4.303)

Since a production function from assumption (F2) is strictly concave then a
revenue function is strictly concave too. At the same time, a production total cost
function is strictly convex. As a result, a firm’s profit function is strictly concave.
Moreover, we are interested in an optimal solution x = (x1, x2) > (0, 0) for which
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the profit π(x1, x2) is the maximum. As a consequence, we have.

∀i = 1, 2 lim
xi→0+

∂π(x1, x2)

∂xi
> 0 ∧ lim

xi→+∞
∂π(x1, x2)

∂xi
< 0

⇔ lim
xi→0+

∂r(x1, x2)

∂xi
> lim

xi→0+
∂ctot (x1, x2)

∂xi

∧ lim
xi→+∞

∂r(x1, x2)

∂xi
< lim

xi→+∞
∂ctot (x1, x2)

∂xi

∃1 x > 0
∂π(x)
∂xi

||||
x=x

= 0 ⇔ ∂r(x)
∂xi

||||
x=x

= ∂ctot (x)
∂xi

||||
x=x

i = 1, 2

(4.304)

If a vector x = (x1, x2) > (0, 0) satisfies Constraint (4.302) then this vector
is an optimal solution to the problem (P1m-s). Otherwise, to solve the problem
(P1m-s) one needs to use Kuhn-Tucker theorem. Let us write the problem using a
Lagrange function:

L(x,λ) = {π(x) + λ1(b1 − x1) + λ2(b2 − x2)} → max.(4.305)

Then necessary and sufficient conditions for the existence of optimal solution
to problem (P1m-s) have a form:

x̄1

(
∂r(x)
∂x1

||||
x=x

− ∂ctot (x)
∂x1

||||
x=x

− λ̄1

)

+x̄2

(
∂r(x)
∂x2

||||
x=x

− ∂ctot (x)
∂x2

||||
x=x

− λ̄2

)
= 0,

(4.306)

λ1(b1 − x1) + λ2(b2 − x2) = 0,(4.307)

where λi = ∂π(x)
∂bi

|||
x=x

≥ 0, i = 1, 2 means an optimal Lagrange multiplier which

determines by how much the maximum value of the profit function π : R
2+ → R

approximately increases when a value of parameter bi increases by one notional
unit.

If λi > 0 then the i-th constraint on resources is binding. When λi = 0 then
the i-th constraint is not binding.

If we are interested only in a positive optimal solution x > 0 to problem (P1m-
s) then Condition (4.306) is satisfied if and only if:

∂r(x)
∂xi

||||
x=x

− ∂c∧tot(x)
∂xi

||||
x=x

− λi = 0, i = 1, 2.(4.308)

If ∀i = 1, 2 λi = 0 then condition (4.308) takes the form:

∂r(x)
∂xi

||||
x=x

= ∂ctot (x)
∂xi

||||
x=x

, i = 1, 2(4.309)
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This takes place when any constraint on resources is not binding, which means
that:

x = xG ≤ b.(4.310)

In the case when no constraint on resources is binding then an optimal solu-
tion x = xG to problem (P1m-s) is identical to a global maximum that a strictly
concave function π : R

2+ → R reaches in space X = R
2+. Then the conditional

maximization problem is the same as the unconditional maximization problem.
In the case when ∀i λi > 0 then each constraint on resources is binding and

condition (4.306) is satisfied in the initial form. At the same time, from Condition
(4.307) we get that

xi = bi , i = 1, 2.(4.311)

In this case, an optimal solution to problem (P1m-s) is a vector x = xL = b
such that xG > xL . Then a stationary point x = xL is called a local maximum of
a function π : R

2+ → R in a set B ⊂ X = R
2+.

Two other cases should be also considered. If λ1 > 0 while λ2 = 0 then
one obtains the optimal solution to problem (P1m-s) from the following equation
system:

x1 = b1,(4.312)

∂r(x)
∂x2

||||
x=x

= ∂ctot (x)
∂x2

||||
x=x

.(4.313)

If λ1 = 0 while λ2 > 0 then one obtains an optimal solution to problem (P1m-s)
from the following equation system:

∂r(x)
∂x1

||||
x=x

= ∂ctot (x)
∂x1

||||
x=x

,(4.314)

x2 = b2.(4.315)

In both cases, an optimal solution to problem (P1m-s) is a vector x = xL < b
such that30 xG > xL . Then a stationary point x = xL is called a local maximum
of a function π : R

2+ → R in a set B ⊂ X = R
2+.

30 The notation x > y means that at least one of coordinates of a vector x is bigger than the cor-
responding coordinate of a vector y while the other corresponding coordinates are equal to each
other.
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Definition 4.41 A function of demand for production factors is a mapping ψ :
int R

2+ → int R
2+ which assigns an optimal solution of problem (P1m-s) to any

price p( f (x1, x2)) of a product and any price c(x1, x2) = (c1(x1), c2(x2)) in the
following way:

ψ(p( f (x)), c(x)) = x = (x1, x2).(4.316)

Definition 4.42 A monopoly maximal profit function is a mapping ∏ : int R
2+ ×

R+ → int R+ which assigns maximum profit to any price p( f (x1, x2)) of a product,
any price c(x1, x2) = (c1(x1), c2(x2)) of production factors and any fixed cost d in
the following way:

∏(p( f (x)), c(x), d) = π(x).(4.317)

Problem of cost minimization when producing the output at a fixed level with
limited resources of production factors (P2m-s)

The aim of a monopoly is to produce y ≥ 0 units of output at minimum total cost
when resources of production factors are limited. This problem can be written in
the following way:

ctot (x1, x2) = {c1(x1)x1 + c2(x2)x2 + d} |→ min(4.318)

f (x1, x2) = y = const. > 0,(4.319)

xi ≤ bi , i = 1, 2,(4.320)

x1, x2 ≥ 0.(4.321)

One can express problem (P2m-s) using a Lagrange function:

L(x1, x2, λ) = {c1(x1)x1 + c2(x2)x2 + d + λ1(b1 − x1)

+λ2(b2 − x2) + λ(y − f (x1, x2))} |→ min.(4.322)

Then necessary and sufficient conditions for the existence of an optimal solution
to problem (P2m-s) have a form:

x̃1
∂L

(
x,~λ

)

∂x1

|||||
x=~x

+ x̃2
∂L

(
x,~λ

)

∂x2

|||||
x=~x

= 0,(4.323)

λ̃1
∂L(x̃,λ)

∂λ1

||||
λ= λ̃

+ λ̃2
∂L(x̃,λ)

∂λ2

||||
λ=λ̃

+ λ̃
∂L(x̃,λ)

∂λ

||||
λ=λ̃

= 0.(4.324)
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If we are interested only in a positive optimal solution~x > 0 to problem (P2m-
s) then condition (4.323) is satisfied if and only if:

∂ci (xi )

∂xi

||||
x=~x

x̃i + ci (xi ) −~λi −~λ
∂ f (x1, x2)

∂xi

||||
x=~x

= 0, i = 1, 2,(4.325)

If ∀i = 1, 2 ~λi = 0 and~λ > 0 then one obtains the optimal solution to problem
(P2m-s) from the following equation system:

∂ci (xi )

∂xi

||||
x=~x

x̃i + ci (xi ) =~λ
∂ f (x1, x2)

∂xi

||||
x=~x

, i = 1, 2,(4.326)

f (x̃1, x̃2) = y.(4.327)

In this case, no constraint on resources is binding then an optimal solution
~x =~xG to problem (P2m-s) is identical to a global minimum that a strictly convex
function ctot : R

2+ → R reaches in space X = R
2+.

In the case when ∀i = 1, 2 ~λi > 0 then each constraint on resources is bind-
ing and one obtains the optimal solution to problem (P2m-s) from the following
equation system:

~xi = bi , i = 1, 2,(4.328)

f (x̃1, x̃2) = y.(4.329)

In the case when~λ1 > 0 while~λ2 = 0 then a constraint on resource of the first
production factor is binding and a constraint on resource of the second production
factor is not binding. Then one obtains the optimal solution to problem (P2m-s)
from the following equation system:

~x1 = b1,(4.330)

∂c2(x2)

∂x2

||||
x=~x

x̃2 + c2(x2) =~λ
∂ f (x1, x2)

∂x2

||||
x=~x

,(4.331)

f (x̃1, x̃2) = y.(4.332)

In the case when ~λ1 = 0 while ~λ2 > 0 then a constraint on resource of the
first production factor is not binding and a constraint on resource of the second
production factor is binding. Then one obtains the optimal solution to problem
(P2m-s) from the following equation system:

∂c1(x2)

∂x1

||||
x=~x

x̃1 + c1(x2) =~λ
∂ f (x1, x2)

∂x1

||||
x=~x

,(4.333)
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~x2 = b2,(4.334)

f (x̃1, x̃2) = y.(4.335)

When one or both of ~λ1,~λ2 Lagrange multipliers are positive one gets the
optimal solution ~x = ~xL such that ~xG > ~xL . Then a stationary point ~x = ~xL is
called a local minimum of a function ctot : R

2+ → R in a set B ⊂ X = R
2+.

Definition 4.43 A function of conditional demand for production factors is a
mapping ξ : int R

3+ → int R
2+ which assigns an optimal solution of problem (P2m-

s) to any output level y and any price c(x1, x2) = (c1(x1), c2(x2)) factors in the
following way:

ξ(c(x), y) =~x = (x̃1, x̃2).(4.336)

Definition 4.44 A monopoly minimal cost function is a mapping μ : int R
4+ →

int R+ which assigns minimum cost of producing y output units to any output level
y, any price c(x1, x2) = (c1(x1), c2(x2)) of production factors and any fixed cost d
in the following way:

μ(c(x), d, y) = ctot (~x) = c1(x̃1)x̃1 + c2(x̃2)x̃2 + d.(4.337)

If prices of production factors are determined and the fixed cost of production is
known then one can express the firm minimal cost function of producing y output
units as a function of output level:

μ(c(x), d, y) = c(y).(4.338)

Problem of profit maximization with regard to output level with limited
resources of production factors (P3m-s)

The aim of a monopoly is to maximize its profit expressed as a function of output
level when resources of production factors are limited. This problem can be written
in the following way:

π(y) = r(y) − c(y) = {p(y)y − c(y)} |→ max(4.339)

y ≤ f (b1, b2),(4.340)

y ≥ 0.(4.341)

Since a revenue function is a strictly concave while a monopoly minimal cost
function of producing y output units is strictly convex then a firm’s profit function
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is strictly concave. Moreover, we are interested in an optimal solution y > 0 for
which the profit π(y) is the maximum. As a consequence, we have

lim
y→0+

dπ(y)

dy
> 0 ∧ lim

y→+∞
dπ(y)

dy
< 0

⇔ lim
y→0+

dr(y)

dy
> lim

y→0+
dc(y)

dy
∧ lim

y→+∞
dr(y)

dy
< lim

y→+∞
dc(y)

dy

∃1 y > 0
dπ(y)

dy

||||
y=y

= 0 ⇔ dr(y)

dy

||||
y=y

= dctot (y)

dy

||||
y=y

(4.342)

If a product optimal supply y > 0 satisfies Constraint (3.340) then this supply
is a solution to the problem (P3m-s). Otherwise, to solve the problem (P3m-s) one
needs to use Kuhn-Tucker theorem. Let us write the problem using a Lagrange
function:

L(y, λ) = {π(y) + λ( f (b1, b2) − y)} |→ max.(4.343)

Then necessary and sufficient conditions for the existence of optimal solution
to problem (P3m-s) have a form:

y
dL

(
y, λ

)

dy

|||||
y=y

= 0,(4.344)

λ
dL(y, λ)

dλ

||||
λ=λ

= 0.(4.345)

Condition (4.344) can be also written in equivalent forms:

y

(
dr(y)

dy

||||
y=y

− dc(y)

dy

||||
y=y

− λ

)

= 0(4.346)

or

y

(

y
dp(y)

dy

||||
y=y

+ p(y) − dc(y)

dy

||||
y=y

− λ

)

= 0.(4.347)

Condition (4.345) in turn can be written in the following way:

λ( f (b1, b2) − y) = 0,(4.348)

where λ = dπ(y)
d f (b1,b2)

|||
y=y

≥ 0 means an optimal Lagrange multiplier which

determines by how much the maximum value of the profit function π : R+ →
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R approximately increases when the constrained output level resulting from
constraints on resources of production factors increases by one notional unit.

If λ > 0 then the constraint on output level is binding and one gets an optimal
solution to problem (P3m-s) from Eq. (4.348):

y = yL = f (b1, b2).(4.349)

If λ = 0 then the constraint on output level is not binding and one gets an
optimal solution to problem (P3m-s) from Eq. (4.347):

y
dp(y)

dy

||||
y=y

+ p(y) = dc(y)

dy

||||
y=y

.(4.350)

In this case, y = yG which means that then an optimal solution y = yG to
problem (P3m-s) is identical to a global maximum that a strictly concave function
π : R+ → R reaches in space R+. Then the conditional maximization problem is
the same as the unconditional maximization problem.

Definition 4.45 A function of product supply is a mapping η : int R
2+ → int R+

which assigns an optimal solution of problem (P3m-s) to any price p( f (x1, x2)) of
a product and any price c(x1, x2) = (c1(x1), c2(x2)) of production factors in the
following way:

η(p( f (x)), c(x)) = y.(4.351)

Definition 4.46 Amonopoly maximal profit function is a mapping∏ : int R
3+ →

int R+ which assigns maximum profit to any price p( f (x1, x2) of a product, any
price c(x1, x2) = (c1(x1), c2(x2)) of production factors and any fixed cost d in the
following way:

∏(p( f (x)), c(x), d) = π(y).(4.352)

Definition 4.47 A monopoly optimal price function is a mapping p : int R
2+ →

int R+ which assigns the price guaranteeing the maximum profit to any production
function f (x) and any price c(x1, x2) = (c1(x1), c2(x2)) of production factors in
the following way:

p( f (x), c(x)) = p(y).(4.353)

Theorem 4.20 If assumptions of Theorem 4.16 are satisfied then problems (P1m-s)
and (P3m-s) are equivalent.

This means that:

• Knowing an optimal solution to problem (P1m-s) one can determine an optimal
solution to problem (P3m-s): y = f (x).
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• Knowing an optimal solution to problems (P3m-s) and (P2m-s) one can determine
an optimal solution to problem (P1m):~x = ξ(c(~x), y) = ψ(p( f (~x)), c(~x)) = x,

• π(x) = ∏(p( f (x)), c(x), d) = π(y).

Example 4.7 The following data is given:

y = f (x) = ax
1
2—an output level as a nonlinear function of a production factor

input,

p(y) =
(
a
y

) 1
2
—a price of a product manufactured by a monopoly,

x ≥ 0—an input of a production factor,
c1(x) = ax—aprice of a production factor as a linear function of demand reported
by a monopoly for this factor,
b > 0—a resource of a production factor,

w = f (b) = ab
1
2—an output level constrained due to the production factor

limitation,
r(y) = p(y)y = a

1
2 y

1
2—revenue (turnover) from sales of a manufactured

product as a nonlinear function of output level,

r(x) = p( f (x)) f (x) = x− 1
4 ax

1
2 = ax

1
4—revenue (turnover) from sales of a

manufactured product as a nonlinear function of a production factor input,
ctot (x) = c1(x)x+d = ax2+d—total cost of production as a nonlinear function
of a production factor input,
cv(x) = ax2—variable cost of production,
c f (x) = d ≥ 0—fixed cost of production,

π(x) = r(x) − ctot (x) = ax
1
4 − ax2 − d—firm’s profit as a function of a

production factor input,
π(y) = r(y) − c(y)—firm’s profit as a function of output level,
c(y)—minimal cost of producing y output units as an optimal solution to problem
(P2m-s).

Tasks

1. Solve the profit maximization problem (P1m-s).
2. Present a geometric illustration of the profit maximization problem (P1m-s).
3. Give an economic interpretation of necessary and sufficient conditions of the

existence of an optimal solution to problem (P1m-s).
4. Solve the cost minimization problem (P2m-s).
5. Present a geometric illustration of the cost minimization problem (P2m-s).
6. Give an economic interpretation of necessary and sufficient conditions of the

existence of an optimal solution to problem (P2m-s).
7. Solve the profit maximization problem (P3m-s).
8. Present a geometric illustration of the profit maximization problem (P3m-s).
9. Give an economic interpretation of necessary and sufficient conditions of the

existence of an optimal solution to problem (P3m-s).
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10. Justify that the profit maximization problems (P1m-s) and (P3m-s) are
equivalent.

11. Determine the optimal price by which a monopoly obtains the maximum
profit.

Ad 1 The profit maximization problem (P1m-s) has a form:

π(x) =
{
ax

1
4 − (

ax2 + d
)} |→ max(4.354)

0 ≤ x ≤ b.(4.355)

Since the production function from assumption (F2) is strictly concave then a
revenue function is strictly concave too. At the same time, a production total cost
function is strictly convex. As a result, a monopoly profit function is strictly concave.

It is known that when a profit function is strictly concave then problem (P1m-s)
can have:

• no optimal solution when revenue from sales of a product is lower than the total
cost of production,

• exactly one optimal solution x = 0 which, due to the positive fixed cost of
production, corresponds to a loss equal to the fixed cost,

• exactly one optimal solution x > 0 which, with the sufficiently low fixed cost
of production, corresponds to the positive profit.

A condition ensuring the existence of a unique and positive optimal solution to
problem (P1m-s) has a form:

lim
x→0+

dπ(x)

dx
> 0 ∧ lim

x→+∞
dπ(x)

dx
< 0

⇔ lim
x→0+

dr(x)

dx
> lim

x→0+
dctot (x)

dx
∧ lim

x→+∞
dr(x)

dx
< lim

x→+∞
dctot (x)

dx
,(4.356)

which means that from the strict concavity of the monopoly profit function it
results that by a relatively big production factor input the marginal revenue is
lower than the marginal production cost, while by a relatively small production
factor input the marginal revenue is higher than the marginal production cost.

Let us determine a marginal profit function in problem (P1m-s) and check if it
satisfies condition (4.356):

dπ(x)

dx
= dr(x)

dx
− dctot (x)

dx
= 1

4
ax− 3

4 − 2ax .(4.357)
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Let us notice that:

lim
x→+∞

dπ(x)

dx
= lim

x→+∞

(
1

4
ax− 3

4 − 2ax

)
= −∞ < 0(4.358)

and

lim
x→0+

dπ(x)

dx
= lim

x→0+

(
1

4
ax− 3

4 − 2ax

)
= +∞ > 0.(4.359)

Since condition (4.356) is satisfied then we can determine an optimal solution
to problem (P1m-s) from the following equation system:

x

(
dr(x)

dx

||||
x=x

− dctot (x)

dx

||||
x=x

− λ

)
= 0,(4.360)

λ(b − x) = 0.(4.361)

If x > 0, λ = 0 then the resource constraint is not binding and x = xG = 2− 12
7 .

If x > 0, λ > 0 then the resource constraint is binding and x = x L = b. Let us
substitute this optimal solution into the profit function:

π(x) = 7a2− 24
7 − d(4.362)

or

π(x) = ab
1
4 − (

ab2 + d
)
.(4.363)

If the fixed cost satisfies a condition 0 ≤ d < 7a2− 24
7 or equivalently a con-

dition 0 ≤ d < a
(
b

1
4 − b2

)
, where b ∈ (0, 1), then the maximum profit that a

monopoly can obtain is positive.

Ad 2 See Figs. 4.32a, 4.32b and 4.32c.

Ad 3 Conditions (4.360) and (4.361) are necessary and sufficient conditions for
the existence of an optimal solution to problem (P1m-s). If the production factor
resource equals b1 > 0 then the optimal solution, by which a monopoly obtains
its maximum profit, is x = x L = b1 equal to the production factor resource. If
the production factor resource equals b2 > 0 then the optimal solution, by which
a monopoly obtains its maximum profit, is x = xG > 0 and the production factor
resource is not entirely exploited. It is worth noticing that π

(
x L

)
< π

(
xG

)
, which

means that x = xG is the global maximum of the profit function obtained due to the
fact that the production factor resource is large enough.
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Fig. 4.32a Graphs of
revenue function and
production total cost function

Fig. 4.32b Graph of profit
function

Fig. 4.32c Graphs of
marginal revenue function
and marginal production cost
function

Ad 4 The cost minimization problem (P2m-s) when producing y output units and
when the production factor resource is limited takes the form:

ctot (x) = (
ax2 + d

) |→ min(4.364)

ax
1
2 = y = const.,(4.365)
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0 ≤ x ≤ b.(4.366)

Since a set of feasible solutions to this problem has only one element, then a
production factor input resulting from (3.365) is the optimal solution to this problem:

~x =
( y

a

)2 ≤ b,(4.367)

and is positive by the positive output level 0 < y ≤ ab
1
2 .

A monopoly minimal cost function of producing y output units corresponds to
this solution:

ctot (~x) = a
( y

a

)4 + d = a−3y4 + d = c(y),(4.368)

and is nonlinear and strictly convex function of the output level.

Ad 5 See Figs. 4.33a and 4.33b.

Ad 6 In problem (P2m-s) exactly one production factor input corresponds to exactly
one fixed output level. This production factor input is at the same time the only one
solution to problem (P2m-s). As a consequence, a set of feasible solutions has only
one element. In this case, independently of an optimality criterion, the only one
feasible solution to the problem is at the same time its only one optimal solution.

Ad 7 The profit maximization problem (P3c-s) when the output level is constrained
(due to the production factor resource limitation) takes the form:

π(y) = r(y) − c(y) =
{
a

1
2 y

1
2 − (

a−3y4 + d
)} |→ max,(4.369)

Fig. 4.33a Illustration of
problem (P2m-s)
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Fig. 4.33b Graphs of firm’s
minimal cost function of
producing y output units

0 ≤ y ≤ f (b).(4.370)

The revenue function is nonlinear and strictly concave. The monopoly minimal
cost function of producing y output units is nonlinear and strictly convex. Thus, the
profit function is a strictly concave function of the output level.

It is known that when a profit function is strictly concave then problem (P3m-s)
can have:

• no optimal solution when revenue from sales of a product is lower than the firm
minimum cost of producing y output units,

• exactly one optimal solution y = 0 which, due to the positive fixed cost of
production, corresponds to a loss equal to the fixed cost,

• exactly one optimal solution y > 0 which, by the sufficiently low fixed cost of
production, corresponds to the positive profit.

A condition ensuring the existence of a unique and positive optimal solution
to problem (P3m) has a form:

lim
y→0+

dπ(y)

dy
> 0 ∧ lim

y→+∞
dπ(y)

dy
< 0

⇔ lim
y→0+

dr(y)

dy
> lim

y→0+
dc(y)

dy
∧ lim

y→+∞
dr(y)

dy
< lim

y→+∞
dc(y)

dy
,(4.371)

which means that from the strict concavity of the firm’s profit function it results that
by a relatively small output level the marginal revenue is higher than the marginal
production cost, while by a relatively big output level the marginal revenue is lower
than the marginal production cost.
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Let us determine an optimal solution to problem (P3m-s) from the following
equation system:

y

(
dr(y)

dy

||||
y=y

− dc(y)

dy

||||
y=y

− λ

)

= 0,(4.372)

λ
(
ab

1
2 − y

)
= 0.(4.373)

If y > 0, λ = 0 then the constraint on output level is not binding and y = yG =
a2− 6

7 . When y > 0, λ > 0 then the constraint is binding and y = yL = ab
1
2 .

Let us substitute the optimal solutions obtained above into the profit function.
Then the firm’s maximum profit is

π(y) = 7a2− 24
7 − d(4.374)

or

π(y) = ab
1
4 − (

ab2 + d
)
.(4.375)

If the fixed cost satisfies a condition 0 ≤ d < 7a2− 24
7 or equivalently a condition

0 ≤ d < a
(
b

1
4 − b2

)
then the maximum profit that a monopoly can obtain is

positive.

Ad 8 See Figs. 4.34a, 4.34b and 4.34c.

Ad 9 Conditions (4.372) and (4.373) are necessary and sufficient conditions for the
existence of an optimal solution to problem (P3m-s). If the product supply resulting

from production factor limitation b1 equalsw1 = ab
1
2
1 > 0 then the optimal solution,

Fig. 4.34a Graphs of
revenue function and firm’s
minimal cost function of
producing y output units
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Fig. 4.34b Graph of profit
function

Fig. 4.34c Graphs of
marginal revenue function
and marginal minimal cost
function of producing y
output units

by which a monopoly obtains its maximum profit, is y = yL = w1. If the feasible

product supply resulting from production factor resource b2 equals w2 = ab
1
2
2 > 0

then the optimal solution, by which a monopoly obtains its maximum profit, is
y = yG > 0 and the production factor resource is not entirely exploited. It is worth
noticing that π

(
yL

)
< π

(
yG

)
, which means that y = yG is the global maximum

of the profit function obtained due to the fact that the production factor resource is
large enough.

Ad 10 To show that problems (P1m-s) and (P3m-s) are equivalent let us notice that:

(1) for x = 2− 12
7 > 0 and y = a2− 6

7 > 0 we have

π(x) = 7a2− 24
7 − d = π(y).(4.376)

(2) Knowing the optimal solution to problem (P1m-s) and substituting it into the
production function we get the optimal solution to problem (P3m-s):

y = f (x) = ax
1
2 = a2− 6

7 .(4.377)



272 4 Rationality of Choices Made by Individual Producers

(3) Knowing the optimal solution to problem (P3m-s) and substituting it into the
optimal solution to problem (P2m-s) we get the optimal solution to problem
(P1m-s):

~x =
(
y

a

)2

=
(
2− 6

7

)2 = 2− 12
7 = x,(4.378)

whichmeans that profitmaximization problems (P1m) and (P3m) are equivalent.

Ad 11 A price of a product manufactured by a monopoly is assumed to have a

form p(y) =
(
a
y

) 1
2
. Thus, the optimal price by which a monopoly can obtain the

maximum profit is

p(y) =
(
a

y

) 1
2 = 2

3
7 > 0 or p(y) =

( a

w

) 1
2 = b− 1

4 > 0.(4.379)

4.7.2 Dynamic Approach

In the short-term strategy, a monopoly determining optimal inputs of production
factors, an optimal output and an optimal price of a monopoly product takes into
account the limitations resulting from available resources of production factors.
They are binding if optimal inputs of production factors exceed their resources.
Then solutions to the profit maximizations problems and a solution to the produc-
tion cost minimization problem differ from analogical problems in the long-term
strategy. Let us use the same notation as in Sect. 4.6.2. Moreover, let us introduce
additional notation:

b(t) = (b1(t), b2(t)) > 0—a vector of time-variant resources of production
factors,
w(t) = f (b1(t), b2(t))—a time-variant output level constrained due to the
production factors’ limitation,
xG(t)—an optimal solution to the profit maximization problem with regard to
inputs of production factors whose resources are unlimited,
~xG(t)—an optimal solution to the production cost minimization problem when
resources of production factors are unlimited,
yG(t)—an optimal solution to the profit maximization problem with regard to
output level with unlimited resources of production factors.
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In short-term strategy,the monopoly profit maximization problem with regard to
inputs of production factors takes the form:

π(x(t)) = r(x(t)) − ctot (x(t))

= {p( f (x(t))) · f (x(t)) − (c1(x1(t)) · x1(t) + c2(x2(t)) · x2(t) + d(t))}
|→ max

(4.380)

xi (t) ≤ bi (t) i = 1, 2(4.381)

x(t) ≥ 0.(4.382)

Initially one solves problems (4.380)–(4.382) in the same way as the analogical
problem in the long-term strategy. After determining the optimal solution xG(t) we
compare it in each period/at any moment t of the considered time horizon with a
vector b(t) of resources of production factors. As a solution to the whole problem
in the short-term strategy one gets a vector of optimal inputs of production factors:

x(t) =
(
min

{
xG1 (t), b1(t)

}
,min

{
xG2 (t), b2(t)

})
.(4.383)

The production cost minimization problem in the short-term strategy has a sim-
ilar form to the analogical problem in the long-term strategy. The difference is
accounting additionally for the constraints on the resources of production factors:

ctot (x(t)) = {c1(x1(t)) · x1(t) + c2(x2(t)) · x2(t) + d(t)} |→ min(4.384)

f (x(t)) = y(t)(4.385)

xi (t) ≤ bi (t) i = 1, 2(4.386)

x(t) ≥ 0 .(4.387)

Initially one solves problems (4.384)–(4.387) in the same way as the analogical
problem in the long-term strategy. After determining the optimal solution ~xG(t),
we compare it in each period/at any moment t of the considered time horizon with
a vector b(t) of resources of production factors. As a solution to the whole problem
in the short-term strategy one gets a vector of optimal inputs of production factors:

x̃(t) =
(
min

{
x̃G1 (t), b1(t)

}
,min

{
x̃G2 (t), b2(t)

})
.(4.388)

Substituting this solution into the production total cost function, we get a
monopoly minimal cost function of producing y(t) output units, depending on
value of y(t):

min ctot (x(t)) = ctot (x̃(t)) =
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= c1(x̃1(t)) · x̃1(t) + c2(x̃2(t)) · x̃2(t) + d(t)

= c(y(t)).(4.389)

The profit maximization problem with regard to output level in the short-term
strategy has a similar form to the analogical problem in the long-term strategy.
The difference is accounting additionally for the constraint on the output level due
to the limitations of the resources of production factors. In short-term strategy, the
monopoly profit maximization problem with regard to output level takes the form:

π(y(t)) = r(y(t)) − c(y(t)) = {p(y(t)) · y(t) − c(y(t))} |→ max(4.390)

y(t) ≤ f (b(t))(4.391)

y(t) ≥ 0.(4.392)

For problems (4.390)–(4.392), one determines first a solution yG(t), that is, a
solution to the analogical problem in the long-term strategy. Then we compare it
in each period/at any moment t with the constrained output level f (b(t)) resulting
from the limitations of resources of production factors. As a solution to the whole
problem in the short-term strategy one gets an optimal output level:

y(t) = min
{
yG(t), f (b(t))

}
.(4.393)

The optimal price of a product manufactured by a monopoly is p(y(t)) and is
time variant in the dynamic approach.

Example 4.8 Let us take the same assumptions as in Example 4.6, introducing
additionally a constraint of production factor resource. A production process in a
firm acting as a monopoly is described by a one-variable production function of a
form31:

f (x(t)) = x(t)0.5.

Aprice of productmanufactured by thismonopoly changes according to a function
of a form:

p(y(t)) =
(
a(t)

y(t)

)0.5

, where a(t) > 0 ∀t,

31 One can find analogies of this example to Example 4.5 with a monopoly in the static approach
and to Example 4.4 with the dynamic approach and a firm acting in perfect competition in the short-
term strategy.
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and a production factor price changes in the following way:

c(x(t)) = C(t)x(t), where C(t) > 0 ∀t .
Let us assume that at any moment t ∈ [0; 30], value of a(t), a value of C(t) and

the fixed production cost change according to equations:

a(t) = 20.1t + 5,

C(t) = 2−0.1t ,

d(t) =
(
0.006t2 − 0.1t + 3

)2
t

480 · 0.98t − t

30
+ 1.

Their trajectories are presented in Sect. 4.6.2, in Example 4.6 in Fig. 4.25.
Additionally, unlike the long-term strategy from Example 3.6, now we assume

that a production factor input is limited by its resource which changes over time
according to the equation:

b(t) = −0.01t + 1.

Figure 4.35 presents a trajectory of the production factor resource and a trajectory
of an optimal solution to the monopoly profit maximization problem with regard
to production factor input in the long-term strategy. Up to a moment t ≈ 13 the
production factor constraint is not binding because a value xG(t) does not exceed
the resource b(t). From the moment t ≈ 13, the resource constraint is binding until
the end of the time horizon. Thus, a trajectory of an optimal production factor input
resulting from the profit maximization problem in the short-term strategy has a form
as shown in Fig. 4.36.

Figure 4.37 presents a comparison of the monopoly maximum profit in the
case when the production factor input is constrained by its resource and in the
case when such limitation does not exist. The difference of the maximum profit in
both cases is visible from a moment t ≈ 13.

From the production cost minimization problem in the short-term strategy, one
obtains32 an optimal production factor input~x(t) accounting also for the constraint

32 In this section, we do not present the trajectory of optimal production factor input nor its com-
parison with the optimal input in the long-term strategy for the case of a monopoly. This is due
to the fact that up to this part the production cost minimization problem does not differ from the
analogical problem for a firm acting in the perfect competition. Trajectories of these values are pre-
sented in Sect. 4.5.2, in Example 4.4 in Figs. 4.17 and 4.18. The reason for the lack of difference
is that in both cases we consider examples in which a production process relies only on one pro-
duction factor and that is why a set of feasible solutions has only one element (in given period/at
given moment t). The problems start to be different from each other when we consider a form of
the minimal cost function of producing y(t) output units.
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Fig. 4.35 Trajectories of resource and of optimal production factor input in long-term strategy—
monopoly profit maximization problem with regard to production factor input
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Fig. 4.36 Trajectory of demand for production factor in short-term strategy—case of monopoly

on the production factor resource b(t), in accordance with an equation analogical
to Eq. (4.388):

x̃(t) = min
{
x̃G(t), b(t)

}
.
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Fig. 4.37 Trajectory of monopoly maximum profit in short-term strategy

One can substitute this result into the production total cost function obtaining
the minimal cost function of producing y(t) output units which depends on value
of y(t):

min ctot (x(t)) = ctot (~x(t)) = C(t)~x(t)2 + d(t) = c(y(t)).

Figure 4.38 presents a comparison of the monopoly minimum cost of producing
y(t) output units in the case when the production factor input is constrained by its
resource and in the case when such limitation does not exist. Since the resource
constraint is binding in period between moments t ≈ 7 and t ≈ 26 in this time
interval one can observe a difference in monopoly minimum costs in the short-term
and long-term strategies. Then, that is, in this time interval, the resource constraint
involves usage of smaller production factor input than it results from the long-term
strategy and hence also lower production cost than in the long-term strategy.

Figure 4.39 presents a trajectory of output level constrained due to the limi-
tation of the production factor resource and a trajectory of the optimal solution
to the monopoly profit maximization problem with regard to output level in the
long-term strategy. Until a moment t ≈ 13 the resource constraint and the output
level constraint are not binding because output level yG(t) does not exceed the
constrained output level equal to f (b(t)) = b(t)0.5. From the moment t ≈ 13,
the resource constraint is binding up to the end of the considered time horizon.
Hence, a trajectory of the optimal output level resulting from the profit maximiza-
tion problem in the short-term strategy takes the form as presented in Fig. 4.40.
The maximum profits resulting from the profit maximization problems with regard
to output level and with regard to production factor input evolve the same, thus a
trajectory of the former is the same as the one presented in Fig. 4.37.
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Fig. 4.38 Trajectory of monopoly minimum production cost in a short-term strategy
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Fig. 4.39 Trajectories of output level constrained by production factor resource and of optimal
output levelin long-term strategy—monopoly profit maximization problemwith regard to output
level

The product optimal price as a value of the product price function by the
optimal product supply takes the form:

p(y(t)) =
(
a(t)

y(t)

)0.5

.
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Fig. 4.40 Trajectory of optimal product supply in short-term strategy—case of monopoly

A trajectory of the optimal price is presented in Fig. 4.41. Due to the constraint
on the production factor resource, which is binding from a moment t ≈ 13, the
optimal price of a monopoly product in the short-time strategy exceeds the price
resulting from the long-term strategy. At any moment t, a monopoly has to take
into account the constraint on the production factor resource, and hence it reduces
the product supply to the level resulting from the constraint. As a consequence,
the optimal price is higher since a monopoly wants to generate high revenues and
maximize the profit by the product optimal supply.
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Fig. 4.41 Trajectory of optimal product supply—case of monopoly
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4.8 Questions

1. What does it mean that a production function describes a set of technologically
effective production processes?

2. What are the relationships and differences in definitions and interpretation of:
a marginal productivity of i-th production factor, a growth speed of produc-
tion, a growth rate of production, an elasticity of production with respect to
i-th production factor?

3. What is the difference between an elasticity of production with respect to i-
th production factor and an elasticity of production with respect to scale of
inputs?

4. Determine relationships of the: concavity, strict concavity, convexity, strict
convexity with a degree of the homogeneity of a production function referring
to constant, decreasing or increasing returns to scale.

5. What is the relationship between positive homogeneity of a production
function and an elasticity of production with respect to scale of inputs?

6. What is the difference between a power production function and a Cobb-
Douglas production function?

7. What are the relationships and differences in definitions and interpretation
between a marginal rate of substitution and an elasticity of substitution of
the first (second) production factor by the second (first) production factor
in a vector x = (x1, x2) ∈ G of production factors’ inputs where G ={
x ∈ R

2+| f (x) = y0 = const. ≥ 0
} ⊂ R

2+ means a production isoquant for
a fixed output level y0 = const. ≥ 0?

8. What are the assumptions about a marginal rate of substation of the first
(second) production factor by the second (first) production factors in a
vector x = (x1, x2) ∈ G of production factors’ inputs where G ={
x ∈ R

2+| f (x) = y0 = const. ≥ 0
} ⊂ R

2+ by which a CES production func-

tion f (x1, x2) = (
a1x

γ
1 + a2x

γ
2

) 1
γ , ai > 0, i = 1, 2, γ ∈ (−∞; 0) ∪ (0; 1)

positively homogenous of first degree is convergent to a: linear, Cobb-Douglas,
Koopmans-Leontief function?

9. Is it proper to distinguish between a short- and a long-term strategy in view
of limited or unlimited resources of production factors?

10. What is the core of a sensitivity analysis of optimal solutions to profit maxi-
mization and cost minimization problems for a perfect competition firm, when
resources of production factors are limited /unlimited?

11. How to justify that profit maximization problems with regard to production
factors’ inputs and with regard to output level are equivalent for a perfect
competition firm/monopoly when resources of production factors are limited
/unlimited?



4.9 Exercises 281

4.9 Exercises

E1. There is given a CES production function of a form: f (x1, x2) =
(
a1x

γ
1 + a2x

γ
2

) θ
γ , θ, ai > 0, i = 1, 2, γ ∈ (−∞; 0) ∪ (0; 1). Let us assume

that a variable u = x2
x1

describes a quantity of the second production factor per one
unit of the first production factor.

1. Justify that:
(a) an elasticity of marginal rate of substitution of the first production factor by

the second production factor is constant and equal to Eσ12(u) = 1 − γ ,
(b) an elasticity of marginal rate of substitution of the second production factor

by the first production factor is constant and equal to Eσ21(u) = γ − 1,
2. Determine a range of variability of constant elasticities Eσ12(u) and Eσ21(u) of

marginal rates of substitution.
3. Determine an elasticity of production with respect to scale of inputs and justify

that it is equal to a degree Eλ(x) = θ of positive homogeneity of the production
function.

E2. For solutions of optimization problems from Examples 3.3, 3.5 and 3.7 analyse
sensitivity of.

1. the demand for a production factor and themaximumprofit to changes in a product
price and to changes in values of parameters of a production function and of a
production cost function,

2. the conditional demand for a production factor and theminimumcost of producing
y output units to changes in an output level and to changes in values of parameters
of a production function and of a production cost function,

3. the product supply and the maximum profit to changes in a product price and to
changes in values of parameters of a production function and of a production cost
function.

E3. There are given:

p > 0—a price of a product manufactured by a firm,
c(x) = (c1(x1), c2(x2)) > (0, 0)—a vector of prices of production factors,
ci (xi ) = axi—a price of i-th production factor, proportional to the demand for
i-th factor,
x = (x1, x2) ≥ (0, 0)—a vector of inputs of production factors,
y = f (x)—an output level described by an increasing, strictly concave and twice
differentiable production function,
r(y) = py—revenue (turnover) from sales of a manufactured product as a
function of output level,
r(x) = p f (x)—revenue (turnover) from sales of a manufactured product as a
function of inputs of production factors,
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ctot (x) = c1(x1)x1 + c2(x2)x2 + d—total cost of production,
cv(x) = c1(x1)x1 + c2(x2)x2—variable cost of production,
c f (x) = d—fixed cost of production,
c(y)—minimum cost of producing y output units, derived as an objective function
corresponding to an optimal solution to problem (P2c),
π(y) = r(y) − c(y) = py − c(y)—firm’s profit as a function of output level,
π(x) = r(x)−ctot (x)—firm’s profit as a function of inputs of production factors.

For a production function:

(a) power: y = f (x) = axα1
1 xα2

2 , a > 0, αi ∈ (0; 1), α1 + α2 < 1, i = 1, 2,
(b) logarithmic: y = f (x) = a1 ln x1 + a2 ln x2, ai > 0, i = 1, 2,
(c) subadditive: y = f (x) = a1xα

1 + a2xα
2 , ai > 0, α ∈ (0; 1), i = 1, 2,

1. Solve the profit maximization problem (P1c).
2. Present a geometric illustration of the profit maximization problem (P1c).
3. Give an economic interpretation of necessary and sufficient conditions of

the existence of an optimal solution to problem (P1c).
4. Analyse sensitivity of the demand for a production factor and of the firm’s

maximum profit to changes in a price of a product and changes in values
of parameters of the cost function and of the production function.

5. Solve the cost minimization problem (P2c).
6. Present a geometric illustration of the cost minimization problem (P2c).
7. Give an economic interpretation of the necessary and sufficient conditions

of the existence of an optimal solution to problem (P2c).
8. Analyse sensitivity of the conditional demand for a production factor and

of the firm’s minimum cost to changes in the price of a product and
changes in values of parameters of the cost function and of the production
function.

9. Solve the profit maximization problem (P3c).
10. Present a geometric illustration of the profit maximization problem (P3c).
11. Give an economic interpretation of the necessary and sufficient conditions

of the existence of an optimal solution to problem (P3c).
12. Analyse sensitivity of the product supply and of the firm’s maximum profit

to changes in the price of a product and changes in values of parameters
of the cost function and of the production function.

13. Justify that the profit maximizations problems (P1c) and (P3c) are
equivalent

E4. Solve Exercise E3, when the production total cost function has a form:

ctot (x1, x2) = α( f (x1, x2))
2 + β f (x1, x2) + γ,

or equivalently:

ctot (y) = αy2 + β y + γ,
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where y = f (x1, x2) is an increasing, strictly concave and twice differentiable
production function and ∆ = β2 − 4αγ = 0, α, β, γ > 0.

E5. Solve Exercise E3 assuming additionally that resources of production factors
are limited: ∀i = 1, 2 0 ≤ xi ≤ bi , where ∀i = 1, 2 bi > 0 means the constrained
resource of i-th production factor.

E6. Solve Exercise E3 taking simultaneously into account the data from Exercises
E4 and E5.

E7. There are given:

x = (x1, x2) ≥ (0, 0)—a vector of inputs of production factors,
y = f (x)—an output level described by an increasing, strictly concave and twice
differentiable production function,

p(y) =
(
a
y

)α

> 0—a price of a product manufactured by a monopoly as a

function of product supply, set by a monopoly,

p( f (x)) =
(

a
f (x)

)α

> 0—a price of a product manufactured by a monopoly as

a function of production factors’ inputs,
c(x) = (c1(x1), c2(x2)) > (0, 0)—a vector of prices of production factors, each
of whom is a function of demand reported by a monopoly for a given production
factor,
ci (xi ) = axi—a price of i-th production factor is proportional to the demand for
i-th factor,
r(y) = p(y)y—revenue (turnover) from sales of a manufactured product as a
function of product supply,
r(x) = p( f (x)) f (x)—revenue (turnover) from sales of a manufactured product
as a function of inputs of production factors,
ctot (x) = c1(x1)x1 + c2(x2)x2 + d = a

(
x21 + x22

) + d—total cost of production,
cv(x) = c1(x1)x1 + c2(x2)x2 = a

(
x21 + x22

)
—variable cost of production,

c f (x) = d—fixed cost of production,
c(y)—minimum cost of producing y output units, derived as an objective function
corresponding to an optimal solution to problem (P2m),
π(y) = r(y) − c(y) = p(y)y − c(y)—firm’s profit as a function of output level,
π(x) = r(x)−ctot (x)—firm’s profit as a function of inputs of production factors.

For a production function:

(a) power: y = f (x) = axα1
1 xα2

2 , a > 0, αi ∈ (0; 1), α1 + α2 < 1, i = 1, 2,
(b) logarithmic: y = f (x) = a1 ln x1 + a2 ln x2, ai > 0, i = 1, 2,
(c) subadditive: y = f (x) = a1xα

1 + a2xα
2 , ai > 0, α ∈ (0; 1), i = 1, 2,

1. Solve the profit maximization problem (P1m).
2. Present a geometric illustration of the profit maximization problem (P1m).
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3. Give an economic interpretation of the necessary and sufficient conditions
of the existence of an optimal solution to problem (P1m).

4. Solve the cost minimization problem (P2m).
5. Present a geometric illustration of the cost minimization problem (P2m).
6. Give an economic interpretation of the necessary and sufficient conditions

of the existence of an optimal solution to problem (P2m).
7. Solve the profit maximization problem (P3m).
8. Present a geometric illustration of the profit maximization problem (P3m).
9. Give an economic interpretation of the necessary and sufficient conditions

of the existence of an optimal solution to problem (P3m).
10. Justify that the profit maximization problems (P1m) and (P3m) are

equivalent.
11. Determine the optimal price by which a monopoly obtains the maximum

profit.

E8. Solve Exercise E7, when the production total cost function has a form:

ctot (x1, x2) = α( f (x1, x2))
2 + β f (x1, x2) + γ,

or equivalently:

ctot (y) = αy2 + β y + γ,

where y = f (x1, x2) is an increasing, strictly concave and twice differentiable
production function and ∆ = β2 − 4αγ = 0, α, β, γ > 0.

E9. Solve Exercise E7 assuming additionally that resources of production factors
are limited: ∀i = 1, 2 0 ≤ xi ≤ bi , where ∀i = 1, 2 bi > 0 means the constrained
resource of i-th production factor.

E10. Solve Exercise E7 taking simultaneously into account the data from Exercises
E8 and E9.

E11. Aproduction process in somefirmacting in the perfect competition is described
by a one-variable production function of a form:

f (x(t)) = x(t)0.25.

In periods t = 0, 1, 2, . . . , 20 the price of a production factor, the product price
and the production fixed cost evolve according to the following equations:

c(t) = 4 · 0.98−t ,

p(t) = −0.006t2 + 0.1t + 3,
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d(t) =
(−0.006t2 + 0.1t + 3

)2
t

480 · 0.98−t
+ t

30
+ 1.

Using the dynamic approach:

1. Solve the profit maximization problem with regard to an input of a production
factor.

2. Present a trajectory of the demand for a production factor and a trajectory of
the firm’s maximum profit.

3. Solve the production cost minimization problem assuming that the fixed output
level y(t) that the firm wants to achieve in subsequent periods is given by a
formula:

y(t) = 0.0035(t + 15)2 + 1.25.

4. Present a trajectory of the conditional demand for a production factor and a
trajectory of the production minimum cost.

5. Solve the profit maximization problem with regard to output level.
6. Present a trajectory of the product optimal supply and a trajectory of the firm’s

maximum profit.

E12. At any moment t ∈ [0; 20] a firm and conditions in which it acts are described
as in Exercise E11, except additional constraint in a form of a production factor
resource:

b(t) = 0.01t + 1.

Using the dynamic approach:

1. Solve the profit maximization problem with regard to an input of a production
factor and determine time intervals in which the constraint on the production
factor resource is binding.

2. Present a trajectory of the demand for a production factor and a trajectory of the
firm’s maximum profit.

3. Solve the production cost minimization problem assuming that the fixed output
level y(t) that the firm wants to achieve in subsequent periods is given by a
formula:

y(t) = 0.0035(t + 15)2 + 1.25.

Determine time intervals in which the constraint on the production factor
resource is binding

4. Present a trajectory of the conditional demand for a production factor and a
trajectory of the production minimum cost.
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5. Solve the profit maximization problem with regard to output level and determine
time intervals in which a constraint on output level resulting from the constraint
on the production factor resource is binding.

6. Present a trajectory of the product optimal supply and a trajectory of the firm’s
maximum profit.

E13. A production process in a firm acting as a monopoly is described by a one-
variable production function of a form:

f (x(t)) = x(t)0.25.

The price of a product manufactured by this monopoly changes according to a
function of a form:

p(y(t)) =
(
a(t)

y(t)

)0.5

, where a(t) > 0 ∀t,

and a production factor price changes in the following way:

c(x(t)) = C(t)x(t), where C(t) > 0 ∀t .

In periods t = 0, 1, 2, .., 20 a value of a(t), a value of C(t) and the fixed
production cost change according to following equations:

a(t) = 30.1t + 3,

C(t) = 3−0.1t ,

d(t) =
(−0.006t2 + 0.1t + 3

)2
t

480 · 0.98−t
+ t

30
+ 1.

Using the dynamic approach:

1. Solve the monopoly profit maximization problem with regard to an input of a
production factor.

2. Present a trajectory of the demand for a production factor and a trajectory of
the monopoly maximum profit.

3. Solve the production cost minimization problem assuming that the fixed output
level y(t) that the monopoly wants to achieve in subsequent periods is given
by a formula:

y(t) = 0.0035(t + 15)2 + 1.25.
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4. Present a trajectory of the conditional demand for a production factor and a
trajectory of the production minimum cost.

5. Solve the monopoly profit maximization problem with regard to output level.
6. Present a trajectory of the product optimal supply and a trajectory of the

monopoly maximum profit.
7. Determine the product optimal price and present its trajectory.

E14. At any moment t ∈ [0; 20] a monopoly and conditions in which it acts are
described as in Exercise E13, except for an additional constraint in a form of a
production factor resource:

b(t) = 0.01t + 1.

Using the dynamic approach:

1. Solve the monopoly profit maximization problem with regard to an input of a
production factor and determine time intervals in which the constraint on the
production factor resource is binding.

2. Present a trajectory of the demand for a production factor and a trajectory of the
monopoly maximum profit.

3. Solve the production cost minimization problem assuming that the fixed output
level y(t) that the monopoly wants to achieve in subsequent periods is given by
a formula:

y(t) = 0.0035(t + 15)2 + 1.25.

Determine time intervals in which the constraint on the production factor
resource is binding

4. Present a trajectory of the conditional demand for a production factor and a
trajectory of the production minimum cost.

5. Solve the monopoly profit maximization problem with regard to output level and
determine time intervals in which a constraint on output level resulting from the
constraint on the production factor resource is binding.

6. Present a trajectory of the product optimal supply and a trajectory of themonopoly
maximum profit.

7. Determine the product optimal price and present its trajectory in comparison to a
trajectory of a pricewhichwould be set by themonopoly if therewas no constraint
on the production factor resource.



5Rationality of Choices Made
by a Group of Producers
by Exogenously Determined
Function of Demand for a Product

In this chapter, you will learn:

– what it means that the demand for a product is described by a function
determined exogenously;

– what parameters are used in an exogenous function of demand and what
their economic interpretation is;

– what the importance of price elasticity of demand for a product is when
setting an optimal price by a monopoly;

– what discriminatory pricing is and how it is practised by a monopoly;
– what type of competition is used by firms in a Cournot, Stackelberg or

Bertrand duopoly;
– what it means that firms have equal positions on a market in a duopoly

and what results from this;
– what a leader position and a follower position in a duopoly are and how

it matters for the shares of duopolists on a market of a product;
– what assumptions in a Bertrand duopoly model are needed to describe a

situation when one of the producers is a leader and the other one is a
follower.

In this chapter, we proceed with further analysis of the issues presented in Chap. 4,
that is, rational choices made by producers acting on a market of one product in
perfect competition or as a monopoly when resources of production factors are
unlimited or limited. Our attention was paid to technological and financial aspects
of the rational behaviour of producers assuming that there is no binding constraint
resulting from the demand for a product they manufacture.

Now, we want to focus on financial and market aspects of the rational behaviour
of producers. For this purpose, we assume that on a market of a given product
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its supply matches the demand described by an exogenously determined demand
function.

In Sect. 5.1, we analyse the rational behaviour of producers in perfect compe-
tition who are interested in the product optimal supply that enables them to reach
maximum profits by an exogenously determined function of demand for a prod-
uct. An important part of the considerations taken in this chapter is an attempt to
determine what conditions need to be satisfied in order to have the price of a prod-
uct established by a market in perfect competition being a Walrasian equilibrium
price.

In Sect. 5.2, we consider the rational behaviour of a monopolist who sets the
optimal supply of a product he/she manufactures as well as the optimal price to
maximize profit by an exogenously determined function of demand for a product.1

In Sect. 5.3, we regard the issue of price discrimination practised by a monop-
olist who can sell her/his product at different prices on different markets where
exogenously determined functions of demand for a product differ too.

In Sects. 5.4 and 5.5, we discuss the issues of quantity competition in a duopoly
described by the Cournot and Stackelberg models. Attention is paid especially
to equilibrium states in these models determined by the product optimal supply by
both producers and by equilibrium prices when a function of demand for a product
is determined exogenously.

In Sect. 5.6, we regard the topic of price competition in a duopoly described
by the Bertrand model. We focus on a mechanism of setting prices of two substi-
tute products manufactured by two producers when functions of demand for each
product are determined exogenously.

For each of discussed topics, we conduct a sensitivity analysis of equilibrium
states to changes in parameters that determine these states.

5.1 Firm Acting in Perfect Competition—Determining
Optimal Output Level

Conditions of the perfect competition are to be understood as a description of a
market of a given product based on four assumptions:

• atomization: number of economic agents reporting the demand for a given prod-
uct (consumers) or the supply of this product (producers) is large enough that
each of them has no crucial impact on a price level of the product or conditions
of its exchange. Each firm treats a product price as given by the market, thus
as a parameter and adjusts the level of its output to the price.

• homogeneity of a product: products manufactured by firms are not differenti-
ated,

1 For further discussion of topics presented in this chapter, we recommend examining the work
(Tokarski, 2011a).
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• transparency: each economic agent has perfect knowledge about the supply and
a price of product available on the market,

• liquidity: there are no barriers making it difficult to enter the market or to leave
the market since every such decision does not involve any additional costs.

In economic reality fulfilling all these four principles is highly unlikely. Hence,
every model of a product market that does not satisfy at least one of these four
principles is the model of imperfect competition.

Let us analyse the rational behaviour of a producer (of a firm) acting in the
perfect competition on a market of a homogenous product where two producers
offer their product.2

Definition 5.1 A function of consumer demand for a product manufactured by
two producers is a mapping h:R+ → R+ given in a form:

yd = h(p),(5.1)

where yd means a level of demand for a given product and p means the price of this
product.

This function is assumed to be twice differentiable and decreasing:

dyd

dp
= dh(p)

dp
< 0,(5.2)

meaning that, when the price of the product increases, the demand for this product
decreases. A graph of such a function is called a demand curve.

An output level (supply) of a product produced by both producers must be
equal to the demand reported by consumers at the price of the product given by a
market:

ys = yd = h(p).(5.3)

It is a very strong assumption, and in case of exogenously determined func-
tions of the demand and of the product supply being functions of a price of a
homogenous product, it means that the product price is an equilibrium price.

For the sake of simplicity, let us assume that the functions of the demand and
the supply are linear.

2 We present the analysis for just two producers for the sake of simplicity. More general approach
is to consider r ∈ N producers but an essential assumption in the perfect competition model is that
each of them has no market power to set a price of her/his product and each adjusts the product
supply to the price given by a market. Thus, regarding r producers is a simple extension of a case
when just two producers are considered.
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A demand function is decreasing with respect to a product price3:

yd = yd1 + yd2 =
∑2

k=1
(−ak p + bk) = −ap + b, ak, bk > 0, k = 1, 2,(5.4)

where a = a1 + a2 > 0, b = b1 + b2 > 0.
Parameter a can be interpreted as a measure of the consumers’ reaction

strength to a unit increase in the price of a product:

dyd

dp
= −a < 0,(5.5)

then price elasticity of demand for a product is negative and takes the form:

E(yd) = dyd

dp

p

yd
= −ap

−ap + b
< 0,(5.6)

since, from condition (5.4), the following expression is positive4:

yd = −ap + b > 0.(5.7)

Parameter b can be interpreted as a measure of a market capacity, which
corresponds to the maximum demand that consumers can report for this product
at a product price equal to zero.

A supply function is increasing with respect to a product price

ys = ys1 + ys2 =
∑2

j=1

(
c j p + d j

) = cp + d, c j , d j > 0, j = 1, 2,(5.8)

where c = c1 + c2 > 0, d = d1 + d2 > 0,

and

b > d.(5.9)

Parameter c can be interpreted as a measure of the producers’ reaction
strength to a unit increase in the price of a product:

dys

dp
= c > 0,(5.10)

3 In general, the number of consumers is k = 1, 2, . . . ,m and the number of producers is j =
1, 2, . . . , r . However, without loss of generality, for the sake of simplicity, we take thatm = r = 2.
4 The negative value of the price elasticity of the demand results also from condition (5.5) and from
the fact that the price of a product and the demand for a product should be positive.
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then price elasticity of the product supply is negative and takes the form:

E(ys) = dys

dp

p

ys
= cp

cp + d
> 0,(5.11)

since, from condition (5.8), the following expression is positive5:

cp + d > 0.(5.12)

Parameter d can be interpreted as a level of stocks owned by producers without
undertaking the production process. It determines a minimum level of the product
supply.

From definitions of the demand function and of the supply function, it results
that

yd ∈ [0; b],(5.13)

p ∈
⎡
0; b

a

⎤
,(5.14)

while an output level satisfies a condition:

ys ∈ [d; b].(5.15)

Let us notice that the range of a product price is determined by a function of the
demand for a product. If one knows a demand function and a supply function, then
one can determine an equilibrium price p̄ ∈ (0; b

a

)
which equalizes the demand

for a product and the product supply both expressed in the same physical units. In
order to do this one needs to solve an equation:

ys = yd ⇔ c p̄ + d = −a p̄ + b,(5.16)

from which, after some transformations, we get

p̄ = b − d

a + c
∈
(
0; b

a

)
,(5.17)

when b > d.
In Fig. 5.1, we present graphs of the functions of the demand and the product

supply. It can be seen from this figure that there exists an exactly one positive

5 The negative value of the price elasticity of the product supply results also from condition (5.10)
and from the fact that the price of a product and the demand for a product should be positive.
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Fig. 5.1 Functions of
demand for product and of
product supply

equilibrium price by which the demand for a product and the product supply
expressed in the physical units are equal to each other. Moreover, the equilibrium
state described this way is beneficial for producers as well as for consumers. When
producers need to manufacture a product then the equilibrium price enables them
to increase the product supply without creating stocks that mean unmade sales
of the manufactured product. From the consumers’ point of view, the equilibrium
price is also beneficial because it enables them to purchase a product maximum
quantity that producers are willing to manufacture. The equilibrium price is thus a
synonym for the rational behaviour of consumers and producers willing to respect
consumer preferences. Consumers are interested in purchasing a product’s maxi-
mum quantity at the lowest price, while producers are interested in manufacturing
a product’s maximum quantity at the highest price of their product.

Both consumers and producers have to take into account various constraints
related to the way a market is organized, conditions of purchase and sales, as
well as management and technology of manufacturing a product. In this book, we
concentrate essentially on constraints resulting from financial criteria of production
profitability. Such a criterion for each producer is the profit as a difference between
revenue from sales of a manufactured product and production total cost consisting
of variable cost (dependent on an output level) and fixed cost (independent of an
output level).

Here, it is worth asking two substantial questions concerning the equilibrium
price. What are the conditions for the existence of the equilibrium price? And what
is a mechanism that enables establishing the equilibrium price on a market?

In the market model considered in this subchapter, thus assuming linear func-
tions of the demand for a product and of the product supply, a condition for the
existence of the positive equilibrium price takes the form: b > d > 0. This means
that the market capacity has to be bigger than existing product stocks.
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The mechanism of determining the equilibrium price in the market model con-
sidered here is simple. Let us recall that consumers and producers know the
functions of the demand and the product supply. Thus, it is enough to determine a
price by which consumers and producers accomplish their goals to the maximum
extent possible which, however, includes existing and known constraints from the
supply side and the demand side. In order to determine this price, one needs to
just solve Eq. (5.16). Then one needs to state what the rules of market function-
ing which would be respected by producers as well as by consumers are and also
organizational principles of establishing the equilibrium price.6

In reality, such a simple, and at the same time desirable, situation is very rare
to happen because functions of the demand of the product supply are known not
in advance but only ex post. That is, why both consumers and producers, who try
to make rational purchase and sale decisions on the basis of their understanding
of a market; in fact, they have only rough knowledge. This knowledge is extrap-
olated from data about what happened on a market in the past and from mutual
contacts serving recognition what the situation of each agent which is important
in exchange transactions taken on market of a given product is.

The price of a product at which it is purchased and sold is then most of the time
not the equilibrium price. This means that part of the effectively existing demand
is not satisfied or part of the supply does not find recipients because producers
overestimate the demand by an actual price level.

Let us consider the rational behaviour of producers when we are given an
exogenously determined function of the demand for a product they manufacture.
On this basis, one can determine a feasible price range. Let us also assume that a
product supply function is not known and that it is a result of the rational choices
of producers. The rational choices made by producers are to be understood as their
decisions enabling each of them to obtain maximum profit.

Let us start the analysis of rational decisions of producers with a case when,
motivated by profit maximization, they determine an output level by a price given
by the market.7

6 An example of such a mechanism can be found in static and dynamic Arrow-Hurwicz models
discussed in ths chapter. However, it is worth emphasizing that, in both these models, producers are
not present and more generally speaking the production side of the economy is beyond the scope of
interest. In this chapter, we discuss such mechanisms with reference to static and dynamic market
models with exogenous or endogenous functions of the demand and of the supply of a product or
of products.
7 In Sect. 5.2, we regard a case when a monopolist as the only one producer of a given prod-
uct decides on a price level and an output level guaranteeing maximum profit by an exogenously
determined function of the demand for a product.
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Let us assume that each producer aims to maximize profit by a price given by
a market at which levels of the global supply and of the global demand are equal
to each other8:

ys = yd = y.(5.18)

We conduct our considerations assuming that a product price takes values in an
interval

(
0; b

a

)
. The price given by a market is treated by producers as a parameter

that is a quantity that they do not affect directly. Since a precise product supply
level is not known, a product price is set in advance in conditions of incomplete
knowledge about the demand and the product supply. Hence, this price can, but
does not, have to be the equilibrium price at a moment when producers decide
on the output levels and consumers do not know everything about the product
supply. The ex post price set on a market is the equilibrium price in reference to
this product quantity that has been effectively sold and purchased. Equation (5.18)
is interpreted in two ways which means it determines the conditions of the equi-
librium as the ex ante or the ex post. Here, we allow the possibility that a product
price given by a market and treated by producers as a parameter is not necessarily
the equilibrium price. However, producers relying on this price make decisions
on output levels and this way they determine what product supplies are the most
profitable from their perspective. When the transaction of product exchange takes
place on a market, a price given by the market equalizes the actual demand (which
can be satisfied) and the actual supply (the product output which can be sold due
to the existing demand).

Let us now consider in more detail the rational behaviour of producers acting
in the perfect competition by an exogenously determined function of the demand
for a product and by a product price given by a market and treated by producers
as a parameter.

Definition 5.2 An inverse function of consumer demand for a product supplied
to a market by producers is a mapping g:R+ → R+ given in a form:

p
(
ys
) = g

(
yd
)
,(5.19)

which is an identity transformation of a demand function:

yd = h
(
p
(
ys
)) = −ap

(
ys
)+ b ⇐⇒ p

(
ys
) = b − yd

a
.(5.20)

It is worth explaining more precisely whether the inverse demand function is the
inverse of the demand function.

8 When it is reasonable and useful, we write y as an output level instead of distinguishing between
the product supply ys and the demand yd for a product.
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Definition 5.3 Functions y = h(p) and p = g(y) are called inverse to each other
if ∀a, b ∈ R+ if the following conditions are satisfied:

b = h(a) ⇒ a = g(b)(5.21)

and at the same time:

a = h(b) ⇒ b = g(a).(5.22)

If h function is given, then g function is called an inverse9 (or an inverse function)
to h. Since the choice of the variable is arbitrary, we can write the inverse p = g(y)
also as y = g(p). Then graphs of functions y = h(p) and y = g(p) inverse to each
other are symmetric with respect to the line y = p.

Example 5.1 Let us determine an inverse to a linear demand function:

yd = h(p) = −ap + b, a, b > 0.(5.23)

From Eq. (5.23), one determines functional relationships of a product price
depending on a demand level:

yd = −ap + b ⇔ p = b − yd

a
a, b > 0,(5.24)

which is an inverse function of consumer demand.

In the form of this function, one changes the denotation so that a dependent
variable is the demand level and an independent variable is the product price:

yd = g(p) = b − p

a
a, b > 0.(5.25)

The function derived this way is an inverse function to the demand function. Its
graph is symmetric to the graph of a function yd = h(p) with respect to the line
y = p which is presented10 in Fig. 5.2.

9 From Definitions 5.2 to 5.3, it results that an inverse function of consumer demand is not inverse
to a demand function. An inverse function is just a mathematical concept and it does not matter
what the interpretation of variables is, thus if we write p = g(y), p depends on y, or if y = p(y), y
depends on p. While in the concept of an inverse function of consumer demand, it is very important
that yd means the demand, p means the product price and ys means the supply and what depends
on what.
10 The graph of the inverse function of consumer demand coincides with the graph of the demand
function.
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Fig. 5.2 Graphs of linear function of consumer demand, inverse function of consumer demand
and function inverse to demand function

Theorem 5.1 If functions y = h(p) and p = g(y) are inverse to each other, then
the following condition is satisfied:

dy

dp
= dh(p)

dp
= 1

dg(y)
dy

= 1
dp
dy

.(5.26)

On the basis of Eqs. (5.23) and (5.24), one can notice that

dyd

dp(ys)
= −a(5.27)

and

dp(ys)

dyd
= −1

a
,(5.28)

which means that condition (5.26) is satisfied in case of the linear demand function
and its inverse.

Definition 5.4 Revenue (turnover) from sales of a product manufactured by j-th
producer ( j = 1, 2) is an expression:

r j
(
ysj

)
= pysj ,(5.29)
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where p > 0 is the product price given by a market that can, but does not, have to
be the equilibrium price. Then

dr j (ysj )

dysj
= p > 0,(5.30)

which means that marginal revenue from sales of a product is equal to the price of a
product.

Definition 5.5 A function of production total cost for j-th producer ( j = 1, 2) is
an expression:

ctotj

(
ysj

)
= cv

j

(
ysj

)
+ c f

j

(
ysj

)
,(5.31)

where

cv
j (y

s
j )—variable cost of production, dependent on production level,

c f
j (y

s
j ) = const.—fixed cost of production, independent of production level.

Note 5.1 From definitions of functions of production total, variable and fixed cost
it results that

dctotj

(
ysj

)

dysj
=

dcv
j

(
ysj

)

dysj
, j = 1, 2,(5.32)

which means that the marginal total cost of production for j-th producer is equal to
the marginal variable cost of production.

For the sake of simplicity, let us assume that functions of production total cost
for both producers are linear and of a form:

ctotj

(
ysj

)
= γ j y

s
j + δ j , j = 1, 2,(5.33)

where:

γ j > 0—the production marginal cost for j-th producer,
δ j ≥ 0—the production fixed cost for j-th producer.
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Let us consider a profit maximization problem11 for j-th producer:

Π j (y) = r j
(
ysj

)
− ctotj

(
ysj

)
=
{
pysj − ctotj

(
ysj

)}
|→ max(5.34)

ysj ≥ 0, j = 1, 2.(5.35)

Knowing that ys = yd = y, we substitute a product price with an expression
from condition (5.20):

p = b − yd

a
= b − ys

a
= b − (ys1 + ys2)

a
= α − β

(
ys1 + ys2

)
,(5.36)

which, for the sake of simplicity, we write as

p = α − β(y1 + y2),(5.37)

where: α = b
a , β = 1

a .
Let us also assume that the first (second) producer wants to determine an output

level ȳ1 > 0 (ȳ2 > 0) by which he/she obtains the maximum profit by a fixed
output level of the second (first) producer.

Then profit maximization problems of the first and the second producers take
the form:

Π1(y) = r1
(
ys1
)− ctot1

(
ys1
) = {pys1 − cto1

(
ys1
)} |→ max(5.38)

y1 ≥ 0,(5.39)

Π2(y) = r2
(
ys2
)− ctot1

(
ys2
) = {pys2 − ctot2

(
ys2
)} |→ max(5.40)

y2 ≥ 0.(5.41)

Substituting a product price determined as in Condition (5.37) into the profit
functions, we get the profit maximization problems in an equivalent form:

Π1(y1) = {−β y21 − β y1 ȳ2 + (α − γ1)y1 − δ1
} |→ max(5.42)

y1 ≥ 0, ȳ2 = const. > 0(5.43)

Π2(y2) = {−β y22 − β ȳ1y2 + (α − γ2)y2 − δ2
} |→ max(5.44)

11 It is the profit maximization problem of type (P3c) discussed in Chap. 4.
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y2 ≥ 0, ȳ1 = const. > 0.(5.45)

From Theorem 4.6, we know if a profit function of j-th producer is strictly
concave and the following condition is satisfied:

∀ j = 1, 2 lim
y j→0+

dΠ j
(
y j
)

dy j
> 0 ∧ lim

y j→+∞
dΠ j

(
y j
)

dy j
< 0

⇔ lim
y j→0+

dr j
(
y j
)

dy j
> lim

y j→0+

dctotj
(
y j
)

dy j

∧ lim
y j→+∞

dr
(
y j
)

dy j
< lim

y j→+∞
dctotj

(
y j
)

dy j

(5.46)

then:

(1) ∃1 ȳ j > 0 such that
dΠ j(y j)

dy j

|||
y j=ȳ j

= 0,

(2) a necessary and sufficient condition for ȳ j > 0 being an optimal solution to
the profit maximization problem for the first producer is

dΠ1(y1)

dy1

||||
y1=ȳ1,ȳ2=const.>0

= 0 ⇔

⇔ dr1(y1)

dy1

||||
y1=ȳ1,ȳ2=const.>0

= dctot1 (y1)

dy1

||||
y1=ȳ1,ȳ2=const.>0

(5.47)

and for the second producer:

dΠ2(y2)

dy2

||||
y2=ȳ2,ȳ1=const.>0

= 0 ⇔

⇔ dr2(y2)

dy2

||||
y2=ȳ2,ȳ1=const.>0

= dctot2 (y2)

dy2

||||
y2=ȳ2,ȳ1=const.>0

.(5.48)

which means that by ȳ j the marginal profit of j-th producer equals zero. This
happens if and only if the marginal revenue from sales of a product by j-th
producer is equal to the production marginal cost for j-th producer.

Conditions (5.47) and (5.48) can be transformed into an equation system:

dΠ1(y1)

dy1

||||
y1 = ȳ1,ȳ2 = const. > 0

= −2β ȳ1 − β ȳ2 + (α − γ1) = 0,(5.49)
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dΠ2(y2)

dy2

||||
y2 = ȳ2,ȳ1 = const. > 0

= −2β ȳ2 − β ȳ1 + (α − γ2) = 0,(5.50)

from which one determines an optimal output level maximizing the profit of the
first producer:

ȳ1 = α − 2γ1 + γ2

3β
(5.51)

or having α = b
a , β = 1

a :

ȳ1 = b − a(2γ1 − γ2)

3
,(5.52)

an optimal output level maximizing the profit of the first producer:

ȳ2 = α + γ1 − 2γ2
3β

(5.53)

or having α = b
a , β = 1

a :

ȳ2 = b − a(2γ2 − γ1)

3
.(5.54)

Then the product global supply is

ȳ = ȳ1 + ȳ2 = 2α − (γ1 + γ2)

3β
(5.55)

or having α = b
a , β = 1

a ,

ȳ = 2b − a(γ1 + γ2)

3
.(5.56)

From conditions (5.52), (5.54) and (5.56), it results that the optimal supply by
each producer and the optimal global supply, taking a product price as given by
a market, they all depend on a market capacity b > 0, the strength a > 0 of
consumers’ reaction to changes in the product price, production marginal costs
γ1, γ2 > 0 for both producers.

Let us analyse the sensitivity of the optimal supply of each producer and the
optimal global supply to changes in values of parameters that describe these
optimal levels. Values of adequate measures are presented in Tables 5.1a, 5.1b
and 5.1c.
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Table 5.1a Measures of response of product supply by the first producer to changes in parame-
ters’ values

Characteristic ∂ ȳ1
∂a

∂ ȳ1
∂b

∂ ȳ1
∂γ1

∂ ȳ1
∂γ2

Value − 2γ1−γ2
3

1
3 − 2a

3
a
3

Table 5.1b Measures of response of product supply by the second producer to changes in param-
eters’ values

Characteristic ∂ ȳ2
∂a

∂ ȳ2
∂b

∂ ȳ2
∂γ1

∂ ȳ2
∂γ2

Value − 2γ2−γ1
3

1
3

a
3 − 2a

3

Table 5.1c Measures of response of the product global supply to changes in parameters’ values

Characteristic ∂ ȳ
∂a

∂ ȳ
∂b

∂ ȳ
∂γ1

∂ ȳ
∂γ2

Value − γ1+γ2
3

2
3 − a

3 − a
3

Assuming γ1 > 1
2γ2, the optimal supply by the first producer decreases when

the strength of consumers’ reaction or marginal cost for her/him increases (ceteris
paribus). It increases when a market capacity or marginal cost for the second
producer increases (ceteris paribus).

Assuming γ2 > 1
2γ1, the optimal supply by the second producer decreases

when the strength of consumers’ reaction or marginal cost for her/him increases
(ceteris paribus). It increases when a market capacity or marginal cost for the first
producer increases (ceteris paribus).

The optimal global supply of a product decreases when the strength of con-
sumers’ reaction increases (ceteris paribus) or marginal cost for the first or the
second producer increases. It increases only when the market capacity increases.
A unit increase in the market capacity affects the optimal output level for each
producer in the same way causing an increase by 1/3 of a physical unit, regardless
of the fact that marginal costs for two producers can differ. This is due to the
fact that producers act in perfect competition, thus changes in the market capacity
affect each producer the same way.12

12 Conducting similar calculations for three producers, one can check, and this is also one of the
exercises given at the end of this chapter, that the impact of a unit increase in a market capacity
on the optimal total supply is equal to 3/4. In general, assuming linear functions of costs and of
the consumer demand, when there is r producers (r ∈ N, r ≥ 2) the impact of a unit increase in
market capacity on the optimal total supply is equal to r/(r +1) and on the optimal supply of j-th
producer is equal to 1/(r +1). Thus, the larger the number of producers in the perfect competition
market, the bigger the positive impact of an increase in market capacity on the optimal total supply
is, but at the same time, it is smaller when it comes to the optimal supply of a single producer.



304 5 Rationality of Choices Made by a Group of Producers …

Let us now determine the maximum profit for each producer, substituting the
optimal output levels into the profit functions. After some not complex but yet
quite time-consuming transformations, one gets the maximum profit for the first
producer:

Π1
(
ȳ1
) = α2 − 4αγ1 + 2αγ2 + 4γ 2

1 − 4γ1γ2 + γ 2
2 − 9βδ1

9β
,(5.57)

or having α = b
a , β = 1

a :

Π1
(
ȳ1
) = b2 − 4abγ1 + 2abγ2 + 4a2γ 2

1 − 4a2γ1γ2 + a2γ 2
2 − 9aδ1

9a
(5.58)

and the maximum profit for the first producer:

Π2
(
ȳ2
) = α2 + 2αγ1 − 4αγ2 + γ 2

1 − 4γ1γ2 + 4γ 2
2 − 9βδ2

9β
,(5.59)

or having α = b
a , β = 1

a :

Π2
(
ȳ2
) = b2 + 2abγ1 − 4abγ2 + a2γ 2

1 − 4a2γ1γ2 + 4a2γ 2
2 − 9aδ2

9a
.(5.60)

From Eqs. (5.42) and (5.44), it results that the maximum profit of each producer
depends on the optimal supply by her/him and the optimal supply by the other
producer. As a consequence, the maximum profit of j-th producer depends on
market capacity b > 0, the strength a > 0 of consumers’ reaction to changes
in a product price, production marginal costs γ1, γ2 > 0 for both producers and
on the production fixed cost δ j for j-th producer. Whether this maximum profit
is positive, equal to zero or negative (minimum loss) depends on the values of
mentioned parameters, especially on a level of the fixed cost for j-th producer.

At the end, let us determine if the price by which both producers decide on their
optimal output levels is the equilibrium price which would become established on
a market with the consumer demand function (5.4) and the product supply function
(5.8).

From condition (5.37), one can determine a price level by which both producers
decide on their optimal output levels guaranteeing maximum profits:

p̄ =α − β
(
ȳ1 + ȳ2

) = α − β

(
2α − (γ1 + γ2)

3β

)

=α + (γ1 + γ2)

3
= b + a(γ1 + γ2)

3a
> 0.(5.61)
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At the same time, from the definition of the product supply given in Eq. (5.8),
we know that a positive product price should satisfy a condition:

p̄ = ȳ − d

c
= 2α − (γ1 + γ2) − 3βd

3βc
= 2b − a(γ1 + γ2) − 3d

3c
.(5.62)

Since from (5.17) p̄ = b−d
a+c > 0 then from conditions (5.61) and (5.62) we get

that

b + a(γ1 + γ2)

3a
= 2b − a(γ1 + γ2) − 3d

3c
,(5.63)

which results in condition:

γ1 + γ2 = 2ab − 3ad − bc

a(a + c)
(5.64)

that determines relationships between values of parameters of a product supply
function, a consumer demand function and a production variable cost function and
more generally speaking relationships between these functions.13

If condition (5.64) is satisfied, then the price by which producers decide on the
product optimal supply guaranteeing the maximum profits is the equilibrium price.

5.2 Monopoly—Determining Optimal Price and Optimal
Output Level

5.2.1 Static Approach

A firm is called a monopoly and its owner is called a monopolist in reference to
a certain product (good or service) when it is the sole supplier of this product. A
market of a given product in which there is only one supplier of this product is
also called a monopoly.

A monopolistic firm, that aims to obtain maximum profit, sets an optimal out-
put level, as well as an optimal price of its product. Conventionally, two types of
a monopoly can be distinguished: a technological one when a monopolist is the
only producer who owns the technology and infrastructure needed to manufac-
ture and sell a certain product; and an institutional one when a monopolist is the
only producer who holds the exclusive license for the manufacturing and selling a
certain product. This distinction has no particular significance for our discussion

13 Let us recall that condition (5.64) is derived by an assumption that all these functions are linear.
That is why it has this quite simple form. In general, when the functions are nonlinear, it is also
possible to derive a condition determining relationships between functions but of more complex
form.
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since we are interested in the quantitative analysis of an equilibrium state for any
monopolistic company.

Let us consider a market of some product that is supplied by a monopolistic
firm.

Definition 5.6 A function of consumer demand for a product manufactured by a
monopolist is a mapping h:R+ → R+ given in a form:

yd = h(p),(5.65)

which is assumed to be twice differentiable and decreasing:

dyd

dp
= dh(p)

dp
< 0,(5.66)

meaning that, when the price of the product increases, the demand for this product
decreases. A graph of such a function is called a demand curve.

An output level (the supply) of a product manufactured by a monopolist has
to be equal to the demand reported by consumers by a product price set by a
monopolist:

ys = yd = h(p).(5.67)

To emphasize how strong this assumption is, let us illustrate it by assuming, for
the sake of simplicity, that functions of the demand and the product supply are, as
before, linear (Fig. 5.3):

yd = −ap + b, a, b > 0,(5.68)

ys = cp + d, c > 0, d ≥ 0.(5.69)

When the product supply matches the demand reported for this product, then
from definitions of functions of the demand and of the product supply, it results
that

yd ∈ [0; b],(5.70)

p ∈
⎡
0; b

a

⎤
,(5.71)

ys ∈ ⎡d; ys( p̄)⎤ ⊂ [d; b], b > d(5.72)
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Fig. 5.3 Functions of
demand and of product
supply

where ys( p̄) means an output level which becomes established by the equilibrium
price p̄ ∈ (0; b

a

)
which equalizes the supply of a product and the demand reported

for it.
One derives the equilibrium price from an equation:

ys = yd ⇔ c p̄ + d = −a p̄ + b,(5.73)

from which, after some transformations, one gets

p̄ = b − d

a + c
.(5.74)

Eventually, due to the necessary adjustment of the product supply to the
demand, three cases should be considered:

(a) when the demand for a product exceeds its supply:

p ∈
⎡
0; b − d

a + c

)
⇒ yd ∈

⎡
ad + bc

a + c
; b
)

∧ ys ∈
⎡
d; ad + bc

a + c

)
⇐⇒ yd > ys .

(5.75)

A monopolist raising a price of her/his product causes a decline in the demand
for it, but still, some part of the demand will be not satisfied. Assuming that
consumers do not have the opportunity to purchase the product from another
producer nor to substitute it with some product, some part of their demand
will not be satisfied by a given product price set by a monopolist.
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(b) when levels of the demand for a product and of its supply are the same:

p = b − d

a + c
⇒ yd = ad + bc

a + c
∧ ys = ad + bc

a + c
⇐⇒ yd = ys .(5.76)

A product price set on this level equalizes the demand and the product supply.
(c) when the supply of a product exceeds the demand for it:

p ∈
(
b − d

a + c
; b
a

⎤
⇒

yd ∈
⎡
0; ad + bc

a + c

)
∧ ys ∈

(
ad + bc

a + c
; ad + bc

a

⎤
⇔ ys > yd .

(5.77)

If a monopolist would set a price higher than the equilibrium price, then as a
consequence, the product supply would exceed the demand for a product. As
a result, he/she would create stocks of a product that could not be sold on a
market with a strictly determined demand function.

Let us assume that a monopolist aiming at profit maximization sets a price level
which is the equilibrium price that is a level equalizing the demand and the product
supply14:

ys = yd = y.(5.78)

At the same time, a product price depends on its supply which should be equal
to the demand reported by consumers for a product.

For the sake of simplicity, let us assume that a function of demand for a product
is linear and decreasing with respect to a product price:

yd = h
(
p
(
ys
)) = −ap

(
ys
)+ b, a, b > 0,(5.79)

where p(ys) denotes a price set by a monopolist dependent on the product supply.
A monopolist is interested only in the nonnegative demand, then, by a product

price equal to zero, the demand is b > 0, while by a price at level p(ys) =
b
a , the demand for a product equals zero. On this basis, we can state that, on a
monopolistic market with the demand described by a linear function of consumer
demand, the following conditions are satisfied:

yd ∈ [0; b](5.80)

14 When it is reasonable and useful, we write y as an output level instead of distinguishing between
the product supply ys and the demand yd for a product.
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and

p
(
ys
) ∈
⎡
0; b

a

⎤
.(5.81)

Let us notice that

dyd

dp(ys)
= −a < 0,(5.82)

which means that, when a monopolist raises a price of its product by one notional
money unit, the demand for a product decreases by a physical units. Hence,
parameter a in the linear demand function can be interpreted as a measure of
the consumers’ reaction strength to a unit increase in the price of a product.

Price elasticity of demand for a product is a function of the product price and
takes the form:

E
(
yd
)

= dyd

dp(ys)

p(ys)

yd
= −ap(ys)

−ap(ys) + b
.(5.83)

If p(ys) ∈ (0; b
a

)
, then the following condition is satisfied:

−ap(ys) + b > 0.(5.84)

Then the price elasticity of demand for a product is negative. It describes by
approximately what % the demand for a product decreases when a monopolist
raises a product price by 1%.

Equations (5.82) and (5.83) define measures of the consumers’ reaction strength
to, respectively, a unit or 1% increase in the price of a product.

Parameter b can be interpreted as a measure of a market capacity, which
corresponds to the maximum demand that consumers can report for this product
at a product price equal to zero.

Definition 5.7 An inverse function of consumer demand for a product supplied
to a market by producers is a mapping g:R+ → R+ given in a form:

p
(
ys
) = g

(
yd
)
,(5.85)

which is an identity transformation of a demand function:

yd = h
(
p
(
ys
)) = −ap

(
ys
)+ b ⇐⇒ p

(
ys
) = b − yd

a
.(5.86)

It is worth explaining more precisely whether the inverse demand function is the
inverse of the demand function.
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Definition 5.8 Functions y = h(p) and p = g(y) are called inverse to each other
if ∀a, b ∈ R+ if the following conditions are satisfied:

b = h(a) ⇒ a = g(b),(5.87)

and at the same time,

a = h(b) ⇒ b = g(a).(5.88)

If h function is given, then g function is called an inverse (or an inverse function)
to h. Since the choice of the variable is arbitrary, we can write the inverse p = g(y)
also as y = g(p). Then graphs of functions y = h(p) and y = g(p) inverse to each
other are symmetric with respect to the line y = p.

Example 5.2 Let us determine an inverse to a power demand function:

yd = h
(
p
(
ys
)) = −ap(ys)α + b, a, b > 0, α ∈ (0, 1).(5.89)

From Eq. (5.89), one determines a functional relationship of a product price
depending on a demand level:

yd = −ap(ys)α + b ⇔ p
(
ys
) =

(
b − yd

a

) 1
α

a, b > 0,(5.90)

which is an inverse function of consumer demand.

In the form of this function, one changes the denotation so that a dependent
variable is the demand level and an independent variable is the product price:

yd = g(p) =
(
b − p(ys)

a

) 1
α

a, b > 0.(5.91)

The function derived this way is an inverse function to the demand function. Its
graph is symmetric to the graph of a function yd = h(p) with respect to the line
y = p which is presented15 in Fig. 5.4.

Theorem 5.2 If functions y = h(p) and p = g(y) are inverse to each other, then
the following condition is satisfied:

dy

dp
= dh(p)

dp
= 1

dg(y)
dy

= 1
dp
dy

.(5.92)

15 The graph of the inverse function of consumer demand coincides with the graph of the demand
function.
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Fig. 5.4 Graphs of power function of consumer demand, inverse function of consumer demand
and function inverse to demand function

On the basis of Eqs. (5.89) and (5.90), one can notice that

dyd

dp(ys)
= −αap(ys)α−1(5.93)

and

dp(ys)

dyd
= − 1

αap(ys)α−1 ,(5.94)

which means that condition (5.92) is satisfied in case of the power demand function
and its inverse.

Definition 5.9 Revenue (turnover) from sales of a product manufactured by a
monopolist is an expression:

r
(
ys
) = p

(
ys
)
ys .(5.95)

The supply of a product is presumed tomatch the demand for this product ys = yd ;
thus,marginal revenue from sales of a productmanufactured by amonopolist is lower
than a product price set by a monopolist:

dr(ys)

dys
= dp(ys)

dys
ys + p

(
ys
)

< p
(
ys
)
,(5.96)
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since:

ys > 0, p
(
ys
)

> 0,
dp(ys)

dys
< 0.(5.97)

Let us recall that, in case of a producer acting in the perfect competition, the
marginal revenue from sales of a product is described by a linear function since a
price is given by a market, thus treated as a parameter by a producer:

r(y) = py,(5.98)

which results in:

dr(y)

dy
= p > 0,(5.99)

meaning that the marginal revenue is equal to the product price.
From conditions (5.92) and (5.96), it results that, in case of a monopolistic

company, we have

dr(ys)

dys
= dp(ys)

dys
ys + p

(
ys
)

= p
(
ys
)(dp(ys)

dys
ys

p(ys)
+ 1

)
= p

(
ys
)
(

1
dys

dp(ys )
p(ys )
ys

+ 1

)
.(5.100)

Since we assume that y = ys = yd , price elasticity of product supply is equal
to the price elasticity of demand for a product:

E(y) = dy

dp(y)

p(y)

y
= dys

dp(ys)

p(ys)

ys
= dyd

dp
(
yd
)
p
(
yd
)

yd
< 0,(5.101)

which is negative for a decreasing demand function of demand.
Condition (5.100) can be written also in an equivalent form:

dr(ys)

dpys
= p(y)

(
1

E
(
yd
) + 1

)
= p(y)

1 + E
(
yd
)

E
(
yd
) ,(5.102)

which means that the monopolist’s marginal revenue (turnover) from sales depends
on the price he/she sets and on the price elasticity of consumer demand for a
product.
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Definition 5.10 A function of production total cost for a monopolist is an
expression:

ctot
(
ys
) = cv

(
ys
)+ c f (ys

)
,(5.103)

where:

cv(ys)—a function of production variable cost, dependent on production level,
c f (ys) = c = const. ≥ 0—a function of production fixed cost, independent of
production level.

Definition 5.11 A function of average production total cost is an expression:

ctot (ys)

ys
= cv(ys)

ys
+ c f (ys)

ys
,(5.104)

where:

cv(ys )
ys —a function of production average variable cost,

c f (ys )
ys = c

y—a function of production average fixed cost.

Note 5.2 From definitions of functions of production total, variable and fixed costs,
it results that

dctot (ys)

dys
= dcv(ys)

dys
,(5.105)

which means that the marginal total cost of production is equal to the marginal
variable cost of production.

Let us consider a profit maximization problem16 for a monopolist:

Π(y) = r(y) − ctot (y) = {p(y)y − ctot (y)
} |→ max

y ≥ 0,(5.106)

for which we assume that ys = yd = y.
From Theorem 4.18, we know if a profit function of a monopolist is strictly

concave and the following condition is satisfied:

16 It is the profit maximization problem of type (P3m) discussed in Chap. 4.
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lim
y→0+

dΠ(y)

dy
> 0 ∧ lim

y→+∞
dΠ(y)

dy
< 0 ⇔

⇔ lim
y→0+

dr(y)

dy
> lim

y→0+
dctot (y)

dy
∧ lim

y→+∞
dr(y)

dy
< lim

y→+∞
dctot (y)

dy
(5.107)

⇔ lim
y→0+

dr(y)

dy
> lim

y→0+
dcv(y)

dy
∧ lim

y→+∞
dr(y)

dy
< lim

y→+∞
dcv(y)

dy
,(5.108)

then:

(1) ∃1 ȳ > 0,
(2) a necessary and sufficient condition for ȳ > 0 being an optimal solution to the

profit maximization problem for a monopolist is

dΠ(y)

dy

||||
y=ȳ

= 0 ⇔ dr(y)

dy

||||
y=ȳ

= dcv(y)

dy

||||
y=ȳ

,(5.109)

which means that, by ȳ > 0,
– the marginal profit equals zero;
– the marginal revenue from sales of a product is equal to the marginal total

(variable) of production.
From conditions (5.102) and (5.109), it results that

dr(y)

dy

||||
y=ȳ

= p(ȳ)
1 + E

(
ȳd
)

E
(
ȳd
) = dcv(y)

dy

||||
y=ȳ

,(5.110)

which gives

p(ȳ) = E
(
ȳd
)

E
(
ȳd
)+ 1

· dcv(y)

dy

||||
y=ȳ

.(5.111)

From condition (5.111), it follows that a product price set by a monopolist depends
on the marginal variable cost and the price elasticity of demand reported by con-
sumers for a product. Since the marginal variable cost and a product price set by
a monopolist are positive, while the elasticity of demand for a product is negative,
condition (4.111) is met when:

E
(
ȳd
)

+ 1 < 0 ⇔ E
(
ȳd
)

< −1,(5.112)

which means that in the described market, the price elasticities of demand reported
by consumers for a product manufactured by a monopolist must be lower than −1.
Thus, an increase in the product price by 1% should result in a decrease in the
demand for the product by more than 1%.
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Let us consider the dependence of the price level of a product on the price
elasticity of demand for this product. Since:

E
(
ȳd
)

∈ (−∞; −1),(5.113)

it is enough to consider two limiting cases.

Case 1

lim
E
(
ȳd
)→−∞

p
(
ȳs
) = lim

E
(
ȳd
)→−∞

⎧
⎨

⎩
1

1 + 1
E
(
ȳd
)

· dcv(ys)

dys

||||
ys=ȳ

⎫
⎬

⎭ = dcv(ys)

dys

||||
ys=ȳ

,

(5.114)

meaning that, if the reaction of consumers to changes in a price level is very strong
(high in absolute value), then a product price set by a monopolist at a level ensur-
ing maximum profit for her/him will converge to the marginal variable cost of
production. We can say then that this situation is similar to that of the perfect
competition: a product price will be equal to the marginal variable (total) cost of
production (Fig. 5.5).

Case 2

lim
E
(
ȳd
)→−1−

p
(
ȳs
) = lim

E
(
ȳd
)→−1−

⎧
⎨

⎩
1

1 + 1
E
(
ȳd
)

· dcv(ys)

dys

||||
ys=ȳ

⎫
⎬

⎭ = +∞,(5.115)

meaning that, if the reaction of consumers to changes in a price level is very weak
(low in absolute value), then a product price set by a monopolist at a level ensuring
maximum profit for her/him will converge to infinity. When a reaction of the con-
sumer demand to changes in a product price is weak, a monopolist may set the price
at any high level (Fig. 5.5).

Knowing an output level ȳs > 0 that guarantees the maximum profit for a monop-
olist, on the basis of the inverse demand function (4.86), we can determine a price
level of a product:

p̄
(
ȳs
) = g

(
ȳs
) = b − ȳs

a
.(5.116)
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Fig. 5.5 Dependence of product price set by monopolist on price elasticity of demand

Example 5.3 The following functions are given:

– a linear function of demand for a product:

yd = h(p) = −ap + b, a, b > 0,(5.117)

– a linear inverse function of demand for a product:

p
(
yd
)

= g
(
yd
)

= b − yd

a
= α − β yd , a, b, α = b

a
, β = 1

a
> 0,(5.118)

– a linear function of total cost of production:

ctot
(
ys(p)

) = γ ys + δ, γ, δ > 0(5.119)

where:

cv(ys(p)) = γ ys—a linear function of the variable cost,
c f (ys(p)) = δ—a function of the fixed cost,
r(ys) = p(ys)ys—revenue (turnover) from sales of a product.
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We assume that the supply of a product is equal to the demand reported by
consumers:

ys = yd = y.(5.120)

Then the profit maximization problem for a monopolist takes the form:

Π(y) = r(y) − ctot (y) = p(y)y − ctot (y) = (α − β y)y − γ y − δ

= {−β y2 + (α − γ )y − δ
} |→ max

y ≥ 0.(5.121)

If assumptions of Theorem 4.18 are satisfied, then an optimal solution to
problem (5.121) is an output level determined from a condition:

dΠ(y)

dy

||||
y=ȳ

= −2β ȳ + (α − γ ) = 0 ⇔

⇔ ȳ = α − γ

2β
=

b
a − γ

2
a

= b − aγ

2
> 0,(5.122)

which means that an output level guaranteeing the maximum profit for a monop-
olist is positive when:

γ <
b

a
,(5.123)

thus when the total (variable) marginal cost of production is below the maximum
price level that a monopolist can set. Otherwise, a monopolist will not engage in
production, since, at best, he/she would make zero profit.

Then the level of a product price set by a monopolist is

p(ȳ) = g(ȳ) = α − β ȳ = α − β
α − γ

2β
= α + γ

2
=

b
a + γ

2
= b + aγ

2a

= 1

2
· b
a

+ 1

2
γ > 0.(5.124)

Let us notice that the price elasticity of demand reported by consumers for a
product meets the condition:

E(yd) = E(ȳs) = −b + aγ

b − aγ
< −1.(5.125)
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Table 5.2a Measures of response of the product supply by a monopolist to changes in parameters’
values

Characteristic ∂ ȳ
∂a

∂ ȳ
∂b

∂ ȳ
∂γ

Value −γ
2

1
2 − a

2

Table 5.2b Measures of response of the product price set by a monopolist to changes in param-
eters’ values

Characteristic ∂ p(ȳ)
∂a

∂ p(ȳ)
∂b

∂ p(ȳ)
∂γ

Value − b
2a2

1
2a

1
2

The monopolist’s maximum profit at the equilibrium price is

Π(ȳ) = (α − γ )2

4β
− δ = (b − aγ )2

4a
− δ.(5.126)

If, in addition:

(b − aγ )2

4a
> δ,(5.127)

where γ < b
a , then the monopolist’s maximum profit is positive.

Let us notice that the product price and the product supply set by a monopolist,
which by given demand for a product guarantee the maximum profit, depend on
a market capacityb, the strength a of consumers’ reaction to changes in a product
price and the production marginal total (variable) costγ . The maximum profit of a
monopolist depends also on the fixed cost of production.

Let us analyse the sensitivity of the product optimal supply by a monopolist and
of the product price to changes in values of parameters that describe the considered
model of a monopolistic market. Values of adequate measures are presented in
Tables 5.2a and 5.2b.

From Tables 5.2a and 5.2b, it follows that a unit increase in market capacity b
results in an increase in the optimal supply and the product price. A unit increase
in the marginal variable cost of production γ results in a decrease in the product
optimal supply and an increase in the product optimal price. A unit increase in
the strength a of consumers’ reaction to changes in the price of a product set
by monopolist results in a decrease in the product price and the product optimal
supply.

5.2.2 Dynamic Approach

Determining the optimal level of a product price a monopoly decides on the
basis of what an output level will ensure the maximum profit by a given demand
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reported by consumers. Knowing a demand function for the product a monopolist
can determine the dependence of a product price on the product, that is, he/she
can determine the inverse demand function. In the static approach, in Sect. 5.2.1,
we assume that consumers’ behaviour is time-invariant in the sense they always
respond to changes in a product price in the same way determined by the demand
function. Total cost of production is also time-invariant. In the dynamic approach,
we assume that a form of a demand function, as well as a form of a production
cost function, may change over time. For example, consumers may become more
or less sensitive to changes in the product price. A market capacity of a prod-
uct manufactured by a monopolistic company may also change over time, which
shows that the extent of consumers’ interest in a product is not constant. If a form
of a production cost function changes over time, this reflects the fact that the cost
of manufacturing a unit of a product may be higher or lower over the considered
time horizon. The reasons for these changes may be changes in the production
technology, as well as an increase or decrease in prices of production factors.

Let us take the following notation:

t—time, in a discrete version (t = 0, 1, 2, . . . , T ) or in a continuous version17

(t ∈ [0; T ]),
T—time horizon,
yd(t) = h(p(t))—a consumer demand function with a time-variant form,
p(ys(t)) = g(yd(t))—an inverse function of demand for a product,
ctot (ys(t)) = cv(ys(t)) + δ(t)—a function of production total cost,
cv(ys(t))—a function of production variable cost, that is, the cost depending
on an output level,
δ(t) ≥ 0—the time-variant fixed cost, that is, the cost that does not depend on
the output level,
E(yd(t))—price elasticity of consumer demand for a product.

In the monopolist’s profit maximization problem with an exogenously determined
function of demand for a product, we make a simplifying assumption that, in each
period/at any moment, a monopolist adjusts an output level to the demand that
consumers report by a given price. This affects the choice of the optimal supply
and the optimal price by a monopolist but allows her/him to avoid the problem of
dealing with stocks of unsold units of the output. This assumption takes the form:

ys(t) = yd(t) = y(t).(5.128)

17 For the discrete and continuous versions, we use the same denotation of dependency of a func-
tion value on time, for example, the fixed cost depending on time: δ(t). Whether the discrete
or continuous version is used in a given formula will result from the context of the issue under
consideration.
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Then the monopolist’s profit maximization problem can be written as

Π(y(t)) = r(y(t)) − ctot (y(t)) = {p(y(t)) · y(t) − ctot (y(t))} |→ max(5.129)

y(t) ≥ 0.(5.130)

If the profit function Π(y(t)) is strictly concave, then in every period/at any
moment t , Problem (5.129)–(5.130) has a solution ȳ(t) > 0, derived from the
first-order condition of the profit maximization:

dΠ(y(t))

dy(t)

||||
y(t)=ȳ(t)

= 0 ⇔ dr(y(t))

dy(t)

||||
y(t)=ȳ(t)

= dcv(y(t))

dy(t)

||||
y(t)=ȳ(t)

∀t,
(5.131)

where t = 0, 1, 2, . . . , T or t ∈ [0; T ].
From the profit maximization problem, one derives the optimal supply ȳ(t) of

a product, which changes over time, since the form of the demand function and
the form of the production total cost function vary in time. The optimal price level
of a product manufactured by a monopoly is p(ȳ(t)).

Example 5.4 Let us assume that the demand for a product of a monopoly is given
in a linear function form:

yd(t) = −a(t)p(t) + b(t), a(t), b(t) > 0, ∀t ∈ [0; 30],

where a(t) is a function determining how strong the reaction of consumers to changes
in a product price is, while b(t) is a function of the market capacity. In order to
evaluate how the formation of the consumers’ sensitivity to changes in a product
price affects the optimal supply and the optimal price level, we will compare results
by an assumption that value of a(t) is constant over time and equal to 2 with those
by an assumption that value of a(t) varies in time according to the formula:

a(t) = 1

t + 1
+ 1.

We will compare as well the results by constant market capacity equal to 10
with those by an assumption that the market capacity varies in time according to
the formula:

b(t) = −0.025t2 + 0.75t + 10.

Trajectories of a(t) and b(t) are shown in Fig. 5.6. The consumers’ sensitivity
to changes in a price is constant over the whole time horizon and equals to 2 or
it decreases over time (in the second of assumed versions), starting at 2 at the
beginning of the horizon, ending at approximately 1.03 at the end of the horizon.
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Fig. 5.6 Trajectories of strength of consumers’ reaction to changes in price and trajectories
of market capacity

The market capacity is constant over time at 10 or rising (in the second of assumed
versions) from 10 at the beginning of the horizon, reaching its maximum at 15.62
at time t = 1 = 15, and then decreasing to the end of the horizon, again taking a
value of 10.

Let us assume that a production total cost function is linear too

ctot
(
ys(t)

) = γ (t)ys(t) + δ(t), γ (t), δ(t) > 0, t ∈ [0; 30]),
where γ (t) denotes the marginal cost of production and δ(t) is a function of the
fixed cost of production. Since the production fixed cost is irrelevant for a company
when choosing an output level or when determining a price level of a product but
only affects the amount of profit, we will assume, for the sake of simplicity, that it
is constant over time and amounts to 0.5. In order to assess how formation of the
marginal cost affects a supply optimal level and an optimal level of a product price,
we will compare results obtained assuming that the value of γ (t) is constant over
time and equals to 1 with results obtained by an assumption that γ (t) varies in
time according to the formula:

γ (t) = − 1

t + 1
+ 2.

Trajectories of γ (t) and δ(t) are shown in Fig. 5.7. The fixed cost of production
does not change over time and is always equal to 0.5. The marginal cost of pro-
duction is constant over the time horizon and equal to 1 or increases over time
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Fig. 5.7 Trajectories of production marginal cost and of production fixed cost

(in the second of assumed versions), starting at 1 at the beginning of the horizon,
ending at approximately 1.97 at the end of the horizon.

From the demand function, assuming that the supply matches the demand, that
is, ys(t) = yd(t) = y(t), one derives an inverse function of demand which takes
the form:

p(y(t)) = − 1

a(t)
y(t) + b(t)

a(t)
.

Hence, the monopolist’s profit maximization problem can be written as

Π(y(t)) = r(y(t)) − ctot (y(t)) =
(

−1

a
y(t) + b(t)

a(t)

)
y(t) − {γ (t) + δ(t)}

=
{
−1

a
y(t)2 +

(
b(t)

a(t)
− γ (t)

)
y(t) − δ(t)

}
|→ max

y(t) ≥ 0.

A solution to the problem is the optimal supply given as

ȳ(t) = b(t) − a(t)γ (t)

2
,

ȳ(t) > 0 ⇔ γ (t) <
b(t)

a(t)
∀t ∈ [0; 30],

where we can notice that the supply increases when the market capacity grows and
decreases when the consumers’ sensitivity to price changes or the marginal cost
of production rises.
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Fig. 5.8 Trajectories of product optimal supply

In Fig. 5.8, we present a comparison of a constant optimal level of supplyȳ(t),
when all the functions: a(t), b(t), γ (t) are constant over time with optimal lev-
els of the supply when one of these functions (a(t), b(t) orγ (t)) changes over
time. The figure demonstrates the same observation one made considering the
optimal output formula. For example, the fact that, when the consumers’ sensitiv-
ity to changes in a price declines over time, it leads to an increase in the optimal
supply ȳa(t). When what changes over time is the market capacity, the optimal
supply ȳb(t) has the biggest value when the market capacity is the greatest, that
is, at moment, t = 15. If the marginal cost of production increases over time, it
leads to a decline in the optimal supply ȳγ (t). The sign of a difference between the
level ȳ(t) and levels ȳa(t), ȳb(t) or ȳγ (t) (determining if the reaction is positive
or negative) complies with the formula for the optimal output level, whereas the
size of this difference depends on how big the changes in values of a(t), b(t) or
γ (t) in time are.

On the basis of the inverse function of demand, a monopolist determines the
optimal price level for her/his product dependent on the optimal output level:

p(ȳ(t)) = −1

a
ȳ(t) + b(t)

a(t)
= b(t) + a(t)γ (t)

2a(t)
.

The price level depends positively on the market capacity b(t) and the marginal
cost of production γ (t), and negatively on the consumers’ sensitivity a(t) to price
changes. The higher market capacity means increased consumers’ interest in the
product which enables the producer to increase the price. With an increase in the
marginal cost of production, a monopolist gives his/her product a higher price to
compensate for the loss of some profit from the higher cost of production. The
increase in the strength of consumers’ reaction to changes in the product price
means that it is necessary for a monopolist to lower the price, since he/she is



324 5 Rationality of Choices Made by a Group of Producers …

driven by profit maximization and such a reduction will allow her/him to obtain
an increased demand for the product, and thus an increase in the income from
sales of the product.

In Fig. 5.9, we compare a constant optimal level p(ȳ(t)) of a product price
when all functions,a(t), b(t), γ (t), are constant over time with optimal price levels
when one of these functions (a(t), b(t) or γ (t)) changes over time. The figure
demonstrates the same one can observe on the basis of the optimal price formula.
If the consumers’ sensitivity to changes in a price declines in time, it leads to an
increase in the optimal price p(ȳa(t)). If it is the market capacity that changes over
time, the optimal price p(ȳb(t)) has the biggest value when the market capacity is
the greatest, that is, at moment t = 15. If the marginal cost of production increases
over time, it leads to an increase in the optimal supply p(ȳγ (t)). The sign of a
difference between the level p(ȳ(t)) and levels p(ȳa(t)), p(ȳb(t)) or p(ȳγ (t))
(determining if the reaction is positive or negative) complies with the formula for
the optimal price level, whereas the size of this difference depends on how big the
changes in values of a(t), b(t) or γ (t) in time are.

Let us also analyse the maximum profit formation over time. Let us recall that
we took an assumption that the fixed cost of production is constant over time.
Therefore, its amount does not matter for the obtained differences in the results
of the maximum profit value. They are determined by the shaping of the values
of functions a(t), b(t) and γ (t). The profit value is positively influenced by an
increase in the market capacity, which can be seen on the basis of trajectories
shown in Figs. 5.6 and 5.10. An increase in the marginal cost of production affects
the maximum profit negatively, while a decrease in the consumers’ sensitivity to
price changes has a positive effect, thus an increase in this value has a negative
impact on the maximum profit.
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Fig. 5.9 Trajectories of optimal price
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Fig. 5.10 Trajectories of maximum profit of a monopolist

Based on Fig. 5.11, which presents the formation of price elasticity of demand,
and comparing it with Fig. 5.9, we can observe the relationship between the prod-
uct price set by a monopolist and the price elasticity of demand, which determines
the strength of consumers’ reaction to price changes. We can also notice that
the value of the price elasticity of demand; therefore, how strong the reaction
of consumers to price increases is, depends on the shaping of values of functions:
a(t), the market capacity b(t) and the marginal cost of production γ (t). This last
dependence results from the fact that a monopolist determines the price of her/his
product on the basis of the optimal level of supply, which he/she makes dependent,
among others, on the marginal cost.
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Fig. 5.11 Trajectories of price elasticity of demand reported for a product by consumers
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5.3 Monopolistic Discriminatory Pricing on Two Different
Markets

5.3.1 Static Approach

Let us apply the following set of assumptions:

(D1) A monopolistic company manufactures one product and supplies it to two
different markets on which it can set two different prices.18 We assume that it is
not possible to resell the product between the markets.

(D2) Total quantity of a product manufactured by a monopolist supplied to both
markets is19:

y = ξ(y1, y2) = y1 + y2,(5.132)

where:

y1 - an output level intended for the first market,
y2 - an output level intended for the second market.

Hence, we have

∂ y

∂ y1
= ∂ξ(y1, y2)

∂ y1
= 1 and

∂ y

∂ y2
= ∂ξ(y1, y2)

∂ y2
= 1.(5.133)

(D3) A production total cost function is an increasing function of output level:

ctot (y) = cv(y) + c f (y), such that(5.134)

dctot (y)

dy
= dcv(y)

dy
> 0.(5.135)

18 Not only monopolistic firms practice the discriminatory pricing. However, it is easier to dis-
criminate prices when there are no or just few competitors, since discriminatory pricing with
competition of other producers can discourage consumers from the producer who practices it and
what is more it requires gathering a lot of information about sensitivity of consumers demand
in various groups of consumers. For discriminatory pricing survey, to present the topic by means of
the monopolistic company model is the simplest way to do it, since the only one factor one focuses
on is the price discrimination, not competition by prices or by quantities.
19 From condition (5.132), it results that the total quantity of a product manufactured by a monop-
olist supplied to both markets is a scalar linear function of output levels intended for the first and
the second markets. Having in mind that y = ξ(y1, y2), we will write just y in order to make the
notation simpler and shorter.
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Moreover,

∂ctot (y)

∂ y1
= dctot (y)

dy

∂ y

∂ y1
= dctot (y)

dy
> 0,(5.136)

and

∂ctot (y)

∂ y2
= dctot (y)

dy

∂ y

∂ y2
= dctot (y)

dy
> 0,(5.137)

which means that regardless of where the output is intended, for the first or the
second markets, production marginal total (variable) cost is the same.

(D4) Each function of the demand reported by consumers on i-th market is known:

yd1 = h1(p1),
dyd1
dp1

< 0,(5.138)

yd2 = h2(p2),
dyd2
dp2

< 0,(5.139)

and is decreasing in a product price set on i-th market by a monopolist. As a result,
we have an assumption that a change in a product price on one of the markets does
not affect the price of the product set on the other market.

(D5) For the demand reported for a product on i-th market, there exists an inversed
function of demand:

p1
(
yd1

)
= g1

(
yd
)
,

dp1
dyd1

= 1
dyd1
dp1

< 0,(5.140)

p2
(
yd2

)
= g2

(
yd2

)
,

dp2
dyd2

= 1
dyd2
dp2

< 0,(5.141)

and it is decreasing in the demand reported by consumers for a product on i-the
market.

(D6) Each price elasticity of demand reported by consumers on i-th market is
negative:

E1(p1) = dyd1
dp1

p1
yd1

< 0,(5.142)

E2(p2) = dyd2
dp2

p2
yd2

< 0.(5.143)
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(D7) Total quantity of a product (the total supply) manufactured by a monopolist is
equal to the total demand reported by consumers for the product on both markets
by the prices of this product set by the monopolist on each market:

ys = yd ,(5.144)

and at the same time, the product supply on each market matches the demand
reported for the product on this market:

∀i = 1, 2 ysi = ydi = yi .(5.145)

(D8) The aim of a monopolist is to maximize total profit from both markets of a
product:

Π(y1, y2) = r1(y1) + r2(y2) − ctot (y) = {p1(y1)y1 + p2(y2)y2 − ctot (y)
} |→ max

(5.146)

y1, y2 ≥ 0,(5.147)

where:

r1(y1) = p1(y1)y1—revenue (turnover) from sales of a product on the first
market,
r2(y2) = p2(y2)y2—revenue (turnover) from sales of a product on the second
market,
ctot (y)—total cost of overall production intended for both markets.

Necessary conditions for the existence of an optimal solution to the profit
maximization problem (5.146)–(5.147) take the form:

∂Π(y)

∂ y1

||||
y=ȳ

= 0,(5.148)

∂Π(y)

∂ y2

||||
y=ȳ

= 0.(5.149)

Sufficient conditions for the existence of the optimal solution to the profit
maximization problem (5.146)–(5.147) take the form:

∂2Π(y)

∂ y21

|||||
y=ȳ

= 0,(5.150)

∂2Π(y)

∂ y22

|||||
y=ȳ

= 0,(5.151)
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∂2Π(y)

∂ y21

|||||
y=ȳ

· ∂2Π(y)

∂ y22

|||||
y=ȳ

− ∂2Π(y)

∂ y1∂ y2

||||
y=ȳ

· ∂2Π(y)

∂ y2∂ y1

||||
y=ȳ

> 0,(5.152)

where:

ȳ = ȳ1 + ȳ2,(5.153)

∂2Π(y)

∂ y1∂ y2

||||
y=ȳ

= ∂2Π(y)

∂ y2∂ y1

||||
y=ȳ

,(5.154)

since a matrix of second-order partial derivatives (the Hessian) for the profit
function:

H(y) =
⎡

⎣
∂2Π(y)

∂ y21

∂2Π(y)
∂ y2∂ y1

∂2Π(y)
∂ y1∂ y2

∂2Π(y)
∂ y22

⎤

⎦(5.155)

is symmetric with respect to its main diagonal which means that its elements on
both sides of the main diagonal are equal to each other.

Let us determine the necessary conditions for the existence of an optimal
solution to the profit maximization problem (5.146)–(5.147):

• for the first market:

∂Π(y)

∂ y1

||||
y=ȳ

= dr1(y1)

dy1

||||
y=ȳ

− dctot (y)

dy

||||
y=ȳ

= 0

⇔ dr1(y1)

dy1

||||
y=ȳ

= dctot (y)

dy

||||
y=ȳ

;
(5.156)

• for the second market:

∂Π(y)

∂ y2

||||
y=ȳ

= dr2(y2)

dy2

||||
y=ȳ

− dctot (y)

dy

||||
y=ȳ

= 0

⇔ dr2(y2)

dy2

||||
y=ȳ

= dctot (y)

dy

||||
y=ȳ

,

(5.157)

from which it follows that

dr1(y1)

dy1

||||
y=ȳ

= dctot (y)

dy

||||
y=ȳ

= dr2(y2)

dy2

||||
y=ȳ

,(5.158)

thus, for ȳ = ȳ1 + ȳ2, the marginal revenue from sales of a product on the first
market is equal to the marginal revenue from sales of the product on the second
market, both equal to the marginal total cost of production intended for both
markets.
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Let us determine the sufficient conditions for the existence of an optimal solution
to the profit maximization problem (5.146)–(5.147):

• for the first market:

∂2Π(y)

∂ y21

|||||
y=ȳ

= d2r1(y1)

dy21

|||||
y=ȳ

− d2ctot (y)

dy2

||||
y=ȳ

< 0

⇔ d2r1(y1)

dy21

|||||
y=ȳ

<
d2ctot (y)

dy2

||||
y=ȳ

(5.159)

• for the second market:

∂2Π(y)

∂ y22

|||||
y=ȳ

= d2r2(y2)

dy22

|||||
y=ȳ

− d2ctot (y)

dy2

||||
y=ȳ

< 0

⇔ d2r2(y2)

dy22

|||||
y=ȳ

<
d2ctot (y)

dy2

||||
y=ȳ

.

(5.160)

Let us recall that functions of revenue from sales of a product are defined as

r1(y1) = p1(y1)y1,(5.161)

r2(y2) = p2(y2)y2.(5.162)

Let us determine functions of marginal revenue from sales of a product:

dr1(y1)

dy1

||||
y1=ȳ1

= dp1(y1)

dy1

||||
y1=ȳ1

ȳ1 + p1
(
ȳ1
) =

= p1
(
ȳ1
)
(
dp1(y1)

dy1

||||
y1=ȳ1

· ȳ1
p1
(
ȳ1
) + 1

)

= p1
(
ȳ1
)
⎛

⎜⎝
1

dy1
dp1 (y1)

|||
y1=ȳ1

· p1(ȳ1)
ȳ1

+ 1

⎞

⎟⎠

= p1
(
ȳ1
)1 + E1

(
ȳ1
)

E1
(
ȳ1
) ,

(5.163)
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dr2(y2)

dy2

||||
y2=ȳ2

= dp2(y2)

dy2

||||
y2=ȳ2

ȳ2 + p2
(
ȳ2
) =

= p2
(
ȳ2
)
(
dp2(y2)

dy2

||||
y2=ȳ2

· ȳ2
p2
(
ȳ2
) + 1

)

= p2
(
ȳ2
)
⎛

⎜⎝
1

dy2
dp2 (y2)

|||
y2=ȳ2

· p2(ȳ2)
ȳ2

+ 1

⎞

⎟⎠

= p2
(
ȳ2
)1 + E2

(
ȳ2
)

E2
(
ȳ2
) ,

(5.164)

where:

Ei
(
ȳ i
) = dyi

dpi (yi )

||||
yi=ȳ i

· pi
(
ȳ i
)

ȳ i
, i = 1, 2.(5.165)

means the price elasticity of demand reported by consumers for a product on i-th
market, negative from assumption (D4).

From now on to make notation simpler and shorter, we use the following
abbreviated denotation:

Ei
(
ȳ i
) = dyi

dpi

||||
yi=ȳ i

· pi
ȳ i

, i = 1, 2.(5.166)

We know that

dr1(y1)

dy1

||||
y=ȳ

= dctot (y)

dy

||||
y=ȳ

= dr2(y2)

dy2

||||
y=ȳ

.(5.167)

Let us then take a notation:

dctot (y)

dy

||||
y=ȳ

= c,(5.168)

which gives

dr1(y1)

dy1

||||
y=ȳ

= c = p1
(
ȳ1
)1 + E1

E1
,(5.169)

and hence

p1
(
ȳ1
) = E1

E1 + 1
c,(5.170)
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as well as analogically for the second market:

dr2(y2)

dy2

||||
y=ȳ

= c = p2
(
ȳ2
)1 + E2

E2
,(5.171)

hence:

p2
(
ȳ2
) = E2

E2 + 1
c.(5.172)

We know that

i = 1, 2 pi
(
ȳi
)

> 0, c > 0, Ei < 0 ⇒ 1 + Ei < 0 ⇔ Ei < −1.(5.173)

From conditions (5.170) and (5.172), it results that a product price set on i-
the market by an output level intended for this market guaranteeing the maximum
profit for a monopolist depends on the price elasticity of demand reported for a
product on i-th market and on the production marginal total (variable) cost which
is the same regardless of the market. Thus, a question arises: when is the product
price set on the first market higher (lower) than or equal to the product price set on
the second market? To answer this question, one needs to subtract on both sides
Eq. (5.172) from Eq. (5.170). It gives us

p1
(
ȳ1
)− p2

(
ȳ2
) =

(
E1

E1 + 1
− E2

E2 + 1

)
c = E1 − E2

(E1 + 1)(E2 + 1)
c.(5.174)

On the basis of condition (5.174), it can be stated that.

• the product price on the first market is the same as on the second market when

E1 = E2,(5.175)

that is, when values of price elasticities of demand for a product on both markets
are equal to each other,

• the product price on the first market is higher than on the second market when

E1 > E2,(5.176)

but one needs to remember that the price elasticities of demand for a product on
both markets are negative and what is more they are smaller than −1. Hence,
condition (5.176) is satisfied when the price elasticity of demand for a product
on the second market is bigger in the absolute value than the price elasticity
of demand for a product on the first market. This means that consumers on
the second market react stronger to changes in the price of a product than
consumers on the first market.
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• the product price on the first market is lower than on the second market when

E1 < E2,(5.177)

but again one needs to remember that the price elasticities of demand for a
product on both markets are smaller than −1. Hence, condition (5.177) is sat-
isfied when the price elasticity of demand for a product on the first market is
bigger in the absolute value than the price elasticity of demand for a product on
the second market. This means that consumers on the first market react stronger
to changes in the price of a product than consumers on the first market.

Example 5.5 A monopolistic company manufactures one product and supplies it
to two markets. The monopolist is interested in discriminatory pricing of her/his
product intended for these two markets. For the first (domestic) and the second
(foreign) markets, he/she determines output levels and sets prices of the product so
that to maximize the profit from production intended for both markets.

Let us take the following notation:

y1—an output level intended for the first market,
y2—an output level intended for the second market,
y = ξ(y1, y2) = y1 + y2—total quantity of the product manufactured by the
monopolist supplied to both markets,
ctot (y) = cv(y) + c f (y)—production total cost,
cv(y)—production variable cost,
c f (y)—production fixed cost,
p1(y1) > 0—a product price set by the monopolist on the first market,
p2(y2) > 0—a product price set by the monopolist on the second market,
yd1 = yd1 (p1)—the demand reported by consumers for a product on the first
market,
yd2 = yd2 (p2)—the demand reported by consumers for a product on the second
market,
ys1 = ys1(p1)—the supply of the product intended for the first market,
ys2 = ys2(p2)—the supply of the product intended for the second market,
r1(y1) = p1(y1)y1—revenue from sales of the product on the first market,
r2(y2) = p2(y2)y2—revenue from sales of the product on the second market.

(D9) From now on, it is assumed that

∀i = 1, 2 ydi = ydi (pi ) = ysi (pi ) = yi ,(5.178)

which means that the output level on each market matches the demand reported
for the product on this market. We assume also that it is not possible to resell the
product between the markets.
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(D10) There are given:

A production total cost function:

ctot (y) = cv(y) + c f (y) = γ y + δ = γ (y1 + y2) + δ, γ, δ > 0,(5.179)

according to which the production total cost depends on the total output, regardless
of the fact whether it is intended for the first or the second market.

A function of demand reported for a product on the first market:

yd1 (p1) = −a1 p1 + b1,(5.180)

such that

dyd1 (p1)

dp1
= −a1 < 0,(5.181)

and is decreasing in a price of a product price set on the first market.

An inversed function of demand reported for a product on the first market:

p1
(
yd1

)
= b1

a1
− yd1

a1
= α1 − β1y

d
1 , a1, b1 > 0 ⇒ α1, β1 > 0.(5.182)

A function of revenue from sales of a product one the first market:

r1(y1) = p1(y1)y1 = (α1 − β1y1)y1 = α1y1 − β1y
2
1 .(5.183)

A function of demand reported for a product on the second market:

yd2 (p2) = −a2 p2 + b2,(5.184)

such that

dyd2 (p2)

dp2
= −a2 < 0(5.185)

and is decreasing in a price of a product price set on the second t market.

An inversed function of demand reported for a product on the second market:

p2
(
yd2

)
= b2

a2
− yd2

a2
= α2 − β2y

d
2 , a2, b2 > 0 ⇒ α2, β2 > 0.(5.186)
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A function of revenue from sales of a product one the second market:

r2(y2) = p2(y2)y2 = (α2 − β2y2)y2 = α2y2 − β2y
2
2 .(5.187)

Price elasticity of demand reported for a product on the first market:

E1 = dy1
dp1

p1
y1

= −a1
p1
y1

< 0, since a1, p1, y1 > 0.(5.188)

Price elasticity of demand reported for a product on the second market:

E2 = dy2
dp2

p2
y2

= −a2
p2
y2

< 0, since a2, p2, y2 > 0.(5.189)

A monopolist’s profit function of a form:

Π(y1, y2) = r1(y1) + r2(y2) − ctot (y1, y2)

= α1y1 − β1y
2
1 + α2y2 − β2y

2
2 − {γ (y1 + y2) + δ},(5.190)

y1, y2 ≥ 0.(5.191)

Tasks

Knowing that the aim of a monopolist is to maximize the profit determine:

1. an optimal level of output intended for:
(a) the first market,
(b) the second market,
(c) both markets overall;

2. the maximum profit that a monopolist can obtain on:
(a) the first market,
(b) the second market,
(c) both markets overall;

3. an optimal price level of a product set on:
(a) the first market,
(b) the second market;

4. analyse sensitivity:
(a) separately for each market of the optimal output level and the optimal price

level which guarantee the maximum profit for a monopolist,
(b) of the optimal total supply of a product intended for both markets, to

changes of values of parameters of the demand functions and of the
production cost function.
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Ad 1 Necessary conditions for the existence of an optimal solution to the monopo-
list’s profit maximization problem have a form:

∂Π(y1, y2)

∂ y1

||||
y=ȳ

= α1 − 2β1 ȳ1 − γ = 0,(5.192)

∂Π(y1, y2)

∂ y2

||||
y=ȳ

= α2 − 2β2 ȳ2 − γ = 0,(5.193)

which gives.

• for the first market:

ȳ1 = α1 − γ

2β1
= b1 − a1γ

2
> 0, where α1 = b1

a1
, β1 = 1

a1
,(5.194)

when:

γ <
b1
a1

,(5.195)

that is when the production marginal total cost is lower that a maximal price level
that a monopolist can set on the first market;

• for the second market:

ȳ2 = α2 − γ

2β2
= b2 − a2γ

2
> 0, where α2 = b2

a2
, β2 = 1

a2
,(5.196)

when:

γ <
b2
a2

,(5.197)

that is when the production marginal total cost is lower that a maximal price level
that a monopolist can set on the second market.

Sufficient conditions for the existence of an optimal solution to the monopolist’s
profit maximization problem have a form:

∂2Π(y1, y2)

∂ y21

|||||
y=ȳ

= −2β1 < 0,(5.198)

∂2Π(y1, y2)

∂ y22

|||||
y=ȳ

= −2β2 < 0,(5.199)
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∂2Π(y1, y2)

∂ y21

|||||
y=ȳ

· ∂2Π(y1, y2)

∂ y22

|||||
y=ȳ

− ∂2Π(y1, y2)

∂ y1∂ y2

||||
y=ȳ

· ∂2Π(y1, y2)

∂ y2∂ y1

||||
y=ȳ

> 0.

(5.200)

The Hessian of the profit function has a form:

H(y1, y2) =
⎡−2β1 0

0 −2β2

⎤
.(5.201)

Since det H(y1, y2) = 4β1β2 > 0 and conditions (5.198)–(5.200) are satis-
fied, for the output levels given by conditions (5.194) and (5.196), the monopolist
obtains the maximum profit.

Let us notice that the optimal supply of a product intended for each of the
markets depends on i-th’s market capacity bi > 0 (the demand for a product by
zero price), the strength ai > 0 of consumers’ reaction to changes in a product
price on i-th market and on the production marginal total (variable) cost γ > 0.

The optimal total supply of a product supplied for both markets is

ȳ = ȳ1 + ȳ2 = α1 − γ

2β1
+ α2 − γ

2β2

= b1 − a1γ

2
+ b2 − a2γ

2
= b1 + b2 − γ (a1 + a2)

2
> 0.

(5.202)

Let us notice that the optimal total supply of a product intended for both markets
depends on market capacities b1, b2 > 0, the strength a1, a2 > 0 of consumers’
reaction to changes in product prices on both markets and the production marginal
total cost γ > 0.

Ad 2

(a) the monopolist’s maximum profit on the first market:

Π1
(
ȳ1, ȳ2

) = r1
(
ȳ1, ȳ2

)− ȳ1
ȳ
ctot
(
ȳ1, ȳ2

)

= b21 − γ 2a21
4a1

− (b1 − γ a1)
⎡
γ (b1 + b2 − γ (a1 + a2)) + 2δ

⎤

2
⎡
b1 + b2 − γ (a1 + a2)

⎤ ,

(5.203)

(b) the monopolist’s maximum profit on the second market:

Π2
(
ȳ1, ȳ2

) = r2
(
ȳ1, ȳ2

)− ȳ2
ȳ
ctot
(
ȳ1, ȳ2

)

= b22 − γ 2a22
4a2

− (b2 − γ a2)
⎡
γ (b1 + b2 − γ (a1 + a2)) + 2δ

⎤

2
⎡
b1 + b2 − γ (a1 + a2)

⎤ ,

(5.204)
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(c) the monopolist’s maximum profit overall on both markets:

Π
(
ȳ1, ȳ2

) = b21 − γ 2a21
4a1

+ b22 − γ 2a22
4a2

− γ (b1 + b2 − γ (a1 + a2)) + 2δ

2
.

(5.205)

Ad 3 From assumption (D9), it is known that the output level on i-th market (i =
1, 2), including the optimal level, matches the demand reported for the product on
this market. On the basis of conditions (5.182) and (5.186) describing the inverse
demand functions, one can determine the optimal levels of a product price on two
markets that a monopolist wants to set to maximize her/his profit.

The product price on the first market is

p1
(
ȳ1
) = α1 + γ

2
= b1 + a1γ

2a1
,(5.206)

and on the second market:

p2
(
ȳ2
) = α2 + γ

2
= b2 + a2γ

2a2
.(5.207)

Let us notice that the optimal price of a product on i-th market (i = 1, 2)
depends on i-th’s market capacity bi > 0, the strength ai > 0 of consumers’ reac-
tion to changes in a product price on i-th market and on the production marginal
total (variable) cost γ > 0.

Price elasticities of demand are:

• for the first market (Fig. 5.12):

E1(ȳ1) = −b1 + a1γ

b1 − a1γ
< −1,(5.208)

• for the second market (Fig. 5.12):

E2(ȳ2) = −b2 + a2γ

b2 − a2γ
< −1.(5.209)

Ad 4 Tables 5.3a, 5.3b and 5.3c present measures of sensitivity of the optimal supply
on each market and of the optimal total supply to changes of values of parameters
that describe these optimal levels.
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Fig. 5.12 Dependence of product prices set by a monopolist on price elasticities of demand
reported by consumers for product

Table 5.3a Measures of response of the first market optimal supply to changes in parameters’
values

Characteristic ∂ ȳ1
∂γ

∂ ȳ1
∂a1

∂ ȳ1
∂b1

∂ ȳ1
∂a2

∂ ȳ1
∂b2

Value − a1
2 − γ

2
1
2 0 0

Table 5.3b Measures of response of the second market optimal supply to changes in parameters’
values

Characteristic ∂ ȳ2
∂γ

∂ ȳ2
∂a1

∂ ȳ2
∂b1

∂ ȳ1
∂a2

∂ ȳ1
∂b2

Value − a2
2 0 0 − γ

2
1
2

Table 5.3c Measures of response of both markets’ total optimal supply to changes in parameters’
values

Characteristic ∂ ȳ
∂γ

∂ ȳ
∂a1

∂ ȳ
∂b1

∂ ȳ
∂a2

∂ ȳ
∂b2

Value − a1+a2
2 − γ

2
1
2 − γ

2
1
2

Conclusions

1. Strength of the response of both markets’ total optimal supply to changes in
the value of any parameter is equal to a sum of the strength of the responses of
the optimal supply on each market separately.

2. When the production marginal cost γ increases by one money unit then i-th’s
market optimal supply (total optimal supply) decreases by a number of physical
units equal to half of ai (a half of a1 + a2).
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Table 5.4a Measures of response of first market optimal price to changes in parameters’ values

Characteristic ∂ p1(ȳ1)
∂γ

∂ p1(ȳ1)
∂a1

∂ p1(ȳ1)
∂b1

∂ p1(ȳ1)
∂a2

∂ p1(ȳ1)
∂b2

Value 1
2 − b1

2a21

1
2a1

0 0

Table 5.4b Measures of response of second market optimal price to changes in parameters’
values

Characteristic ∂ p2(ȳ2)
∂γ

∂ p2(ȳ2)
∂a1

∂ p2(ȳ2)
∂b1

∂ p2(ȳ2)
∂a2

∂ p2(ȳ2)
∂b2

Value 1
2 0 0 − b2

2a22

1
2a2

3. When consumers’ sensitivity on i-th market ai to changes in a product price
increases by one unit then i-th’s market optimal supply, as well as the total
optimal supply, decreases by a number of physical units equal to half of the
production marginal cost.

4. When i-th market capacity bi increases by one unit then i-th’s market optimal
supply, as well as the total optimal supply, decreases by half of one physical
unit.

5. Changes in values of parameters of the function of demand on the first (second)
market do not affect the second (first) market optimal supply.

Tables 5.4a and 5.4b present measures of sensitivity of the optimal levels of a
product price on each market to changes in values of parameters describing these
optimal levels.

Conclusions

1. When the production marginal cost γ increases by one money unit then the
optimal price on each market increases by half of one money unit.

2. When consumers’ sensitivity on i-th market ai to changes in a product price
increases by one unit then i-th’s market optimal price decreases by a number
of money units equal to bi

2a2i
.

3. When i-th market capacity bi increases by one unit then i-th’s market optimal
price increases by a number of money units equal to 1

2ai
.

4. Changes in values of parameters of the function of demand on the first (second)
market do not affect the second (first) market optimal price.
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5.3.2 Dynamic Approach

A monopolist may decide that to maximize the profit it is optimal to discriminate
prices of her/his product between two or more markets if he/she notices disparities
in the demand reported by consumers on these markets. From the point of view
of the monopolist, a criterion for discriminatory pricing is the existence of differ-
ences in price elasticities of demand on the markets which result from different
forms of functions of demand reported on the markets. From the point of view of
a consumer, the criterion for discriminatory pricing has to be clear, unambiguous
and reasonable to be well accepted by them.20 Such a criterion can be, for exam-
ple, the age of a consumer, student status or location distinguishing one group of
consumers from the other.

In the static approach presented in Sect. 5.3.1, we assume that the dependency
of the demand on a product price has a form which does not change over time.
In the dynamic approach, we allow the possibility that properties characterizing
the demand reported by a group of consumers on a given market can vary over
time. For example, a given group over time can be more or less interested in some
product, or the group can become more or less sensitive to changes in a price of
the product.

Let us use the following notation:

t—time, in a discrete version (t = 0, 1, 2, . . . , T ) or in a continuous version21

(t ∈ [0; T ]),
T—time horizon,
ydi (t) = hi (pi (t))—a function of consumer demand reported for a product on
i-th market, with a time-variant form,
pi
(
ysi (t)

) = gi (ydi (t))—an inverse function of consumer demand reported for
a product on i-th market, with a time-variant form,
ys(t) = ys1(t) + ys2(t)—the total supply intended for both markets,
ctot (ys(t)) = cv(ys(t)) + δ(t)—a function of production total cost,
cv(ys(t))—a function of production variable cost, that is, the cost depending
on an output level,
δ(t) ≥ 0—the time-variant fixed cost, that is, the cost that does not depend on
the output level,
E(ydi (t))—price elasticity of consumer demand reported for a product on i-th
market.

20 There exist situations in which consumers do not have all information about prices, even if there
is only one supplier of a product or of a service. It happens for example when a seller or a service
provider does not use any official price list. Then such a supplier of a product can discriminate
prices without consumers’ knowledge.
21 For the discrete and continuous versions, we use the same denotation of dependency of a func-
tion value on time, for example, the fixed cost depending on time: δ(t). Whether the discrete
or continuous version is used in a given formula will result from the context of the issue under
consideration.
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In the profit maximization problem for a monopolist who considers the discrim-
inatory pricing, we make a simplifying assumption that, in every period/at any
momentt , the monopolist adjusts the output intended for i-th market to a level
of the demand reported by consumers on i-th market by a price pi (t) set on this
market:

ysi (t) = ydi (t) = yi (t) i = 1, 2.(5.210)

As a consequence, the total output intended for both markets overall is adjusted
by a monopolist to the total demand reported by consumers on both markets:

ys(t) = yd(y) = y(t).(5.211)

Production marginal cost is assumed to be identical regardless of the fact where
the output is intended, for the first or for the second market:

∂ctot (y(t))

∂ yi (t)
= ∂ctot (y(t))

∂ y(t)
· ∂ y(t)

∂ yi (t)
= dctot (y(t))

dy(t)
i = 1, 2.(5.212)

This means that, regardless of the fact where the product is to be supplied, the
cost of its production forms in the same way. We do not consider here the issues
related to additional costs of discriminatory pricing, for example, transport costs
of a product intended for export.

The profit maximization problem for a monopolist discriminating prices on two
markets has the form:

Π(y1(t), y1(t)) = r1(y1(t)) + r2(y2(t)) − ctot (y(t))

= {p1(y1(t)) · y1(t) + p2(y2(t)) · y2(t) − cto(y(t))
} |→ max(5.213)

y1(t), y2(t) ≥ 0.(5.214)

If the profit function Π(y1(t), y2(t)) is strictly concave, then in every period/at
any moment t , Problem (5.213)–(5.214) has a solution ȳ(t) = (

ȳ1(t), ȳ1(t)
)

>

(0, 0), derived from the first-order condition of the profit maximization:

⎧
⎨

⎩

∂Π(y(t))
∂ y1(t)

|||
y(t)=ȳ(t)

= 0

∂Π(y(t))
∂ y2(t)

|||
y(t)=ȳ(t)

= 0
, ∀t,(5.215)

where t = 0, 1, 2, . . . , T or t ∈ [0; T ]. Using the profit function form and
Eq. (5.212), the system above can be written also in an equivalent form as

⎧
⎪⎨

⎪⎩

dr1(y1(t))
dy1(t)

|||
y1(t)=ȳ1(t)

= dctot (y(t))
dy(t)

|||
y(t)=ȳ(t)

dr2(y2(t))
dy2(t)

|||
y2(t)=ȳ2(t)

= dctot (y(t))
dy(t)

|||
y(t)=ȳ(t)

, ∀t,(5.216)
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Hence, one derives a condition:

dri (yi (t))

dyi (t)

||||
yi (t)=ȳi (t)

= dctot (y(t))

dy(t)

||||
y(t)=ȳ(t)

i = 1, 2,(5.217)

which shows that a monopolist who discriminates prices of her/his product in order
to maximize the profit should aim at equalizing values of marginal profits on both
markets with a value of the production marginal cost.

From the profit maximization problem, one derives the optimal supply ȳ(t) of
a product ȳi (t) intended for i-th market (i = 1, 2) and the optimal total supply
ȳ(t) = ȳ1(t) + ȳ2(t). The optimal level of a product price pi (ȳi (t)) to be set
on i-th market is derived on the basis of the inverse function of demand on i-th
market.

Example 5.6 Let us assume that the demand reported for a product of a monopoly
on i-th market is given in a linear function form:

ydi (t) = −ai (t)pi (t) + bi (t), ai (t), bi (t) > 0, i = 1, 2, ∀t ∈ [0; 30],

where ai (t) is the function determining how strong the reaction of consumers to
changes in a product price on i-th market is, while bi (t) is a function of i-th mar-
ket capacity. In order to evaluate how the formation of the consumers’ sensitivity
to changes in a product price and the formation of the market capacity affect the
discriminatory pricing practised by a monopolist, we will compare results derived
by different assumptions. Particularly, we will compare results when two markets do
not differ at all from each other when they differ by forms of functions ai (t) or bi (t)
and when the markets differ by forms of both of these functions.

Let us assume that the strength of the reaction of consumers to changes
in a product price on i-th market is described by the formula:

aI (t) = 4 · 0.98t

or

aI I (t) = 0.006t2 − 0.1t + 3,

where subscript I or II denotes the version of the formula. The i-th market capacity
varies in time according to the formula:

dI (t) = 0.025t2 − 0.75t + 20

or

dI I (t) = −0.025t2 + 0.75t + 15.
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Fig. 5.13 Trajectories of the strength of consumers’ reaction to changes in price and trajectories
of market capacity

Trajectories of these values in each of two versions of the formulas are pre-
sented in Fig. 5.13. In version I, the strength of the reaction of consumers to
changes in a product price declines in time, while in version II, it rises. The mar-
ket capacity in version I reaches its minimum at moment t = 15, while in version
II, it reaches its maximum at this moment.

Let us assume that a production total cost function is linear too:

ctot
(
ys(t)

) = γ (t)ys(t) + δ(t), γ (t), δ(t) > 0, t ∈ [0; 30],

where γ (t) denotes the marginal cost of production, and δ(t) is a function of the
fixed cost of production. For the sake of simplicity, we assume that the production
fixed cost is constant over time and amounts to 1 at any moment. The production
marginal cost is assumed to vary over time according to the formula:

γ (t) = − 1

t + 1
+ 2.

Trajectories of γ (t) and δ(t) are shown in Fig. 5.14. The fixed cost of production
does not change over time and is always equal to 1. The marginal cost of produc-
tion increases over time starting at 1 at the beginning of the horizon and ending at
approximately 1.97 at the end of the horizon.

From the function of demand on i-th market (i = 1, 2), assuming that the supply
intended for this market matches the demand, that is, ysi (t) = ydi (t) = yi (t), we
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Fig. 5.14 Trajectories of production marginal cost and of production fixed cost

derive an inverse function of demand on i-th market which takes the form:

pi (yi (t)) = − 1

ai (t)
yi (t) + bi (t)

ai (t)
.

Hence, the profit function of a monopolist who discriminates prices of her/his
product can be written as

Π(y1(t), y1(t)) = r1(y1(t)) + r2(y2(t)) − ctot (y(t))

=
(

− 1

a1(t)
y1(t) + b1(t)

a1(t)

)
y1(t) +

(
− 1

a2(t)
y2(t) + b2(t)

a2(t)

)

y2(t) − {γ (t)y(t) − δ(t)}
= − 1

a1(t)
y1(t)

2 + b1(t)

a1(t)
y1(t) − 1

a2(t)
y2(t)

2 + b(t)

a2(t)
y2(t)

−γ (t)(y1(t) + y2(t)) − δ(t).

The solution to the profit maximization problem is the optimal supply intended
for i-th market (i = 1, 2) given as

ȳi (t) = bi (t) − ai (t)γ (t)

2
,

ȳi (t) > 0 ⇔ γ (t) <
bi (t)

ai (t)
∀t ∈ [0; 30]

where we can notice that the supply intended for i-th market increases when i-th
market capacity bi (t) grows and when the consumers’ sensitivity ai (t) to price
changes on i-th market or the marginal cost of production declines.



346 5 Rationality of Choices Made by a Group of Producers …

On the basis of the inverse function of demand on i-th market, a monopolist
determines the optimal price level for her/his product on i-th market. This level
depends on the optimal supply intended for i-th market:

pi
(
ȳi (t)

) = − 1

ai
ȳ(t) + bi (t)

ai (t)
= bi (t) + ai (t)γ (t)

2ai (t)
, i = 1, 2.

The price level on i-th market increases when i-th market capacity bi (t) or the
production marginal cost γ (t) rise and when the consumers’ sensitivity ai (t) to
price changes on i-th market declines.

Let us now analyse three scenarios of differences in the demand between the
two markets. In the first scenario, we assume that the markets have the same capac-
ities (the demand by zero price), but they differ by the consumers’ sensitivity to
price changes which, for the first market, evolves according to formula aI (t) and,
for the second market, according to formula aI I (t). In the second scenario, we
assume that both markets are characterized by the same consumers’ sensitivity
to price changes, but they differ by the market capacity which, for the first mar-
ket, evolves according to formula bI (t) and, for the second market, according to
formula bI I (t). In the third scenario, the markets differ in both characteristics:

yd1 (t) = −cI (t)p1(t) + dI (t),

yd2 (t) = −cI I (t)p2(t) + dI I (t).

To capture the difference between two markets relevant for further analysis,
we compare the price elasticities of demand on two markets in each scenario and
present this comparison in Fig. 5.15.
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Fig. 5.15 Trajectories of price elasticities of demand reported for a product on two markets
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Fig. 5.16 Trajectories of optimal prices of product on two markets
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Fig. 5.17 Trajectories of product optimal supplies on two markets

From Sect. 5.3.1, describing the topic of discriminatory pricing in the static
approach, we know that the smaller in absolute value the price elasticity of demand
on a given market is then the higher price of a product can be set by a monopolist
on this market. Hence, from Fig. 5.15, we can derive in what time intervals in
a given scenario which price is to be set higher: on the first or on the second
market. Formation of the price elasticities of demand on two markets in the first
scenario indicates that a monopoly sets the higher price on the second market in
time interval [0; 16) and in the rest of the time horizon on the first market. In the
second scenario, the price on the first market is higher than on the second market
in time intervals [0; 3) and [27; 30] and lower in [3; 27). In the third scenario, in
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Fig. 5.18 Trajectories of maximum profit of a monopolist discriminating prices on two markets

time interval (0; 22), the price is higher on the second market and in the rest of the
time horizon on the first market. All this can be stated on the basis of Fig. 5.15.
Then it is confirmed in Fig. 5.16.

From Fig. 5.17, comparing it with Fig. 5.16, it can be noticed that the higher
price of a product corresponds to the bigger supply of the product.22 The monop-
olistic company wants to provide a bigger quantity of the product to a market on
which a higher price can be set due to the lower absolute value price elasticity of
demand.

The higher price of the product and the corresponding bigger supply on one of
the markets than on the other market involve also the higher profit obtained from
production and from sales of the product on a given market. It is reflected in
Fig. 5.18. The higher profit is seen on this market where there is a higher optimal
price and a bigger optimal supply.

5.4 Quantitative and Price Competition of Producers
in a Duopoly

So far, in Sects. 5.1, 5.2 and 5.3, we have discussed rational decisions of producers
acting in perfect competition and rational decisions of a monopolist when there is
only one homogenous product under consideration. Let us now analyse another
market structure, namely a duopoly. We will consider a duopoly in two distinct

22 Time intervals in which the price on a given market is higher than on the other market do not
have to coincide precisely with intervals in which the optimal supply is higher on a given market.
This results from the fact that changes in values of functions: γ (t), ai (t) and bi (t) affect the optimal
price level and the optimal supply level with different strength.
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cases—when duopolists manufacture one homogenous product and when each of
them manufactures a product substitute for a product of her/his competitor.

Definition 5.12 A market structure is called a duopoly if on the market of a certain
product (good or service) there are two producers,23 each of them having an impact
on the price of a product and on an output level and aiming at maximization of her/his
own profit (there is no cartel collusion, they do not maximize the joint profit).

Definition 5.13 Amarket structure is called an oligopoly if on themarket of a certain
product (good or service) there are n producers (n ≥ 3), each of them having an
impact on the price of a product and on an output level and aiming at maximization
of her/his own profit (there is no cartel collusion, they do not maximize the joint
profit).

Among the duopoly and oligopoly models, one distinguishes quantity compe-
tition models (on quantity of a product) and price competition models (on price
of a product).

In quantity competition models, which include Cournot and Stackelberg
duopoly and oligopoly models, one assumes that producers manufacture a homo-
geneous (undifferentiated) product (good or service). In that case, they have to
set the same price for the product. Thus, they cannot compete on the price of the
product they manufacture, but they can compete with each other on output levels.

In price competition models, which include Bertrand duopoly and oligopoly
models, one assumes that producers manufacture substitute (differentiated) prod-
ucts. In that case, they may set different prices for the products they manufacture.
Thus, they can compete on the prices of the products they manufacture.

Due to the way we conduct the analysis in the whole book, we do not dis-
cuss the oligopoly models. We simply state that they are direct generalizations of
duopoly models (the Cournot, Stackelberg and Bertrand ones) for cases where a
number of producers acting on a market equaln ≥ 3.

5.4.1 Cournot Duopoly Model and Its Equilibrium State

5.4.1.1 Static Approach
Let us apply the following set of assumptions:

23 In Sect. 5.1, we consider a market of a product where two producers manufacture a product and
determine an optimal supply levels to obtain maximum profits and where a function of demand
for the product is exogenously determined. However, these producers have no influence on a prod-
uct price. It is given by a market. Hence, these producers are considered as acting in the perfect
competition. By Definition 5.12, the market discussed in Sect. 5.1 is not a case of duopoly.
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(C1) Two producers (i = 1, 2) act on a market of a homogeneous (undifferentiated)
product. Functions of their production total cost are as follows:

∀i = 1, 2 ctoti (yi ) = cv
i (yi ) + c f

i (yi ) = ci yi + di , ci , di > 0,(5.218)

being the sum of variable cost functions:

∀i = 1, 2 cv
i (yi ) = ci yi , ci > 0(5.219)

and the fixed costs:

∀i = 1, 2 c f
i (yi ) = di > 0.(5.220)

Since the total cost functions are linear functions of output levels, we get that

∀i = 1, 2
dctoti (yi )

dyi
= dcv

i (yi )

dyi
= ci > 0,(5.221)

that is, the marginal total cost and the marginal variable cost for the i-th producer
are equal and they are functions increasing in an output level.

(C2) A function of demand reported for a product by consumers, depending on its
price set by producers, is as follows:

yd(p) = −ap + b, a, b > 0,(5.222)

where a denotes a measure of the consumers’ reaction strength to a unit increase
in the price of a product and b denotes a measure of a market capacity.

Since values of the demand function have to be non-negative, we get that

p ∈
⎡
0; b

a

⎤
.(5.223)

(C3) The total output by both producers matches the demand that consumers report
by a given price of a product:

y1 + y2 = yd(p) = −ap + b, a, b > 0.(5.224)

(C4) The first producer wants to determine such an output level that guarantees
the maximum profit for her/him taking an output level of the second producer as
given:

Π1(y1)|y2=const.≥0 → max y1 ≥ 0.(5.225)
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(C5) The second producer wants to determine such an output level that guarantees
the maximum profit for her/him taking an output level of the first producer as
given:

Π2(y2)|y1=const.≥0 → max y2 ≥ 0.(5.226)

A profit function of i-th producer (i = 1, 2) can be expressed as the difference
between revenue from sales of a product and total cost of production:

∀i = 1, 2 Πi (yi ) = p(y)yi − [ci yi + di ] = [p(y) − ci ]yi − di ,(5.227)

Substituting an inverse function of demand p(y) = b−y
a = α − β(y1 + y2),

where α = b
a , β = 1

a , into Eq. (5.227), one obtains the profit functions of both
producers as functions of their output levels:

• for the first producer:

Π1(y1, y2) = [α − β(y1 + y2)]y1 − [c1y1 + d1]

= [α − c1]y1 − β y21 − β y1y2 − d1.
(5.228)

• for the second producer:

Π2(y1, y2) = [α − β(y1 + y2)]y2 − [c2y2 + d2]

= [α − c2]y2 − β y22 − β y1y2 − d2.
(5.229)

When the output level of the second producer is taken as given, thus treated
as a parameter, the necessary condition and the sufficient condition for the profit
maximization problem of the first producer are the following24:

∂Π1(y1, y2)

∂ y1

||||
y1=ȳ1,y2=const.≥0

= 0 the necessary condition(5.230)

∂2Π1(y1, y2)

∂ y21

|||||
y1=ȳ1, y2=const.≥0

< 0 the sufficient condition.(5.231)

24 The profit function of the first (second) producer is a one-variable function when the supply of a
product by the second (first) producer is set. In conditions (5.230)–(5.233), we use notions appro-
priate for the first- and second-order partial derivatives, but the necessary and sufficient conditions
of the optimum existence refer actually to one-variable functions.
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When the output level of the first producer is taken as given, thus treated
as a parameter, the necessary condition and the sufficient condition for the profit
maximization problem of the second producer are the following:

∂Π2(y1, y2)

∂ y2

||||
y2=ȳ2, y1=const.≥0

= 0 the necessary condition,(5.232)

∂2Π2(y1, y2)

∂ y22

|||||
y2=ȳ2, y1=const.≥0

< 0 the sufficient condition.(5.233)

Deriving the necessary and sufficient conditions for the profit functions
described by Eqs. (5.228)–(5.229), we get.

• for the first producer:

∂Π1(y1, y2)

∂ y1

||||
y1=ȳ1, y2=const.≥0

= α − c1 − 2β ȳ1 − β y2 = 0,(5.234)

∂2Π1(y1, y2)

∂ y21

|||||
y1=ȳ1, y2=const.≥0

= −2β < 0,(5.235)

which means that for any (given) output level y2 ≥ 0 set by the second
producer, the first producer obtains the maximum profit when y1 = ȳ1;• for the second producer:

∂Π2(y1, y2)

∂ y2

||||
y2=ȳ2, y1=const.≥0

= α − c2 − 2β ȳ2 − β y1 = 0(5.236)

∂2Π2(y1, y2)

∂ y22

|||||
y2=ȳ2, y1=const.≥0

= −2β < 0,(5.237)

which means that for any (given) output level y1 ≥ 0 set by the first producer,
the second producer obtains the maximum profit when y2 = ȳ2.

From condition (5.234), it results that

ȳ1 = α − c1
2β

− y2
2

RL1.(5.238)

This equation is called a reaction line equation of the first producer.
From condition (5.236), it results that

ȳ2 = α − c2
2β

− y1
2

RL2.(5.239)

This equation is called a reaction line equation of the second producer.
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Fig. 5.19 Reaction line of the first producer

The respective reaction line equation describes the output level of the first (second)
producer which, by the output level of the second (first) producer taken as given,
guarantees the maximum profit for the first (second) producer (Figs. 5.19 and
5.20).

From Fig. 5.19 one can notice that, if the second producer supplied, respec-
tively, y12 , y

2
2 , y

3
2 > 0 units of the product on a market, then the first producer in

order to maximize her/his profit should produce exactly y11 , y
2
1 , y

3
1 > 0 units of the

product. If the second producer supplied y2 = α−c1
β

units of the product, then the
first producer aiming at profit maximization should not manufacture this product.
If the second producer did not supply the product on the market, then the first one
would manufacture ȳ1 = α−c1

2β units of the product and would fully satisfy the
demand reported for the product by consumers.

From Fig. 5.20 one can notice that, if the first producer supplied, respectively,
y11 , y

2
1 , y

3
1 > 0 units of the product on a market, then the second producer in

order to maximize her/his profit should produce exactly y12 , y
2
2 , y

3
2 > 0 units of

the product. If the first producer supplied y1 = α−c2
β

units of the product, then
the second producer aiming at profit maximization should not manufacture this
product. If the first producer did not supply the product, then the second one
would manufacture ȳ2 = α−c2

2β units of the product and would fully satisfy the
demand reported for the product by consumers.

From the reaction line equation RL1, we can conclude that

y2 = 0 ⇒ ȳ1
||
RL1

= α − c1
2β

,(5.240)

which means that, if the second producer was not present on the market, then the
first producer would maximize the profit by supplying the product in a quantity



354 5 Rationality of Choices Made by a Group of Producers …

Fig. 5.20 Reaction line of the second producer

corresponding to the case of a pure monopoly. From the reaction line equation
RL1, it can also be stated that

ȳ1
||
RL1

= 0 ⇔ α − c1
2β

− y2
2

= 0 ⇔ y2 = α − c1
β

,(5.241)

which means that, if the second producer supplied α−c1
β

units of the product, then
the first producer should exit the market since he/she would maximize the profit
with zero output level. Let us notice that conditions (5.240) and (5.241) make
economic sense when c1 < α = b

a . If the second producer rises her/his output
level by one physical unit, then the first producer aiming at profit maximization
has to reduce her/his own output level by half of the unit. This is derived from the
reaction line equation as the following condition:

d ȳ1
dy2

||||
RL1

= −1

2
.(5.242)

From the reaction line equation RL1 we can conclude that

y1 = 0 ⇒ ȳ2
||
RL2

= α − c2
2β

,(5.243)

which means that, if the first producer was not present on the market, then the
second producer would maximize the profit by supplying the product in a quantity
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corresponding to the case of a pure monopoly. From the reaction line equation
RL2, it can be stated also that

ȳ2
||
RL2

= 0 ⇔ α − c2
2β

− y1
2

= 0 ⇔ y1 = α − c2
β

,(5.244)

which means that, if the first producer would supply α−c1
β

units of the product,
then the second producer should exit the market since he/she would maximize
the profit with zero output level. Let us notice that conditions (5.243) and (5.244)
make economic sense when c2 < α = b

a . If the first producer rises her/his output
level by one physical unit, then the second producer aiming at profit maximization
has to reduce her/his own output level by half of the unit. This is derived from the
reaction line equation as the following condition:

d ȳ2
dy1

||||
RL2

= −1

2
.(5.245)

In order to find the equilibrium state in the Cournot duopoly model, one should
solve the following system of equations:

α − c1 − 2β ȳ1 − β ȳ2 = 0,(5.246)

α − c2 − 2β ȳ2 − β ȳ1 = 0.(5.247)

From Eq. (5.246), we derive an expression:

ȳ2 = α − c1
β

− 2 ȳ1,(5.248)

which we substitute into expression (5.247) getting:

α − c2 − 2β

(
α − c1

β
− 2 ȳ1

)
− β ȳ1 = 0,(5.249)

and hence:

ȳ1 = α + c2 − 2c1
3β

(5.250)

or

ȳ1 = b − a(2c1 − c2)

3
.(5.251)

Substituting (5.250) into (5.248), we get

ȳ2 = α + c1 − 2c2
3β

(5.252)
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or equivalently

ȳ2 = b − a(2c2 − c1)

3
.(5.253)

In the Cournot duopoly model, the optimal output levels of the first and of the
second producer in the equilibrium state are described by a vector:

ȳ(C) =
(
ȳ(C)
1 , ȳ(C)

2

)
=
(

α + c2 − 2c1
3β

,
α + c1 − 2c2

3β

)

=
(
b − a(2c1 − c2)

3
,
b − a(2c2 − c1)

3

)
.

(5.254)

Figure 5.21 presents a mechanism of reaching the equilibrium state in the
Cournot duopoly model. It is not difficult to notice that each producer aiming at
the maximization of her/his own profit and taking the output level set by the com-
petitor as given will seek to have the output in her/his own firm on a level resulting
from his/her reaction line. Accepting an output level different than the one result-
ing from his/her reaction line would be inconsistent with the profit maximization
aim. As a consequence, both producers will accept as optimal these output levels
which are indicated by the intersection of their reaction lines.

The equilibrium state exists, there is exactly one such state and it is globally
stable. This means that, if the parameters of the profit function of each producer
do not change, then as a result of rational behaviour of both producers the supply
of the product is shared between both producers and equal to the demand reported

Fig. 5.21 Equilibrium state in Cournot duopoly model
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for this product by consumers. These shares in the product supply provide the
maximum profit for each producer.

On the basis of conditions (5.222), (5.250) and (5.252), one can determine the
equilibrium price in the Cournot duopoly model:

p̄(C)
(
ȳ(C)
1 , ȳ(C)

2

)
=α − β

(
ȳ(C)
1 + ȳ(C)

2

)

=α + c1 + c2
3

= b + a(c1 + c2)

3a
,(5.255)

where: α = b
a , β = 1

a .
Let us analyse the sensitivity of the product optimal supply and of the equilib-

rium price to changes in values of the parameters of the Cournot duopoly model.
We know that in the equilibrium state in the Cournot duopoly model the optimal
supply is

ȳ(C) =
(
y(C)
1 , y(C)

2

)
=
(

α + c2 − 2c1
3β

,
α + c1 − 2c2

3β

)

=
(
b − a(2c1 − c2)

3
,
b − a(2c2 − c1)

3

)
,

(5.256)

which means that the supply of a product by each producer depends on the market
capacity b > 0, the strength of consumers’ reaction a > 0 to changes in a product
price and on the marginal (variable or total) costs of production c1, c2 > 0.

Impact of market capacity on product supply by each producer

Let us determine partial derivatives of functions of each producer’s product supply
in the equilibrium state with respect to the market capacity:

∂ ȳ(C)
1

∂b
= ∂ ȳ(C)

2

∂b
= 1

3
,(5.257)

which means that, when the market capacity increases by one unit, the product
supply by each producer increases by 1/3 of a physical unit. On this basis, we can
state that in the Cournot duopoly model both producers have equal positions on a
market.25

Impact of consumers’ sensitivity to changes in a product price onproduct supply
by each producer

∂ ȳ(C)
1

∂a
= −2c1 + c2

3
,(5.258)

25 One can check that the impact of the market capacity on the supply of a product by each producer
in the Cournot duopoly model is weaker than in the case of a monopolistic market where there is
only one producer.
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∂ ȳ(C)
2

∂a
= −2c2 + c1

3
,(5.259)

which means that how the consumers’ sensitivity a > 0 to changes in a product
price affects the product supply by each producer depends on the marginal total
(variable) costs of production in both firms. Assuming that these marginal costs for
both producers have similar values c1 ≈ c2 (in the Cournot duopoly both produc-
ers have equal positions on a market), we can state that the stronger consumers’
reaction to changes in a product price leads to a decrease in the product supply by
each producer.

Impact of production marginal costs on product supply by each producer

∂ ȳ(C)
1

∂c1
= −2

3
a,(5.260)

∂ ȳ(C)
2

∂c1
= 1

3
a,(5.261)

∂ ȳ(C)
1

∂c2
= 1

3
a,(5.262)

∂ ȳ(C)
2

∂c2
= −2

3
a.(5.263)

Having:

∂ ȳ(C)
1

∂c1
= ∂ ȳ(C)

2

∂c2
= −2

3
a and

∂ ȳ(C)
2

∂c1
= ∂ ȳ(C)

1

∂c2
= 1

3
a,(5.264)

we can see that an increase in the marginal cost for the first (second) producer
leads to a decrease in the product supply by the first (second) producer, which in
absolute value is twice as high as the increase in the supply by the second (first)
producer caused by an increase in the marginal cost for the first (second) producer.

Let us notice that, if the marginal costs for both producers were identical c1 =
c2 = c, then from conditions (5.251) and (5.253), it results that

ȳ(C)
1 = ȳ(C)

2 = b − ac

3
,(5.265)

which means that,with the same marginal total (variable) costs of production both
producers would share the market half and half.

Based on conditions (5.251) and (5.253), one can determine the total supply of
a product in the equilibrium state in the Cournot duopoly model:

ȳ(C) = ȳ(C)
1 + ȳ(C)

2 = 2α − (c1 + c2)

3β
= 2b − a(c1 + c2)

3
,(5.266)
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which depends on the market capacity b > 0, the strength of consumers’ reaction
a > 0 to changes in a product price and on the marginal (variable or total) costs
of production c1, c2 > 0.

Impact of market capacity on product total supply

∂ ȳ(C)

∂b
= 2

3
,(5.267)

which means that, when the market capacity increases by one unit, the product
total supply by both duopolists increases by 2/3 of a physical unit.26

Impact of consumers’ sensitivity to changes in a product price on product total
supply

∂ ȳ(C)

∂a
= −c1 + c2

3
< 0,(5.268)

which means that the stronger the consumers’ reaction to changes in a product
price set by producers is, the lower the equilibrium total supply of a product is.

Impact of production marginal costs on product total supply

∂ ȳ(C)

∂c1
= ∂ ȳ(C)

∂c2
= −1

3
a < 0,(5.269)

which means that a unit increase in the marginal total (variable) cost of production
for any producer leads to an identical decrease in the product total supply in the
Cournot duopoly model.

If the production marginal costs for both producers were identical c1 = c2 = c,
then from condition (4.266), it results that the total supply would be equal27:

ȳ(C) = ȳ(C)
1 + ȳ(C)

2 = 2(α − c)

3β
= 2(b − ac)

3
,(5.270)

giving:

∂ ȳ(C)

∂c
= −2

3
a < 0,(5.271)

which means that, with the same marginal costs for both producers, a unit increase
in the marginal cost would mean the increase in the costs for both producers and

26 One can check that the reaction of the total supply by duopolists in the Cournot model to a
change in the market capacity is stronger than of the supply in a pure monopoly.
27 One can check that the total supply of a product in the Cournot duopoly model is higher than
the supply of a pure monopoly.
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thus would lead to a decrease in the product total supply twice as strong as an
increase in the cost just for one of the producers.

From condition (5.255), it is known that

p̄(C)
(
ȳ(C)
1 , ȳ(C)

2

)
= α − β

(
ȳ(C)
1 + ȳ(C)

2

)

= α + c1 + c2
3

= b + a(c1 + c2)

3a
,(5.272)

which means that in the equilibrium state the price of a product set by both pro-
ducers depends on the market capacity b > 0, the strength of consumers’ reaction
a > 0 to changes in a product price and on the marginal (variable or total) costs
of production c1, c2 > 0.

Impact of market capacity on equilibrium price

∂ p̄(C)

∂b
= 1

3a
> 0,(5.273)

which means that an increase in the market capacity leads to an increase in the
price of a product.28

Impact of consumers’ sensitivity to changes in a product price on equilibrium
price

∂ p̄(C)

∂a
= − b

3a2
< 0,(5.274)

which means that the stronger the consumers’ reaction to changes in a product
price is, the lower the equilibrium price set by both producers is.

Impact of production marginal costs on equilibrium price

∂ p̄(C)

∂c1
= ∂ p̄(C)

∂c2
= 1

3
> 0,(5.275)

which means that a unit increase in the marginal total (variable) cost of production
for any producer leads to an identical increase in the equilibrium price in the
Cournot duopoly model.

If the production marginal costs for both producers were identical c1 = c2 = c,
then from condition (5.272), it results that the equilibrium price would be equal:

p̄(C) = b + 2ac

3a
,(5.276)

28 One can check that the reaction of a product price set by duopolists in the Cournot model to an
increase in the market capacity is weaker than of a product price set by a monopolist.
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giving:

∂ p̄(C)

∂c
= 2

3
> 0,(5.277)

which means that, with the same marginal costs for both producers, a unit increase
in the marginal cost would mean the increase in the costs for both producers and
thus would lead to an increase in the equilibrium price twice as strong as an
increase in the cost just for one of the producers.

5.4.1.2 Dynamic Approach
In the analysis of the Cournot duopoly model presented in Sect. 5.4.1.1, we focus
on the static approach, in particular on studying the equilibrium supply and the
equilibrium price. Let us recall that in the Cournot duopoly model the equilibrium
state exists, is only one and globally stable regardless of the values of the param-
eters a, b, c1, c2, about which it is enough to assume that they are all positive.29

An optimal output level for a duopolist in the Cournot model, that is, the supply
in the equilibrium state, for the first and for the second producers, respectively,
equals:

ȳ(C)
1 = b − a(2c1 − c2)

3
,(5.278)

ȳ(C)
2 = b − a(2c2 − c1)

3
.(5.279)

We are interested in the equilibrium state with non-zero supplies by both pro-
ducers: ȳ1 > 0, ȳ2 > 0. Therefore, we assume that values of the parameters satisfy
the following inequalities:

2c1 − c2 <
b

a
,(5.280)

2c2 − c1 <
b

a
.(5.281)

The fulfilment of inequalities (5.280) and (5.281) is not necessary for the existence,
uniqueness or global stability of the equilibrium state but is necessary to ensure
positive equilibrium levels of the supply. The supply level in the equilibrium state
cannot equal 0 because we deal with the case of a duopoly and zero supply of
one of the producers would mean that he/she exits the market which turns into a
monopoly.

29 We make also additional assumptions about values of parameters to ensure that price levels and
output levels are positive.
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From the analysis conducted so far in Sect. 5.4.1.1, we know that a mechanism
of reaching the equilibrium state is a sequence of iterations in determining the
level of supply alternately by one producer and the other according to the given
producer’s reaction line. The successive stages of determining the supply levels
can be identified with moments or periods in some time horizon whose end is
indicated by the moment/period of reaching the state of equilibrium. If we want
to interpret time as discrete, then iterations take place at equal intervals of time,
for example, every one month. If time is treated as continuous, then subsequent
iterations are interpreted as taking place at any consecutive moments, for example,
the second iteration after a month, the third one after another 3 weeks, the fourth
one after another 27 days, etc. In both cases, however, whether we interpret time
as discrete or as continuous, with a given set of parameter values, the number of
iterations is the same.

In addition to analysing the optimal values in the equilibrium state and the
mechanism of reaching this state we are also interested how quickly this state
is reached, that is, how many iterations are needed to determine the equilibrium
supply levels and what determines the rate of convergence. From formulas (5.278)–
(5.279), it can be seen that what distinguishes one producer from another, and at
the same time determines the optimal output level by a given producer, are the
marginal costs of production. We assume that both producers are rational, driven
by profit maximization and, according to the assumption of the Cournot model,
they have equal positions on a market. Besides the production marginal costs, they
may also differ in the levels of the production fixed cost, but as we know, this cost
does not affect producers’ decisions regarding the output. Analysing equations of
the reaction lines of both producers:

ȳ1 = −1

2
y2 + b − ac1

2
,(5.282)

ȳ2 = −1

2
y1 + b − ac2

2
,(5.283)

one can notice that the value that decides on the location of subsequent points on
the given reaction line is the value of b− aci (i = 1, 2) and thus, in particular, the
relationship between value of ci and value of the quotient b/a.

Example 5.7 Two producers having equal positions act on a market of some homo-
geneous product. The demand for this product evolves according to a demand
function:

yd(p) = −ap + b, a, b > 0.

Production total costs for the first and for the second firm, respectively, are as
follows:

ctot1 (y1) = c1y1 + d1,
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ctot2 (y2) = c2y2 + d2,

where d1, d2 ≥ 0 denote the fixed production costs and c1, c2 > 0 denote produc-
tion marginal costs. The total output by both producers matches the demand for
the product reported by consumers by a given price:

y1 + y2 = yd(p).

Figures 5.22 and 5.23 present the reaction lines of duopolists, the equilibrium
state and the mechanism of reaching this state, when the parameters of the demand
function and the cost function have the following values: a = 3, b = 18, c1 =
2, c2 = 1. The optimal supply for the first producer is then ȳ1 = 3 and for the
second producer ȳ2 = 6. These are the equilibrium supply levels.

Figure 5.22 illustrates the mechanism of reaching the equilibrium state when
the first producer decides on the level of supply as first (Scenario 1), assuming the
competitor’s supply equals 0. The fact that the first producer makes the decision
as first does not mean that he/she has an advantage over the second producer, but
only allows us to assume the order of iterations, because producers’ decisions do
not have to be perfectly synchronized in time. We can see the order of making
decisions by looking at the points in the reaction lines. The point indicating the
first iteration, that is, point (6, 0), belongs to the reaction line of the first producer.
Regardless of the starting point, thus regardless of what the first producer assumes

0 2 4 6 8 10 12 14 16
0

2

4

6

8

10

12

y1

y 2

Scenario 1

RL1 RL2

Fig. 5.22 Mechanism of reaching equilibrium state in Cournot duopoly model when first decision
on supply is made by first producer
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Fig. 5.23 Mechanism of reaching equilibrium state in Cournot duopoly model when first decision
on supply is made by second producer

about the competitor’s supply level, the equilibrium state is achieved after a certain
number of iterations of the supply decisions.

The equilibrium state is also reached when the second producer makes the
supply decision as first (Scenario 2), which is illustrated in Fig. 5.23. The point
indicating the first iteration, that is, point (0, 8), belongs to the reaction line of
the second producer. This time we assume that the second producer decides on the
level of supply as first, assuming the competitor’s supply equals 0. The equilibrium
state is the same as before: ȳ(C)

1 = 3, ȳ(C)
2 = 6. The starting point could be as

well some other point than (0, 8), but still belonging to the second producer reac-
tion line and indicating what the second producer assumes about the competitor’s
supply level.

Tables 5.5 and 5.6 present trajectories of the equilibrium mechanism. We want
to compare how fast output levels converge to the equilibrium levels when the dif-
ference between the production marginal costs for producers is smaller or bigger.
The strength of consumers’ reaction to changes in a product price and the market
capacity are the same in both cases and amount to 3 and 18, respectively. From
Table 5.5, one can see that, if c1 = 2, c2 = 1, the equilibrium state is reached
in the 18th iteration and assuming an accuracy of two decimal places just right in
the 12th iteration.

Table 5.6 presents the output level trajectories by an assumption that the
marginal production costs are c1 = 3.4, c2 = 1. The equilibrium state is reached
in the 19th iteration and assuming an accuracy of two decimal places just right
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Table 5.5 Trajectories of output levels when c1 = 2, c2 = 1

Iteration number
t

y1 y2 ȳ(C)
1 ȳ(C)

2

1 6.0000 0.0000

2 6.0000 4.5000

3 3.7500 4.5000

4 3.7500 5.6250

5 3.1875 5.6250

6 3.1875 5.9063

7 3.0469 5.9063

8 3.0469 5.9766

9 3.0117 5.9766

10 3.0117 5.9941

11 3.0029 5.9941

12 3.0029 5.9985

13 3.0007 5.9985

14 3.0007 5.9996

15 3.0002 5.9996

16 3.0002 5.9999

17 3.0000 5.9999

18 3.0000 6.0000 3 6

in the 12th iteration. Therefore, there are no significant differences in the pace of
convergence to the equilibrium state in both cases. Note, however, that for a given
set of parameter values, assuming a greater difference in marginal costs between
two producers is not possible due to condition 2c1 − c2 < b

a .
Table 5.7 presents the output level trajectories by an assumption that the

strength of consumers’ reaction to changes in a product price is a = 3, and the
market capacity is b = 180. Then we can consider the bigger difference in the
production marginal costs for producers, for example, c1 = 30, c2 = 1. The equi-
librium state is reached in the 22nd iteration. If an accuracy of two decimal places
is assumed the equilibrium state is reached in the 16th iteration. However, taking
a = 3, b = 180, c1 = 2, c2 = 1 or c1 = 1.1, c2 = 1, we obtain the equilibrium
state with an accuracy of four decimal places also in the 22nd iteration, and with
an accuracy of two places in the 15th iteration.30 We see, then, that the differences
in the pace of convergence between various considered cases with different sets of
parameters’ values are small.

30 For these sets of parameters’ values, we do not present tables with output levels’ trajectories
because they do not present significant differences in the rate of convergence to the equilibrium
state.
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Table 5.6 Trajectories of output levels when c1 = 3.4, c2 = 1

Iteration number
t

y1 y2 ȳ(C)
1 ȳ(C)

2

1 3.9000 0.0000

2 3.9000 5.5500

3 1.1250 5.5500

4 1.1250 6.9375

5 0.4313 6.9375

6 0.4313 7.2844

7 0.2578 7.2844

8 0.2578 7.3711

9 0.2145 7.3711

10 0.2145 7.3928

11 0.2036 7.3928

12 0.2036 7.3982

13 0.2009 7.3982

14 0.2009 7.3995

15 0.2002 7.3995

16 0.2002 7.3999

17 0.2001 7.3999

18 0.2001 7.4000

19 0.2000 7.4000 0.2 7.4

From the trajectories presented in Tables 5.5, 5.6 and 5.7, it results that, with
the linear function of demand and the linear functions of production costs, what
has the greatest impact on the rate of convergence to the equilibrium state is the
relationship between value of ci (i = 1, 2) and value of the quotient b/a.

Figures 5.24 and 5.25 present the mechanism of reaching the equilibrium state
when we treat successive iterations of making a decision on supply levels as occur-
ring sequentially in time. Figure 5.24 presents trajectories of the supply levels of
duopolists in two scenarios, depending on which of the two producers decides
on the output level as first. In both cases, the same equilibrium state is achieved:
ȳ(C)
1 = 3, ȳ(C)

2 = 6.
Figure 5.25 presents trajectories of the total supply level and of the price set

by a duopolist, in two scenarios considered. By a given set of parameters’ values
on a market where two producers with equal positions act, the total supply level
is equal to 9 and the optimal price set by them is equal to 3.
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Table 5.7 Trajectories of output levels when c1 = 30, c2 = 1

Iteration number
t

y1 y2 ȳ(C)
1 ȳ(C)

2

1 45.0000 0.0000

2 45.0000 66.0000

3 12.0000 66.0000

4 12.0000 82.5000

5 3.7500 82.5000

6 3.7500 86.6250

7 1.6875 86.6250

8 1.6875 87.6563

9 1.1719 87.6563

10 1.1719 87.9141

11 1.0430 87.9141

12 1.0430 87.9785

13 1.0107 87.9785

14 1.0107 87.9946

15 1.0027 87.9946

16 1.0027 87.9987

17 1.0007 87.9987

18 1.0007 87.9997

19 1.0002 87.9997

20 1.0002 87.9999

21 1.0000 87.9999

22 1.0000 88.0000 1 88

5.4.2 Stackelberg Duopoly Model and Its Equilibrium State

5.4.2.1 Static Approach
Let us apply the following set of assumptions:

(S1) Two producers (i = 1, 2) act on a market of a homogeneous (undifferentiated)
product. The first producer is a leader and the second is a follower.

(S2) Functions of production total cost for producers are as follows:

∀i = 1, 2 ctoti (yi ) = cv
i (yi ) + c f

i (yi ) = ci yi + di , ci , di > 0.(5.284)

being the sum of variable cost functions:

∀i = 1, 2 cv
i (yi ) = ci yi , ci > 0(5.285)
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Fig. 5.24 Trajectories of output levels of duopolists in Cournot model
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and the fixed costs:

∀i = 1, 2 c f
i (yi ) = di > 0.(5.286)

Since the total cost functions are linear functions of output levels, we get that

∀i = 1, 2
dctoti (yi )

dyi
= dcv

i (yi )

dyi
= ci > 0,(5.287)

that is the marginal total cost and the marginal variable cost for the i-th producer
are equal and they are functions increasing in an output level.

(S3) A function of demand reported for a product by consumers, depending on its
price set by producers, is as follows:

yd(p) = −ap + b a, b > 0,(5.288)

where a denotes a measure of the consumers’ reaction strength to a unit increase
in the price of a product and b denotes a measure of a market capacity.

Since values of the demand function have to be non-negative, we get that

p ∈
⎡
0; b

a

⎤
.(5.289)

(S4) The total output by both producers matches the demand that consumers report
by a given price of a product:

y1 + y2 = yd(p) = −ap + b, a, b > 0.(5.290)

(S5) An inverse function of consumer demand for a product manufactured by
producers has a form:

p(y1, y2) = b

a
− 1

a
(y1 + y2) = α − β(y1 + y2), α, β > 0, α = b

a
, β = 1

a
.

(5.291)

Let us notice that

∂ p(y1, y2)

∂ y1
= ∂ p(y1, y2)

∂ y2
= −β = −1

a
< 0,(5.292)

thus, no matter which producer increases the output by one physical unit it leads
to a necessity to lower a product price by β = 1

a money units.
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(S6) The first producer (the leader) wants to determine such an output level that
guarantees the maximum profit for her/him:

Π1(y1) |→ max y1 ≥ 0.(5.293)

A profit function of the first producer can be expressed as the difference
between her/his revenue from sales of a product and total cost of production:

Π1(y1) = p(y1, y2)y1 − c1y1 − d1.(5.294)

Substituting the inverse function of demand (5.291) into Eq. (5.294), one
obtains the profit function of the first producer as

Π1(y1, y2) =[α − β(y1 + y2)]y1 − [c1y1 + d1]

=[α − c1]y1 − β y21 − β y1y2 − d1.(5.295)

(S7) The second producer (the follower) wants to determine such an output level
that guarantees the maximum profit for her/him taking an output level of the first
producer as given:

Π2(y2)|y1=const.≥0 |→ max y2 ≥ 0.(5.296)

A profit function of the second producer can be expressed as the difference
between her/his revenue from sales of a product and total cost of production:

Π2(y2) = p(y1, y2)y2 − c2y2 − d2.(5.297)

Substituting the inverse function of demand (4.291) into Eq. (4.297), one
obtains the profit function of the second producer as

Π2(y1, y2) =[α − β(y1 + y2)]y2 − [c2y2 + d2]

=[α − c2]y2 − β y22 − β y1y2 − d2.(5.298)

Let us now derive optimal solutions to the profit maximization problems of both
producers in a duopoly in the Stackelberg model.

The necessary condition and the sufficient condition for the profit maximization
problem of the first producer are following:

∂Π1(y1, y2)

∂ y1

||||
y1=ȳ1

= 0 the necessary condition,(5.299)

∂2Π1(y1, y2)

∂ y21

|||||
y1=ȳ1

< 0 the sufficient condition.(5.300)
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When the output level of the first producer is taken as given, thus treated
as a parameter, the necessary condition and the sufficient condition for the profit
maximization problem of the second producer are following:

∂Π2(y1, y2)

∂ y2

||||
y2=ȳ2, y1=const.≥0

= 0 the necessary condition,(5.301)

∂2Π2(y1, y2)

∂ y22

|||||
y2=ȳ2, y1=const.≥0

< 0 the sufficient condition.(5.302)

Deriving the necessary condition and the sufficient condition for the profit
function of the second producer (the follower), we get

∂Π2(y1, y2)

∂ y2

||||
y2=ȳ2, y1=const.≥0

= α − c2 − 2β ȳ2 − β y1 = 0(5.303)

∂2Π2(y1, y2)

∂ y22

|||||
y2=ȳ2, y1=const.≥0

= −2β < 0,(5.304)

which means that, for any (given) output level y1 ≥ 0 set by the first producer, the
second producer obtains the maximum profit when y2 = ȳ2.

From condition (5.303), it results that

ȳ2 = α − c2
2β

− y1
2

RL2.(5.305)

Equation (5.305) is called a reaction line equation of the follower. From the
perspective of the follower, it describes her/his output level which, by the output
level of the leader taken as given, guarantees the maximum profit for the follower.
From the perspective of the leader, the equation describes a share of the market
which, by a given output level of the leader, is to be captured by the follower.

Substituting expression (5.305) into the leader’s profit function, one gets

Π1(y1, y2) = [α − c1]y1 − β y21 − β y1y2 − d1 = α − 2c1 + c2
2

y1 − β

2
y21 − d1.

(5.306)

Then the necessary condition for the leader’s profit function takes the form:

∂Π1(y1, y2)

∂ y1

||||
y1=ȳ1

= α − 2c1 + c2
2

− β ȳ1 = 0,(5.307)
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and the sufficient condition for the leader’s profit function is

∂2Π1(y1, y2)

∂ y21

|||||
y1=ȳ1

= −β < 0.(5.308)

From conditions (5.307) and (5.308), it results that for an output level:

ȳ(S)
1 = α − 2c1 + c2

2β
= b − a(2c1 − c2)

2
(5.309)

the leader obtains the maximum profit.
Substituting expression (5.309) into Eq. (5.305):

ȳ(S)
2 = α − c2

2β
− ȳ(S)

1

2
,(5.310)

one derives the optimal output level of the follower:

ȳ(S)
2 = α − 3c2 + 2c1

4β
= b − a(3c2 − 2c1)

4
.(5.311)

Let us notice that, in the Stackelberg duopoly model, there is only the reaction
line of the follower (Fig. 5.26), who has to accept unconditionally the choice
made by the leader. On the other hand, the leader, when deciding her/his optimal
output level, does not have to take into account the decisions made by the follower.
The product supply by the leader is determined by her/his profit function which
depends on revenue from sales and on production total cost. The equilibrium state

Fig. 5.26 Reaction line of follower and equilibrium state in Stackelberg duopoly model
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in the Stackelberg duopoly model exists, there is exactly one such state and it is
determined uniquely by the product supplies by the leader and by the follower.
Deciding her/his output level the follower relies on the choice made by the leader
as well as on the maximum profit that can be obtained when the leader has made
a decision to manufacture ȳ(S)

1 units of a product.
As a result, in the equilibrium state, the optimal supply of the product by the

leader and by the follower in the Stackelberg duopoly model is given as

ȳ(S) =
(
ȳ(S)
1 , ȳ(S)

2

)
=
(

α + c2 − 2c1
2β

,
α + 2c1 − 3c2

4β

)

=
(
b − a(2c1 − c2)

2
,
b − a(3c2 − 2c1)

4

)
.

(5.312)

Then the total supply of the product equals:

ȳ(S) = ȳ(S)
1 + ȳ(S)

2 = 3α − (2c1 + c2)

4β
= 3b − a(2c1 + c2)

4
,(5.313)

hence, the equilibrium price in the Stackelberg duopoly model is

p̄(S)
(
ȳ(S)
1 , ȳ(S)

2

)
= α − β

(
ȳ(S)
1 + ȳ(S)

2

)
= α + 2c1 + c2

4
= b + a(2c1 + c2)

4a
,

(5.314)

which means that the total supply of a product by both producers and the equi-
librium price set by them depend on the market capacity b > 0, the strength of
consumers’ reaction a > 0 to changes in a product price and on the marginal
(variable or total) costs of production c1, c2 > 0.

Let us analyse the sensitivity of the product optimal supply and of the equi-
librium price to changes in values of the parameters of the Stackelberg duopoly
model.

Impact of market capacity on product supply by each producer

Using expression (5.312), let us determine partial derivatives of functions of each
producer’s product supply in the equilibrium state with respect to the market
capacity:

∂ ȳ(S)
1

∂b
= 1

2
>

1

4
= ∂ ȳ(S)

2

∂b
,(5.315)

which means that, when the market capacity increases by one unit, the product
supply by the leader increases by 1/2 of a physical unit, while the product supply
by the follower increases by 1/2 of a unit.
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Impact of consumers’ sensitivity to changes in a product price onproduct supply
by each producer

∂ ȳ(S)
1

∂a
= −2c1 + c2

2
,(5.316)

∂ ȳ(S)
2

∂a
= −3c2 + 2c1

4
,(5.317)

which means that how the consumers’ sensitivity a > 0 to changes in a product
price affects the product supply by each producer depends on the marginal total
(variable) costs of production in both firms. Let us consider three possible cases of
reaction of the product supplies by both producers to an increase in the consumers’
sensitivity to changes in a product price:

(1) if c1 > 0 and 2
3c1 < c2 < 2c1, then the product supply by each producer (thus

also the total supply) declines,
(2) if c1 > 0 and c2 < 2

3c1, then the product supply by the leader declines and
the product supply by the follower increases,

(3) if c1 > 0 and c2 > 2c1, then the product supply by the leader increases and
the product supply by the follower declines.

Impact of production marginal costs on product supply by each producer

∂ ȳ(S)
1

∂c1
= −a < 0,(5.318)

∂ ȳ(S)
2

∂c1
= 1

2
a > 0,(5.319)

∂ ȳ(S)
1

∂c2
= 1

2
a > 0,(5.320)

∂ ȳ(S)
2

∂c2
= −3

4
a < 0,(5.321)

which means that, when the marginal cost for the leader increases, the product
supply by the leader declines and the product supply by the follower increases. In
turn, when the marginal cost for the follower increases, the product supply by the
leader increases and the product supply by the follower declines. However, we can
notice in addition that reactions have different strengths in some cases. Reaction of
the supply by each producer to an increase in the marginal cost of the competitor
is equally strong. But the reaction of the supply by the leader to an increase in
her/his marginal cost is stronger than the reaction of the supply by the follower to
an increase in the follower’s marginal cost.
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The total supply of a product in the equilibrium state in the Stackelberg duopoly
model equals:

ȳ(S) = ȳ(S)
1 + ȳ(S)

2 = 3α − (2c1 + c2)

4β
= 3b − a(2c1 + c2)

4
,(5.322)

and also depends on the market capacity b > 0, the strength of consumers’ reaction
a > 0 to changes in a product price and on the marginal (variable or total) costs
of production c1, c2 > 0.

Impact of market capacity on product total supply

∂ ȳ(S)

∂b
= 3

4
> 0,(5.323)

which means that, when the market capacity increases by one unit, the product
total supply by both duopolists increases by 3/4 of a physical unit.

Impact of consumers’ sensitivity to changes in a product price on product total
supply

∂ ȳ(S)

∂a
= −2c1 + c2

4
< 0,(5.324)

which means that the stronger the consumers’ reaction to changes in a product
price set by producers is, the lower the equilibrium total supply of a product is.

Impact of production marginal costs on product total supply

∂ ȳ(S)

∂c1
= −1

2
a < 0,(5.325)

∂ ȳ(S)

∂c2
= −1

4
a < 0,(5.326)

which means that a unit increase in the marginal total (variable) cost of production
for any producer leads to a decrease in the product total supply. However, the
reaction of the total supply to an increase in the leader’s marginal cost is twice as
strong as the reaction of the total supply to an increase in the follower’s marginal
cost.

If the production marginal costs for both producers were identical c1 = c2 = c,
then from condition (5.322), it results that the total supply would be equal31:

ȳ(S) = ȳ(S)
1 + ȳ(S)

2 = 3(b − ac)

4
,(5.327)

31 One can check that the total supply of a product in the Stackelberg duopoly model is higher than
the supply of a pure monopoly.
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giving:

∂ ȳ(S)

∂c
= −3

4
a > 0,(5.328)

which means that, with the same marginal costs for both producers, a unit increase
in the marginal cost would mean an increase in the costs for both producers and
thus would lead to a decrease in the product total supply as strong as the sum of
reactions to an increase in the costs for both the producers.

From condition (5.314), it is known that

p̄(S)
(
ȳ(S)
1 , ȳ(S)

2

)
= α + 2c1 + c2

4
= b + a(2c1 + c2)

4a
,(5.329)

which means that, in the equilibrium state, the price of a product set by both
producers depends on the market capacity b > 0, the strength of consumers’
reaction a > 0 to changes in a product price and on the marginal (variable or
total) costs of production c1, c2 > 0.

Impact of market capacity on equilibrium price

∂ p̄(S)

∂b
= 1

4a
> 0,(5.330)

which means that an increase in the market capacity leads to an increase in the
price of a product.

Impact of consumer sensitivity to changes in a product price on equilibrium
price

∂ p̄(S)

∂a
= − b

4a2
< 0,(5.331)

which means that the stronger the consumers’ reaction to changes in a product
price is, the lower the equilibrium price set by both producers is.

Impact of production marginal costs on equilibrium price

∂ p̄(S)

∂c1
= 1

2
> 0,(5.332)

∂ p̄(S)

∂c2
= 1

4
> 0,(5.333)

which means that a unit increase in the marginal total (variable) cost of produc-
tion for any producer leads to an increase in the equilibrium price. However, this
reaction is stronger when the leader’s marginal cost increases.
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If the production marginal costs for both producers were identical c1 = c2 = c,
then from condition (5.329), it results that the equilibrium price would be equal:

p̄(S) = b + 3ac

4a
.(5.334)

giving:

∂ p̄(S)

∂c
= 3

4
> 0,(5.335)

which means that, with the same marginal costs for both producers, a unit increase
in the marginal cost would mean the increase in the costs for both producers and
thus would lead to an increase in the equilibrium price as strong as the sum of
reactions to an increase in the costs for both the producers.

5.4.2.2 Dynamic Approach
From the analysis of the Stackelberg duopoly model, presented in Sect. 5.4.2.1, we
know that there is exactly one equilibrium state in this model, achieved immedi-
ately when the leader sets his/her level of the product supply to which the follower
will adjust. The equilibrium state is determined uniquely, which means that the
supply by each producer in the equilibrium state depends only on the assumed
values of parameters in the demand function and in the production cost functions
of both producers:

ȳ(S)
1 = b − a(2c1 − c2)

2
,(5.336)

ȳ(S)
2 = b − a(3c2 − 2c1)

4
,(5.337)

where

2c1 − c2 <
b

a

and

3c2 − 2c1 <
b

a

to ensure positive values of the optimal supplies.
A position of the leader means that a producer dictates her/his supply level

to the follower who on this basis determines her/his optimal output level. The
equilibrium state is thus achieved immediately and there is no change in producers’
decisions on the supply if the value of any of the parameters a, b, c1, c2 does not
change In the static approach, we assumed that these values are constant over time.
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In the dynamic approach, we assume that they can be given as time-dependent
functions: a(t), b(t), c1(t), c2(t).

Let us assume that the demand function for a homogeneous product of
duopolists has a form:

yd(p(t)) = −a(t)p(t) + b(t), a(t), b(t) > 0,(5.338)

where t = 0, 1, 2, . . . , T or t ∈ [0, T ], and T means time horizon. The production
total cost of the leader and of the follower, respectively, are as follows:

ctot1 (y1(t)) = c1(t)y1(t) + d1(t),(5.339)

ctot2 (y2(t)) = c2(t)y2(t) + d2(t),(5.340)

where d1(t), d2(t) ≥ 0 are the production fixed costs, and c1(t), c2(t) are the
production marginal costs.

By these assumptions in each period/at any moment of the considered time
horizon, the supply of producers in the equilibrium state may have a different
value:

ȳ(S)
1 (t) = b(t) − a(t)(2c1(t) − c2(t))

2
,(5.341)

ȳ(S)
2 (t) = b(t) − a(t)(3c2(t) − 2c1(t))

4
.(5.342)

From formulas (5.336)–(5.337) from the static approach, as well as from formu-
las (5.341)–(5.342) from the dynamic approach, we notice that the differences in
the levels of supply between the leader and follower depend, among other things,
on the position held on a market. Whereas these positions are established once in
the whole considered time horizon, in the sense that one of the producers contin-
ues to be the leader and the other one continues to be the follower, differences in
optimal supply levels between producers and changes taking place in these levels
are determined by the time-variant production marginal costs for both producers.

The position held by a duopolist on a market affects the share he/she obtains in
the market, that is, the share of her/his optimal supply in the total optimal supply of
a product. This relationship can be seen on the basis of formulas (5.341)–(5.342).
What also affects the shares of duopolists is the formation of their production
marginal costs, especially while comparing the cost for one of the duopolists to
the cost for the other. By equal marginal costs, the leader has 2/3 and the follower
1/3 of the market.32 Beacuse marginal costs for the leader and the follower are

32 Such distribution of market shares holds anytime when the production marginal costs for the
leader and for the follower are the same. This results, besides the leader and the follower positions,
from the adopted forms of the demand function and the functions of production total cost, which
are assumed to be linear. With other forms of these functions, the distribution of market shares
between the leader and the follower may be different.
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different, their market shares take different values too. The leader has a bigger
supply than the follower, and therefore, he/she holds a higher share in a market of
a product, if:

c2(t) >
6

5
c1(t) − 1

5
· b(t)
a(t)

, ∀t,(5.343)

where t = 0, 1, 2, . . . , T or t ∈ [0; T ]. The follower has a bigger supply than the
leader and therefore a higher market share if the opposite inequality is satisfied:

c2(t) <
6

5
c1(t) − 1

5
· b(t)
a(t)

.(5.344)

From inequality (5.344), it results that the follower can have a higher market
share than the leader only by a very low production marginal cost compared to the
cost for the leader.

Example 5.8 Two producers act on a market for some homogeneous product. The
first of them has a position of the leader and the other a position of the follower. The
demand for this product evolves according to a demand function:

yd(p(t)) = −3p(t) + 18, a(t), b(t) > 0.

The total output by both producers matches the demand for the product reported
by consumers by a given price:

y1(t) + y2(t) = yd(p(t)).

Production total costs for the leader and for the follower, respectively, are as
follows:

ctot1 (y1(t)) = c1(t)y1 + 1,

ctot2 (y2(t)) = 2y2(t) + 1,

where

c1(t) = − 2

15
t + 4, ∀t ∈ [0; 30],

is a function of the leader’s production marginal cost whose value depends on
time.

In such a set of assumptions, only the marginal cost for the leader changes over
time, and the following remains constant: the marginal cost for the follower, the
strength of consumers’ reaction to changes in a product price, the market capacity
and the fixed production costs. Thanks to this set of assumptions we can focus on
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the impact of variability of the marginal costs’ differences between the leader and
the follower.

Trajectories of the production marginal costs are shown in Fig. 5.27. Initially,
the cost for the leader is twice as high as for the follower. At moment t = 15,
they are equal to each other. At the end of the time horizon, we make an extreme
assumption that the marginal cost for the leader equals 0 to obtain the follower’s
supply equal to 0. We are interested in values of the leader’s marginal cost by
which the supply levels by the leader and by the follower are positive, that is,
c1(t) ∈ (0; 4).

The follower has to adjust her/his supply to the output level that the leader
decides to produce. Hence, the follower reacts according to the reaction line
equation obtained from her/his profit maximization problem:

ȳ2(t) = −1

2
y1(t) + 6.

Figure 5.28 presents the follower’s reaction line and a trajectory of equilibrium
states when the production marginal cost for the leader is time-variant. The high-
lighted point is the equilibrium state ȳ(S)(15) = (6, 3) established when the
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Fig. 5.27 Trajectories of marginal cost for a leader and a follower
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Fig. 5.28 Follower’s reaction line and equilibrium state in Stackelberg duopoly model when
leader’s marginal cost varies in time

marginal costs for the leader and for the follower are the same and equal to 2.
The distribution of market shares is then 2/3 for the leader and 1/3 for the fol-
lower. Equal shares are achieved at momentt = 10, whenȳ(S)(10) = (4, 4), by
the production marginal costs: c1(10) ≈ 2.67, c2 = 2. If the marginal cost for
the leader exceeds 2.67 (c2 = 2), then the follower has a higher market share;
otherwise, the leader has a higher share. In the extreme case when c1(30) = 0, the
entire market belongs to the leader, but such a case is purely theoretical, because it
means cost-free production for the leader. When the marginal cost for the follower
is twice as high as for the leader: c1(22) ≈ 1.07, c2 = 2, the leader achieves 85%
of the market share, and the follower 15%.

Formation of the optimal supply over time, for both producers, is presented in
Fig. 5.29. Their market shares are shown in Fig. 5.30. When the marginal cost
for the leader decreases, her/his optimal supply level increases, while optimal sup-
ply level for the follower declines. The follower responds to each increase in the
leader’s supply reducing her/his own output level. Thanks to this, while taking the
position of the follower, he/she can sell the output at a level set by himself/herself
without fear that the leader will want to take this part of the market from him/her,
because the follower has adjusted his/her output level to what the leader dictates.

Comparing Fig. 5.30 with Fig. 5.27, one can notice that a significant market
share, over 60%, is achieved by the leader with his/her production marginal cost
even slightly higher than for the follower: c1(13) ≈ 2.27, c2 = 2. Reducing the
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Fig. 5.29 Trajectories of optimal supplies in Stackelberg duopoly model when leader’s marginal
cost varies in time
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Fig. 5.31 Trajectories of optimal total supply and of optimal price in Stackelberg duopoly model
when leader’s marginal cost varies in time

leader’s marginal cost to a level equal to or below c1(25) ≈ 0.91 allows her/him
to achieve over 90% market share.

A decrease in the leader’s marginal cost of production leads to an increase in
the optimal total supply and a reduction in the optimal price of a product. The
price of a product is determined by both producers on the basis, among others, of
values of their production marginal costs, according to a formula:

p(S)
(
ȳ(S)(t)

)
= b(t) + a(t)(2c1(t) + c2(t))

4a(t)
,

similarly as in the static approach. A decrease in the production marginal cost for
a given producer is profitable for her/him and unprofitable for her/his competitor
(ceteris paribus). In order to sell a product in a quantity derived from the profit
maximization problem, the producer has to accept a price level set together with
the competitor. A reduction in the leader’s marginal cost makes it possible to
reduce the price of a product, leading to an increase in the demand for the product
and in the optimal supply level which adjusts to the demand. This is reflected in
Fig. 5.31.

5.4.3 Comparative Analysis of Cournot and Stackelberg Duopoly
Models

Let us now compare results derived from models of a market of one homogenous
product presented in the previous subchapter and sections: the pure monopoly
model, the Cournot and the Stackelberg duopoly models.
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In Tables 5.8a, 5.8b, 5.9a and 5.9b, we summarize information about the equi-
librium price, the total supply and the individual supply be a given producer when
a product price is the equilibrium price. The summary relates to a pure monopoly, a
duopoly in the Cournot model and a duopoly in the Stackelberg model. We present
also values of measures of reaction of the equilibrium total supply, the equilibrium
individual supplies and the equilibrium price to changes in the market capacityb,
the consumers’ sensitivity a to changes in a product price and in the production
marginal cost for each producer (c1, c2, c).

In these summaries, we distinguish two basic cases: when production marginal
costs in a duopoly in the Cournot or in the Stackelberg model are different and

Table 5.8a Sensitivity analysis for total supply and equilibrium price in pure monopoly model,
Cournot and Stackelberg duopoly models when marginal costs for two producers are different

Market characteristics Pure monopolya Duopoly in Cournot
model

Duopoly in stackelberg
model

For total supply when
c1 /= c2

ȳ(M) = b−ac
2 ȳ(C) = 2b−a(c1+c2)

3 ȳ(S) = 3b−a(2c1+c2)
4

∂ ȳ(X)

∂b

X = M,C, S

1
2

2
3

3
4

∂ ȳ(X)

∂a

X = M,C, S

− 1
2 c − c1+c2

2 − 2c1+c2
4

∂ ȳ(X)

∂c1

X = M,C, S

− 1
4a − 1

3a − 1
2a

∂ ȳ(X)

∂c2

X = M,C, S

− 1
4a − 1

3a − 1
4a

For equilibrium price
when c1 /= c2

p̄(M) = b+ac
2a p̄(C) = b+a(c1+c2)

3a p̄(S) = b+a(2c1+c2)
4a

∂ p̄(X)

∂b

X = M,C, S

1
2a

1
3a

1
4a

∂ p̄(X)

∂a

X = M,C, S

− b
2a2

− b
3a2

− b
4a2

∂ p̄(X)

∂c1

X = M,C, S

1
4

1
3

1
2

∂ p̄(X)

∂c2

X = M,C, S

1
4

1
3

1
4

a For the pure monopoly model, we consider one producer and for the duopoly models - two
producers of one homogenous product. Let us keep in mind that, to have the proper basis for com-
parison of results of the pure monopoly model with duopoly models, we assume that c1+c2 = 2c,

thus c = 1
2 c1 + 1

2 c2 .
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Table 5.8b Sensitivity analysis for total supply and equilibrium price in: pure monopoly model,
Cournot and Stackelberg duopoly models when marginal costs for two producers are equal

Market characteristics Pure monopolya Duopoly in cournot
model

Duopoly in stackelberg
model

For total supply when
c1 = c2 = c

ȳ(M) = 1
2 (b − ac) ȳ(C) = 2

3 (b − ac) ȳ(S) = 3
4 (b − ac)

∂ ȳ(X)

∂b

X = M,C, S

1
2

2
3

3
4

∂ ȳ(X)

∂a

X = M,C, S

− 1
2 c − 2

3 c − 3
4 c

∂ ȳ(X)

∂c

X = M,C, S

− 1
2a − 2

3a − 3
4a

For equilibrium price
when c1 = c2 = c

p̄(M) = b+ac
2a p̄(C) = b+2ac

3a p̄(S) = b+3ac
4a

∂ p̄(X)

∂b

X = M,C, S

1
2a

1
3a

1
4a

∂ p̄(X)

∂a

X = M,C, S

− b
2a2

− b
3a2

− b
4a2

∂ p̄(X)

∂c

X = M,C, S

1
2

2
3

3
4

a For the pure monopoly model we consider one producer and for the duopoly models we consider
two producers of one homogenous product

when they are equal. In case of different costs to have the proper basis for com-
parison of results of the pure monopoly model with duopoly models, we assume
that c1 + c2 = 2c, thus c = 1

2c1 + 1
2c2.

On the basis of measures given in Tables 5.8a and 5.8b, one can draw the
following conclusions related to the total supply in the equilibrium state:

• the biggest equilibrium total supply is in the Stackelberg duopoly, the middle
one in the Cournot duopoly and the smallest one in the pure monopoly;

• the biggest increase in the equilibrium total supply caused by an increase in
the market capacity b ocurs in the Stackelberg duopoly, the middle one in the
Cournot duopoly and the smallest one in the pure monopoly;

• the biggest decline of the equilibrium total supply caused by an increase in the
consumers’ sensitivity a to changes in a product price occurs in the Stackelberg
duopoly, the middle one in the Cournot duopoly and the smallest one in the pure
monopoly;

• the biggest decline of the equilibrium total supply caused by an increase in the
first producer’s marginal cost (Table 5.8a) occurs in the Stackelberg duopoly,
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Table 5.9a Sensitivity analysis for individual supplies by each producer in pure monopoly
model and C cournot and Stackelberg duopoly models when marginal costs for two producers are
different

Market characteristics Pure monopolya Duopoly in cournot
model

Duopoly in Stackelberg
model

For first producer’s
supply when
c1 /= c2

ȳ(M) = b−ac
2 ȳ(C)

1 = b−a(2c1−c2)
3 ȳ(S)

1 = b−a(2c1−c2)
2

∂ ȳ(X)
1

∂b

X = M,C, S

1
2

1
3

1
2

∂ ȳ(X)
1

∂a

X = M,C, S

− 1
2 c

−2c1+c2
3

−2c1+c2
2

∂ ȳ(X)
1

∂c1

X = M,C, S

− 1
4a − 2

3a −a

∂ ȳ(X)
1

∂c2

X = M,C, S

− 1
4a

1
3a

1
2a

For second producer’s
supply when c1 /= c2

ȳ(M) = b−ac
2 ȳ(C)

2 = b−a(2c2−c1)
3 ȳ(S)

2 = b−a(3c2−2c1)
4

∂ ȳ(X)
2

∂b

X = M,C, S

1
2

1
3

1
4

∂ ȳ(X)
2

∂a

X = M,C, S

− c
2

−2c2+c1
3

−3c2+2c1
4

∂ ȳ(X)
2

∂c1

X = M,C, S

− 1
4a

1
3a

1
2a

∂ ȳ(X)
2

∂c2

X = M,C, S

− 1
4a − 2

3a − 3
4a

a For the pure monopoly model we consider one producer and for the duopoly models we consider
-two producers of one homogenous product. Let us keep in mind that, to have the proper basis for
comparison of results of the pure monopoly model with duopoly models, we assume that c1+c2 =
2c, thus c = 1

2 c1 + 1
2 c2 .

the middle one in the Cournot duopoly and the smallest one in the pure
monopoly;

• a bigger decline of the equilibrium total supply caused by an increase in the
second producer’s marginal cost (Table 5.8a) occurs in the Cournot duopoly
and a smaller one in the Stackelberg duopoly and in the pure monopoly;
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Table 5.9b Sensitivity analysis for individual supplies by each producer in pure monopoly
model and C cournot and Stackelberg duopoly models when marginal costs for two producers are
equal

Market characteristics Pure monopolya Duopoly in cournot
model

Duopoly in Stackelberg
model

For first producer’s
supply when
c1 = c2 = c

ȳ(M) = 1
2 (b − ac) ȳ(C)

1 = 1
3 (b − ac) ȳ(S)

1 = 1
2 (b − ac)

∂ ȳ(X)
1

∂b

X = M,C, S

1
2

1
3

1
2

∂ ȳ(X)
1

∂a

X = M,C, S

− 1
2 c − 1

3 c − 1
2 c

∂ ȳ(X)
1

∂c

X = M,C, S

− 1
2a − 1

3a − 1
2a

For second producer’s
supply when
c1 = c2 = c

ȳ(M) = b−ac
2 ȳ(C)

2 = 1
3 (b − ac) ȳ(S)

2 = 1
4 (b − ac)

∂ ȳ(X)
2

∂b

X = M,C, S

1
2

1
3

1
4

∂ ȳ(X)
2

∂a

X = M,C, S

− 1
2 c − 1

3 c − 1
4 c

∂ ȳ(X)
2

∂c

X = M,C, S

− 1
2a − 1

3 c − 1
4 c

a For the pure monopoly model we consider one producer and for the duopoly models we con-
sider two producers of one homogenous product

• the biggest decline of the equilibrium total supply caused by an increase in both
producers’ marginal costs (Table 5.8b) occurs in the Stackelberg duopoly, the
middle one in the Cournot duopoly and the smallest one in the pure monopoly.

On the basis of measures given in Tables 5.8a and 5.8b, one can draw the following
conclusions related to the equilibrium price:

• the highest equilibrium price is in the pure monopoly, the middle one in the
Cournot duopoly and the lowest one in the Stackelberg duopoly;

• the biggest increase in the equilibrium price caused by an increase in the market
capacity b occurs in the pure monopoly, the middle one in the Cournot duopoly
and the smallest one in the Stackelberg duopoly;

• the biggest decline of the equilibrium price caused by an increase in the con-
sumers’ sensitivity a to changes in a product price occurs in the pure monopoly,
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the middle one in the Cournot duopoly and the smallest one in the Stackelberg
duopoly;

• the highest rise of the equilibrium price caused by an increase in the first pro-
ducer’s marginal cost (Table 5.8a) occurs in the Stackelberg duopoly, the middle
one in the Cournot duopoly and the lowest one in the pure monopoly;

• a higher rise of the equilibrium price caused by an increase in the second pro-
ducer’s marginal cost (Table 5.8a) occurs in the Cournot duopoly and a lower
one in the Stackelberg duopoly and in the pure monopoly;

• the highest rise of the equilibrium price caused by an increase in both produc-
ers’ marginal costs (Table 5.8b) occurs in the Stackelberg duopoly, the middle
one in the Cournot duopoly and the smallest one in the pure monopoly.

On the basis of measures given in Table 5.9b, one can draw the following conclu-
sions related to the equilibrium supplies by each producer when marginal costs for
producers are different:

• the biggest equilibrium supply is by the monopolist and by the leader in the
Stackelberg duopoly, the middle one is by any producer in the Cournot duopoly
and the smallest one by the follower in the Stackelberg duopoly;

• the biggest increase in the individual supply caused by an increase in the mar-
ket capacity b occurs for the monopolist and for the leader in the Stackelberg
duopoly, the middle one for any producer in the Cournot duopoly and the
smallest one for the follower in the Stackelberg duopoly;

• if c1 < 1
2c2, then an increase in the consumers’ sensitivity a to changes in a

product price leads to an increase in the supply by the first producer in the
Cournot duopoly and by the leader in the Stackelberg duopoly while the other
producer’s supply declines;

• if c2 < 1
2c1 then an increase in the consumers’ sensitivity a to changes in a

product price leads to an increase in the supply by the second producer in the
Cournot duopoly while the first producer’s supply declines;

• if c2 < 2
3c1, then an increase in the consumers’ sensitivity a to changes

in a product price leads to an increase in the supply by the follower in the
Stackelberg duopoly while the first producer’s supply declines;

• the biggest decline of the first producer’s equilibrium supply caused by an
increase in her/his marginal cost occurs in the Stackelberg duopoly, the mid-
dle one in the Cournot duopoly and the smallest one in the pure monopoly.
An increase in the competitor’s equilibrium supply is bigger in the Stackelberg
model (the follower) than in the Cournot model;

• the biggest decline of the second producer’s equilibrium supply caused by an
increase in her/his marginal cost occurs in the Stackelberg duopoly, the middle
one in the Cournot duopoly and the smallest one in the pure monopoly. An
increase in the competitor’s equilibrium supply is bigger in the Stackelberg
model (the leader) than in the Cournot model.
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On the basis of measures given in Table 5.9a, one can draw the following conclu-
sions related to the equilibrium supplies by each producer when marginal costs for
producers are equal:

• the biggest equilibrium supply is by the monopolist and by the leader in the
Stackelberg duopoly, the middle one is by any producer in the Cournot duopoly
and the smallest one by the follower in the Stackelberg duopoly;

• the biggest increase in the individual supply caused by an increase in the mar-
ket capacity b occurs for the monopolist and for the leader in the Stackelberg
duopoly, the middle one for any producer in the Cournot duopoly and the
smallest one for the follower in the Stackelberg duopoly;

• the biggest decline of the equilibrium individual supply caused by an increase
in the consumers’ sensitivity a to changes in a product price occurs for the
monopolist and for the leader in the Stackelberg duopoly, the middle one for
any producer in the Cournot duopoly and the smallest one for the follower in
the Stackelberg duopoly;

• the biggest decline of a given producer’s equilibrium supply caused by an
increase in her/his marginal cost occurs for the monopolist and for the leader
in the Stackelberg duopoly, the middle one for any producer in the Cournot
duopoly and the smallest one for the follower in the Stackelberg duopoly.

5.4.4 Bertrand Duopoly Model and Its Equilibrium State

5.4.4.1 Static Approach
Let us apply the following set of assumptions:

(B1) Two producers (i = 1, 2) act on a market of two heterogeneous (differ-
entiated) substitute products. This means, among other things, that the demand
reported for the first (second) product manufactured by the first (second) producer
depends not only on its price but also on the price of the second (first) product
manufactured by the second (first) producer. Contrary to the Cournot and Stackel-
berg duopoly models in the Bertrand duopoly model producers compete on prices
of their products.

(B2) Functions of producers’ production total cost are as follows33:

∀i = 1, 2 ctoti (yi ) = cv
i (yi ) + c f

i (yi ) = ci yi + di , ci , di > 0,(5.345)

being the sum of variable cost functions:

∀i = 1, 2 cv
i (yi ) = ci yi , ci > 0(5.346)

33 As previously, for the sake of simplicity, we assume that functions of production total costs are
linear functions of output levels.
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and the fixed costs:

∀i = 1, 2 c f
i (yi ) = di > 0.(5.347)

Since the total cost functions are linear functions of output levels, we get that

∀i = 1, 2
dctoti (yi )

dyi
= dcv

i (yi )

dyi
= ci > 0,(5.348)

that is the marginal total cost and the marginal variable cost for the i-th producer
are equal and they are functions increasing in an output level.

(B3) A function of demand reported for a product of the first producer is as
follows:

yd1 (p1, p2) = b1 − a1 p1 + γ1 p2, a1, b1, γ1 > 0,(5.349)

where:

yd1 (0, 0) = b1,(5.350)

hence, this parameter can be seen as a demand level for the first product when
prices of both products equal 0. Yet, we are interested in cases when prices of
both products are positive. We call this parameter a measure of capacity of the
first product’s market.

Parameter a1 can be seen as an amount by which the demand for the first
product approximately declines when its price is raised by one money unit and a
price of the second product remains unchanged:

∂ yd1
∂ p1

= −a1(5.351)

and we call it a measure of sensitivity of the first product’s consumers to changes
in a price of the first product.

Parameter γ1 can be seen as an amount by which the demand for the first
product approximately increases when a price of the second product is raised by
one money unit and a price of the first product remains unchanged:

∂ yd1
∂ p2

= γ1,(5.352)

and we call it a measure of sensitivity of the first product’s consumers to changes
in a price of the second product.

The change in a price of the first product on the demand for this product is
generally presumed to have a stronger effect than the change in a price of the
second product (a1 > γ1). It is also worth noticing that a rise in the price of the
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first product results in a decrease in the demand for this product, while a rise in the
price of the second product leads to an increase in the demand for the first product.
It stems from the fact that from the perspective of consumers these two products
are substitutes for each other and they are ordinary goods.

(B4) A function of demand reported for a product of the first producer is as
follows:

yd2 (p1, p2) = b2 − a2 p2 + γ2 p1, a2, b2, γ2 > 0,(5.353)

where:

yd2 (0, 0) = b2,(5.354)

hence, this parameter can be seen as a demand level for the second product when
prices of both products equal 0. Yet, we are interested in cases when prices of both
products are positive. We call this parameter a measure of capacity of the second
product’s market.

Parameter a2 can be seen as an amount by which the demand for the second
product approximately declines when its price is raised by one money unit and the
price of the first product remains unchanged:

∂ yd2
∂ p2

= −a2,(5.355)

and we call it a measure of sensitivity of the second product’s consumers to
changes in a price of the second product.

Parameter γ2 can be seen as an amount by which the demand for the second
product approximately increases when the price of the first product is raised by
one money unit and the price of the second product remains unchanged:

∂ yd2
∂ p1

= γ2,(5.356)

and we call it a measure of sensitivity of the second product’s consumers to
changes in a price of the first product.

Similarly as for the first product, one assumes that the change in the price of the
second product on the demand for this product has a stronger effect than the change
in the price of the first product (a2 > γ2). It is also worth noticing that a rise in the
price of the second product results in a decrease in the demand for this product,
while a rise in the price of the first product leads to an increase in the demand
for the first product. It stems from the fact that from the perspective of consumers
these two products are substitutes for each other and they are ordinary goods.
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(B5) The supply of each product matches the demand that consumers report for
this product:

ys1(p1, p2) = yd1 (p1, p2) = y1 = b1 − a1 p1 + γ1 p2,(5.357)

ys2(p1, p2) = yd2 (p1, p2) = y2 = b2 − a2 p2 + γ2 p1.(5.358)

(B6) The first producer wants to determine such a price level for her/his product
that guarantees the maximum profit for her/him taking a price level of the second
product as given:

Π1(p1)|p2=const.≥0 |→ max p1 ≥ 0.(5.359)

(B7) The second producer wants to determine such a price level for her/his product
that guarantees the maximum profit for her/him taking a price level of the first
product as given:

Π2(p2)|p1=const.≥0 |→ max p2 ≥ 0.(5.360)

From the set of assumptions presented above, it results that a function of
revenue from sales:

• of the first product is expressed as

r1(p1, p2) = p1y1 = p1(b1 − a1 p1 + γ1 p2)

= b1 p1 − a1 p
2
1 + γ1 p1 p2,

(5.361)

• of the second product is expressed as

r2(p1, p2) = p2y2 = p2(b2 − a2 p2 + γ2 p1)

= b2 p2 − a2 p
2
2 + γ2 p1 p2,

(5.362)

From conditions (5.357)–(5.358), it results that a function of production total cost:

• for the first producer takes the form:

ctot1 (y1) = c1y1 + d1 = c1(b1 − a1 p1 + γ1 p2) + d1
= ctot1 (p1, p2), c1, d1 > 0,(5.363)
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• for the second producer takes the form:

ctot2 (y2) = c2y2 + d2 = c2(b2 − a2 p2 + γ2 p1) + d2
= ctot2 (p1, p2), c2, d2 > 0.c(5.364)

Hence, a profit function:

• for the first producer has a form:

Π1(p1, p2) = − (b1c1 + d1) + (b1 + a1c1)p1

+γ1 p2(p1 − c1) − a1 p
2
1,(5.365)

• for the second producer has a form:

Π2(p1, p2) = − (b2c2 + d2) + (b2 + a2c2)p2

+γ2 p1(p2 − c2) − a2 p
2
2 .(5.366)

First producer
The necessary condition and the sufficient condition for the profit maximization
problem of the first producer are the following:

∂Π1(p1)

∂ p1

||||
p1= p̄1, p2=const.≥0

= 0 the necessary condition,(5.367)

∂2Π1(p1)

∂ p21

|||||
p1= p̄1, p2=const.≥0

< 0 the sufficient condition.(5.368)

Equation (5.365) gives

∂Π1(p1)

∂ p1

||||
p= p̄1, p2=const.≥0

= b1 + a1c1 − 2a1 p̄1 + γ1 p2 = 0,(5.369)

∂2Π1(p1)

∂ p21

|||||
p1= p̄1, p2=const.≥0

= −2a1 < 0.(5.370)
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Fig. 5.32 Reaction line of
first producer

From conditions (5.369)–(5.370), it results that, by a given price p2 ≥ 0 of
the second product, the first producer obtains the maximum profit when a price of
her/his product is derived from an equation:

p̄1 = b1 + a1c1
2a1

+ γ1

2a1
p2 RL1.(5.371)

which is called a line of the first producer’s reaction to changes in a price of the
second product.

Figure 5.32 presents the way the first producer determines a price level of
her/his product when the second producer has determined a price of the second
product which is a substitute for the first product. Let us notice that, if the second
producer set the price of the substitute product at a level of 0, p12, p

2
2 money units,

then the first producer aiming at profit maximization should set the price of her/his
product, respectively, at the level of b1+a1c1

2a1
, p11, p

2
1 > 0 money units.

From Eq. (5.371), it results that

p2 = 0 ⇒ p̄1 = b1 + a1c1
2a1

> 0.(5.372)

Condition (5.372) presents a price level of the first product that maximizes the
profit of the first producer by zero price of the second product. Moreover, from
Eq. (4.371), it follows that

d p̄1
dp2

||||
RL1

= γ1

2a1
> 0,(5.373)

which means that, if the second producer raises the price of the second product by
one money unit, then the first producer aiming at profit maximization should raise
the price of the first product by γ1

2a1
money units.
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Second producer
The necessary condition and the sufficient condition for the profit maximization
problem of the first producer are the following:

∂Π2(p2)

∂ p2

||||
p2= p̄2, p1=const.≥0

= 0 the necessary condition,(5.374)

∂2Π2(p2)

∂ p22

|||||
p2= p̄2, p1=const.≥0

< 0 the sufficient condition.(5.375)

Equation (4.366) gives

∂Π2(p2)

∂ p2

||||
p= p̄1, p2=const.≥0

= b2 + a2c2 − 2a2 p̄2 + γ2 p1 = 0,(5.376)

∂2Π2(p2)

∂ p22

|||||
p1= p̄1, p2=const.≥0

= −2a2 < 0.(5.377)

From conditions (5.376)–(5.377), it results that, by a given price p1 ≥ 0 of
the first product, the second producer obtains the maximum profit when a price of
her/his product is derived from an equation:

p̄2 = b2 + a2c2
2a2

+ γ2

2a2
p1 RL2,(5.378)

which is called a line of the second producer’s reaction to changes in a price of
the first product.

Figure 5.33 presents the way the second producer determines a price level of
her/his product when the first producer has determined a price of the second prod-
uct which is a substitute for the second product. Let us notice that, if the first
producer set the price of the substitute product at a level of 0, p11, p

2
1 money units,

then the second producer aiming at profit maximization should set the price of
her/his product, respectively, at the level of b2+a2c2

2a2
, p12, p

2
2 > 0 money units.

From Eq. (5.378), it results that

p1 = 0 ⇒ p̄2 = b2 + a2c2
2a2

> 0.(5.379)

Condition (5.379) presents a price level of the second product that maximizes
the profit of the second producer by zero price of the first product. Moreover, from
Eq. (5.378), it follows that

d p̄2
dp1

||||
RL2

= γ2

2a2
> 0,(5.380)
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Fig. 5.33 Reaction line of
second producer

which means that, if the first producer raises the price of the first product by one
money unit, then the second producer aiming at profit maximization should raise
the price of the second product by γ2

2a2
money units.

Figure 5.34 presents a mechanism of reaching the equilibrium state in the
Bertrand duopoly model. It is not difficult to notice that each producer aiming at
the maximization of her/his own profit and taking a price level of the other product
set by the competitor as given will seek to have a price of her/his own product on
a level resulting from his/her reaction line. Accepting a price level different than
the one resulting from his/her reaction line would be inconsistent with the profit
maximization aim. As a consequence, both producers will accept as optimal these
price levels which are indicated by the intersection of their reaction lines.

The equilibrium state exists, there is exactly one such state and it is globally
stable. This means that, if the parameters of the profit function of each producer
do not change, then as a result of rational behaviour of both producers the optimal

Fig. 5.34 Equilibrium state
in Bertrand duopoly model
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price levels of substitute products will be established such that each producer will
achieve the maximum profit by these price levels.

In the Bertrand duopoly model, the set of equilibrium prices is determined as
a solution to the system of Eqs. (5.369) and (5.376) written in a form:

b1 + a1c1 = 2a1 p̄1 − γ1 p̄2,(5.381)

b2 + a2c2 = 2a2 p̄1 − γ2 p̄1.(5.382)

The equilibrium price vector in the Bertrand duopoly model has a form:

p̄(B) =
(
p̄(B)
1 , p̄(B)

2

)
=
(
2a2(b1 + a1c1) + γ1(b2 + a2c2)

4a1a2 − γ1γ2
,
2a1(b2 + a2c2) + γ2(b1 + a1c1)

4a1a2 − γ1γ2

)
.

(5.383)

The equilibrium price of each product depends on the capacities b1, b2 of mar-
kets of both products, the production marginal costs c1, c2 for both producers,
the measures of consumers’ sensitivities a1, a2, γ1, γ2to changes in prices of both
products. From the assumption ai > γi , i = 1, 2, it follows that a response of
the demand for i-th product to a rise in the price of this product is negative and
stronger than the positive response of the demand for i-th product to a rise in a
price of the other product. Equation (5.383) ensures that prices of both products
in the equilibrium state are positive.

Knowing the equilibrium prices p̄ = ( p̄1, p̄2), determined by condition (5.383),
on the basis of conditions (5.357) and (5.358), one can determine output levels of
the first and of the second producers that guarantee maximum profits for both
producers. One derives these levels from a system of equations:

ȳs1 = b1 − a1 p̄1 + γ1 p̄2,(5.384)

ȳs1 = b2 − a2 p̄2 + γ2 p̄1,(5.385)

whose solution is a vector of supplies of both products:

ȳ(B) =
(
ȳ(B)
1 , ȳ(B)

2

)
=
(
a1
⎡
2a2(b1 − a1c1) + γ1(b2 − a2c2 + γ2c1)

⎤

4a1a2 − γ1γ2
,
a2
⎡
2a1(b2 − a2c2) + γ2(b1 − a1c1 + γ1c2)

⎤

4a1a2 − γ1γ2

)
.

(5.386)

The output levels of both products at the equilibrium prices depend on the
capacities b1, b2 of markets of both products, the production marginal costs c1, c2
for both producers, the consumers’ sensitivities a1, a2, γ1, γ2to changes in prices
of both products.

Let us analyse the sensitivity of the optimal prices of substitute products to
changes in values of the parameters of the Bertrand duopoly model. In Tables 5.10a
and 5.10b, there are given measures of reaction of the optimal prices of both
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products to changes in values of parameters of the demand functions and of the
production total cost functions.

This sensitivity analysis involves determining the impact of change in a value
of a single parameter on the optimal level of the price of i-th product (ceteris
paribus). In the discussed Bertrand duopoly model, we assume that ai > γi , i =

Table 5.10a Measures of response of first product’s optimal price to changes in parameters’
values

Characteristic Value

∂ p̄(B)
1

∂c1
2a1a2

4a1a2−γ1γ2
> 0

∂ p̄(B)
1

∂c2
γ1a2

4a1a2−γ1γ2
> 0

∂ p̄(B)
1

∂b1
2a2

4a1a2−γ1γ2
> 0

∂ p̄(B)
1

∂b2
γ1

4a1a2−γ1γ2
> 0

∂ p̄(B)
1

∂γ1

2a2γ2(b1+a1c1)+4a1a2(b2+a2c2)
(4a1a2−γ1γ2)

2 > 0

∂ p̄(B)
1

∂γ2

2a2γ 1(b1+a1c1)+γ 2
1 (b2+a2c2)

(4a1a2−γ1γ2)
2 > 0

∂ p̄(B)
1

∂a1
−2a2[4b1a2+2γ1(b2+a2c2)+γ1γ2c1]

(4a1a2−γ1γ2)
2 < 0

∂ p̄(B)
1

∂a2
−γ1γ2[2(b1+a1c1)+γ1c2]−4b2a1γ1

(4a1a2−γ1γ2)
2 < 0

Table 5.10b Measures of response of first product’s optimal price to changes in parameters’
values

Characteristic Value

∂ p̄(B)
2

∂c1
γ2a1

4a1a2−γ1γ2
> 0

∂ p̄(B)
2

∂c2
2a1a2

4a1a2−γ1γ2
> 0

∂ p̄(B)
2

∂b1
γ2

4a1a2−γ1γ2
> 0

∂ p̄(B)
2

∂b2
2a1

4a1a2−γ1γ2
> 0

∂ p̄(B)
2

∂γ1

2a1γ2(b2+a2c2)+γ 2
2 (b1+a1c1)

(4a1a2−γ1γ2)
2 > 0

∂ p̄(B)
2

∂γ2

2a1γ1(b2+a2c2)+4a1a2(b1+a1c1)
(4a1a2−γ1γ2)

2 > 0

∂ p̄(B)
2

∂a1
−γ1γ2[2(b2+a2c2)+γ2c1]−4b1a2γ2

(4a1a2−γ1γ2)
2 < 0

∂ p̄(B)
2

∂a2
−2a1[4b2a1+2γ2(b1+a1c1)+γ1γ2c2]

(4a1a2−γ1γ2)
2 < 0
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1, 2 which means that a response of the demand for i-th product to a rise in the
price of this product is negative and stronger than the positive response of the
demand for i-th product to a rise in the price of the other product.

On the basis of data presented in Table 5.10a, one can conclude that the first
product’s equilibrium price in the Bertrand model rises as a result of an increase
(ceteris paribus) in the marginal costs c1, c2 for the first and for the second pro-
ducer, the capacities b1, b2 of markets of both products, the sensitivity γi (i = 1, 2)
of i-th product’s consumers to a rise in the price of the substitute j-th product.
The first product’s equilibrium price declines only as a result of an increase (ceteris
paribus) in the sensitivity ai (i = 1, 2) of i-th product’s consumers to a rise in the
price of i-th product.

On the basis of data presented in Table 5.10b, one can conclude that the second
product’s equilibrium price in the Bertrand model rises as a result of an increase
(ceteris paribus) in the marginal costs c1, c2 for the first and for the second pro-
ducer, the capacities b1, b2 of markets of both products, the sensitivity γi (i = 1, 2)
of i-th product’s consumers to a rise in the price of the substitute j-th product.
The first product’s equilibrium price declines only as a result of an increase (ceteris
paribus) in the sensitivity ai (i = 1, 2) of i-th product’s consumers to a rise in the
price of i-th product.

Summary of the conclusions resulting from the sensitivity analysis of the opti-
mal prices of substitute products in the Bertrand duopoly model shows their
inherent symmetry. It depends much on the analytical forms of the demand func-
tions assumed for both substitute products34 and the production cost functions
assumed for both producers.35

5.4.4.2 Dynamic Approach
In the analysis of the Bertrand duopoly model presented in Sect. 5.4.4.1, we focus
on the static approach, in particular on studying the equilibrium prices and the
equilibrium supplies. Let us recall that, in the Bertrand duopoly model, the equi-
librium state exists, is only one and globally stable regardless of the values of the
parametersai , bi , γi ci , (i = 1, 2), about which it is enough to assume that they are
all positive.36

The Bertrand duopoly model concerns price competition between two producers
having equal positions on a market and manufacturing two substitute products.
Hence, decisions of producers relate first of all to the setting of price levels for
their products. The supply level results from the choice of the price which is
determined on the basis of the profit maximization problem. The optimal price
level of the duopolist’s product in the Bertrand model, that is, the equilibrium

34 Let us notice that forms of the demand functions are the same for both products, differing only
in the indexation of parameters.
35 Let us notice that forms of the production cost functions are the same for both producers,
differing only in the indexation of parameters.
36 We make also additional assumptions about values of parameters to ensure that price levels and
output levels are positive.
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price, for the first and for the second producers, respectively, equals:

p̄(B)
1 = 2a2(b1 + a1c1) + γ1(b2 + a2c2)

4a1a2 − γ1γ2
,(5.387)

p̄(B)
2 = 2a1(b2 + a2c2) + γ2(b1 + a1c1)

4a1a2 − γ1γ2
.(5.388)

We are interested in the state of equilibrium that meets conditions: p̄1 > 0
and p̄2 > 0. Therefore, we assume that the values of the parameter satisfy an
inequality:

a1a2 >
1

4
γ1γ2.(5.389)

Let us notice that having the demand for a given product assumed to respond
stronger to a change in the price of this product than to a change in the price of
the substitute product (ai > γi , i = 1, 2) implies the inequality (5.389) is satisfied.

The fulfilment of inequality (5.389) is not necessary for the existence, unique-
ness, or global stability of the equilibrium state but is necessary to ensure positive
equilibrium price levels. The equilibrium price level cannot be equal to 0 because
we deal with the case of a duopoly and zero price of some product would mean
that its producer exits the market, which becomes a monopoly.

From the analysis conducted so far in Sect. 5.4.3.1, we know that a mechanism
of reaching the equilibrium state is a sequence of iterations in determining the
level of price alternately by one producer and the other according to the given
producer’s reaction line. The successive stages of determining the price levels can
be identified with moments or periods in some time horizon whose end is indicated
by the moment/period of reaching the state of equilibrium. If we want to interpret
time as discrete, then iterations take place at equal intervals of time, for example,
every 1 month. If time is treated as continuous, then subsequent iterations are
interpreted as taking place at any consecutive moment, for example, the second
iteration after a month, the third one after another 3 weeks, the fourth one after
another 27 days, etc. In both cases, however, whether we interpret time as discrete
or as continuous, with a given set of parameter values, the number of iterations is
the same.

In addition to analysing the optimal values in the equilibrium state and the
mechanism of reaching this state, we are also interested how quickly this state
is reached, that is, how many iterations are needed to determine the equilibrium
price levels and what determines the rate of convergence. From formulas (5.387)–
(5.388), it can be seen that what distinguishes one producer from another and at the
same time determines the optimal price level of a given product are the marginal
costs of production, the market capacities, the consumers’ sensitivity to changes
in a price of a given product and the consumers’ sensitivity to changes in a price
of the substitute product. Two producers may therefore differ in as many as four
dimensions related to the production side and to the demand side. Each of these
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aspects can influence the rate of convergence to the equilibrium state. Similarly as
in the static approach equations of the reaction lines for both producers take the
form:

p̄1 = γ1

2a1
p2 + b1 + a1c1

2a1
,(5.390)

p̄2 = γ2

2a2
p1 + b2 + a2c2

2a2
.(5.391)

According to Eq. (5.390) of the first producer’s reaction line, he/she would
set the highest price level if he/she assumed that its competitor’s product price is
zero, which means the competitor does not sell the product because a zero price
would bring losses from production instead of profits. If that was the case, the
first producer would have no competition and could set the price at the level that
is chosen by a monopolist. However, there is a competitor on the market offering
the substitute product, responding to a price level set by the first producer. The
competitor, that is, the second producer, sets the price at the level resulting from
the Eq. (4.391) of her/his reaction line. The first producer responds to this. After
a certain number of iterations of price decisions, the equilibrium state is reached.
It is defined by two equilibrium prices which ensure the maximum profit for each
producer.

Example 5.9 Two producers having equal positions on a market offer two substitute
products. The demand for these products evolves according to the following demand
functions:

yd1 (p1, p2) = −a1 p1 + γ1 p2 + b1,

yd2 (p1, p2) = −a2 p2 + γ2 p1 + b2, ai , γi , bi > 0, ai > γi i = 1, 2.

Production total costs for the first and for the second firms, respectively, are as
follows:

ctot1 (y1) = c1y1 + d1,

ctot2 (y2) = c2y2 + d2,

where d1, d2 ≥ 0 denote the fixed production costs and c1, c2 > 0 denote produc-
tion marginal costs. An output level of each product matches the demand reported
by consumers for this product by its given price:

yi = ydi (p1, p2), i = 1, 2.
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Figures 5.35 and 5.36 show the reaction lines of duopolists in the Bertrand
model, the state of equilibrium and the mechanism of reaching the equilibrium
when the parameters of the demand functions and the cost functions have the
following values: ai = 3, bi = 18, γ1 = 1, ci = 1, i = 1, 2. The optimal price of
each product is then 4.2. This is the equilibrium price.

Figure 5.35 illustrates the mechanism of reaching the equilibrium state when
the first producer decides on the level of a price as first (Scenario 1), assuming
the price of the competitor’s product equals 0. The fact that the first producer
makes the decision as first does not mean that he/she has an advantage over the
second producer, but only allows us to assume the order of iterations because
producers’ decisions do not have to be perfectly synchronized in time. We can see
the order of making decisions by looking at the points in the reaction lines. The
point indicating the first iteration, that is point (3.5, 0), belongs to the reaction line
of the first producer. Regardless of the starting point, thus regardless of what the
first producer assumes about the competitor’s price level, the equilibrium state is
achieved after a certain number of iterations of the price decisions.

The equilibrium state is also reached when the second producer makes the
price decision as first (Scenario 2), which is illustrated in Fig. 5.36. The point
indicating the first iteration, that is, point (0, 3.5), belongs to the reaction line of
the second producer. This time we assume that the second producer decides on
the level of price as first, assuming a price of the competitor’s product equals 0.
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p 2

Scenario 1

RL1 RL2

Fig. 5.35 Mechanism of reaching equilibrium state in Bertrand duopoly model when first decision
on price is made by first producer
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Fig. 5.36 Mechanism of reaching equilibrium state in Bertrand duopoly model when first decision
on price is made by the second producer

The equilibrium state is the same as before: p̄(B)
1 = p̄(B)

2 = 4.3. The starting point
could be as well some other point than (0, 3.5), but still belonging to the second
producer reaction line and indicating what the second producer assumes about the
competitor’s price level.

Table 5.11 presents a mechanism of reaching the equilibrium state when the
demand for the substitute products of duopolists evolves the same way (ai =
3, bi = 18, γi = 1, i = 1, 2) and the producers do not differ from each other with
the production marginal costs (c1 = c2 = 1). The equilibrium state is reached in
the eighth iteration and assuming an accuracy of two decimal places just right in
the fifth iteration. Let us treat this set of parameters’ values as the baseline.

Table 5.12 presents trajectories of products’ prices when assuming that con-
sumers of a given product respond to changes in the price of this product:
a1 = a2 = 4 stronger than in the baseline case. Values of the remaining parameters
are the same as in the baseline set. The equilibrium state is reached in the eighth
iteration and assuming an accuracy of two decimal places in the fourth iteration.

Table 5.13 presents trajectories of products’ prices when assuming that con-
sumers of a given product respond to changes in a price of the substitute product:
γ1 = γ2 = 2 stronger than in the baseline case. Values of the remaining parameters
are the same as in the baseline set. The equilibrium state is reached in the twelfth
iteration and assuming an accuracy of two decimal places in the eighth iteration.

Table 5.14 presents trajectories of products’ prices when assuming the market
capacities for both products: b1 = b2 = 19 are bigger than in the baseline case.
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Table 5.11 Trajectories of price levels when ai = 3, bi = 18, γi = 1, ci = 1

Iteration number
t

p1 p2 p̄(B)
1 p̄(B)

2

1 3.5000 0.0000

2 3.5000 4.0833

3 4.1806 4.0833

4 4.1806 4.1968

5 4.1995 4.1968

6 4.1995 4.1999

7 4.2000 4.1999

8 4.2000 4.2000 4.2 4.2

Table 5.12 Trajectories of price levels when a1 = a2 = 4

Iteration number
t

p1 p2 p̄(B)
1 p̄(B)

2

1 2.7500 0.0000

2 2.7500 3.0938

3 3.1367 3.0938

4 3.1367 3.1421

5 3.1428 3.1421

6 3.1428 3.1428

7 3.1429 3.1428

8 3.1429 3.1429 3.1429 3.1429

Values of the remaining parameters are the same as in the baseline set. The equi-
librium state is reached in the eighth iteration and assuming an accuracy of two
decimal places in the fifth iteration.

Table 5.15 presents trajectories of products’ prices when assuming the produc-
tion marginal costs for both producers: c1 = c2 = 2 are higher than in the baseline
case. Values of the remaining parameters are the same as in the baseline set. The
equilibrium state is reached in the eighth iteration and assuming an accuracy of
two decimal places in the fifth iteration.

We do not observe significant differences in the impacts of parameters’ values
for the rate of convergence to the equilibrium state. The biggest impact can be
observed for values of parameters γ1 and γ2, that is parameters which describe how
strong consumers of a product manufactured by a given producer react to changes
in the price of the other product manufactured by her/his competitor.

Figures 5.37 and 5.38 present the mechanism of reaching the equilibrium state
when we treat successive iterations of making decisions on price levels as occur-
ring sequentially in time. The trajectories are presented by parameters’ values
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Table 5.13 Trajectories of price levels when γ1 = γ2 = 2

Iteration number
t

p1 p2 p̄(B)
1 p̄(B)

2

1 3.5000 0.0000

2 3.5000 4.6667

3 5.0556 4.6667

4 5.0556 5.1852

5 5.2284 5.1852

6 5.2284 5.2428

7 5.2476 5.2428

8 5.2476 5.2492

9 5.2497 5.2492

10 5.2497 5.2499

11 5.2500 5.2499

12 5.2500 5.2500 5.25 5.25

Table 5.14 Trajectories of price levels when b1 = b2 = 19

Iteration number
t

p1 p2 p̄(B)
1 p̄(B)

2

1 3.6667 0.0000

2 3.6667 4.2778

3 4.3796 4.2778

4 4.3796 4.3966

5 4.3994 4.3966

6 4.3994 4.3999

7 4.4000 4.3999

8 4.4000 4.4000 4.4 4.4

taken as in Table 5.13. Figure 5.37 presents trajectories of the price levels of
duopolists in two scenarios, depending on which of the two producers decides
about the price level as first. In both cases the same equilibrium state is achieved:
p̄(B)
1 = p̄(B)

2 = 5.25.
Figure 5.38 presents trajectories of output levels. In both scenarios, the optimal

output level is the same and also the same for both producers ȳ(B)
1 = ȳ(B)

2 = 12.75.
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Table 5.15 Trajectories of price levels when c1 = c2 = 2

Iteration number
t

p1 p2 p̄(B)
1 p̄(B)

2

1 4.0000 0.0000

2 4.0000 4.6667

3 4.7778 4.6667

4 4.7778 4.7963

5 4.7994 4.7963

6 4.7994 4.7999

7 4.8000 4.7999

8 4.8000 4.8000 4.8 4.8
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Fig. 5.37 Trajectories of price levels set by duopolists in Bertrand model
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Fig. 5.38 Trajectories of output levels by duopolists in Bertrand model

5.5 Questions

1. What are a demand function and an inverse function of demand for one
product?

2. What conditions need to be satisfied by exogenous linear: demand function
and function of product supply to have a positive equilibrium price established
on a market of this product?

3. How the optimal supplies by each of two producers and the optimal total
supply react to changes in values of parameters of production cost functions
and demand function when both producers act in perfect competition?

4. What are the relationships between a product price set by a monopolist and
price elasticity of demand for this product?

5. How do the optimal supply and a product optimal price set by a monopo-
list react to changes in values of parameters of production cost function and
demand function when there is an exogenously determined function of demand
for product?

6. What is meant by discriminatory pricing practised by a monopolist for one
product intended for two independent markets of the same product?

7. What are the conditions by which prices of one product supplied by a
monopolist for two different markets are equal?

8. What is the difference between the perfect competition model presented in
Sect. 5.1 and the Cournot duopoly model?
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9. What are the conditions that should be satisfied by functions of demand for
product in the Cournot, Stackelberg and Bertrand duopoly models?

10. How do firms acting on markets described by Cournot, Stackelberg and
Bertrand duopoly models decide on their strategies of rational behaviour?

11. When do producers acting on a duopolistic market decide to compete on
quantities of supplied product and when on prices?

12. What does it mean that two producers have equal positions on a duopolistic
market and that one is a leader and the other is a follower?

13. What are the mechanisms of reaching an equilibrium state in the Cournot,
Stackelberg and Bertrand duopoly models?

14. What conclusions can be drawn on the basis of comparative analysis of equi-
librium states on a market of one product in case of pure monopoly, Cournot
and Stackelberg duopoly models?

5.6 Exercises

E1. Determine an inverse function of demand and a function inverse to a given
demand function: yd(p) = −apα + b, a, b > 0. Draw graphs of these functions
in the case when:

(a) α ∈ (0, 1),
(b) α > 1.

E2. There is a market for a product with exogenously determined demand function
and product supply function:

(a) yd(p) = −ap2 + b, a, b > 0, ys(p) = cp2 + d, c, d > 0, b > d,

(b) yd(p) = −ap
1
2 + b, a, b > 0, ys(p) = cp

1
2 + d, c, d > 0, b > d.

1. Determine the ranges of a product price, demand for the product, the product
supply.

2. Draw graphs of the demand function and the supply function in space R2+.
3. Determine an inverse function of demand and a function inverse to a given

demand function. Draw their graphs in space R2+.
4. Derive an equilibrium price by which yd( p̄) = ys( p̄), that is a price that

equalizes the demand for a product and the product supply both expressed in
the same physical units

E3. Two producers act in perfect competition on a market described in Sect. 4.1,
supplying one homogenous product. A function of demand for the product is linear:
yd(p) = −ap+b, a, b > 0, while functions of production total costs are nonlinear
and of a form: ctotj

(
y j
) = γ j y2j + δ j , γ j , δ j > 0, j = 1, 2.



5.6 Exercises 409

1. Determine the optimal supply of a product:
(a) by the first producer,
(b) by the second producer,
(c) by both producers – the total supply.

2. Analyse sensitivity of the optimal supply by the first producer, by the second
producer and the total supply by both producers to changes in values of parame-
ters describing the market: a market capacity, strength of consumers’ reaction to
changes in a product price, production marginal cost of each producer.

E4. Three producers act in perfect competition on a market of one homogenous
product. A function of demand for the product is linear yd(p) = −ap+b, a, b > 0,
functions of production total costs are also linear: ctotj

(
y j
) = γ j y j + δ j , γ j , δ j >

0, j = 1, 2.

1. Determine the optimal supply of a product by each of three producers.
2. Determine the optimal total supply by all three producers.
3. Analyse sensitivity of the optimal supply by each producer and the total supply

by all three producers to changes in values of parameters describing the market:
a market capacity, strength of consumers’ reaction to changes in a product price,
production marginal cost of each producer.

4. Generalize conclusions derived in points 1–3 to the case of r producers (r ∈
N, r ≥ 3).

E5. Consider two markets of one homogenous product. The first one is a perfect
competition market described in Sect. 5.1, the second one is a monopolistic market
presented in Sect. 5.2. Determine conditions bywhich the optimal supply of a product
on the perfect competition market is

(a) bigger than,
(b) equal to,
(c) smaller than

the optimal supply of a product on the monopolistic market.

E6. Formulate and solve a problemof choice of the optimal supply and of the optimal
price set by a monopolistic company considered in Example 5.3. Assume a nonlinear
function of production total cost of a form: ctot (y) = γ y2 + δ, γ, δ > 0. Analyse
sensitivity of the optimal supply and of a product optimal price to changes in values of
parameters describing themarket: a market capacity, strength of consumers’ reaction
to changes in a product price, production marginal cost.

E7. Formulate and solve a problem of choice of the optimal supply and of the
optimal price set by a monopolistic company considered in Example 5.4. Assume
that the monopolist can supply her/his product to two different markets, thus
regards discriminatory pricing. Assume a nonlinear function of production total cost:
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ctot (y) = γ y2+δ, γ, δ > 0. Analyse how the optimal supply and a product optimal
price react to changes in values of parameters describing the markets: market capac-
ities, consumers’ sensitivities to changes in a product price, production marginal
cost.

E8. Consider the Cournot duopoly model when a production total cost function for
i-th producer (i = 1, 2) is nonlinear and of a form: ctoti (y) = ci y2i + di , ci , di > 0.
Determine optimal levels of: the product supply by each producer, the total supply
by both producers, an equilibrium price. Analyse how these levels react to changes in
values of parameters describing themarket: amarket capacity, strength of consumers’
reaction to changes in a product price, production marginal costs.

E9. Consider the Stackelberg duopoly model when a production total cost function
for i-th producer (i = 1, 2) is nonlinear and of a form: ctoti (y) = ci y2i +di , ci , di >

0. Determine the product optimal supply by: a leader, a follower, both producers
and an equilibrium price. Analyse how these levels react to changes in values of
parameters describing themarket: a market capacity, strength of consumers’ reaction
to changes in a product price, production marginal costs.

E10. Compare conclusions drawn from solutions to exercises E6, E8 and E9 assum-
ing they relate to amarket of one homogenousmarket in cases of the: puremonopoly,
Cournot duopoly, the Stackelberg duopoly.

E11. In Tables 5.16a and 5.16b there are given measures of reaction of the optimal
supplies of two substitute products to changes in values of parameters of demand
functions and of production total cost functions. The functions are linear and given
in the same forms as in Sect. 5.4.4.1 where the Bertrand duopoly model is presented.
Check if the given results are correct and on their basis formulate conclusions about
the reactions.

E12. Two producers act on a market of two heterogeneous substitute products. The
first producer (leader) can set an optimal price of her/his product on a level that
guarantees her/him the maximum profit regardless a price level of a product supplied
by the competitor. The second producer (follower) decides on a price level of her/his
product depending on the other product’s price set by the leader. There are given
functions of:

(a) production total costs for both producers:

∀i = 1, 2 ctoti (yi ) = cv
i (yi ) + c f

i (yi ) = ci yi + di , ci , di > 0,

(b) demand for the first producer’s (leader) product:

yd1 (p1, p2) = b1 − a1 p1, a1, b1,> 0,
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Table 5.16a Measures of response of first product’s optimal supply to changes in parameters’
values

Characteristic Value

∂ ȳ(B)
1

∂c1
−a1(2a1a2−γ1γ2)

4a1a2−γ1γ2
< 0

∂ ȳ(B)
1

∂c2
− a1a2γ1

4a1a2−γ1γ2
< 0

∂ ȳ(B)
1

∂b1
2a1a2

4a1a2−γ1γ2
> 0

∂ ȳ(B)
1

∂b2
a1γ1

4a1a2−γ1γ2
> 0

∂ ȳ(B)
1

∂γ1

2a1a2[γ2(b1+a1c1)+2a1(b2−a2c2)]
(4a1a2−γ1γ2)

2 > 0

∂ ȳ(B)
1

∂γ2

a1γ1[2a2(b1+a1c1)+γ1(b2−a2c2)]
(4a1a2−γ1γ2)

2 > 0

∂ ȳ(B)
1

∂a1
− γ1γ2[2a2(b1−2a1c1)+γ1(b2−a2c2+γ2c1)]

(4a1a2−γ1γ2)
2 < 0

∂ ȳ(B)
1

∂a2
− a1γ1[γ2(2b1+2a1c1−γ1c2)+4a1b2]

(4a1a2−γ1γ2)
2 < 0

Table 5.16b Measures of response of second product’s optimal supply to changes in parameters’
values

Characteristic Value

∂ ȳ(B)
2

∂c1
− a1a2γ2

4a1a2−γ1γ2
< 0

∂ ȳ(B)
2

∂c2
−a2(2a1a2−γ1γ2)

4a1a2−γ1γ2
< 0

∂ ȳ(B)
2

∂b1
a2γ2

4a1a2−γ1γ2
> 0

∂ ȳ(B)
2

∂b2
2a1a2

4a1a2−γ1γ2
> 0

∂ ȳ(B)
2

∂γ1

a2γ2[2a1(b2+a2c2)+γ2(b1−a1c1)]
(4a1a2−γ1γ2)

2 > 0

∂ ȳ(B)
2

∂γ2

2a1a2[γ1(b2+a2c2)+2a2(b1−a1c1)]
(4a1a2−γ1γ2)

2 > 0

∂ ȳ(B)
2

∂a1
− a2γ2[γ1(2b2+2a2c2−γ2c1)+4a2b1]

(4a1a2−γ1γ2)
2 < 0

∂ ȳ(B)
2

∂a2
− γ1γ2[2a1(b2−2a2c2)+γ2(b1−a1c1+γ1c2)]

(4a1a2−γ1γ2)
2 < 0

(c) demand for the second producer’s (follower) product:

yd2 (p1, p2) = b2 − a2 p2 + γ2 p1, a2, b2, γ2 > 0.
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The supply of each producer’s product is assumed to match the demand reported for
this product:

ys1(p1, p2) = yd1 (p1, p2) = y1 = α1 − β1 p1,

ys2(p1, p2) = yd2 (p1, p2) = y2. = α2 − β2 p2 + γ2 p1.

1. Formulate the profit maximization problem for:
• the first producer: Π1(p1) |→ max p1 ≥ 0
• the second producer: Π2(p1, p2)|p1=const.≥0 |→ max p1, p2 ≥ 0.

2. Solve the profit maximization problems for both producers determining optimal
levels of prices of both products and maximum profits of both producers.

3. Analyse how optimal prices of both products react to changes in values of parame-
ters describing the market: market capacities, consumers’ sensitivities to changes
in prices of products, production marginal costs.

4. Draw reaction lines of both producers and illustrate an equilibrium state of this
modified Bertrand duopoly model.

5. Determine the optimal supply of each product manufactured by a given producer.
6. State which of the strategies of setting an optimal price level of a product is more

rational and more beneficial: the one of the leader or the one of the follower?

E13. Compare the original and themodified (E12)Bertrand duopolymodels.37 State
if the leader position in the modified Bertrand duopoly model is more beneficial for
the first producer than a market position equal to the one of the second producer
when these two producers compete on prices.

E14. The demand for a product of a monopolistic company evolves according to a
linear function of a form:

yd(t) = −a(t)p(t) + b(t), a(t), b(t) > 0, ∀t = 0, 1, . . . , 20.

A function of production total cost is given as

kc
(
ys(t)

) = γ (t)ys(t) + δ(t), γ (t), δ(t) > 0, ∀t = 0, 1, . . . , 20.

1. Solve the profit maximization problem determining the optimal supply and an
optimal price level by the following assumptions:

37 The reference for the comparison can be the comparative analysis, presented in Sect. 5.4.3, of
Cournot and Stackelberg duopoly models.
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(a) a(t) = − 1
t+1 + 2, b(t) = 10, γ (t) = 2,

(b) a(t) = 1, b(t) = −0.025t2 + 0.75t + 10, γ (t) = 2,
(c) a(t) = 1, b(t) = 10, γ (t) = 1

t+1 + 1.
2. Present trajectories of the optimal supply and of the optimal price.
3. Analyse how the optimal supply and the optimal price react to changes

(ceteris paribus) in values of parameters describing the market: market capacity,
consumers’ sensitivity to changes in a product price, production marginal costs.

E15. Some monopolistic company considers discriminatory pricing for its product
supplied to twodifferentmarkets. The demand reported by consumers for i-th product
(i = 1, 2) evolves according to a linear function of a form:

ydi (t) = −ai (t)pi (t) + bi (t), ai (t), bi (t) > 0, i = 1, 2, ∀t ∈ [0; 20].

A function of production total cost is given as

ctot
(
ys(t)

) = c(t)ys(t) + d(t), c(t), d(t) > 0, t ∈ [0; 20],

where

c(t) = 1

t + 1
+ 1.

1. Solve the profit maximization problem determining the optimal supply and
optimal levels of prices by the following assumptions:
(a) a1(t) = 4 · 0.98t , a2(t) = −0.006t2 + 0.1t + 4, b1(t) = b2(t) = 15,
(b) a1(t) = a(t) = 4, b1(t) = 0.025t2 − 0.5t + 15,

b2(t) = −0.025t2 + 0.5t + 15,
(c) a1(t) = 4 · 0.98t , a2(t) = −0.006t2 + 0.1t + 4,

b1(t) = 0.025t2 − 0.5t + 15, b2(t) = −0.025t2 + 0.5t + 15
2. Present trajectories of the product optimal supplies intended for each of the

markets and trajectories of the optimal prices of the product on each of themarket.
3. Analyse how the optimal supplies and the optimal prices of the product supplied to

both markets react to changes (ceteris paribus) in values of parameters describing
the markets: market capacities, consumers’ sensitivities to changes in a product
price, production marginal cost. Analyse what the importance of differences in
these values between two markets is.

E16. Two producers having equal positions act on a market of some homogeneous
product. The demand for this product evolves according to a demand function:

yd(p) = −ap + b, a, b > 0.
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Production total costs for the first and for the second firm, respectively, are as
follows:

ctot1 (y1) = c1y1 + d1, c1, d1 > 0,

ctot2 (y2) = c2y2 + d2, c2, d2 > 0.

The total output by both producers matches the demand for the product reported
by consumers by a given price:

y1 + y2 = yd(p).

1. Determine an equilibrium state in the Cournot duopoly model by the following
assumptions:
(a) a = 2, b = 20, c1 = 1, c2 = 1,
(b) a = 2, b = 20, c1 = 2, c2 = 1,
(c) a = 2, b = 200, c1 = 2, c2 = 1.

2. Present a mechanism of reaching the equilibrium state when:
(a) the first producer decides on the level of supply as first, assuming the

competitor’s supply equals 0,
(b) the second producer decides on the level of supply as first, assuming the

competitor’s supply equals 0.

State what the number of iterations in determining the levels of supply by
each producer needed to reach the equilibrium state is.

3. Present trajectories of the optimal supplies by both producers.

E17. Twoproducers act on amarket of some homogeneous product. The first of them
has a position of the leader and the other a position of the follower. The demand for
this product evolves according to a demand function:

yd(p(t)) = −2p(t) + 20, a(t), b(t) > 0.

The total output by both producers matches the demand for the product reported
by consumers by a given price:

y1(t) + y2(t) = yd(p(t)).

Production total costs for the leader and for the follower, respectively, are as
follows:

kc1(y1(t)) = c1(t)y1 + 1,

kc2(y2(t)) = 2.5y2(t) + 1,
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where

c1(t) = − 5

16
t + 6

1

4
, ∀t ∈ [0; 20].

1. Determine an equation describing a line of reaction of the follower and an equilib-
rium state in the Stackelberg duopoly model when the production marginal cost
for the leader varies in time. Present a graph of the follower’s reaction line and
the equilibrium states depending on changes in the marginal cost for the leader.

2. At which moment are marginal costs for the leader and for the follower equal?
What are then their shares in the market of a product?

3. Present trajectories of the optimal supplies by the leader and by the follower.

E18. Two producers having equal positions on a market offer two substitute prod-
ucts. The demand for these products evolves according to the following demand
functions:

yd1 (p1, p2) = − a1 p1 + γ1 p2 + b1,

yd2 (p1, p2) = − a2 p2 + γ2 p1 + b2, ai , γi , bi > 0, ai > γi i = 1, 2.

Production total costs for the first and for the second firm, respectively, are as
follows:

ctot1 (y1) = c1y1 + d1, c1, d1 > 0,

ctot2 (y2) = c2y2 + d2, c2, d2 > 0.

An output level of each product matches the demand reported by consumers for
this product by its given price:

yi = ydi (p1, p2), i = 1, 2.

1. Determine an equilibrium state in the Cournot duopoly model by the following
assumptions for i = 1, 2:
(a) ai = 2, bi = 20, γi = 1, ci = 1,
(b) ai = 3, bi = 20, γi = 1, ci = 1,
(c) ai = 2, bi = 21, γi = 1, ci = 1,
(d) ai = 2, bi = 20, γi = 1.9, ci = 1,
(e) ai = 2, bi = 20, γi = 1, ci = 2,
(f) ai = 3, bi = 21, γi = 1.9, ci = 2.

2. Present a mechanism of reaching the equilibrium state when:
(a) the first producer decides on the level of a price as first, assuming a price of

the competitor’s product equals 0,
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(b) the second producer decides on the level of a price as first, assuming a price
of the competitor’s product equals 0.

State what the number of iterations in determining the levels of a price by
each producer needed to reach the equilibrium state is.

3. Present trajectories of the optimal prices of both producers’ products.



6Rationality of Choices Made
by a Group of Producers
and Consumers

In this chapter you will learn:

– what it means that the demand for a product and the supply of a product
are described by functions determined exogenously or endogenously

– what is described in a Walrasian general equilibrium model with exoge-
nous functions of demand and supply in a static approach and what in a
dynamic approach

– what a net output space is and what its properties are
– what it means that in a general equilibrium Arrow-Debreu-McKenzie

model functions of demand and supply are determined endogenously
– what is described in an Arrow-Debreu-McKenzie model in a static

approach and what in a dynamic approach
– What the difference between discrete-time and continuous-time versions

of a dynamic Arrow-Debreu-McKenzie model is.

In the first four chapters we considered situations of decision-making by individual
consumers and producers or groups of them. In these analyses we accounted for
the necessity of mutual adjustment of the demand and of the supply of products,
consumer goods or production factors. Now we discuss a situation when a function
of demand for one product or for two products and a function of supply of one
product or of two products depend on prices of goods that are set by a market in
conditions where global functions of demand for a product and global functions
of supply result from rational decisions made independently by consumers and
producers.

In Sects. 6.1 and 6.2 we present a static and a dynamic model of a market with
exogenously determined functions of demand and of product supply. In Sects. 6.3
and 6.4 we discuss static and dynamic models of a market with endogenously
determined functions of demand and of supply of products. We focus especially
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on vectors of Walrasian equilibrium prices and on a question of their asymptotic
global stability. This chapter is a synthesis of the major conclusions and a specific
culmination of the problems considered throughout book.

6.1 Static Market Model with Exogenous Functions
of Supply and Demand

In our foregoing considerations we have concentrated on rational behaviour
of individual consumers or producers. The rationality was identified with a sit-
uation in which every microeconomic agent is aware of the limitations occurring
at a moment of making her/his decisions. Moreover, he/she is assumed to have the
ability to formulate a decision-making criterion and ultimately to make a decision
which, given the existing constraints, is assessed as the best, that is optimal. So far
we have considered decision-making situations related mainly to determining the
demand for a specific product or products by consumers, or the supply of a prod-
uct or products by traders or producers. The key role in decision-making problems
was played by prices of goods treated in the problems we considered as param-
eters or as decision variables. Identifying the optimal decision was connected to
the concept of an equilibrium. The equilibrium was meant as a situation when
a decision taken by a microeconomic agent is optimal.

Crucial problem we examined was the issue of balancing the supply and the
demand for a specific product. The factor equalizing the demand and the supply
of a given product was its price or prices of considered goods.

Let us first consider a market of a single good. Let us assume that a function
of demand for the good is given, assumed to be decreasing in a price and for the
sake of simplicity linear:

yd = −ap + b, a, b > 0.(6.1)

Parameter a can be seen as an amount by which the demand for the good
approximately declines when its price is raised by one (notional) money unit and
we call it a measure of consumers’ sensitivity to changes in a commodity price.
Parameter b can be seen as a demand level for the good when its price equals 0
and regarding the demand for the good we call it a measure of market capacity.

The demand function is decreasing in a price of the good since:

dyd

dp
= −a < 0,(6.2)

which means that when a price of the commodity is raised by one (notional) money
unit then the demand for the good declines by a physical units.

Let us notice that the commodity price takes values in an interval:

p ∈
⎡
0; b

a

⎤
,(6.3)
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and for the maximum price level p = b
a the demand for the good equals zero. The

demand for the good takes values in an interval:

yd ∈ [0; b](6.4)

Let us also assume that the supply of the good is described by a linear supply
function:

ys = cp + d, c, d > 0,(6.5)

which is increasing in the price of the good:

dys

dp
= c > 0.(6.6)

Parameter c can be seen as an amount by which the supply of the good approx-
imately increases when its price is raised by one (notional) money unit and we call
it a measure of reaction to changes in a commodity price. Parameter d describes
the supply of the good at zero price. We can interpret it as the minimum supply
of a good and identify with a level of stocks.

Let us notice that for the commodity supply function (6.5) the price of the good
may take values in an interval:

p ∈ [0;+∞)(6.7)

and the commodity supply in an interval:

ys ∈ [d; +∞).(6.8)

Thus, the supply and the price of the good are constrained downwards and
unconstrained upwards. So far we have considered situations in which optimal
decisions made by microeconomic agents were constrained simultaneously by the
demand and by the supply of a good or goods. In other words, the constraint on
the demand is the supply, and the constraint on the supply of a good or goods is
the demand. A natural question arises, namely, what a mechanism of demand and
supply adjustment triggered by changes in prices of goods is.

Is there a price p̄ > 0 of a given good by which the demand and the supply of
this good, both expressed in the same physical units, are equal? To find the answer
to this question it is enough to solve an equation:

yd = −ap + b = cp + d = ys .(6.9)
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After simple transformations one gets a price level that equalizes the demand
and the supply for a given good:

p̄ = b − d

a + c
.(6.10)

Due to the assumed forms of the demand and the supply functions if b > d
then the equilibrium price p̄ > 0 exists and is defined uniquely. This means that
the market capacity has to be greater than the level of stocks, otherwise a firm
will decide to stop the production. We can also notice that the acceptable price
level of a good is determined by condition (6.3) regarding the demand and by
condition (6.7) regarding the supply of a good. This means that the equilibrium
price, if it exists, belongs to interval

⎡
0; b

a

⎤
which is an intersection of sets defined

by conditions (6.3) and (6.7). It is not difficult to notice that the equilibrium price
determined in condition (6.10) belongs to this condition.

Definition 6.1 A function of excess demand is mapping z:intR+ → R which
assigns an excess demand for a good to any price p > 0 of this product:

z(p) = yd(p) − ys(p).(6.11)

Definition 6.2 A Walrasian equilibrium price is a level p̄ > 0 of a commodity
price such that

z( p̄) = 0 ⇔ yd( p̄) = ys( p̄),(6.12)

meaning that the demand and the supply of the good both expressed in the same
physical units are equal.

We know that when b > d then the Walrasian equilibrium price exists and is
determined uniquely. Otherwise the equilibrium price does not exist.

Let us notice that the excess demand function defined in condition (6.11) is not
homogeneous of degree zero:

¬⎡∀p > 0,∀λ > 0 z(λp) = λ0z(p) = z(p)
⎤
,(6.13)

since when a price of a given good changes then the excess demand for this good
also changes. This property results from the assumption that the demand function
and the commodity supply function are linear.

For the excess demand function (6.12) Walras’s law is satisfied only for the
equilibrium price:

∃ p̄ > 0 p̄z( p̄) = 0 ⇔ p̄yd( p̄) = p̄ys( p̄),(6.14)
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which means that a value of the global demand for a good is equal to the value of
the global supply of this good.

However, for any positive price of a good which is not an equilibrium price
Walras’s law is not satisfied:

∀p > 0, p /= p̄ pz(p) /= 0 ⇔ pyd(p) /= pys(p) ⇔ yd(p) /= ys(p).

(6.15)

Let us now consider a market of two goods and denote:

i = 1, 2—an index of goods,
p = (p1, p2) > (0, 0)—a vector of prices of goods,
yd(p) = (yd1 (p), yd2 (p)) ∈ R

2+—a vector function of demand for two goods,
ys(p) = (ys1(p), ys2(p)) ∈ R

2+—a vector function of supply of two goods.

Let us assume that the function of demand for the first (second) good is decreasing
in a price of this good and does not depend on a price of the second (first) good1:

yd1 (p) = −a1 p1 + b1, a1, b1 > 0,(6.16)

yd2 (p) = −a2 p2 + b2, a2, b2 > 0.(6.17)

From the system of Eqs. (6.16)–(6.17) it follows that

pi ∈
⎡
0; bi

ai

⎤
, i = 1, 2.(6.18)

At the same time, by a given price interval for i-th good, a level of demand for
this good belongs to an interval:

ydi (p) ∈ [0; bi ], i = 1, 2.(6.19)

Let us also assume that the function of supply of the first (second) good is
increasing in a price of this good and does not depend on a price of the second
(first) good:

ys1(p) = c1 p1 + d1, c1, d1 > 0,(6.20)

ys2(p) = c2 p2 + d2, c2, d2 > 0.(6.21)

1 This means that these two goods are independent of each other and therefore neither complemen-
tary nor substitute.
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The system of Eqs. (6.20)–(6.21) shows that by positive values of parameters
of the supply function of i-th good its price level should be non-negative. As a
result the minimum supply of i-th good is

di ≥ 0, i = 1, 2,(6.22)

and a price level of i-th good satisfies a constraint resulting from the assumed
form of the demand function for i-th good.

A function of excess demand for i-th good takes the form:

zi (p) =ydi (p) − ysi (p)

= − (ai + ci )pi + bi − di , ai , bi , ci , di > 0, i = 1, 2.(6.23)

If for each good (i = 1, 2) it is satisfied that bi > di > 0 then there exists a
price vector of the Walrasian equilibrium:

p̄ =
(
b1 − d1
a1 + c1

,
b2 − d2
a2 + c2

)
> (0, 0),(6.24)

being a solution to a system of equations:

zi (p) = ydi (p) − ysi (p) = −(ai + ci )pi + (bi − di ) = 0, i = 1, 2,(6.25)

by the assumption: bi > di > 0, ai , ci > 0 i = 1, 2.
Let us notice that the excess demand function:

• is not homogeneous of degree zero,
• satisfies Walras’s law only for the Walrasian equilibrium price vector defined

by the set of conditions (6.24).

In the examples discussed above we have shown that for a market of a single
good, as well as for a market of two independent goods, there exists exactly one
equilibrium price vector for which the supply and the demand for each of the
goods, both expressed in the same physical units, are equal. We have also explained
that Walras’s law is satisfied only for the Walrasian equilibrium price vector.

Still there is a question of a mechanism that leads to a situation when starting
from some initial price level of a good or from a system of goods’ prices, one can
generate the Walrasian equilibrium price system. In order to answer this question
let us analyse the dynamic version of the market model of two goods.
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6.2 Dynamic Market Model of Two Goods with Exogenous
Functions of Supply and Demand

Let us take the following notation:

i = 1, 2—an index of goods,
t = 0, 1, 2, ..., T—time as a discrete variable,
t ∈ [0; T ]—time as a continuous variable,
T → +∞—an upper limit of the considered time horizon,
p(t) = (p1(t), p2(t)) > (0, 0)—a vector of prices of goods in period/at moment
t ,
yd(p(t)) = (yd1 (p(t)), yd2 (p(t))) ∈ R

2+—a value of a vector function of demand
for goods in period/at moment t ,
ys(p(t)) = (ys1(p(t)), ys2(p(t))) ∈ R

2+—a value of a vector function of supply
of goods in period/at moment t .

Let us assume that the demand function for the first (second) good in period/at
moment t is decreasing in a price of this good and does not depend on a price of
the second (first) good2:

yd1 (p(t)) = −a1 p1(t) + b1, a1, b1 > 0,(6.26)

yd2 (p(t)) = −a2 p2(t) + b2, a2, b2 > 0.(6.27)

From the system of Eqs. (5.26)–(5.27) it results that in any period/at any
moment t :

pi (t) ∈
⎡
0; bi

ai

⎤
, i = 1, 2.(6.28)

At the same time, by a given interval of values for i-th good’s price, the level
of the demand for this good in any period/at any moment t belongs to an interval:

ydi (p(t)) ∈ [0; bi ], i = 1, 2.(6.29)

Let us also assume that the function of the first (second) good’s supply
in period/at moment t is increasing in a price of this good and does not depend on
a price of the second (first) good:

ys1(p(t)) = c1 p1(t) + d1, c1, d1 > 0,(6.30)

2 This means that these two goods are independent of each other and therefore neither complemen-
tary nor substitute.
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ys2(p(t)) = c2 p2(t) + d2, c2, d2 > 0.(6.31)

From the system of Eqs. (6.30)–(6.31) it results that when the function of the
supply of i-th good has positive values of its parameters then i-th good’s price level
in any period/at any moment t should be non-negative. As a result the minimum
supply of i-th good in any period/at any moment t equals:

di ≥ 0, i = 1, 2,(6.32)

and the price level of i-th good in any period/at any moment t satisfies the
constraint resulting from the assumed form of the demand function for i-th good.

The function of excess demand for i-th good in period/at moment t takes the
form:

zi (p(t)) = ydi (p(t)) − ysi (p(t)) = −(ai + ci )pi (t) + bi − di ,

ai , bi , ci , di > 0, i = 1, 2.(6.33)

If for each good (i = 1, 2) it is satisfied that bi > di > 0 then there exists the
equilibrium price vector:

p̄ =
(
b1 − d1
a1 + c1

,
b2 − d2
a2 + c2

)
> (0, 0),(6.34)

being a solution to a system of equations:

zi (p(t)) = ydi (p(t)) − ysi (p(t)) = −(ai + ci )pi (t) + (bi − di ) = 0, i = 1, 2,
(6.35)

by the assumption: bi > di > 0, ai , ci > 0 i = 1, 2.

Definition 6.3 A dynamic discrete-time model of a market of two goods with
exogenous functions of the supply and of the demand is a system of difference
equations:

pi (t + 1) = pi (t) + σi zi (p(t)), i = 1, 2,(6.36)

with an initial condition:

pi (0) = const. > 0, i = 1, 2,(6.37)

where σi > 0 (i = 1, 2) denotes an arbitrarily determined measure of the sensitivity
of a market of i-th good to the imbalance occurring there.
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Let us notice that:

zi (p(t)) = 0 ⇔ ydi (p(t)) = ysi (p(t)) ⇒ pi (t + 1) = pi (t), i = 1, 2,
(6.38)

which means that on a market of i-th good or both goods there is no need to change
prices because the price pi (t) > 0 equalizes the supply and the demand for the
i-th good both expressed in the same physical units. If such a situation concerns
only one good, then we call it a partial equilibrium, and when it concerns both
goods we call it a general equilibrium on markets of both goods.

zi (p(t)) > 0 ⇔ ydi (p(t)) > ysi (p(t))

⇒ pi (t + 1) > pi (t), i = 1, 2,
.(6.39)

which means that on a market of i-th good or both goods prices should be changed
because the price pi (t) > 0 does not equalize the supply and the demand for the
i-th good both expressed in the same physical units. Because the demand exceeds
the supply then the price of i-th good in period t+1 should be raised in comparison
to its level in period t .

zi (p(t)) < 0 ⇔ ydi (p(t)) < ysi (p(t))

⇒ pi (t + 1) < pi (t), i = 1, 2,
(6.40)

which means that on a market of i-th good or both goods prices should be changed
because the price pi (t) > 0 does not equalize the supply and the demand for the i-
th good both expressed in the same physical units. Because the supply exceeds the
demand then the price of i-th good in period t+1 should be reduced in comparison
to its level in period t .

The system of Eqs. (6.36)–(6.37) uniquely defines a recursive rule for deter-
mining a price of i-th good in subsequent periods until equilibrium prices are
reached on both markets. It is worth emphasizing that in subsequent periods the
price of i-th good is determined uniquely. Nevertheless, we are interested only in
such solutions to the system of difference Eqs. (6.36)–(6.37) in which prices of
both goods are positive in any period.

Definition 6.4 A feasible trajectory of prices of i-th good in the dynamic discrete-
time model of two goods is an infinite sequence of solutions to the difference
equations system (6.36) with an initial condition pi (0) = const. > 0 such that
∀t = 0, 1, 2, . . . pi (t + 1) > 0.

The system of Eqs. (6.36)–(6.37) does not guarantee the existence of the equi-
librium price vector p̄ > 0. Additional conditions should be defined to ensure the
existence and uniqueness of the equilibrium price vector, which is beyond the scope
of this book. However, let us introduce onemore concept that is related to the stability
of the equilibrium state, if such a state exists.
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Fig. 6.1 Global asymptotic stability of Walrasian equilibrium price vector

Definition 6.5 A Walrasian equilibrium state p̄ > 0in the dynamic discrete-time
model of two goods is called asymptotically globally stable when a feasible
trajectory p(t) of goods’ prices satisfies a condition (Fig. 6.1):

lim
t→+∞ p(t + 1) = p̄.(6.41)

Definition 6.6 A dynamic continuous-time model of a market of two goods with
exogenous functions of the supply and of the demand is a system of differential
equations:

dpi (t)

dt
= σi zi (p(t)), i = 1, 2,(6.42)

with an initial condition:

pi (0) = const. > 0, i = 1, 2,(6.43)

where σi > 0 (i = 1, 2) denotes an arbitrarily determined measure of the sensitivity
of a market of i-th good to the imbalance occurring there.

Let us notice that

zi (p(t)) = 0 ⇔ ydi (p(t)) = ysi (p(t)) ⇒ dpi (t)

dt
= 0, i = 1, 2,(6.44)
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which means that on a market of i-th good or both goods there is no need to change
prices because the price pi (t) > 0 equalizes the supply and the demand for the
i-th good both expressed in the same physical units. If such a situation concerns
only one good, then we call it a partial equilibrium, and when it concerns both
goods we call it a general equilibrium on markets of both goods.

zi (p(t)) > 0 ⇔ ydi (p(t)) > ysi (p(t)) ⇒ dpi (t)

dt
> 0, i = 1, 2,(6.45)

which means that on a market of i-th good or both goods prices should be changed
because the price pi (t) > 0 does not equalize the supply and the demand for the
i-th good both expressed in the same physical units. Because the demand exceeds
the supply then the price of i-th good at moment t + Δt should be raised in
comparison to its level at moment t .

zi (p(t)) < 0 ⇔ ydi (p(t)) < ysi (p(t)) ⇒ dpi (t)

dt
< 0, i = 1, 2,(6.46)

which means that on a market of i-th good or both goods prices should be changed
because the price pi (t) > 0 does not equalize the supply and the demand for the
i-th good both expressed in the same physical units. Because the supply exceeds
the demand then the price of i-th good at moment t + Δt should be reduced in
comparison to its level at moment t .

The system of Eqs. (6.42)–(6.43) uniquely defines a recursive rule for deter-
mining a price of i-th good in subsequent moments until equilibrium prices are
reached on both markets. It is worth emphasizing that in subsequent moments the
price of i-th good is determined uniquely. Nevertheless, we are interested only in
such solutions to the system of differentia Eqs. (6.42)–(6.43) in which prices of
both goods are positive at any moment.

Definition 6.7 A feasible trajectory of prices of i-th good in the dynamic contin-
uous-time model of two goods is an infinite sequence of solutions to the difference
equations system (6.42) with an initial condition pi (0) = const. > 0 such that
∀t ∈ [0;+∞)pi (t + Δt) > 0.

The system of Eqs. (6.42)–(6.43) does not guarantee the existence of the equi-
librium price vector p̄ > 0. Additional conditions should be defined to ensure
the existence and uniqueness of the equilibrium price vector, which is beyond
the scope of this book. However, let us also discuss the concept of the global
asymptotic stability of the equilibrium state, if such a state exists.

Definition 6.8 A Walrasian equilibrium statep̄ > 0 in the dynamic continuous-
time model of two goods is called asymptotically globally stable when a feasible
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trajectory p(t) of goods’ prices satisfies a condition:

lim
t→+∞
Δt→0

p(t + Δt) = p̄.(6.47)

6.3 Static Arrow-Debreu-McKenzie Model3

Let us describe an economy in which we distinguish the part related to production
and the part related to exchange (consumption).4 Let us use the following notation:

i = 1, 2—an index of products which, depending on their intended use, may
be consumer goods or production factors,
k = 1, 2—an index of (traders) consumers,
j = 1, 2—an index of producers,
Xk ⊆ R

2+—a goods space (a set of all bundles of goods available on a market
with a metric dNE :R4+ → R+ specified on this set, see Definition 1.2),
Y j ⊆ R

2—a production space of j-th producer in which the result of
production is described by a vector of the net output.

Parameters

αk j—a share of k-th consumer in the profit of j-th producer,
ak = (ak1, ak2) ∈ R

2+—an initial consumption bundle (initial endowment) of
k-th consumer,

Variables

p = (p1, p2) ∈ intR2+—a vector of prices of products (consumer goods or
production factors).
xk = (xk1, xk2) ∈ R

2+—a vector of the demand for goods reported by k-th
consumer,
w j = (w j1, w j2) ∈ R

2+—a vector of outputs in the production process of j-th
producer,
n j = (n j1, n j2) ∈ R

2+—a vector of inputs of production factors in the
production process of j-th producer,
y j = w j − n j = (

w j1 − n j1, w j2 − n j2
) = (

y j1, y j2
) ∈ Y j ⊆ R

2—a vector
of the j-th producer’s net output,
Π j (p1, p2)—j-th producer’s profit as a function of prices of products,

3 The Arrow-Debreu-McKenzie model should be interpreted as a general equilibrium model
with endogenous functions of the supply and of the demand.
4 A comprehensive extension of the issues discussed in this part of the chapter can be found in work
(Panek, 2003).
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I k(p1, p2) = ∑2
i=1 piaki + ∑2

j=1 αk jΠ j (p1, p2) > 0—k-th consumer’s
income as a function of prices of goods,
uk :R2+ → R—an utility function of k-th consumer, describing her/his prefer-
ences (a relation of preferences),
Dk(p, I k(p)) = {

(xk1, xk2) ∈ R
2+
||p1xk1 + p2xk2 ≤ I k(p1, p2)

} ⊂ X = R
2+—

a set of all consumption bundles of a value not exceeding k-th consumer’s
income.

Production

Each producer ( j = 1, 2) wants to maximize the profit from sales of manufactured
products. Each one is assumed to carry out a production process described by a
vector of the net output:

y j =w j − n j = (
w j1 − n j1, w j2 − n j2

)
=(

y j1, y j2
) ∈ Y j ⊆ R

2, j = 1, 2,(6.48)

where:

w j = (w j1, w j2) ∈ R
2+—a vector of outputs in the production process of j-th

producer,
n j = (n j1, n j2) ∈ R

2+—a vector of inputs of production factors in the
production process of j-th producer,
Y j ⊆ R

2—a production space of j-th producer in which the result of
production is described by a vector of the net output.

Let us notice that if the production process carried out by j-th producer
is technologically feasible, that is:

z j =
(

n j , w j
)

∈ Z ⊆ R
4, j = 1, 2,(6.49)

then in this process, described in terms of the net output, the following situations
are possible:

n ji = w j i = 0 ⇒ y ji = 0,(6.50)

i-th product is neither the input nor the output in the production process and its
net output equals zero;

n ji = w j i > 0 ⇒ y ji = 0,(6.51)
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i-th product is both the input and the output in the production process, but its net
output equals zero;

n ji > 0, w j i = 0 ⇒ y ji < 0,(6.52)

i-th product is only the input in the production process, thus its net output in this
production process is negative;

n ji = 0, w j i > 0 ⇒ y ji > 0,(6.53)

i-th product is only the output in the production process, therefore its net output
in this production process is positive;

n ji , w j i > 0 ∧ n ji > w j i ⇒ y ji < 0,(6.54)

i-th product is both the input and the output in the production process, and its net
output is negative;

n ji , w j i > 0 ∧ n ji < w j i ⇒ y ji > 0,(6.55)

i-th product is both the input and the output in the production process, and its net
output is positive.

Definition 6.9 A net output space for j-th producer is a set of all net output vectors
y j = w j − n j = (

y j1, y j2
) ∈ Y j ⊆ R

2 which are the results of technologically
feasible production processes z j = (

n j ,w j
) ∈ Z ⊆ R

4, j = 1, 2 carried out by
j-th producer. This set is defined with a norm ||y j||NE = max

i=1,2

||y ji ||.

Assumption 6.1 About net output spaces we assume:

(1) 0 ∈ Y j ⊆ R
2,

whichmeans that if j-th producer aiming at profit maximization took losses then
he/she could quit the production process in her/his company.

(2) Y j ∩ R
2+ = 0,

whichmeans that if one of the coordinates of the vector y j ∈ Y j ⊆ R
2 is positive

then the other has to be negative since it is impossible to have positive net output
without taking any inputs.

(3) Y j ⊆ R
2 is a bounded and closed set (hence a compact set),

which means that we are interested in production processes in which inputs and
outputs are finite. The fact that Y j ⊆ R

2 is a closed set can be interpreted so that
a limit of any sequence of net output vectors belonging to Y j belongs to this set
too.
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(4) ∀y1, y2 ∈ Y j ⊆ R
2, y1 /= y2, ∀α, β > 0, α + β = 1, z = αy1 + βy2 ∈ Y j

and

∃ε > 0 Uε(z) =
{

y∈ Y j
|||dNE (y, z) < ε

}
⊆ Y j ,

which means that net output spaces of all producers are strictly convex sets
in which production processes exhibit decreasing returns to scale.

By given prices p = (p1, p2) ∈ intR2+ of products a profit maximization
problem of j-th producer takes the form:

p1y j1 + p2y j2 → max(6.56)

y j = (
y j1, y j2

) ∈ Y j ⊆ R
2.(6.57)

The problem (6.56)–(6.57) is a nonlinear programming problem with a linear
profit function and the compact strictly convex set Y j ⊆ R

2 of feasible solutions.
Due to assumed properties of the j-th producer net output space this problem has
a unique solution by a given vector p = (p1, p2) ∈ intR2+ of prices of products
that is the optimal net output vector ȳ j = (

ȳ j1, ȳ j2
) ∈ Y j ⊆ R

2 ensuring the
maximum profit for j-the producer.

Definition 6.10 A supply function of j-th producer is a mapping ȳ j :R2+ → R
2

which assigns an optimal vector of net output ȳ j (p) = (
ȳ j1(p), ȳ j2(p)

) ∈ Y j ⊆ R
2

being the solution in the j-th producer’s profit maximization problem (6.56)–(6.57)
to any vector p = (p1, p2) ∈ intR2+ of prices of products.

Theorem 6.1 If Assumption 6.1 is satisfied then ∀p > 0 the supply function of j-th
producer is:

(a) continuous and differentiable,
(b) homogeneous of degree zero:

∀λ > 0 ȳ j (λp) = λ0ȳ j (p) = ȳ j (p),(6.58)

which means that a proportional change in the prices of products does not lead
to a change in the vector of the j-th producer’s net output.

Definition 6.11 A maximal profit function of j-th producer is a mapping
Π j :intR2+ → R which assigns the maximum profit Π(ȳ j (p)) = p1 ȳ j1(p) +
p2 ȳ j2(p) ∈ R of j-th producer to any vector p = (p1, p2) ∈ intR2+ of prices
of products (Fig. 6.2).
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Fig. 6.2 Maximization
problem of j-th producer

Theorem 6.2 If Assumption 6.1 is satisfied then ∀p > 0 the profit function of j-th
producer is.

(a) continuous and differentiable,
(b) positively homogeneous of first degree:

∀λ > 0 Π
(

ȳ j (λp)
)

= λ1Π
(

ȳ j (p)
)

= λΠ
(

ȳ j (p)
)
,(6.59)

which means that a proportional change in prices of products leads to the
proportional change in the j-th producer’s maximum profit.

Consumption
The k-th consumer wants purchase such a bundle of goods x̄k = (x̄ k1, x̄ k2) whose
value does not exceed the income of k-th consumer and whose utility is max-
imum and at the same time not less than utility of the initial bundle of goods
ak = (ak1, ak2). By a given vector p = (p1, p2) ∈ intR2+ of prices of goods the
consumption utility maximization problem of k-th consumer can be written as

uk(xk1, xk2) |→ max,(6.60)

p1xk1 + p2xk2 ≤ I k(p1, p2),(6.61)

xk1, xk2 ≥ 0,(6.62)

where I k(p1, p2) = p1ak1 + p2ak2 + αk1Π
1(ȳ1(p1, p2)) + αk2Π

2(ȳ2(p1, p2))
denotes the income of k-th consumer.
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Fig. 6.3 Consumption utility
maximization problem of
k-th consumer

Assumption 6.2 The utility function of k-th consumer uk :R2+ → R is increasing,
differentiable, and strictly concave.

Then the problem (6.60)–(6.62) has exactly one optimal solution which belongs
to the budget line and is of a form (Fig. 6.3):

x̄k(p) = ϕk
(

p, I k(p)
)

=
(

αk I
k(p)

p1
, βk I

k(p)

p2

)
> (0, 0),

∀αk, βk > 0, αk + βk = 1, k = 1, 2.(6.63)

Definition 6.12 A demand function of k-th consumer is a mapping ϕk :intR2+ →
intR2+ which assigns the optimal solution in the k-th consumer’s consumption utility
maximization problem (6.60)–(6.62) to any vector p = (p1, p2) ∈ intR2+ of prices
of goods:

ϕk(p) = ϕk
(

p, I k(p)
)

=
(
ϕk1

(
p, I k(p)

)
, ϕk2

(
p, I k(p)

))

= x̄k(p) = (x̄ k1(p), x̄ k2(p)), k = 1, 2.(6.64)

Theorem 6.3 If Assumption 6.2 is satisfied then ∀p > 0 the demand function of
k-th consumer is:

(a) continuous and differentiable,
(b) homogeneous of degree zero:

∀λ > 0 x̄k(λp) = λ0x̄k(p) = x̄k(p),(6.65)
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which means that a proportional change in prices of goods does not lead to a change
in the demand reported by k-th consumer.

Definition 6.13 An indirect function of consumption utility of k-th consumer is
a mapping νk :intR2+ → intR+ which assigns the utility of the optimal bundle of
goods being the solution in the k-th consumer’s consumption utility maximization
problem (5.60)–(5.62) to any vector p = (p1, p2) ∈ intR2+ of prices of goods:

νk(p) = uk(x̄ k1(p), x̄ k2(p)), k = 1, 2.(6.66)

Theorem 6.4 If Assumption 6.2 is satisfied then ∀p > 0 the indirect function of
k-th consumer’s utility is:

(a) continuous and differentiable,
(b) homogeneous of degree zero:

∀λ > 0 νk(λp) = λ0νk(p) = νk(p),(6.67)

which means that a proportional change in prices of goods does not lead to a
change in the utility of the optimal bundle of k-th consumer.

General equilibrium

Definition 6.14 A function of global demand is an expression:

x̄(p) = x̄1(p) + x̄2(p) =
(
x̄11(p) + x̄21(p)

x̄12(p) + x̄22(p)

)
,(6.68)

describing the total demand of both consumers for each good.

Definition 6.15 A function of global demand is an expression:

ȳ(p) + ā = ȳ1(p) + ȳ2(p) + a1 + a2 =
(
ȳ11(p) + ȳ21(p) + a11 + a21
ȳ12(p) + ȳ22(p) + a12 + a22

)
,

(6.69)

describing the total supply of each good.

Definition 6.16 A function of excess demand is a mapping z:intR2+ → R
2 which

assigns an excess demand to any vector p = (p1, p2) ∈ intR2+ of prices. The
function has a form:

z(p) = x̄(p) − (ȳ(p) + ā)(6.70)
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or equivalently

∀i = 1, 2 zi (p) = x̄ i (p) − (
ȳi (p) + ai

)
.(6.71)

Definition 6.17 A partial equilibrium on a market of i-th consumer good is a state
when:

∃i ∃ p > 0 zi (p) = x̄ i (p) − (
ȳi (p) + ai

) = 0

⇔ x̄ i (p) = ȳi (p) + ai ,
(6.72)

meaning there exists a positive price vector such that the global demand for i-th good
is equal to its global supply. We say then that on a market of i-th consumer good
there is a partial equilibrium: the global demand for i-th good (expressed in physical
units) equals the global supply of i-th good (expressed in the same physical units).

Definition 6.18 A general equilibrium (in the Walras sense) on a market of
consumer goods is a state when:

∀i = 1, 2 ∃ p̄ > 0 zi (p̄) = x̄ i (p̄) − (
ȳi (p̄) + ai

) = 0

⇔ x̄ i (p̄) = ȳi (p̄) + ai ,
(6.73)

meaning that there exists a positive price vector, called an equilibrium (Walrasian)
price vector such that the global demand for each good is equal to its global supply.
We then say that there is a general equilibrium on a market of consumer goods: the
global demand for each good (expressed in physical units) equals its global supply
(expressed in the same physical units).

Theorem 6.5 If Assumptions 6.1 and 6.2 are satisfied then ∀p > 0 the excess
demand function is:

(a) continuous and differentiable on intR2+,
(b) homogeneous of degree zero:

∀i = 1, 2 ∀λ > 0 zi (λp) = λ0zi (p) = zi (p),(6.74)

which means that a proportional change in prices of all goods does not lead to a
change in the excess demand for any good,

(c) satisfies Walras’s law:

∀p > 0
∑2

i=1
pi zi (p) =

∑2

i=1
pi

(
x̄ i (p) − (

ȳi (p) + ai
)) = 0

⇔
∑2

i=1
pi x̄ i (p) =

∑2

i=1
pi

(
ȳi (p) + ai

)
,(6.75)

which means that for any price vector p = (p1, p2) > (0, 0) a value of the
global demand for all goods is equal to a value of their global supply.
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Note 6.1 The concept of the Walrasian equilibrium should be distinguished from
Walras’s law.

Note 6.2 The Walrasian equilibrium state described by the Walrasian equilibrium
price vector may not exist, there may be exactly one such state or there may be more
than one.

Note 6.3 The price vector of the Walrasian equilibrium (if it exists) is determined
with an accuracy of a structure. Let us suppose that p̄ = (

p̄1, p̄2
)

> 0 is theWalrasian
equilibrium price vector. Then we can present it in a form:

p̄ = (
p̄1, p̄2

) = p̄1

(
1,

p̄2
p̄1

)
= λ

(
1,

p̄2
p̄1

)
, where λ = p̄1 > 0,(6.76)

or

p̄ = (
p̄1, p̄2

) = p̄2

(
p̄1
p̄1

, 1

)
= λ

(
p̄1
p̄1

, 1

)
, where λ = p̄2 > 0.(6.77)

Theorem 6.6 If Assumptions 6.1 and 6.2 are satisfied then in the Arrow-Debreu-
McKenzie model there exists at least one price vector of the Walrasian equilibrium,
determined with an accuracy of a structure.

Note 6.4 The conditions, ensuring that in theArrow-Debreu-McKenziemodel exists
exactly one Walrasian equilibrium price vector determined with an accuracy of a
structure, are in the form of more complex assumptions. Therefore we will here not
discuss them as part of the basic lecture.

Let us assume that there is given an initial endowment of two goods owned by
two consumers described by a vector a = (

a1, a2
) = (a11, a12, a21, a22) ∈ intR4+.

Definition 6.19 A vector (x̄(p), ȳ(p)) is called an allocation feasible in the static
Arrow-Debreu-McKenzie model when it meets a condition:

∑2

k=1
x̄k(p) =

∑2

j=1
ȳ j (p) +

∑2

k=1
ak

⇔
(
x̄11(p) + x̄21(p)

x̄21(p) + x̄22(p)

)
=

(
ȳ11(p) + ȳ21(p) + a11 + a21
ȳ12(p) + ȳ22(p) + a12 + a22

)
,(6.78)

where:

x̄(p) = (x̄11(p), x̄12(p), x̄21(p), x̄22(p)) ∈ R
4+,

ȳ(p) = (
ȳ11(p), ȳ12(p), ȳ21(p), ȳ22(p)

) ∈ R
4.
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Fig. 6.4 General equilibrium in static Arrow-Debreu-McKenzie model

This means that ∀p > 0 the global demand for i-th good is equal to the global
supply of i-th good. It is worth emphasizing that the global supply and the global
demand for i-th good are expressed in the same physical units (Fig. 6.4).

Definition 6.20 A set of allocations feasible in the static Arrow-Debreu-McKenzie
model is a set:

F(a) =
}
(x̄(p), ȳ(p)) ∈ R

4+ × R
4+|

∑2

k=1
x̄k(p) =

∑2

j=1
ȳ j (p) +

∑2

k=1
ak

}
.

(6.79)

Definition 6.21 An allocation (x̄(p), ȳ(p)) ∈ F(a) is called an allocation accepted
by traders when it satisfies a condition:

uk
(

x̄k(p)
)

≥ uk
(

ak
)

∀k = 1, 2.(6.80)

Definition 6.22 A set of allocations accepted by traders is a set:

S(a) =
{
(x̄(p), ȳ(p)) ∈ F(a)|uk

(
x̄k(p)

)
≥ uk

(
ak

)
, k = 1, 2

}
.(6.81)

Definition 6.23

An allocation (x̄(p), ȳ(p)) ∈ S(a) accepted by traders is called a Pareto optimal
(efficient) allocation if there is no other allocation accepted (x(p), y(p)) ∈ S(a)

such that

∀k = 1, 2 uk
(

xk(p)
)

≥ uk
(

x̄k(p)
)
,

∃k uk
(

xk(p)
)

> uk
(

x̄k(p)
)
.(6.82)
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Definition 6.24 A set C(a) consisting of all allocations accepted by traders and
Pareto optimal at the same time is called an exchange core.

Definition 6.25 A Pareto optimal allocation (x̄(p̄), ȳ(p̄)) ∈ C(a) is called a Wal-

rasian equilibrium allocationwhen the price vector p̄ = λ
(
1, p̄2

p̄1

)
> (0, 0), λ > 0

is the Walrasian equilibrium price vector.

Definition 6.26 A set consisting of all Walrasian equilibrium allocations, that is a
set:

W (a) = { (x̄(p̄), ȳ(p̄)) ∈ C(a)|x̄(p̄) = ȳ(p̄) + ā} ∈ R
4+ × R

4+,(6.83)

is called a set of Walrasian equilibrium allocations.

Note 6.5 From Definitions 6.19–6.25 it follows that

W (a) ⊆ C(a) ⊆ S(a) ⊆ F(a) ⊂ R
4+ × R

4+(6.84)

which means that each Walrasian equilibrium allocation is an allocation: Pareto
optimal, accepted by traders and feasible.

Note 6.6 The reverse inclusion is not true, which means that not every feasi-
ble allocation is an accepted by traders, Pareto optimal or Walrasian equilibrium
allocation.

6.4 Dynamic Arrow-Debreu-McKenzie Model

Let us describe an economy in which we distinguish the part related to production
and the part related to exchange (consumption). Let us use the following notation:

i = 1, 2—an index of products which, depending on their intended use, may
be consumer goods or production factors,
k = 1, 2—an index of (traders) consumers,
j = 1, 2—an index of producers,
Xk(t) ⊆ R

2+—a goods space (a set of all bundles of goods available on a market
with a metric dNE :R4+ → R+ specified on this set, see Definition 1.2) in period
t = 1, 2, ..., T or at moment t ∈ [0; T ],
Y j (t) ⊆ R

2—a production space of j-th producer in period t = 1, 2, . . . , T or
at moment t ∈ [0; T ].
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Parameters

αk j—a share of k-th consumer in the profit of j-th producer,
ak = (ak1, ak2) ∈ R

2+—an initial consumption bundle (initial endowment) of
k-th consumer,

Variables

t = 1, 2, . . . , T—time as a discrete variable,
t ∈ [0; T ]—time as a continuous variable,
T—time horizon, which can be finite or infinite,
p(t) = (p1(t), p2(t)) ∈ intR2+—a vector of prices of products in period/at
moment t ,
xk(t) = (xk1(t), xk2(t)) ∈ R2+—a consumption bundle the k-th consumer wants
to purchase in period/at moment t ,
w j (t) = (w j1(t), w j2(t)) ∈ R

2+—a vector of outputs in the production process
of j-th producer in period/at moment t ,
n j (t) = (n j1(t), n j2(t)) ∈ R

2+—a vector of inputs of production factors in the
production process of j-th producer in period/at moment t ,
y j (t) = w j (t) − n j (t) = (

w j1(t) − n j1(t), w j2(t) − n j2(t)
) =(

y j1(t), y j2(t)
) ∈ Y j ⊆ R

2—a vector of the j-th producer’s net output
in period/at moment t ,
Π j (p1(t), p2(t))—j-th producer’s profit as a function of prices of products
in period/at moment t ,
I k(p1(t), p2(t)) = ∑2

i=1 pi (t)aki + ∑2
j=1 αk jΠ j (p1(t), p2(t)) > 0—k-th

consumer’s income as a function of prices of goods in period/at momentt ,
uk :R2+ → R—an utility function of k-th consumer, describing her/his prefer-
ences (a relation of preferences),
Dk(p(t), I k(p(t))) ={
(xk1(t), xk2(t)) ∈ R

2+
||p1(t)xk1(t) + p2(t)xk2(t) ≤ I k(p1(t), p2(t))

} ⊂ X =
R
2+—a set of all consumption bundles of a value not exceeding k-th consumer’s

income in period/at moment t .

Production

Each producer ( j = 1, 2) in any period/at any moment t wants to maximize the
profit from sales of manufactured products. Each one is assumed to carry out a
production process described by a vector of the net output:

y j (t) =w j (t) − n j (t) = (
w j1(t) − n j1(t), w j2(t) − n j2(t)

)
=(

y j1(t), y j2(t)
) ∈ Y j (t) ⊆ R

2, j = 1, 2,(6.85)

where:

w j (t) = (w j1(t), w j2(t)) ∈ R
2+—a vector of outputs in the production process

of j-th producer in period/at moment t ,



440 6 Rationality of Choices Made by Group of Producers and Consumers

n j (t) = (n j1(t), n j2(t)) ∈ R
2+—a vector of inputs of production factors in the

production process of j-th producer in period/at moment t ,
Y j (t) ⊆ R

2—a production space of j-th producer in period/at moment t in
which a result of production is described by a vector of the net output.

Definition 6.27 A net output space for j-th producer in period/at moment t is a
set of all net output vectors y j (t) = w j (t) − n j (t) = (

y j1(t), y j2(t)
) ∈ Y j (t) ⊆

R
2 which are the results of technologically feasible production processes z j (t) =(

n j (t),w j (t)
) ∈ Z(t) ⊆ R

4, j = 1, 2 carried out by j-th producer. This set is
defined with a norm ||y j (t)||NE = max

i=1,2

||y ji (t)|| in period/at moment t .

Assumption 6.3 In any period/at any moment t Assumption 6.1 is satisfied.

By given prices p(t) = (p1(t), p2(t)) ∈ intR2+ of products a profit maximiza-
tion problem of j-th producer takes the form:

p1(t)y j1(t) + p2(t)y j2(t) |→ max(6.86)

y j (t) = (
y j1(t), y j2(t)

) ∈ Y j ⊆ R
2.(6.87)

Problem (6.86)–(6.87) is a nonlinear programming problem with a linear profit
function and the compact strictly convex set Y j (t) ⊆ R

2 of feasible solutions.
Due to assumed properties of the j-th producer net output space this problem has
a unique solution by a given vector p(t) = (p1(t), p2(t)) ∈ intR2+ of prices of
products that is the optimal net output vector ȳ j (t) = (

ȳ j1(t), ȳ j2(t)
) ∈ Y j (t) ⊆

R
2 ensuring in period/at moment t the maximum profit for j-the producer.

Definition 6.28 A supply function of j-th producer in period/at moment t is a
mapping ȳ j :R2+ → R

2 which assigns an optimal vector of net output ȳ j (p(t)) =(
ȳ j1(p(t)), ȳ j2(p(t))

) ∈ Y j (t) ⊆ R
2 being the solution in the j-th producer’s profit

maximization problem (5.86)–(5.87) to any vector p(t) = (p1(t), p2(t)) ∈ intR2+
of prices of products.

Consumption
The k-th consumer in period/at moment t wants to purchase such a bundle of
goods x̄k(t) = (x̄ k1(t), x̄ k2(t)) whose value does not exceed the income of k-
th consumer and whose utility is maximum and at the same time not less than
utility of the initial bundle of goodsak = (ak1, ak2). By a given vector p(t) =
(p1(t), p2(t)) ∈ intR2+ of prices of goods the consumption utility maximization
problem of k-th consumer in period/at moment t can be written as

uk(xk1(t), xk2(t)) → max(6.88)
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p1(t)xk1(t) + p2(t)xk2(t) ≤ I k(p1(t), p2(t)),(6.89)

xk1(t), xk2(t) ≥ 0,(6.90)

where:

I k(p1(t), p2(t)) =p1(t)ak1 + p2(t)ak2

+αk1Π
1(ȳ1(p1(t), p2(t))

) + αk2Π
2(ȳ2(p1(t), p2(t))

)
(6.91)

denotes the income of k-th consumer in period/at moment t .

Assumption 6.4 The utility function of k-th consumer uk :R2+ → R in any period/at
any moment t is increasing, differentiable and strictly concave.

Then the problem (6.88)–(6.90) in period/at moment t has exactly one optimal
solution which belongs to the budget line and is of a form:

x̄k(p(t)) = ϕk
(

p, I k(p(t))
)

=
(

αk I
k(p(t))

p1(t)
, βk I

k(p(t))

p2(t)

)
> (0, 0),

∀αk, βk > 0, αk + βk = 1, k = 1, 2.(6.92)

Definition 6.29 A demand function of k-th consumer in period/at moment t is
a mapping ϕk :intR2+ → intR2+ which assigns the optimal solution in the k-th
consumer’s consumption utility maximization problem (5.88)–(5.90) to any vector
p(t) = (p1(t), p2(t)) ∈ intR2+ of prices of goods:

ϕk(p(t)) = ϕk
(

p(t), I k(p(t))
)

= xk(p(t)), k = 1, 2.(6.93)

Definition 6.30 An indirect function of consumption utility of k-th consumer
in period/at moment t is a mapping vk :intR2+ → intR+ which assigns the utility of
the optimal bundle of goods being the solution in the k-th consumer’s consumption
utility maximization problem (6.88)–(6.90) to any vector p(t) = (p1(t), p2(t)) ∈
intR2+ of prices of goods:

νk(p(t)) = uk(x̄ k1(p(t)), x̄ k2(p(t))), k = 1, 2.(6.94)
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General equilibrium

Definition 6.31 A function of global demand in period/at moment t is an
expression:

x̄(p(t)) = x̄1(p(t)) + x̄2(p(t)) =
(
x̄11(p(t)) + x̄21(p(t))
x̄12(p(t)) + x̄22(p(t))

)
,(6.95)

describing the total demand reported by both consumers for each good in period/at
moment t .

Definition 6.32 A function of global demand in period/at moment t is an
expression:

ȳ(p(t)) + ā = ȳ1(p(t)) + ȳ2(p(t)) + a1 + a2

=
(
ȳ11(p(t)) + ȳ21(p(t)) + a11 + a21
ȳ12(p(t)) + ȳ22(p(t)) + a12 + a22

)
,(6.96)

describing the total supply of each good in period/at moment t .

Definition 6.33 A function of excess demand in period/at moment t is a map-
ping z:intR2+ → R

2 which assigns an excess demand to any vector p(t) =
(p1(t), p2(t)) ∈ intR2+ of prices. The function has a form:

z(p(t)) = x̄(p(t)) − (ȳ(p(t)) + ā)(6.97)

or equivalently

∀i = 1, 2 zi (p(t)) = x̄ i (p(t)) − (
ȳi (p(t)) + ai

)
.(6.98)

Definition 6.34 A partial equilibrium on a market of i-th consumer good
in period/at moment t is a state when:

∃i ∃ p(t) > 0 zi (p(t)) = x̄ i (p(t)) − (
ȳi (p(t)) + ai

) = 0

⇔ x̄ i (p(t)) = ȳi (p(t)) + ai ,(6.99)

meaning there exists a positive price vector such that the global demand for i-th good
is equal to its global supply. We say then that in period/at moment t on a market of
i-th consumer good there is a partial equilibrium: the global demand for i-th good
(expressed in physical units) equals the global supply of i-th good (expressed in the
same physical units).
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Definition 6.35 A general equilibrium (in the Walras sense) on a market of
consumer goods in period/at moment t is a state when:

∀i = 1, 2 ∃ p̄(t) > 0 zi (p̄(t)) = x̄ i (p̄(t)) − (
ȳi (p̄(t)) + ai

) = 0

⇔ x̄ i (p̄(t)) = ȳi (p̄(t)) + ai ,(6.100)

meaning that there exists a positive price vector, called an equilibrium (Walrasian)
price vector such that the global demand for each good is equal to its global supply
in period/at moment t . We then say that in period/at moment t there is a general equi-
librium on a market of consumer goods: the global demand for each good (expressed
in physical units) equals its global supply (expressed in the same physical units).

Theorem 6.7 If Assumptions 6.3 and 6.4 are satisfied then in period/at moment t
∀p(t) > 0 the excess demand function is:

1. continuous and differentiable on intR2+,
2. homogeneous of degree zero:

∀i = 1, 2 ∀λ > 0 zi (λp(t)) = λ0zi (p(t)) = zi (p(t)),(6.101)

Which means that a proportional change in prices of all goods occurring
in period/at moment t does not lead to a change in the excess demand for any
good,

3. satisfies Walras’s law:

∀p(t) > 0
∑2

i=1
pi (t)zi (p(t)) =

∑2

i=1
pi

(
x̄ i (p(t)) − (

ȳi (p(t)) + ai
)) = 0

⇔
∑2

i=1
pi (t)x̄ i (p(t)) =

∑2

i=1
pi (t)

(
ȳi (p(t)) + ai

)
,(6.102)

which means that for any price vector p(t) = (p1(t), p2(t)) > (0, 0) a value of
the global demand for all goods is equal to a value of their global supply.

Note 6.7 The concept of the Walrasian equilibrium should be distinguished from
Walras’s law.

Note 6.8 The Walrasian equilibrium state described by the Walrasian equilibrium
price vector may not exist, there may be exactly one such state or there may be more
than one.

Note 6.9 The price vector of the Walrasian equilibrium (if it exists) is determined
with an accuracy of a structure. Let us suppose that p̄(t) = (

p̄1(t), p̄2(t)
)

> 0 is the
Walrasian equilibrium price vector. Then we can present it in a form:

p̄(t) =(
p̄1(t), p̄2(t)

) = p̄1(t)

(
1,

p̄2(t)

p̄1(t)

)
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=λ

(
1,

p̄2(t)

p̄1(t)

)
, where λ = p̄1(t) > 0,(6.103)

or

p̄(t) =(
p̄1(t), p̄2(t)

) = p̄2(t)

(
p̄1(t)

p̄1(t)
, 1

)

=λ

(
p̄1(t)

p̄1(t)
, 1

)
, where λ = p̄2(t) > 0.(6.104)

Theorem 6.8 If Assumptions 6.3 and 6.4 are satisfied then in the Arrow-Debreu-
McKenzie model there exists at least one price vector of the Walrasian equilibrium,
determined with an accuracy of a structure.

Note 6.10 The conditions, ensuring that in the Arrow-Debreu-McKenzie model
exists exactly one Walrasian equilibrium price vector determined with an accuracy
of a structure, are in the form of more complex assumptions. Therefore we will here
not provide them as part of the basic lecture.

Let us assume that there is given an initial endowment of two goods owned by
two consumers described by a vector a = (

a1, a2
) = (a11, a12, a21, a22) ∈ intR4+.

Definition 6.36 A vector (x̄(p(t)), ȳ(p(t))) is called an allocation feasible
in period/at moment t in the dynamic Arrow-Debreu-McKenziemodel when it meets
a condition:

∑2

k=1
x̄k(p(t)) =

∑2

j=1
ȳ j (p(t)) +

∑2

k=1
ak

⇔
(
x̄11(p(t)) + x̄21(p(t))
x̄21(p(t)) + x̄22(p(t))

)
=

(
ȳ11(p(t)) + ȳ21(p(t)) + a11 + a21
ȳ12(p(t)) + ȳ22(p(t)) + a12 + a22

)
,(6.105)

where:

x̄(p(t)) = (x̄11(p(t)), x̄12(p(t)), x̄21(p(t)), x̄22(p(t))) ∈ R
4+,

ȳ(p(t)) = (
ȳ11(p(t)), ȳ12(p(t)), ȳ21(p(t)), ȳ22(p(t))

) ∈ R
4.

This means that ∀p(t) > 0 the global demand for i-th good is equal to the global
supply of i-th good. It is worth emphasizing that the global supply and the global
demand for i-th good are expressed in the same physical units.

Definition 6.37 A set of allocations feasible in the dynamic Arrow-Debreu-
McKenzie model is a set:

F(a) =
}
(x̄(p(t)), ȳ(p(t))) ∈ R

4+ × R
4+|

∑2

k=1
x̄k (p(t)) =

∑2

j=1
ȳ j (p(t)) +

∑2

k=1
ak

}
.

(6.106)
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Definition 6.38 An allocation (x̄(p), ȳ(p)) ∈ F(a) is called an allocation accepted
by traders in period/at moment t when it satisfies a condition:

uk
(

x̄k(p(t))
)

≥ uk
(

ak
)

∀k = 1, 2.(6.107)

Definition 6.39 A set of allocations accepted by traders in the dynamic Arrow-
Debreu-McKenzie model is a set:

S(a) =
{
(x(p(t)), ȳ(p(t))) ∈ F(a)|uk

(
xk(p(t))

)
≥ uk

(
ak

)
, k = 1, 2

}
.(6.108)

Definition 6.40 An allocation (x̄(p(t)), ȳ(p(t))) ∈ S(a) accepted by traders
in period/at moment t is called a Pareto optimal (efficient) allocation if there
is no other allocation accepted (x(p(t)), y(p(t))) ∈ S(a) such that

∀k = 1, 2 uk
(

xk(p(t))
)

≥ uk
(

x̄k(p(t))
)
,

∃k uk
(

xk(p(t))
)

> uk
(

x̄k(p(t))
)
.(6.109)

Definition 6.41 A set C(a) consisting of all allocations accepted by traders and
Pareto optimal at the same time is called an exchange core.

Definition 6.42 A Pareto optimal allocation (x̄(p̄(t)), ȳ(p̄(t))) ∈ C(a) in the
dynamic Arrow-Debreu-McKenzie model is called a Walrasian equilibrium allo-

cation when the price vector p̄(t) = λ
(
1, p̄2(t)

p̄1(t)

)
> (0, 0), λ > 0 is the Walrasian

equilibrium price vector.

Definition 6.43 A set consisting of all Walrasian equilibrium allocations, that is a
set:

W (a) = {(
x̄(p̄(t)), ȳ( ¯p(t))

) ∈ C(a)
||x̄(p̄(t)) = ȳ(p̄(t)) + ā

} ∈ R
4+ × R

4+,

(6.110)

is called a set of Walrasian equilibrium allocations in period/at moment t .

Note 6.11 From Definitions 5.38–5.43 it follows that

W (a) ⊆ C(a) ⊆ S(a) ⊆ F(a) ⊂ R
4+ × R

4+(6.111)

which means that each Walrasian equilibrium allocation is an allocation: Pareto
optimal, accepted by traders and feasible.
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Note 6.12 The reverse inclusion is not true, which means that not every feasi-
ble allocation is an accepted by traders, Pareto optimal or Walrasian equilibrium
allocation.

The main questions regarding a market described by the dynamic Arrow-
Debreu-McKenzie model are:

• does a state of the Walrasian equilibrium exist on a consumer goods market?
• is there exactly one or at least one state of the Walrasian equilibrium?
• whether a state of the Walrasian equilibrium is asymptotically globally stable?

Definition 6.44 A dynamic discrete-time Arrow-Debreu-McKenzie model is a
system of difference equations of a form:

∀i pi (t + 1) = pi (t) + σi zi (p(t)),(6.112)

with an initial condition:

∀i pi (0) = p0i > 0,(6.113)

t = 0, 1, 2, . . .(6.114)

where σi > 0 denotes a measure of a broker ’s sensitivity to an imbalance on i-th
good’s market, which for the sake of simplicity is assumed to be the same for markets
of all goods: ∀i σi = σ > 0.

Condition (6.112) can be written in an equivalent form:

∀i pi (t + 1) − pi (t) = σi zi (p(t)).(6.115)

On the basis of conditions (6.112) and (6.115) it can be concluded that ∀t =
0, 1, 2, . . . and ∀i = 1, 2:

zi (p(t)) > 0 ⇒ pi (t + 1) − pi (t) > 0 ⇒ pi (t + 1) > pi (t),

zi (p(t)) < 0 ⇒ pi (t + 1) − pi (t) < 0 ⇒ pi (t + 1) < pi (t),

zi (p(t)) = 0 ⇒ pi (t + 1) − pi (t) = 0 ⇒ pi (t + 1) = pi (t).

Equivalent conditions (6.112) and (6.115) lead to a simple recursive rule for
determining prices of all products in subsequent periods of time. However, this
rule does not ensure that the resulting price systems will make economic sense. We
are not interested in situations where a price of any good is negative. Therefore our
attention should be focused only on such solutions to systems of difference Eqs.
(6.112) or (6.115), in which the vectors of consumer goods’ prices determined on
the basis of these solutions are positive: ∀i pi (t + 1) > 0.
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Definition 6.45 A feasible price trajectory in the dynamic discrete-time Arrow-
Debreu-McKenzie model is an infinite sequence of solutions to the difference
equations’ system (6.112) with an initial condition p(0) = p0 > 0 such that
∀t = 0, 1, 2, . . . p(t + 1) > 0.

Assuming there exists a feasible price trajectory in the dynamic discrete-time
Arrow-Debreu-McKenzie model, one is interested in the conditions of existence,
uniqueness and stability of the Walrasian equilibrium state.

Definition 6.46 A Walrasian equilibrium state p̄ > 0 is called asymptotically
globally stable when a feasible trajectory of products’ prices satisfies a condition:

lim
t→+∞ p(t + 1) = p̄.(6.116)

Global stability means that any feasible trajectory of products’ prices, starting
from any initial price system p(0) = p0 > 0, after reaching a state of the Walrasian
equilibrium will remain in this state. The stability is also asymptotic one, because
the state of the Walrasian equilibrium is a target state which, if exists, can be
achieved in an infinite time horizon.

Definition 6.47 A dynamic continuous-time Arrow-Debreu-McKenzie model is
a system of differential equations of a form:

∀i dpi (t)

dt
= σi zi (p(t)),(6.117)

with an initial condition:

∀i pi (0) = p0i > 0,(6.118)

t ∈ [0;+∞).(6.119)

where:

whereσi > 0 denotes ameasure of broker ’s sensitivity to an imbalance on i-th good’s
market, which for the sake of simplicity is assumed to be the same for markets of all
goods: ∀i σi = σ > 0.

On the basis of condition (6.117) it can be concluded that ∀t ∈ [0;+∞) and
∀i = 1, 2:

zi (p(t)) > 0 ⇒ dpi (t)

dt
> 0 ⇒ pi (t + 1) > pi (t),
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zi (p(t)) < 0 ⇒ dpi (t)

dt
< 0 ⇒ pi (t + 1) < pi (t),

zi (p(t)) = 0 ⇒ dpi (t)

dt
= 0 ⇒ pi (t + 1) = pi (t).

This simple recursive rule, described by conditions (6.117)–(6.118), shows how
to determine prices of all goods in subsequent moments. However, it does not
ensure that the resulting price systems will make economic sense. Therefore our
attention should be focused only on such solutions, to systems of differential equa-
tions (6.117), in which the vectors of consumer goods’ prices determined on the
basis of these solutions are positive: ∀i pi (t + Δt) > 0, Δt → 0.

Definition 6.48 A feasible price trajectory in the dynamic continuous-timeArrow-
Debreu-McKenzie model is an infinite sequence of solutions to the differential
equations system (6.117) with an initial condition p(0) = p0 > 0 such that
∀t ∈ [0;+∞) p(t + Δt) > 0.

Assuming that there exists a feasible price trajectory in the dynamic continuous-
time Arrow-Debreu-McKenzie model, one is interested in conditions of existence,
uniqueness and stability of the Walrasian equilibrium state.

Definition 6.49 A Walrasian equilibrium statep̄ > 0 is called asymptotically
globally stable when a feasible trajectory of goods’ prices satisfies a condition:

lim
t→+∞
Δt→0

p(t + Δt) = p̄.(6.120)

Global stability means that any feasible trajectory of products’ prices, starting
from any initial price system p(0) = p0 > 0, after reaching a state of the Walrasian
equilibrium will remain in this state. The stability is also asymptotic one, because
the state of the Walrasian equilibrium is a target state which, if exists, can be
achieved in an infinite time horizon.

6.5 Questions

1. Explain why an excess demand function, in the discussed model of a market of
a single good with exogenously determined functions of supply and demand,
is positively homogenous of degree 0 and satisfies Walras’s law only for an
equilibrium price.

2. Present analytical forms of functions of the demand and of the supply on a
market of two goods so that these goods are
(a) independent,
(b) complementary,
(c) substitute,
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to each other.
3. Proceeding with the answer to question 2 state if each of these three cases:

independency, substitutability, or complementarity makes economic sense in
the considered model.

4. Justify that in the static Arrow-Debreu-McKenzie model vector functions
of the demand and of the supply are determined endogenously.

5. What are the basic differences between the static Arrow-Debreu-McKenzie
model and the static model of a market of two goods with exogenous functions
of the supply and of the demand?

6. What is the difference between the Walrasian equilibrium state and Walras’s
law in the static Arrow-Debreu-McKenzie model?

7. What is the difference between the Walrasian equilibrium allocation and the
Pareto optimal (efficient) allocation in the static Arrow-Debreu-McKenzie
model?

8. How is a feasible trajectory of prices in the dynamic Arrow-Debreu-McKenzie
model defined in its discrete-time or continuous-time version?

9. What is the significance of feasibility of a trajectory of goods’ prices for
its asymptotic convergence to the equilibrium state in the dynamic Arrow-
Debreu-McKenzie model in the discrete-time or continuous-time version?

10. What does it mean that the Walrasian equilibrium price vector in the dynamic
Arrow- Debreu-McKenzie model, in the discrete-time or continuous-time
version, is asymptotically globally stable?

6.6 Exercises

E1. There is a market of a homogeneous product with exogenously determined
demand function: yd(p) = −apα + b, a, b > 0 and supply function: ys(p) =
cpα + d, c, d > 0.

1. For a product price, the demand and the supply levels determine intervals of values
resulting from analytical forms of the demand and supply functions.

2. Draw graphs of both functions in space R2+ (in one figure). Determine by what
values of parameters b, d > 0 there exists the equilibrium price and indicate this
price in the figure, when:
(a) α ∈ (0; 1),
(b) α = 1,
(c) α > 1.

3. Determine the equilibrium price.
4. Determine elasticities of the equilibrium price with regard to parameters of the

supply and the demand functions that determine this price and give their economic
interpretation.
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E2. There is given a market of two products with exogenous demand functions:

yd1 (p) = − a1 p1 + γ1 p2 + b1,

yd2 (p) = − a2 p2 + γ2 p1 + b2, ai , bi , γi > 0, i = 1, 2

and exogenous supply functions:

ys1(p) =c1 p1 + δ1 p2 + d1,

ys2(p) =c2 p2 + δ2 p1 + d2, ci , di , δi > 0, i = 1, 2.

1. For price of products, the demand and the supply levels determine intervals of
values resulting from analytical forms of the demand and supply functions.

2. Check if the two products are:
(a) independent,
(b) complementary,
(c) substitute,
to each other.

3. Draw graphs of these functions in space R3+ (in one figure). Determine by what
values of parameters bi , di > 0 (i = 1, 2) there exists the equilibrium price
vector and indicate this vector in the figure.

4. Determine the equilibrium price vector.
5. Determine elasticities of the equilibrium prices with regard to parameters of the

supply and the demand functions that determine the prices and give economic
interpretation of these elasticities.

E3. Present the model of a market of a single good from Exercise E1 as

(a) a dynamic discrete-time model,
(b) a dynamic continuous-time model.

Check whether in these models Walras’s law is satisfied for an excess demand func-
tion. Selecting proper values for parameterσ > 0 in the dynamic discrete-timemodel
determine a feasible price trajectory for 10 subsequent periods: t = 1, 2, . . . , 10.

E4. Present the model of a market of two goods from Exercise E2 as

(a) a dynamic discrete-time model,
(b) a dynamic continuous-time model.

Check whether in these models Walras’s law is satisfied for a vector function of
the excess demand. Selecting proper values for parameter σ > 0 in the dynamic
discrete-time model determine feasible price trajectories for 10 subsequent periods:
t = 1, 2, . . . , 10.



6.6 Exercises 451

E5. An owner of a strawberry plantation hires one worker who has 24 units of time.
The employee can allocate part of the time to work and part to rest. He/she owns
20% of shares in profits of the plantation. The only production factor in producing
strawberries is the labour of the worker. The process of production of strawberries
is described by a power production function of a form:

w1 = f (n2) = n0.52 ,

where w1 denotes the output in the production process and n2 denotes the input of
labour. The plantation owner wants to maximize her/his profit from production and
sales of strawberries for which their market price equals p1 per unit (for example,
one kilogramme, one crate etc.). The source of production cost is hiring the labour
force for which its market price equals p2 per one hour. The plantation owner, as
a consumer, wants to maximize her/his utility u1(x11) described as an increasing
function of consumed strawberries’ quantity. Her/his income consists of 80% of
shares in the profit of the plantation. The worker wants to maximize her/his utility
described as an increasing function of consumed strawberries’ quantity andof leisure:

u2(x21, x22) = x0.521 x0.322 .

Income of the worker consists of 20% of shares in the profit of the plantation and
a money value of 24 time units allocated partly to work and partly to leisure.

For the static Arrow-Debreu-McKenzie model:

1. Write a space of the net output of the strawberries’ plantation. Note: according to
the description of the exercise the input n1 of strawberries equals 0. While labour
is not produced, hence w2 = 0.

2. Formulate and solve the profit maximization problem for the plantation owner.
3. Formulate and solve the consumption utility maximization problems for the

plantation owner and for the worker.
4. Write a form of an excess demand function.
5. Determine a systemof general equilibriumconditions and aWalrasian equilibrium

price vector.
6. Determine components of a Walrasian equilibrium allocation.

E6. Consider a discrete-time version of the dynamic Arrow-Debreu-McKenzie
model for the same data given as in Exercise E5. Initial prices are:

p(0) = (10, 2).

Using formulas for the excess demand function and for a structure of the
Walrasian equilibrium price vector derived in Exercise E5 for the static Arrow-
Debreu-McKenzie model:



452 6 Rationality of Choices Made by Group of Producers and Consumers

1. Determine trajectories of a price vector satisfying a system of equations of the
dynamic discrete-time Arrow-Debreu-McKenzie model, taking a proportionality
coefficient σ equal to 0.01, 0.05 and 0.1. Calculate price ratios p2(t)

p1(t)
and compare

them with the equilibrium price ratio p̄2
p̄1
.

2. State which of trajectories determined in point 1 are feasible.
3. State if and when (in which period) a structure of prices stabilizes around the

equilibrium price structure and whether it reaches this structure in time horizon
T = 30.

4. Present graphs of the price trajectories in the state space.
5. Present graphs of the price trajectories as functions of time.

E7. Consider a continuous-time version of the dynamic Arrow-Debreu-McKenzie
model for the same data given as in Exercise E5.

1. Determine trajectories of a price vector satisfying a system of equations of the
dynamic continuous-timeArrow-Debreu-McKenziemodel taking a proportional-
ity coefficient σ equal to 0.01, 0.05, 0.1 and determine whether these trajectories
are feasible.

2. Determine if and when (at what moment) a structure of prices stabilizes around
the equilibrium price structure.

3. Present graphs of price trajectories as functions of time.



7Conclusion 

In this chapter you will learn: 

– what the basic ways to study microeconomic questions specified by 
economic agents, economic goods and social space of interaction are 

– why neoclassical microeconomics is considered to be theory overly 
formalized in the mathematical sense 

– what the symptoms of impasse in Walrasian general equilibrium theory 
in the 1970s that led to the changes in modern microeconomics were. 

“For it is not enough to have a good mind, but the key is to apply it well” 

Discourse on the Method 

René Descartes 
This handbook attempts to present elementary issues essentially related to the 

traditional approach to microeconomic research, which is closely related to the 
neoclassical mainstream economics. 

The traditional approach to microeconomics, closely related to the works of 
Paul Samuelson and John R. Hicks, centres around four fundamental problems: 

1. consumer theory—a study of the behaviour of households choosing consumer 
goods under budget constraints, 

2. producer theory—studying the behaviour of enterprises that, while encounter-
ing technological limitations, are interested in maximizing profit or minimizing 
production costs, 

3. the theory of the exchange of goods in markets where there is no competition 
or, accordingly, there is imperfect competition or perfect competition,
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4. the theory of economic efficiency, in which the concept of Pareto efficiency 
is used to assess the collective effectiveness of interactions occurring between 
economic agents and influenced by the exchange of goods. 

In this approach, economic agents are assumed to operate rationally. This means 
that they have cognitive abilities and have enough information to define the criteria 
for evaluating various possible actions, as well as to identify internal and exter-
nal constraints characteristic to a specific economic agent, affecting their choices. 
This way of understanding rationality is related to the idea of searching for the 
conditional optimum, which is related to the “homo economicus” paradigm. The 
subject of interest of microeconomics is primarily the study of the choices made 
by economic agents, i.e. the way they arbitrage among the possible options for 
various activities by comparing the benefits and losses incurred in achieving their 
goals or satisfying their interests. In this approach, one may observe an opposition 
between the opportunities (possible choices) and goals (benefits and expectations 
of economic agents). This can apply to a wide variety of options and goals. The 
neoclassical microeconomics considers the activities of enterprises, the aim of 
which is actually not to maximize the profit of their shareholders, but to maximize 
the utility of their owners’ income. Another example would be “dynastic” house-
holds, whose aim is not to maximize the welfare of their members, but to maximize 
their own welfare while taking into account the well-being of numerous genera-
tions of descendants. Such approach may be regarded as conventional. It has the 
character of an even selection of, on the one hand, a set of goals and, on the 
other, the available means of their implementation by an abstract decision-making 
entity. This approach is not intended to describe the behaviour of specific “real” 
economic agents, but to provide a basis for predicting the overall consequences of 
such interactions. Traditional microeconomics can distinguish three main types of 
this kind of convention: 

– “economic agents”, or households and enterprises, which are considered as 
“black boxes”, when in reality they are groups of individuals that may dif-
fer significantly in size (e.g. large multinational enterprises). But nothing 
should prevent us from “opening these black boxes” in order to conduct a 
microeconomic analysis in relation to the interior of the household or of the 
enterprise, 

– “goods” that are of interest to economic agents. The concept of goods is defined 
with a certain degree of arbitrariness. They may vary in type and quality, may 
be produced conventionally or unconventionally (e.g. environmental pollution), 
legally or illegally (e.g. drugs), 

– “social space of interaction”, which in traditional microeconomics is identi-
fied with markets as spaces for transactions. However, one can also apply the 
microeconomic neoclassical analysis to all kinds of social transaction spaces, 
such as corporate internal markets, or formal and informal networks between 
economic agents.
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The prevailing opinion about microeconomics in the neoclassical perspective is 
that it is strongly formal. Opinions of this type are partly related to the fact that 
the use of mathematical models is an important part of the neoclassical approach to 
economics, which, on the one hand, encounters a shortage of mathematical knowl-
edge adequate to the complexity of the economic problems under consideration, 
and on the other hand, ignorance or reluctance to the use of formal language by 
economists acting as analysts of economic processes. Another distinguishing fea-
ture of the neoclassical approach is significant attachment to individual behaviour. 
This means that we have sufficient ability to relatively precisely define this type 
of action. The high importance attached to individual undertakings a priori leads 
to the rejection of the “hierarchical” vision of economic interactions and to its 
replacement by the vision of “horizontal” interactions. As a result, when inter-
preting economic facts and processes, the linear form of cause-effect relations is 
replaced with “co-causality” (relations of the feedback type). 

The traditional approach to microeconomics is quite strongly related to Wal-
ras’ theory of general equilibrium. However, due to some deadlock occurring in 
this theory felt particularly strongly in the 1970s, significant modifications were 
implemented thus giving rise to modern microeconomics. The first symptom of 
the changes taking place at that time was the expansion of research in microe-
conomics. One example is the search for relationships between microeconomics 
and macroeconomics, expressed in the creation of the theory of macroeconomics, 
firmly embedded in the theory of microeconomics. As a result of expanding the 
research area of microeconomics, new approaches and paradigms have emerged 
that are complementary and sometimes contradictory. At this point, it is worth pre-
senting, as briefly as possible, two of them: the agency theory and the theory of 
contracts. In the case of agency theory, motivation and information play a key role. 
“Motivation” is understood here as the action of an economic agent (e.g. govern-
ment, company director, …) inducing certain economic agents (citizens, company 
employees, …) to a strictly defined type of behaviour in conditions of limited 
access to full information necessary for effective operation. In other words, this is 
called information asymmetry. Information asymmetry may lead to negative selec-
tion or anti-selection when the result of a specific action is known only to one of at 
least two business agents implementing or intending to implement a joint action. 
This can lead to moral hazard (moral uncertainty) on the part of the economic 
agent who is fully knowledgeable about the specific action and its results. The 
asymmetry of access to information leads to an attempt to precisely define given 
activities in the form of an agreement accepted by all economic agents concerned, 
which should grant a certain information rent to economic agents having access to 
incomplete information. The theory of contracts extends this line of reasoning, by 
considering individual economic agents (consumers, producers, households, enter-
prises, …) in terms of binding contracts. An important aspect of these contracts 
is their incompleteness. This means that it is impossible to define all types of 
obligations between specific economic agents. The incompleteness of contracts is 
related to the notion of the right to make residual decisions. This concept relates 
to making decisions on matters not settled by the contract. The incompleteness of
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contracts impacts the limited rationality in the organization’s behaviour in relation 
to unpredictable or non-verifiable activities. 

The development of the theory of contracts contributed to the development 
of negotiation and renegotiation theories. In fact, the subject of interest of eco-
nomic agents is not only to know the method and reasons for creating contracts 
but also to know the reasons for their positive or negative effects. 

The aforementioned theories are related to the institutional stream of eco-
nomics, treated by some economists as a sort of alternative for the overly 
formalized neoclassical trend. However, this way of understanding of the problem 
is not correct. The fact that some important real aspects of economic phenomena 
and processes can be identified within informal economic theories does not auto-
matically imply that the explanations they provide are sufficient or efficient from 
the point of view of economic agents. 

In these theories, we encounter the concept of uncertainty that accompanies the 
actions of economic agents. One of the effective tools for describing and solv-
ing such problems may be the theory of cooperative or non-cooperative games in 
the conditions of either full or incomplete access to information. Thus, there is a 
type of formal language that can be useful for describing and solving problems 
that involve imprecise definitions of economic phenomena and processes, or some 
other type of uncertainty that can be described in the language of probability or 
stochastics. 

Among the interesting attempts to develop the scope of microeconomic analy-
sis, it is worth mentioning those directions that are interdisciplinary in nature. They 
include economic law, which may attempt to create a microeconomic theory based 
on legislation and the legal system. Another example is the new political economy, 
which is closely related to political science. Finally, behavioural microeconomics 
may be an interesting alternative, resulting from stronger links between economics 
and psychology or sociology. 

The discussed examples of evolution in contemporary microeconomics allow to 
draw one’s attention to another aspect of economic education. When we start eco-
nomic studies, we usually lack a more complete set of references for the acquired 
economic knowledge. In general, economic education takes place in an isolated 
area of economic knowledge. It is true that students have the opportunity to sup-
plement their knowledge in the field of related social sciences (sociology, selected 
aspects of law, philosophy). Unfortunately, the didactic offer lacks approaches that 
would explicitly accept a specific relationship of the hierarchy of orders, creating 
an appropriate framework for microeconomic analyses. Accepting the idea of Pas-
cal’s hierarchy of orders, microeconomic analyses should take into account at least 
three levels of such hierarchy: ethical and moral order (superior order), legal and 
political order (intermediate order) and finally economic order (subordinate order). 
The idea of the descending hierarchy of orders formulated in this way is, in our 
opinion, the most interesting direction for the development of microeconomics in 
the future, as it would allow to analyze specific economic phenomena and pro-
cesses in a broader context that would take into account the ethical, legal, political 
and social aspects of economic activities.
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Going beyond the circle of traditional economic analyses, which only par-
tially take into account their sociological, philosophical, psychological or legal 
aspects, does not necessarily imply deepening the false division that occurs in eco-
nomic theory between quantitative (quantifiable) and qualitative (non-quantifiable) 
economics. On the contrary, the achievements of the so-called qualitative econ-
omy should go hand in hand with extending the scope of formalization of 
microeconomic problems, previously informal. An appropriate way out of this 
methodological deadlock might be to try to create a systems theory that takes into 
account the idea of a descending hierarchy of orders.



Mathematical Appendix

A.1 Elements of Logic and Theory of Sets

In the book we formulate statements to which one attributes a specified logical
value: truth or falsity. Let us denote by p and q simple statements to which we
attribute a value 0 if they are false or a value 1 if they are true.

A negation of a simple statement p is denoted by ¬p, which is to be read as
“it is not that p”.

Having simple statements one can form compound statements using logical
connectives:

• a conjunction p ∧ q of statements p and q is a true statement if and only if
both statements p and q are true. We read it as: p and q .

• a disjunction p ∨ q of statements p and q is a true statement if and only if at
least one of statements p or q is true. We read it as: p or q .

• an implication p ⇒ q with an antecedent p and a consequent q is a false
statement if and only if the antecedent p is true and the consequent q is false.
We read it as: if p then q .

• an equivalence p ⇔ q of statements p and q is a true statement if and only
if both statements p and q have the same logical value. We read it as: p if and
only if q .

According to De Morgan’s laws:

• a negation of a disjunction is a conjunction of negations

¬(p ∨ q) ⇔ ¬p ∧ ¬q,(A.1)

• negation of a conjunction is a disjunction of negations Table A.1

¬(p ∧ q) ⇔ ¬p ∨ ¬q.(A.2)
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Table A.1 Logical values of simple and compound statements

p q ¬ p ¬ q p ∧ q p ∨ q p ⇒ q p ⇔ q ¬(p ∨ q) ¬ p ∧ ¬ q ¬(p ∧ q) ¬ p ∨ ¬ q

0 0 1 1 0 0 1 1 1 1 1 1

0 1 1 0 0 1 1 0 0 0 1 1

1 0 0 1 0 1 0 0 0 0 1 1

1 1 0 0 1 1 1 1 0 0 0 0

A concept of a set is so-called primary concept, that is something one does
not define. A set consists of its elements which can be any mathematical objects
of a selected type (for example: numbers, functions, derivatives, etc., also sets).
A special case is a set ∅ which has no elements, called an empty set. To denote
that a given mathematical object belongs or does not belong to a set one writes:

x ∈ A — x belongs to set A,
x /∈ A — x does not belong to set A.

Two sets A and B are equal, which is written as A = B, if and only if every
element of set A is an element of set B and every element of set B is an element
of set A.

Set A is contained in set B (A is a subset of B), which is written as A ⊆ B, if
and only if every element of set A is an element of set B. We also say that A ⊆ B
is an inclusion of A in B.

If A ⊆ B ∧ A /= B we say then that A is a proper subset of B.
Basic operations on sets.

• an union of sets A and B is a set:

A ∪ B = {x |x ∈ A ∨ x ∈ B }(A.3)

• an intersection of sets A and B (also a common part or a product) is a set:

A ∩ B = {x |x ∈ A ∧ x ∈ B }(A.4)

• a difference of sets A and B is a set:

A\B = {x |x ∈ A ∧ x /∈ B }(A.5)

• a Cartesian product of sets A and B is a set:

A × B = {(a, b)|a ∈ A ∧ b ∈ B }(A.6)

of all ordered pairs (a, b) in which the first element of a pair belongs to set A
and the second element of a pair belongs to set B. If one considers Cartesian
product A × A then it is called also the Cartesian product on A.1

1 In the book we use a Cartesian product defined on a space of goods X = R
2+ (see Definition A.6).
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Selected properties of sets

Definition A.1 An element x ∈ A ⊆ R
2+ is called a limit of a sequence

{
xi

}+∞
i=1 if

lim
i→+∞ d

(
xi , x

) → 0, which one writes as:

lim
i→+∞ xi = x or xi →i→+∞ x.(A.7)

Definition A.2 Set A ⊆ X = R
2+ is called a closed set when:

∀xi ∈ A lim
i→+∞ xi = x ⇒ x ∈ A.(A.8)

Definition A.3 Set A ⊆ X = R
2+ is called a bounded set when:

∀x1, x2 ∈ A ∃N > 0 d
(
x1, x2

)
< N .(A.9)

Definition A.4 Set A ⊆ X = R
2+ is called a compact set when it is bounded and

closed.

Definition A.5 Set A ⊆ X = R
2+ is called a convex set when:

∀x1, x2 ∈ A, ∀α, β ≥ 0, α + β = 1 αx1 + βx2 ∈ A.(A.10)

Definition A.6 A Cartesian product defined on a space of goods on X = R
2+ is a

set:

X × X = {(
x1, x2

)||x1 ∈ X , x1 ∈ X
}
,(A.11)

of all ordered pairs of consumption bundles in which both bundles of goods (the
first and the second one in a pair) belong to the space of goods.
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Relation of preference as subset of Cartesian product and its properties

Definition A.7 A relation of (weak) preference is a set:

P = {(
x1, x2

) ∈ X × X |x1>x2
}
,(A.12)

of all ordered pairs of consumption bundles in which the first bundle is not worse
(weakly preferred) than the second bundle.

Definition A.8 A relation of strong preference is a set:

Ps = {(x1, x2) ∈ X × X |x1 > x2},(A.13)

of all ordered pairs of consumption bundles inwhich thefirst bundle is better (strongly
preferred) than the second bundle.

Definition A.9 A relation of consumer indifference is a set:

I = {(x1, x2) ∈ X × X |x1 ∼ x2},(A.14)

of all ordered pairs of consumption bundles in which the first bundle is as good
(indifferent) as the second bundle.

Definition A.10 A relation P of consumer (weak) preference is a relation of a total
preorder, which means that it is complete and transitive:

∀x1, x2 ∈ X = R
2+ x1>x2 ∨ x2>x1 (completeness),(A.15)

∀x1, x2, x3 ∈ X = R
2+ x1>x2 ∧ x2>x3 ⇒ x1>x3(transitivity).(A.16)

A.2 Linear Algebra

A n-dimensional vector x with coordinates being real numbers is an element/point
of the n-dimensional2 space R

n of real numbers. A notation:

2 In the book we consider only one- or two-dimensional spaces of real numbers or real nonnegative
numbers.
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x = (x1, x2) ∈ R
2 means that each coordinate of this vector is a real number,

x = (x1, x2) ∈ R
2+ means that each coordinate of this vector is a nonnegative

real number,
x = (x1, x2) ∈ intR2+ means that each coordinate of this vector is a positive
real number.

Operations on vectors and on matrices

• addition:

∀x1, x2 ∈ R
2 x1 + x2 = (x11 + x21, x12 + x22) ∈ R

2(A.17)

• subtraction:

∀x1, x2 ∈ R
2 x1 − x2 = (x11 − x21, x12 − x22) ∈ R

2(A.18)

• multiplication by a number:

∀λ ∈ R, ∀x ∈ R
2 λx = (λx1, λx2) ∈ R

2(A.19)

• multiplication of vectors (scalar product, also inner or dot product)

∀x1, x2 ∈ R
2 x1, x2 =

E2

i=1
x1i x2i = x11x21 + x12x22(A.20)

Definition A.11 A linear convex combination of vectors x1, x2 ∈ R
n is a vector

x ∈ R
n such that:

x = αx1 + βx2 where α, β ≥ 0, α + β = 1.(A.21)

Definition A.12 A line segment with vectors x1, x2 ∈ R
n as endpoints is a set of

all linear convex combinations of vectors x1, x2:
⎡
x1, x2

⎤ = {
αx1 + βx2|α, β ≥ 0, α + β = 1

} ⊂ R
n .(A.22)

Definition A.13 A determinant of matrix3 A =
⎡
a11 a12
a21 a22

⎤
is an expression:

detA = |A| = a11a22 − a12a21.(A.23)

3 A value of a determinant is a number (scalar). A determinant of a matrix refers only to square
matrices. In the case of matrices of higher orders (n≥3) there is a different, more complex definition
of a determinant of a matrix.
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A.3 Mathematical Analysis

Definition A.14 A function f from X to Y , denoted as f :X → Y is a mapping
that to any element from set X assigns exactly one element from set Y . Set X is
called a domain of function f (also set of arguments). Set Y is called a codomain
of function f (also set of values).

Let us assume that X = R
m and Y = R

n , where m, n are some natural numbers.
If n ≥ 2 then f :X → Y is called a vector function, which means its values are
vectors. If m = n = 1 then f :X → Y is called a one-variable scalar function,
which means its arguments are numbers and its values are also numbers (scalars).
If m = 2, n = 1 then f :X → Y is called a two-variable scalar function, which
means its arguments are vectors while its values are numbers (scalars).

Definition A.15 A metric is a mapping d:R2n → R+ that satisfies all the three
following conditions4:

1. ∀x1, x2 ∈ R
n d

(
x1, x2

) = 0 ⇔ x1 = x2,
2. ∀x1, x2 ∈ R

n d
(
x1, x2

) = d
(
x2, x1

)
,

3. ∀x1, x2, x3 ∈ R
n d

(
x1, x3

) ≤ d
(
x1, x2

) + d
(
x2, x3

)
.

Examples of metrics

(a) Euclidean: ∀x1, x2 ∈ R
n dE

(
x1, x2

) =
√

(x11 − x21)2 + ... + (x1n − x2n)2,
(b) Non-Euclidean: ∀x1, x2 ∈ R

n dNE
(
x1, x2

)=max{|x11 − x21|, ..., |x1n − x2n|}.

Selected properties of function f :R2+ → R.

Definition A.16 Function f :R2+ → R is called continuous at point x ∈ R
2+ if for

any sequence
{
xi

}+∞
i=1 ⊂ R

2+ it is satisfied that:

lim
i→+∞ xi = x ⇒ lim

i→+∞ f
(
xi

)
= f (x).(A.24)

Definition A.17 Function f :R2+ → R is called continuous on space R
2+ if it is

continuous at every point of this space.

Definition A.18 Function f :R2+ → R is called differentiable on space R
2+ if its

partial derivatives of 1st order:

∂ f (x1, x2)

∂x1
= lim

∆x1→0

f (x1 + ∆x1, x2) − f (x1, x2)

∆x1
,(A.25)

4 In the book we use mainly assumptions that n = 1 or n = 2.
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∂ f (x1, x2)

∂x2
= lim

∆x2→0

f (x1, x2 + ∆x2) − f (x1, x2)

∆x2
,(A.26)

are continuous on this space.

Formulas of selected elementary functions f :R2+ → R.

(a) constant function: y = f (x) = a,

∂ f (x1, x2)

∂x1
= ∂ f (x1, x2)

∂x2
= 0,(A.27)

(b) linear function: y = f (x) = a1x1 + a2x2,

∂ f (x1, x2)

∂x1
= a1,

∂ f (x1, x2)

∂x2
= a2,(A.28)

(c) power function: y = f (x) = axα1
1 xα2

2 ,

∂ f (x1, x2)

∂x1
= α1ax

α1−1
1 xα2

2 ,
∂ f (x1, x2)

∂x2
= α2ax

α1
1 xα2−1

2 ,(A.29)

(d) logarithmic function: y = f (x) = a1 ln x1 + a2 ln x2,

∂ f (x1, x2)

∂x1
= a1

x1
,

∂ f (x1, x2)

∂x2
= a2

x2
.(A.30)

Formulas for derivatives of sum, product and quotient of two functions of two
variables

1. f (x) = g(x) + h(x)

∂ f (x)
∂xi

= ∂g(x)
∂xi

+ ∂h(x)
∂xi

, i = 1, 2(A.31)

2. f (x) = g(x) · h(x)

∂ f (x)
∂xi

= ∂g(x)
∂xi

h(x) + ∂h(x)
∂xi

g(x), i = 1, 2(A.32)

3. f (x) = g(x)
h(x)

∂ f (x)

∂xi
=

∂g(x)
∂xi

h(x) − ∂h(x)
∂xi

g(x)

(h(x))2
, i = 1, 2(A.33)
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Definition A.19 A function f :R2+ → R is called:

(a) convex on space R
2+ if

∀x1, x2 ∈ R
2+ ∀α, β ≥ 0 α + β = 1

f
(
αx1 + βx2

) ≥ α f
(
x1

) + β f
(
x2

)
,

(A.34)

(b) concave on space R
2+ if

∀x1, x2 ∈ R
2+ ∀α, β ≥ 0 α + β = 1

f
(
αx1 + βx2

) ≤ α f
(
x1

) + β f
(
x2

)
,

(A.35)

(c) strictly convex on space R
2+ if

∀x1, x2 ∈ R
2+, x1 /= x2 ∀α, β ≥ 0α + β = 1

f
(
αx1 + βx2

)
> α f

(
x1

) + β f
(
x2

)
,

(A.36)

(d) strictly concave on space R
2+ if

∀x1, x2 ∈ R
2+, x1 /= x2 ∀α, β ≥ 0α + β = 1

f
(
αx1 + βx2

)
< α f

(
x1

) + β f
(
x2

)
.

(A.37)

Definition A.20 A function f :R2+ → R is called:

(a) increasing on space R
2+ if5

∀x1, x2 ∈ R
2+ x1>x2 ⇒ f

(
x1

)
> f

(
x2

)
,(A.38)

(b) decreasing on space R
2+ if

∀x1, x2 ∈ R
2+ x1>x2 ⇒ f

(
x1

)
< f

(
x2

)
,(A.39)

(c) weakly increasing on space R
2+ if

∀x1, x2 ∈ R
2+ x1>x2 ⇒ f

(
x1

) ≥ f
(
x2

)
,(A.40)

5 An inequality ∀x1, x2 ∈ R
n+ x1>x2 means that at least one component x1i of a vector x1 is

bigger than the corresponding component x2i of a vector x2 while the other components x1j ( j =
1, 2, . . . , n, j /= i, here n = 2) are bigger or equal to corresponding components x2j .
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(d) weakly decreasing on space R
2+ if

∀x1, x2 ∈ R
2+ x1>x2 ⇒ f

(
x1

) ≤ f
(
x2

)
.(A.41)

If a function f :R2+ → R is differentiable on its domain, then it is:

(a) increasing, when

∂u(x)
∂xi

> 0, i = 1, 2,(A.42)

(b) decreasing, when

∂u(x)
∂xi

< 0, i = 1, 2,(A.43)

(c) weakly increasing, when

∂u(x)
∂xi

≥ 0, i = 1, 2,(A.44)

(d) weakly decreasing, when

∂u(x)
∂xi

≤ 0, i = 1, 2.(A.45)

Unconditional optimization
In the whole book we consider searching for extremum points only for scalar,

one-variable
(
f : R

2++ → R

)
or two-variable functions ( f : R2+ → R), which

are assumed to be twice differentiable, thus with continuous derivatives of first
and of second order. If they are additionally strictly concave then we search for
maximum points. If they are strictly convex then we search for minimum points.
We focus on extremum points x̄ > 0.
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In other words, we solve problems of unconditional optimization for a value
of a function f : R2+ → R in an interior of its domain, that is in a set intR2+.

If a function f : R2+ → R is twice differentiable and strictly concave then we
say that it reaches its maximum f (x̄) at point x̄ > 0 if ∀x ∈ intR2+ f (x̄) ≥ f (x).
Unconditional maximization problem for a function f has a form:

x̄ = arg max
x∈intR2+

f (x).(A.46)

If a function g: R2+ → R is twice differentiable and strictly convex then we say
that it reaches its minimum g(x̄) at point x̄ > 0 if ∀x ∈ intR2+ g(x̄) ≤ g(x).
Unconditional minimization problem for a function g has a form:

x̄ = arg min
x∈intR2+

g(x).(A.47)

If function f : R2+ → R satisfies a condition:

lim
xi→0+

∂ f (x)
∂xi

> 0 ∧ lim
xi→+∞

∂ f (x)
∂xi

< 0, i = 1, 2,(A.48)

then:

∃1 x̄ > 0
∂ f (x)
∂xi

|||| x = x̄
= 0, i = 1, 2.(A.49)

When the function f : R2+ → R is striclty concave then (A.49) is a necessary
and sufficient condition for the existence of a maximum of this function at point
x̄ > 0.

If function g: R2+ → R satisfies a condition:

lim
xi→0+

∂g(x)
∂xi

< 0 ∧ lim
xi→+∞

∂g(x)
∂xi

> 0, i = 1, 2,(A.50)

then:

∃1 x̄ > 0
∂g(x)
∂xi

|||| x = x̄
= 0, i = 1, 2.(A.51)

When the function g: R2+ → R is striclty convex then (A.51) is a necessary and
sufficient condition for the existence of a minimum of this function at point x̄ > 0.
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Definition A.21 Let a function f : R2+ → R be twice differentiable. Then a square
and symmetric matrix of partial derivatives of second order for function f :

H(x) = H(x1, x2) =
⎡

⎣
∂2 f (x1,x2)

∂x21

∂2 f (x1,x2)
∂x1∂x2

∂2 f (x1,x2)
∂x2∂x1

∂2 f (x1,x2)
∂x22

⎤

⎦(A.52)

is called a Hessian (also Hessian matrix) of function f .

Definition A.22 A Hessian matrix H(x) of a function f : R2+ → R is called a
negative definite on its domain if ∀x ∈ R

2+ a determinant of its principal submatrix
of first order is negative:

det H1(x) = ∂2 f (x)

∂x21
< 0,(A.53)

while a determinant of its principal submatrix of 2nd order is positive:

det H2(x) = ∂2 f (x)

∂x21
· ∂2 f (x)

∂x22
− ∂2 f (x)

∂x1∂x2
· ∂2 f (x)
∂x2∂x1

> 0.(A.54)

Definition A.23 A Hessian matrix H(x) of a function f : R2+ → R is called a neg-
ative definite on its domain if ∀x ∈ R

2+ determinants of all its principal submatrices
are negative:

det H1(x) = ∂2 f (x)

∂x21
> 0,(A.55)

det H2(x) = ∂2 f (x)

∂x21
· ∂2 f (x)

∂x22
− ∂2 f (x)

∂x1∂x2
· ∂2 f (x)
∂x2∂x1

> 0.(A.56)

Definition A.24 A Hessian matrix H(x) of a function f : R2+ → R is called a non-
positive definite on its domain if ∀x ∈ R

2+ a determinant of its principal submatrix
of first order is non-positive:

det H1(x) = ∂2 f (x)

∂x21
≤ 0,(A.57)

while a determinant of its principal submatrix of 2nd order is non-negative:

det H2(x) = ∂2 f (x)

∂x21
· ∂2 f (x)

∂x22
− ∂2 f (x)

∂x1∂x2
· ∂2 f (x)
∂x2∂x1

≥ 0.(A.58)
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Definition A.25 A Hessian matrix H(x) of a function f : R2+ → R is called a
non-negative definite on its domain if ∀x ∈ R

2+ determinants of all its principal
submatrices are non-negative:

det H1(x) = ∂2 f (x)

∂x21
≥ 0,(A.59)

det H2(x) = ∂2 f (x)

∂x21
· ∂2 f (x)

∂x22
− ∂2 f (x)

∂x1∂x2
≥ 0.(A.60)

Theorem A.1 Let a function f : R2+ → R be twice differentiable. Then:

(i) function f is concave (convex) on its domain if and only if its Hessian is a
non-positive (non-negative) definite matrix,

(ii) function f is strictly concave (strictly convex) on its domain if and only if its
Hessian is a negative (positive) definite matrix.

Theorem A.2 If a function f : R+ → R is twice differentiable, strictly concave and
satisfies a condition: lim

x→0+
d f (x)
dx > 0 ∧ lim

x→+∞
d f (x)
dx < 0, then there exists exactly

one x̄ > 0 such that d f (x)
dx

|||| x = x̄
= 0 for which a function f reaches its maximum.

A necessary and sufficient condition for existence of a stationary point x̄ in which

the function f reaches its maximum is d f (x)
dx

|||| x = x̄
= 0.

Theorem A.3 If a function g: R+ → R is twice differentiable, strictly convex and
satisfies a condition: lim

x→0+
dg(x)
dx < 0 ∧ lim

x→+∞
dg(x)
dx > 0, then there exists exactly

one x̄ > 0 such that dg(x)
dx

|||| x = x̄
= 0 for which a function f reaches its minimum.

A necessary and sufficient condition for existence of a stationary point x̄ in which

the function f reaches its minimum is dg(x)
dx

|||| x = x̄
= 0.

Theorem A.4 If a function f : R2+ → R is twice differentiable, strictly concave

and satisfies a condition: lim
xi→0+

∂ f (x)
∂xi

> 0 ∧ lim
xi→+∞

∂ f (x)
∂xi

< 0, i = 1, 2, then there

exists exactly one x̄ > 0 such that ∂ f (x)
∂xi

||||x = x̄
= 0, i = 1, 2 for which a function

f reaches its maximum. A necessary and sufficient condition for existence of a

stationary point x̄ in which the function f reaches its maximum is ∂ f (x)
∂xi

||||x = x̄
=

0, i = 1, 2.
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Theorem A.5 If a function g: R2+ → R is twice differentiable, strictly convex

and satisfies a condition: lim
xi→0+

∂ f (x)
∂xi

< 0 ∧ lim
xi→+∞

∂ f (x)
∂xi

> 0, i = 1, 2, then

there exists exactly one x̄ > 0 such that ∂ f (x)
∂xi

||||x = x̄
= 0, i = 1, 2 for which

a function f reaches its minimum. A necessary and sufficient condition for the
existence of a stationary point x̄ in which the function f reaches its minimum is
∂ f (x)
∂xi

||||x = x̄
= 0, i = 1, 2.

Conditional optimization
In this book we consider many problems of conditional optimization that is all
about searching for stationary points at which a function f : R2+ → R or g: R2+ →
R reaches, respectively, its maximum or minimum in a nonempty, convex and
compact set B ⊂ X = R

2+. Restricting the optimization problem to a subset B,
thus introducing constraints in the optimization, one should apply concepts of local
and global extrema.

If a strictly concave function f : R2+ → R satisfies a condition: lim
xi→0+

∂ f (x)
∂xi

>

0 ∧ lim
xi→+∞

∂ f (x)
∂xi

< 0, i = 1, 2, then there exists exactly one x̄ > 0 such that

∂ f (x)
∂xi

||||x = x̄
= 0, i = 1, 2 for which a function f reaches its maximum. However,

restricting the optimization problem to a subset B one should apply concepts of
local and global maxima. A stationary point x̄ > 0 at which a function f reaches
its maximum in the whole domain is called a global maximum and denoted as x̄G .
It can be that x̄G ∈ B or x̄G ∈ X\B. When x̄G ∈ X\B then a point x̄ ∈ B at
which a function f reaches its maximum is called a local maximum of a function
f in a set B and denoted as x̄L .
If a strictly convex function g: R2+ → R satisfies a condition: lim

xi→0+
∂g(x)
∂xi

<

0 ∧ lim
xi→+∞

∂g(x)
∂xi

> 0, i = 1, 2, then there exists exactly one x̄ > 0 such that

∂g(x)
∂xi

||||x = x̄
= 0, i = 1, 2 for which a function g reaches its minimum. However,

restricting the optimization problem to a subset B one should apply concepts of
local and global minima. A stationary point x̄ > 0 at which a function g reaches
its minimum in the whole domain is called a global minimum and denoted as x̄G .
It can be that x̄G ∈ B or x̄G ∈ X\B. In a case when x̄G ∈ X\B then a point
x̄ ∈ B at which a function g reaches its minimum is called a local minimum of a
function g in a set B and denoted6 as x̄L .

6 Here there is no need to distinguish denotation of stationary points between maxima and minima
(local or global ones) because once we have formulated an optimization problem we know whether
we search for a maximum or for a minimum.
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Conditional maximization problem for a function f has a form:

x̄ = arg max
x∈B⊂intR2+

f (x),(A.61)

and unconditional minimization problem for a function g has a form:

x̄ = arg min
x∈B⊂intR2+

g(x).(A.62)

In the book we consider conditional optimization problems when a set B has a
form:

(a) B = {
x ∈ R

2+|p1x1 + p2x2 ≤ I , x1 ≤ b1, x2 ≤ b2
}
,

(b) B = {
x ∈ R

2+|p1x1 + p2x2 ≤ I
}
,

(c) B = {
x ∈ R

2+| x1 ≤ b1, x2 ≤ b2
}
,

(d) B = {
x ∈ R

2+|h(x) = yo
}
,

where: b1, b2, I , y0 = const. > 0.

If we are interested only in positive stationary points: x̄ > 0 in the conditional
optimization problem and B is described by constraints determining upper limit
values for a vector x ∈ B ⊂ R

2+ then two cases are possible. When x̄G /∈ B then
x̄ = x̄L ≤ b. We say then that constraints on variables are binding. When x̄G ∈ B
then x̄ = x̄G ≤ b. We say then that constraints on variables are not binding.
In this second case, the conditional optimization problem reduces in fact to the
unconditional optimization.

It is worth noticing that conditional optimization problems (A.61) and (A.62)
are all about determining optimal solutions to a nonlinear programming problem
for strictly concave (strictly convex) objective function in a nonempty, convex and
compact set B = {

x ∈ R
2+ : x ≤ b

} ⊂ X = R
2+.

Let us formulate a maximization problem for values of a function f : R2+ → R

in a nonempty, convex and compact set7 B ⊂ X = R
2+:

f (x1, x2) |→ max(A.63)

x1 ≤ b1,(A.64)

x2 ≤ b2,(A.65)

h(x1, x2) ≤ b3,(A.66)

7 The set B is described by conditions (A.64)–(A.67).
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x1, x2 ≥ 0.(A.67)

where:

f : R2+ → R — twice differentiable and strictly concave,
h:R2+ → R — twice differentiable and concave,
b1, b2, b2 > 0 — parameters.

Problem (A.63)–(A.67) can be expressed using a Lagrange function

L(x,λ) = f (x) + λ1(b1 − x1) + λ2(b2 − x2) + λ3(b3 − h(x1, x2)).(A.68)

Theorem A.6 (the Kuhn-Tucker theorem) Let a function f : R2+ → R be twice
differentiable and strictly concave and a function h: R2+ → R twice differentiable
and concave on a nonempty, convex and compact set B ⊂ X = R

2+. Then x̄ ≥ 0
is an optimal solution to problem (A.63)–(A.67) if and only if there exists a pair(
x̄, λ̄

) ≥ 0 that satisfies a set of conditions:

∂L
(
x, λ̄

)

∂xi

|||||
x=x̄

≤ 0, i = 1, 2(A.69)

E2

i=1
x̄ i

∂L
(
x, λ̄

)

∂xi

|||||
x=x̄

= 0,(A.70)

∂L(x̄,λ)

∂λ j

||||
λ=λ̄

≥ 0, j = 1, 2, 3,(A.71)

E3

j=1
λ j

∂L(x̄,λ)

∂λi

||||
λ=λ̄

= 0,(A.72)

where:

∂L
(
x, λ̄

)

∂xi

|||||
x=x̄

= ∂ f (x)
∂xi

||||
x=x̄

− λ̄i − λ̄3
∂h(x1, x2)

∂xi

||||
x=x̄

, i = 1, 2,(A.73)

∂L(x̄, λ)

∂λi

||||
λ=λ̄

= bi − x̄ i , i = 1, 2,(A.74)

∂L(x̄, λ)

∂λ3

||||
λ=λ̄

= b3 − h(x̄1, x̄2).(A.75)
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Conditions (A.69) and (A.71) take forms:

x̄1

(
∂ f (x)
∂x1

||||
x=x̄

− λ̄1 − λ̄3
∂h(x1, x2)

∂x1

||||
x=x̄

)

+x̄2

(
∂ f (x)
∂x2

||||
x=x̄

− λ̄2 − λ̄3
∂h(x1, x2)

∂x2

||||
x=x̄

)
= 0

(A.76)

λ̄1(b1 − x̄1) + λ̄2(b2 − x̄2) + λ̄3(b3 − h(x̄1, x̄2)) = 0,(A.77)

where: λ̄ j = ∂ f (x)
∂b j

|||
x=x̄

≥ 0, j = 1, 2, 3 means an optimal Lagrange multiplier

which determines by how much the maximum value of a function f : R2+ → R

approximately increases when a value of parameter b j increases by one notional
unit.

If λ̄ j > 0 ( j = 1, 2, 3) then the j-th constraint is binding. When λ̄ j = 0 then
the j-th constraint is not binding.

Let us assume that we are interested only in a positive optimal solution x̄ > 0
to problem (A.63)–(A.67). Then condition (A.75) is satisfied if and only if:

∂ f (x)
∂xi

||||
x=x̄

− λ̄i − λ̄3
∂h(x1, x2)

∂xi

||||
x=x̄

= 0, i = 1, 2.(A.78)

If additionally ∀ j = 1, 2, 3 λ̄ j = 0 then condition (A.75) takes the form:

∂ f (x)
∂xi

||||
x=x̄

= 0, i = 1, 2.(A.79)

This takes place when no constraint is binding, which means that:

x̄ = x̄G ≤ b.(A.80)

When none of the constraints describing a set B is binding then an optimal
solution x̄ = x̄G to problem (A.63)–(A.67) is identical to a global maximum that
a strictly concave function f : R2+ → R reaches in a space X = R

2+. Then the
conditional maximization problem is the same as the unconditional maximization
problem.

This gives us a useful conclusion. If we want to determine the optimal solu-
tion to problem (A.63)–(A.67) we should find a global maximum of a function
f : R2+ → R in its domain X = R

2+. If x̄G ∈ B then the optimal solution
to problem (A.63)–(A.67) is x̄ = x̄G ≤ b.

When ∀ j = 1, 2, 3 λ̄ j > 0 then each constraint is binding and condition (A.77)
is satisfied in the initial form. In the same time from Condition (A.76) we get that:

x̄ i = bi , i = 1, 2(A.81)
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and

h(x̄1, x̄2) = b3.(A.82)

In this case an optimal solution to problem (A.63)–(A.67) is a vector x̄ = x̄L

such that x̄G > x̄L . Then a stationary point x̄ = x̄L is called a local maximum of a
function f : R2+ → R in a set B ⊂ X = R

2+.
In any of the remaining six cases, when at least one optimal Lagrange multiplier

is non-zero, we proceed in a similar way. As a result, on the basis of conditions
(A.75) and (A.76), one gets an optimal solution x̄ = x̄L such that x̄G > x̄L . A
stationary point x̄ = x̄L is then called a local maximum of a function f : R2+ → R

in a set B ⊂ X = R
2+.

If in the conditional optimization problem one concerns a strictly convex func-
tion g: R2+ → R and searches for a stationary point at which this function reaches
its minimum then one can proceed in a similar way as for a strictly concave func-
tion and searching a maximum. The minimization problem can be expressed in
an equivalent form when one substitutes a strictly convex function g: R2+ → R

with such a strictly concave function f : R2+ → R that ∀x ⊂ R
2+ g(x) = − f (x)

and searches for a stationary point in a set B at which a function f reaches its
maximum.

The Kuhn-Tucker theorem refers to a strictly concave function, while the com-
ments concern a positive optimal solution x̄ > 0 in a set B. It is not difficult to
formulate analogical comments in cases when an optimal solution is non-negative
x̄ ≥ 0 or when a function f : R2+ → R is just concave (not strictly) and a function
g: R2+ → R is just convex (not strictly).

Let us present conclusions resulting from the Kuhn-Tucker theorem for two
special cases of problem (A.63)–(A.67).

Case 1 Let a function f : R2+ → R be strictly concave and twice differentiable. Let
us assume that h(x1, x2) = p1x1 + p2x2, b1 = b2 = +∞, b3 = I > 0. Then
problem (A.63)–(A.67) can be expressed in a form:

f (x1, x2) |→ max(A.83)

p1x1 + p2x2 ≤ I ,(A.84)

x1, x2 ≥ 0,(A.85)

to which the following Lagrange function corresponds:

L(x, λ) = f (x) + λ(I − p1x1 − p2x2).(A.86)
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If we assume additionally that a function f :R2+ |→ R satisfies a condition:

lim
xi→0+

∂ f (x)
∂xi

> 0 ∧ limxi→+∞
∂ f (x)
∂xi

< 0, i = 1, 2,(A.87)

then the Kuhn-Tucker theorem can be formulated as follows.

Theorem A.7 (the Kuhn-Tucker theorem) Let a function f : R2+ → R be
twice differentiable and strictly concave and a function h: R2+ → R twice
differentiable and concave on a nonempty, convex and compact set B ={
x ∈ R

2+ : p1x1 + p2x2 ≤ I
} ⊂ X = R

2+. Then a vector x̄ ≥ 0 is an optimal
solution to problem (A.83)–(A.85) if and only if there exists a pair

(
x̄, λ̄

) ≥ 0 that
satisfies a set of conditions:

∂L
(
x, λ̄

)

∂xi

|||||
x=x̄

≤ 0, i = 1, 2,(A.88)

E2

i=1
x̄ i

∂L
(
x, λ̄

)

∂xi

|||||
x=x̄

= 0,(A.89)

∂L(x̄, λ)

∂λ

||||
λ=λ̄

≥ 0,(A.90)

λ̄
∂L(x̄, λ)

∂λ

||||
λ=λ̄

= 0,(A.91)

where:

∂L
(
x, λ̄

)

∂xi

|||||
x=x̄

= ∂ f (x)
∂xi

||||
x=x̄

− λ̄pi , i = 1, 2,(A.92)

∂L(x̄, λ)

∂λ

||||
λ=λ̄

= I − p1 x̄1 − p2 x̄2.(A.93)

Conditions (A.89) and (A.91) take forms:

x̄1

(
∂ f (x)
∂x1

||||
x=x̄

− λ̄p1

)
+ x̄2

(
∂ f (x)
∂x2

||||
x=x̄

− λ̄p2

)
= 0,(A.94)

λ̄(I − p1 x̄1 − p2 x̄2) = 0,(A.95)

where: λ̄ = ∂ f (x)
∂ I

|||
x=x̄

≥ 0 means an optimal Lagrange multiplier, which deter-

mines by how much the maximum value of a function f : R2+ → R approximately
increases when a value of parameter I increases by one notional unit.
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If λ̄ > 0 then constraint (A.84) is binding. When λ̄ = 0 then the constraint is
not binding.

Let us assume that we are interested only in a positive optimal solution x̄ > 0
to problem (A.83)–(A.85) then condition (A.94) is satisfied if and only if:

∂ f (x)
∂xi

||||
x=x̄

− λ̄pi = 0, i = 1, 2.(A.96)

If additionally λ̄ = 0 then condition (A.96) takes the form:

∂ f (x)
∂xi

||||
x=x̄

= 0, i = 1, 2.(A.97)

This takes place when constraint (A.84) is not binding, which means that:

x̄ = x̄G .(A.98)

When the constraint describing a set B is not binding then an optimal solution
x̄ = x̄G to problem (A.83)–(A.85) is identical to a global maximum that a strictly
concave function f : R2+ → R reaches in a space X = R

2+. Then the conditional
maximization problem is the same as the unconditional maximization problem.

When λ̄ > 0 then the constraint is binding and condition (A.94) is satisfied in
the initial form. At the same time from condition (A.95) we get that:

p1 x̄1 + p2 x̄2 = I .(A.99)

In this case an optimal solution to problem (A.83)–(A.85) is a vector x̄ = x̄L

such that x̄G > x̄L . Then a stationary point x̄ = x̄L is called a local maximum of a
function f : R2+ → R in a set B ⊂ X = R

2+.
Let us consider a case when a function f : R2+ → R is strictly concave, twice

differentiable and increasing in its whole domain. This means that we do not
assume condition (A.87). Let us assume that we are interested only in a posi-
tive optimal solution x̄ > 0 of problem (A.83)–(A.85). In such a case a function
f : R2+ → R has no global maximum8 x̄G > 0. But since there is the binding con-
straint (A.84) the function has an optimal solution x̄ = x̄L which can be derived
from a system of equations:

∂ f (x)
∂xi

||||
x=x̄

= λ̄pi , i = 1, 2,(A.100)

p1 x̄1 + p2 x̄2 = I .(A.101)

8 Strictly speaking, there does not exist a finite optimal solution to problem (A.82)–(A.84), which
would be equivalent to the global maximum.
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where: λ̄ > 0 means an optimal Lagrange multiplier, which determines by how
much the maximum value of a function f : R2+ → R approximately increases when
a value of parameter I > 0 increases by one notional unit.

Case 2 Let a function f : R2+ → R be increasing, strictly concave and twice differ-
entiable. Let us assume that h(x1, x2) = p1x1 + p2x2, b1 = b2 > 0, b3 = +∞.
Then problem (A.63)–(A.67) can be expressed in a form:

f (x1, x2) |→ max(A.102)

x1 ≤ b1,(A.103)

x2 ≤ b2,(A.104)

x1, x2 ≥ 0,(A.105)

to which the following Lagrange function corresponds:

L(x,λ) = f (x) + λ1(b1 − x1) + λ2(b2 − x2)(A.106)

If we assume additionally that a function f : R2+ → R satisfies condition (A.87)
then the Kuhn-Tucker theorem can be formulated as follows.

Theorem A.8 (the Kuhn-Tucker theorem) Let a function f : R2+ → R be twice
differentiable and strictly concave on a nonempty, convex and compact set B ={
x ∈ R

2+| x1 ≤ b1, x2 ≤ b2
} ⊂ X = R

2+. Then a vector x̄ ≥ 0 is an optimal solution
to problem (A.102)–(A.105) if and only if there exists a pair

(
x̄, λ̄

) ≥ 0 that satisfies
a set of conditions:

∂L
(
x, λ̄

)

∂xi

|||||
x=x̄

≤ 0, i = 1, 2,(A.107)

E2

i=1
x̄ i

∂L
(
x, λ̄

)

∂xi

|||||
x=x̄

= 0,(A.108)

∂L(x̄, λ)

∂λ j

||||
λ=λ̄

≥ 0, j = 1, 2,(A.109)

λ̄1
∂L(x̄,λ)

∂λ1

||||
λ=λ̄

+ λ̄2
∂L(x̄,λ)

∂λ2

||||
λ=λ̄

= 0,(A.110)
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where:

∂L
(
x, λ̄

)

∂xi

|||||
x=x̄

= ∂ f (x)
∂xi

||||
x=x̄

− λ̄i , i = 1, 2,(A.111)

∂L(x̄, λ)

∂λi

||||
λ=λ̄

= bi − x̄ i , i = 1, 2.(A.112)

Conditions (A.108) and (A.110) take forms:

x̄1

(
∂ f (x)
∂x1

||||
x=x̄

− λ̄1

)
+ x̄2

(
∂ f (x)
∂x2

||||
x=x̄

− λ̄2

)
= 0,(A.113)

λ̄1(b1 − x̄1) + λ̄2(b2 − x̄2) = 0,(A.114)

where: λ̄i = ∂ f (x)
∂bi

|||
x=x̄

≥ 0, i = 1, 2 means an optimal Lagrange multiplier

which determines by how much the maximum value of a function f : R2+ → R

approximately increases when a value of parameter bi increases by one notional
unit.

If λ̄i > 0 (i = 1, 2) then the i-th constraint is binding. When λ̄i = 0 then the
i-th constraint is not binding.

Let us assume that we are interested only in a positive optimal solution x̄ > 0
to problem (A.102)–(A.105) then condition (A.113) is satisfied if and only if:

∂ f (x)
∂xi

||||
x=x̄

− λ̄i = 0, i = 1, 2.(A.115)

If additionally ∀i = 1, 2 λ̄i = 0 then condition (A.115) takes the form:

∂ f (x)
∂xi

||||
x=x̄

= 0, i = 1, 2.(A.116)

This takes place when no constraint on resources is binding, which means that:

x̄ = x̄G .(A.117)

When none of the constraints describing a set B is binding then an optimal
solution x̄ = x̄G to problem (A.102)–(A.105) is identical to a global maximum
that a strictly concave function f : R2+ → R reaches in a space X = R

2+. Then the
conditional maximization problem is the same as the unconditional maximization
problem.

In the case when ∀i = 1, 2 λ̄i > 0 then each constraint is binding and condition
(A.113) is satisfied in the initial form. At the same time from condition (A.113),
we get that:

x̄ i = bi , i = 1, 2(A.118)
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In this case, an optimal solution to problem (A.102)–(A.105) is a vector x̄ = x̄L

such that x̄G > x̄L . Then a stationary point x̄ = x̄L is called a local maximum of a
function f : R2+ → R in a set B ⊂ X = R

2+.
Let us consider a case when a function f : R2+ → R is strictly concave, twice

differentiable and increasing in its whole domain. This means that we do not
assume condition (A.87). If we are interested only in a positive optimal solution
x̄ > 0 of problem (A.102)–(A.105). In such a case a function f : R2+ → R has no
global maximum9 x̄G > 0. But since there are the binding constraints (A.103) and
(A.104), the function has an optimal solution x̄ = x̄L which can be derived from
a system of equations:

b1 = x̄1,(A.119)

b2 = x̄2.(A.120)

From condition (A.115), one gets in addition the following:

∂ f (x)
∂xi

||||
x=x̄

= λ̄i , i = 1, 2,(A.121)

where: λ̄i > 0, i = 1, 2 means an optimal Lagrange multiplier, which deter-
mines by how much the maximum value of a function f : R2+ → R approximately
increases when a value of parameter bi > 0 increases by one notional unit.

A4 Difference and Differential Equations

Definition A.26 A first increment (difference) of variable y(t) is an expression
of a form10:

∆y(t) = y(t + 1) − y(t).(A.122)

Definition A.27 A n-th order increment of variable y(t) is the first increment of
(n − 1)-th order increment:

∆n y(t) = ∆
(
∆n−1y(t)

)
.(A.123)

9 Strictly speaking, there does not exist a finite optimal solution to problem (A.102)–(A.105),
which would be equivalent to the global maximum.
10 In the book we exploit difference and differential equations when a variable that means time is
treated as an independent variable. When time is meant as a discrete variable then one exploits dif-
ference equations or sets of difference equations. When time is meant as a continuous variable then
one exploits differential equations or sets of differential equations. In Definitions A.26–A.32 time
variable can be replaced by any variable x that is discrete (Definitions A.26–A.30) or continuous
(Definitions A.31 and A.32).
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Definition A.28 A n-th order difference equation is an expression of a form:

F
(
∆n y(t), ∆n−1y(t), ...,∆y(t), y(t), t

) = 0.(A.124)

Definition A.29 A n-th order linear difference equation is an expression of a
form:

y(t + n) + a1(t)y(t + n − 1) + ... + an(t)y(t) = g(t),(A.125)

where: ai (t), i = 1, 2, ..., n, g(t), an(t) /= 0 mean any sequence of numbers.

Definition A.30 A first-order linear difference equation is an expression of a
form:

y(t + 1) + ay(t) = c.(A.126)

Definition A.31 An ordinary differential equation of n-th order is an expression
of a form:

F

(
t, y,

dy

dt
,
d2y

dt2
, ...,

dn y

dtn

)
= 0.(A.127)

Definition A.32 An ordinary linear differential equation of first order is an
expression of a form:

dy

dt
+ p(t)y = q(t).(A.128)

NoteA.1 An ordinary linear differential equation of first order is called homogenous
when q(t) ≡ 0. Otherwise is called heterogeneous.

Definition A.33 Any function y(t) that transforms an ordinary differential equation
of n-th order into an identity is called a solution to this differential equation.

Transition from difference equations to differential equations

There is given a difference equation of a form:

x(t + 1) − x(t) = g(x(t)).(A.129)

Let us present its approximation for any ∆t ∈ [0; 1]:

x(t + ∆t) − x(t) ∼= ∆tg(x(t)).(A.130)
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If ∆t = 0 then one gets an identity. When ∆t = 1 then (A.130) is equivalent
to (A.129).

When ∆t ∈ (0; 1) then (A.130) is a sufficiently good linear approximation of
(A.129) if: (A.131)

∀x ∈ [x(t); x(t + 1)], g(x) ∼= g(x(t))(A.131)

.
Dividing (A.130) on both sides by ∆t and assuming ∆t → 0 one gets:

lim
∆t→0

x(t + ∆t) − x(t)

∆t
= dx(t)

dt
∼= g(x(t)).(A.132)

Differential Eq. (A.132) is a counterpart of difference equation (A.129) in a
case when t and t + 1 are “small”.
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Glossary

Allocation – a result of distribution of consumer goods among all traders (con-
sumers). The distribution refers to the demand for consumer goods as well as to
the supply of goods. In a simple model of exchange and in the Arrow-Hurwicz
model, the distribution of the supply of consumer goods is determined by endow-
ment of consumer goods in consumptions bundles that traders come to a market
with. The distribution of the demand for consumer goods is determined implic-
itly by relations of preference of consumers and in the Arrow-Hurwicz model
explicitly by Marshallian demand functions, each of them corresponding to a
given consumer.

Allocation accepted by traders – any allocation feasible with regard to an initial
allocation such that its consumption bundles have their utility not smaller than
the utility of bundles that traders come to a market with.

Allocation blocked by traders – any allocation feasible with regard to an initial
allocation such that there exists some other feasible allocation (with regard to an
initial allocation) that is better for at least one of traders and not worse for the
other traders.

Allocation feasiblewith regard to an initial allocation – any allocation describing
the demand of each trader for each consumer good such that its resulting total
demand reported by all consumers for each good equals the supply of this good.

Allocation, initial allocation – distribution of the supply of all consumer goods
among all traders who come to a market with consumptions bundles in order to
exchange them for optimal bundles.

Allocation optimal (efficient) in the Pareto sense – any allocation feasible with
regard to initial allocation such that there does not exist any other feasible allo-
cation (with regard to an initial allocation) that would be better for at least one
of traders and not worse for the other traders.

Allocation, Walrasian equilibrium allocation – a Pareto optimal (efficient)
allocation that is established on a market of consumer goods by Walrasian
equilibrium prices.

Arrow-Debreu-McKenzie model – an example of a general equilibrium model.
It is a model in which one distinguishes in the economy the part related to pro-
duction and the part related to exchange (consumption). It can be presented in a
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static or dynamic version (with discrete or continuous time). Within this frame-
work, one determines conditions for the existence, uniqueness and asymptotic
global stability of a Walrasian equilibrium state defined with an accuracy of a
structure.

Arrow-Hurwiczmodel – an example of a market equilibrium model. It is a model
in which one describes only this part of the economy that is related to exchange
(consumption). It can be presented in a static or dynamic version (with discrete
or continuous time) . Within this framework, one determines conditions for the
existence, uniqueness and asymptotic global stability of a Walrasian equilibrium
state defined with an accuracy of a structure.

Average fixed cost of production – (unit fixed cost)—the production fixed cost
per output unit.

Average revenue (turnover) from sales of product – the revenue (turnover) from
sales of a product per output unit.

Average total cost of production (unit total cost) – production total cost per
output unit.

Average variable cost of production (unit variable cost) – production variable
cost per output unit.

Break-even points (profitability thresholds) – levels of inputs of particular pro-
duction factors or of the product supply indicating by which levels of these
variables a firm having production activity has zero profit. For inputs (or for
the supply) in intervals indicated by the break-even points a firm generates
non-negative profits, outside these intervals the firm incurs financial losses.

Budget line (budget constraint) – a set of all consumption bundles whose money
value, by given prices of consumer goods, is equal to an income of a given
consumer.

Budget set – a set of all consumption bundles whose money value, by given prices
of consumer goods, is not greater than an income of a given consumer.

Capital, human capital – knowledge and skills of people that result from cumu-
lating effects of schooling, competencies acquired at work and more generally of
education. In some production processes, especially when studied from a point
of view of macroeconomics, treated as one of production factors.

Capital, physical capital – tangible assets used in production processes, treated
as a production factor.

Ceteris paribus – an expression meaning that when one determines an effect of a
change in some single variable on a value of some function there is an assump-
tion that values of other variables remain unchanged. This assumption serves
analyzing the influence of a separated single factor.

Competition, imperfect competition – a situation on a market of a given product
when at least one of the assumptions describing the perfect competition is not
satisfied.
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Competition, perfect competition – a situation on a market of a given product
described by a set of the four following assumptions11:

– market atomization: a number of agents (consumers/producers) reporting the
demand for a given product (treated as a consumer good/production factor) or
reporting the supply (producers) of this product is big enough for each of them
not to have decisive impact on a level of a product price or on conditions of
exchange of the product. As a consequence each producer takes the price of the
product as given by the market and treats it as a parameter adjusting the output
level by her/his firm.

– homogeneity of a product: products manufactured by firms are all undifferen-
tiated,

– transparency: each economic agent has perfect knowledge about a supply level
and about a price of the product,

– liquidity: there are no barriers hindering entry to or exit from the market of the
product since any decision of such type does not involve additional costs.

Competition, price competition – a situation on a market of two (duopoly), a
few (oligopoly) or many (monopolistic competition12) heterogeneous products
when producers manufacture and sell products presented by them and perceived
by consumers as substitutive. Then the producers compete on price levels trying
each one to maximize her/his profit. An example of a model describing the price
competition is the duopoly Bertrand model.

Competition, quantity competition – a situation on a market of one homogenous
product when two (duopoly), a few (oligopoly) or many (oligopoly) producers
manufacture and sell the same product and compete on supply levels trying each
one to reach the biggest share of the market at the same time to maximize her/his
profit. Examples of models describing the quantity competition are the Cournot
and the Stackelberg duopoly models.

Complementary consumers goods (complements) – such goods that a given
consumer wants to have them always in some proportion of quantities. As a
consequence a utility level of a consumption bundle increases (decreases) only
when quantities of all goods increase (decrease) in a specific proportion. Treat-
ing goods as complements is generally subjective and describes the preferences
of a consumer in a certain way determined by a weakly increasing utility func-
tion. From a point of view of demand reaction, two consumer goods are called

11 In the considerations about the perfect competition presented in the book of crucial importance
is the fact whether a firm has or does not have influence on a price of a product manufactured by
the firm.
12 In the book we do not study a market structure called monopolistic competition (not to confuse
with a monopoly nor with a monopolist) since this is the most complex market structure. Analyzing
such concepts as price competition, quantity competition, profit maximization or production cost
minimization is much more clear in less complex models, as those presented in the book. Monop-
olistic competition can be seen as a market structure intermediate between an oligopoly and the
perfect competition.
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complementary when a rise in a price of one of these goods results in a decrease
in the demand for the other good.

Complementary consumer goods, perfect complements – specific complemen-
tary goods such that a proportion in which a consumer wants to have them is
always the same, regardless of quantities of goods in a consumption bundle.
Preferences towards perfect complements are described by a Koopmans-Leontief
utility function.

Complementary production factors – such production factors that in a given
production process a producer needs to use them always in some proportion
of inputs. As a consequence an output level increases (decreases) only when
inputs of all production factors increase (decrease) in a specific proportion. In
a production process, an output level depending on inputs of such production
factors is described by a weakly increasing utility function. When the proportion
of the usage of such production factors is always the same, regardless of inputs
of these factors, then they are called perfectly complementary.

Consumer Giffen good – an inferior good for which a rise in a price of this good
results in an increase in the demand for this good.

Consumer goods’ space – a set of all bundles of goods available on a mar-
ket along with a non-Euclidean metric specified on this set.

Consumer inferior good – a good for which a rise (decline) in a consumer’s
income results in a decrease (increase) in the demand for this good.

Consumer independent goods – such goods that when there is a rise in a price
of one of these goods it does not affect the demand for the other good.

Consumer normal good – a good for which a rise (decline) in a consumer’s
income results in an increase (decrease) in the demand for this good.

Consumer ordinary good – a good for which a rise in a price of this good results
in a decrease in the demand for this good.

Consumer Veblen good – a normal good for which an increase in a price of this
good results in an increase in the demand for this good.

Consumption bundle – one of primary concepts in the theory of consumer
choice, defined as a vector in which i-th coordinate describes non-negative quan-
tity of i-th consumer good expressed in physical units. These quantities of goods
are owned by a given consumer or considered to be purchased by her/him,
depending on the description of a question.

Contract curve – a set of Pareto-optimal allocations having given some initial
allocation. It is presented graphically in the Edgeworth box.

Cost, opportunity cost – when it comes to purchasing products (consumer goods
or production factors) it means the loss of value or benefit that would be incurred
by purchasing some products relative to purchasing other goods. In general, this
type of cost can be related to any economic activity in comparison to some other
activity, not only to purchasing products.

Cost, transaction cost – cost incurred during negotiating and implementing a
trade agreement.
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Difference equation – an equation that determines dependency of an unknown
function on its differences (increments) of various orders. If it relates to differ-
ences up to n-th order then it is called n-th order difference equation. It is a
discrete counterpart of a differential equation.

Differential equation – an equation that determines dependency of an unknown
function on its derivatives of various orders. If it relates to derivatives up to
n-th order then it is called n-th order differential equation. It is a continuous
counterpart of a difference equation.

Discriminatory pricing – pricing policy that serves maximizing total profit from
production and sales of a homogenous product on different markets at different
prices.

Duopoly model, Bertrand model – an example of a model describing a market
of two substitute products on which two producers with equal market positions
act. It is an example of description of price competition between two producers
who, by given exogenous demand functions, aim at maximizing profits. When
setting an optimal price for her/his product each producer takes into account
a price of the substitute product manufactured by her/his competitor. By given
values of parameters of the functions of demand for the substitute products and of
parameters of production total cost functions, there exists exactly one equilibrium
price vector by which each producer maximizes her/his profits.

Duopoly model, Cournot model – an example of a model describing a market of
one homogenous product on which two producers with equal market positions
act. It is an example of description of quantity competition between two pro-
ducers who, by a given exogenous demand function, aim at maximizing profits.
When determining the optimal supply of her/his product, each producer takes
into account the supply of the product manufactured by her/his competitor. By
given values of parameters of the function of demand for the homogenous prod-
uct and of parameters of production total cost functions, there exists exactly one
equilibrium supply vector by which each producer maximizes her/his profits.
As a consequence, there exists an equilibrium price that equalizes total supply
of the product with global demand for the product.

Duopoly model, Stackelberg model – an example of a model describing a mar-
ket of one homogenous product on which two producers with unequal market
positions act. One of them, called a leader, has the dominant position. The other,
called a follower, adjusts her/his decisions on the supply of the product to deci-
sions made by the leader. The leader, determining her/his optimal level of the
product supply, does not take into account decisions of the follower but aiming at
profit maximization takes into account a demand function and her/his own profit
function. The model is an example of quantity competition between two produc-
ers who, by the given exogenous demand function, aim at maximizing profits.
By given values of parameters of the function of demand for the homogenous
product and of parameters of production total cost functions there exists exactly
one equilibrium supply vector by which each producer maximizes her/his profits.
As a consequence, there exists an equilibrium price which equalizes total supply
of the product with global demand for the product. Here the optimal product
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supply by the leader is a solution to an unconditional leader’s profit maximiza-
tion problem, while the optimal product supply by the follower is a solution
to a conditional follower’s profit maximization problem.

Economic agent – a single microeconomic decision-maker in a model of some
aspect of the economy, for example: consumer, trader, producer.

Economics – a subdivision of knowledge (a discipline) in the branch of social
science in which one discusses and studies rational ways of the resource usage by
an individual, groups of individuals or a society. It examines how these economic
agents use the resources to manufacture goods and services and distribute them
among groups and individuals who form a given society in a given time horizon.

Edgeworth box – a geometric illustration used in a case of two traders and two
consumer goods in the simple model of exchange and in the Arrow-Hurwicz
model to present a set of all allocations feasible with regard to an initial alloca-
tion. The Edgeworth box is created by overlapping two coordinate systems, each
of which is associated with the first or the second trader.

Effect, income effect – one of the effects described in the Slutsky equation. It
consists in determining how the demand for a given good is affected by relatively
smaller purchasing power of a consumer caused by an uncompensated increase
in a price of this good or in a price of the other good. If its sign is negative the
good is normal, if positive the good is inferior.

Effect, price effect – one of the effects described in the Slutsky equation. It can
relate to one good or to a relationship between two goods. If it relates to one
good then it consists in determining how a change in a price of a given good
affects the demand for this good (ceteris paribus — the price of the other good
and a consumer’s income remain unchanged). Then if its sign is negative the
good is ordinary, if positive the good is a Giffen good. If it relates to two goods
then it consists in determining how a change in a price of one good affects the
demand for the other good (ceteris paribus — the price of the other good and
a consumer’s income remain unchanged). Then if its sign is negative the goods
are mutual complements, if positive they are mutual substitutes.

Effect, substitution effect – one of the effects described in the Slutsky equation.
It can relate to one good or to a relationship between two goods. If it relates
to one good then its sign is always negative and consists in determining how a
change in a price of a given good affects the compensated demand for this good.
If it relates to two goods then it consists in determining how a change in a price
of a given good affects the compensated demand for the other good. An increase
in a price of one good results in a decrease in utility of an optimal consumption
bundle. But this utility’s decrease is compensated by a hypothetical increase in
a consumer’s income such that a new optimal consumption bundle has the same
utility level as the bundle before the increase in the price of the good.

Elasticity of function – a characteristic of any function that describes by approx-
imately what % a value of the function changes (increases, decreases or remains
unchanged) when a value of one of its arguments increases by 1% and values of
the other arguments do not change.
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Elasticity, price elasticity of demand for good with respect to its price (simple
price elasticity) – a characteristic of a function of demand for a given good that
describes by approximately what % the demand for this good changes (increases,
decreases or remains unchanged) when a price of this good increases by 1% and
prices of the other goods and a consumer’s income do not change.13

Elasticity, price elasticity of demand for good with respect to price of other good
(cross or mixed price elasticity) – a characteristic of a function of demand for
a given good that describes by approximately what % the demand for this good
changes (increases, decreases or remains unchanged) when a price of some other
good increases by 1% and prices of remaining goods and a consumer’s income
do not change.

Elasticity, price elasticity of demand for good with respect to consumer’s
income (income elasticity) – a characteristic of a function of demand for a
given good that describes by approximately what % the demand for this good
changes (increases, decreases or remains unchanged) when a consumer’s income
of increases by 1% and prices of consumer goods not change.

Elasticity of production with respect to production factor – a characteristic of
a production function that describes by approximately what % an output level
changes (increases, decreases or remains unchanged) when an input level of this
production factor increases by 1% and inputs of the other production factors do
not change.

Elasticity of productionwith respect to scale of inputs – a characteristic of a pro-
duction function that describes by approximately what % an output level changes
(increases, decreases or remains unchanged) when an input level of each produc-
tion factor increases by 1%. If the production function is positively homogenous
of order θ>0 then a value of this elasticity equals θ.

Elasticity of substitution of one consumer good by the other good in a con-
sumption bundle with a given utility level – a relative measure of substitution
that describes by approximately what % one should raise quantity of the other
good when quantity of the given good has been reduced by 1%, in order to keep
the given utility of a consumption bundle unchanged.

Elasticity of substitution of one production factor by the other production fac-
tor in a vector of inputs by which the output can be produced at a given
level – a relative measure of substitution that describes by approximately what
% one should raise quantity of the other production factor when an input of the
given production factor has been reduced by 1%, in order to keep the given level
of output unchanged.

Equilibrium price – a level of a price by which the supply and the reported
demand, both expressed in the same physical units, are equal to each other.

13 Interpretations of price elasticities and income elasticity of demand for a given good refer to
the cases when the demand for goods is described by the Marshallian demand function.
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Exchange core – a set defined in the Arrow-Hurwicz model or in the Arrow-
Debreu-McKenzie model as consisting of all allocations accepted by all traders
and Pareto optimal at the same time

Exogenous function of supply of product – arbitrarily determined (not as a result
of derivations of a model under consideration) functional dependency of the sup-
ply of a product on its price. Most of the time one assumes that the supply of
a product is a function increasing in a price of the product. Sometimes such an
assumption is referred to as the law of supply.14

Exogenous function of demand for product – arbitrarily determined (not as
a result of derivations of a model under consideration) functional dependency
of the demand for a product on its price. Most of the time one assumes that the
demand of a product is a function decreasing in a price of the product. Sometimes
such an assumption is referred to as the law of demand.

Follower on market of product – a producer (or a firm owned by her/him) who
acting on a market of a given product in conditions described by the Stackel-
berg duopoly (or oligopoly) model (homogenous product, quantity competition)
makes decisions optimal for her/him depending on decisions made by a leader
of the market (a producer with a dominant position). There can be one or a few
followers.

Function – a mapping that to any element from a domain (set of arguments)
assigns exactly one element from a codomain (set of values).

Function of compensated demand (Hicksian demand function) – a function that
describes dependency of the consumer’s demand for consumer goods on prices
of these goods and on a utility level of a consumption bundle. It is derived as an
optimal solution to a consumer’s expenditure minimization problem.

Function of conditional demand for production factors – a function that
describes dependency of the producer’s demand for production factors on prices
of these factors and on an output level. It is derived as an optimal solution to a
cost minimization problem when producing the output at a fixed level.

Function of consumer demand (Marshallian demand function) – a function that
describes dependency of the consumer’s demand for consumer goods on prices
of these goods and on the consumer’s income. It is derived as an optimal solution
to a consumption utility maximization problem.

Function of consumer’s expenditure – a function that describes how the mini-
mum expenditure, which a consumer incurs to purchase a consumption bundle
with a given utility level, depends on prices of consumer goods and on the utility
level. It results from a consumer’s expenditure minimization problem.

Function of demand for production factors – a function that describes depen-
dency of the producer’s demand for production factors on prices of these factors

14 Treating this assumption as a general economic law is an exaggeration. Let us notice that a
number of conditions has to be implied to have this assumption satisfied.
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and on a price of product manufactured by the producer. It is derived as an opti-
mal solution to a profit maximization problem with regard to inputs of production
factors.

Function of excess demand – a difference between a global supply function and
a global demand function.

Function of firm’s profit – a difference between a function of revenue from sales
of product and a function of production total cost. It describes dependency of
the profit a firm can obtain on production factors’ inputs or on output level.

Function of firm’s maximal profit – a function that describes how the maximum
profit, which a firm can obtain, depends on prices of production factors, a price
of a product manufactured by the firms and on the fixed cost of production. It
results from a profit maximization problem with regard to inputs of production
factors or with regard to output level.

Function of global supply – a sum of supply functions of all producers.
Function of global demand – a sum of demand functions of all consumers.
Function homogenous of order zero – a function such that when values of all its
arguments increase proportionally then a value of the function does not change.

Function of marginal cost – a function that describes how a production total (or
variable) cost15 level increases when an input of some production factor or when
an output level increases by one notional unit.

Function of marginal profit – a difference between a function of marginal rev-
enue from sales of a product and a function of marginal production total cost.
All these functions are considered as functions of production factors inputs or of
an output level. It describes how a profit level changes when an input of some
production factor or when an output level increases by one notional unit.

Function of marginal revenue from sales – a function that describes how the
revenue from sales of a product increases when an input of some production
factor or when an output level increases by one notional unit.

Function positively homogenous of order θ>0 — a function such that when
values of all its arguments increase proportionally then a value of the function
increases: proportionally (θ = 0), less than proportionally (θ < 0), more than
proportionally (θ > 0).

Function of production fixed cost – a constant function that describes cost related
to a production process that does not depend explicitly on inputs of production
factors nor on the output level.

Function of production total cost – a function that describes dependency of cost
of production on production factors’ inputs or on output level. It is a sum of
functions of variable cost and of fixed cost.

15 A function of marginal total cost and a function of marginal variable cost are identical since a
function of the fixed cost is constant. A function of marginal fixed cost equals 0 and does not matter
in the marginal total cost.
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Function of production variable cost – a function that describes cost related to
a production process that depends explicitly on inputs of production factors or
on the output level.

Function of product supply – a function that describes dependency of the product
supply by a producer on prices of production factors and on a price of product
manufactured by the producer. It is derived as an optimal solution to a profit
maximization problem with regard to output level.

Function of revenue from sales of product – a function that describes depen-
dency of the revenue (turnover) from sales of a product on production factors’
inputs or on output level. It is one of basic financial characteristics of a produc-
tion process. In the mathematical sense it is the output level of a manufactured
product multiplied by its price.

Gossen’sfirst law – a property saying that a marginal utility of any good decreases
with an increase of quantity of this good in a consumption bundle. It is satisfied
in case of any increasing, differentiable and strictly concave utility function.

Gossen’s second law – a property saying that when a consumption bundle is
optimal (as an optimal solution to a consumption utility maximization problem
or to a consumer’s expenditure minimization problem) then a marginal rate of
substitution of one good by the other good in this bundle is constant and equal
to the ratio of prices of these two goods. The law is satisfied in case of any
increasing, differentiable and strictly concave utility function.

Graph of function – a set of all vectors in which all coordinates (one or more,
depending on whether a function has one or more variables), except the last
one, are arguments of a given function and the last coordinate is a value of this
function corresponding to these arguments. A geometric illustration of this set is
presented as a set of points in the Cartesian coordinate system.

Growth rate of function – a characteristic of any function that describes by
approximately what % a value of the function changes (increases, decreases
or remains unchanged) when a value of one of its arguments increases by one
notional unit and values of the other arguments do not change.

Growth speed of function – a characteristic of any function that describes by
how much approximately a value of the function changes (increases, decreases
or remains unchanged) when a value of one of its arguments increases by one
notional unit and values of the other arguments do not change. For a differen-
tiable utility function the growth speed is called a marginal utility of a good.
For a differentiable production function the growth speed is called a marginal
productivity (marginal effectiveness) of a production factor.

Heterogeneous products – differentiated products that are offered on a market,
presented by producers and perceived by consumers as substitutive. In fact they
do not have to differ much in physical features to be regarded as heteroge-
neous. Other qualities, like a brand, the popularity, commercials, make them
seen as heterogeneous.

Holism – research approach opposed to methodological individualism. It relies
on a belief that society is not a simple sum of individuals who form it and
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that properties of a given society influence a lot behaviour and activities of the
individuals.

Homogeneous product – undifferentiated products that are offered on a market,
presented by producers and perceived by consumers as the same one product.
In fact they may differ a little in physical features but still be regarded by
consumers as homogeneous.

Homo oeconomicus – man as an individual who manages her/his resources,
behaves rationally and makes decisions rational from a point of view of economic
criteria.

Homo sapiens – man as a reasoning and intelligent being.
Homo socialis – man as a social being.
Imperfect competition firm – a firm acting on a market of one homogenous prod-
uct or on a market of substitute differentiated products under prevailing imperfect
competition conditions. What distinguishes the imperfect competition firm from
the perfect competition one is that the former has some market power when
deciding on a price of its product, independently of or dependently on competing
firms.

Income, nominal income – any income of a consumer for which purchasing
power is not determined.

Income, real income – any income of a consumer for which purchasing power is
determined.

Indifference curve – a set of all consumption bundles whose utility is the same
from a point of view of a given consumer’ preferences.

Indirect function of consumption utility – a function that describes maximum
utility of a consumption bundle that a consumer can have by given prices of
consumer goods and a given consumer’s income. It is derived as an optimal
solution to a consumption utility maximization problem.

Inverse function – a function inverse to a certain function is a mathematical con-
cept described in Definition 5.3 or 5.8. In this concept, it does not matter what
the interpretation of variables is since the choice of the variable is arbitrary.
Graphs of functions inverse to each other are symmetric with respect to the 45o

line.
Inverse function of consumer demand – an identity transformation of a demand
function. From a point of view of a producer, it describes dependency of a prod-
uct price on a supply level. It is used in a profit function of a producer who
has market power to set a price of her/his product. When formulating the profit
function it allows to take into account properties of the demand for the product
described by the demand function, such as a market capacity or sensitivity of
consumers to changes in the product price.

Isoquant of production – a set of all vectors of production factor’ inputs by
which the output can be produced at a fixed given level.

Kuhn-Tucker theorem – a theorem determining necessary and sufficient con-
ditions for the existence of an optimal solution to a nonlinear mathematical
programming problem. It is applicable when searching for a conditional optimum
(maximum, minimum) of a given function (called objective function).
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Lagrange function – a function that allows to formulate any problem of math-
ematical programming (linear or nonlinear one). It is useful in searching for
conditional extrema for objective functions in conditional optimization problems.
It is formed as a sum of an objective function and of constraints (conditions)
multiplied by so-called Lagrange multipliers.

Lagrange multiplier – a variable that is used in a Lagrange function to introduce
a constraint determined in a conditional optimization problem. In a Lagrange
function there are as many multipliers as there are the constraints. An optimal
multiplier describes by how much an optimal value of an objective function
changes when a value used to formulate a constraint increases by one notional
unit.

Leader on market of product – a producer (or a firm owned by her/him ) who,
acting on a market of a given product in conditions described by the Stackel-
berg duopoly (or oligopoly) model (homogenous product, quantity competition),
makes decisions optimal for her/him not depending on decisions made by other
producers who are called followers. There can be one or a few leaders.

Line of producer’s reaction – a concept occurring in the Cournot, Stackelberg
and Bertrand duopoly models. It describes a set of optimal levels of the product
supply (Cournot and Stackelberg duopolies) or of optimal levels of a product
price (Bertrand duopoly) for a given producer when he/she takes the supply
level or the price level set by the other producer as given. In the Stackelberg
duopoly model the line of reaction is determined only for the follower since the
leader does not make her/his decisions on the supply or on the price as dependent
on decisions made by the follower.

Macroeconomics – a branch of economics in which one discusses and studies
the behaviour of the collectivity of consumers and producers and to describe it
uses aggregate volumes related to the entire economy to know, understand and
explain economic phenomena and processes taking place in the economy treated
as a whole.

Marginal demand for good with respect to consumer’s income – a measure of
reaction of the demand for a given good that describes by approximately how
many physical units the demand for this good changes (increases, decreases or
remains unchanged) when a consumer’s income (j/=I or j=1) increases by one
notional money unit and prices of consumers goods do not change.

Marginal demand for i-th good with respect to price of j-th good – a measure
of reaction of the demand for i-th good that describes by approximately how
many physical units the demand for this good changes (increases, decreases or
remains unchanged) when a price of j-th good (j/=i or j=i) increases by one
notional money unit and prices of the other goods and a consumer’s income do
not change.

Marginal productivity of production factor (growth speed of production) –
one of the characteristics of a production function. It describes by approximately
how many physical units an output level changes (increases, decreases or remains
unchanged) when an input of a given production factor increases by one notional
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unit and inputs of the other production factors in the vector of inputs do not
change.

Marginal rate of substitution of one goodby another good – an absolute measure
of substitutability of two goods that describes by approximately how many units
one should raise a quantity of the other good in a consumption bundle when
a quantity of the given good has been reduced by one unit, in order to keep
the consumption bundle utility unchanged in comparison to the bundle before
the changes.

Marginal rate of substitution of one production factor by other factor – an
absolute measure of substitutability of two production factors that describes by
approximately how many units one should raise an input of the other production
factor in a vector of inputs when a quantity of the given factor has been reduced
by one unit, in order to keep the output level unchanged in comparison to the
vector of inputs before the changes.

Marginal utility of consumer good – one of the characteristics of a utility func-
tion. It describes by approximately how many units a utility of a consumption
bundle changes when a quantity of a given good increases by one notional unit
and quantity of the other goods in the bundle does not change.

Marginal utility of income – a measure that describes by approximately how
many units a utility of an optimal consumption bundle (a value of an indirect
utility function) changes (usually increases) when a consumer’s income increases
by one notional money unit and prices of consumer goods do not change. It is
equal to an optimal Lagrange multiplier as well as to a marginal utility of a
money unit for the purchase of any of the goods.

Marginal value of function – from the point of view of microeconomics it is
a characteristic of any function that describes by how much approximately a
value of the function changes (increases, decreases or remains unchanged) when
a value of one of its arguments increases by 1, and values of the other arguments
do not change. In the mathematical sense it is a first-order derivative of a function
(partial derivative in case of a function of two or more variables).

Market – a group of buyers and sellers of a certain product (good or service).
Market capacity – the maximum demand that consumers can report on a market
for a given product at a product price equal to zero.

Market economy – an economy in which distribution of resources among various
applications is made as a result of decentralized decisions of economic agents
(producers, firms, consumers, households, government) who interact with each
other on markets of products (goods and services).

Market failure – inability of the market mechanism to distribute resources among
various applications.

Mesoeconomics – a branch of economics in which one discusses and studies
the processes of management of resources by economic agents who act within
distinct economic sectors or activities.

Methodological individualism – research approach consisting in a belief that in
order to understand social reality one has to concentrate on an individual, not
on society as a whole. It is that because society is an outcome of activities of
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individuals who undergo various transformations being a result of these activities.
This approach is typical for traditional microeconomics and in general for the
neoclassical school.

Metric, Euclidean metric – an example of a metric, a mapping satisfying spec-
ified properties and determined by a specified formula.16 In the theory of a
consumer choice it is used as a measure of distance between two consump-
tion bundles. This metric is applicable when quantities of all consumer goods in
consumption bundles are expressed in the same physical units.

Metric, non-Euclidean metric – an example of a metric, a mapping satisfying
specified properties and determined by a specified formula.17 In the theory of a
consumer choice, it is used as a measure of distance between two consumption
bundles. To determine it one does not need to use the same physical units for
quantities of consumer goods in consumption bundles. Its formula does not cause
any interpretation issues.

Microeconomics – a branch of economics in which one describes and analyzes
markets as well as behaviour and activities of individual economic agents such
as consumers (households) or producers (firms).

Model of market with exogenous demand and supply functions – a simplified
version of the Arrow-Debreu-McKenzie model. A function of demand for a prod-
uct and a function of the product supply are determined here exogenously, that
is they do not result from equations of the model.

Model of imperfect competition market – description of a market of a certain
product or a bundle of products, in which at least one of the assumptions of
perfect competition market is not satisfied.

Model of perfect competitionmarket – description of a market of a certain prod-
uct or a bundle of products consisting of four assumptions: market atomization,
homogeneity of a product (or a bundle of products), transparency and liquidity.

Monopolist – an owner of a firm who is the only one supplier of a certain product
on a market.

Monopoly – a market on which there is only one firm supplying a certain product
on this market. Very often this name is also identified with this only one firm.

Monopoly, institutionalmonopoly – a case of a monopoly in which a monopolist
is the only producer who holds an exclusive license for the manufacturing and
selling a certain product.

Monopoly, technological monopoly – a case of amonopoly in which a monop-
olist is the only producer who owns technology and infrastructure needed to
manufacture and sell a certain product.

Oligopoly – an example of the imperfect competition. A market on which at least
three producers act. At the same time, it does not satisfy the assumptions of the
perfect competition model. It can be a market of one homogenous product or a
few substitute differentiated products.

16 These properties and the formula can be found in the Mathematical appendix.
17 These properties and the formula can be found in the Mathematical appendix.
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Optimal consumption bundle – a bundle of consumer goods which, by a given
relation of consumer’s preference, is not worse than any other bundle from a set
of all consumption bundles available on a market. There can be exactly one or
many optimal bundles (infinitely many assuming perfect divisibility of physical
units of goods). In particular, optimal consumption bundles are optimal solutions
to consumption utility maximization problems or to consumer’s expenditure min-
imization problems. If certain conditions are satisfied, optimal bundles defined
in these two ways can be the same.

Optimality conditions inoptimizationproblems18 – conditions on basis of which
one searches for optimal solution of a given optimization problem. They can be
one of three types:

– necessary - if the condition is a consequent (statement q) in an implication: p
⇒ q,

– sufficient - if the condition is an antecedent (statement p) in an implication: p
⇒ q,

– necessary and sufficient in the same time - if the condition is used in an
equivalence: p ⇔ q.

Optimization, conditional optimization – searching for such a stationary point at
which a certain function, called an objective function, reaches its optimal (maxi-
mal or minimal) value given there are additional conditions on values of decisive
variables described by a system of equations or inequalities. In the mathematical
sense we search only the specific subset of the domain of the function. When
such a point is found then it can be a local optimum, different than a global
optimum, if the constraining conditions are binding and or it can be a global
optimum if the constraining conditions are not binding.

Optimization, unconditional optimization – searching for such a stationary point
at which a certain function, called an objective function, reaches its optimal
(maximal or minimal) value. It is called unconditional because there is no addi-
tional condition on decisive variables besides the reaching the optimal value. In
the mathematical sense we search the whole domain of the function.

Optimum – an argument for which a certain function, called an objective func-
tion, has the largest (maximum) or the smallest (minimum) value. It can be
determined without additional conditions (unconditional optimum) or with some
additional conditions (conditional optimum) described by a system of equations
or inequalities.

Optimum, economic optimum – the best choice for an economic agent (con-
sumer, trader, producer) from a point of view of a given choice criterion
(optimality criterion). For example, a consumer wants to know what quantities
of goods give her/him the highest utility by a given income or what quantities

18 Not to be confused with optimality criteria, which can be for example the highest utility of a
consumption bundle, the highest profit from production and sales, the lowest expenditure incurred
on a consumption bundle, the lowest total production cost.



500 Glossary

of goods guarantee the lowest expenditure by a given fixed utility level. A pro-
ducer wants to know what inputs of production factors or what supply level allow
her/him to reach the highest profit or what inputs of production factor guarantee
the lowest production cost by a given fixed output level.

Pareto frontier – a set of Pareto-optimal allocations determined with respect to
a given initial allocation. When the Edgeworth box is used a Pareto frontier is
also called a contract curve.

Perfect competition firm – a firm acting on a market of one homogenous product
under prevailing perfect competition conditions. What distinguishes the perfect
competition firm from the imperfect competition one is that the former has no
market power to set a price of its product, thus takes the price given by the
market.

Problem of consumer’s expenditure minimization – a problem in which one
searches for such a consumption bundle by which a consumer incurs the
minimum cost of purchasing the bundle with a given fixed utility level.

Problemof consumptionutilitymaximization – a problem in which one searches
for such a consumption bundle by which a consumer has the maximum utility
and whose value does not exceed a consumer’s income.

Problem of cost minimization when producing output at fixed level – a problem
in which one searches for such a vector of production factor’ inputs by which a
producer incurs the minimum cost of producing an output at a given fixed level.

Problem of firm profit maximization with regard to inputs of production fac-
tors – a problem in which one searches for such a vector of production factors’
inputs by which a firm obtains the maximum profit.

Problem of firm profit maximization with regard to output level – a problem
in which one searches for such an output level by which a firm obtains the
maximum profit.

Production explicit cost – expenditures incurred by a firm in order to purchase
or hire production factors.

Production factors – all service and material resources used by a firm in a
production process to manufacture a given product. Among the production fac-
tors one specifies: physical capital, labour, land, human capital, social capital,
intellectual capital, informational capital.

Production fixed cost – cost related to a production process that does not depend
on inputs of production factors nor on the output level.

Production function – a formal description of a set of technologically effec-
tive production processes. It assigns maximum quantity of a product that can
be produced when using any given inputs of production factors

Production function, Cobb–Douglas production function – a power production
function, positively homogenous of first order. It is an only case of a power pro-
duction function being an example of a neoclassical production function that
is increasing, having zero value for zero inputs and satisfying Inada’s limit
properties.
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Production implicit cost (imputed/implied/notional cost) – not financial cost
related to what a firm needs to decide in order to use already owned or hired
production factors.

Production process – a process of transforming a bundle of inputs (of production
factors) into a bundle of outputs (of products).

Production process, technologically feasible process – such a production pro-
cess in which it is possible to obtain any (not necessarily maximum) quantity
of a product using given inputs of production factors.

Production process, technologically effective process – such a technologically
feasible production process in which it is possible to obtain a maximum quantity
of a product using given inputs of production factors.

Production space – a set of all technologically feasible production processes with
a non-Euclidean norm defined on this set.

Production total cost – a sum of variable and of the fixed production cost.
Production variable cost – cost related to a production process that depends on
inputs of production factors or on the output level.

Profit – a difference between revenue (turnover) from sales of a product and total
cost of its production.

Profit, accounting profit – economic profit with added implicit costs. The addi-
tion of the implicit costs results from the fact that when the accounting profit is
determined only explicit costs are taken into account.

Profit, economic profit – a difference between revenue (turnover) from sales of a
product and total cost of its production, in which one accounts for explicit and
implicit costs.

Relation of consumer indifference – a subset of a Cartesian product on the con-
sumer goods’ space consisting of all ordered pairs of consumption bundles in
which the first bundle is as good (indifferent) as the second bundle. This means
also that the utility of the first bundle in the pair equals the utility of the second
bundle.

Relation of consumer strong preference – a subset of a Cartesian product on the
consumer goods’ space consisting of all ordered pairs of consumption bundles in
which the first bundle is better (strongly preferred) than the second bundle. This
means also that the utility of the first bundle in the pair is bigger than the utility
of the second bundle.

Relation of consumer (weak) preference – a subset of a Cartesian product on the
consumer goods’ space consisting of all ordered pairs of consumption bundles
in which the first bundle is not worse (weakly preferred) than the second bundle.
This means also that the utility of the first bundle in the pair is not less than the
utility of the second bundle.

Resources of production factors – specified quantities of production factors
owned by a firm. If the resources owned by a firm do (not) constrain a pos-
sibility to make optimal decisions then we call them (un)constrained. In such
a case we say that the constraints on resources of production factors are (not)
binding.
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Returns to scale – a change in an output level caused by a simultaneous
and proportional increase (decrease) in inputs of all production factors. One
distinguishes:

– constant returns to scale (proportional revenues) - when inputs of all pro-
duction factors are increased/decreased proportionally then the output level
increases/decreases proportionally,

– decreasing returns to scale (decreasing revenues) - when inputs of all pro-
duction factors are increased/decreased proportionally then the output level
increases/decreases less than proportionally,

– increasing returns to scale (increasing revenues) - when inputs of all pro-
duction factors are increased/decreased proportionally then the output level
increases/decreases more than proportionally.

Revenue (turnover) from sales of product – the amount of income for a firm
generated by selling the product that this firm manufactures.

Sensitivity analysis (comparative statistics) – analysis of the impact of single
variables (values of parameters) on an optimal value of a selected variable. Most
of the time it is conducted in terms of ceteris paribus using partial derivatives of
a function that describes the selected variable and depends on strictly determined
parameters of a model under consideration.

Simple model of exchange – a simplified version of the Arrow-Hurwicz model in
which one does not take into account any financial characteristics of consumer
goods’ exchange, that is prices of consumer goods and incomes of traders. The
transaction of exchange, if it is made, results in an allocation, which is Pareto
optimal and at the same time accepted by all traders. Determination of the allo-
cation depends on an initial allocation and preferences of traders described by
utility functions, by an assumption that each trader’s behaviour is rational.

Slutsky equation – an equation showing that a change in the demand for i-th
good caused by a change in a price of j-th good (price effect) is a sum of a
substitution effect and of an income effect, each caused by the change in j-th
good’s price. The equation is derived by specific assumptions about the utility
level and a consumer’s income level that result in equal values of the Marshallian
demand function and the Hicksian demand (compensated demand) function.

Stationary point – an argument for which a value of a given function’s first
derivative (or values of first-order partial derivatives in the case of a function
of two or more variables) equals zero. It is also said that the stationary point
satisfies a first-order condition. Stationary points are points at which a given
function can have its local extrema, but it does not have to since the first order
condition is necessary but not sufficient.

Strategy of firm – behaviour of a firm aiming at reaching an optimal goal by
given constraining conditions. When there are no constraints on resources of
production factors, thus a firm can obtain any quantities of these factors, then we
call a strategy long-term. When resources of production factors are constrained,
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thus a firm can obtain only limited quantities of these factors, then we call the
strategy short -term.19

Substitution – a possibility of replacing a given quantity of one product by a
specific quantity of some other product. It refers to consumer goods and then
is considered from a point of view of a consumer who wants to have a certain
utility of her/his consumption bundle. Or it refers to production factors and then
is considered from a point of view of a producer who wants to obtain a certain
output level in her/his firm.

Substitute consumer goods – such goods that a given consumer considers replac-
ing a given quantity of one good by a specific quantity of the other good as
bringing no significant change in her/his utility level from a consumption bundle
in comparison to the bundle before the changes. From a point of view of demand
reaction, two consumer goods are called substitutes when a rise in a price of one
of these goods results in an increase in the demand for the other good.

Substitute consumer goods, perfect substitutes – specific substitute goods such
that a proportion in which a consumer regards replacing one good by the other
is always the same, regardless of quantities of goods in a consumption bundle.
Preferences towards perfect substitutes are described by a linear utility function.

Substituteproduction factors – such production factors that in a given production
process a producer considers replacing a given input of one production factor by
a specific input of the other factor as bringing no significant change in an output
level in comparison to the inputs before the changes. When the proportion of the
substitution of such production factors is always the same, regardless of inputs
of these factors, then they are called perfectly substitute.

Path of price expansion of demand – a sequence of optimal solutions to con-
sumption utility maximization problems, each of which corresponds to a change
in a price of one of goods, as compared to an initial level of this price, with the
price of the other good unchanged and a consumer’s income unchanged.

Path of income expansion of demand – a sequence of optimal solutions to con-
sumption utility maximization problems, each of which corresponds to a change
in a consumer’s income as compared to an initial level of income, with the prices
of both goods unchanged.

Utility function – a function that assigns some number to any consumption bundle
in such a way that describes a consumer’s relation of (weak) preference.

Walrasian general equilibrium state – a state determined by a set of prices con-
stituting an equilibrium price vector by which the global supply of each good
equals the global demand for this good, both expressed in the same physical
units. The Walrasian equilibrium price vector, if it exists, is determined with an
accuracy of a structure, that is with an accuracy of a multiplication by a positive

19 This way of reasoning (distinction between long-term and short-term of the firm activity) is
not completely correct from the methodological point of view. It would be, if time, considered as
continuous or discrete variable, was present explicitly among variables describing the firm activity.
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number. The structure of this vector is a ratio of a price of each good and a price
of some chosen good which is then called a numéraire good.

Walrasian partial equilibrium state – a state determined by a set of prices by
which the global supply of good equals the global demand for this good, both
expressed in the same physical units. This concepts refers to a single market,
where only one good is considered. Thus, it is possible that by given prices of
goods there is a few partial equilibrium states for a few markets, but in the same
time there is no general equilibrium state by these prices.

Walras’s law – a property of the Arrow-Hurwicz model and of the Arrow-Debreu-
McKenzie model saying that for any positive prices of goods a money value of
the global (reported by all consumers on a market) total (for all goods) demand
for goods is equal to the money value of their global (by all suppliers) total (of
all goods) supply.
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Substitution
of goods, 41
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T
Time
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423, 439, 449, 480, 486, 503
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V
Vector of
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W
Walrasian
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equilibrium, 6, 113, 114, 125, 127, 128,
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